ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/test/tck/SplittableRandomTest.java
Revision: 1.20
Committed: Sun Nov 13 03:36:50 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.19: +35 -0 lines
Log Message:
revise (uselessly inaccessible) next(int) method javadoc, implementation and tests

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6 jsr166 1.16
7 dl 1.1 import java.util.SplittableRandom;
8     import java.util.concurrent.atomic.AtomicInteger;
9     import java.util.concurrent.atomic.LongAdder;
10    
11 jsr166 1.16 import junit.framework.Test;
12     import junit.framework.TestSuite;
13    
14 dl 1.1 public class SplittableRandomTest extends JSR166TestCase {
15    
16     public static void main(String[] args) {
17 jsr166 1.18 main(suite(), args);
18 dl 1.1 }
19     public static Test suite() {
20     return new TestSuite(SplittableRandomTest.class);
21     }
22    
23     /*
24     * Testing coverage notes:
25     *
26 jsr166 1.4 * 1. Many of the test methods are adapted from ThreadLocalRandomTest.
27 dl 1.1 *
28 jsr166 1.4 * 2. These tests do not check for random number generator quality.
29     * But we check for minimal API compliance by requiring that
30     * repeated calls to nextX methods, up to NCALLS tries, produce at
31     * least two distinct results. (In some possible universe, a
32     * "correct" implementation might fail, but the odds are vastly
33     * less than that of encountering a hardware failure while running
34     * the test.) For bounded nextX methods, we sample various
35     * intervals across multiples of primes. In other tests, we repeat
36     * under REPS different values.
37 dl 1.1 */
38    
39     // max numbers of calls to detect getting stuck on one value
40     static final int NCALLS = 10000;
41    
42     // max sampled int bound
43 jsr166 1.11 static final int MAX_INT_BOUND = (1 << 26);
44 dl 1.1
45 jsr166 1.4 // max sampled long bound
46 jsr166 1.12 static final long MAX_LONG_BOUND = (1L << 40);
47 dl 1.1
48     // Number of replications for other checks
49 jsr166 1.7 static final int REPS =
50     Integer.getInteger("SplittableRandomTest.reps", 4);
51 dl 1.1
52     /**
53 jsr166 1.20 * Repeated calls to next (only accessible via reflection) produce
54     * at least two distinct results, and repeated calls produce all
55     * possible values.
56     */
57     public void testNext() throws ReflectiveOperationException {
58     SplittableRandom rnd = new SplittableRandom();
59     try {
60     java.lang.reflect.Method m
61     = SplittableRandom.class.getDeclaredMethod(
62     "next", new Class[] { int.class });
63     m.setAccessible(true);
64    
65     int i;
66     {
67     int val = new java.util.Random().nextInt(4);
68     for (i = 0; i < NCALLS; i++) {
69     int q = (int) m.invoke(rnd, new Object[] { 2 });
70     if (val == q) break;
71     }
72     assertTrue(i < NCALLS);
73     }
74    
75     {
76     int r = (int) m.invoke(rnd, new Object[] { 3 });
77     for (i = 0; i < NCALLS; i++) {
78     int q = (int) m.invoke(rnd, new Object[] { 3 });
79     assertTrue(q < (1<<3));
80     if (r != q) break;
81     }
82     assertTrue(i < NCALLS);
83     }
84     } catch (SecurityException acceptable) {}
85     }
86    
87     /**
88 jsr166 1.4 * Repeated calls to nextInt produce at least two distinct results
89 dl 1.1 */
90     public void testNextInt() {
91     SplittableRandom sr = new SplittableRandom();
92     int f = sr.nextInt();
93     int i = 0;
94     while (i < NCALLS && sr.nextInt() == f)
95     ++i;
96     assertTrue(i < NCALLS);
97     }
98    
99     /**
100 jsr166 1.4 * Repeated calls to nextLong produce at least two distinct results
101 dl 1.1 */
102     public void testNextLong() {
103     SplittableRandom sr = new SplittableRandom();
104     long f = sr.nextLong();
105     int i = 0;
106     while (i < NCALLS && sr.nextLong() == f)
107     ++i;
108     assertTrue(i < NCALLS);
109     }
110    
111     /**
112 jsr166 1.4 * Repeated calls to nextDouble produce at least two distinct results
113 dl 1.1 */
114     public void testNextDouble() {
115     SplittableRandom sr = new SplittableRandom();
116     double f = sr.nextDouble();
117 jsr166 1.4 int i = 0;
118 dl 1.1 while (i < NCALLS && sr.nextDouble() == f)
119     ++i;
120     assertTrue(i < NCALLS);
121     }
122    
123     /**
124     * Two SplittableRandoms created with the same seed produce the
125     * same values for nextLong.
126     */
127     public void testSeedConstructor() {
128 jsr166 1.14 for (long seed = 2; seed < MAX_LONG_BOUND; seed += 15485863) {
129 dl 1.1 SplittableRandom sr1 = new SplittableRandom(seed);
130     SplittableRandom sr2 = new SplittableRandom(seed);
131 jsr166 1.3 for (int i = 0; i < REPS; ++i)
132 dl 1.1 assertEquals(sr1.nextLong(), sr2.nextLong());
133     }
134     }
135    
136     /**
137     * A SplittableRandom produced by split() of a default-constructed
138     * SplittableRandom generates a different sequence
139     */
140     public void testSplit1() {
141     SplittableRandom sr = new SplittableRandom();
142     for (int reps = 0; reps < REPS; ++reps) {
143     SplittableRandom sc = sr.split();
144     int i = 0;
145     while (i < NCALLS && sr.nextLong() == sc.nextLong())
146     ++i;
147     assertTrue(i < NCALLS);
148     }
149     }
150    
151     /**
152     * A SplittableRandom produced by split() of a seeded-constructed
153     * SplittableRandom generates a different sequence
154     */
155     public void testSplit2() {
156     SplittableRandom sr = new SplittableRandom(12345);
157     for (int reps = 0; reps < REPS; ++reps) {
158     SplittableRandom sc = sr.split();
159     int i = 0;
160     while (i < NCALLS && sr.nextLong() == sc.nextLong())
161     ++i;
162     assertTrue(i < NCALLS);
163     }
164     }
165    
166     /**
167 jsr166 1.9 * nextInt(non-positive) throws IllegalArgumentException
168 dl 1.1 */
169 jsr166 1.13 public void testNextIntBoundNonPositive() {
170 dl 1.1 SplittableRandom sr = new SplittableRandom();
171 jsr166 1.9 Runnable[] throwingActions = {
172     () -> sr.nextInt(-17),
173     () -> sr.nextInt(0),
174     () -> sr.nextInt(Integer.MIN_VALUE),
175     };
176     assertThrows(IllegalArgumentException.class, throwingActions);
177 dl 1.1 }
178    
179     /**
180 jsr166 1.4 * nextInt(least >= bound) throws IllegalArgumentException
181 dl 1.1 */
182     public void testNextIntBadBounds() {
183     SplittableRandom sr = new SplittableRandom();
184 jsr166 1.10 Runnable[] throwingActions = {
185     () -> sr.nextInt(17, 2),
186     () -> sr.nextInt(-42, -42),
187     () -> sr.nextInt(Integer.MAX_VALUE, Integer.MIN_VALUE),
188     };
189     assertThrows(IllegalArgumentException.class, throwingActions);
190 dl 1.1 }
191    
192     /**
193     * nextInt(bound) returns 0 <= value < bound;
194 jsr166 1.4 * repeated calls produce at least two distinct results
195 dl 1.1 */
196     public void testNextIntBounded() {
197     SplittableRandom sr = new SplittableRandom();
198 jsr166 1.19 for (int i = 0; i < 2; i++) assertEquals(0, sr.nextInt(1));
199 dl 1.1 // sample bound space across prime number increments
200     for (int bound = 2; bound < MAX_INT_BOUND; bound += 524959) {
201     int f = sr.nextInt(bound);
202     assertTrue(0 <= f && f < bound);
203     int i = 0;
204     int j;
205     while (i < NCALLS &&
206     (j = sr.nextInt(bound)) == f) {
207     assertTrue(0 <= j && j < bound);
208     ++i;
209     }
210     assertTrue(i < NCALLS);
211     }
212     }
213    
214     /**
215     * nextInt(least, bound) returns least <= value < bound;
216 jsr166 1.4 * repeated calls produce at least two distinct results
217 dl 1.1 */
218     public void testNextIntBounded2() {
219     SplittableRandom sr = new SplittableRandom();
220     for (int least = -15485863; least < MAX_INT_BOUND; least += 524959) {
221     for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 49979687) {
222     int f = sr.nextInt(least, bound);
223     assertTrue(least <= f && f < bound);
224     int i = 0;
225     int j;
226     while (i < NCALLS &&
227     (j = sr.nextInt(least, bound)) == f) {
228     assertTrue(least <= j && j < bound);
229     ++i;
230     }
231     assertTrue(i < NCALLS);
232     }
233     }
234     }
235    
236     /**
237 jsr166 1.9 * nextLong(non-positive) throws IllegalArgumentException
238 dl 1.1 */
239 jsr166 1.13 public void testNextLongBoundNonPositive() {
240 dl 1.1 SplittableRandom sr = new SplittableRandom();
241 jsr166 1.9 Runnable[] throwingActions = {
242     () -> sr.nextLong(-17L),
243     () -> sr.nextLong(0L),
244     () -> sr.nextLong(Long.MIN_VALUE),
245     };
246     assertThrows(IllegalArgumentException.class, throwingActions);
247 dl 1.1 }
248    
249     /**
250 jsr166 1.4 * nextLong(least >= bound) throws IllegalArgumentException
251 dl 1.1 */
252     public void testNextLongBadBounds() {
253     SplittableRandom sr = new SplittableRandom();
254 jsr166 1.10 Runnable[] throwingActions = {
255     () -> sr.nextLong(17L, 2L),
256     () -> sr.nextLong(-42L, -42L),
257     () -> sr.nextLong(Long.MAX_VALUE, Long.MIN_VALUE),
258     };
259     assertThrows(IllegalArgumentException.class, throwingActions);
260 dl 1.1 }
261    
262     /**
263     * nextLong(bound) returns 0 <= value < bound;
264 jsr166 1.4 * repeated calls produce at least two distinct results
265 dl 1.1 */
266     public void testNextLongBounded() {
267     SplittableRandom sr = new SplittableRandom();
268 jsr166 1.19 for (int i = 0; i < 2; i++) assertEquals(0L, sr.nextLong(1L));
269 dl 1.1 for (long bound = 2; bound < MAX_LONG_BOUND; bound += 15485863) {
270     long f = sr.nextLong(bound);
271     assertTrue(0 <= f && f < bound);
272     int i = 0;
273     long j;
274     while (i < NCALLS &&
275     (j = sr.nextLong(bound)) == f) {
276     assertTrue(0 <= j && j < bound);
277     ++i;
278     }
279     assertTrue(i < NCALLS);
280     }
281     }
282    
283     /**
284     * nextLong(least, bound) returns least <= value < bound;
285 jsr166 1.4 * repeated calls produce at least two distinct results
286 dl 1.1 */
287     public void testNextLongBounded2() {
288     SplittableRandom sr = new SplittableRandom();
289     for (long least = -86028121; least < MAX_LONG_BOUND; least += 982451653L) {
290     for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
291     long f = sr.nextLong(least, bound);
292     assertTrue(least <= f && f < bound);
293     int i = 0;
294     long j;
295     while (i < NCALLS &&
296     (j = sr.nextLong(least, bound)) == f) {
297     assertTrue(least <= j && j < bound);
298     ++i;
299     }
300     assertTrue(i < NCALLS);
301     }
302     }
303     }
304    
305     /**
306 jsr166 1.9 * nextDouble(non-positive) throws IllegalArgumentException
307     */
308 jsr166 1.13 public void testNextDoubleBoundNonPositive() {
309 jsr166 1.9 SplittableRandom sr = new SplittableRandom();
310     Runnable[] throwingActions = {
311     () -> sr.nextDouble(-17.0d),
312     () -> sr.nextDouble(0.0d),
313     () -> sr.nextDouble(-Double.MIN_VALUE),
314     () -> sr.nextDouble(Double.NEGATIVE_INFINITY),
315     () -> sr.nextDouble(Double.NaN),
316     };
317     assertThrows(IllegalArgumentException.class, throwingActions);
318     }
319    
320     /**
321 jsr166 1.10 * nextDouble(! (least < bound)) throws IllegalArgumentException
322     */
323     public void testNextDoubleBadBounds() {
324     SplittableRandom sr = new SplittableRandom();
325     Runnable[] throwingActions = {
326     () -> sr.nextDouble(17.0d, 2.0d),
327     () -> sr.nextDouble(-42.0d, -42.0d),
328     () -> sr.nextDouble(Double.MAX_VALUE, Double.MIN_VALUE),
329     () -> sr.nextDouble(Double.NaN, 0.0d),
330     () -> sr.nextDouble(0.0d, Double.NaN),
331     };
332     assertThrows(IllegalArgumentException.class, throwingActions);
333     }
334    
335     // TODO: Test infinite bounds!
336     //() -> sr.nextDouble(Double.NEGATIVE_INFINITY, 0.0d),
337     //() -> sr.nextDouble(0.0d, Double.POSITIVE_INFINITY),
338    
339     /**
340 dl 1.1 * nextDouble(least, bound) returns least <= value < bound;
341 jsr166 1.4 * repeated calls produce at least two distinct results
342 dl 1.1 */
343     public void testNextDoubleBounded2() {
344     SplittableRandom sr = new SplittableRandom();
345     for (double least = 0.0001; least < 1.0e20; least *= 8) {
346     for (double bound = least * 1.001; bound < 1.0e20; bound *= 16) {
347     double f = sr.nextDouble(least, bound);
348     assertTrue(least <= f && f < bound);
349     int i = 0;
350     double j;
351     while (i < NCALLS &&
352     (j = sr.nextDouble(least, bound)) == f) {
353     assertTrue(least <= j && j < bound);
354     ++i;
355     }
356     assertTrue(i < NCALLS);
357     }
358     }
359     }
360    
361     /**
362     * Invoking sized ints, long, doubles, with negative sizes throws
363     * IllegalArgumentException
364     */
365     public void testBadStreamSize() {
366     SplittableRandom r = new SplittableRandom();
367 jsr166 1.8 Runnable[] throwingActions = {
368     () -> { java.util.stream.IntStream x = r.ints(-1L); },
369     () -> { java.util.stream.IntStream x = r.ints(-1L, 2, 3); },
370     () -> { java.util.stream.LongStream x = r.longs(-1L); },
371     () -> { java.util.stream.LongStream x = r.longs(-1L, -1L, 1L); },
372     () -> { java.util.stream.DoubleStream x = r.doubles(-1L); },
373     () -> { java.util.stream.DoubleStream x = r.doubles(-1L, .5, .6); },
374     };
375     assertThrows(IllegalArgumentException.class, throwingActions);
376 dl 1.1 }
377    
378     /**
379     * Invoking bounded ints, long, doubles, with illegal bounds throws
380     * IllegalArgumentException
381     */
382     public void testBadStreamBounds() {
383     SplittableRandom r = new SplittableRandom();
384 jsr166 1.8 Runnable[] throwingActions = {
385     () -> { java.util.stream.IntStream x = r.ints(2, 1); },
386     () -> { java.util.stream.IntStream x = r.ints(10, 42, 42); },
387     () -> { java.util.stream.LongStream x = r.longs(-1L, -1L); },
388     () -> { java.util.stream.LongStream x = r.longs(10, 1L, -2L); },
389     () -> { java.util.stream.DoubleStream x = r.doubles(0.0, 0.0); },
390     () -> { java.util.stream.DoubleStream x = r.doubles(10, .5, .4); },
391     };
392     assertThrows(IllegalArgumentException.class, throwingActions);
393 dl 1.1 }
394    
395     /**
396     * A parallel sized stream of ints generates the given number of values
397     */
398     public void testIntsCount() {
399     LongAdder counter = new LongAdder();
400     SplittableRandom r = new SplittableRandom();
401     long size = 0;
402     for (int reps = 0; reps < REPS; ++reps) {
403     counter.reset();
404 jsr166 1.6 r.ints(size).parallel().forEach(x -> counter.increment());
405 jsr166 1.4 assertEquals(size, counter.sum());
406 dl 1.1 size += 524959;
407     }
408     }
409    
410     /**
411     * A parallel sized stream of longs generates the given number of values
412     */
413     public void testLongsCount() {
414     LongAdder counter = new LongAdder();
415     SplittableRandom r = new SplittableRandom();
416     long size = 0;
417     for (int reps = 0; reps < REPS; ++reps) {
418     counter.reset();
419 jsr166 1.6 r.longs(size).parallel().forEach(x -> counter.increment());
420 jsr166 1.4 assertEquals(size, counter.sum());
421 dl 1.1 size += 524959;
422     }
423     }
424    
425     /**
426     * A parallel sized stream of doubles generates the given number of values
427     */
428     public void testDoublesCount() {
429     LongAdder counter = new LongAdder();
430     SplittableRandom r = new SplittableRandom();
431     long size = 0;
432     for (int reps = 0; reps < REPS; ++reps) {
433     counter.reset();
434 jsr166 1.6 r.doubles(size).parallel().forEach(x -> counter.increment());
435 jsr166 1.4 assertEquals(size, counter.sum());
436 dl 1.1 size += 524959;
437     }
438     }
439    
440     /**
441     * Each of a parallel sized stream of bounded ints is within bounds
442     */
443     public void testBoundedInts() {
444     AtomicInteger fails = new AtomicInteger(0);
445     SplittableRandom r = new SplittableRandom();
446     long size = 12345L;
447     for (int least = -15485867; least < MAX_INT_BOUND; least += 524959) {
448     for (int bound = least + 2; bound > least && bound < MAX_INT_BOUND; bound += 67867967) {
449     final int lo = least, hi = bound;
450 jsr166 1.17 r.ints(size, lo, hi).parallel().forEach(
451     x -> {
452     if (x < lo || x >= hi)
453     fails.getAndIncrement(); });
454 dl 1.1 }
455     }
456 jsr166 1.4 assertEquals(0, fails.get());
457 dl 1.1 }
458    
459     /**
460     * Each of a parallel sized stream of bounded longs is within bounds
461     */
462     public void testBoundedLongs() {
463     AtomicInteger fails = new AtomicInteger(0);
464     SplittableRandom r = new SplittableRandom();
465     long size = 123L;
466     for (long least = -86028121; least < MAX_LONG_BOUND; least += 1982451653L) {
467     for (long bound = least + 2; bound > least && bound < MAX_LONG_BOUND; bound += Math.abs(bound * 7919)) {
468     final long lo = least, hi = bound;
469 jsr166 1.17 r.longs(size, lo, hi).parallel().forEach(
470     x -> {
471     if (x < lo || x >= hi)
472     fails.getAndIncrement(); });
473 dl 1.1 }
474     }
475 jsr166 1.4 assertEquals(0, fails.get());
476 dl 1.1 }
477    
478     /**
479     * Each of a parallel sized stream of bounded doubles is within bounds
480     */
481     public void testBoundedDoubles() {
482     AtomicInteger fails = new AtomicInteger(0);
483     SplittableRandom r = new SplittableRandom();
484     long size = 456;
485     for (double least = 0.00011; least < 1.0e20; least *= 9) {
486     for (double bound = least * 1.0011; bound < 1.0e20; bound *= 17) {
487     final double lo = least, hi = bound;
488 jsr166 1.17 r.doubles(size, lo, hi).parallel().forEach(
489     x -> {
490     if (x < lo || x >= hi)
491     fails.getAndIncrement(); });
492 dl 1.1 }
493     }
494 jsr166 1.4 assertEquals(0, fails.get());
495 dl 1.1 }
496    
497 dl 1.2 /**
498     * A parallel unsized stream of ints generates at least 100 values
499     */
500     public void testUnsizedIntsCount() {
501     LongAdder counter = new LongAdder();
502     SplittableRandom r = new SplittableRandom();
503     long size = 100;
504 jsr166 1.6 r.ints().limit(size).parallel().forEach(x -> counter.increment());
505 jsr166 1.4 assertEquals(size, counter.sum());
506 dl 1.2 }
507    
508     /**
509     * A parallel unsized stream of longs generates at least 100 values
510     */
511     public void testUnsizedLongsCount() {
512     LongAdder counter = new LongAdder();
513     SplittableRandom r = new SplittableRandom();
514     long size = 100;
515 jsr166 1.6 r.longs().limit(size).parallel().forEach(x -> counter.increment());
516 jsr166 1.4 assertEquals(size, counter.sum());
517 dl 1.2 }
518    
519     /**
520     * A parallel unsized stream of doubles generates at least 100 values
521     */
522     public void testUnsizedDoublesCount() {
523     LongAdder counter = new LongAdder();
524     SplittableRandom r = new SplittableRandom();
525     long size = 100;
526 jsr166 1.6 r.doubles().limit(size).parallel().forEach(x -> counter.increment());
527 jsr166 1.4 assertEquals(size, counter.sum());
528 dl 1.2 }
529    
530     /**
531     * A sequential unsized stream of ints generates at least 100 values
532     */
533     public void testUnsizedIntsCountSeq() {
534     LongAdder counter = new LongAdder();
535     SplittableRandom r = new SplittableRandom();
536     long size = 100;
537 jsr166 1.6 r.ints().limit(size).forEach(x -> counter.increment());
538 jsr166 1.4 assertEquals(size, counter.sum());
539 dl 1.2 }
540    
541     /**
542     * A sequential unsized stream of longs generates at least 100 values
543     */
544     public void testUnsizedLongsCountSeq() {
545     LongAdder counter = new LongAdder();
546     SplittableRandom r = new SplittableRandom();
547     long size = 100;
548 jsr166 1.6 r.longs().limit(size).forEach(x -> counter.increment());
549 jsr166 1.4 assertEquals(size, counter.sum());
550 dl 1.2 }
551    
552     /**
553     * A sequential unsized stream of doubles generates at least 100 values
554     */
555     public void testUnsizedDoublesCountSeq() {
556     LongAdder counter = new LongAdder();
557     SplittableRandom r = new SplittableRandom();
558     long size = 100;
559 jsr166 1.6 r.doubles().limit(size).forEach(x -> counter.increment());
560 jsr166 1.4 assertEquals(size, counter.sum());
561 dl 1.2 }
562    
563 dl 1.1 }