ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/SplittableRandom.java
Revision: 1.4
Committed: Mon Feb 20 22:07:50 2017 UTC (7 years, 2 months ago) by jsr166
Branch: MAIN
Changes since 1.3: +1 -2 lines
Log Message:
coalesce multiple @throws IllegalArgumentException for doubles; consistent with ints and longs

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.concurrent.atomic.AtomicLong;
29     import java.util.function.DoubleConsumer;
30     import java.util.function.IntConsumer;
31     import java.util.function.LongConsumer;
32     import java.util.stream.DoubleStream;
33     import java.util.stream.IntStream;
34     import java.util.stream.LongStream;
35     import java.util.stream.StreamSupport;
36    
37     /**
38     * A generator of uniform pseudorandom values applicable for use in
39     * (among other contexts) isolated parallel computations that may
40     * generate subtasks. Class {@code SplittableRandom} supports methods for
41     * producing pseudorandom numbers of type {@code int}, {@code long},
42     * and {@code double} with similar usages as for class
43     * {@link java.util.Random} but differs in the following ways:
44     *
45     * <ul>
46     *
47     * <li>Series of generated values pass the DieHarder suite testing
48     * independence and uniformity properties of random number generators.
49     * (Most recently validated with <a
50     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51     * 3.31.1</a>.) These tests validate only the methods for certain
52     * types and ranges, but similar properties are expected to hold, at
53     * least approximately, for others as well. The <em>period</em>
54     * (length of any series of generated values before it repeats) is at
55     * least 2<sup>64</sup>.
56     *
57     * <li>Method {@link #split} constructs and returns a new
58     * SplittableRandom instance that shares no mutable state with the
59     * current instance. However, with very high probability, the
60     * values collectively generated by the two objects have the same
61     * statistical properties as if the same quantity of values were
62     * generated by a single thread using a single {@code
63     * SplittableRandom} object.
64     *
65     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66     * They are designed to be split, not shared, across threads. For
67     * example, a {@link java.util.concurrent.ForkJoinTask
68     * fork/join-style} computation using random numbers might include a
69     * construction of the form {@code new
70     * Subtask(aSplittableRandom.split()).fork()}.
71     *
72     * <li>This class provides additional methods for generating random
73     * streams, that employ the above techniques when used in {@code
74     * stream.parallel()} mode.
75     *
76     * </ul>
77     *
78     * <p>Instances of {@code SplittableRandom} are not cryptographically
79     * secure. Consider instead using {@link java.security.SecureRandom}
80     * in security-sensitive applications. Additionally,
81     * default-constructed instances do not use a cryptographically random
82     * seed unless the {@linkplain System#getProperty system property}
83     * {@code java.util.secureRandomSeed} is set to {@code true}.
84     *
85     * @author Guy Steele
86     * @author Doug Lea
87     * @since 1.8
88     */
89     public final class SplittableRandom {
90    
91     /*
92     * Implementation Overview.
93     *
94     * This algorithm was inspired by the "DotMix" algorithm by
95     * Leiserson, Schardl, and Sukha "Deterministic Parallel
96     * Random-Number Generation for Dynamic-Multithreading Platforms",
97     * PPoPP 2012, as well as those in "Parallel random numbers: as
98     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
99     * differs mainly in simplifying and cheapening operations.
100     *
101     * The primary update step (method nextSeed()) is to add a
102     * constant ("gamma") to the current (64 bit) seed, forming a
103     * simple sequence. The seed and the gamma values for any two
104     * SplittableRandom instances are highly likely to be different.
105     *
106     * Methods nextLong, nextInt, and derivatives do not return the
107     * sequence (seed) values, but instead a hash-like bit-mix of
108     * their bits, producing more independently distributed sequences.
109     * For nextLong, the mix64 function is based on David Stafford's
110     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111     * "Mix13" variant of the "64-bit finalizer" function in Austin
112     * Appleby's MurmurHash3 algorithm (see
113     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114     * function is based on Stafford's Mix04 mix function, but returns
115     * the upper 32 bits cast as int.
116     *
117     * The split operation uses the current generator to form the seed
118     * and gamma for another SplittableRandom. To conservatively
119     * avoid potential correlations between seed and value generation,
120     * gamma selection (method mixGamma) uses different
121     * (Murmurhash3's) mix constants. To avoid potential weaknesses
122     * in bit-mixing transformations, we restrict gammas to odd values
123     * with at least 24 0-1 or 1-0 bit transitions. Rather than
124     * rejecting candidates with too few or too many bits set, method
125     * mixGamma flips some bits (which has the effect of mapping at
126     * most 4 to any given gamma value). This reduces the effective
127     * set of 64bit odd gamma values by about 2%, and serves as an
128     * automated screening for sequence constant selection that is
129     * left as an empirical decision in some other hashing and crypto
130     * algorithms.
131     *
132     * The resulting generator thus transforms a sequence in which
133     * (typically) many bits change on each step, with an inexpensive
134     * mixer with good (but less than cryptographically secure)
135     * avalanching.
136     *
137     * The default (no-argument) constructor, in essence, invokes
138     * split() for a common "defaultGen" SplittableRandom. Unlike
139     * other cases, this split must be performed in a thread-safe
140     * manner, so we use an AtomicLong to represent the seed rather
141     * than use an explicit SplittableRandom. To bootstrap the
142     * defaultGen, we start off using a seed based on current time
143     * unless the java.util.secureRandomSeed property is set. This
144     * serves as a slimmed-down (and insecure) variant of SecureRandom
145     * that also avoids stalls that may occur when using /dev/random.
146     *
147     * It is a relatively simple matter to apply the basic design here
148     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149     * carrying around twice the state add more overhead than appears
150     * warranted for current usages.
151     *
152     * File organization: First the non-public methods that constitute
153     * the main algorithm, then the main public methods, followed by
154     * some custom spliterator classes needed for stream methods.
155     */
156    
157     /**
158     * The golden ratio scaled to 64bits, used as the initial gamma
159     * value for (unsplit) SplittableRandoms.
160     */
161     private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162    
163     /**
164     * The least non-zero value returned by nextDouble(). This value
165     * is scaled by a random value of 53 bits to produce a result.
166     */
167     private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168    
169     /**
170     * The seed. Updated only via method nextSeed.
171     */
172     private long seed;
173    
174     /**
175     * The step value.
176     */
177     private final long gamma;
178    
179     /**
180     * Internal constructor used by all others except default constructor.
181     */
182     private SplittableRandom(long seed, long gamma) {
183     this.seed = seed;
184     this.gamma = gamma;
185     }
186    
187     /**
188     * Computes Stafford variant 13 of 64bit mix function.
189     */
190     private static long mix64(long z) {
191     z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192     z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193     return z ^ (z >>> 31);
194     }
195    
196     /**
197     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198     */
199     private static int mix32(long z) {
200     z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201     return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202     }
203    
204     /**
205     * Returns the gamma value to use for a new split instance.
206     */
207     private static long mixGamma(long z) {
208     z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209     z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210     z = (z ^ (z >>> 33)) | 1L; // force to be odd
211     int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
212     return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213     }
214    
215     /**
216     * Adds gamma to seed.
217     */
218     private long nextSeed() {
219     return seed += gamma;
220     }
221    
222     // IllegalArgumentException messages
223     static final String BAD_BOUND = "bound must be positive";
224     static final String BAD_RANGE = "bound must be greater than origin";
225     static final String BAD_SIZE = "size must be non-negative";
226    
227     /**
228     * The seed generator for default constructors.
229     */
230     private static final AtomicLong defaultGen
231     = new AtomicLong(mix64(System.currentTimeMillis()) ^
232     mix64(System.nanoTime()));
233    
234     // at end of <clinit> to survive static initialization circularity
235     static {
236     if (java.security.AccessController.doPrivileged(
237     new java.security.PrivilegedAction<Boolean>() {
238     public Boolean run() {
239     return Boolean.getBoolean("java.util.secureRandomSeed");
240     }})) {
241     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242     long s = (long)seedBytes[0] & 0xffL;
243     for (int i = 1; i < 8; ++i)
244     s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245     defaultGen.set(s);
246     }
247     }
248    
249     /*
250     * Internal versions of nextX methods used by streams, as well as
251     * the public nextX(origin, bound) methods. These exist mainly to
252     * avoid the need for multiple versions of stream spliterators
253     * across the different exported forms of streams.
254     */
255    
256     /**
257     * The form of nextLong used by LongStream Spliterators. If
258     * origin is greater than bound, acts as unbounded form of
259     * nextLong, else as bounded form.
260     *
261     * @param origin the least value, unless greater than bound
262     * @param bound the upper bound (exclusive), must not equal origin
263     * @return a pseudorandom value
264     */
265     final long internalNextLong(long origin, long bound) {
266     /*
267     * Four Cases:
268     *
269     * 1. If the arguments indicate unbounded form, act as
270     * nextLong().
271     *
272     * 2. If the range is an exact power of two, apply the
273     * associated bit mask.
274     *
275     * 3. If the range is positive, loop to avoid potential bias
276     * when the implicit nextLong() bound (2<sup>64</sup>) is not
277     * evenly divisible by the range. The loop rejects candidates
278     * computed from otherwise over-represented values. The
279     * expected number of iterations under an ideal generator
280     * varies from 1 to 2, depending on the bound. The loop itself
281     * takes an unlovable form. Because the first candidate is
282     * already available, we need a break-in-the-middle
283     * construction, which is concisely but cryptically performed
284     * within the while-condition of a body-less for loop.
285     *
286     * 4. Otherwise, the range cannot be represented as a positive
287     * long. The loop repeatedly generates unbounded longs until
288     * obtaining a candidate meeting constraints (with an expected
289     * number of iterations of less than two).
290     */
291    
292     long r = mix64(nextSeed());
293     if (origin < bound) {
294     long n = bound - origin, m = n - 1;
295     if ((n & m) == 0L) // power of two
296     r = (r & m) + origin;
297     else if (n > 0L) { // reject over-represented candidates
298     for (long u = r >>> 1; // ensure nonnegative
299     u + m - (r = u % n) < 0L; // rejection check
300     u = mix64(nextSeed()) >>> 1) // retry
301     ;
302     r += origin;
303     }
304     else { // range not representable as long
305     while (r < origin || r >= bound)
306     r = mix64(nextSeed());
307     }
308     }
309     return r;
310     }
311    
312     /**
313     * The form of nextInt used by IntStream Spliterators.
314     * Exactly the same as long version, except for types.
315     *
316     * @param origin the least value, unless greater than bound
317     * @param bound the upper bound (exclusive), must not equal origin
318     * @return a pseudorandom value
319     */
320     final int internalNextInt(int origin, int bound) {
321     int r = mix32(nextSeed());
322     if (origin < bound) {
323     int n = bound - origin, m = n - 1;
324     if ((n & m) == 0)
325     r = (r & m) + origin;
326     else if (n > 0) {
327     for (int u = r >>> 1;
328     u + m - (r = u % n) < 0;
329     u = mix32(nextSeed()) >>> 1)
330     ;
331     r += origin;
332     }
333     else {
334     while (r < origin || r >= bound)
335     r = mix32(nextSeed());
336     }
337     }
338     return r;
339     }
340    
341     /**
342     * The form of nextDouble used by DoubleStream Spliterators.
343     *
344     * @param origin the least value, unless greater than bound
345     * @param bound the upper bound (exclusive), must not equal origin
346     * @return a pseudorandom value
347     */
348     final double internalNextDouble(double origin, double bound) {
349     double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350     if (origin < bound) {
351     r = r * (bound - origin) + origin;
352     if (r >= bound) // correct for rounding
353     r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354     }
355     return r;
356     }
357    
358     /* ---------------- public methods ---------------- */
359    
360     /**
361     * Creates a new SplittableRandom instance using the specified
362     * initial seed. SplittableRandom instances created with the same
363     * seed in the same program generate identical sequences of values.
364     *
365     * @param seed the initial seed
366     */
367     public SplittableRandom(long seed) {
368     this(seed, GOLDEN_GAMMA);
369     }
370    
371     /**
372     * Creates a new SplittableRandom instance that is likely to
373     * generate sequences of values that are statistically independent
374     * of those of any other instances in the current program; and
375     * may, and typically does, vary across program invocations.
376     */
377     public SplittableRandom() { // emulate defaultGen.split()
378 jsr166 1.3 long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379 jsr166 1.1 this.seed = mix64(s);
380     this.gamma = mixGamma(s + GOLDEN_GAMMA);
381     }
382    
383     /**
384     * Constructs and returns a new SplittableRandom instance that
385     * shares no mutable state with this instance. However, with very
386     * high probability, the set of values collectively generated by
387     * the two objects has the same statistical properties as if the
388     * same quantity of values were generated by a single thread using
389     * a single SplittableRandom object. Either or both of the two
390     * objects may be further split using the {@code split()} method,
391     * and the same expected statistical properties apply to the
392     * entire set of generators constructed by such recursive
393     * splitting.
394     *
395     * @return the new SplittableRandom instance
396     */
397     public SplittableRandom split() {
398     return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399     }
400    
401     /**
402     * Returns a pseudorandom {@code int} value.
403     *
404     * @return a pseudorandom {@code int} value
405     */
406     public int nextInt() {
407     return mix32(nextSeed());
408     }
409    
410     /**
411     * Returns a pseudorandom {@code int} value between zero (inclusive)
412     * and the specified bound (exclusive).
413     *
414     * @param bound the upper bound (exclusive). Must be positive.
415     * @return a pseudorandom {@code int} value between zero
416     * (inclusive) and the bound (exclusive)
417     * @throws IllegalArgumentException if {@code bound} is not positive
418     */
419     public int nextInt(int bound) {
420     if (bound <= 0)
421     throw new IllegalArgumentException(BAD_BOUND);
422     // Specialize internalNextInt for origin 0
423     int r = mix32(nextSeed());
424     int m = bound - 1;
425     if ((bound & m) == 0) // power of two
426     r &= m;
427     else { // reject over-represented candidates
428     for (int u = r >>> 1;
429     u + m - (r = u % bound) < 0;
430     u = mix32(nextSeed()) >>> 1)
431     ;
432     }
433     return r;
434     }
435    
436     /**
437     * Returns a pseudorandom {@code int} value between the specified
438     * origin (inclusive) and the specified bound (exclusive).
439     *
440     * @param origin the least value returned
441     * @param bound the upper bound (exclusive)
442     * @return a pseudorandom {@code int} value between the origin
443     * (inclusive) and the bound (exclusive)
444     * @throws IllegalArgumentException if {@code origin} is greater than
445     * or equal to {@code bound}
446     */
447     public int nextInt(int origin, int bound) {
448     if (origin >= bound)
449     throw new IllegalArgumentException(BAD_RANGE);
450     return internalNextInt(origin, bound);
451     }
452    
453     /**
454     * Returns a pseudorandom {@code long} value.
455     *
456     * @return a pseudorandom {@code long} value
457     */
458     public long nextLong() {
459     return mix64(nextSeed());
460     }
461    
462     /**
463     * Returns a pseudorandom {@code long} value between zero (inclusive)
464     * and the specified bound (exclusive).
465     *
466     * @param bound the upper bound (exclusive). Must be positive.
467     * @return a pseudorandom {@code long} value between zero
468     * (inclusive) and the bound (exclusive)
469     * @throws IllegalArgumentException if {@code bound} is not positive
470     */
471     public long nextLong(long bound) {
472     if (bound <= 0)
473     throw new IllegalArgumentException(BAD_BOUND);
474     // Specialize internalNextLong for origin 0
475     long r = mix64(nextSeed());
476     long m = bound - 1;
477     if ((bound & m) == 0L) // power of two
478     r &= m;
479     else { // reject over-represented candidates
480     for (long u = r >>> 1;
481     u + m - (r = u % bound) < 0L;
482     u = mix64(nextSeed()) >>> 1)
483     ;
484     }
485     return r;
486     }
487    
488     /**
489     * Returns a pseudorandom {@code long} value between the specified
490     * origin (inclusive) and the specified bound (exclusive).
491     *
492     * @param origin the least value returned
493     * @param bound the upper bound (exclusive)
494     * @return a pseudorandom {@code long} value between the origin
495     * (inclusive) and the bound (exclusive)
496     * @throws IllegalArgumentException if {@code origin} is greater than
497     * or equal to {@code bound}
498     */
499     public long nextLong(long origin, long bound) {
500     if (origin >= bound)
501     throw new IllegalArgumentException(BAD_RANGE);
502     return internalNextLong(origin, bound);
503     }
504    
505     /**
506     * Returns a pseudorandom {@code double} value between zero
507     * (inclusive) and one (exclusive).
508     *
509     * @return a pseudorandom {@code double} value between zero
510     * (inclusive) and one (exclusive)
511     */
512     public double nextDouble() {
513     return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
514     }
515    
516     /**
517     * Returns a pseudorandom {@code double} value between 0.0
518     * (inclusive) and the specified bound (exclusive).
519     *
520     * @param bound the upper bound (exclusive). Must be positive.
521     * @return a pseudorandom {@code double} value between zero
522     * (inclusive) and the bound (exclusive)
523     * @throws IllegalArgumentException if {@code bound} is not positive
524     */
525     public double nextDouble(double bound) {
526     if (!(bound > 0.0))
527     throw new IllegalArgumentException(BAD_BOUND);
528     double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
529     return (result < bound) ? result : // correct for rounding
530     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
531     }
532    
533     /**
534 jsr166 1.2 * Generates a pseudorandom number with the indicated number of
535     * low-order bits. Because this class has no subclasses, this
536     * method cannot be invoked or overridden.
537     *
538     * @param bits random bits
539     * @return the next pseudorandom value from this random number
540     * generator's sequence
541     */
542     protected int next(int bits) {
543     return nextInt() >>> (32 - bits);
544     }
545    
546     /**
547 jsr166 1.1 * Returns a pseudorandom {@code double} value between the specified
548     * origin (inclusive) and bound (exclusive).
549     *
550     * @param origin the least value returned
551     * @param bound the upper bound (exclusive)
552     * @return a pseudorandom {@code double} value between the origin
553     * (inclusive) and the bound (exclusive)
554     * @throws IllegalArgumentException if {@code origin} is greater than
555     * or equal to {@code bound}
556     */
557     public double nextDouble(double origin, double bound) {
558     if (!(origin < bound))
559     throw new IllegalArgumentException(BAD_RANGE);
560     return internalNextDouble(origin, bound);
561     }
562    
563     /**
564     * Returns a pseudorandom {@code boolean} value.
565     *
566     * @return a pseudorandom {@code boolean} value
567     */
568     public boolean nextBoolean() {
569     return mix32(nextSeed()) < 0;
570     }
571    
572     // stream methods, coded in a way intended to better isolate for
573     // maintenance purposes the small differences across forms.
574    
575     /**
576     * Returns a stream producing the given {@code streamSize} number
577     * of pseudorandom {@code int} values from this generator and/or
578     * one split from it.
579     *
580     * @param streamSize the number of values to generate
581     * @return a stream of pseudorandom {@code int} values
582     * @throws IllegalArgumentException if {@code streamSize} is
583     * less than zero
584     */
585     public IntStream ints(long streamSize) {
586     if (streamSize < 0L)
587     throw new IllegalArgumentException(BAD_SIZE);
588     return StreamSupport.intStream
589     (new RandomIntsSpliterator
590     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
591     false);
592     }
593    
594     /**
595     * Returns an effectively unlimited stream of pseudorandom {@code int}
596     * values from this generator and/or one split from it.
597     *
598     * @implNote This method is implemented to be equivalent to {@code
599     * ints(Long.MAX_VALUE)}.
600     *
601     * @return a stream of pseudorandom {@code int} values
602     */
603     public IntStream ints() {
604     return StreamSupport.intStream
605     (new RandomIntsSpliterator
606     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
607     false);
608     }
609    
610     /**
611     * Returns a stream producing the given {@code streamSize} number
612     * of pseudorandom {@code int} values from this generator and/or one split
613     * from it; each value conforms to the given origin (inclusive) and bound
614     * (exclusive).
615     *
616     * @param streamSize the number of values to generate
617     * @param randomNumberOrigin the origin (inclusive) of each random value
618     * @param randomNumberBound the bound (exclusive) of each random value
619     * @return a stream of pseudorandom {@code int} values,
620     * each with the given origin (inclusive) and bound (exclusive)
621     * @throws IllegalArgumentException if {@code streamSize} is
622     * less than zero, or {@code randomNumberOrigin}
623     * is greater than or equal to {@code randomNumberBound}
624     */
625     public IntStream ints(long streamSize, int randomNumberOrigin,
626     int randomNumberBound) {
627     if (streamSize < 0L)
628     throw new IllegalArgumentException(BAD_SIZE);
629     if (randomNumberOrigin >= randomNumberBound)
630     throw new IllegalArgumentException(BAD_RANGE);
631     return StreamSupport.intStream
632     (new RandomIntsSpliterator
633     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
634     false);
635     }
636    
637     /**
638     * Returns an effectively unlimited stream of pseudorandom {@code
639     * int} values from this generator and/or one split from it; each value
640     * conforms to the given origin (inclusive) and bound (exclusive).
641     *
642     * @implNote This method is implemented to be equivalent to {@code
643     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
644     *
645     * @param randomNumberOrigin the origin (inclusive) of each random value
646     * @param randomNumberBound the bound (exclusive) of each random value
647     * @return a stream of pseudorandom {@code int} values,
648     * each with the given origin (inclusive) and bound (exclusive)
649     * @throws IllegalArgumentException if {@code randomNumberOrigin}
650     * is greater than or equal to {@code randomNumberBound}
651     */
652     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
653     if (randomNumberOrigin >= randomNumberBound)
654     throw new IllegalArgumentException(BAD_RANGE);
655     return StreamSupport.intStream
656     (new RandomIntsSpliterator
657     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
658     false);
659     }
660    
661     /**
662     * Returns a stream producing the given {@code streamSize} number
663     * of pseudorandom {@code long} values from this generator and/or
664     * one split from it.
665     *
666     * @param streamSize the number of values to generate
667     * @return a stream of pseudorandom {@code long} values
668     * @throws IllegalArgumentException if {@code streamSize} is
669     * less than zero
670     */
671     public LongStream longs(long streamSize) {
672     if (streamSize < 0L)
673     throw new IllegalArgumentException(BAD_SIZE);
674     return StreamSupport.longStream
675     (new RandomLongsSpliterator
676     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
677     false);
678     }
679    
680     /**
681     * Returns an effectively unlimited stream of pseudorandom {@code
682     * long} values from this generator and/or one split from it.
683     *
684     * @implNote This method is implemented to be equivalent to {@code
685     * longs(Long.MAX_VALUE)}.
686     *
687     * @return a stream of pseudorandom {@code long} values
688     */
689     public LongStream longs() {
690     return StreamSupport.longStream
691     (new RandomLongsSpliterator
692     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
693     false);
694     }
695    
696     /**
697     * Returns a stream producing the given {@code streamSize} number of
698     * pseudorandom {@code long} values from this generator and/or one split
699     * from it; each value conforms to the given origin (inclusive) and bound
700     * (exclusive).
701     *
702     * @param streamSize the number of values to generate
703     * @param randomNumberOrigin the origin (inclusive) of each random value
704     * @param randomNumberBound the bound (exclusive) of each random value
705     * @return a stream of pseudorandom {@code long} values,
706     * each with the given origin (inclusive) and bound (exclusive)
707     * @throws IllegalArgumentException if {@code streamSize} is
708     * less than zero, or {@code randomNumberOrigin}
709     * is greater than or equal to {@code randomNumberBound}
710     */
711     public LongStream longs(long streamSize, long randomNumberOrigin,
712     long randomNumberBound) {
713     if (streamSize < 0L)
714     throw new IllegalArgumentException(BAD_SIZE);
715     if (randomNumberOrigin >= randomNumberBound)
716     throw new IllegalArgumentException(BAD_RANGE);
717     return StreamSupport.longStream
718     (new RandomLongsSpliterator
719     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
720     false);
721     }
722    
723     /**
724     * Returns an effectively unlimited stream of pseudorandom {@code
725     * long} values from this generator and/or one split from it; each value
726     * conforms to the given origin (inclusive) and bound (exclusive).
727     *
728     * @implNote This method is implemented to be equivalent to {@code
729     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
730     *
731     * @param randomNumberOrigin the origin (inclusive) of each random value
732     * @param randomNumberBound the bound (exclusive) of each random value
733     * @return a stream of pseudorandom {@code long} values,
734     * each with the given origin (inclusive) and bound (exclusive)
735     * @throws IllegalArgumentException if {@code randomNumberOrigin}
736     * is greater than or equal to {@code randomNumberBound}
737     */
738     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
739     if (randomNumberOrigin >= randomNumberBound)
740     throw new IllegalArgumentException(BAD_RANGE);
741     return StreamSupport.longStream
742     (new RandomLongsSpliterator
743     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
744     false);
745     }
746    
747     /**
748     * Returns a stream producing the given {@code streamSize} number of
749     * pseudorandom {@code double} values from this generator and/or one split
750     * from it; each value is between zero (inclusive) and one (exclusive).
751     *
752     * @param streamSize the number of values to generate
753     * @return a stream of {@code double} values
754     * @throws IllegalArgumentException if {@code streamSize} is
755     * less than zero
756     */
757     public DoubleStream doubles(long streamSize) {
758     if (streamSize < 0L)
759     throw new IllegalArgumentException(BAD_SIZE);
760     return StreamSupport.doubleStream
761     (new RandomDoublesSpliterator
762     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
763     false);
764     }
765    
766     /**
767     * Returns an effectively unlimited stream of pseudorandom {@code
768     * double} values from this generator and/or one split from it; each value
769     * is between zero (inclusive) and one (exclusive).
770     *
771     * @implNote This method is implemented to be equivalent to {@code
772     * doubles(Long.MAX_VALUE)}.
773     *
774     * @return a stream of pseudorandom {@code double} values
775     */
776     public DoubleStream doubles() {
777     return StreamSupport.doubleStream
778     (new RandomDoublesSpliterator
779     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
780     false);
781     }
782    
783     /**
784     * Returns a stream producing the given {@code streamSize} number of
785     * pseudorandom {@code double} values from this generator and/or one split
786     * from it; each value conforms to the given origin (inclusive) and bound
787     * (exclusive).
788     *
789     * @param streamSize the number of values to generate
790     * @param randomNumberOrigin the origin (inclusive) of each random value
791     * @param randomNumberBound the bound (exclusive) of each random value
792     * @return a stream of pseudorandom {@code double} values,
793     * each with the given origin (inclusive) and bound (exclusive)
794     * @throws IllegalArgumentException if {@code streamSize} is
795 jsr166 1.4 * less than zero, or {@code randomNumberOrigin}
796 jsr166 1.1 * is greater than or equal to {@code randomNumberBound}
797     */
798     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
799     double randomNumberBound) {
800     if (streamSize < 0L)
801     throw new IllegalArgumentException(BAD_SIZE);
802     if (!(randomNumberOrigin < randomNumberBound))
803     throw new IllegalArgumentException(BAD_RANGE);
804     return StreamSupport.doubleStream
805     (new RandomDoublesSpliterator
806     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
807     false);
808     }
809    
810     /**
811     * Returns an effectively unlimited stream of pseudorandom {@code
812     * double} values from this generator and/or one split from it; each value
813     * conforms to the given origin (inclusive) and bound (exclusive).
814     *
815     * @implNote This method is implemented to be equivalent to {@code
816     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
817     *
818     * @param randomNumberOrigin the origin (inclusive) of each random value
819     * @param randomNumberBound the bound (exclusive) of each random value
820     * @return a stream of pseudorandom {@code double} values,
821     * each with the given origin (inclusive) and bound (exclusive)
822     * @throws IllegalArgumentException if {@code randomNumberOrigin}
823     * is greater than or equal to {@code randomNumberBound}
824     */
825     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
826     if (!(randomNumberOrigin < randomNumberBound))
827     throw new IllegalArgumentException(BAD_RANGE);
828     return StreamSupport.doubleStream
829     (new RandomDoublesSpliterator
830     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
831     false);
832     }
833    
834     /**
835     * Spliterator for int streams. We multiplex the four int
836     * versions into one class by treating a bound less than origin as
837     * unbounded, and also by treating "infinite" as equivalent to
838     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
839     * approach. The long and double versions of this class are
840     * identical except for types.
841     */
842     private static final class RandomIntsSpliterator
843     implements Spliterator.OfInt {
844     final SplittableRandom rng;
845     long index;
846     final long fence;
847     final int origin;
848     final int bound;
849     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
850     int origin, int bound) {
851     this.rng = rng; this.index = index; this.fence = fence;
852     this.origin = origin; this.bound = bound;
853     }
854    
855     public RandomIntsSpliterator trySplit() {
856     long i = index, m = (i + fence) >>> 1;
857     return (m <= i) ? null :
858     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
859     }
860    
861     public long estimateSize() {
862     return fence - index;
863     }
864    
865     public int characteristics() {
866     return (Spliterator.SIZED | Spliterator.SUBSIZED |
867     Spliterator.NONNULL | Spliterator.IMMUTABLE);
868     }
869    
870     public boolean tryAdvance(IntConsumer consumer) {
871     if (consumer == null) throw new NullPointerException();
872     long i = index, f = fence;
873     if (i < f) {
874     consumer.accept(rng.internalNextInt(origin, bound));
875     index = i + 1;
876     return true;
877     }
878     return false;
879     }
880    
881     public void forEachRemaining(IntConsumer consumer) {
882     if (consumer == null) throw new NullPointerException();
883     long i = index, f = fence;
884     if (i < f) {
885     index = f;
886     SplittableRandom r = rng;
887     int o = origin, b = bound;
888     do {
889     consumer.accept(r.internalNextInt(o, b));
890     } while (++i < f);
891     }
892     }
893     }
894    
895     /**
896     * Spliterator for long streams.
897     */
898     private static final class RandomLongsSpliterator
899     implements Spliterator.OfLong {
900     final SplittableRandom rng;
901     long index;
902     final long fence;
903     final long origin;
904     final long bound;
905     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
906     long origin, long bound) {
907     this.rng = rng; this.index = index; this.fence = fence;
908     this.origin = origin; this.bound = bound;
909     }
910    
911     public RandomLongsSpliterator trySplit() {
912     long i = index, m = (i + fence) >>> 1;
913     return (m <= i) ? null :
914     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
915     }
916    
917     public long estimateSize() {
918     return fence - index;
919     }
920    
921     public int characteristics() {
922     return (Spliterator.SIZED | Spliterator.SUBSIZED |
923     Spliterator.NONNULL | Spliterator.IMMUTABLE);
924     }
925    
926     public boolean tryAdvance(LongConsumer consumer) {
927     if (consumer == null) throw new NullPointerException();
928     long i = index, f = fence;
929     if (i < f) {
930     consumer.accept(rng.internalNextLong(origin, bound));
931     index = i + 1;
932     return true;
933     }
934     return false;
935     }
936    
937     public void forEachRemaining(LongConsumer consumer) {
938     if (consumer == null) throw new NullPointerException();
939     long i = index, f = fence;
940     if (i < f) {
941     index = f;
942     SplittableRandom r = rng;
943     long o = origin, b = bound;
944     do {
945     consumer.accept(r.internalNextLong(o, b));
946     } while (++i < f);
947     }
948     }
949    
950     }
951    
952     /**
953     * Spliterator for double streams.
954     */
955     private static final class RandomDoublesSpliterator
956     implements Spliterator.OfDouble {
957     final SplittableRandom rng;
958     long index;
959     final long fence;
960     final double origin;
961     final double bound;
962     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
963     double origin, double bound) {
964     this.rng = rng; this.index = index; this.fence = fence;
965     this.origin = origin; this.bound = bound;
966     }
967    
968     public RandomDoublesSpliterator trySplit() {
969     long i = index, m = (i + fence) >>> 1;
970     return (m <= i) ? null :
971     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
972     }
973    
974     public long estimateSize() {
975     return fence - index;
976     }
977    
978     public int characteristics() {
979     return (Spliterator.SIZED | Spliterator.SUBSIZED |
980     Spliterator.NONNULL | Spliterator.IMMUTABLE);
981     }
982    
983     public boolean tryAdvance(DoubleConsumer consumer) {
984     if (consumer == null) throw new NullPointerException();
985     long i = index, f = fence;
986     if (i < f) {
987     consumer.accept(rng.internalNextDouble(origin, bound));
988     index = i + 1;
989     return true;
990     }
991     return false;
992     }
993    
994     public void forEachRemaining(DoubleConsumer consumer) {
995     if (consumer == null) throw new NullPointerException();
996     long i = index, f = fence;
997     if (i < f) {
998     index = f;
999     SplittableRandom r = rng;
1000     double o = origin, b = bound;
1001     do {
1002     consumer.accept(r.internalNextDouble(o, b));
1003     } while (++i < f);
1004     }
1005     }
1006     }
1007    
1008     }