ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ConcurrentHashMap.java
Revision: 1.312
Committed: Tue May 29 10:27:21 2018 UTC (6 years ago) by dl
Branch: MAIN
Changes since 1.311: +2 -2 lines
Log Message:
doc clarification

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.io.ObjectStreamField;
10 import java.io.Serializable;
11 import java.lang.reflect.ParameterizedType;
12 import java.lang.reflect.Type;
13 import java.util.AbstractMap;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Enumeration;
17 import java.util.HashMap;
18 import java.util.Hashtable;
19 import java.util.Iterator;
20 import java.util.Map;
21 import java.util.NoSuchElementException;
22 import java.util.Set;
23 import java.util.Spliterator;
24 import java.util.concurrent.atomic.AtomicReference;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.function.BiConsumer;
28 import java.util.function.BiFunction;
29 import java.util.function.Consumer;
30 import java.util.function.DoubleBinaryOperator;
31 import java.util.function.Function;
32 import java.util.function.IntBinaryOperator;
33 import java.util.function.LongBinaryOperator;
34 import java.util.function.Predicate;
35 import java.util.function.ToDoubleBiFunction;
36 import java.util.function.ToDoubleFunction;
37 import java.util.function.ToIntBiFunction;
38 import java.util.function.ToIntFunction;
39 import java.util.function.ToLongBiFunction;
40 import java.util.function.ToLongFunction;
41 import java.util.stream.Stream;
42 import jdk.internal.misc.Unsafe;
43
44 /**
45 * A hash table supporting full concurrency of retrievals and
46 * high expected concurrency for updates. This class obeys the
47 * same functional specification as {@link java.util.Hashtable}, and
48 * includes versions of methods corresponding to each method of
49 * {@code Hashtable}. However, even though all operations are
50 * thread-safe, retrieval operations do <em>not</em> entail locking,
51 * and there is <em>not</em> any support for locking the entire table
52 * in a way that prevents all access. This class is fully
53 * interoperable with {@code Hashtable} in programs that rely on its
54 * thread safety but not on its synchronization details.
55 *
56 * <p>Retrieval operations (including {@code get}) generally do not
57 * block, so may overlap with update operations (including {@code put}
58 * and {@code remove}). Retrievals reflect the results of the most
59 * recently <em>completed</em> update operations holding upon their
60 * onset. (More formally, an update operation for a given key bears a
61 * <em>happens-before</em> relation with any (non-null) retrieval for
62 * that key reporting the updated value.) For aggregate operations
63 * such as {@code putAll} and {@code clear}, concurrent retrievals may
64 * reflect insertion or removal of only some entries. Similarly,
65 * Iterators, Spliterators and Enumerations return elements reflecting the
66 * state of the hash table at some point at or since the creation of the
67 * iterator/enumeration. They do <em>not</em> throw {@link
68 * java.util.ConcurrentModificationException ConcurrentModificationException}.
69 * However, iterators are designed to be used by only one thread at a time.
70 * Bear in mind that the results of aggregate status methods including
71 * {@code size}, {@code isEmpty}, and {@code containsValue} are typically
72 * useful only when a map is not undergoing concurrent updates in other threads.
73 * Otherwise the results of these methods reflect transient states
74 * that may be adequate for monitoring or estimation purposes, but not
75 * for program control.
76 *
77 * <p>The table is dynamically expanded when there are too many
78 * collisions (i.e., keys that have distinct hash codes but fall into
79 * the same slot modulo the table size), with the expected average
80 * effect of maintaining roughly two bins per mapping (corresponding
81 * to a 0.75 load factor threshold for resizing). There may be much
82 * variance around this average as mappings are added and removed, but
83 * overall, this maintains a commonly accepted time/space tradeoff for
84 * hash tables. However, resizing this or any other kind of hash
85 * table may be a relatively slow operation. When possible, it is a
86 * good idea to provide a size estimate as an optional {@code
87 * initialCapacity} constructor argument. An additional optional
88 * {@code loadFactor} constructor argument provides a further means of
89 * customizing initial table capacity by specifying the table density
90 * to be used in calculating the amount of space to allocate for the
91 * given number of elements. Also, for compatibility with previous
92 * versions of this class, constructors may optionally specify an
93 * expected {@code concurrencyLevel} as an additional hint for
94 * internal sizing. Note that using many keys with exactly the same
95 * {@code hashCode()} is a sure way to slow down performance of any
96 * hash table. To ameliorate impact, when keys are {@link Comparable},
97 * this class may use comparison order among keys to help break ties.
98 *
99 * <p>A {@link Set} projection of a ConcurrentHashMap may be created
100 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
101 * (using {@link #keySet(Object)} when only keys are of interest, and the
102 * mapped values are (perhaps transiently) not used or all take the
103 * same mapping value.
104 *
105 * <p>A ConcurrentHashMap can be used as a scalable frequency map (a
106 * form of histogram or multiset) by using {@link
107 * java.util.concurrent.atomic.LongAdder} values and initializing via
108 * {@link #computeIfAbsent computeIfAbsent}. For example, to add a count
109 * to a {@code ConcurrentHashMap<String,LongAdder> freqs}, you can use
110 * {@code freqs.computeIfAbsent(key, k -> new LongAdder()).increment();}
111 *
112 * <p>This class and its views and iterators implement all of the
113 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
114 * interfaces.
115 *
116 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
117 * does <em>not</em> allow {@code null} to be used as a key or value.
118 *
119 * <p>ConcurrentHashMaps support a set of sequential and parallel bulk
120 * operations that, unlike most {@link Stream} methods, are designed
121 * to be safely, and often sensibly, applied even with maps that are
122 * being concurrently updated by other threads; for example, when
123 * computing a snapshot summary of the values in a shared registry.
124 * There are three kinds of operation, each with four forms, accepting
125 * functions with keys, values, entries, and (key, value) pairs as
126 * arguments and/or return values. Because the elements of a
127 * ConcurrentHashMap are not ordered in any particular way, and may be
128 * processed in different orders in different parallel executions, the
129 * correctness of supplied functions should not depend on any
130 * ordering, or on any other objects or values that may transiently
131 * change while computation is in progress; and except for forEach
132 * actions, should ideally be side-effect-free. Bulk operations on
133 * {@link Map.Entry} objects do not support method {@code setValue}.
134 *
135 * <ul>
136 * <li>forEach: Performs a given action on each element.
137 * A variant form applies a given transformation on each element
138 * before performing the action.
139 *
140 * <li>search: Returns the first available non-null result of
141 * applying a given function on each element; skipping further
142 * search when a result is found.
143 *
144 * <li>reduce: Accumulates each element. The supplied reduction
145 * function cannot rely on ordering (more formally, it should be
146 * both associative and commutative). There are five variants:
147 *
148 * <ul>
149 *
150 * <li>Plain reductions. (There is not a form of this method for
151 * (key, value) function arguments since there is no corresponding
152 * return type.)
153 *
154 * <li>Mapped reductions that accumulate the results of a given
155 * function applied to each element.
156 *
157 * <li>Reductions to scalar doubles, longs, and ints, using a
158 * given basis value.
159 *
160 * </ul>
161 * </ul>
162 *
163 * <p>These bulk operations accept a {@code parallelismThreshold}
164 * argument. Methods proceed sequentially if the current map size is
165 * estimated to be less than the given threshold. Using a value of
166 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
167 * of {@code 1} results in maximal parallelism by partitioning into
168 * enough subtasks to fully utilize the {@link
169 * ForkJoinPool#commonPool()} that is used for all parallel
170 * computations. Normally, you would initially choose one of these
171 * extreme values, and then measure performance of using in-between
172 * values that trade off overhead versus throughput.
173 *
174 * <p>The concurrency properties of bulk operations follow
175 * from those of ConcurrentHashMap: Any non-null result returned
176 * from {@code get(key)} and related access methods bears a
177 * happens-before relation with the associated insertion or
178 * update. The result of any bulk operation reflects the
179 * composition of these per-element relations (but is not
180 * necessarily atomic with respect to the map as a whole unless it
181 * is somehow known to be quiescent). Conversely, because keys
182 * and values in the map are never null, null serves as a reliable
183 * atomic indicator of the current lack of any result. To
184 * maintain this property, null serves as an implicit basis for
185 * all non-scalar reduction operations. For the double, long, and
186 * int versions, the basis should be one that, when combined with
187 * any other value, returns that other value (more formally, it
188 * should be the identity element for the reduction). Most common
189 * reductions have these properties; for example, computing a sum
190 * with basis 0 or a minimum with basis MAX_VALUE.
191 *
192 * <p>Search and transformation functions provided as arguments
193 * should similarly return null to indicate the lack of any result
194 * (in which case it is not used). In the case of mapped
195 * reductions, this also enables transformations to serve as
196 * filters, returning null (or, in the case of primitive
197 * specializations, the identity basis) if the element should not
198 * be combined. You can create compound transformations and
199 * filterings by composing them yourself under this "null means
200 * there is nothing there now" rule before using them in search or
201 * reduce operations.
202 *
203 * <p>Methods accepting and/or returning Entry arguments maintain
204 * key-value associations. They may be useful for example when
205 * finding the key for the greatest value. Note that "plain" Entry
206 * arguments can be supplied using {@code new
207 * AbstractMap.SimpleEntry(k,v)}.
208 *
209 * <p>Bulk operations may complete abruptly, throwing an
210 * exception encountered in the application of a supplied
211 * function. Bear in mind when handling such exceptions that other
212 * concurrently executing functions could also have thrown
213 * exceptions, or would have done so if the first exception had
214 * not occurred.
215 *
216 * <p>Speedups for parallel compared to sequential forms are common
217 * but not guaranteed. Parallel operations involving brief functions
218 * on small maps may execute more slowly than sequential forms if the
219 * underlying work to parallelize the computation is more expensive
220 * than the computation itself. Similarly, parallelization may not
221 * lead to much actual parallelism if all processors are busy
222 * performing unrelated tasks.
223 *
224 * <p>All arguments to all task methods must be non-null.
225 *
226 * <p>This class is a member of the
227 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
228 * Java Collections Framework</a>.
229 *
230 * @since 1.5
231 * @author Doug Lea
232 * @param <K> the type of keys maintained by this map
233 * @param <V> the type of mapped values
234 */
235 public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
236 implements ConcurrentMap<K,V>, Serializable {
237 private static final long serialVersionUID = 7249069246763182397L;
238
239 /*
240 * Overview:
241 *
242 * The primary design goal of this hash table is to maintain
243 * concurrent readability (typically method get(), but also
244 * iterators and related methods) while minimizing update
245 * contention. Secondary goals are to keep space consumption about
246 * the same or better than java.util.HashMap, and to support high
247 * initial insertion rates on an empty table by many threads.
248 *
249 * This map usually acts as a binned (bucketed) hash table. Each
250 * key-value mapping is held in a Node. Most nodes are instances
251 * of the basic Node class with hash, key, value, and next
252 * fields. However, various subclasses exist: TreeNodes are
253 * arranged in balanced trees, not lists. TreeBins hold the roots
254 * of sets of TreeNodes. ForwardingNodes are placed at the heads
255 * of bins during resizing. ReservationNodes are used as
256 * placeholders while establishing values in computeIfAbsent and
257 * related methods. The types TreeBin, ForwardingNode, and
258 * ReservationNode do not hold normal user keys, values, or
259 * hashes, and are readily distinguishable during search etc
260 * because they have negative hash fields and null key and value
261 * fields. (These special nodes are either uncommon or transient,
262 * so the impact of carrying around some unused fields is
263 * insignificant.)
264 *
265 * The table is lazily initialized to a power-of-two size upon the
266 * first insertion. Each bin in the table normally contains a
267 * list of Nodes (most often, the list has only zero or one Node).
268 * Table accesses require volatile/atomic reads, writes, and
269 * CASes. Because there is no other way to arrange this without
270 * adding further indirections, we use intrinsics
271 * (jdk.internal.misc.Unsafe) operations.
272 *
273 * We use the top (sign) bit of Node hash fields for control
274 * purposes -- it is available anyway because of addressing
275 * constraints. Nodes with negative hash fields are specially
276 * handled or ignored in map methods.
277 *
278 * Insertion (via put or its variants) of the first node in an
279 * empty bin is performed by just CASing it to the bin. This is
280 * by far the most common case for put operations under most
281 * key/hash distributions. Other update operations (insert,
282 * delete, and replace) require locks. We do not want to waste
283 * the space required to associate a distinct lock object with
284 * each bin, so instead use the first node of a bin list itself as
285 * a lock. Locking support for these locks relies on builtin
286 * "synchronized" monitors.
287 *
288 * Using the first node of a list as a lock does not by itself
289 * suffice though: When a node is locked, any update must first
290 * validate that it is still the first node after locking it, and
291 * retry if not. Because new nodes are always appended to lists,
292 * once a node is first in a bin, it remains first until deleted
293 * or the bin becomes invalidated (upon resizing).
294 *
295 * The main disadvantage of per-bin locks is that other update
296 * operations on other nodes in a bin list protected by the same
297 * lock can stall, for example when user equals() or mapping
298 * functions take a long time. However, statistically, under
299 * random hash codes, this is not a common problem. Ideally, the
300 * frequency of nodes in bins follows a Poisson distribution
301 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
302 * parameter of about 0.5 on average, given the resizing threshold
303 * of 0.75, although with a large variance because of resizing
304 * granularity. Ignoring variance, the expected occurrences of
305 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
306 * first values are:
307 *
308 * 0: 0.60653066
309 * 1: 0.30326533
310 * 2: 0.07581633
311 * 3: 0.01263606
312 * 4: 0.00157952
313 * 5: 0.00015795
314 * 6: 0.00001316
315 * 7: 0.00000094
316 * 8: 0.00000006
317 * more: less than 1 in ten million
318 *
319 * Lock contention probability for two threads accessing distinct
320 * elements is roughly 1 / (8 * #elements) under random hashes.
321 *
322 * Actual hash code distributions encountered in practice
323 * sometimes deviate significantly from uniform randomness. This
324 * includes the case when N > (1<<30), so some keys MUST collide.
325 * Similarly for dumb or hostile usages in which multiple keys are
326 * designed to have identical hash codes or ones that differs only
327 * in masked-out high bits. So we use a secondary strategy that
328 * applies when the number of nodes in a bin exceeds a
329 * threshold. These TreeBins use a balanced tree to hold nodes (a
330 * specialized form of red-black trees), bounding search time to
331 * O(log N). Each search step in a TreeBin is at least twice as
332 * slow as in a regular list, but given that N cannot exceed
333 * (1<<64) (before running out of addresses) this bounds search
334 * steps, lock hold times, etc, to reasonable constants (roughly
335 * 100 nodes inspected per operation worst case) so long as keys
336 * are Comparable (which is very common -- String, Long, etc).
337 * TreeBin nodes (TreeNodes) also maintain the same "next"
338 * traversal pointers as regular nodes, so can be traversed in
339 * iterators in the same way.
340 *
341 * The table is resized when occupancy exceeds a percentage
342 * threshold (nominally, 0.75, but see below). Any thread
343 * noticing an overfull bin may assist in resizing after the
344 * initiating thread allocates and sets up the replacement array.
345 * However, rather than stalling, these other threads may proceed
346 * with insertions etc. The use of TreeBins shields us from the
347 * worst case effects of overfilling while resizes are in
348 * progress. Resizing proceeds by transferring bins, one by one,
349 * from the table to the next table. However, threads claim small
350 * blocks of indices to transfer (via field transferIndex) before
351 * doing so, reducing contention. A generation stamp in field
352 * sizeCtl ensures that resizings do not overlap. Because we are
353 * using power-of-two expansion, the elements from each bin must
354 * either stay at same index, or move with a power of two
355 * offset. We eliminate unnecessary node creation by catching
356 * cases where old nodes can be reused because their next fields
357 * won't change. On average, only about one-sixth of them need
358 * cloning when a table doubles. The nodes they replace will be
359 * garbage collectable as soon as they are no longer referenced by
360 * any reader thread that may be in the midst of concurrently
361 * traversing table. Upon transfer, the old table bin contains
362 * only a special forwarding node (with hash field "MOVED") that
363 * contains the next table as its key. On encountering a
364 * forwarding node, access and update operations restart, using
365 * the new table.
366 *
367 * Each bin transfer requires its bin lock, which can stall
368 * waiting for locks while resizing. However, because other
369 * threads can join in and help resize rather than contend for
370 * locks, average aggregate waits become shorter as resizing
371 * progresses. The transfer operation must also ensure that all
372 * accessible bins in both the old and new table are usable by any
373 * traversal. This is arranged in part by proceeding from the
374 * last bin (table.length - 1) up towards the first. Upon seeing
375 * a forwarding node, traversals (see class Traverser) arrange to
376 * move to the new table without revisiting nodes. To ensure that
377 * no intervening nodes are skipped even when moved out of order,
378 * a stack (see class TableStack) is created on first encounter of
379 * a forwarding node during a traversal, to maintain its place if
380 * later processing the current table. The need for these
381 * save/restore mechanics is relatively rare, but when one
382 * forwarding node is encountered, typically many more will be.
383 * So Traversers use a simple caching scheme to avoid creating so
384 * many new TableStack nodes. (Thanks to Peter Levart for
385 * suggesting use of a stack here.)
386 *
387 * The traversal scheme also applies to partial traversals of
388 * ranges of bins (via an alternate Traverser constructor)
389 * to support partitioned aggregate operations. Also, read-only
390 * operations give up if ever forwarded to a null table, which
391 * provides support for shutdown-style clearing, which is also not
392 * currently implemented.
393 *
394 * Lazy table initialization minimizes footprint until first use,
395 * and also avoids resizings when the first operation is from a
396 * putAll, constructor with map argument, or deserialization.
397 * These cases attempt to override the initial capacity settings,
398 * but harmlessly fail to take effect in cases of races.
399 *
400 * The element count is maintained using a specialization of
401 * LongAdder. We need to incorporate a specialization rather than
402 * just use a LongAdder in order to access implicit
403 * contention-sensing that leads to creation of multiple
404 * CounterCells. The counter mechanics avoid contention on
405 * updates but can encounter cache thrashing if read too
406 * frequently during concurrent access. To avoid reading so often,
407 * resizing under contention is attempted only upon adding to a
408 * bin already holding two or more nodes. Under uniform hash
409 * distributions, the probability of this occurring at threshold
410 * is around 13%, meaning that only about 1 in 8 puts check
411 * threshold (and after resizing, many fewer do so).
412 *
413 * TreeBins use a special form of comparison for search and
414 * related operations (which is the main reason we cannot use
415 * existing collections such as TreeMaps). TreeBins contain
416 * Comparable elements, but may contain others, as well as
417 * elements that are Comparable but not necessarily Comparable for
418 * the same T, so we cannot invoke compareTo among them. To handle
419 * this, the tree is ordered primarily by hash value, then by
420 * Comparable.compareTo order if applicable. On lookup at a node,
421 * if elements are not comparable or compare as 0 then both left
422 * and right children may need to be searched in the case of tied
423 * hash values. (This corresponds to the full list search that
424 * would be necessary if all elements were non-Comparable and had
425 * tied hashes.) On insertion, to keep a total ordering (or as
426 * close as is required here) across rebalancings, we compare
427 * classes and identityHashCodes as tie-breakers. The red-black
428 * balancing code is updated from pre-jdk-collections
429 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
430 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
431 * Algorithms" (CLR).
432 *
433 * TreeBins also require an additional locking mechanism. While
434 * list traversal is always possible by readers even during
435 * updates, tree traversal is not, mainly because of tree-rotations
436 * that may change the root node and/or its linkages. TreeBins
437 * include a simple read-write lock mechanism parasitic on the
438 * main bin-synchronization strategy: Structural adjustments
439 * associated with an insertion or removal are already bin-locked
440 * (and so cannot conflict with other writers) but must wait for
441 * ongoing readers to finish. Since there can be only one such
442 * waiter, we use a simple scheme using a single "waiter" field to
443 * block writers. However, readers need never block. If the root
444 * lock is held, they proceed along the slow traversal path (via
445 * next-pointers) until the lock becomes available or the list is
446 * exhausted, whichever comes first. These cases are not fast, but
447 * maximize aggregate expected throughput.
448 *
449 * Maintaining API and serialization compatibility with previous
450 * versions of this class introduces several oddities. Mainly: We
451 * leave untouched but unused constructor arguments referring to
452 * concurrencyLevel. We accept a loadFactor constructor argument,
453 * but apply it only to initial table capacity (which is the only
454 * time that we can guarantee to honor it.) We also declare an
455 * unused "Segment" class that is instantiated in minimal form
456 * only when serializing.
457 *
458 * Also, solely for compatibility with previous versions of this
459 * class, it extends AbstractMap, even though all of its methods
460 * are overridden, so it is just useless baggage.
461 *
462 * This file is organized to make things a little easier to follow
463 * while reading than they might otherwise: First the main static
464 * declarations and utilities, then fields, then main public
465 * methods (with a few factorings of multiple public methods into
466 * internal ones), then sizing methods, trees, traversers, and
467 * bulk operations.
468 */
469
470 /* ---------------- Constants -------------- */
471
472 /**
473 * The largest possible table capacity. This value must be
474 * exactly 1<<30 to stay within Java array allocation and indexing
475 * bounds for power of two table sizes, and is further required
476 * because the top two bits of 32bit hash fields are used for
477 * control purposes.
478 */
479 private static final int MAXIMUM_CAPACITY = 1 << 30;
480
481 /**
482 * The default initial table capacity. Must be a power of 2
483 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
484 */
485 private static final int DEFAULT_CAPACITY = 16;
486
487 /**
488 * The largest possible (non-power of two) array size.
489 * Needed by toArray and related methods.
490 */
491 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
492
493 /**
494 * The default concurrency level for this table. Unused but
495 * defined for compatibility with previous versions of this class.
496 */
497 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
498
499 /**
500 * The load factor for this table. Overrides of this value in
501 * constructors affect only the initial table capacity. The
502 * actual floating point value isn't normally used -- it is
503 * simpler to use expressions such as {@code n - (n >>> 2)} for
504 * the associated resizing threshold.
505 */
506 private static final float LOAD_FACTOR = 0.75f;
507
508 /**
509 * The bin count threshold for using a tree rather than list for a
510 * bin. Bins are converted to trees when adding an element to a
511 * bin with at least this many nodes. The value must be greater
512 * than 2, and should be at least 8 to mesh with assumptions in
513 * tree removal about conversion back to plain bins upon
514 * shrinkage.
515 */
516 static final int TREEIFY_THRESHOLD = 8;
517
518 /**
519 * The bin count threshold for untreeifying a (split) bin during a
520 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
521 * most 6 to mesh with shrinkage detection under removal.
522 */
523 static final int UNTREEIFY_THRESHOLD = 6;
524
525 /**
526 * The smallest table capacity for which bins may be treeified.
527 * (Otherwise the table is resized if too many nodes in a bin.)
528 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
529 * conflicts between resizing and treeification thresholds.
530 */
531 static final int MIN_TREEIFY_CAPACITY = 64;
532
533 /**
534 * Minimum number of rebinnings per transfer step. Ranges are
535 * subdivided to allow multiple resizer threads. This value
536 * serves as a lower bound to avoid resizers encountering
537 * excessive memory contention. The value should be at least
538 * DEFAULT_CAPACITY.
539 */
540 private static final int MIN_TRANSFER_STRIDE = 16;
541
542 /**
543 * The number of bits used for generation stamp in sizeCtl.
544 * Must be at least 6 for 32bit arrays.
545 */
546 private static final int RESIZE_STAMP_BITS = 16;
547
548 /**
549 * The maximum number of threads that can help resize.
550 * Must fit in 32 - RESIZE_STAMP_BITS bits.
551 */
552 private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
553
554 /**
555 * The bit shift for recording size stamp in sizeCtl.
556 */
557 private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
558
559 /*
560 * Encodings for Node hash fields. See above for explanation.
561 */
562 static final int MOVED = -1; // hash for forwarding nodes
563 static final int TREEBIN = -2; // hash for roots of trees
564 static final int RESERVED = -3; // hash for transient reservations
565 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
566
567 /** Number of CPUS, to place bounds on some sizings */
568 static final int NCPU = Runtime.getRuntime().availableProcessors();
569
570 /**
571 * Serialized pseudo-fields, provided only for jdk7 compatibility.
572 * @serialField segments Segment[]
573 * The segments, each of which is a specialized hash table.
574 * @serialField segmentMask int
575 * Mask value for indexing into segments. The upper bits of a
576 * key's hash code are used to choose the segment.
577 * @serialField segmentShift int
578 * Shift value for indexing within segments.
579 */
580 private static final ObjectStreamField[] serialPersistentFields = {
581 new ObjectStreamField("segments", Segment[].class),
582 new ObjectStreamField("segmentMask", Integer.TYPE),
583 new ObjectStreamField("segmentShift", Integer.TYPE),
584 };
585
586 /* ---------------- Nodes -------------- */
587
588 /**
589 * Key-value entry. This class is never exported out as a
590 * user-mutable Map.Entry (i.e., one supporting setValue; see
591 * MapEntry below), but can be used for read-only traversals used
592 * in bulk tasks. Subclasses of Node with a negative hash field
593 * are special, and contain null keys and values (but are never
594 * exported). Otherwise, keys and vals are never null.
595 */
596 static class Node<K,V> implements Map.Entry<K,V> {
597 final int hash;
598 final K key;
599 volatile V val;
600 volatile Node<K,V> next;
601
602 Node(int hash, K key, V val) {
603 this.hash = hash;
604 this.key = key;
605 this.val = val;
606 }
607
608 Node(int hash, K key, V val, Node<K,V> next) {
609 this(hash, key, val);
610 this.next = next;
611 }
612
613 public final K getKey() { return key; }
614 public final V getValue() { return val; }
615 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
616 public final String toString() {
617 return Helpers.mapEntryToString(key, val);
618 }
619 public final V setValue(V value) {
620 throw new UnsupportedOperationException();
621 }
622
623 public final boolean equals(Object o) {
624 Object k, v, u; Map.Entry<?,?> e;
625 return ((o instanceof Map.Entry) &&
626 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
627 (v = e.getValue()) != null &&
628 (k == key || k.equals(key)) &&
629 (v == (u = val) || v.equals(u)));
630 }
631
632 /**
633 * Virtualized support for map.get(); overridden in subclasses.
634 */
635 Node<K,V> find(int h, Object k) {
636 Node<K,V> e = this;
637 if (k != null) {
638 do {
639 K ek;
640 if (e.hash == h &&
641 ((ek = e.key) == k || (ek != null && k.equals(ek))))
642 return e;
643 } while ((e = e.next) != null);
644 }
645 return null;
646 }
647 }
648
649 /* ---------------- Static utilities -------------- */
650
651 /**
652 * Spreads (XORs) higher bits of hash to lower and also forces top
653 * bit to 0. Because the table uses power-of-two masking, sets of
654 * hashes that vary only in bits above the current mask will
655 * always collide. (Among known examples are sets of Float keys
656 * holding consecutive whole numbers in small tables.) So we
657 * apply a transform that spreads the impact of higher bits
658 * downward. There is a tradeoff between speed, utility, and
659 * quality of bit-spreading. Because many common sets of hashes
660 * are already reasonably distributed (so don't benefit from
661 * spreading), and because we use trees to handle large sets of
662 * collisions in bins, we just XOR some shifted bits in the
663 * cheapest possible way to reduce systematic lossage, as well as
664 * to incorporate impact of the highest bits that would otherwise
665 * never be used in index calculations because of table bounds.
666 */
667 static final int spread(int h) {
668 return (h ^ (h >>> 16)) & HASH_BITS;
669 }
670
671 /**
672 * Returns a power of two table size for the given desired capacity.
673 * See Hackers Delight, sec 3.2
674 */
675 private static final int tableSizeFor(int c) {
676 int n = -1 >>> Integer.numberOfLeadingZeros(c - 1);
677 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
678 }
679
680 /**
681 * Returns x's Class if it is of the form "class C implements
682 * Comparable<C>", else null.
683 */
684 static Class<?> comparableClassFor(Object x) {
685 if (x instanceof Comparable) {
686 Class<?> c; Type[] ts, as; ParameterizedType p;
687 if ((c = x.getClass()) == String.class) // bypass checks
688 return c;
689 if ((ts = c.getGenericInterfaces()) != null) {
690 for (Type t : ts) {
691 if ((t instanceof ParameterizedType) &&
692 ((p = (ParameterizedType)t).getRawType() ==
693 Comparable.class) &&
694 (as = p.getActualTypeArguments()) != null &&
695 as.length == 1 && as[0] == c) // type arg is c
696 return c;
697 }
698 }
699 }
700 return null;
701 }
702
703 /**
704 * Returns k.compareTo(x) if x matches kc (k's screened comparable
705 * class), else 0.
706 */
707 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
708 static int compareComparables(Class<?> kc, Object k, Object x) {
709 return (x == null || x.getClass() != kc ? 0 :
710 ((Comparable)k).compareTo(x));
711 }
712
713 /* ---------------- Table element access -------------- */
714
715 /*
716 * Atomic access methods are used for table elements as well as
717 * elements of in-progress next table while resizing. All uses of
718 * the tab arguments must be null checked by callers. All callers
719 * also paranoically precheck that tab's length is not zero (or an
720 * equivalent check), thus ensuring that any index argument taking
721 * the form of a hash value anded with (length - 1) is a valid
722 * index. Note that, to be correct wrt arbitrary concurrency
723 * errors by users, these checks must operate on local variables,
724 * which accounts for some odd-looking inline assignments below.
725 * Note that calls to setTabAt always occur within locked regions,
726 * and so require only release ordering.
727 */
728
729 @SuppressWarnings("unchecked")
730 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
731 return (Node<K,V>)U.getObjectAcquire(tab, ((long)i << ASHIFT) + ABASE);
732 }
733
734 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
735 Node<K,V> c, Node<K,V> v) {
736 return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
737 }
738
739 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
740 U.putObjectRelease(tab, ((long)i << ASHIFT) + ABASE, v);
741 }
742
743 /* ---------------- Fields -------------- */
744
745 /**
746 * The array of bins. Lazily initialized upon first insertion.
747 * Size is always a power of two. Accessed directly by iterators.
748 */
749 transient volatile Node<K,V>[] table;
750
751 /**
752 * The next table to use; non-null only while resizing.
753 */
754 private transient volatile Node<K,V>[] nextTable;
755
756 /**
757 * Base counter value, used mainly when there is no contention,
758 * but also as a fallback during table initialization
759 * races. Updated via CAS.
760 */
761 private transient volatile long baseCount;
762
763 /**
764 * Table initialization and resizing control. When negative, the
765 * table is being initialized or resized: -1 for initialization,
766 * else -(1 + the number of active resizing threads). Otherwise,
767 * when table is null, holds the initial table size to use upon
768 * creation, or 0 for default. After initialization, holds the
769 * next element count value upon which to resize the table.
770 */
771 private transient volatile int sizeCtl;
772
773 /**
774 * The next table index (plus one) to split while resizing.
775 */
776 private transient volatile int transferIndex;
777
778 /**
779 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
780 */
781 private transient volatile int cellsBusy;
782
783 /**
784 * Table of counter cells. When non-null, size is a power of 2.
785 */
786 private transient volatile CounterCell[] counterCells;
787
788 // views
789 private transient KeySetView<K,V> keySet;
790 private transient ValuesView<K,V> values;
791 private transient EntrySetView<K,V> entrySet;
792
793
794 /* ---------------- Public operations -------------- */
795
796 /**
797 * Creates a new, empty map with the default initial table size (16).
798 */
799 public ConcurrentHashMap() {
800 }
801
802 /**
803 * Creates a new, empty map with an initial table size
804 * accommodating the specified number of elements without the need
805 * to dynamically resize.
806 *
807 * @param initialCapacity The implementation performs internal
808 * sizing to accommodate this many elements.
809 * @throws IllegalArgumentException if the initial capacity of
810 * elements is negative
811 */
812 public ConcurrentHashMap(int initialCapacity) {
813 this(initialCapacity, LOAD_FACTOR, 1);
814 }
815
816 /**
817 * Creates a new map with the same mappings as the given map.
818 *
819 * @param m the map
820 */
821 public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
822 this.sizeCtl = DEFAULT_CAPACITY;
823 putAll(m);
824 }
825
826 /**
827 * Creates a new, empty map with an initial table size based on
828 * the given number of elements ({@code initialCapacity}) and
829 * initial table density ({@code loadFactor}).
830 *
831 * @param initialCapacity the initial capacity. The implementation
832 * performs internal sizing to accommodate this many elements,
833 * given the specified load factor.
834 * @param loadFactor the load factor (table density) for
835 * establishing the initial table size
836 * @throws IllegalArgumentException if the initial capacity of
837 * elements is negative or the load factor is nonpositive
838 *
839 * @since 1.6
840 */
841 public ConcurrentHashMap(int initialCapacity, float loadFactor) {
842 this(initialCapacity, loadFactor, 1);
843 }
844
845 /**
846 * Creates a new, empty map with an initial table size based on
847 * the given number of elements ({@code initialCapacity}), initial
848 * table density ({@code loadFactor}), and number of concurrently
849 * updating threads ({@code concurrencyLevel}).
850 *
851 * @param initialCapacity the initial capacity. The implementation
852 * performs internal sizing to accommodate this many elements,
853 * given the specified load factor.
854 * @param loadFactor the load factor (table density) for
855 * establishing the initial table size
856 * @param concurrencyLevel the estimated number of concurrently
857 * updating threads. The implementation may use this value as
858 * a sizing hint.
859 * @throws IllegalArgumentException if the initial capacity is
860 * negative or the load factor or concurrencyLevel are
861 * nonpositive
862 */
863 public ConcurrentHashMap(int initialCapacity,
864 float loadFactor, int concurrencyLevel) {
865 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
866 throw new IllegalArgumentException();
867 if (initialCapacity < concurrencyLevel) // Use at least as many bins
868 initialCapacity = concurrencyLevel; // as estimated threads
869 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
870 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
871 MAXIMUM_CAPACITY : tableSizeFor((int)size);
872 this.sizeCtl = cap;
873 }
874
875 // Original (since JDK1.2) Map methods
876
877 /**
878 * {@inheritDoc}
879 */
880 public int size() {
881 long n = sumCount();
882 return ((n < 0L) ? 0 :
883 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
884 (int)n);
885 }
886
887 /**
888 * {@inheritDoc}
889 */
890 public boolean isEmpty() {
891 return sumCount() <= 0L; // ignore transient negative values
892 }
893
894 /**
895 * Returns the value to which the specified key is mapped,
896 * or {@code null} if this map contains no mapping for the key.
897 *
898 * <p>More formally, if this map contains a mapping from a key
899 * {@code k} to a value {@code v} such that {@code key.equals(k)},
900 * then this method returns {@code v}; otherwise it returns
901 * {@code null}. (There can be at most one such mapping.)
902 *
903 * @throws NullPointerException if the specified key is null
904 */
905 public V get(Object key) {
906 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
907 int h = spread(key.hashCode());
908 if ((tab = table) != null && (n = tab.length) > 0 &&
909 (e = tabAt(tab, (n - 1) & h)) != null) {
910 if ((eh = e.hash) == h) {
911 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
912 return e.val;
913 }
914 else if (eh < 0)
915 return (p = e.find(h, key)) != null ? p.val : null;
916 while ((e = e.next) != null) {
917 if (e.hash == h &&
918 ((ek = e.key) == key || (ek != null && key.equals(ek))))
919 return e.val;
920 }
921 }
922 return null;
923 }
924
925 /**
926 * Tests if the specified object is a key in this table.
927 *
928 * @param key possible key
929 * @return {@code true} if and only if the specified object
930 * is a key in this table, as determined by the
931 * {@code equals} method; {@code false} otherwise
932 * @throws NullPointerException if the specified key is null
933 */
934 public boolean containsKey(Object key) {
935 return get(key) != null;
936 }
937
938 /**
939 * Returns {@code true} if this map maps one or more keys to the
940 * specified value. Note: This method may require a full traversal
941 * of the map, and is much slower than method {@code containsKey}.
942 *
943 * @param value value whose presence in this map is to be tested
944 * @return {@code true} if this map maps one or more keys to the
945 * specified value
946 * @throws NullPointerException if the specified value is null
947 */
948 public boolean containsValue(Object value) {
949 if (value == null)
950 throw new NullPointerException();
951 Node<K,V>[] t;
952 if ((t = table) != null) {
953 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
954 for (Node<K,V> p; (p = it.advance()) != null; ) {
955 V v;
956 if ((v = p.val) == value || (v != null && value.equals(v)))
957 return true;
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Maps the specified key to the specified value in this table.
965 * Neither the key nor the value can be null.
966 *
967 * <p>The value can be retrieved by calling the {@code get} method
968 * with a key that is equal to the original key.
969 *
970 * @param key key with which the specified value is to be associated
971 * @param value value to be associated with the specified key
972 * @return the previous value associated with {@code key}, or
973 * {@code null} if there was no mapping for {@code key}
974 * @throws NullPointerException if the specified key or value is null
975 */
976 public V put(K key, V value) {
977 return putVal(key, value, false);
978 }
979
980 /** Implementation for put and putIfAbsent */
981 final V putVal(K key, V value, boolean onlyIfAbsent) {
982 if (key == null || value == null) throw new NullPointerException();
983 int hash = spread(key.hashCode());
984 int binCount = 0;
985 for (Node<K,V>[] tab = table;;) {
986 Node<K,V> f; int n, i, fh; K fk; V fv;
987 if (tab == null || (n = tab.length) == 0)
988 tab = initTable();
989 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
990 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value)))
991 break; // no lock when adding to empty bin
992 }
993 else if ((fh = f.hash) == MOVED)
994 tab = helpTransfer(tab, f);
995 else if (onlyIfAbsent // check first node without acquiring lock
996 && fh == hash
997 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
998 && (fv = f.val) != null)
999 return fv;
1000 else {
1001 V oldVal = null;
1002 synchronized (f) {
1003 if (tabAt(tab, i) == f) {
1004 if (fh >= 0) {
1005 binCount = 1;
1006 for (Node<K,V> e = f;; ++binCount) {
1007 K ek;
1008 if (e.hash == hash &&
1009 ((ek = e.key) == key ||
1010 (ek != null && key.equals(ek)))) {
1011 oldVal = e.val;
1012 if (!onlyIfAbsent)
1013 e.val = value;
1014 break;
1015 }
1016 Node<K,V> pred = e;
1017 if ((e = e.next) == null) {
1018 pred.next = new Node<K,V>(hash, key, value);
1019 break;
1020 }
1021 }
1022 }
1023 else if (f instanceof TreeBin) {
1024 Node<K,V> p;
1025 binCount = 2;
1026 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1027 value)) != null) {
1028 oldVal = p.val;
1029 if (!onlyIfAbsent)
1030 p.val = value;
1031 }
1032 }
1033 else if (f instanceof ReservationNode)
1034 throw new IllegalStateException("Recursive update");
1035 }
1036 }
1037 if (binCount != 0) {
1038 if (binCount >= TREEIFY_THRESHOLD)
1039 treeifyBin(tab, i);
1040 if (oldVal != null)
1041 return oldVal;
1042 break;
1043 }
1044 }
1045 }
1046 addCount(1L, binCount);
1047 return null;
1048 }
1049
1050 /**
1051 * Copies all of the mappings from the specified map to this one.
1052 * These mappings replace any mappings that this map had for any of the
1053 * keys currently in the specified map.
1054 *
1055 * @param m mappings to be stored in this map
1056 */
1057 public void putAll(Map<? extends K, ? extends V> m) {
1058 tryPresize(m.size());
1059 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1060 putVal(e.getKey(), e.getValue(), false);
1061 }
1062
1063 /**
1064 * Removes the key (and its corresponding value) from this map.
1065 * This method does nothing if the key is not in the map.
1066 *
1067 * @param key the key that needs to be removed
1068 * @return the previous value associated with {@code key}, or
1069 * {@code null} if there was no mapping for {@code key}
1070 * @throws NullPointerException if the specified key is null
1071 */
1072 public V remove(Object key) {
1073 return replaceNode(key, null, null);
1074 }
1075
1076 /**
1077 * Implementation for the four public remove/replace methods:
1078 * Replaces node value with v, conditional upon match of cv if
1079 * non-null. If resulting value is null, delete.
1080 */
1081 final V replaceNode(Object key, V value, Object cv) {
1082 int hash = spread(key.hashCode());
1083 for (Node<K,V>[] tab = table;;) {
1084 Node<K,V> f; int n, i, fh;
1085 if (tab == null || (n = tab.length) == 0 ||
1086 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1087 break;
1088 else if ((fh = f.hash) == MOVED)
1089 tab = helpTransfer(tab, f);
1090 else {
1091 V oldVal = null;
1092 boolean validated = false;
1093 synchronized (f) {
1094 if (tabAt(tab, i) == f) {
1095 if (fh >= 0) {
1096 validated = true;
1097 for (Node<K,V> e = f, pred = null;;) {
1098 K ek;
1099 if (e.hash == hash &&
1100 ((ek = e.key) == key ||
1101 (ek != null && key.equals(ek)))) {
1102 V ev = e.val;
1103 if (cv == null || cv == ev ||
1104 (ev != null && cv.equals(ev))) {
1105 oldVal = ev;
1106 if (value != null)
1107 e.val = value;
1108 else if (pred != null)
1109 pred.next = e.next;
1110 else
1111 setTabAt(tab, i, e.next);
1112 }
1113 break;
1114 }
1115 pred = e;
1116 if ((e = e.next) == null)
1117 break;
1118 }
1119 }
1120 else if (f instanceof TreeBin) {
1121 validated = true;
1122 TreeBin<K,V> t = (TreeBin<K,V>)f;
1123 TreeNode<K,V> r, p;
1124 if ((r = t.root) != null &&
1125 (p = r.findTreeNode(hash, key, null)) != null) {
1126 V pv = p.val;
1127 if (cv == null || cv == pv ||
1128 (pv != null && cv.equals(pv))) {
1129 oldVal = pv;
1130 if (value != null)
1131 p.val = value;
1132 else if (t.removeTreeNode(p))
1133 setTabAt(tab, i, untreeify(t.first));
1134 }
1135 }
1136 }
1137 else if (f instanceof ReservationNode)
1138 throw new IllegalStateException("Recursive update");
1139 }
1140 }
1141 if (validated) {
1142 if (oldVal != null) {
1143 if (value == null)
1144 addCount(-1L, -1);
1145 return oldVal;
1146 }
1147 break;
1148 }
1149 }
1150 }
1151 return null;
1152 }
1153
1154 /**
1155 * Removes all of the mappings from this map.
1156 */
1157 public void clear() {
1158 long delta = 0L; // negative number of deletions
1159 int i = 0;
1160 Node<K,V>[] tab = table;
1161 while (tab != null && i < tab.length) {
1162 int fh;
1163 Node<K,V> f = tabAt(tab, i);
1164 if (f == null)
1165 ++i;
1166 else if ((fh = f.hash) == MOVED) {
1167 tab = helpTransfer(tab, f);
1168 i = 0; // restart
1169 }
1170 else {
1171 synchronized (f) {
1172 if (tabAt(tab, i) == f) {
1173 Node<K,V> p = (fh >= 0 ? f :
1174 (f instanceof TreeBin) ?
1175 ((TreeBin<K,V>)f).first : null);
1176 while (p != null) {
1177 --delta;
1178 p = p.next;
1179 }
1180 setTabAt(tab, i++, null);
1181 }
1182 }
1183 }
1184 }
1185 if (delta != 0L)
1186 addCount(delta, -1);
1187 }
1188
1189 /**
1190 * Returns a {@link Set} view of the keys contained in this map.
1191 * The set is backed by the map, so changes to the map are
1192 * reflected in the set, and vice-versa. The set supports element
1193 * removal, which removes the corresponding mapping from this map,
1194 * via the {@code Iterator.remove}, {@code Set.remove},
1195 * {@code removeAll}, {@code retainAll}, and {@code clear}
1196 * operations. It does not support the {@code add} or
1197 * {@code addAll} operations.
1198 *
1199 * <p>The view's iterators and spliterators are
1200 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1201 *
1202 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1203 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1204 *
1205 * @return the set view
1206 */
1207 public KeySetView<K,V> keySet() {
1208 KeySetView<K,V> ks;
1209 if ((ks = keySet) != null) return ks;
1210 return keySet = new KeySetView<K,V>(this, null);
1211 }
1212
1213 /**
1214 * Returns a {@link Collection} view of the values contained in this map.
1215 * The collection is backed by the map, so changes to the map are
1216 * reflected in the collection, and vice-versa. The collection
1217 * supports element removal, which removes the corresponding
1218 * mapping from this map, via the {@code Iterator.remove},
1219 * {@code Collection.remove}, {@code removeAll},
1220 * {@code retainAll}, and {@code clear} operations. It does not
1221 * support the {@code add} or {@code addAll} operations.
1222 *
1223 * <p>The view's iterators and spliterators are
1224 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1225 *
1226 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT}
1227 * and {@link Spliterator#NONNULL}.
1228 *
1229 * @return the collection view
1230 */
1231 public Collection<V> values() {
1232 ValuesView<K,V> vs;
1233 if ((vs = values) != null) return vs;
1234 return values = new ValuesView<K,V>(this);
1235 }
1236
1237 /**
1238 * Returns a {@link Set} view of the mappings contained in this map.
1239 * The set is backed by the map, so changes to the map are
1240 * reflected in the set, and vice-versa. The set supports element
1241 * removal, which removes the corresponding mapping from the map,
1242 * via the {@code Iterator.remove}, {@code Set.remove},
1243 * {@code removeAll}, {@code retainAll}, and {@code clear}
1244 * operations.
1245 *
1246 * <p>The view's iterators and spliterators are
1247 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1248 *
1249 * <p>The view's {@code spliterator} reports {@link Spliterator#CONCURRENT},
1250 * {@link Spliterator#DISTINCT}, and {@link Spliterator#NONNULL}.
1251 *
1252 * @return the set view
1253 */
1254 public Set<Map.Entry<K,V>> entrySet() {
1255 EntrySetView<K,V> es;
1256 if ((es = entrySet) != null) return es;
1257 return entrySet = new EntrySetView<K,V>(this);
1258 }
1259
1260 /**
1261 * Returns the hash code value for this {@link Map}, i.e.,
1262 * the sum of, for each key-value pair in the map,
1263 * {@code key.hashCode() ^ value.hashCode()}.
1264 *
1265 * @return the hash code value for this map
1266 */
1267 public int hashCode() {
1268 int h = 0;
1269 Node<K,V>[] t;
1270 if ((t = table) != null) {
1271 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1272 for (Node<K,V> p; (p = it.advance()) != null; )
1273 h += p.key.hashCode() ^ p.val.hashCode();
1274 }
1275 return h;
1276 }
1277
1278 /**
1279 * Returns a string representation of this map. The string
1280 * representation consists of a list of key-value mappings (in no
1281 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1282 * mappings are separated by the characters {@code ", "} (comma
1283 * and space). Each key-value mapping is rendered as the key
1284 * followed by an equals sign ("{@code =}") followed by the
1285 * associated value.
1286 *
1287 * @return a string representation of this map
1288 */
1289 public String toString() {
1290 Node<K,V>[] t;
1291 int f = (t = table) == null ? 0 : t.length;
1292 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1293 StringBuilder sb = new StringBuilder();
1294 sb.append('{');
1295 Node<K,V> p;
1296 if ((p = it.advance()) != null) {
1297 for (;;) {
1298 K k = p.key;
1299 V v = p.val;
1300 sb.append(k == this ? "(this Map)" : k);
1301 sb.append('=');
1302 sb.append(v == this ? "(this Map)" : v);
1303 if ((p = it.advance()) == null)
1304 break;
1305 sb.append(',').append(' ');
1306 }
1307 }
1308 return sb.append('}').toString();
1309 }
1310
1311 /**
1312 * Compares the specified object with this map for equality.
1313 * Returns {@code true} if the given object is a map with the same
1314 * mappings as this map. This operation may return misleading
1315 * results if either map is concurrently modified during execution
1316 * of this method.
1317 *
1318 * @param o object to be compared for equality with this map
1319 * @return {@code true} if the specified object is equal to this map
1320 */
1321 public boolean equals(Object o) {
1322 if (o != this) {
1323 if (!(o instanceof Map))
1324 return false;
1325 Map<?,?> m = (Map<?,?>) o;
1326 Node<K,V>[] t;
1327 int f = (t = table) == null ? 0 : t.length;
1328 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1329 for (Node<K,V> p; (p = it.advance()) != null; ) {
1330 V val = p.val;
1331 Object v = m.get(p.key);
1332 if (v == null || (v != val && !v.equals(val)))
1333 return false;
1334 }
1335 for (Map.Entry<?,?> e : m.entrySet()) {
1336 Object mk, mv, v;
1337 if ((mk = e.getKey()) == null ||
1338 (mv = e.getValue()) == null ||
1339 (v = get(mk)) == null ||
1340 (mv != v && !mv.equals(v)))
1341 return false;
1342 }
1343 }
1344 return true;
1345 }
1346
1347 /**
1348 * Stripped-down version of helper class used in previous version,
1349 * declared for the sake of serialization compatibility.
1350 */
1351 static class Segment<K,V> extends ReentrantLock implements Serializable {
1352 private static final long serialVersionUID = 2249069246763182397L;
1353 final float loadFactor;
1354 Segment(float lf) { this.loadFactor = lf; }
1355 }
1356
1357 /**
1358 * Saves this map to a stream (that is, serializes it).
1359 *
1360 * @param s the stream
1361 * @throws java.io.IOException if an I/O error occurs
1362 * @serialData
1363 * the serialized fields, followed by the key (Object) and value
1364 * (Object) for each key-value mapping, followed by a null pair.
1365 * The key-value mappings are emitted in no particular order.
1366 */
1367 private void writeObject(java.io.ObjectOutputStream s)
1368 throws java.io.IOException {
1369 // For serialization compatibility
1370 // Emulate segment calculation from previous version of this class
1371 int sshift = 0;
1372 int ssize = 1;
1373 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1374 ++sshift;
1375 ssize <<= 1;
1376 }
1377 int segmentShift = 32 - sshift;
1378 int segmentMask = ssize - 1;
1379 @SuppressWarnings("unchecked")
1380 Segment<K,V>[] segments = (Segment<K,V>[])
1381 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1382 for (int i = 0; i < segments.length; ++i)
1383 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1384 java.io.ObjectOutputStream.PutField streamFields = s.putFields();
1385 streamFields.put("segments", segments);
1386 streamFields.put("segmentShift", segmentShift);
1387 streamFields.put("segmentMask", segmentMask);
1388 s.writeFields();
1389
1390 Node<K,V>[] t;
1391 if ((t = table) != null) {
1392 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1393 for (Node<K,V> p; (p = it.advance()) != null; ) {
1394 s.writeObject(p.key);
1395 s.writeObject(p.val);
1396 }
1397 }
1398 s.writeObject(null);
1399 s.writeObject(null);
1400 }
1401
1402 /**
1403 * Reconstitutes this map from a stream (that is, deserializes it).
1404 * @param s the stream
1405 * @throws ClassNotFoundException if the class of a serialized object
1406 * could not be found
1407 * @throws java.io.IOException if an I/O error occurs
1408 */
1409 private void readObject(java.io.ObjectInputStream s)
1410 throws java.io.IOException, ClassNotFoundException {
1411 /*
1412 * To improve performance in typical cases, we create nodes
1413 * while reading, then place in table once size is known.
1414 * However, we must also validate uniqueness and deal with
1415 * overpopulated bins while doing so, which requires
1416 * specialized versions of putVal mechanics.
1417 */
1418 sizeCtl = -1; // force exclusion for table construction
1419 s.defaultReadObject();
1420 long size = 0L;
1421 Node<K,V> p = null;
1422 for (;;) {
1423 @SuppressWarnings("unchecked")
1424 K k = (K) s.readObject();
1425 @SuppressWarnings("unchecked")
1426 V v = (V) s.readObject();
1427 if (k != null && v != null) {
1428 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1429 ++size;
1430 }
1431 else
1432 break;
1433 }
1434 if (size == 0L)
1435 sizeCtl = 0;
1436 else {
1437 long ts = (long)(1.0 + size / LOAD_FACTOR);
1438 int n = (ts >= (long)MAXIMUM_CAPACITY) ?
1439 MAXIMUM_CAPACITY : tableSizeFor((int)ts);
1440 @SuppressWarnings("unchecked")
1441 Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1442 int mask = n - 1;
1443 long added = 0L;
1444 while (p != null) {
1445 boolean insertAtFront;
1446 Node<K,V> next = p.next, first;
1447 int h = p.hash, j = h & mask;
1448 if ((first = tabAt(tab, j)) == null)
1449 insertAtFront = true;
1450 else {
1451 K k = p.key;
1452 if (first.hash < 0) {
1453 TreeBin<K,V> t = (TreeBin<K,V>)first;
1454 if (t.putTreeVal(h, k, p.val) == null)
1455 ++added;
1456 insertAtFront = false;
1457 }
1458 else {
1459 int binCount = 0;
1460 insertAtFront = true;
1461 Node<K,V> q; K qk;
1462 for (q = first; q != null; q = q.next) {
1463 if (q.hash == h &&
1464 ((qk = q.key) == k ||
1465 (qk != null && k.equals(qk)))) {
1466 insertAtFront = false;
1467 break;
1468 }
1469 ++binCount;
1470 }
1471 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1472 insertAtFront = false;
1473 ++added;
1474 p.next = first;
1475 TreeNode<K,V> hd = null, tl = null;
1476 for (q = p; q != null; q = q.next) {
1477 TreeNode<K,V> t = new TreeNode<K,V>
1478 (q.hash, q.key, q.val, null, null);
1479 if ((t.prev = tl) == null)
1480 hd = t;
1481 else
1482 tl.next = t;
1483 tl = t;
1484 }
1485 setTabAt(tab, j, new TreeBin<K,V>(hd));
1486 }
1487 }
1488 }
1489 if (insertAtFront) {
1490 ++added;
1491 p.next = first;
1492 setTabAt(tab, j, p);
1493 }
1494 p = next;
1495 }
1496 table = tab;
1497 sizeCtl = n - (n >>> 2);
1498 baseCount = added;
1499 }
1500 }
1501
1502 // ConcurrentMap methods
1503
1504 /**
1505 * {@inheritDoc}
1506 *
1507 * @return the previous value associated with the specified key,
1508 * or {@code null} if there was no mapping for the key
1509 * @throws NullPointerException if the specified key or value is null
1510 */
1511 public V putIfAbsent(K key, V value) {
1512 return putVal(key, value, true);
1513 }
1514
1515 /**
1516 * {@inheritDoc}
1517 *
1518 * @throws NullPointerException if the specified key is null
1519 */
1520 public boolean remove(Object key, Object value) {
1521 if (key == null)
1522 throw new NullPointerException();
1523 return value != null && replaceNode(key, null, value) != null;
1524 }
1525
1526 /**
1527 * {@inheritDoc}
1528 *
1529 * @throws NullPointerException if any of the arguments are null
1530 */
1531 public boolean replace(K key, V oldValue, V newValue) {
1532 if (key == null || oldValue == null || newValue == null)
1533 throw new NullPointerException();
1534 return replaceNode(key, newValue, oldValue) != null;
1535 }
1536
1537 /**
1538 * {@inheritDoc}
1539 *
1540 * @return the previous value associated with the specified key,
1541 * or {@code null} if there was no mapping for the key
1542 * @throws NullPointerException if the specified key or value is null
1543 */
1544 public V replace(K key, V value) {
1545 if (key == null || value == null)
1546 throw new NullPointerException();
1547 return replaceNode(key, value, null);
1548 }
1549
1550 // Overrides of JDK8+ Map extension method defaults
1551
1552 /**
1553 * Returns the value to which the specified key is mapped, or the
1554 * given default value if this map contains no mapping for the
1555 * key.
1556 *
1557 * @param key the key whose associated value is to be returned
1558 * @param defaultValue the value to return if this map contains
1559 * no mapping for the given key
1560 * @return the mapping for the key, if present; else the default value
1561 * @throws NullPointerException if the specified key is null
1562 */
1563 public V getOrDefault(Object key, V defaultValue) {
1564 V v;
1565 return (v = get(key)) == null ? defaultValue : v;
1566 }
1567
1568 public void forEach(BiConsumer<? super K, ? super V> action) {
1569 if (action == null) throw new NullPointerException();
1570 Node<K,V>[] t;
1571 if ((t = table) != null) {
1572 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1573 for (Node<K,V> p; (p = it.advance()) != null; ) {
1574 action.accept(p.key, p.val);
1575 }
1576 }
1577 }
1578
1579 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1580 if (function == null) throw new NullPointerException();
1581 Node<K,V>[] t;
1582 if ((t = table) != null) {
1583 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1584 for (Node<K,V> p; (p = it.advance()) != null; ) {
1585 V oldValue = p.val;
1586 for (K key = p.key;;) {
1587 V newValue = function.apply(key, oldValue);
1588 if (newValue == null)
1589 throw new NullPointerException();
1590 if (replaceNode(key, newValue, oldValue) != null ||
1591 (oldValue = get(key)) == null)
1592 break;
1593 }
1594 }
1595 }
1596 }
1597
1598 /**
1599 * Helper method for EntrySetView.removeIf.
1600 */
1601 boolean removeEntryIf(Predicate<? super Entry<K,V>> function) {
1602 if (function == null) throw new NullPointerException();
1603 Node<K,V>[] t;
1604 boolean removed = false;
1605 if ((t = table) != null) {
1606 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1607 for (Node<K,V> p; (p = it.advance()) != null; ) {
1608 K k = p.key;
1609 V v = p.val;
1610 Map.Entry<K,V> e = new AbstractMap.SimpleImmutableEntry<>(k, v);
1611 if (function.test(e) && replaceNode(k, null, v) != null)
1612 removed = true;
1613 }
1614 }
1615 return removed;
1616 }
1617
1618 /**
1619 * Helper method for ValuesView.removeIf.
1620 */
1621 boolean removeValueIf(Predicate<? super V> function) {
1622 if (function == null) throw new NullPointerException();
1623 Node<K,V>[] t;
1624 boolean removed = false;
1625 if ((t = table) != null) {
1626 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1627 for (Node<K,V> p; (p = it.advance()) != null; ) {
1628 K k = p.key;
1629 V v = p.val;
1630 if (function.test(v) && replaceNode(k, null, v) != null)
1631 removed = true;
1632 }
1633 }
1634 return removed;
1635 }
1636
1637 /**
1638 * If the specified key is not already associated with a value,
1639 * attempts to compute its value using the given mapping function
1640 * and enters it into this map unless {@code null}. The entire
1641 * method invocation is performed atomically, so the function is
1642 * applied at most once per key. Some attempted update operations
1643 * on this map by other threads may be blocked while computation
1644 * is in progress, so the computation should be short and simple,
1645 * and must not attempt to update any other mappings of this map.
1646 *
1647 * @param key key with which the specified value is to be associated
1648 * @param mappingFunction the function to compute a value
1649 * @return the current (existing or computed) value associated with
1650 * the specified key, or null if the computed value is null
1651 * @throws NullPointerException if the specified key or mappingFunction
1652 * is null
1653 * @throws IllegalStateException if the computation detectably
1654 * attempts a recursive update to this map that would
1655 * otherwise never complete
1656 * @throws RuntimeException or Error if the mappingFunction does so,
1657 * in which case the mapping is left unestablished
1658 */
1659 public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
1660 if (key == null || mappingFunction == null)
1661 throw new NullPointerException();
1662 int h = spread(key.hashCode());
1663 V val = null;
1664 int binCount = 0;
1665 for (Node<K,V>[] tab = table;;) {
1666 Node<K,V> f; int n, i, fh; K fk; V fv;
1667 if (tab == null || (n = tab.length) == 0)
1668 tab = initTable();
1669 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1670 Node<K,V> r = new ReservationNode<K,V>();
1671 synchronized (r) {
1672 if (casTabAt(tab, i, null, r)) {
1673 binCount = 1;
1674 Node<K,V> node = null;
1675 try {
1676 if ((val = mappingFunction.apply(key)) != null)
1677 node = new Node<K,V>(h, key, val);
1678 } finally {
1679 setTabAt(tab, i, node);
1680 }
1681 }
1682 }
1683 if (binCount != 0)
1684 break;
1685 }
1686 else if ((fh = f.hash) == MOVED)
1687 tab = helpTransfer(tab, f);
1688 else if (fh == h // check first node without acquiring lock
1689 && ((fk = f.key) == key || (fk != null && key.equals(fk)))
1690 && (fv = f.val) != null)
1691 return fv;
1692 else {
1693 boolean added = false;
1694 synchronized (f) {
1695 if (tabAt(tab, i) == f) {
1696 if (fh >= 0) {
1697 binCount = 1;
1698 for (Node<K,V> e = f;; ++binCount) {
1699 K ek;
1700 if (e.hash == h &&
1701 ((ek = e.key) == key ||
1702 (ek != null && key.equals(ek)))) {
1703 val = e.val;
1704 break;
1705 }
1706 Node<K,V> pred = e;
1707 if ((e = e.next) == null) {
1708 if ((val = mappingFunction.apply(key)) != null) {
1709 if (pred.next != null)
1710 throw new IllegalStateException("Recursive update");
1711 added = true;
1712 pred.next = new Node<K,V>(h, key, val);
1713 }
1714 break;
1715 }
1716 }
1717 }
1718 else if (f instanceof TreeBin) {
1719 binCount = 2;
1720 TreeBin<K,V> t = (TreeBin<K,V>)f;
1721 TreeNode<K,V> r, p;
1722 if ((r = t.root) != null &&
1723 (p = r.findTreeNode(h, key, null)) != null)
1724 val = p.val;
1725 else if ((val = mappingFunction.apply(key)) != null) {
1726 added = true;
1727 t.putTreeVal(h, key, val);
1728 }
1729 }
1730 else if (f instanceof ReservationNode)
1731 throw new IllegalStateException("Recursive update");
1732 }
1733 }
1734 if (binCount != 0) {
1735 if (binCount >= TREEIFY_THRESHOLD)
1736 treeifyBin(tab, i);
1737 if (!added)
1738 return val;
1739 break;
1740 }
1741 }
1742 }
1743 if (val != null)
1744 addCount(1L, binCount);
1745 return val;
1746 }
1747
1748 /**
1749 * If the value for the specified key is present, attempts to
1750 * compute a new mapping given the key and its current mapped
1751 * value. The entire method invocation is performed atomically.
1752 * Some attempted update operations on this map by other threads
1753 * may be blocked while computation is in progress, so the
1754 * computation should be short and simple, and must not attempt to
1755 * update any other mappings of this map.
1756 *
1757 * @param key key with which a value may be associated
1758 * @param remappingFunction the function to compute a value
1759 * @return the new value associated with the specified key, or null if none
1760 * @throws NullPointerException if the specified key or remappingFunction
1761 * is null
1762 * @throws IllegalStateException if the computation detectably
1763 * attempts a recursive update to this map that would
1764 * otherwise never complete
1765 * @throws RuntimeException or Error if the remappingFunction does so,
1766 * in which case the mapping is unchanged
1767 */
1768 public V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1769 if (key == null || remappingFunction == null)
1770 throw new NullPointerException();
1771 int h = spread(key.hashCode());
1772 V val = null;
1773 int delta = 0;
1774 int binCount = 0;
1775 for (Node<K,V>[] tab = table;;) {
1776 Node<K,V> f; int n, i, fh;
1777 if (tab == null || (n = tab.length) == 0)
1778 tab = initTable();
1779 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1780 break;
1781 else if ((fh = f.hash) == MOVED)
1782 tab = helpTransfer(tab, f);
1783 else {
1784 synchronized (f) {
1785 if (tabAt(tab, i) == f) {
1786 if (fh >= 0) {
1787 binCount = 1;
1788 for (Node<K,V> e = f, pred = null;; ++binCount) {
1789 K ek;
1790 if (e.hash == h &&
1791 ((ek = e.key) == key ||
1792 (ek != null && key.equals(ek)))) {
1793 val = remappingFunction.apply(key, e.val);
1794 if (val != null)
1795 e.val = val;
1796 else {
1797 delta = -1;
1798 Node<K,V> en = e.next;
1799 if (pred != null)
1800 pred.next = en;
1801 else
1802 setTabAt(tab, i, en);
1803 }
1804 break;
1805 }
1806 pred = e;
1807 if ((e = e.next) == null)
1808 break;
1809 }
1810 }
1811 else if (f instanceof TreeBin) {
1812 binCount = 2;
1813 TreeBin<K,V> t = (TreeBin<K,V>)f;
1814 TreeNode<K,V> r, p;
1815 if ((r = t.root) != null &&
1816 (p = r.findTreeNode(h, key, null)) != null) {
1817 val = remappingFunction.apply(key, p.val);
1818 if (val != null)
1819 p.val = val;
1820 else {
1821 delta = -1;
1822 if (t.removeTreeNode(p))
1823 setTabAt(tab, i, untreeify(t.first));
1824 }
1825 }
1826 }
1827 else if (f instanceof ReservationNode)
1828 throw new IllegalStateException("Recursive update");
1829 }
1830 }
1831 if (binCount != 0)
1832 break;
1833 }
1834 }
1835 if (delta != 0)
1836 addCount((long)delta, binCount);
1837 return val;
1838 }
1839
1840 /**
1841 * Attempts to compute a mapping for the specified key and its
1842 * current mapped value (or {@code null} if there is no current
1843 * mapping). The entire method invocation is performed atomically.
1844 * Some attempted update operations on this map by other threads
1845 * may be blocked while computation is in progress, so the
1846 * computation should be short and simple, and must not attempt to
1847 * update any other mappings of this Map.
1848 *
1849 * @param key key with which the specified value is to be associated
1850 * @param remappingFunction the function to compute a value
1851 * @return the new value associated with the specified key, or null if none
1852 * @throws NullPointerException if the specified key or remappingFunction
1853 * is null
1854 * @throws IllegalStateException if the computation detectably
1855 * attempts a recursive update to this map that would
1856 * otherwise never complete
1857 * @throws RuntimeException or Error if the remappingFunction does so,
1858 * in which case the mapping is unchanged
1859 */
1860 public V compute(K key,
1861 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1862 if (key == null || remappingFunction == null)
1863 throw new NullPointerException();
1864 int h = spread(key.hashCode());
1865 V val = null;
1866 int delta = 0;
1867 int binCount = 0;
1868 for (Node<K,V>[] tab = table;;) {
1869 Node<K,V> f; int n, i, fh;
1870 if (tab == null || (n = tab.length) == 0)
1871 tab = initTable();
1872 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1873 Node<K,V> r = new ReservationNode<K,V>();
1874 synchronized (r) {
1875 if (casTabAt(tab, i, null, r)) {
1876 binCount = 1;
1877 Node<K,V> node = null;
1878 try {
1879 if ((val = remappingFunction.apply(key, null)) != null) {
1880 delta = 1;
1881 node = new Node<K,V>(h, key, val);
1882 }
1883 } finally {
1884 setTabAt(tab, i, node);
1885 }
1886 }
1887 }
1888 if (binCount != 0)
1889 break;
1890 }
1891 else if ((fh = f.hash) == MOVED)
1892 tab = helpTransfer(tab, f);
1893 else {
1894 synchronized (f) {
1895 if (tabAt(tab, i) == f) {
1896 if (fh >= 0) {
1897 binCount = 1;
1898 for (Node<K,V> e = f, pred = null;; ++binCount) {
1899 K ek;
1900 if (e.hash == h &&
1901 ((ek = e.key) == key ||
1902 (ek != null && key.equals(ek)))) {
1903 val = remappingFunction.apply(key, e.val);
1904 if (val != null)
1905 e.val = val;
1906 else {
1907 delta = -1;
1908 Node<K,V> en = e.next;
1909 if (pred != null)
1910 pred.next = en;
1911 else
1912 setTabAt(tab, i, en);
1913 }
1914 break;
1915 }
1916 pred = e;
1917 if ((e = e.next) == null) {
1918 val = remappingFunction.apply(key, null);
1919 if (val != null) {
1920 if (pred.next != null)
1921 throw new IllegalStateException("Recursive update");
1922 delta = 1;
1923 pred.next = new Node<K,V>(h, key, val);
1924 }
1925 break;
1926 }
1927 }
1928 }
1929 else if (f instanceof TreeBin) {
1930 binCount = 1;
1931 TreeBin<K,V> t = (TreeBin<K,V>)f;
1932 TreeNode<K,V> r, p;
1933 if ((r = t.root) != null)
1934 p = r.findTreeNode(h, key, null);
1935 else
1936 p = null;
1937 V pv = (p == null) ? null : p.val;
1938 val = remappingFunction.apply(key, pv);
1939 if (val != null) {
1940 if (p != null)
1941 p.val = val;
1942 else {
1943 delta = 1;
1944 t.putTreeVal(h, key, val);
1945 }
1946 }
1947 else if (p != null) {
1948 delta = -1;
1949 if (t.removeTreeNode(p))
1950 setTabAt(tab, i, untreeify(t.first));
1951 }
1952 }
1953 else if (f instanceof ReservationNode)
1954 throw new IllegalStateException("Recursive update");
1955 }
1956 }
1957 if (binCount != 0) {
1958 if (binCount >= TREEIFY_THRESHOLD)
1959 treeifyBin(tab, i);
1960 break;
1961 }
1962 }
1963 }
1964 if (delta != 0)
1965 addCount((long)delta, binCount);
1966 return val;
1967 }
1968
1969 /**
1970 * If the specified key is not already associated with a
1971 * (non-null) value, associates it with the given value.
1972 * Otherwise, replaces the value with the results of the given
1973 * remapping function, or removes if {@code null}. The entire
1974 * method invocation is performed atomically. Some attempted
1975 * update operations on this map by other threads may be blocked
1976 * while computation is in progress, so the computation should be
1977 * short and simple, and must not attempt to update any other
1978 * mappings of this Map.
1979 *
1980 * @param key key with which the specified value is to be associated
1981 * @param value the value to use if absent
1982 * @param remappingFunction the function to recompute a value if present
1983 * @return the new value associated with the specified key, or null if none
1984 * @throws NullPointerException if the specified key or the
1985 * remappingFunction is null
1986 * @throws RuntimeException or Error if the remappingFunction does so,
1987 * in which case the mapping is unchanged
1988 */
1989 public V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1990 if (key == null || value == null || remappingFunction == null)
1991 throw new NullPointerException();
1992 int h = spread(key.hashCode());
1993 V val = null;
1994 int delta = 0;
1995 int binCount = 0;
1996 for (Node<K,V>[] tab = table;;) {
1997 Node<K,V> f; int n, i, fh;
1998 if (tab == null || (n = tab.length) == 0)
1999 tab = initTable();
2000 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
2001 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value))) {
2002 delta = 1;
2003 val = value;
2004 break;
2005 }
2006 }
2007 else if ((fh = f.hash) == MOVED)
2008 tab = helpTransfer(tab, f);
2009 else {
2010 synchronized (f) {
2011 if (tabAt(tab, i) == f) {
2012 if (fh >= 0) {
2013 binCount = 1;
2014 for (Node<K,V> e = f, pred = null;; ++binCount) {
2015 K ek;
2016 if (e.hash == h &&
2017 ((ek = e.key) == key ||
2018 (ek != null && key.equals(ek)))) {
2019 val = remappingFunction.apply(e.val, value);
2020 if (val != null)
2021 e.val = val;
2022 else {
2023 delta = -1;
2024 Node<K,V> en = e.next;
2025 if (pred != null)
2026 pred.next = en;
2027 else
2028 setTabAt(tab, i, en);
2029 }
2030 break;
2031 }
2032 pred = e;
2033 if ((e = e.next) == null) {
2034 delta = 1;
2035 val = value;
2036 pred.next = new Node<K,V>(h, key, val);
2037 break;
2038 }
2039 }
2040 }
2041 else if (f instanceof TreeBin) {
2042 binCount = 2;
2043 TreeBin<K,V> t = (TreeBin<K,V>)f;
2044 TreeNode<K,V> r = t.root;
2045 TreeNode<K,V> p = (r == null) ? null :
2046 r.findTreeNode(h, key, null);
2047 val = (p == null) ? value :
2048 remappingFunction.apply(p.val, value);
2049 if (val != null) {
2050 if (p != null)
2051 p.val = val;
2052 else {
2053 delta = 1;
2054 t.putTreeVal(h, key, val);
2055 }
2056 }
2057 else if (p != null) {
2058 delta = -1;
2059 if (t.removeTreeNode(p))
2060 setTabAt(tab, i, untreeify(t.first));
2061 }
2062 }
2063 else if (f instanceof ReservationNode)
2064 throw new IllegalStateException("Recursive update");
2065 }
2066 }
2067 if (binCount != 0) {
2068 if (binCount >= TREEIFY_THRESHOLD)
2069 treeifyBin(tab, i);
2070 break;
2071 }
2072 }
2073 }
2074 if (delta != 0)
2075 addCount((long)delta, binCount);
2076 return val;
2077 }
2078
2079 // Hashtable legacy methods
2080
2081 /**
2082 * Tests if some key maps into the specified value in this table.
2083 *
2084 * <p>Note that this method is identical in functionality to
2085 * {@link #containsValue(Object)}, and exists solely to ensure
2086 * full compatibility with class {@link java.util.Hashtable},
2087 * which supported this method prior to introduction of the
2088 * Java Collections Framework.
2089 *
2090 * @param value a value to search for
2091 * @return {@code true} if and only if some key maps to the
2092 * {@code value} argument in this table as
2093 * determined by the {@code equals} method;
2094 * {@code false} otherwise
2095 * @throws NullPointerException if the specified value is null
2096 */
2097 public boolean contains(Object value) {
2098 return containsValue(value);
2099 }
2100
2101 /**
2102 * Returns an enumeration of the keys in this table.
2103 *
2104 * @return an enumeration of the keys in this table
2105 * @see #keySet()
2106 */
2107 public Enumeration<K> keys() {
2108 Node<K,V>[] t;
2109 int f = (t = table) == null ? 0 : t.length;
2110 return new KeyIterator<K,V>(t, f, 0, f, this);
2111 }
2112
2113 /**
2114 * Returns an enumeration of the values in this table.
2115 *
2116 * @return an enumeration of the values in this table
2117 * @see #values()
2118 */
2119 public Enumeration<V> elements() {
2120 Node<K,V>[] t;
2121 int f = (t = table) == null ? 0 : t.length;
2122 return new ValueIterator<K,V>(t, f, 0, f, this);
2123 }
2124
2125 // ConcurrentHashMap-only methods
2126
2127 /**
2128 * Returns the number of mappings. This method should be used
2129 * instead of {@link #size} because a ConcurrentHashMap may
2130 * contain more mappings than can be represented as an int. The
2131 * value returned is an estimate; the actual count may differ if
2132 * there are concurrent insertions or removals.
2133 *
2134 * @return the number of mappings
2135 * @since 1.8
2136 */
2137 public long mappingCount() {
2138 long n = sumCount();
2139 return (n < 0L) ? 0L : n; // ignore transient negative values
2140 }
2141
2142 /**
2143 * Creates a new {@link Set} backed by a ConcurrentHashMap
2144 * from the given type to {@code Boolean.TRUE}.
2145 *
2146 * @param <K> the element type of the returned set
2147 * @return the new set
2148 * @since 1.8
2149 */
2150 public static <K> KeySetView<K,Boolean> newKeySet() {
2151 return new KeySetView<K,Boolean>
2152 (new ConcurrentHashMap<K,Boolean>(), Boolean.TRUE);
2153 }
2154
2155 /**
2156 * Creates a new {@link Set} backed by a ConcurrentHashMap
2157 * from the given type to {@code Boolean.TRUE}.
2158 *
2159 * @param initialCapacity The implementation performs internal
2160 * sizing to accommodate this many elements.
2161 * @param <K> the element type of the returned set
2162 * @return the new set
2163 * @throws IllegalArgumentException if the initial capacity of
2164 * elements is negative
2165 * @since 1.8
2166 */
2167 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2168 return new KeySetView<K,Boolean>
2169 (new ConcurrentHashMap<K,Boolean>(initialCapacity), Boolean.TRUE);
2170 }
2171
2172 /**
2173 * Returns a {@link Set} view of the keys in this map, using the
2174 * given common mapped value for any additions (i.e., {@link
2175 * Collection#add} and {@link Collection#addAll(Collection)}).
2176 * This is of course only appropriate if it is acceptable to use
2177 * the same value for all additions from this view.
2178 *
2179 * @param mappedValue the mapped value to use for any additions
2180 * @return the set view
2181 * @throws NullPointerException if the mappedValue is null
2182 */
2183 public KeySetView<K,V> keySet(V mappedValue) {
2184 if (mappedValue == null)
2185 throw new NullPointerException();
2186 return new KeySetView<K,V>(this, mappedValue);
2187 }
2188
2189 /* ---------------- Special Nodes -------------- */
2190
2191 /**
2192 * A node inserted at head of bins during transfer operations.
2193 */
2194 static final class ForwardingNode<K,V> extends Node<K,V> {
2195 final Node<K,V>[] nextTable;
2196 ForwardingNode(Node<K,V>[] tab) {
2197 super(MOVED, null, null);
2198 this.nextTable = tab;
2199 }
2200
2201 Node<K,V> find(int h, Object k) {
2202 // loop to avoid arbitrarily deep recursion on forwarding nodes
2203 outer: for (Node<K,V>[] tab = nextTable;;) {
2204 Node<K,V> e; int n;
2205 if (k == null || tab == null || (n = tab.length) == 0 ||
2206 (e = tabAt(tab, (n - 1) & h)) == null)
2207 return null;
2208 for (;;) {
2209 int eh; K ek;
2210 if ((eh = e.hash) == h &&
2211 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2212 return e;
2213 if (eh < 0) {
2214 if (e instanceof ForwardingNode) {
2215 tab = ((ForwardingNode<K,V>)e).nextTable;
2216 continue outer;
2217 }
2218 else
2219 return e.find(h, k);
2220 }
2221 if ((e = e.next) == null)
2222 return null;
2223 }
2224 }
2225 }
2226 }
2227
2228 /**
2229 * A place-holder node used in computeIfAbsent and compute.
2230 */
2231 static final class ReservationNode<K,V> extends Node<K,V> {
2232 ReservationNode() {
2233 super(RESERVED, null, null);
2234 }
2235
2236 Node<K,V> find(int h, Object k) {
2237 return null;
2238 }
2239 }
2240
2241 /* ---------------- Table Initialization and Resizing -------------- */
2242
2243 /**
2244 * Returns the stamp bits for resizing a table of size n.
2245 * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2246 */
2247 static final int resizeStamp(int n) {
2248 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2249 }
2250
2251 /**
2252 * Initializes table, using the size recorded in sizeCtl.
2253 */
2254 private final Node<K,V>[] initTable() {
2255 Node<K,V>[] tab; int sc;
2256 while ((tab = table) == null || tab.length == 0) {
2257 if ((sc = sizeCtl) < 0)
2258 Thread.yield(); // lost initialization race; just spin
2259 else if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2260 try {
2261 if ((tab = table) == null || tab.length == 0) {
2262 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2263 @SuppressWarnings("unchecked")
2264 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2265 table = tab = nt;
2266 sc = n - (n >>> 2);
2267 }
2268 } finally {
2269 sizeCtl = sc;
2270 }
2271 break;
2272 }
2273 }
2274 return tab;
2275 }
2276
2277 /**
2278 * Adds to count, and if table is too small and not already
2279 * resizing, initiates transfer. If already resizing, helps
2280 * perform transfer if work is available. Rechecks occupancy
2281 * after a transfer to see if another resize is already needed
2282 * because resizings are lagging additions.
2283 *
2284 * @param x the count to add
2285 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2286 */
2287 private final void addCount(long x, int check) {
2288 CounterCell[] cs; long b, s;
2289 if ((cs = counterCells) != null ||
2290 !U.compareAndSetLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2291 CounterCell c; long v; int m;
2292 boolean uncontended = true;
2293 if (cs == null || (m = cs.length - 1) < 0 ||
2294 (c = cs[ThreadLocalRandom.getProbe() & m]) == null ||
2295 !(uncontended =
2296 U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))) {
2297 fullAddCount(x, uncontended);
2298 return;
2299 }
2300 if (check <= 1)
2301 return;
2302 s = sumCount();
2303 }
2304 if (check >= 0) {
2305 Node<K,V>[] tab, nt; int n, sc;
2306 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2307 (n = tab.length) < MAXIMUM_CAPACITY) {
2308 int rs = resizeStamp(n);
2309 if (sc < 0) {
2310 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2311 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2312 transferIndex <= 0)
2313 break;
2314 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1))
2315 transfer(tab, nt);
2316 }
2317 else if (U.compareAndSetInt(this, SIZECTL, sc,
2318 (rs << RESIZE_STAMP_SHIFT) + 2))
2319 transfer(tab, null);
2320 s = sumCount();
2321 }
2322 }
2323 }
2324
2325 /**
2326 * Helps transfer if a resize is in progress.
2327 */
2328 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2329 Node<K,V>[] nextTab; int sc;
2330 if (tab != null && (f instanceof ForwardingNode) &&
2331 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2332 int rs = resizeStamp(tab.length);
2333 while (nextTab == nextTable && table == tab &&
2334 (sc = sizeCtl) < 0) {
2335 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2336 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2337 break;
2338 if (U.compareAndSetInt(this, SIZECTL, sc, sc + 1)) {
2339 transfer(tab, nextTab);
2340 break;
2341 }
2342 }
2343 return nextTab;
2344 }
2345 return table;
2346 }
2347
2348 /**
2349 * Tries to presize table to accommodate the given number of elements.
2350 *
2351 * @param size number of elements (doesn't need to be perfectly accurate)
2352 */
2353 private final void tryPresize(int size) {
2354 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2355 tableSizeFor(size + (size >>> 1) + 1);
2356 int sc;
2357 while ((sc = sizeCtl) >= 0) {
2358 Node<K,V>[] tab = table; int n;
2359 if (tab == null || (n = tab.length) == 0) {
2360 n = (sc > c) ? sc : c;
2361 if (U.compareAndSetInt(this, SIZECTL, sc, -1)) {
2362 try {
2363 if (table == tab) {
2364 @SuppressWarnings("unchecked")
2365 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2366 table = nt;
2367 sc = n - (n >>> 2);
2368 }
2369 } finally {
2370 sizeCtl = sc;
2371 }
2372 }
2373 }
2374 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2375 break;
2376 else if (tab == table) {
2377 int rs = resizeStamp(n);
2378 if (U.compareAndSetInt(this, SIZECTL, sc,
2379 (rs << RESIZE_STAMP_SHIFT) + 2))
2380 transfer(tab, null);
2381 }
2382 }
2383 }
2384
2385 /**
2386 * Moves and/or copies the nodes in each bin to new table. See
2387 * above for explanation.
2388 */
2389 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2390 int n = tab.length, stride;
2391 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2392 stride = MIN_TRANSFER_STRIDE; // subdivide range
2393 if (nextTab == null) { // initiating
2394 try {
2395 @SuppressWarnings("unchecked")
2396 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2397 nextTab = nt;
2398 } catch (Throwable ex) { // try to cope with OOME
2399 sizeCtl = Integer.MAX_VALUE;
2400 return;
2401 }
2402 nextTable = nextTab;
2403 transferIndex = n;
2404 }
2405 int nextn = nextTab.length;
2406 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2407 boolean advance = true;
2408 boolean finishing = false; // to ensure sweep before committing nextTab
2409 for (int i = 0, bound = 0;;) {
2410 Node<K,V> f; int fh;
2411 while (advance) {
2412 int nextIndex, nextBound;
2413 if (--i >= bound || finishing)
2414 advance = false;
2415 else if ((nextIndex = transferIndex) <= 0) {
2416 i = -1;
2417 advance = false;
2418 }
2419 else if (U.compareAndSetInt
2420 (this, TRANSFERINDEX, nextIndex,
2421 nextBound = (nextIndex > stride ?
2422 nextIndex - stride : 0))) {
2423 bound = nextBound;
2424 i = nextIndex - 1;
2425 advance = false;
2426 }
2427 }
2428 if (i < 0 || i >= n || i + n >= nextn) {
2429 int sc;
2430 if (finishing) {
2431 nextTable = null;
2432 table = nextTab;
2433 sizeCtl = (n << 1) - (n >>> 1);
2434 return;
2435 }
2436 if (U.compareAndSetInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2437 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2438 return;
2439 finishing = advance = true;
2440 i = n; // recheck before commit
2441 }
2442 }
2443 else if ((f = tabAt(tab, i)) == null)
2444 advance = casTabAt(tab, i, null, fwd);
2445 else if ((fh = f.hash) == MOVED)
2446 advance = true; // already processed
2447 else {
2448 synchronized (f) {
2449 if (tabAt(tab, i) == f) {
2450 Node<K,V> ln, hn;
2451 if (fh >= 0) {
2452 int runBit = fh & n;
2453 Node<K,V> lastRun = f;
2454 for (Node<K,V> p = f.next; p != null; p = p.next) {
2455 int b = p.hash & n;
2456 if (b != runBit) {
2457 runBit = b;
2458 lastRun = p;
2459 }
2460 }
2461 if (runBit == 0) {
2462 ln = lastRun;
2463 hn = null;
2464 }
2465 else {
2466 hn = lastRun;
2467 ln = null;
2468 }
2469 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2470 int ph = p.hash; K pk = p.key; V pv = p.val;
2471 if ((ph & n) == 0)
2472 ln = new Node<K,V>(ph, pk, pv, ln);
2473 else
2474 hn = new Node<K,V>(ph, pk, pv, hn);
2475 }
2476 setTabAt(nextTab, i, ln);
2477 setTabAt(nextTab, i + n, hn);
2478 setTabAt(tab, i, fwd);
2479 advance = true;
2480 }
2481 else if (f instanceof TreeBin) {
2482 TreeBin<K,V> t = (TreeBin<K,V>)f;
2483 TreeNode<K,V> lo = null, loTail = null;
2484 TreeNode<K,V> hi = null, hiTail = null;
2485 int lc = 0, hc = 0;
2486 for (Node<K,V> e = t.first; e != null; e = e.next) {
2487 int h = e.hash;
2488 TreeNode<K,V> p = new TreeNode<K,V>
2489 (h, e.key, e.val, null, null);
2490 if ((h & n) == 0) {
2491 if ((p.prev = loTail) == null)
2492 lo = p;
2493 else
2494 loTail.next = p;
2495 loTail = p;
2496 ++lc;
2497 }
2498 else {
2499 if ((p.prev = hiTail) == null)
2500 hi = p;
2501 else
2502 hiTail.next = p;
2503 hiTail = p;
2504 ++hc;
2505 }
2506 }
2507 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2508 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2509 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2510 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2511 setTabAt(nextTab, i, ln);
2512 setTabAt(nextTab, i + n, hn);
2513 setTabAt(tab, i, fwd);
2514 advance = true;
2515 }
2516 }
2517 }
2518 }
2519 }
2520 }
2521
2522 /* ---------------- Counter support -------------- */
2523
2524 /**
2525 * A padded cell for distributing counts. Adapted from LongAdder
2526 * and Striped64. See their internal docs for explanation.
2527 */
2528 @jdk.internal.vm.annotation.Contended static final class CounterCell {
2529 volatile long value;
2530 CounterCell(long x) { value = x; }
2531 }
2532
2533 final long sumCount() {
2534 CounterCell[] cs = counterCells;
2535 long sum = baseCount;
2536 if (cs != null) {
2537 for (CounterCell c : cs)
2538 if (c != null)
2539 sum += c.value;
2540 }
2541 return sum;
2542 }
2543
2544 // See LongAdder version for explanation
2545 private final void fullAddCount(long x, boolean wasUncontended) {
2546 int h;
2547 if ((h = ThreadLocalRandom.getProbe()) == 0) {
2548 ThreadLocalRandom.localInit(); // force initialization
2549 h = ThreadLocalRandom.getProbe();
2550 wasUncontended = true;
2551 }
2552 boolean collide = false; // True if last slot nonempty
2553 for (;;) {
2554 CounterCell[] cs; CounterCell c; int n; long v;
2555 if ((cs = counterCells) != null && (n = cs.length) > 0) {
2556 if ((c = cs[(n - 1) & h]) == null) {
2557 if (cellsBusy == 0) { // Try to attach new Cell
2558 CounterCell r = new CounterCell(x); // Optimistic create
2559 if (cellsBusy == 0 &&
2560 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2561 boolean created = false;
2562 try { // Recheck under lock
2563 CounterCell[] rs; int m, j;
2564 if ((rs = counterCells) != null &&
2565 (m = rs.length) > 0 &&
2566 rs[j = (m - 1) & h] == null) {
2567 rs[j] = r;
2568 created = true;
2569 }
2570 } finally {
2571 cellsBusy = 0;
2572 }
2573 if (created)
2574 break;
2575 continue; // Slot is now non-empty
2576 }
2577 }
2578 collide = false;
2579 }
2580 else if (!wasUncontended) // CAS already known to fail
2581 wasUncontended = true; // Continue after rehash
2582 else if (U.compareAndSetLong(c, CELLVALUE, v = c.value, v + x))
2583 break;
2584 else if (counterCells != cs || n >= NCPU)
2585 collide = false; // At max size or stale
2586 else if (!collide)
2587 collide = true;
2588 else if (cellsBusy == 0 &&
2589 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2590 try {
2591 if (counterCells == cs) // Expand table unless stale
2592 counterCells = Arrays.copyOf(cs, n << 1);
2593 } finally {
2594 cellsBusy = 0;
2595 }
2596 collide = false;
2597 continue; // Retry with expanded table
2598 }
2599 h = ThreadLocalRandom.advanceProbe(h);
2600 }
2601 else if (cellsBusy == 0 && counterCells == cs &&
2602 U.compareAndSetInt(this, CELLSBUSY, 0, 1)) {
2603 boolean init = false;
2604 try { // Initialize table
2605 if (counterCells == cs) {
2606 CounterCell[] rs = new CounterCell[2];
2607 rs[h & 1] = new CounterCell(x);
2608 counterCells = rs;
2609 init = true;
2610 }
2611 } finally {
2612 cellsBusy = 0;
2613 }
2614 if (init)
2615 break;
2616 }
2617 else if (U.compareAndSetLong(this, BASECOUNT, v = baseCount, v + x))
2618 break; // Fall back on using base
2619 }
2620 }
2621
2622 /* ---------------- Conversion from/to TreeBins -------------- */
2623
2624 /**
2625 * Replaces all linked nodes in bin at given index unless table is
2626 * too small, in which case resizes instead.
2627 */
2628 private final void treeifyBin(Node<K,V>[] tab, int index) {
2629 Node<K,V> b; int n;
2630 if (tab != null) {
2631 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2632 tryPresize(n << 1);
2633 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2634 synchronized (b) {
2635 if (tabAt(tab, index) == b) {
2636 TreeNode<K,V> hd = null, tl = null;
2637 for (Node<K,V> e = b; e != null; e = e.next) {
2638 TreeNode<K,V> p =
2639 new TreeNode<K,V>(e.hash, e.key, e.val,
2640 null, null);
2641 if ((p.prev = tl) == null)
2642 hd = p;
2643 else
2644 tl.next = p;
2645 tl = p;
2646 }
2647 setTabAt(tab, index, new TreeBin<K,V>(hd));
2648 }
2649 }
2650 }
2651 }
2652 }
2653
2654 /**
2655 * Returns a list of non-TreeNodes replacing those in given list.
2656 */
2657 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2658 Node<K,V> hd = null, tl = null;
2659 for (Node<K,V> q = b; q != null; q = q.next) {
2660 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val);
2661 if (tl == null)
2662 hd = p;
2663 else
2664 tl.next = p;
2665 tl = p;
2666 }
2667 return hd;
2668 }
2669
2670 /* ---------------- TreeNodes -------------- */
2671
2672 /**
2673 * Nodes for use in TreeBins.
2674 */
2675 static final class TreeNode<K,V> extends Node<K,V> {
2676 TreeNode<K,V> parent; // red-black tree links
2677 TreeNode<K,V> left;
2678 TreeNode<K,V> right;
2679 TreeNode<K,V> prev; // needed to unlink next upon deletion
2680 boolean red;
2681
2682 TreeNode(int hash, K key, V val, Node<K,V> next,
2683 TreeNode<K,V> parent) {
2684 super(hash, key, val, next);
2685 this.parent = parent;
2686 }
2687
2688 Node<K,V> find(int h, Object k) {
2689 return findTreeNode(h, k, null);
2690 }
2691
2692 /**
2693 * Returns the TreeNode (or null if not found) for the given key
2694 * starting at given root.
2695 */
2696 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2697 if (k != null) {
2698 TreeNode<K,V> p = this;
2699 do {
2700 int ph, dir; K pk; TreeNode<K,V> q;
2701 TreeNode<K,V> pl = p.left, pr = p.right;
2702 if ((ph = p.hash) > h)
2703 p = pl;
2704 else if (ph < h)
2705 p = pr;
2706 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2707 return p;
2708 else if (pl == null)
2709 p = pr;
2710 else if (pr == null)
2711 p = pl;
2712 else if ((kc != null ||
2713 (kc = comparableClassFor(k)) != null) &&
2714 (dir = compareComparables(kc, k, pk)) != 0)
2715 p = (dir < 0) ? pl : pr;
2716 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2717 return q;
2718 else
2719 p = pl;
2720 } while (p != null);
2721 }
2722 return null;
2723 }
2724 }
2725
2726 /* ---------------- TreeBins -------------- */
2727
2728 /**
2729 * TreeNodes used at the heads of bins. TreeBins do not hold user
2730 * keys or values, but instead point to list of TreeNodes and
2731 * their root. They also maintain a parasitic read-write lock
2732 * forcing writers (who hold bin lock) to wait for readers (who do
2733 * not) to complete before tree restructuring operations.
2734 */
2735 static final class TreeBin<K,V> extends Node<K,V> {
2736 TreeNode<K,V> root;
2737 volatile TreeNode<K,V> first;
2738 volatile Thread waiter;
2739 volatile int lockState;
2740 // values for lockState
2741 static final int WRITER = 1; // set while holding write lock
2742 static final int WAITER = 2; // set when waiting for write lock
2743 static final int READER = 4; // increment value for setting read lock
2744
2745 /**
2746 * Tie-breaking utility for ordering insertions when equal
2747 * hashCodes and non-comparable. We don't require a total
2748 * order, just a consistent insertion rule to maintain
2749 * equivalence across rebalancings. Tie-breaking further than
2750 * necessary simplifies testing a bit.
2751 */
2752 static int tieBreakOrder(Object a, Object b) {
2753 int d;
2754 if (a == null || b == null ||
2755 (d = a.getClass().getName().
2756 compareTo(b.getClass().getName())) == 0)
2757 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2758 -1 : 1);
2759 return d;
2760 }
2761
2762 /**
2763 * Creates bin with initial set of nodes headed by b.
2764 */
2765 TreeBin(TreeNode<K,V> b) {
2766 super(TREEBIN, null, null);
2767 this.first = b;
2768 TreeNode<K,V> r = null;
2769 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2770 next = (TreeNode<K,V>)x.next;
2771 x.left = x.right = null;
2772 if (r == null) {
2773 x.parent = null;
2774 x.red = false;
2775 r = x;
2776 }
2777 else {
2778 K k = x.key;
2779 int h = x.hash;
2780 Class<?> kc = null;
2781 for (TreeNode<K,V> p = r;;) {
2782 int dir, ph;
2783 K pk = p.key;
2784 if ((ph = p.hash) > h)
2785 dir = -1;
2786 else if (ph < h)
2787 dir = 1;
2788 else if ((kc == null &&
2789 (kc = comparableClassFor(k)) == null) ||
2790 (dir = compareComparables(kc, k, pk)) == 0)
2791 dir = tieBreakOrder(k, pk);
2792 TreeNode<K,V> xp = p;
2793 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2794 x.parent = xp;
2795 if (dir <= 0)
2796 xp.left = x;
2797 else
2798 xp.right = x;
2799 r = balanceInsertion(r, x);
2800 break;
2801 }
2802 }
2803 }
2804 }
2805 this.root = r;
2806 assert checkInvariants(root);
2807 }
2808
2809 /**
2810 * Acquires write lock for tree restructuring.
2811 */
2812 private final void lockRoot() {
2813 if (!U.compareAndSetInt(this, LOCKSTATE, 0, WRITER))
2814 contendedLock(); // offload to separate method
2815 }
2816
2817 /**
2818 * Releases write lock for tree restructuring.
2819 */
2820 private final void unlockRoot() {
2821 lockState = 0;
2822 }
2823
2824 /**
2825 * Possibly blocks awaiting root lock.
2826 */
2827 private final void contendedLock() {
2828 boolean waiting = false;
2829 for (int s;;) {
2830 if (((s = lockState) & ~WAITER) == 0) {
2831 if (U.compareAndSetInt(this, LOCKSTATE, s, WRITER)) {
2832 if (waiting)
2833 waiter = null;
2834 return;
2835 }
2836 }
2837 else if ((s & WAITER) == 0) {
2838 if (U.compareAndSetInt(this, LOCKSTATE, s, s | WAITER)) {
2839 waiting = true;
2840 waiter = Thread.currentThread();
2841 }
2842 }
2843 else if (waiting)
2844 LockSupport.park(this);
2845 }
2846 }
2847
2848 /**
2849 * Returns matching node or null if none. Tries to search
2850 * using tree comparisons from root, but continues linear
2851 * search when lock not available.
2852 */
2853 final Node<K,V> find(int h, Object k) {
2854 if (k != null) {
2855 for (Node<K,V> e = first; e != null; ) {
2856 int s; K ek;
2857 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2858 if (e.hash == h &&
2859 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2860 return e;
2861 e = e.next;
2862 }
2863 else if (U.compareAndSetInt(this, LOCKSTATE, s,
2864 s + READER)) {
2865 TreeNode<K,V> r, p;
2866 try {
2867 p = ((r = root) == null ? null :
2868 r.findTreeNode(h, k, null));
2869 } finally {
2870 Thread w;
2871 if (U.getAndAddInt(this, LOCKSTATE, -READER) ==
2872 (READER|WAITER) && (w = waiter) != null)
2873 LockSupport.unpark(w);
2874 }
2875 return p;
2876 }
2877 }
2878 }
2879 return null;
2880 }
2881
2882 /**
2883 * Finds or adds a node.
2884 * @return null if added
2885 */
2886 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2887 Class<?> kc = null;
2888 boolean searched = false;
2889 for (TreeNode<K,V> p = root;;) {
2890 int dir, ph; K pk;
2891 if (p == null) {
2892 first = root = new TreeNode<K,V>(h, k, v, null, null);
2893 break;
2894 }
2895 else if ((ph = p.hash) > h)
2896 dir = -1;
2897 else if (ph < h)
2898 dir = 1;
2899 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2900 return p;
2901 else if ((kc == null &&
2902 (kc = comparableClassFor(k)) == null) ||
2903 (dir = compareComparables(kc, k, pk)) == 0) {
2904 if (!searched) {
2905 TreeNode<K,V> q, ch;
2906 searched = true;
2907 if (((ch = p.left) != null &&
2908 (q = ch.findTreeNode(h, k, kc)) != null) ||
2909 ((ch = p.right) != null &&
2910 (q = ch.findTreeNode(h, k, kc)) != null))
2911 return q;
2912 }
2913 dir = tieBreakOrder(k, pk);
2914 }
2915
2916 TreeNode<K,V> xp = p;
2917 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2918 TreeNode<K,V> x, f = first;
2919 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2920 if (f != null)
2921 f.prev = x;
2922 if (dir <= 0)
2923 xp.left = x;
2924 else
2925 xp.right = x;
2926 if (!xp.red)
2927 x.red = true;
2928 else {
2929 lockRoot();
2930 try {
2931 root = balanceInsertion(root, x);
2932 } finally {
2933 unlockRoot();
2934 }
2935 }
2936 break;
2937 }
2938 }
2939 assert checkInvariants(root);
2940 return null;
2941 }
2942
2943 /**
2944 * Removes the given node, that must be present before this
2945 * call. This is messier than typical red-black deletion code
2946 * because we cannot swap the contents of an interior node
2947 * with a leaf successor that is pinned by "next" pointers
2948 * that are accessible independently of lock. So instead we
2949 * swap the tree linkages.
2950 *
2951 * @return true if now too small, so should be untreeified
2952 */
2953 final boolean removeTreeNode(TreeNode<K,V> p) {
2954 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2955 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2956 TreeNode<K,V> r, rl;
2957 if (pred == null)
2958 first = next;
2959 else
2960 pred.next = next;
2961 if (next != null)
2962 next.prev = pred;
2963 if (first == null) {
2964 root = null;
2965 return true;
2966 }
2967 if ((r = root) == null || r.right == null || // too small
2968 (rl = r.left) == null || rl.left == null)
2969 return true;
2970 lockRoot();
2971 try {
2972 TreeNode<K,V> replacement;
2973 TreeNode<K,V> pl = p.left;
2974 TreeNode<K,V> pr = p.right;
2975 if (pl != null && pr != null) {
2976 TreeNode<K,V> s = pr, sl;
2977 while ((sl = s.left) != null) // find successor
2978 s = sl;
2979 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2980 TreeNode<K,V> sr = s.right;
2981 TreeNode<K,V> pp = p.parent;
2982 if (s == pr) { // p was s's direct parent
2983 p.parent = s;
2984 s.right = p;
2985 }
2986 else {
2987 TreeNode<K,V> sp = s.parent;
2988 if ((p.parent = sp) != null) {
2989 if (s == sp.left)
2990 sp.left = p;
2991 else
2992 sp.right = p;
2993 }
2994 if ((s.right = pr) != null)
2995 pr.parent = s;
2996 }
2997 p.left = null;
2998 if ((p.right = sr) != null)
2999 sr.parent = p;
3000 if ((s.left = pl) != null)
3001 pl.parent = s;
3002 if ((s.parent = pp) == null)
3003 r = s;
3004 else if (p == pp.left)
3005 pp.left = s;
3006 else
3007 pp.right = s;
3008 if (sr != null)
3009 replacement = sr;
3010 else
3011 replacement = p;
3012 }
3013 else if (pl != null)
3014 replacement = pl;
3015 else if (pr != null)
3016 replacement = pr;
3017 else
3018 replacement = p;
3019 if (replacement != p) {
3020 TreeNode<K,V> pp = replacement.parent = p.parent;
3021 if (pp == null)
3022 r = replacement;
3023 else if (p == pp.left)
3024 pp.left = replacement;
3025 else
3026 pp.right = replacement;
3027 p.left = p.right = p.parent = null;
3028 }
3029
3030 root = (p.red) ? r : balanceDeletion(r, replacement);
3031
3032 if (p == replacement) { // detach pointers
3033 TreeNode<K,V> pp;
3034 if ((pp = p.parent) != null) {
3035 if (p == pp.left)
3036 pp.left = null;
3037 else if (p == pp.right)
3038 pp.right = null;
3039 p.parent = null;
3040 }
3041 }
3042 } finally {
3043 unlockRoot();
3044 }
3045 assert checkInvariants(root);
3046 return false;
3047 }
3048
3049 /* ------------------------------------------------------------ */
3050 // Red-black tree methods, all adapted from CLR
3051
3052 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
3053 TreeNode<K,V> p) {
3054 TreeNode<K,V> r, pp, rl;
3055 if (p != null && (r = p.right) != null) {
3056 if ((rl = p.right = r.left) != null)
3057 rl.parent = p;
3058 if ((pp = r.parent = p.parent) == null)
3059 (root = r).red = false;
3060 else if (pp.left == p)
3061 pp.left = r;
3062 else
3063 pp.right = r;
3064 r.left = p;
3065 p.parent = r;
3066 }
3067 return root;
3068 }
3069
3070 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
3071 TreeNode<K,V> p) {
3072 TreeNode<K,V> l, pp, lr;
3073 if (p != null && (l = p.left) != null) {
3074 if ((lr = p.left = l.right) != null)
3075 lr.parent = p;
3076 if ((pp = l.parent = p.parent) == null)
3077 (root = l).red = false;
3078 else if (pp.right == p)
3079 pp.right = l;
3080 else
3081 pp.left = l;
3082 l.right = p;
3083 p.parent = l;
3084 }
3085 return root;
3086 }
3087
3088 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
3089 TreeNode<K,V> x) {
3090 x.red = true;
3091 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
3092 if ((xp = x.parent) == null) {
3093 x.red = false;
3094 return x;
3095 }
3096 else if (!xp.red || (xpp = xp.parent) == null)
3097 return root;
3098 if (xp == (xppl = xpp.left)) {
3099 if ((xppr = xpp.right) != null && xppr.red) {
3100 xppr.red = false;
3101 xp.red = false;
3102 xpp.red = true;
3103 x = xpp;
3104 }
3105 else {
3106 if (x == xp.right) {
3107 root = rotateLeft(root, x = xp);
3108 xpp = (xp = x.parent) == null ? null : xp.parent;
3109 }
3110 if (xp != null) {
3111 xp.red = false;
3112 if (xpp != null) {
3113 xpp.red = true;
3114 root = rotateRight(root, xpp);
3115 }
3116 }
3117 }
3118 }
3119 else {
3120 if (xppl != null && xppl.red) {
3121 xppl.red = false;
3122 xp.red = false;
3123 xpp.red = true;
3124 x = xpp;
3125 }
3126 else {
3127 if (x == xp.left) {
3128 root = rotateRight(root, x = xp);
3129 xpp = (xp = x.parent) == null ? null : xp.parent;
3130 }
3131 if (xp != null) {
3132 xp.red = false;
3133 if (xpp != null) {
3134 xpp.red = true;
3135 root = rotateLeft(root, xpp);
3136 }
3137 }
3138 }
3139 }
3140 }
3141 }
3142
3143 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3144 TreeNode<K,V> x) {
3145 for (TreeNode<K,V> xp, xpl, xpr;;) {
3146 if (x == null || x == root)
3147 return root;
3148 else if ((xp = x.parent) == null) {
3149 x.red = false;
3150 return x;
3151 }
3152 else if (x.red) {
3153 x.red = false;
3154 return root;
3155 }
3156 else if ((xpl = xp.left) == x) {
3157 if ((xpr = xp.right) != null && xpr.red) {
3158 xpr.red = false;
3159 xp.red = true;
3160 root = rotateLeft(root, xp);
3161 xpr = (xp = x.parent) == null ? null : xp.right;
3162 }
3163 if (xpr == null)
3164 x = xp;
3165 else {
3166 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3167 if ((sr == null || !sr.red) &&
3168 (sl == null || !sl.red)) {
3169 xpr.red = true;
3170 x = xp;
3171 }
3172 else {
3173 if (sr == null || !sr.red) {
3174 if (sl != null)
3175 sl.red = false;
3176 xpr.red = true;
3177 root = rotateRight(root, xpr);
3178 xpr = (xp = x.parent) == null ?
3179 null : xp.right;
3180 }
3181 if (xpr != null) {
3182 xpr.red = (xp == null) ? false : xp.red;
3183 if ((sr = xpr.right) != null)
3184 sr.red = false;
3185 }
3186 if (xp != null) {
3187 xp.red = false;
3188 root = rotateLeft(root, xp);
3189 }
3190 x = root;
3191 }
3192 }
3193 }
3194 else { // symmetric
3195 if (xpl != null && xpl.red) {
3196 xpl.red = false;
3197 xp.red = true;
3198 root = rotateRight(root, xp);
3199 xpl = (xp = x.parent) == null ? null : xp.left;
3200 }
3201 if (xpl == null)
3202 x = xp;
3203 else {
3204 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3205 if ((sl == null || !sl.red) &&
3206 (sr == null || !sr.red)) {
3207 xpl.red = true;
3208 x = xp;
3209 }
3210 else {
3211 if (sl == null || !sl.red) {
3212 if (sr != null)
3213 sr.red = false;
3214 xpl.red = true;
3215 root = rotateLeft(root, xpl);
3216 xpl = (xp = x.parent) == null ?
3217 null : xp.left;
3218 }
3219 if (xpl != null) {
3220 xpl.red = (xp == null) ? false : xp.red;
3221 if ((sl = xpl.left) != null)
3222 sl.red = false;
3223 }
3224 if (xp != null) {
3225 xp.red = false;
3226 root = rotateRight(root, xp);
3227 }
3228 x = root;
3229 }
3230 }
3231 }
3232 }
3233 }
3234
3235 /**
3236 * Checks invariants recursively for the tree of Nodes rooted at t.
3237 */
3238 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3239 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3240 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3241 if (tb != null && tb.next != t)
3242 return false;
3243 if (tn != null && tn.prev != t)
3244 return false;
3245 if (tp != null && t != tp.left && t != tp.right)
3246 return false;
3247 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3248 return false;
3249 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3250 return false;
3251 if (t.red && tl != null && tl.red && tr != null && tr.red)
3252 return false;
3253 if (tl != null && !checkInvariants(tl))
3254 return false;
3255 if (tr != null && !checkInvariants(tr))
3256 return false;
3257 return true;
3258 }
3259
3260 private static final Unsafe U = Unsafe.getUnsafe();
3261 private static final long LOCKSTATE;
3262 static {
3263 try {
3264 LOCKSTATE = U.objectFieldOffset
3265 (TreeBin.class.getDeclaredField("lockState"));
3266 } catch (ReflectiveOperationException e) {
3267 throw new ExceptionInInitializerError(e);
3268 }
3269 }
3270 }
3271
3272 /* ----------------Table Traversal -------------- */
3273
3274 /**
3275 * Records the table, its length, and current traversal index for a
3276 * traverser that must process a region of a forwarded table before
3277 * proceeding with current table.
3278 */
3279 static final class TableStack<K,V> {
3280 int length;
3281 int index;
3282 Node<K,V>[] tab;
3283 TableStack<K,V> next;
3284 }
3285
3286 /**
3287 * Encapsulates traversal for methods such as containsValue; also
3288 * serves as a base class for other iterators and spliterators.
3289 *
3290 * Method advance visits once each still-valid node that was
3291 * reachable upon iterator construction. It might miss some that
3292 * were added to a bin after the bin was visited, which is OK wrt
3293 * consistency guarantees. Maintaining this property in the face
3294 * of possible ongoing resizes requires a fair amount of
3295 * bookkeeping state that is difficult to optimize away amidst
3296 * volatile accesses. Even so, traversal maintains reasonable
3297 * throughput.
3298 *
3299 * Normally, iteration proceeds bin-by-bin traversing lists.
3300 * However, if the table has been resized, then all future steps
3301 * must traverse both the bin at the current index as well as at
3302 * (index + baseSize); and so on for further resizings. To
3303 * paranoically cope with potential sharing by users of iterators
3304 * across threads, iteration terminates if a bounds checks fails
3305 * for a table read.
3306 */
3307 static class Traverser<K,V> {
3308 Node<K,V>[] tab; // current table; updated if resized
3309 Node<K,V> next; // the next entry to use
3310 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3311 int index; // index of bin to use next
3312 int baseIndex; // current index of initial table
3313 int baseLimit; // index bound for initial table
3314 final int baseSize; // initial table size
3315
3316 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3317 this.tab = tab;
3318 this.baseSize = size;
3319 this.baseIndex = this.index = index;
3320 this.baseLimit = limit;
3321 this.next = null;
3322 }
3323
3324 /**
3325 * Advances if possible, returning next valid node, or null if none.
3326 */
3327 final Node<K,V> advance() {
3328 Node<K,V> e;
3329 if ((e = next) != null)
3330 e = e.next;
3331 for (;;) {
3332 Node<K,V>[] t; int i, n; // must use locals in checks
3333 if (e != null)
3334 return next = e;
3335 if (baseIndex >= baseLimit || (t = tab) == null ||
3336 (n = t.length) <= (i = index) || i < 0)
3337 return next = null;
3338 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3339 if (e instanceof ForwardingNode) {
3340 tab = ((ForwardingNode<K,V>)e).nextTable;
3341 e = null;
3342 pushState(t, i, n);
3343 continue;
3344 }
3345 else if (e instanceof TreeBin)
3346 e = ((TreeBin<K,V>)e).first;
3347 else
3348 e = null;
3349 }
3350 if (stack != null)
3351 recoverState(n);
3352 else if ((index = i + baseSize) >= n)
3353 index = ++baseIndex; // visit upper slots if present
3354 }
3355 }
3356
3357 /**
3358 * Saves traversal state upon encountering a forwarding node.
3359 */
3360 private void pushState(Node<K,V>[] t, int i, int n) {
3361 TableStack<K,V> s = spare; // reuse if possible
3362 if (s != null)
3363 spare = s.next;
3364 else
3365 s = new TableStack<K,V>();
3366 s.tab = t;
3367 s.length = n;
3368 s.index = i;
3369 s.next = stack;
3370 stack = s;
3371 }
3372
3373 /**
3374 * Possibly pops traversal state.
3375 *
3376 * @param n length of current table
3377 */
3378 private void recoverState(int n) {
3379 TableStack<K,V> s; int len;
3380 while ((s = stack) != null && (index += (len = s.length)) >= n) {
3381 n = len;
3382 index = s.index;
3383 tab = s.tab;
3384 s.tab = null;
3385 TableStack<K,V> next = s.next;
3386 s.next = spare; // save for reuse
3387 stack = next;
3388 spare = s;
3389 }
3390 if (s == null && (index += baseSize) >= n)
3391 index = ++baseIndex;
3392 }
3393 }
3394
3395 /**
3396 * Base of key, value, and entry Iterators. Adds fields to
3397 * Traverser to support iterator.remove.
3398 */
3399 static class BaseIterator<K,V> extends Traverser<K,V> {
3400 final ConcurrentHashMap<K,V> map;
3401 Node<K,V> lastReturned;
3402 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3403 ConcurrentHashMap<K,V> map) {
3404 super(tab, size, index, limit);
3405 this.map = map;
3406 advance();
3407 }
3408
3409 public final boolean hasNext() { return next != null; }
3410 public final boolean hasMoreElements() { return next != null; }
3411
3412 public final void remove() {
3413 Node<K,V> p;
3414 if ((p = lastReturned) == null)
3415 throw new IllegalStateException();
3416 lastReturned = null;
3417 map.replaceNode(p.key, null, null);
3418 }
3419 }
3420
3421 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3422 implements Iterator<K>, Enumeration<K> {
3423 KeyIterator(Node<K,V>[] tab, int size, int index, int limit,
3424 ConcurrentHashMap<K,V> map) {
3425 super(tab, size, index, limit, map);
3426 }
3427
3428 public final K next() {
3429 Node<K,V> p;
3430 if ((p = next) == null)
3431 throw new NoSuchElementException();
3432 K k = p.key;
3433 lastReturned = p;
3434 advance();
3435 return k;
3436 }
3437
3438 public final K nextElement() { return next(); }
3439 }
3440
3441 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3442 implements Iterator<V>, Enumeration<V> {
3443 ValueIterator(Node<K,V>[] tab, int size, int index, int limit,
3444 ConcurrentHashMap<K,V> map) {
3445 super(tab, size, index, limit, map);
3446 }
3447
3448 public final V next() {
3449 Node<K,V> p;
3450 if ((p = next) == null)
3451 throw new NoSuchElementException();
3452 V v = p.val;
3453 lastReturned = p;
3454 advance();
3455 return v;
3456 }
3457
3458 public final V nextElement() { return next(); }
3459 }
3460
3461 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3462 implements Iterator<Map.Entry<K,V>> {
3463 EntryIterator(Node<K,V>[] tab, int size, int index, int limit,
3464 ConcurrentHashMap<K,V> map) {
3465 super(tab, size, index, limit, map);
3466 }
3467
3468 public final Map.Entry<K,V> next() {
3469 Node<K,V> p;
3470 if ((p = next) == null)
3471 throw new NoSuchElementException();
3472 K k = p.key;
3473 V v = p.val;
3474 lastReturned = p;
3475 advance();
3476 return new MapEntry<K,V>(k, v, map);
3477 }
3478 }
3479
3480 /**
3481 * Exported Entry for EntryIterator.
3482 */
3483 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3484 final K key; // non-null
3485 V val; // non-null
3486 final ConcurrentHashMap<K,V> map;
3487 MapEntry(K key, V val, ConcurrentHashMap<K,V> map) {
3488 this.key = key;
3489 this.val = val;
3490 this.map = map;
3491 }
3492 public K getKey() { return key; }
3493 public V getValue() { return val; }
3494 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3495 public String toString() {
3496 return Helpers.mapEntryToString(key, val);
3497 }
3498
3499 public boolean equals(Object o) {
3500 Object k, v; Map.Entry<?,?> e;
3501 return ((o instanceof Map.Entry) &&
3502 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3503 (v = e.getValue()) != null &&
3504 (k == key || k.equals(key)) &&
3505 (v == val || v.equals(val)));
3506 }
3507
3508 /**
3509 * Sets our entry's value and writes through to the map. The
3510 * value to return is somewhat arbitrary here. Since we do not
3511 * necessarily track asynchronous changes, the most recent
3512 * "previous" value could be different from what we return (or
3513 * could even have been removed, in which case the put will
3514 * re-establish). We do not and cannot guarantee more.
3515 */
3516 public V setValue(V value) {
3517 if (value == null) throw new NullPointerException();
3518 V v = val;
3519 val = value;
3520 map.put(key, value);
3521 return v;
3522 }
3523 }
3524
3525 static final class KeySpliterator<K,V> extends Traverser<K,V>
3526 implements Spliterator<K> {
3527 long est; // size estimate
3528 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3529 long est) {
3530 super(tab, size, index, limit);
3531 this.est = est;
3532 }
3533
3534 public KeySpliterator<K,V> trySplit() {
3535 int i, f, h;
3536 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3537 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3538 f, est >>>= 1);
3539 }
3540
3541 public void forEachRemaining(Consumer<? super K> action) {
3542 if (action == null) throw new NullPointerException();
3543 for (Node<K,V> p; (p = advance()) != null;)
3544 action.accept(p.key);
3545 }
3546
3547 public boolean tryAdvance(Consumer<? super K> action) {
3548 if (action == null) throw new NullPointerException();
3549 Node<K,V> p;
3550 if ((p = advance()) == null)
3551 return false;
3552 action.accept(p.key);
3553 return true;
3554 }
3555
3556 public long estimateSize() { return est; }
3557
3558 public int characteristics() {
3559 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3560 Spliterator.NONNULL;
3561 }
3562 }
3563
3564 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3565 implements Spliterator<V> {
3566 long est; // size estimate
3567 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3568 long est) {
3569 super(tab, size, index, limit);
3570 this.est = est;
3571 }
3572
3573 public ValueSpliterator<K,V> trySplit() {
3574 int i, f, h;
3575 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3576 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3577 f, est >>>= 1);
3578 }
3579
3580 public void forEachRemaining(Consumer<? super V> action) {
3581 if (action == null) throw new NullPointerException();
3582 for (Node<K,V> p; (p = advance()) != null;)
3583 action.accept(p.val);
3584 }
3585
3586 public boolean tryAdvance(Consumer<? super V> action) {
3587 if (action == null) throw new NullPointerException();
3588 Node<K,V> p;
3589 if ((p = advance()) == null)
3590 return false;
3591 action.accept(p.val);
3592 return true;
3593 }
3594
3595 public long estimateSize() { return est; }
3596
3597 public int characteristics() {
3598 return Spliterator.CONCURRENT | Spliterator.NONNULL;
3599 }
3600 }
3601
3602 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3603 implements Spliterator<Map.Entry<K,V>> {
3604 final ConcurrentHashMap<K,V> map; // To export MapEntry
3605 long est; // size estimate
3606 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3607 long est, ConcurrentHashMap<K,V> map) {
3608 super(tab, size, index, limit);
3609 this.map = map;
3610 this.est = est;
3611 }
3612
3613 public EntrySpliterator<K,V> trySplit() {
3614 int i, f, h;
3615 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3616 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3617 f, est >>>= 1, map);
3618 }
3619
3620 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
3621 if (action == null) throw new NullPointerException();
3622 for (Node<K,V> p; (p = advance()) != null; )
3623 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3624 }
3625
3626 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
3627 if (action == null) throw new NullPointerException();
3628 Node<K,V> p;
3629 if ((p = advance()) == null)
3630 return false;
3631 action.accept(new MapEntry<K,V>(p.key, p.val, map));
3632 return true;
3633 }
3634
3635 public long estimateSize() { return est; }
3636
3637 public int characteristics() {
3638 return Spliterator.DISTINCT | Spliterator.CONCURRENT |
3639 Spliterator.NONNULL;
3640 }
3641 }
3642
3643 // Parallel bulk operations
3644
3645 /**
3646 * Computes initial batch value for bulk tasks. The returned value
3647 * is approximately exp2 of the number of times (minus one) to
3648 * split task by two before executing leaf action. This value is
3649 * faster to compute and more convenient to use as a guide to
3650 * splitting than is the depth, since it is used while dividing by
3651 * two anyway.
3652 */
3653 final int batchFor(long b) {
3654 long n;
3655 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3656 return 0;
3657 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3658 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3659 }
3660
3661 /**
3662 * Performs the given action for each (key, value).
3663 *
3664 * @param parallelismThreshold the (estimated) number of elements
3665 * needed for this operation to be executed in parallel
3666 * @param action the action
3667 * @since 1.8
3668 */
3669 public void forEach(long parallelismThreshold,
3670 BiConsumer<? super K,? super V> action) {
3671 if (action == null) throw new NullPointerException();
3672 new ForEachMappingTask<K,V>
3673 (null, batchFor(parallelismThreshold), 0, 0, table,
3674 action).invoke();
3675 }
3676
3677 /**
3678 * Performs the given action for each non-null transformation
3679 * of each (key, value).
3680 *
3681 * @param parallelismThreshold the (estimated) number of elements
3682 * needed for this operation to be executed in parallel
3683 * @param transformer a function returning the transformation
3684 * for an element, or null if there is no transformation (in
3685 * which case the action is not applied)
3686 * @param action the action
3687 * @param <U> the return type of the transformer
3688 * @since 1.8
3689 */
3690 public <U> void forEach(long parallelismThreshold,
3691 BiFunction<? super K, ? super V, ? extends U> transformer,
3692 Consumer<? super U> action) {
3693 if (transformer == null || action == null)
3694 throw new NullPointerException();
3695 new ForEachTransformedMappingTask<K,V,U>
3696 (null, batchFor(parallelismThreshold), 0, 0, table,
3697 transformer, action).invoke();
3698 }
3699
3700 /**
3701 * Returns a non-null result from applying the given search
3702 * function on each (key, value), or null if none. Upon
3703 * success, further element processing is suppressed and the
3704 * results of any other parallel invocations of the search
3705 * function are ignored.
3706 *
3707 * @param parallelismThreshold the (estimated) number of elements
3708 * needed for this operation to be executed in parallel
3709 * @param searchFunction a function returning a non-null
3710 * result on success, else null
3711 * @param <U> the return type of the search function
3712 * @return a non-null result from applying the given search
3713 * function on each (key, value), or null if none
3714 * @since 1.8
3715 */
3716 public <U> U search(long parallelismThreshold,
3717 BiFunction<? super K, ? super V, ? extends U> searchFunction) {
3718 if (searchFunction == null) throw new NullPointerException();
3719 return new SearchMappingsTask<K,V,U>
3720 (null, batchFor(parallelismThreshold), 0, 0, table,
3721 searchFunction, new AtomicReference<U>()).invoke();
3722 }
3723
3724 /**
3725 * Returns the result of accumulating the given transformation
3726 * of all (key, value) pairs using the given reducer to
3727 * combine values, or null if none.
3728 *
3729 * @param parallelismThreshold the (estimated) number of elements
3730 * needed for this operation to be executed in parallel
3731 * @param transformer a function returning the transformation
3732 * for an element, or null if there is no transformation (in
3733 * which case it is not combined)
3734 * @param reducer a commutative associative combining function
3735 * @param <U> the return type of the transformer
3736 * @return the result of accumulating the given transformation
3737 * of all (key, value) pairs
3738 * @since 1.8
3739 */
3740 public <U> U reduce(long parallelismThreshold,
3741 BiFunction<? super K, ? super V, ? extends U> transformer,
3742 BiFunction<? super U, ? super U, ? extends U> reducer) {
3743 if (transformer == null || reducer == null)
3744 throw new NullPointerException();
3745 return new MapReduceMappingsTask<K,V,U>
3746 (null, batchFor(parallelismThreshold), 0, 0, table,
3747 null, transformer, reducer).invoke();
3748 }
3749
3750 /**
3751 * Returns the result of accumulating the given transformation
3752 * of all (key, value) pairs using the given reducer to
3753 * combine values, and the given basis as an identity value.
3754 *
3755 * @param parallelismThreshold the (estimated) number of elements
3756 * needed for this operation to be executed in parallel
3757 * @param transformer a function returning the transformation
3758 * for an element
3759 * @param basis the identity (initial default value) for the reduction
3760 * @param reducer a commutative associative combining function
3761 * @return the result of accumulating the given transformation
3762 * of all (key, value) pairs
3763 * @since 1.8
3764 */
3765 public double reduceToDouble(long parallelismThreshold,
3766 ToDoubleBiFunction<? super K, ? super V> transformer,
3767 double basis,
3768 DoubleBinaryOperator reducer) {
3769 if (transformer == null || reducer == null)
3770 throw new NullPointerException();
3771 return new MapReduceMappingsToDoubleTask<K,V>
3772 (null, batchFor(parallelismThreshold), 0, 0, table,
3773 null, transformer, basis, reducer).invoke();
3774 }
3775
3776 /**
3777 * Returns the result of accumulating the given transformation
3778 * of all (key, value) pairs using the given reducer to
3779 * combine values, and the given basis as an identity value.
3780 *
3781 * @param parallelismThreshold the (estimated) number of elements
3782 * needed for this operation to be executed in parallel
3783 * @param transformer a function returning the transformation
3784 * for an element
3785 * @param basis the identity (initial default value) for the reduction
3786 * @param reducer a commutative associative combining function
3787 * @return the result of accumulating the given transformation
3788 * of all (key, value) pairs
3789 * @since 1.8
3790 */
3791 public long reduceToLong(long parallelismThreshold,
3792 ToLongBiFunction<? super K, ? super V> transformer,
3793 long basis,
3794 LongBinaryOperator reducer) {
3795 if (transformer == null || reducer == null)
3796 throw new NullPointerException();
3797 return new MapReduceMappingsToLongTask<K,V>
3798 (null, batchFor(parallelismThreshold), 0, 0, table,
3799 null, transformer, basis, reducer).invoke();
3800 }
3801
3802 /**
3803 * Returns the result of accumulating the given transformation
3804 * of all (key, value) pairs using the given reducer to
3805 * combine values, and the given basis as an identity value.
3806 *
3807 * @param parallelismThreshold the (estimated) number of elements
3808 * needed for this operation to be executed in parallel
3809 * @param transformer a function returning the transformation
3810 * for an element
3811 * @param basis the identity (initial default value) for the reduction
3812 * @param reducer a commutative associative combining function
3813 * @return the result of accumulating the given transformation
3814 * of all (key, value) pairs
3815 * @since 1.8
3816 */
3817 public int reduceToInt(long parallelismThreshold,
3818 ToIntBiFunction<? super K, ? super V> transformer,
3819 int basis,
3820 IntBinaryOperator reducer) {
3821 if (transformer == null || reducer == null)
3822 throw new NullPointerException();
3823 return new MapReduceMappingsToIntTask<K,V>
3824 (null, batchFor(parallelismThreshold), 0, 0, table,
3825 null, transformer, basis, reducer).invoke();
3826 }
3827
3828 /**
3829 * Performs the given action for each key.
3830 *
3831 * @param parallelismThreshold the (estimated) number of elements
3832 * needed for this operation to be executed in parallel
3833 * @param action the action
3834 * @since 1.8
3835 */
3836 public void forEachKey(long parallelismThreshold,
3837 Consumer<? super K> action) {
3838 if (action == null) throw new NullPointerException();
3839 new ForEachKeyTask<K,V>
3840 (null, batchFor(parallelismThreshold), 0, 0, table,
3841 action).invoke();
3842 }
3843
3844 /**
3845 * Performs the given action for each non-null transformation
3846 * of each key.
3847 *
3848 * @param parallelismThreshold the (estimated) number of elements
3849 * needed for this operation to be executed in parallel
3850 * @param transformer a function returning the transformation
3851 * for an element, or null if there is no transformation (in
3852 * which case the action is not applied)
3853 * @param action the action
3854 * @param <U> the return type of the transformer
3855 * @since 1.8
3856 */
3857 public <U> void forEachKey(long parallelismThreshold,
3858 Function<? super K, ? extends U> transformer,
3859 Consumer<? super U> action) {
3860 if (transformer == null || action == null)
3861 throw new NullPointerException();
3862 new ForEachTransformedKeyTask<K,V,U>
3863 (null, batchFor(parallelismThreshold), 0, 0, table,
3864 transformer, action).invoke();
3865 }
3866
3867 /**
3868 * Returns a non-null result from applying the given search
3869 * function on each key, or null if none. Upon success,
3870 * further element processing is suppressed and the results of
3871 * any other parallel invocations of the search function are
3872 * ignored.
3873 *
3874 * @param parallelismThreshold the (estimated) number of elements
3875 * needed for this operation to be executed in parallel
3876 * @param searchFunction a function returning a non-null
3877 * result on success, else null
3878 * @param <U> the return type of the search function
3879 * @return a non-null result from applying the given search
3880 * function on each key, or null if none
3881 * @since 1.8
3882 */
3883 public <U> U searchKeys(long parallelismThreshold,
3884 Function<? super K, ? extends U> searchFunction) {
3885 if (searchFunction == null) throw new NullPointerException();
3886 return new SearchKeysTask<K,V,U>
3887 (null, batchFor(parallelismThreshold), 0, 0, table,
3888 searchFunction, new AtomicReference<U>()).invoke();
3889 }
3890
3891 /**
3892 * Returns the result of accumulating all keys using the given
3893 * reducer to combine values, or null if none.
3894 *
3895 * @param parallelismThreshold the (estimated) number of elements
3896 * needed for this operation to be executed in parallel
3897 * @param reducer a commutative associative combining function
3898 * @return the result of accumulating all keys using the given
3899 * reducer to combine values, or null if none
3900 * @since 1.8
3901 */
3902 public K reduceKeys(long parallelismThreshold,
3903 BiFunction<? super K, ? super K, ? extends K> reducer) {
3904 if (reducer == null) throw new NullPointerException();
3905 return new ReduceKeysTask<K,V>
3906 (null, batchFor(parallelismThreshold), 0, 0, table,
3907 null, reducer).invoke();
3908 }
3909
3910 /**
3911 * Returns the result of accumulating the given transformation
3912 * of all keys using the given reducer to combine values, or
3913 * null if none.
3914 *
3915 * @param parallelismThreshold the (estimated) number of elements
3916 * needed for this operation to be executed in parallel
3917 * @param transformer a function returning the transformation
3918 * for an element, or null if there is no transformation (in
3919 * which case it is not combined)
3920 * @param reducer a commutative associative combining function
3921 * @param <U> the return type of the transformer
3922 * @return the result of accumulating the given transformation
3923 * of all keys
3924 * @since 1.8
3925 */
3926 public <U> U reduceKeys(long parallelismThreshold,
3927 Function<? super K, ? extends U> transformer,
3928 BiFunction<? super U, ? super U, ? extends U> reducer) {
3929 if (transformer == null || reducer == null)
3930 throw new NullPointerException();
3931 return new MapReduceKeysTask<K,V,U>
3932 (null, batchFor(parallelismThreshold), 0, 0, table,
3933 null, transformer, reducer).invoke();
3934 }
3935
3936 /**
3937 * Returns the result of accumulating the given transformation
3938 * of all keys using the given reducer to combine values, and
3939 * the given basis as an identity value.
3940 *
3941 * @param parallelismThreshold the (estimated) number of elements
3942 * needed for this operation to be executed in parallel
3943 * @param transformer a function returning the transformation
3944 * for an element
3945 * @param basis the identity (initial default value) for the reduction
3946 * @param reducer a commutative associative combining function
3947 * @return the result of accumulating the given transformation
3948 * of all keys
3949 * @since 1.8
3950 */
3951 public double reduceKeysToDouble(long parallelismThreshold,
3952 ToDoubleFunction<? super K> transformer,
3953 double basis,
3954 DoubleBinaryOperator reducer) {
3955 if (transformer == null || reducer == null)
3956 throw new NullPointerException();
3957 return new MapReduceKeysToDoubleTask<K,V>
3958 (null, batchFor(parallelismThreshold), 0, 0, table,
3959 null, transformer, basis, reducer).invoke();
3960 }
3961
3962 /**
3963 * Returns the result of accumulating the given transformation
3964 * of all keys using the given reducer to combine values, and
3965 * the given basis as an identity value.
3966 *
3967 * @param parallelismThreshold the (estimated) number of elements
3968 * needed for this operation to be executed in parallel
3969 * @param transformer a function returning the transformation
3970 * for an element
3971 * @param basis the identity (initial default value) for the reduction
3972 * @param reducer a commutative associative combining function
3973 * @return the result of accumulating the given transformation
3974 * of all keys
3975 * @since 1.8
3976 */
3977 public long reduceKeysToLong(long parallelismThreshold,
3978 ToLongFunction<? super K> transformer,
3979 long basis,
3980 LongBinaryOperator reducer) {
3981 if (transformer == null || reducer == null)
3982 throw new NullPointerException();
3983 return new MapReduceKeysToLongTask<K,V>
3984 (null, batchFor(parallelismThreshold), 0, 0, table,
3985 null, transformer, basis, reducer).invoke();
3986 }
3987
3988 /**
3989 * Returns the result of accumulating the given transformation
3990 * of all keys using the given reducer to combine values, and
3991 * the given basis as an identity value.
3992 *
3993 * @param parallelismThreshold the (estimated) number of elements
3994 * needed for this operation to be executed in parallel
3995 * @param transformer a function returning the transformation
3996 * for an element
3997 * @param basis the identity (initial default value) for the reduction
3998 * @param reducer a commutative associative combining function
3999 * @return the result of accumulating the given transformation
4000 * of all keys
4001 * @since 1.8
4002 */
4003 public int reduceKeysToInt(long parallelismThreshold,
4004 ToIntFunction<? super K> transformer,
4005 int basis,
4006 IntBinaryOperator reducer) {
4007 if (transformer == null || reducer == null)
4008 throw new NullPointerException();
4009 return new MapReduceKeysToIntTask<K,V>
4010 (null, batchFor(parallelismThreshold), 0, 0, table,
4011 null, transformer, basis, reducer).invoke();
4012 }
4013
4014 /**
4015 * Performs the given action for each value.
4016 *
4017 * @param parallelismThreshold the (estimated) number of elements
4018 * needed for this operation to be executed in parallel
4019 * @param action the action
4020 * @since 1.8
4021 */
4022 public void forEachValue(long parallelismThreshold,
4023 Consumer<? super V> action) {
4024 if (action == null)
4025 throw new NullPointerException();
4026 new ForEachValueTask<K,V>
4027 (null, batchFor(parallelismThreshold), 0, 0, table,
4028 action).invoke();
4029 }
4030
4031 /**
4032 * Performs the given action for each non-null transformation
4033 * of each value.
4034 *
4035 * @param parallelismThreshold the (estimated) number of elements
4036 * needed for this operation to be executed in parallel
4037 * @param transformer a function returning the transformation
4038 * for an element, or null if there is no transformation (in
4039 * which case the action is not applied)
4040 * @param action the action
4041 * @param <U> the return type of the transformer
4042 * @since 1.8
4043 */
4044 public <U> void forEachValue(long parallelismThreshold,
4045 Function<? super V, ? extends U> transformer,
4046 Consumer<? super U> action) {
4047 if (transformer == null || action == null)
4048 throw new NullPointerException();
4049 new ForEachTransformedValueTask<K,V,U>
4050 (null, batchFor(parallelismThreshold), 0, 0, table,
4051 transformer, action).invoke();
4052 }
4053
4054 /**
4055 * Returns a non-null result from applying the given search
4056 * function on each value, or null if none. Upon success,
4057 * further element processing is suppressed and the results of
4058 * any other parallel invocations of the search function are
4059 * ignored.
4060 *
4061 * @param parallelismThreshold the (estimated) number of elements
4062 * needed for this operation to be executed in parallel
4063 * @param searchFunction a function returning a non-null
4064 * result on success, else null
4065 * @param <U> the return type of the search function
4066 * @return a non-null result from applying the given search
4067 * function on each value, or null if none
4068 * @since 1.8
4069 */
4070 public <U> U searchValues(long parallelismThreshold,
4071 Function<? super V, ? extends U> searchFunction) {
4072 if (searchFunction == null) throw new NullPointerException();
4073 return new SearchValuesTask<K,V,U>
4074 (null, batchFor(parallelismThreshold), 0, 0, table,
4075 searchFunction, new AtomicReference<U>()).invoke();
4076 }
4077
4078 /**
4079 * Returns the result of accumulating all values using the
4080 * given reducer to combine values, or null if none.
4081 *
4082 * @param parallelismThreshold the (estimated) number of elements
4083 * needed for this operation to be executed in parallel
4084 * @param reducer a commutative associative combining function
4085 * @return the result of accumulating all values
4086 * @since 1.8
4087 */
4088 public V reduceValues(long parallelismThreshold,
4089 BiFunction<? super V, ? super V, ? extends V> reducer) {
4090 if (reducer == null) throw new NullPointerException();
4091 return new ReduceValuesTask<K,V>
4092 (null, batchFor(parallelismThreshold), 0, 0, table,
4093 null, reducer).invoke();
4094 }
4095
4096 /**
4097 * Returns the result of accumulating the given transformation
4098 * of all values using the given reducer to combine values, or
4099 * null if none.
4100 *
4101 * @param parallelismThreshold the (estimated) number of elements
4102 * needed for this operation to be executed in parallel
4103 * @param transformer a function returning the transformation
4104 * for an element, or null if there is no transformation (in
4105 * which case it is not combined)
4106 * @param reducer a commutative associative combining function
4107 * @param <U> the return type of the transformer
4108 * @return the result of accumulating the given transformation
4109 * of all values
4110 * @since 1.8
4111 */
4112 public <U> U reduceValues(long parallelismThreshold,
4113 Function<? super V, ? extends U> transformer,
4114 BiFunction<? super U, ? super U, ? extends U> reducer) {
4115 if (transformer == null || reducer == null)
4116 throw new NullPointerException();
4117 return new MapReduceValuesTask<K,V,U>
4118 (null, batchFor(parallelismThreshold), 0, 0, table,
4119 null, transformer, reducer).invoke();
4120 }
4121
4122 /**
4123 * Returns the result of accumulating the given transformation
4124 * of all values using the given reducer to combine values,
4125 * and the given basis as an identity value.
4126 *
4127 * @param parallelismThreshold the (estimated) number of elements
4128 * needed for this operation to be executed in parallel
4129 * @param transformer a function returning the transformation
4130 * for an element
4131 * @param basis the identity (initial default value) for the reduction
4132 * @param reducer a commutative associative combining function
4133 * @return the result of accumulating the given transformation
4134 * of all values
4135 * @since 1.8
4136 */
4137 public double reduceValuesToDouble(long parallelismThreshold,
4138 ToDoubleFunction<? super V> transformer,
4139 double basis,
4140 DoubleBinaryOperator reducer) {
4141 if (transformer == null || reducer == null)
4142 throw new NullPointerException();
4143 return new MapReduceValuesToDoubleTask<K,V>
4144 (null, batchFor(parallelismThreshold), 0, 0, table,
4145 null, transformer, basis, reducer).invoke();
4146 }
4147
4148 /**
4149 * Returns the result of accumulating the given transformation
4150 * of all values using the given reducer to combine values,
4151 * and the given basis as an identity value.
4152 *
4153 * @param parallelismThreshold the (estimated) number of elements
4154 * needed for this operation to be executed in parallel
4155 * @param transformer a function returning the transformation
4156 * for an element
4157 * @param basis the identity (initial default value) for the reduction
4158 * @param reducer a commutative associative combining function
4159 * @return the result of accumulating the given transformation
4160 * of all values
4161 * @since 1.8
4162 */
4163 public long reduceValuesToLong(long parallelismThreshold,
4164 ToLongFunction<? super V> transformer,
4165 long basis,
4166 LongBinaryOperator reducer) {
4167 if (transformer == null || reducer == null)
4168 throw new NullPointerException();
4169 return new MapReduceValuesToLongTask<K,V>
4170 (null, batchFor(parallelismThreshold), 0, 0, table,
4171 null, transformer, basis, reducer).invoke();
4172 }
4173
4174 /**
4175 * Returns the result of accumulating the given transformation
4176 * of all values using the given reducer to combine values,
4177 * and the given basis as an identity value.
4178 *
4179 * @param parallelismThreshold the (estimated) number of elements
4180 * needed for this operation to be executed in parallel
4181 * @param transformer a function returning the transformation
4182 * for an element
4183 * @param basis the identity (initial default value) for the reduction
4184 * @param reducer a commutative associative combining function
4185 * @return the result of accumulating the given transformation
4186 * of all values
4187 * @since 1.8
4188 */
4189 public int reduceValuesToInt(long parallelismThreshold,
4190 ToIntFunction<? super V> transformer,
4191 int basis,
4192 IntBinaryOperator reducer) {
4193 if (transformer == null || reducer == null)
4194 throw new NullPointerException();
4195 return new MapReduceValuesToIntTask<K,V>
4196 (null, batchFor(parallelismThreshold), 0, 0, table,
4197 null, transformer, basis, reducer).invoke();
4198 }
4199
4200 /**
4201 * Performs the given action for each entry.
4202 *
4203 * @param parallelismThreshold the (estimated) number of elements
4204 * needed for this operation to be executed in parallel
4205 * @param action the action
4206 * @since 1.8
4207 */
4208 public void forEachEntry(long parallelismThreshold,
4209 Consumer<? super Map.Entry<K,V>> action) {
4210 if (action == null) throw new NullPointerException();
4211 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4212 action).invoke();
4213 }
4214
4215 /**
4216 * Performs the given action for each non-null transformation
4217 * of each entry.
4218 *
4219 * @param parallelismThreshold the (estimated) number of elements
4220 * needed for this operation to be executed in parallel
4221 * @param transformer a function returning the transformation
4222 * for an element, or null if there is no transformation (in
4223 * which case the action is not applied)
4224 * @param action the action
4225 * @param <U> the return type of the transformer
4226 * @since 1.8
4227 */
4228 public <U> void forEachEntry(long parallelismThreshold,
4229 Function<Map.Entry<K,V>, ? extends U> transformer,
4230 Consumer<? super U> action) {
4231 if (transformer == null || action == null)
4232 throw new NullPointerException();
4233 new ForEachTransformedEntryTask<K,V,U>
4234 (null, batchFor(parallelismThreshold), 0, 0, table,
4235 transformer, action).invoke();
4236 }
4237
4238 /**
4239 * Returns a non-null result from applying the given search
4240 * function on each entry, or null if none. Upon success,
4241 * further element processing is suppressed and the results of
4242 * any other parallel invocations of the search function are
4243 * ignored.
4244 *
4245 * @param parallelismThreshold the (estimated) number of elements
4246 * needed for this operation to be executed in parallel
4247 * @param searchFunction a function returning a non-null
4248 * result on success, else null
4249 * @param <U> the return type of the search function
4250 * @return a non-null result from applying the given search
4251 * function on each entry, or null if none
4252 * @since 1.8
4253 */
4254 public <U> U searchEntries(long parallelismThreshold,
4255 Function<Map.Entry<K,V>, ? extends U> searchFunction) {
4256 if (searchFunction == null) throw new NullPointerException();
4257 return new SearchEntriesTask<K,V,U>
4258 (null, batchFor(parallelismThreshold), 0, 0, table,
4259 searchFunction, new AtomicReference<U>()).invoke();
4260 }
4261
4262 /**
4263 * Returns the result of accumulating all entries using the
4264 * given reducer to combine values, or null if none.
4265 *
4266 * @param parallelismThreshold the (estimated) number of elements
4267 * needed for this operation to be executed in parallel
4268 * @param reducer a commutative associative combining function
4269 * @return the result of accumulating all entries
4270 * @since 1.8
4271 */
4272 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4273 BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4274 if (reducer == null) throw new NullPointerException();
4275 return new ReduceEntriesTask<K,V>
4276 (null, batchFor(parallelismThreshold), 0, 0, table,
4277 null, reducer).invoke();
4278 }
4279
4280 /**
4281 * Returns the result of accumulating the given transformation
4282 * of all entries using the given reducer to combine values,
4283 * or null if none.
4284 *
4285 * @param parallelismThreshold the (estimated) number of elements
4286 * needed for this operation to be executed in parallel
4287 * @param transformer a function returning the transformation
4288 * for an element, or null if there is no transformation (in
4289 * which case it is not combined)
4290 * @param reducer a commutative associative combining function
4291 * @param <U> the return type of the transformer
4292 * @return the result of accumulating the given transformation
4293 * of all entries
4294 * @since 1.8
4295 */
4296 public <U> U reduceEntries(long parallelismThreshold,
4297 Function<Map.Entry<K,V>, ? extends U> transformer,
4298 BiFunction<? super U, ? super U, ? extends U> reducer) {
4299 if (transformer == null || reducer == null)
4300 throw new NullPointerException();
4301 return new MapReduceEntriesTask<K,V,U>
4302 (null, batchFor(parallelismThreshold), 0, 0, table,
4303 null, transformer, reducer).invoke();
4304 }
4305
4306 /**
4307 * Returns the result of accumulating the given transformation
4308 * of all entries using the given reducer to combine values,
4309 * and the given basis as an identity value.
4310 *
4311 * @param parallelismThreshold the (estimated) number of elements
4312 * needed for this operation to be executed in parallel
4313 * @param transformer a function returning the transformation
4314 * for an element
4315 * @param basis the identity (initial default value) for the reduction
4316 * @param reducer a commutative associative combining function
4317 * @return the result of accumulating the given transformation
4318 * of all entries
4319 * @since 1.8
4320 */
4321 public double reduceEntriesToDouble(long parallelismThreshold,
4322 ToDoubleFunction<Map.Entry<K,V>> transformer,
4323 double basis,
4324 DoubleBinaryOperator reducer) {
4325 if (transformer == null || reducer == null)
4326 throw new NullPointerException();
4327 return new MapReduceEntriesToDoubleTask<K,V>
4328 (null, batchFor(parallelismThreshold), 0, 0, table,
4329 null, transformer, basis, reducer).invoke();
4330 }
4331
4332 /**
4333 * Returns the result of accumulating the given transformation
4334 * of all entries using the given reducer to combine values,
4335 * and the given basis as an identity value.
4336 *
4337 * @param parallelismThreshold the (estimated) number of elements
4338 * needed for this operation to be executed in parallel
4339 * @param transformer a function returning the transformation
4340 * for an element
4341 * @param basis the identity (initial default value) for the reduction
4342 * @param reducer a commutative associative combining function
4343 * @return the result of accumulating the given transformation
4344 * of all entries
4345 * @since 1.8
4346 */
4347 public long reduceEntriesToLong(long parallelismThreshold,
4348 ToLongFunction<Map.Entry<K,V>> transformer,
4349 long basis,
4350 LongBinaryOperator reducer) {
4351 if (transformer == null || reducer == null)
4352 throw new NullPointerException();
4353 return new MapReduceEntriesToLongTask<K,V>
4354 (null, batchFor(parallelismThreshold), 0, 0, table,
4355 null, transformer, basis, reducer).invoke();
4356 }
4357
4358 /**
4359 * Returns the result of accumulating the given transformation
4360 * of all entries using the given reducer to combine values,
4361 * and the given basis as an identity value.
4362 *
4363 * @param parallelismThreshold the (estimated) number of elements
4364 * needed for this operation to be executed in parallel
4365 * @param transformer a function returning the transformation
4366 * for an element
4367 * @param basis the identity (initial default value) for the reduction
4368 * @param reducer a commutative associative combining function
4369 * @return the result of accumulating the given transformation
4370 * of all entries
4371 * @since 1.8
4372 */
4373 public int reduceEntriesToInt(long parallelismThreshold,
4374 ToIntFunction<Map.Entry<K,V>> transformer,
4375 int basis,
4376 IntBinaryOperator reducer) {
4377 if (transformer == null || reducer == null)
4378 throw new NullPointerException();
4379 return new MapReduceEntriesToIntTask<K,V>
4380 (null, batchFor(parallelismThreshold), 0, 0, table,
4381 null, transformer, basis, reducer).invoke();
4382 }
4383
4384
4385 /* ----------------Views -------------- */
4386
4387 /**
4388 * Base class for views.
4389 */
4390 abstract static class CollectionView<K,V,E>
4391 implements Collection<E>, java.io.Serializable {
4392 private static final long serialVersionUID = 7249069246763182397L;
4393 final ConcurrentHashMap<K,V> map;
4394 CollectionView(ConcurrentHashMap<K,V> map) { this.map = map; }
4395
4396 /**
4397 * Returns the map backing this view.
4398 *
4399 * @return the map backing this view
4400 */
4401 public ConcurrentHashMap<K,V> getMap() { return map; }
4402
4403 /**
4404 * Removes all of the elements from this view, by removing all
4405 * the mappings from the map backing this view.
4406 */
4407 public final void clear() { map.clear(); }
4408 public final int size() { return map.size(); }
4409 public final boolean isEmpty() { return map.isEmpty(); }
4410
4411 // implementations below rely on concrete classes supplying these
4412 // abstract methods
4413 /**
4414 * Returns an iterator over the elements in this collection.
4415 *
4416 * <p>The returned iterator is
4417 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
4418 *
4419 * @return an iterator over the elements in this collection
4420 */
4421 public abstract Iterator<E> iterator();
4422 public abstract boolean contains(Object o);
4423 public abstract boolean remove(Object o);
4424
4425 private static final String OOME_MSG = "Required array size too large";
4426
4427 public final Object[] toArray() {
4428 long sz = map.mappingCount();
4429 if (sz > MAX_ARRAY_SIZE)
4430 throw new OutOfMemoryError(OOME_MSG);
4431 int n = (int)sz;
4432 Object[] r = new Object[n];
4433 int i = 0;
4434 for (E e : this) {
4435 if (i == n) {
4436 if (n >= MAX_ARRAY_SIZE)
4437 throw new OutOfMemoryError(OOME_MSG);
4438 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4439 n = MAX_ARRAY_SIZE;
4440 else
4441 n += (n >>> 1) + 1;
4442 r = Arrays.copyOf(r, n);
4443 }
4444 r[i++] = e;
4445 }
4446 return (i == n) ? r : Arrays.copyOf(r, i);
4447 }
4448
4449 @SuppressWarnings("unchecked")
4450 public final <T> T[] toArray(T[] a) {
4451 long sz = map.mappingCount();
4452 if (sz > MAX_ARRAY_SIZE)
4453 throw new OutOfMemoryError(OOME_MSG);
4454 int m = (int)sz;
4455 T[] r = (a.length >= m) ? a :
4456 (T[])java.lang.reflect.Array
4457 .newInstance(a.getClass().getComponentType(), m);
4458 int n = r.length;
4459 int i = 0;
4460 for (E e : this) {
4461 if (i == n) {
4462 if (n >= MAX_ARRAY_SIZE)
4463 throw new OutOfMemoryError(OOME_MSG);
4464 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4465 n = MAX_ARRAY_SIZE;
4466 else
4467 n += (n >>> 1) + 1;
4468 r = Arrays.copyOf(r, n);
4469 }
4470 r[i++] = (T)e;
4471 }
4472 if (a == r && i < n) {
4473 r[i] = null; // null-terminate
4474 return r;
4475 }
4476 return (i == n) ? r : Arrays.copyOf(r, i);
4477 }
4478
4479 /**
4480 * Returns a string representation of this collection.
4481 * The string representation consists of the string representations
4482 * of the collection's elements in the order they are returned by
4483 * its iterator, enclosed in square brackets ({@code "[]"}).
4484 * Adjacent elements are separated by the characters {@code ", "}
4485 * (comma and space). Elements are converted to strings as by
4486 * {@link String#valueOf(Object)}.
4487 *
4488 * @return a string representation of this collection
4489 */
4490 public final String toString() {
4491 StringBuilder sb = new StringBuilder();
4492 sb.append('[');
4493 Iterator<E> it = iterator();
4494 if (it.hasNext()) {
4495 for (;;) {
4496 Object e = it.next();
4497 sb.append(e == this ? "(this Collection)" : e);
4498 if (!it.hasNext())
4499 break;
4500 sb.append(',').append(' ');
4501 }
4502 }
4503 return sb.append(']').toString();
4504 }
4505
4506 public final boolean containsAll(Collection<?> c) {
4507 if (c != this) {
4508 for (Object e : c) {
4509 if (e == null || !contains(e))
4510 return false;
4511 }
4512 }
4513 return true;
4514 }
4515
4516 public boolean removeAll(Collection<?> c) {
4517 if (c == null) throw new NullPointerException();
4518 boolean modified = false;
4519 // Use (c instanceof Set) as a hint that lookup in c is as
4520 // efficient as this view
4521 Node<K,V>[] t;
4522 if ((t = map.table) == null) {
4523 return false;
4524 } else if (c instanceof Set<?> && c.size() > t.length) {
4525 for (Iterator<?> it = iterator(); it.hasNext(); ) {
4526 if (c.contains(it.next())) {
4527 it.remove();
4528 modified = true;
4529 }
4530 }
4531 } else {
4532 for (Object e : c)
4533 modified |= remove(e);
4534 }
4535 return modified;
4536 }
4537
4538 public final boolean retainAll(Collection<?> c) {
4539 if (c == null) throw new NullPointerException();
4540 boolean modified = false;
4541 for (Iterator<E> it = iterator(); it.hasNext();) {
4542 if (!c.contains(it.next())) {
4543 it.remove();
4544 modified = true;
4545 }
4546 }
4547 return modified;
4548 }
4549
4550 }
4551
4552 /**
4553 * A view of a ConcurrentHashMap as a {@link Set} of keys, in
4554 * which additions may optionally be enabled by mapping to a
4555 * common value. This class cannot be directly instantiated.
4556 * See {@link #keySet() keySet()},
4557 * {@link #keySet(Object) keySet(V)},
4558 * {@link #newKeySet() newKeySet()},
4559 * {@link #newKeySet(int) newKeySet(int)}.
4560 *
4561 * @since 1.8
4562 */
4563 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4564 implements Set<K>, java.io.Serializable {
4565 private static final long serialVersionUID = 7249069246763182397L;
4566 private final V value;
4567 KeySetView(ConcurrentHashMap<K,V> map, V value) { // non-public
4568 super(map);
4569 this.value = value;
4570 }
4571
4572 /**
4573 * Returns the default mapped value for additions,
4574 * or {@code null} if additions are not supported.
4575 *
4576 * @return the default mapped value for additions, or {@code null}
4577 * if not supported
4578 */
4579 public V getMappedValue() { return value; }
4580
4581 /**
4582 * {@inheritDoc}
4583 * @throws NullPointerException if the specified key is null
4584 */
4585 public boolean contains(Object o) { return map.containsKey(o); }
4586
4587 /**
4588 * Removes the key from this map view, by removing the key (and its
4589 * corresponding value) from the backing map. This method does
4590 * nothing if the key is not in the map.
4591 *
4592 * @param o the key to be removed from the backing map
4593 * @return {@code true} if the backing map contained the specified key
4594 * @throws NullPointerException if the specified key is null
4595 */
4596 public boolean remove(Object o) { return map.remove(o) != null; }
4597
4598 /**
4599 * @return an iterator over the keys of the backing map
4600 */
4601 public Iterator<K> iterator() {
4602 Node<K,V>[] t;
4603 ConcurrentHashMap<K,V> m = map;
4604 int f = (t = m.table) == null ? 0 : t.length;
4605 return new KeyIterator<K,V>(t, f, 0, f, m);
4606 }
4607
4608 /**
4609 * Adds the specified key to this set view by mapping the key to
4610 * the default mapped value in the backing map, if defined.
4611 *
4612 * @param e key to be added
4613 * @return {@code true} if this set changed as a result of the call
4614 * @throws NullPointerException if the specified key is null
4615 * @throws UnsupportedOperationException if no default mapped value
4616 * for additions was provided
4617 */
4618 public boolean add(K e) {
4619 V v;
4620 if ((v = value) == null)
4621 throw new UnsupportedOperationException();
4622 return map.putVal(e, v, true) == null;
4623 }
4624
4625 /**
4626 * Adds all of the elements in the specified collection to this set,
4627 * as if by calling {@link #add} on each one.
4628 *
4629 * @param c the elements to be inserted into this set
4630 * @return {@code true} if this set changed as a result of the call
4631 * @throws NullPointerException if the collection or any of its
4632 * elements are {@code null}
4633 * @throws UnsupportedOperationException if no default mapped value
4634 * for additions was provided
4635 */
4636 public boolean addAll(Collection<? extends K> c) {
4637 boolean added = false;
4638 V v;
4639 if ((v = value) == null)
4640 throw new UnsupportedOperationException();
4641 for (K e : c) {
4642 if (map.putVal(e, v, true) == null)
4643 added = true;
4644 }
4645 return added;
4646 }
4647
4648 public int hashCode() {
4649 int h = 0;
4650 for (K e : this)
4651 h += e.hashCode();
4652 return h;
4653 }
4654
4655 public boolean equals(Object o) {
4656 Set<?> c;
4657 return ((o instanceof Set) &&
4658 ((c = (Set<?>)o) == this ||
4659 (containsAll(c) && c.containsAll(this))));
4660 }
4661
4662 public Spliterator<K> spliterator() {
4663 Node<K,V>[] t;
4664 ConcurrentHashMap<K,V> m = map;
4665 long n = m.sumCount();
4666 int f = (t = m.table) == null ? 0 : t.length;
4667 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4668 }
4669
4670 public void forEach(Consumer<? super K> action) {
4671 if (action == null) throw new NullPointerException();
4672 Node<K,V>[] t;
4673 if ((t = map.table) != null) {
4674 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4675 for (Node<K,V> p; (p = it.advance()) != null; )
4676 action.accept(p.key);
4677 }
4678 }
4679 }
4680
4681 /**
4682 * A view of a ConcurrentHashMap as a {@link Collection} of
4683 * values, in which additions are disabled. This class cannot be
4684 * directly instantiated. See {@link #values()}.
4685 */
4686 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4687 implements Collection<V>, java.io.Serializable {
4688 private static final long serialVersionUID = 2249069246763182397L;
4689 ValuesView(ConcurrentHashMap<K,V> map) { super(map); }
4690 public final boolean contains(Object o) {
4691 return map.containsValue(o);
4692 }
4693
4694 public final boolean remove(Object o) {
4695 if (o != null) {
4696 for (Iterator<V> it = iterator(); it.hasNext();) {
4697 if (o.equals(it.next())) {
4698 it.remove();
4699 return true;
4700 }
4701 }
4702 }
4703 return false;
4704 }
4705
4706 public final Iterator<V> iterator() {
4707 ConcurrentHashMap<K,V> m = map;
4708 Node<K,V>[] t;
4709 int f = (t = m.table) == null ? 0 : t.length;
4710 return new ValueIterator<K,V>(t, f, 0, f, m);
4711 }
4712
4713 public final boolean add(V e) {
4714 throw new UnsupportedOperationException();
4715 }
4716 public final boolean addAll(Collection<? extends V> c) {
4717 throw new UnsupportedOperationException();
4718 }
4719
4720 @Override public boolean removeAll(Collection<?> c) {
4721 if (c == null) throw new NullPointerException();
4722 boolean modified = false;
4723 for (Iterator<V> it = iterator(); it.hasNext();) {
4724 if (c.contains(it.next())) {
4725 it.remove();
4726 modified = true;
4727 }
4728 }
4729 return modified;
4730 }
4731
4732 public boolean removeIf(Predicate<? super V> filter) {
4733 return map.removeValueIf(filter);
4734 }
4735
4736 public Spliterator<V> spliterator() {
4737 Node<K,V>[] t;
4738 ConcurrentHashMap<K,V> m = map;
4739 long n = m.sumCount();
4740 int f = (t = m.table) == null ? 0 : t.length;
4741 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4742 }
4743
4744 public void forEach(Consumer<? super V> action) {
4745 if (action == null) throw new NullPointerException();
4746 Node<K,V>[] t;
4747 if ((t = map.table) != null) {
4748 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4749 for (Node<K,V> p; (p = it.advance()) != null; )
4750 action.accept(p.val);
4751 }
4752 }
4753 }
4754
4755 /**
4756 * A view of a ConcurrentHashMap as a {@link Set} of (key, value)
4757 * entries. This class cannot be directly instantiated. See
4758 * {@link #entrySet()}.
4759 */
4760 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4761 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4762 private static final long serialVersionUID = 2249069246763182397L;
4763 EntrySetView(ConcurrentHashMap<K,V> map) { super(map); }
4764
4765 public boolean contains(Object o) {
4766 Object k, v, r; Map.Entry<?,?> e;
4767 return ((o instanceof Map.Entry) &&
4768 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4769 (r = map.get(k)) != null &&
4770 (v = e.getValue()) != null &&
4771 (v == r || v.equals(r)));
4772 }
4773
4774 public boolean remove(Object o) {
4775 Object k, v; Map.Entry<?,?> e;
4776 return ((o instanceof Map.Entry) &&
4777 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4778 (v = e.getValue()) != null &&
4779 map.remove(k, v));
4780 }
4781
4782 /**
4783 * @return an iterator over the entries of the backing map
4784 */
4785 public Iterator<Map.Entry<K,V>> iterator() {
4786 ConcurrentHashMap<K,V> m = map;
4787 Node<K,V>[] t;
4788 int f = (t = m.table) == null ? 0 : t.length;
4789 return new EntryIterator<K,V>(t, f, 0, f, m);
4790 }
4791
4792 public boolean add(Entry<K,V> e) {
4793 return map.putVal(e.getKey(), e.getValue(), false) == null;
4794 }
4795
4796 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4797 boolean added = false;
4798 for (Entry<K,V> e : c) {
4799 if (add(e))
4800 added = true;
4801 }
4802 return added;
4803 }
4804
4805 public boolean removeIf(Predicate<? super Entry<K,V>> filter) {
4806 return map.removeEntryIf(filter);
4807 }
4808
4809 public final int hashCode() {
4810 int h = 0;
4811 Node<K,V>[] t;
4812 if ((t = map.table) != null) {
4813 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4814 for (Node<K,V> p; (p = it.advance()) != null; ) {
4815 h += p.hashCode();
4816 }
4817 }
4818 return h;
4819 }
4820
4821 public final boolean equals(Object o) {
4822 Set<?> c;
4823 return ((o instanceof Set) &&
4824 ((c = (Set<?>)o) == this ||
4825 (containsAll(c) && c.containsAll(this))));
4826 }
4827
4828 public Spliterator<Map.Entry<K,V>> spliterator() {
4829 Node<K,V>[] t;
4830 ConcurrentHashMap<K,V> m = map;
4831 long n = m.sumCount();
4832 int f = (t = m.table) == null ? 0 : t.length;
4833 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4834 }
4835
4836 public void forEach(Consumer<? super Map.Entry<K,V>> action) {
4837 if (action == null) throw new NullPointerException();
4838 Node<K,V>[] t;
4839 if ((t = map.table) != null) {
4840 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4841 for (Node<K,V> p; (p = it.advance()) != null; )
4842 action.accept(new MapEntry<K,V>(p.key, p.val, map));
4843 }
4844 }
4845
4846 }
4847
4848 // -------------------------------------------------------
4849
4850 /**
4851 * Base class for bulk tasks. Repeats some fields and code from
4852 * class Traverser, because we need to subclass CountedCompleter.
4853 */
4854 @SuppressWarnings("serial")
4855 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4856 Node<K,V>[] tab; // same as Traverser
4857 Node<K,V> next;
4858 TableStack<K,V> stack, spare;
4859 int index;
4860 int baseIndex;
4861 int baseLimit;
4862 final int baseSize;
4863 int batch; // split control
4864
4865 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4866 super(par);
4867 this.batch = b;
4868 this.index = this.baseIndex = i;
4869 if ((this.tab = t) == null)
4870 this.baseSize = this.baseLimit = 0;
4871 else if (par == null)
4872 this.baseSize = this.baseLimit = t.length;
4873 else {
4874 this.baseLimit = f;
4875 this.baseSize = par.baseSize;
4876 }
4877 }
4878
4879 /**
4880 * Same as Traverser version.
4881 */
4882 final Node<K,V> advance() {
4883 Node<K,V> e;
4884 if ((e = next) != null)
4885 e = e.next;
4886 for (;;) {
4887 Node<K,V>[] t; int i, n;
4888 if (e != null)
4889 return next = e;
4890 if (baseIndex >= baseLimit || (t = tab) == null ||
4891 (n = t.length) <= (i = index) || i < 0)
4892 return next = null;
4893 if ((e = tabAt(t, i)) != null && e.hash < 0) {
4894 if (e instanceof ForwardingNode) {
4895 tab = ((ForwardingNode<K,V>)e).nextTable;
4896 e = null;
4897 pushState(t, i, n);
4898 continue;
4899 }
4900 else if (e instanceof TreeBin)
4901 e = ((TreeBin<K,V>)e).first;
4902 else
4903 e = null;
4904 }
4905 if (stack != null)
4906 recoverState(n);
4907 else if ((index = i + baseSize) >= n)
4908 index = ++baseIndex;
4909 }
4910 }
4911
4912 private void pushState(Node<K,V>[] t, int i, int n) {
4913 TableStack<K,V> s = spare;
4914 if (s != null)
4915 spare = s.next;
4916 else
4917 s = new TableStack<K,V>();
4918 s.tab = t;
4919 s.length = n;
4920 s.index = i;
4921 s.next = stack;
4922 stack = s;
4923 }
4924
4925 private void recoverState(int n) {
4926 TableStack<K,V> s; int len;
4927 while ((s = stack) != null && (index += (len = s.length)) >= n) {
4928 n = len;
4929 index = s.index;
4930 tab = s.tab;
4931 s.tab = null;
4932 TableStack<K,V> next = s.next;
4933 s.next = spare; // save for reuse
4934 stack = next;
4935 spare = s;
4936 }
4937 if (s == null && (index += baseSize) >= n)
4938 index = ++baseIndex;
4939 }
4940 }
4941
4942 /*
4943 * Task classes. Coded in a regular but ugly format/style to
4944 * simplify checks that each variant differs in the right way from
4945 * others. The null screenings exist because compilers cannot tell
4946 * that we've already null-checked task arguments, so we force
4947 * simplest hoisted bypass to help avoid convoluted traps.
4948 */
4949 @SuppressWarnings("serial")
4950 static final class ForEachKeyTask<K,V>
4951 extends BulkTask<K,V,Void> {
4952 final Consumer<? super K> action;
4953 ForEachKeyTask
4954 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4955 Consumer<? super K> action) {
4956 super(p, b, i, f, t);
4957 this.action = action;
4958 }
4959 public final void compute() {
4960 final Consumer<? super K> action;
4961 if ((action = this.action) != null) {
4962 for (int i = baseIndex, f, h; batch > 0 &&
4963 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4964 addToPendingCount(1);
4965 new ForEachKeyTask<K,V>
4966 (this, batch >>>= 1, baseLimit = h, f, tab,
4967 action).fork();
4968 }
4969 for (Node<K,V> p; (p = advance()) != null;)
4970 action.accept(p.key);
4971 propagateCompletion();
4972 }
4973 }
4974 }
4975
4976 @SuppressWarnings("serial")
4977 static final class ForEachValueTask<K,V>
4978 extends BulkTask<K,V,Void> {
4979 final Consumer<? super V> action;
4980 ForEachValueTask
4981 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4982 Consumer<? super V> action) {
4983 super(p, b, i, f, t);
4984 this.action = action;
4985 }
4986 public final void compute() {
4987 final Consumer<? super V> action;
4988 if ((action = this.action) != null) {
4989 for (int i = baseIndex, f, h; batch > 0 &&
4990 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4991 addToPendingCount(1);
4992 new ForEachValueTask<K,V>
4993 (this, batch >>>= 1, baseLimit = h, f, tab,
4994 action).fork();
4995 }
4996 for (Node<K,V> p; (p = advance()) != null;)
4997 action.accept(p.val);
4998 propagateCompletion();
4999 }
5000 }
5001 }
5002
5003 @SuppressWarnings("serial")
5004 static final class ForEachEntryTask<K,V>
5005 extends BulkTask<K,V,Void> {
5006 final Consumer<? super Entry<K,V>> action;
5007 ForEachEntryTask
5008 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5009 Consumer<? super Entry<K,V>> action) {
5010 super(p, b, i, f, t);
5011 this.action = action;
5012 }
5013 public final void compute() {
5014 final Consumer<? super Entry<K,V>> action;
5015 if ((action = this.action) != null) {
5016 for (int i = baseIndex, f, h; batch > 0 &&
5017 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5018 addToPendingCount(1);
5019 new ForEachEntryTask<K,V>
5020 (this, batch >>>= 1, baseLimit = h, f, tab,
5021 action).fork();
5022 }
5023 for (Node<K,V> p; (p = advance()) != null; )
5024 action.accept(p);
5025 propagateCompletion();
5026 }
5027 }
5028 }
5029
5030 @SuppressWarnings("serial")
5031 static final class ForEachMappingTask<K,V>
5032 extends BulkTask<K,V,Void> {
5033 final BiConsumer<? super K, ? super V> action;
5034 ForEachMappingTask
5035 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036 BiConsumer<? super K,? super V> action) {
5037 super(p, b, i, f, t);
5038 this.action = action;
5039 }
5040 public final void compute() {
5041 final BiConsumer<? super K, ? super V> action;
5042 if ((action = this.action) != null) {
5043 for (int i = baseIndex, f, h; batch > 0 &&
5044 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5045 addToPendingCount(1);
5046 new ForEachMappingTask<K,V>
5047 (this, batch >>>= 1, baseLimit = h, f, tab,
5048 action).fork();
5049 }
5050 for (Node<K,V> p; (p = advance()) != null; )
5051 action.accept(p.key, p.val);
5052 propagateCompletion();
5053 }
5054 }
5055 }
5056
5057 @SuppressWarnings("serial")
5058 static final class ForEachTransformedKeyTask<K,V,U>
5059 extends BulkTask<K,V,Void> {
5060 final Function<? super K, ? extends U> transformer;
5061 final Consumer<? super U> action;
5062 ForEachTransformedKeyTask
5063 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5064 Function<? super K, ? extends U> transformer, Consumer<? super U> action) {
5065 super(p, b, i, f, t);
5066 this.transformer = transformer; this.action = action;
5067 }
5068 public final void compute() {
5069 final Function<? super K, ? extends U> transformer;
5070 final Consumer<? super U> action;
5071 if ((transformer = this.transformer) != null &&
5072 (action = this.action) != null) {
5073 for (int i = baseIndex, f, h; batch > 0 &&
5074 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5075 addToPendingCount(1);
5076 new ForEachTransformedKeyTask<K,V,U>
5077 (this, batch >>>= 1, baseLimit = h, f, tab,
5078 transformer, action).fork();
5079 }
5080 for (Node<K,V> p; (p = advance()) != null; ) {
5081 U u;
5082 if ((u = transformer.apply(p.key)) != null)
5083 action.accept(u);
5084 }
5085 propagateCompletion();
5086 }
5087 }
5088 }
5089
5090 @SuppressWarnings("serial")
5091 static final class ForEachTransformedValueTask<K,V,U>
5092 extends BulkTask<K,V,Void> {
5093 final Function<? super V, ? extends U> transformer;
5094 final Consumer<? super U> action;
5095 ForEachTransformedValueTask
5096 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5097 Function<? super V, ? extends U> transformer, Consumer<? super U> action) {
5098 super(p, b, i, f, t);
5099 this.transformer = transformer; this.action = action;
5100 }
5101 public final void compute() {
5102 final Function<? super V, ? extends U> transformer;
5103 final Consumer<? super U> action;
5104 if ((transformer = this.transformer) != null &&
5105 (action = this.action) != null) {
5106 for (int i = baseIndex, f, h; batch > 0 &&
5107 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5108 addToPendingCount(1);
5109 new ForEachTransformedValueTask<K,V,U>
5110 (this, batch >>>= 1, baseLimit = h, f, tab,
5111 transformer, action).fork();
5112 }
5113 for (Node<K,V> p; (p = advance()) != null; ) {
5114 U u;
5115 if ((u = transformer.apply(p.val)) != null)
5116 action.accept(u);
5117 }
5118 propagateCompletion();
5119 }
5120 }
5121 }
5122
5123 @SuppressWarnings("serial")
5124 static final class ForEachTransformedEntryTask<K,V,U>
5125 extends BulkTask<K,V,Void> {
5126 final Function<Map.Entry<K,V>, ? extends U> transformer;
5127 final Consumer<? super U> action;
5128 ForEachTransformedEntryTask
5129 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5130 Function<Map.Entry<K,V>, ? extends U> transformer, Consumer<? super U> action) {
5131 super(p, b, i, f, t);
5132 this.transformer = transformer; this.action = action;
5133 }
5134 public final void compute() {
5135 final Function<Map.Entry<K,V>, ? extends U> transformer;
5136 final Consumer<? super U> action;
5137 if ((transformer = this.transformer) != null &&
5138 (action = this.action) != null) {
5139 for (int i = baseIndex, f, h; batch > 0 &&
5140 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5141 addToPendingCount(1);
5142 new ForEachTransformedEntryTask<K,V,U>
5143 (this, batch >>>= 1, baseLimit = h, f, tab,
5144 transformer, action).fork();
5145 }
5146 for (Node<K,V> p; (p = advance()) != null; ) {
5147 U u;
5148 if ((u = transformer.apply(p)) != null)
5149 action.accept(u);
5150 }
5151 propagateCompletion();
5152 }
5153 }
5154 }
5155
5156 @SuppressWarnings("serial")
5157 static final class ForEachTransformedMappingTask<K,V,U>
5158 extends BulkTask<K,V,Void> {
5159 final BiFunction<? super K, ? super V, ? extends U> transformer;
5160 final Consumer<? super U> action;
5161 ForEachTransformedMappingTask
5162 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5163 BiFunction<? super K, ? super V, ? extends U> transformer,
5164 Consumer<? super U> action) {
5165 super(p, b, i, f, t);
5166 this.transformer = transformer; this.action = action;
5167 }
5168 public final void compute() {
5169 final BiFunction<? super K, ? super V, ? extends U> transformer;
5170 final Consumer<? super U> action;
5171 if ((transformer = this.transformer) != null &&
5172 (action = this.action) != null) {
5173 for (int i = baseIndex, f, h; batch > 0 &&
5174 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5175 addToPendingCount(1);
5176 new ForEachTransformedMappingTask<K,V,U>
5177 (this, batch >>>= 1, baseLimit = h, f, tab,
5178 transformer, action).fork();
5179 }
5180 for (Node<K,V> p; (p = advance()) != null; ) {
5181 U u;
5182 if ((u = transformer.apply(p.key, p.val)) != null)
5183 action.accept(u);
5184 }
5185 propagateCompletion();
5186 }
5187 }
5188 }
5189
5190 @SuppressWarnings("serial")
5191 static final class SearchKeysTask<K,V,U>
5192 extends BulkTask<K,V,U> {
5193 final Function<? super K, ? extends U> searchFunction;
5194 final AtomicReference<U> result;
5195 SearchKeysTask
5196 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5197 Function<? super K, ? extends U> searchFunction,
5198 AtomicReference<U> result) {
5199 super(p, b, i, f, t);
5200 this.searchFunction = searchFunction; this.result = result;
5201 }
5202 public final U getRawResult() { return result.get(); }
5203 public final void compute() {
5204 final Function<? super K, ? extends U> searchFunction;
5205 final AtomicReference<U> result;
5206 if ((searchFunction = this.searchFunction) != null &&
5207 (result = this.result) != null) {
5208 for (int i = baseIndex, f, h; batch > 0 &&
5209 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5210 if (result.get() != null)
5211 return;
5212 addToPendingCount(1);
5213 new SearchKeysTask<K,V,U>
5214 (this, batch >>>= 1, baseLimit = h, f, tab,
5215 searchFunction, result).fork();
5216 }
5217 while (result.get() == null) {
5218 U u;
5219 Node<K,V> p;
5220 if ((p = advance()) == null) {
5221 propagateCompletion();
5222 break;
5223 }
5224 if ((u = searchFunction.apply(p.key)) != null) {
5225 if (result.compareAndSet(null, u))
5226 quietlyCompleteRoot();
5227 break;
5228 }
5229 }
5230 }
5231 }
5232 }
5233
5234 @SuppressWarnings("serial")
5235 static final class SearchValuesTask<K,V,U>
5236 extends BulkTask<K,V,U> {
5237 final Function<? super V, ? extends U> searchFunction;
5238 final AtomicReference<U> result;
5239 SearchValuesTask
5240 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5241 Function<? super V, ? extends U> searchFunction,
5242 AtomicReference<U> result) {
5243 super(p, b, i, f, t);
5244 this.searchFunction = searchFunction; this.result = result;
5245 }
5246 public final U getRawResult() { return result.get(); }
5247 public final void compute() {
5248 final Function<? super V, ? extends U> searchFunction;
5249 final AtomicReference<U> result;
5250 if ((searchFunction = this.searchFunction) != null &&
5251 (result = this.result) != null) {
5252 for (int i = baseIndex, f, h; batch > 0 &&
5253 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5254 if (result.get() != null)
5255 return;
5256 addToPendingCount(1);
5257 new SearchValuesTask<K,V,U>
5258 (this, batch >>>= 1, baseLimit = h, f, tab,
5259 searchFunction, result).fork();
5260 }
5261 while (result.get() == null) {
5262 U u;
5263 Node<K,V> p;
5264 if ((p = advance()) == null) {
5265 propagateCompletion();
5266 break;
5267 }
5268 if ((u = searchFunction.apply(p.val)) != null) {
5269 if (result.compareAndSet(null, u))
5270 quietlyCompleteRoot();
5271 break;
5272 }
5273 }
5274 }
5275 }
5276 }
5277
5278 @SuppressWarnings("serial")
5279 static final class SearchEntriesTask<K,V,U>
5280 extends BulkTask<K,V,U> {
5281 final Function<Entry<K,V>, ? extends U> searchFunction;
5282 final AtomicReference<U> result;
5283 SearchEntriesTask
5284 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5285 Function<Entry<K,V>, ? extends U> searchFunction,
5286 AtomicReference<U> result) {
5287 super(p, b, i, f, t);
5288 this.searchFunction = searchFunction; this.result = result;
5289 }
5290 public final U getRawResult() { return result.get(); }
5291 public final void compute() {
5292 final Function<Entry<K,V>, ? extends U> searchFunction;
5293 final AtomicReference<U> result;
5294 if ((searchFunction = this.searchFunction) != null &&
5295 (result = this.result) != null) {
5296 for (int i = baseIndex, f, h; batch > 0 &&
5297 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5298 if (result.get() != null)
5299 return;
5300 addToPendingCount(1);
5301 new SearchEntriesTask<K,V,U>
5302 (this, batch >>>= 1, baseLimit = h, f, tab,
5303 searchFunction, result).fork();
5304 }
5305 while (result.get() == null) {
5306 U u;
5307 Node<K,V> p;
5308 if ((p = advance()) == null) {
5309 propagateCompletion();
5310 break;
5311 }
5312 if ((u = searchFunction.apply(p)) != null) {
5313 if (result.compareAndSet(null, u))
5314 quietlyCompleteRoot();
5315 return;
5316 }
5317 }
5318 }
5319 }
5320 }
5321
5322 @SuppressWarnings("serial")
5323 static final class SearchMappingsTask<K,V,U>
5324 extends BulkTask<K,V,U> {
5325 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5326 final AtomicReference<U> result;
5327 SearchMappingsTask
5328 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5329 BiFunction<? super K, ? super V, ? extends U> searchFunction,
5330 AtomicReference<U> result) {
5331 super(p, b, i, f, t);
5332 this.searchFunction = searchFunction; this.result = result;
5333 }
5334 public final U getRawResult() { return result.get(); }
5335 public final void compute() {
5336 final BiFunction<? super K, ? super V, ? extends U> searchFunction;
5337 final AtomicReference<U> result;
5338 if ((searchFunction = this.searchFunction) != null &&
5339 (result = this.result) != null) {
5340 for (int i = baseIndex, f, h; batch > 0 &&
5341 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5342 if (result.get() != null)
5343 return;
5344 addToPendingCount(1);
5345 new SearchMappingsTask<K,V,U>
5346 (this, batch >>>= 1, baseLimit = h, f, tab,
5347 searchFunction, result).fork();
5348 }
5349 while (result.get() == null) {
5350 U u;
5351 Node<K,V> p;
5352 if ((p = advance()) == null) {
5353 propagateCompletion();
5354 break;
5355 }
5356 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5357 if (result.compareAndSet(null, u))
5358 quietlyCompleteRoot();
5359 break;
5360 }
5361 }
5362 }
5363 }
5364 }
5365
5366 @SuppressWarnings("serial")
5367 static final class ReduceKeysTask<K,V>
5368 extends BulkTask<K,V,K> {
5369 final BiFunction<? super K, ? super K, ? extends K> reducer;
5370 K result;
5371 ReduceKeysTask<K,V> rights, nextRight;
5372 ReduceKeysTask
5373 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5374 ReduceKeysTask<K,V> nextRight,
5375 BiFunction<? super K, ? super K, ? extends K> reducer) {
5376 super(p, b, i, f, t); this.nextRight = nextRight;
5377 this.reducer = reducer;
5378 }
5379 public final K getRawResult() { return result; }
5380 public final void compute() {
5381 final BiFunction<? super K, ? super K, ? extends K> reducer;
5382 if ((reducer = this.reducer) != null) {
5383 for (int i = baseIndex, f, h; batch > 0 &&
5384 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5385 addToPendingCount(1);
5386 (rights = new ReduceKeysTask<K,V>
5387 (this, batch >>>= 1, baseLimit = h, f, tab,
5388 rights, reducer)).fork();
5389 }
5390 K r = null;
5391 for (Node<K,V> p; (p = advance()) != null; ) {
5392 K u = p.key;
5393 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5394 }
5395 result = r;
5396 CountedCompleter<?> c;
5397 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5398 @SuppressWarnings("unchecked")
5399 ReduceKeysTask<K,V>
5400 t = (ReduceKeysTask<K,V>)c,
5401 s = t.rights;
5402 while (s != null) {
5403 K tr, sr;
5404 if ((sr = s.result) != null)
5405 t.result = (((tr = t.result) == null) ? sr :
5406 reducer.apply(tr, sr));
5407 s = t.rights = s.nextRight;
5408 }
5409 }
5410 }
5411 }
5412 }
5413
5414 @SuppressWarnings("serial")
5415 static final class ReduceValuesTask<K,V>
5416 extends BulkTask<K,V,V> {
5417 final BiFunction<? super V, ? super V, ? extends V> reducer;
5418 V result;
5419 ReduceValuesTask<K,V> rights, nextRight;
5420 ReduceValuesTask
5421 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5422 ReduceValuesTask<K,V> nextRight,
5423 BiFunction<? super V, ? super V, ? extends V> reducer) {
5424 super(p, b, i, f, t); this.nextRight = nextRight;
5425 this.reducer = reducer;
5426 }
5427 public final V getRawResult() { return result; }
5428 public final void compute() {
5429 final BiFunction<? super V, ? super V, ? extends V> reducer;
5430 if ((reducer = this.reducer) != null) {
5431 for (int i = baseIndex, f, h; batch > 0 &&
5432 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5433 addToPendingCount(1);
5434 (rights = new ReduceValuesTask<K,V>
5435 (this, batch >>>= 1, baseLimit = h, f, tab,
5436 rights, reducer)).fork();
5437 }
5438 V r = null;
5439 for (Node<K,V> p; (p = advance()) != null; ) {
5440 V v = p.val;
5441 r = (r == null) ? v : reducer.apply(r, v);
5442 }
5443 result = r;
5444 CountedCompleter<?> c;
5445 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5446 @SuppressWarnings("unchecked")
5447 ReduceValuesTask<K,V>
5448 t = (ReduceValuesTask<K,V>)c,
5449 s = t.rights;
5450 while (s != null) {
5451 V tr, sr;
5452 if ((sr = s.result) != null)
5453 t.result = (((tr = t.result) == null) ? sr :
5454 reducer.apply(tr, sr));
5455 s = t.rights = s.nextRight;
5456 }
5457 }
5458 }
5459 }
5460 }
5461
5462 @SuppressWarnings("serial")
5463 static final class ReduceEntriesTask<K,V>
5464 extends BulkTask<K,V,Map.Entry<K,V>> {
5465 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5466 Map.Entry<K,V> result;
5467 ReduceEntriesTask<K,V> rights, nextRight;
5468 ReduceEntriesTask
5469 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5470 ReduceEntriesTask<K,V> nextRight,
5471 BiFunction<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5472 super(p, b, i, f, t); this.nextRight = nextRight;
5473 this.reducer = reducer;
5474 }
5475 public final Map.Entry<K,V> getRawResult() { return result; }
5476 public final void compute() {
5477 final BiFunction<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5478 if ((reducer = this.reducer) != null) {
5479 for (int i = baseIndex, f, h; batch > 0 &&
5480 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5481 addToPendingCount(1);
5482 (rights = new ReduceEntriesTask<K,V>
5483 (this, batch >>>= 1, baseLimit = h, f, tab,
5484 rights, reducer)).fork();
5485 }
5486 Map.Entry<K,V> r = null;
5487 for (Node<K,V> p; (p = advance()) != null; )
5488 r = (r == null) ? p : reducer.apply(r, p);
5489 result = r;
5490 CountedCompleter<?> c;
5491 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5492 @SuppressWarnings("unchecked")
5493 ReduceEntriesTask<K,V>
5494 t = (ReduceEntriesTask<K,V>)c,
5495 s = t.rights;
5496 while (s != null) {
5497 Map.Entry<K,V> tr, sr;
5498 if ((sr = s.result) != null)
5499 t.result = (((tr = t.result) == null) ? sr :
5500 reducer.apply(tr, sr));
5501 s = t.rights = s.nextRight;
5502 }
5503 }
5504 }
5505 }
5506 }
5507
5508 @SuppressWarnings("serial")
5509 static final class MapReduceKeysTask<K,V,U>
5510 extends BulkTask<K,V,U> {
5511 final Function<? super K, ? extends U> transformer;
5512 final BiFunction<? super U, ? super U, ? extends U> reducer;
5513 U result;
5514 MapReduceKeysTask<K,V,U> rights, nextRight;
5515 MapReduceKeysTask
5516 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5517 MapReduceKeysTask<K,V,U> nextRight,
5518 Function<? super K, ? extends U> transformer,
5519 BiFunction<? super U, ? super U, ? extends U> reducer) {
5520 super(p, b, i, f, t); this.nextRight = nextRight;
5521 this.transformer = transformer;
5522 this.reducer = reducer;
5523 }
5524 public final U getRawResult() { return result; }
5525 public final void compute() {
5526 final Function<? super K, ? extends U> transformer;
5527 final BiFunction<? super U, ? super U, ? extends U> reducer;
5528 if ((transformer = this.transformer) != null &&
5529 (reducer = this.reducer) != null) {
5530 for (int i = baseIndex, f, h; batch > 0 &&
5531 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5532 addToPendingCount(1);
5533 (rights = new MapReduceKeysTask<K,V,U>
5534 (this, batch >>>= 1, baseLimit = h, f, tab,
5535 rights, transformer, reducer)).fork();
5536 }
5537 U r = null;
5538 for (Node<K,V> p; (p = advance()) != null; ) {
5539 U u;
5540 if ((u = transformer.apply(p.key)) != null)
5541 r = (r == null) ? u : reducer.apply(r, u);
5542 }
5543 result = r;
5544 CountedCompleter<?> c;
5545 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5546 @SuppressWarnings("unchecked")
5547 MapReduceKeysTask<K,V,U>
5548 t = (MapReduceKeysTask<K,V,U>)c,
5549 s = t.rights;
5550 while (s != null) {
5551 U tr, sr;
5552 if ((sr = s.result) != null)
5553 t.result = (((tr = t.result) == null) ? sr :
5554 reducer.apply(tr, sr));
5555 s = t.rights = s.nextRight;
5556 }
5557 }
5558 }
5559 }
5560 }
5561
5562 @SuppressWarnings("serial")
5563 static final class MapReduceValuesTask<K,V,U>
5564 extends BulkTask<K,V,U> {
5565 final Function<? super V, ? extends U> transformer;
5566 final BiFunction<? super U, ? super U, ? extends U> reducer;
5567 U result;
5568 MapReduceValuesTask<K,V,U> rights, nextRight;
5569 MapReduceValuesTask
5570 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5571 MapReduceValuesTask<K,V,U> nextRight,
5572 Function<? super V, ? extends U> transformer,
5573 BiFunction<? super U, ? super U, ? extends U> reducer) {
5574 super(p, b, i, f, t); this.nextRight = nextRight;
5575 this.transformer = transformer;
5576 this.reducer = reducer;
5577 }
5578 public final U getRawResult() { return result; }
5579 public final void compute() {
5580 final Function<? super V, ? extends U> transformer;
5581 final BiFunction<? super U, ? super U, ? extends U> reducer;
5582 if ((transformer = this.transformer) != null &&
5583 (reducer = this.reducer) != null) {
5584 for (int i = baseIndex, f, h; batch > 0 &&
5585 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5586 addToPendingCount(1);
5587 (rights = new MapReduceValuesTask<K,V,U>
5588 (this, batch >>>= 1, baseLimit = h, f, tab,
5589 rights, transformer, reducer)).fork();
5590 }
5591 U r = null;
5592 for (Node<K,V> p; (p = advance()) != null; ) {
5593 U u;
5594 if ((u = transformer.apply(p.val)) != null)
5595 r = (r == null) ? u : reducer.apply(r, u);
5596 }
5597 result = r;
5598 CountedCompleter<?> c;
5599 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5600 @SuppressWarnings("unchecked")
5601 MapReduceValuesTask<K,V,U>
5602 t = (MapReduceValuesTask<K,V,U>)c,
5603 s = t.rights;
5604 while (s != null) {
5605 U tr, sr;
5606 if ((sr = s.result) != null)
5607 t.result = (((tr = t.result) == null) ? sr :
5608 reducer.apply(tr, sr));
5609 s = t.rights = s.nextRight;
5610 }
5611 }
5612 }
5613 }
5614 }
5615
5616 @SuppressWarnings("serial")
5617 static final class MapReduceEntriesTask<K,V,U>
5618 extends BulkTask<K,V,U> {
5619 final Function<Map.Entry<K,V>, ? extends U> transformer;
5620 final BiFunction<? super U, ? super U, ? extends U> reducer;
5621 U result;
5622 MapReduceEntriesTask<K,V,U> rights, nextRight;
5623 MapReduceEntriesTask
5624 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5625 MapReduceEntriesTask<K,V,U> nextRight,
5626 Function<Map.Entry<K,V>, ? extends U> transformer,
5627 BiFunction<? super U, ? super U, ? extends U> reducer) {
5628 super(p, b, i, f, t); this.nextRight = nextRight;
5629 this.transformer = transformer;
5630 this.reducer = reducer;
5631 }
5632 public final U getRawResult() { return result; }
5633 public final void compute() {
5634 final Function<Map.Entry<K,V>, ? extends U> transformer;
5635 final BiFunction<? super U, ? super U, ? extends U> reducer;
5636 if ((transformer = this.transformer) != null &&
5637 (reducer = this.reducer) != null) {
5638 for (int i = baseIndex, f, h; batch > 0 &&
5639 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5640 addToPendingCount(1);
5641 (rights = new MapReduceEntriesTask<K,V,U>
5642 (this, batch >>>= 1, baseLimit = h, f, tab,
5643 rights, transformer, reducer)).fork();
5644 }
5645 U r = null;
5646 for (Node<K,V> p; (p = advance()) != null; ) {
5647 U u;
5648 if ((u = transformer.apply(p)) != null)
5649 r = (r == null) ? u : reducer.apply(r, u);
5650 }
5651 result = r;
5652 CountedCompleter<?> c;
5653 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5654 @SuppressWarnings("unchecked")
5655 MapReduceEntriesTask<K,V,U>
5656 t = (MapReduceEntriesTask<K,V,U>)c,
5657 s = t.rights;
5658 while (s != null) {
5659 U tr, sr;
5660 if ((sr = s.result) != null)
5661 t.result = (((tr = t.result) == null) ? sr :
5662 reducer.apply(tr, sr));
5663 s = t.rights = s.nextRight;
5664 }
5665 }
5666 }
5667 }
5668 }
5669
5670 @SuppressWarnings("serial")
5671 static final class MapReduceMappingsTask<K,V,U>
5672 extends BulkTask<K,V,U> {
5673 final BiFunction<? super K, ? super V, ? extends U> transformer;
5674 final BiFunction<? super U, ? super U, ? extends U> reducer;
5675 U result;
5676 MapReduceMappingsTask<K,V,U> rights, nextRight;
5677 MapReduceMappingsTask
5678 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5679 MapReduceMappingsTask<K,V,U> nextRight,
5680 BiFunction<? super K, ? super V, ? extends U> transformer,
5681 BiFunction<? super U, ? super U, ? extends U> reducer) {
5682 super(p, b, i, f, t); this.nextRight = nextRight;
5683 this.transformer = transformer;
5684 this.reducer = reducer;
5685 }
5686 public final U getRawResult() { return result; }
5687 public final void compute() {
5688 final BiFunction<? super K, ? super V, ? extends U> transformer;
5689 final BiFunction<? super U, ? super U, ? extends U> reducer;
5690 if ((transformer = this.transformer) != null &&
5691 (reducer = this.reducer) != null) {
5692 for (int i = baseIndex, f, h; batch > 0 &&
5693 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5694 addToPendingCount(1);
5695 (rights = new MapReduceMappingsTask<K,V,U>
5696 (this, batch >>>= 1, baseLimit = h, f, tab,
5697 rights, transformer, reducer)).fork();
5698 }
5699 U r = null;
5700 for (Node<K,V> p; (p = advance()) != null; ) {
5701 U u;
5702 if ((u = transformer.apply(p.key, p.val)) != null)
5703 r = (r == null) ? u : reducer.apply(r, u);
5704 }
5705 result = r;
5706 CountedCompleter<?> c;
5707 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5708 @SuppressWarnings("unchecked")
5709 MapReduceMappingsTask<K,V,U>
5710 t = (MapReduceMappingsTask<K,V,U>)c,
5711 s = t.rights;
5712 while (s != null) {
5713 U tr, sr;
5714 if ((sr = s.result) != null)
5715 t.result = (((tr = t.result) == null) ? sr :
5716 reducer.apply(tr, sr));
5717 s = t.rights = s.nextRight;
5718 }
5719 }
5720 }
5721 }
5722 }
5723
5724 @SuppressWarnings("serial")
5725 static final class MapReduceKeysToDoubleTask<K,V>
5726 extends BulkTask<K,V,Double> {
5727 final ToDoubleFunction<? super K> transformer;
5728 final DoubleBinaryOperator reducer;
5729 final double basis;
5730 double result;
5731 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5732 MapReduceKeysToDoubleTask
5733 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5734 MapReduceKeysToDoubleTask<K,V> nextRight,
5735 ToDoubleFunction<? super K> transformer,
5736 double basis,
5737 DoubleBinaryOperator reducer) {
5738 super(p, b, i, f, t); this.nextRight = nextRight;
5739 this.transformer = transformer;
5740 this.basis = basis; this.reducer = reducer;
5741 }
5742 public final Double getRawResult() { return result; }
5743 public final void compute() {
5744 final ToDoubleFunction<? super K> transformer;
5745 final DoubleBinaryOperator reducer;
5746 if ((transformer = this.transformer) != null &&
5747 (reducer = this.reducer) != null) {
5748 double r = this.basis;
5749 for (int i = baseIndex, f, h; batch > 0 &&
5750 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5751 addToPendingCount(1);
5752 (rights = new MapReduceKeysToDoubleTask<K,V>
5753 (this, batch >>>= 1, baseLimit = h, f, tab,
5754 rights, transformer, r, reducer)).fork();
5755 }
5756 for (Node<K,V> p; (p = advance()) != null; )
5757 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key));
5758 result = r;
5759 CountedCompleter<?> c;
5760 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5761 @SuppressWarnings("unchecked")
5762 MapReduceKeysToDoubleTask<K,V>
5763 t = (MapReduceKeysToDoubleTask<K,V>)c,
5764 s = t.rights;
5765 while (s != null) {
5766 t.result = reducer.applyAsDouble(t.result, s.result);
5767 s = t.rights = s.nextRight;
5768 }
5769 }
5770 }
5771 }
5772 }
5773
5774 @SuppressWarnings("serial")
5775 static final class MapReduceValuesToDoubleTask<K,V>
5776 extends BulkTask<K,V,Double> {
5777 final ToDoubleFunction<? super V> transformer;
5778 final DoubleBinaryOperator reducer;
5779 final double basis;
5780 double result;
5781 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5782 MapReduceValuesToDoubleTask
5783 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5784 MapReduceValuesToDoubleTask<K,V> nextRight,
5785 ToDoubleFunction<? super V> transformer,
5786 double basis,
5787 DoubleBinaryOperator reducer) {
5788 super(p, b, i, f, t); this.nextRight = nextRight;
5789 this.transformer = transformer;
5790 this.basis = basis; this.reducer = reducer;
5791 }
5792 public final Double getRawResult() { return result; }
5793 public final void compute() {
5794 final ToDoubleFunction<? super V> transformer;
5795 final DoubleBinaryOperator reducer;
5796 if ((transformer = this.transformer) != null &&
5797 (reducer = this.reducer) != null) {
5798 double r = this.basis;
5799 for (int i = baseIndex, f, h; batch > 0 &&
5800 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5801 addToPendingCount(1);
5802 (rights = new MapReduceValuesToDoubleTask<K,V>
5803 (this, batch >>>= 1, baseLimit = h, f, tab,
5804 rights, transformer, r, reducer)).fork();
5805 }
5806 for (Node<K,V> p; (p = advance()) != null; )
5807 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.val));
5808 result = r;
5809 CountedCompleter<?> c;
5810 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5811 @SuppressWarnings("unchecked")
5812 MapReduceValuesToDoubleTask<K,V>
5813 t = (MapReduceValuesToDoubleTask<K,V>)c,
5814 s = t.rights;
5815 while (s != null) {
5816 t.result = reducer.applyAsDouble(t.result, s.result);
5817 s = t.rights = s.nextRight;
5818 }
5819 }
5820 }
5821 }
5822 }
5823
5824 @SuppressWarnings("serial")
5825 static final class MapReduceEntriesToDoubleTask<K,V>
5826 extends BulkTask<K,V,Double> {
5827 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5828 final DoubleBinaryOperator reducer;
5829 final double basis;
5830 double result;
5831 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5832 MapReduceEntriesToDoubleTask
5833 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5834 MapReduceEntriesToDoubleTask<K,V> nextRight,
5835 ToDoubleFunction<Map.Entry<K,V>> transformer,
5836 double basis,
5837 DoubleBinaryOperator reducer) {
5838 super(p, b, i, f, t); this.nextRight = nextRight;
5839 this.transformer = transformer;
5840 this.basis = basis; this.reducer = reducer;
5841 }
5842 public final Double getRawResult() { return result; }
5843 public final void compute() {
5844 final ToDoubleFunction<Map.Entry<K,V>> transformer;
5845 final DoubleBinaryOperator reducer;
5846 if ((transformer = this.transformer) != null &&
5847 (reducer = this.reducer) != null) {
5848 double r = this.basis;
5849 for (int i = baseIndex, f, h; batch > 0 &&
5850 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5851 addToPendingCount(1);
5852 (rights = new MapReduceEntriesToDoubleTask<K,V>
5853 (this, batch >>>= 1, baseLimit = h, f, tab,
5854 rights, transformer, r, reducer)).fork();
5855 }
5856 for (Node<K,V> p; (p = advance()) != null; )
5857 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p));
5858 result = r;
5859 CountedCompleter<?> c;
5860 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5861 @SuppressWarnings("unchecked")
5862 MapReduceEntriesToDoubleTask<K,V>
5863 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5864 s = t.rights;
5865 while (s != null) {
5866 t.result = reducer.applyAsDouble(t.result, s.result);
5867 s = t.rights = s.nextRight;
5868 }
5869 }
5870 }
5871 }
5872 }
5873
5874 @SuppressWarnings("serial")
5875 static final class MapReduceMappingsToDoubleTask<K,V>
5876 extends BulkTask<K,V,Double> {
5877 final ToDoubleBiFunction<? super K, ? super V> transformer;
5878 final DoubleBinaryOperator reducer;
5879 final double basis;
5880 double result;
5881 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5882 MapReduceMappingsToDoubleTask
5883 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5884 MapReduceMappingsToDoubleTask<K,V> nextRight,
5885 ToDoubleBiFunction<? super K, ? super V> transformer,
5886 double basis,
5887 DoubleBinaryOperator reducer) {
5888 super(p, b, i, f, t); this.nextRight = nextRight;
5889 this.transformer = transformer;
5890 this.basis = basis; this.reducer = reducer;
5891 }
5892 public final Double getRawResult() { return result; }
5893 public final void compute() {
5894 final ToDoubleBiFunction<? super K, ? super V> transformer;
5895 final DoubleBinaryOperator reducer;
5896 if ((transformer = this.transformer) != null &&
5897 (reducer = this.reducer) != null) {
5898 double r = this.basis;
5899 for (int i = baseIndex, f, h; batch > 0 &&
5900 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5901 addToPendingCount(1);
5902 (rights = new MapReduceMappingsToDoubleTask<K,V>
5903 (this, batch >>>= 1, baseLimit = h, f, tab,
5904 rights, transformer, r, reducer)).fork();
5905 }
5906 for (Node<K,V> p; (p = advance()) != null; )
5907 r = reducer.applyAsDouble(r, transformer.applyAsDouble(p.key, p.val));
5908 result = r;
5909 CountedCompleter<?> c;
5910 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911 @SuppressWarnings("unchecked")
5912 MapReduceMappingsToDoubleTask<K,V>
5913 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5914 s = t.rights;
5915 while (s != null) {
5916 t.result = reducer.applyAsDouble(t.result, s.result);
5917 s = t.rights = s.nextRight;
5918 }
5919 }
5920 }
5921 }
5922 }
5923
5924 @SuppressWarnings("serial")
5925 static final class MapReduceKeysToLongTask<K,V>
5926 extends BulkTask<K,V,Long> {
5927 final ToLongFunction<? super K> transformer;
5928 final LongBinaryOperator reducer;
5929 final long basis;
5930 long result;
5931 MapReduceKeysToLongTask<K,V> rights, nextRight;
5932 MapReduceKeysToLongTask
5933 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5934 MapReduceKeysToLongTask<K,V> nextRight,
5935 ToLongFunction<? super K> transformer,
5936 long basis,
5937 LongBinaryOperator reducer) {
5938 super(p, b, i, f, t); this.nextRight = nextRight;
5939 this.transformer = transformer;
5940 this.basis = basis; this.reducer = reducer;
5941 }
5942 public final Long getRawResult() { return result; }
5943 public final void compute() {
5944 final ToLongFunction<? super K> transformer;
5945 final LongBinaryOperator reducer;
5946 if ((transformer = this.transformer) != null &&
5947 (reducer = this.reducer) != null) {
5948 long r = this.basis;
5949 for (int i = baseIndex, f, h; batch > 0 &&
5950 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5951 addToPendingCount(1);
5952 (rights = new MapReduceKeysToLongTask<K,V>
5953 (this, batch >>>= 1, baseLimit = h, f, tab,
5954 rights, transformer, r, reducer)).fork();
5955 }
5956 for (Node<K,V> p; (p = advance()) != null; )
5957 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key));
5958 result = r;
5959 CountedCompleter<?> c;
5960 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5961 @SuppressWarnings("unchecked")
5962 MapReduceKeysToLongTask<K,V>
5963 t = (MapReduceKeysToLongTask<K,V>)c,
5964 s = t.rights;
5965 while (s != null) {
5966 t.result = reducer.applyAsLong(t.result, s.result);
5967 s = t.rights = s.nextRight;
5968 }
5969 }
5970 }
5971 }
5972 }
5973
5974 @SuppressWarnings("serial")
5975 static final class MapReduceValuesToLongTask<K,V>
5976 extends BulkTask<K,V,Long> {
5977 final ToLongFunction<? super V> transformer;
5978 final LongBinaryOperator reducer;
5979 final long basis;
5980 long result;
5981 MapReduceValuesToLongTask<K,V> rights, nextRight;
5982 MapReduceValuesToLongTask
5983 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5984 MapReduceValuesToLongTask<K,V> nextRight,
5985 ToLongFunction<? super V> transformer,
5986 long basis,
5987 LongBinaryOperator reducer) {
5988 super(p, b, i, f, t); this.nextRight = nextRight;
5989 this.transformer = transformer;
5990 this.basis = basis; this.reducer = reducer;
5991 }
5992 public final Long getRawResult() { return result; }
5993 public final void compute() {
5994 final ToLongFunction<? super V> transformer;
5995 final LongBinaryOperator reducer;
5996 if ((transformer = this.transformer) != null &&
5997 (reducer = this.reducer) != null) {
5998 long r = this.basis;
5999 for (int i = baseIndex, f, h; batch > 0 &&
6000 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6001 addToPendingCount(1);
6002 (rights = new MapReduceValuesToLongTask<K,V>
6003 (this, batch >>>= 1, baseLimit = h, f, tab,
6004 rights, transformer, r, reducer)).fork();
6005 }
6006 for (Node<K,V> p; (p = advance()) != null; )
6007 r = reducer.applyAsLong(r, transformer.applyAsLong(p.val));
6008 result = r;
6009 CountedCompleter<?> c;
6010 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6011 @SuppressWarnings("unchecked")
6012 MapReduceValuesToLongTask<K,V>
6013 t = (MapReduceValuesToLongTask<K,V>)c,
6014 s = t.rights;
6015 while (s != null) {
6016 t.result = reducer.applyAsLong(t.result, s.result);
6017 s = t.rights = s.nextRight;
6018 }
6019 }
6020 }
6021 }
6022 }
6023
6024 @SuppressWarnings("serial")
6025 static final class MapReduceEntriesToLongTask<K,V>
6026 extends BulkTask<K,V,Long> {
6027 final ToLongFunction<Map.Entry<K,V>> transformer;
6028 final LongBinaryOperator reducer;
6029 final long basis;
6030 long result;
6031 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6032 MapReduceEntriesToLongTask
6033 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6034 MapReduceEntriesToLongTask<K,V> nextRight,
6035 ToLongFunction<Map.Entry<K,V>> transformer,
6036 long basis,
6037 LongBinaryOperator reducer) {
6038 super(p, b, i, f, t); this.nextRight = nextRight;
6039 this.transformer = transformer;
6040 this.basis = basis; this.reducer = reducer;
6041 }
6042 public final Long getRawResult() { return result; }
6043 public final void compute() {
6044 final ToLongFunction<Map.Entry<K,V>> transformer;
6045 final LongBinaryOperator reducer;
6046 if ((transformer = this.transformer) != null &&
6047 (reducer = this.reducer) != null) {
6048 long r = this.basis;
6049 for (int i = baseIndex, f, h; batch > 0 &&
6050 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6051 addToPendingCount(1);
6052 (rights = new MapReduceEntriesToLongTask<K,V>
6053 (this, batch >>>= 1, baseLimit = h, f, tab,
6054 rights, transformer, r, reducer)).fork();
6055 }
6056 for (Node<K,V> p; (p = advance()) != null; )
6057 r = reducer.applyAsLong(r, transformer.applyAsLong(p));
6058 result = r;
6059 CountedCompleter<?> c;
6060 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6061 @SuppressWarnings("unchecked")
6062 MapReduceEntriesToLongTask<K,V>
6063 t = (MapReduceEntriesToLongTask<K,V>)c,
6064 s = t.rights;
6065 while (s != null) {
6066 t.result = reducer.applyAsLong(t.result, s.result);
6067 s = t.rights = s.nextRight;
6068 }
6069 }
6070 }
6071 }
6072 }
6073
6074 @SuppressWarnings("serial")
6075 static final class MapReduceMappingsToLongTask<K,V>
6076 extends BulkTask<K,V,Long> {
6077 final ToLongBiFunction<? super K, ? super V> transformer;
6078 final LongBinaryOperator reducer;
6079 final long basis;
6080 long result;
6081 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6082 MapReduceMappingsToLongTask
6083 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6084 MapReduceMappingsToLongTask<K,V> nextRight,
6085 ToLongBiFunction<? super K, ? super V> transformer,
6086 long basis,
6087 LongBinaryOperator reducer) {
6088 super(p, b, i, f, t); this.nextRight = nextRight;
6089 this.transformer = transformer;
6090 this.basis = basis; this.reducer = reducer;
6091 }
6092 public final Long getRawResult() { return result; }
6093 public final void compute() {
6094 final ToLongBiFunction<? super K, ? super V> transformer;
6095 final LongBinaryOperator reducer;
6096 if ((transformer = this.transformer) != null &&
6097 (reducer = this.reducer) != null) {
6098 long r = this.basis;
6099 for (int i = baseIndex, f, h; batch > 0 &&
6100 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6101 addToPendingCount(1);
6102 (rights = new MapReduceMappingsToLongTask<K,V>
6103 (this, batch >>>= 1, baseLimit = h, f, tab,
6104 rights, transformer, r, reducer)).fork();
6105 }
6106 for (Node<K,V> p; (p = advance()) != null; )
6107 r = reducer.applyAsLong(r, transformer.applyAsLong(p.key, p.val));
6108 result = r;
6109 CountedCompleter<?> c;
6110 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6111 @SuppressWarnings("unchecked")
6112 MapReduceMappingsToLongTask<K,V>
6113 t = (MapReduceMappingsToLongTask<K,V>)c,
6114 s = t.rights;
6115 while (s != null) {
6116 t.result = reducer.applyAsLong(t.result, s.result);
6117 s = t.rights = s.nextRight;
6118 }
6119 }
6120 }
6121 }
6122 }
6123
6124 @SuppressWarnings("serial")
6125 static final class MapReduceKeysToIntTask<K,V>
6126 extends BulkTask<K,V,Integer> {
6127 final ToIntFunction<? super K> transformer;
6128 final IntBinaryOperator reducer;
6129 final int basis;
6130 int result;
6131 MapReduceKeysToIntTask<K,V> rights, nextRight;
6132 MapReduceKeysToIntTask
6133 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6134 MapReduceKeysToIntTask<K,V> nextRight,
6135 ToIntFunction<? super K> transformer,
6136 int basis,
6137 IntBinaryOperator reducer) {
6138 super(p, b, i, f, t); this.nextRight = nextRight;
6139 this.transformer = transformer;
6140 this.basis = basis; this.reducer = reducer;
6141 }
6142 public final Integer getRawResult() { return result; }
6143 public final void compute() {
6144 final ToIntFunction<? super K> transformer;
6145 final IntBinaryOperator reducer;
6146 if ((transformer = this.transformer) != null &&
6147 (reducer = this.reducer) != null) {
6148 int r = this.basis;
6149 for (int i = baseIndex, f, h; batch > 0 &&
6150 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6151 addToPendingCount(1);
6152 (rights = new MapReduceKeysToIntTask<K,V>
6153 (this, batch >>>= 1, baseLimit = h, f, tab,
6154 rights, transformer, r, reducer)).fork();
6155 }
6156 for (Node<K,V> p; (p = advance()) != null; )
6157 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key));
6158 result = r;
6159 CountedCompleter<?> c;
6160 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6161 @SuppressWarnings("unchecked")
6162 MapReduceKeysToIntTask<K,V>
6163 t = (MapReduceKeysToIntTask<K,V>)c,
6164 s = t.rights;
6165 while (s != null) {
6166 t.result = reducer.applyAsInt(t.result, s.result);
6167 s = t.rights = s.nextRight;
6168 }
6169 }
6170 }
6171 }
6172 }
6173
6174 @SuppressWarnings("serial")
6175 static final class MapReduceValuesToIntTask<K,V>
6176 extends BulkTask<K,V,Integer> {
6177 final ToIntFunction<? super V> transformer;
6178 final IntBinaryOperator reducer;
6179 final int basis;
6180 int result;
6181 MapReduceValuesToIntTask<K,V> rights, nextRight;
6182 MapReduceValuesToIntTask
6183 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6184 MapReduceValuesToIntTask<K,V> nextRight,
6185 ToIntFunction<? super V> transformer,
6186 int basis,
6187 IntBinaryOperator reducer) {
6188 super(p, b, i, f, t); this.nextRight = nextRight;
6189 this.transformer = transformer;
6190 this.basis = basis; this.reducer = reducer;
6191 }
6192 public final Integer getRawResult() { return result; }
6193 public final void compute() {
6194 final ToIntFunction<? super V> transformer;
6195 final IntBinaryOperator reducer;
6196 if ((transformer = this.transformer) != null &&
6197 (reducer = this.reducer) != null) {
6198 int r = this.basis;
6199 for (int i = baseIndex, f, h; batch > 0 &&
6200 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6201 addToPendingCount(1);
6202 (rights = new MapReduceValuesToIntTask<K,V>
6203 (this, batch >>>= 1, baseLimit = h, f, tab,
6204 rights, transformer, r, reducer)).fork();
6205 }
6206 for (Node<K,V> p; (p = advance()) != null; )
6207 r = reducer.applyAsInt(r, transformer.applyAsInt(p.val));
6208 result = r;
6209 CountedCompleter<?> c;
6210 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6211 @SuppressWarnings("unchecked")
6212 MapReduceValuesToIntTask<K,V>
6213 t = (MapReduceValuesToIntTask<K,V>)c,
6214 s = t.rights;
6215 while (s != null) {
6216 t.result = reducer.applyAsInt(t.result, s.result);
6217 s = t.rights = s.nextRight;
6218 }
6219 }
6220 }
6221 }
6222 }
6223
6224 @SuppressWarnings("serial")
6225 static final class MapReduceEntriesToIntTask<K,V>
6226 extends BulkTask<K,V,Integer> {
6227 final ToIntFunction<Map.Entry<K,V>> transformer;
6228 final IntBinaryOperator reducer;
6229 final int basis;
6230 int result;
6231 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6232 MapReduceEntriesToIntTask
6233 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6234 MapReduceEntriesToIntTask<K,V> nextRight,
6235 ToIntFunction<Map.Entry<K,V>> transformer,
6236 int basis,
6237 IntBinaryOperator reducer) {
6238 super(p, b, i, f, t); this.nextRight = nextRight;
6239 this.transformer = transformer;
6240 this.basis = basis; this.reducer = reducer;
6241 }
6242 public final Integer getRawResult() { return result; }
6243 public final void compute() {
6244 final ToIntFunction<Map.Entry<K,V>> transformer;
6245 final IntBinaryOperator reducer;
6246 if ((transformer = this.transformer) != null &&
6247 (reducer = this.reducer) != null) {
6248 int r = this.basis;
6249 for (int i = baseIndex, f, h; batch > 0 &&
6250 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6251 addToPendingCount(1);
6252 (rights = new MapReduceEntriesToIntTask<K,V>
6253 (this, batch >>>= 1, baseLimit = h, f, tab,
6254 rights, transformer, r, reducer)).fork();
6255 }
6256 for (Node<K,V> p; (p = advance()) != null; )
6257 r = reducer.applyAsInt(r, transformer.applyAsInt(p));
6258 result = r;
6259 CountedCompleter<?> c;
6260 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6261 @SuppressWarnings("unchecked")
6262 MapReduceEntriesToIntTask<K,V>
6263 t = (MapReduceEntriesToIntTask<K,V>)c,
6264 s = t.rights;
6265 while (s != null) {
6266 t.result = reducer.applyAsInt(t.result, s.result);
6267 s = t.rights = s.nextRight;
6268 }
6269 }
6270 }
6271 }
6272 }
6273
6274 @SuppressWarnings("serial")
6275 static final class MapReduceMappingsToIntTask<K,V>
6276 extends BulkTask<K,V,Integer> {
6277 final ToIntBiFunction<? super K, ? super V> transformer;
6278 final IntBinaryOperator reducer;
6279 final int basis;
6280 int result;
6281 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6282 MapReduceMappingsToIntTask
6283 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6284 MapReduceMappingsToIntTask<K,V> nextRight,
6285 ToIntBiFunction<? super K, ? super V> transformer,
6286 int basis,
6287 IntBinaryOperator reducer) {
6288 super(p, b, i, f, t); this.nextRight = nextRight;
6289 this.transformer = transformer;
6290 this.basis = basis; this.reducer = reducer;
6291 }
6292 public final Integer getRawResult() { return result; }
6293 public final void compute() {
6294 final ToIntBiFunction<? super K, ? super V> transformer;
6295 final IntBinaryOperator reducer;
6296 if ((transformer = this.transformer) != null &&
6297 (reducer = this.reducer) != null) {
6298 int r = this.basis;
6299 for (int i = baseIndex, f, h; batch > 0 &&
6300 (h = ((f = baseLimit) + i) >>> 1) > i;) {
6301 addToPendingCount(1);
6302 (rights = new MapReduceMappingsToIntTask<K,V>
6303 (this, batch >>>= 1, baseLimit = h, f, tab,
6304 rights, transformer, r, reducer)).fork();
6305 }
6306 for (Node<K,V> p; (p = advance()) != null; )
6307 r = reducer.applyAsInt(r, transformer.applyAsInt(p.key, p.val));
6308 result = r;
6309 CountedCompleter<?> c;
6310 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6311 @SuppressWarnings("unchecked")
6312 MapReduceMappingsToIntTask<K,V>
6313 t = (MapReduceMappingsToIntTask<K,V>)c,
6314 s = t.rights;
6315 while (s != null) {
6316 t.result = reducer.applyAsInt(t.result, s.result);
6317 s = t.rights = s.nextRight;
6318 }
6319 }
6320 }
6321 }
6322 }
6323
6324 // Unsafe mechanics
6325 private static final Unsafe U = Unsafe.getUnsafe();
6326 private static final long SIZECTL;
6327 private static final long TRANSFERINDEX;
6328 private static final long BASECOUNT;
6329 private static final long CELLSBUSY;
6330 private static final long CELLVALUE;
6331 private static final int ABASE;
6332 private static final int ASHIFT;
6333
6334 static {
6335 try {
6336 SIZECTL = U.objectFieldOffset
6337 (ConcurrentHashMap.class.getDeclaredField("sizeCtl"));
6338 TRANSFERINDEX = U.objectFieldOffset
6339 (ConcurrentHashMap.class.getDeclaredField("transferIndex"));
6340 BASECOUNT = U.objectFieldOffset
6341 (ConcurrentHashMap.class.getDeclaredField("baseCount"));
6342 CELLSBUSY = U.objectFieldOffset
6343 (ConcurrentHashMap.class.getDeclaredField("cellsBusy"));
6344
6345 CELLVALUE = U.objectFieldOffset
6346 (CounterCell.class.getDeclaredField("value"));
6347
6348 ABASE = U.arrayBaseOffset(Node[].class);
6349 int scale = U.arrayIndexScale(Node[].class);
6350 if ((scale & (scale - 1)) != 0)
6351 throw new ExceptionInInitializerError("array index scale not a power of two");
6352 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6353 } catch (ReflectiveOperationException e) {
6354 throw new ExceptionInInitializerError(e);
6355 }
6356
6357 // Reduce the risk of rare disastrous classloading in first call to
6358 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
6359 Class<?> ensureLoaded = LockSupport.class;
6360
6361 // Eager class load observed to help JIT during startup
6362 ensureLoaded = ReservationNode.class;
6363 }
6364 }