ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jdk8/java/util/SplittableRandom.java
Revision: 1.5
Committed: Tue Oct 17 23:26:32 2017 UTC (6 years, 6 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.4: +20 -0 lines
Log Message:
backport to fix 4jdk8-tck

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
3     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4     *
5     * This code is free software; you can redistribute it and/or modify it
6     * under the terms of the GNU General Public License version 2 only, as
7     * published by the Free Software Foundation. Oracle designates this
8     * particular file as subject to the "Classpath" exception as provided
9     * by Oracle in the LICENSE file that accompanied this code.
10     *
11     * This code is distributed in the hope that it will be useful, but WITHOUT
12     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14     * version 2 for more details (a copy is included in the LICENSE file that
15     * accompanied this code).
16     *
17     * You should have received a copy of the GNU General Public License version
18     * 2 along with this work; if not, write to the Free Software Foundation,
19     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20     *
21     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22     * or visit www.oracle.com if you need additional information or have any
23     * questions.
24     */
25    
26     package java.util;
27    
28     import java.util.concurrent.atomic.AtomicLong;
29     import java.util.function.DoubleConsumer;
30     import java.util.function.IntConsumer;
31     import java.util.function.LongConsumer;
32     import java.util.stream.DoubleStream;
33     import java.util.stream.IntStream;
34     import java.util.stream.LongStream;
35     import java.util.stream.StreamSupport;
36    
37     /**
38     * A generator of uniform pseudorandom values applicable for use in
39     * (among other contexts) isolated parallel computations that may
40     * generate subtasks. Class {@code SplittableRandom} supports methods for
41     * producing pseudorandom numbers of type {@code int}, {@code long},
42     * and {@code double} with similar usages as for class
43     * {@link java.util.Random} but differs in the following ways:
44     *
45     * <ul>
46     *
47     * <li>Series of generated values pass the DieHarder suite testing
48     * independence and uniformity properties of random number generators.
49     * (Most recently validated with <a
50     * href="http://www.phy.duke.edu/~rgb/General/dieharder.php"> version
51     * 3.31.1</a>.) These tests validate only the methods for certain
52     * types and ranges, but similar properties are expected to hold, at
53     * least approximately, for others as well. The <em>period</em>
54     * (length of any series of generated values before it repeats) is at
55     * least 2<sup>64</sup>.
56     *
57     * <li>Method {@link #split} constructs and returns a new
58     * SplittableRandom instance that shares no mutable state with the
59     * current instance. However, with very high probability, the
60     * values collectively generated by the two objects have the same
61     * statistical properties as if the same quantity of values were
62     * generated by a single thread using a single {@code
63     * SplittableRandom} object.
64     *
65     * <li>Instances of SplittableRandom are <em>not</em> thread-safe.
66     * They are designed to be split, not shared, across threads. For
67     * example, a {@link java.util.concurrent.ForkJoinTask
68     * fork/join-style} computation using random numbers might include a
69     * construction of the form {@code new
70     * Subtask(aSplittableRandom.split()).fork()}.
71     *
72     * <li>This class provides additional methods for generating random
73     * streams, that employ the above techniques when used in {@code
74     * stream.parallel()} mode.
75     *
76     * </ul>
77     *
78     * <p>Instances of {@code SplittableRandom} are not cryptographically
79     * secure. Consider instead using {@link java.security.SecureRandom}
80     * in security-sensitive applications. Additionally,
81     * default-constructed instances do not use a cryptographically random
82     * seed unless the {@linkplain System#getProperty system property}
83     * {@code java.util.secureRandomSeed} is set to {@code true}.
84     *
85     * @author Guy Steele
86     * @author Doug Lea
87     * @since 1.8
88     */
89     public final class SplittableRandom {
90    
91     /*
92     * Implementation Overview.
93     *
94     * This algorithm was inspired by the "DotMix" algorithm by
95     * Leiserson, Schardl, and Sukha "Deterministic Parallel
96     * Random-Number Generation for Dynamic-Multithreading Platforms",
97     * PPoPP 2012, as well as those in "Parallel random numbers: as
98     * easy as 1, 2, 3" by Salmon, Morae, Dror, and Shaw, SC 2011. It
99     * differs mainly in simplifying and cheapening operations.
100     *
101     * The primary update step (method nextSeed()) is to add a
102     * constant ("gamma") to the current (64 bit) seed, forming a
103     * simple sequence. The seed and the gamma values for any two
104     * SplittableRandom instances are highly likely to be different.
105     *
106     * Methods nextLong, nextInt, and derivatives do not return the
107     * sequence (seed) values, but instead a hash-like bit-mix of
108     * their bits, producing more independently distributed sequences.
109     * For nextLong, the mix64 function is based on David Stafford's
110     * (http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html)
111     * "Mix13" variant of the "64-bit finalizer" function in Austin
112     * Appleby's MurmurHash3 algorithm (see
113     * http://code.google.com/p/smhasher/wiki/MurmurHash3). The mix32
114     * function is based on Stafford's Mix04 mix function, but returns
115     * the upper 32 bits cast as int.
116     *
117     * The split operation uses the current generator to form the seed
118     * and gamma for another SplittableRandom. To conservatively
119     * avoid potential correlations between seed and value generation,
120     * gamma selection (method mixGamma) uses different
121     * (Murmurhash3's) mix constants. To avoid potential weaknesses
122     * in bit-mixing transformations, we restrict gammas to odd values
123     * with at least 24 0-1 or 1-0 bit transitions. Rather than
124     * rejecting candidates with too few or too many bits set, method
125     * mixGamma flips some bits (which has the effect of mapping at
126     * most 4 to any given gamma value). This reduces the effective
127     * set of 64bit odd gamma values by about 2%, and serves as an
128     * automated screening for sequence constant selection that is
129     * left as an empirical decision in some other hashing and crypto
130     * algorithms.
131     *
132     * The resulting generator thus transforms a sequence in which
133     * (typically) many bits change on each step, with an inexpensive
134     * mixer with good (but less than cryptographically secure)
135     * avalanching.
136     *
137     * The default (no-argument) constructor, in essence, invokes
138     * split() for a common "defaultGen" SplittableRandom. Unlike
139     * other cases, this split must be performed in a thread-safe
140     * manner, so we use an AtomicLong to represent the seed rather
141     * than use an explicit SplittableRandom. To bootstrap the
142     * defaultGen, we start off using a seed based on current time
143     * unless the java.util.secureRandomSeed property is set. This
144     * serves as a slimmed-down (and insecure) variant of SecureRandom
145     * that also avoids stalls that may occur when using /dev/random.
146     *
147     * It is a relatively simple matter to apply the basic design here
148     * to use 128 bit seeds. However, emulating 128bit arithmetic and
149     * carrying around twice the state add more overhead than appears
150     * warranted for current usages.
151     *
152     * File organization: First the non-public methods that constitute
153     * the main algorithm, then the main public methods, followed by
154     * some custom spliterator classes needed for stream methods.
155     */
156    
157     /**
158     * The golden ratio scaled to 64bits, used as the initial gamma
159     * value for (unsplit) SplittableRandoms.
160     */
161     private static final long GOLDEN_GAMMA = 0x9e3779b97f4a7c15L;
162    
163     /**
164     * The least non-zero value returned by nextDouble(). This value
165     * is scaled by a random value of 53 bits to produce a result.
166     */
167     private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53);
168    
169     /**
170     * The seed. Updated only via method nextSeed.
171     */
172     private long seed;
173    
174     /**
175     * The step value.
176     */
177     private final long gamma;
178    
179     /**
180     * Internal constructor used by all others except default constructor.
181     */
182     private SplittableRandom(long seed, long gamma) {
183     this.seed = seed;
184     this.gamma = gamma;
185     }
186    
187     /**
188     * Computes Stafford variant 13 of 64bit mix function.
189     */
190     private static long mix64(long z) {
191     z = (z ^ (z >>> 30)) * 0xbf58476d1ce4e5b9L;
192     z = (z ^ (z >>> 27)) * 0x94d049bb133111ebL;
193     return z ^ (z >>> 31);
194     }
195    
196     /**
197     * Returns the 32 high bits of Stafford variant 4 mix64 function as int.
198     */
199     private static int mix32(long z) {
200     z = (z ^ (z >>> 33)) * 0x62a9d9ed799705f5L;
201     return (int)(((z ^ (z >>> 28)) * 0xcb24d0a5c88c35b3L) >>> 32);
202     }
203    
204     /**
205     * Returns the gamma value to use for a new split instance.
206     */
207     private static long mixGamma(long z) {
208     z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL; // MurmurHash3 mix constants
209     z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
210     z = (z ^ (z >>> 33)) | 1L; // force to be odd
211     int n = Long.bitCount(z ^ (z >>> 1)); // ensure enough transitions
212     return (n < 24) ? z ^ 0xaaaaaaaaaaaaaaaaL : z;
213     }
214    
215     /**
216     * Adds gamma to seed.
217     */
218     private long nextSeed() {
219     return seed += gamma;
220     }
221    
222     // IllegalArgumentException messages
223     static final String BAD_BOUND = "bound must be positive";
224     static final String BAD_RANGE = "bound must be greater than origin";
225     static final String BAD_SIZE = "size must be non-negative";
226    
227     /**
228     * The seed generator for default constructors.
229     */
230     private static final AtomicLong defaultGen
231     = new AtomicLong(mix64(System.currentTimeMillis()) ^
232     mix64(System.nanoTime()));
233    
234     // at end of <clinit> to survive static initialization circularity
235     static {
236     if (java.security.AccessController.doPrivileged(
237     new java.security.PrivilegedAction<Boolean>() {
238     public Boolean run() {
239     return Boolean.getBoolean("java.util.secureRandomSeed");
240     }})) {
241     byte[] seedBytes = java.security.SecureRandom.getSeed(8);
242     long s = (long)seedBytes[0] & 0xffL;
243     for (int i = 1; i < 8; ++i)
244     s = (s << 8) | ((long)seedBytes[i] & 0xffL);
245     defaultGen.set(s);
246     }
247     }
248    
249     /*
250     * Internal versions of nextX methods used by streams, as well as
251     * the public nextX(origin, bound) methods. These exist mainly to
252     * avoid the need for multiple versions of stream spliterators
253     * across the different exported forms of streams.
254     */
255    
256     /**
257     * The form of nextLong used by LongStream Spliterators. If
258     * origin is greater than bound, acts as unbounded form of
259     * nextLong, else as bounded form.
260     *
261     * @param origin the least value, unless greater than bound
262     * @param bound the upper bound (exclusive), must not equal origin
263     * @return a pseudorandom value
264     */
265     final long internalNextLong(long origin, long bound) {
266     /*
267     * Four Cases:
268     *
269     * 1. If the arguments indicate unbounded form, act as
270     * nextLong().
271     *
272     * 2. If the range is an exact power of two, apply the
273     * associated bit mask.
274     *
275     * 3. If the range is positive, loop to avoid potential bias
276     * when the implicit nextLong() bound (2<sup>64</sup>) is not
277     * evenly divisible by the range. The loop rejects candidates
278     * computed from otherwise over-represented values. The
279     * expected number of iterations under an ideal generator
280     * varies from 1 to 2, depending on the bound. The loop itself
281     * takes an unlovable form. Because the first candidate is
282     * already available, we need a break-in-the-middle
283     * construction, which is concisely but cryptically performed
284     * within the while-condition of a body-less for loop.
285     *
286     * 4. Otherwise, the range cannot be represented as a positive
287     * long. The loop repeatedly generates unbounded longs until
288     * obtaining a candidate meeting constraints (with an expected
289     * number of iterations of less than two).
290     */
291    
292     long r = mix64(nextSeed());
293     if (origin < bound) {
294     long n = bound - origin, m = n - 1;
295     if ((n & m) == 0L) // power of two
296     r = (r & m) + origin;
297     else if (n > 0L) { // reject over-represented candidates
298     for (long u = r >>> 1; // ensure nonnegative
299     u + m - (r = u % n) < 0L; // rejection check
300     u = mix64(nextSeed()) >>> 1) // retry
301     ;
302     r += origin;
303     }
304     else { // range not representable as long
305     while (r < origin || r >= bound)
306     r = mix64(nextSeed());
307     }
308     }
309     return r;
310     }
311    
312     /**
313     * The form of nextInt used by IntStream Spliterators.
314     * Exactly the same as long version, except for types.
315     *
316     * @param origin the least value, unless greater than bound
317     * @param bound the upper bound (exclusive), must not equal origin
318     * @return a pseudorandom value
319     */
320     final int internalNextInt(int origin, int bound) {
321     int r = mix32(nextSeed());
322     if (origin < bound) {
323     int n = bound - origin, m = n - 1;
324     if ((n & m) == 0)
325     r = (r & m) + origin;
326     else if (n > 0) {
327     for (int u = r >>> 1;
328     u + m - (r = u % n) < 0;
329     u = mix32(nextSeed()) >>> 1)
330     ;
331     r += origin;
332     }
333     else {
334     while (r < origin || r >= bound)
335     r = mix32(nextSeed());
336     }
337     }
338     return r;
339     }
340    
341     /**
342     * The form of nextDouble used by DoubleStream Spliterators.
343     *
344     * @param origin the least value, unless greater than bound
345     * @param bound the upper bound (exclusive), must not equal origin
346     * @return a pseudorandom value
347     */
348     final double internalNextDouble(double origin, double bound) {
349     double r = (nextLong() >>> 11) * DOUBLE_UNIT;
350     if (origin < bound) {
351     r = r * (bound - origin) + origin;
352     if (r >= bound) // correct for rounding
353     r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
354     }
355     return r;
356     }
357    
358     /* ---------------- public methods ---------------- */
359    
360     /**
361     * Creates a new SplittableRandom instance using the specified
362     * initial seed. SplittableRandom instances created with the same
363     * seed in the same program generate identical sequences of values.
364     *
365     * @param seed the initial seed
366     */
367     public SplittableRandom(long seed) {
368     this(seed, GOLDEN_GAMMA);
369     }
370    
371     /**
372     * Creates a new SplittableRandom instance that is likely to
373     * generate sequences of values that are statistically independent
374     * of those of any other instances in the current program; and
375     * may, and typically does, vary across program invocations.
376     */
377     public SplittableRandom() { // emulate defaultGen.split()
378 jsr166 1.3 long s = defaultGen.getAndAdd(GOLDEN_GAMMA << 1);
379 jsr166 1.1 this.seed = mix64(s);
380     this.gamma = mixGamma(s + GOLDEN_GAMMA);
381     }
382    
383     /**
384     * Constructs and returns a new SplittableRandom instance that
385     * shares no mutable state with this instance. However, with very
386     * high probability, the set of values collectively generated by
387     * the two objects has the same statistical properties as if the
388     * same quantity of values were generated by a single thread using
389     * a single SplittableRandom object. Either or both of the two
390     * objects may be further split using the {@code split()} method,
391     * and the same expected statistical properties apply to the
392     * entire set of generators constructed by such recursive
393     * splitting.
394     *
395     * @return the new SplittableRandom instance
396     */
397     public SplittableRandom split() {
398     return new SplittableRandom(nextLong(), mixGamma(nextSeed()));
399     }
400    
401     /**
402 jsr166 1.5 * Fills a user-supplied byte array with generated pseudorandom bytes.
403     *
404     * @param bytes the byte array to fill with pseudorandom bytes
405     * @throws NullPointerException if bytes is null
406     * @since 10
407     */
408     public void nextBytes(byte[] bytes) {
409     int i = 0;
410     int len = bytes.length;
411     for (int words = len >> 3; words--> 0; ) {
412     long rnd = nextLong();
413     for (int n = 8; n--> 0; rnd >>>= Byte.SIZE)
414     bytes[i++] = (byte)rnd;
415     }
416     if (i < len)
417     for (long rnd = nextLong(); i < len; rnd >>>= Byte.SIZE)
418     bytes[i++] = (byte)rnd;
419     }
420    
421     /**
422 jsr166 1.1 * Returns a pseudorandom {@code int} value.
423     *
424     * @return a pseudorandom {@code int} value
425     */
426     public int nextInt() {
427     return mix32(nextSeed());
428     }
429    
430     /**
431     * Returns a pseudorandom {@code int} value between zero (inclusive)
432     * and the specified bound (exclusive).
433     *
434     * @param bound the upper bound (exclusive). Must be positive.
435     * @return a pseudorandom {@code int} value between zero
436     * (inclusive) and the bound (exclusive)
437     * @throws IllegalArgumentException if {@code bound} is not positive
438     */
439     public int nextInt(int bound) {
440     if (bound <= 0)
441     throw new IllegalArgumentException(BAD_BOUND);
442     // Specialize internalNextInt for origin 0
443     int r = mix32(nextSeed());
444     int m = bound - 1;
445     if ((bound & m) == 0) // power of two
446     r &= m;
447     else { // reject over-represented candidates
448     for (int u = r >>> 1;
449     u + m - (r = u % bound) < 0;
450     u = mix32(nextSeed()) >>> 1)
451     ;
452     }
453     return r;
454     }
455    
456     /**
457     * Returns a pseudorandom {@code int} value between the specified
458     * origin (inclusive) and the specified bound (exclusive).
459     *
460     * @param origin the least value returned
461     * @param bound the upper bound (exclusive)
462     * @return a pseudorandom {@code int} value between the origin
463     * (inclusive) and the bound (exclusive)
464     * @throws IllegalArgumentException if {@code origin} is greater than
465     * or equal to {@code bound}
466     */
467     public int nextInt(int origin, int bound) {
468     if (origin >= bound)
469     throw new IllegalArgumentException(BAD_RANGE);
470     return internalNextInt(origin, bound);
471     }
472    
473     /**
474     * Returns a pseudorandom {@code long} value.
475     *
476     * @return a pseudorandom {@code long} value
477     */
478     public long nextLong() {
479     return mix64(nextSeed());
480     }
481    
482     /**
483     * Returns a pseudorandom {@code long} value between zero (inclusive)
484     * and the specified bound (exclusive).
485     *
486     * @param bound the upper bound (exclusive). Must be positive.
487     * @return a pseudorandom {@code long} value between zero
488     * (inclusive) and the bound (exclusive)
489     * @throws IllegalArgumentException if {@code bound} is not positive
490     */
491     public long nextLong(long bound) {
492     if (bound <= 0)
493     throw new IllegalArgumentException(BAD_BOUND);
494     // Specialize internalNextLong for origin 0
495     long r = mix64(nextSeed());
496     long m = bound - 1;
497     if ((bound & m) == 0L) // power of two
498     r &= m;
499     else { // reject over-represented candidates
500     for (long u = r >>> 1;
501     u + m - (r = u % bound) < 0L;
502     u = mix64(nextSeed()) >>> 1)
503     ;
504     }
505     return r;
506     }
507    
508     /**
509     * Returns a pseudorandom {@code long} value between the specified
510     * origin (inclusive) and the specified bound (exclusive).
511     *
512     * @param origin the least value returned
513     * @param bound the upper bound (exclusive)
514     * @return a pseudorandom {@code long} value between the origin
515     * (inclusive) and the bound (exclusive)
516     * @throws IllegalArgumentException if {@code origin} is greater than
517     * or equal to {@code bound}
518     */
519     public long nextLong(long origin, long bound) {
520     if (origin >= bound)
521     throw new IllegalArgumentException(BAD_RANGE);
522     return internalNextLong(origin, bound);
523     }
524    
525     /**
526     * Returns a pseudorandom {@code double} value between zero
527     * (inclusive) and one (exclusive).
528     *
529     * @return a pseudorandom {@code double} value between zero
530     * (inclusive) and one (exclusive)
531     */
532     public double nextDouble() {
533     return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
534     }
535    
536     /**
537     * Returns a pseudorandom {@code double} value between 0.0
538     * (inclusive) and the specified bound (exclusive).
539     *
540     * @param bound the upper bound (exclusive). Must be positive.
541     * @return a pseudorandom {@code double} value between zero
542     * (inclusive) and the bound (exclusive)
543     * @throws IllegalArgumentException if {@code bound} is not positive
544     */
545     public double nextDouble(double bound) {
546     if (!(bound > 0.0))
547     throw new IllegalArgumentException(BAD_BOUND);
548     double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
549     return (result < bound) ? result : // correct for rounding
550     Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
551     }
552    
553     /**
554 jsr166 1.2 * Generates a pseudorandom number with the indicated number of
555     * low-order bits. Because this class has no subclasses, this
556     * method cannot be invoked or overridden.
557     *
558     * @param bits random bits
559     * @return the next pseudorandom value from this random number
560     * generator's sequence
561     */
562     protected int next(int bits) {
563     return nextInt() >>> (32 - bits);
564     }
565    
566     /**
567 jsr166 1.1 * Returns a pseudorandom {@code double} value between the specified
568     * origin (inclusive) and bound (exclusive).
569     *
570     * @param origin the least value returned
571     * @param bound the upper bound (exclusive)
572     * @return a pseudorandom {@code double} value between the origin
573     * (inclusive) and the bound (exclusive)
574     * @throws IllegalArgumentException if {@code origin} is greater than
575     * or equal to {@code bound}
576     */
577     public double nextDouble(double origin, double bound) {
578     if (!(origin < bound))
579     throw new IllegalArgumentException(BAD_RANGE);
580     return internalNextDouble(origin, bound);
581     }
582    
583     /**
584     * Returns a pseudorandom {@code boolean} value.
585     *
586     * @return a pseudorandom {@code boolean} value
587     */
588     public boolean nextBoolean() {
589     return mix32(nextSeed()) < 0;
590     }
591    
592     // stream methods, coded in a way intended to better isolate for
593     // maintenance purposes the small differences across forms.
594    
595     /**
596     * Returns a stream producing the given {@code streamSize} number
597     * of pseudorandom {@code int} values from this generator and/or
598     * one split from it.
599     *
600     * @param streamSize the number of values to generate
601     * @return a stream of pseudorandom {@code int} values
602     * @throws IllegalArgumentException if {@code streamSize} is
603     * less than zero
604     */
605     public IntStream ints(long streamSize) {
606     if (streamSize < 0L)
607     throw new IllegalArgumentException(BAD_SIZE);
608     return StreamSupport.intStream
609     (new RandomIntsSpliterator
610     (this, 0L, streamSize, Integer.MAX_VALUE, 0),
611     false);
612     }
613    
614     /**
615     * Returns an effectively unlimited stream of pseudorandom {@code int}
616     * values from this generator and/or one split from it.
617     *
618     * @implNote This method is implemented to be equivalent to {@code
619     * ints(Long.MAX_VALUE)}.
620     *
621     * @return a stream of pseudorandom {@code int} values
622     */
623     public IntStream ints() {
624     return StreamSupport.intStream
625     (new RandomIntsSpliterator
626     (this, 0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
627     false);
628     }
629    
630     /**
631     * Returns a stream producing the given {@code streamSize} number
632     * of pseudorandom {@code int} values from this generator and/or one split
633     * from it; each value conforms to the given origin (inclusive) and bound
634     * (exclusive).
635     *
636     * @param streamSize the number of values to generate
637     * @param randomNumberOrigin the origin (inclusive) of each random value
638     * @param randomNumberBound the bound (exclusive) of each random value
639     * @return a stream of pseudorandom {@code int} values,
640     * each with the given origin (inclusive) and bound (exclusive)
641     * @throws IllegalArgumentException if {@code streamSize} is
642     * less than zero, or {@code randomNumberOrigin}
643     * is greater than or equal to {@code randomNumberBound}
644     */
645     public IntStream ints(long streamSize, int randomNumberOrigin,
646     int randomNumberBound) {
647     if (streamSize < 0L)
648     throw new IllegalArgumentException(BAD_SIZE);
649     if (randomNumberOrigin >= randomNumberBound)
650     throw new IllegalArgumentException(BAD_RANGE);
651     return StreamSupport.intStream
652     (new RandomIntsSpliterator
653     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
654     false);
655     }
656    
657     /**
658     * Returns an effectively unlimited stream of pseudorandom {@code
659     * int} values from this generator and/or one split from it; each value
660     * conforms to the given origin (inclusive) and bound (exclusive).
661     *
662     * @implNote This method is implemented to be equivalent to {@code
663     * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
664     *
665     * @param randomNumberOrigin the origin (inclusive) of each random value
666     * @param randomNumberBound the bound (exclusive) of each random value
667     * @return a stream of pseudorandom {@code int} values,
668     * each with the given origin (inclusive) and bound (exclusive)
669     * @throws IllegalArgumentException if {@code randomNumberOrigin}
670     * is greater than or equal to {@code randomNumberBound}
671     */
672     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
673     if (randomNumberOrigin >= randomNumberBound)
674     throw new IllegalArgumentException(BAD_RANGE);
675     return StreamSupport.intStream
676     (new RandomIntsSpliterator
677     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
678     false);
679     }
680    
681     /**
682     * Returns a stream producing the given {@code streamSize} number
683     * of pseudorandom {@code long} values from this generator and/or
684     * one split from it.
685     *
686     * @param streamSize the number of values to generate
687     * @return a stream of pseudorandom {@code long} values
688     * @throws IllegalArgumentException if {@code streamSize} is
689     * less than zero
690     */
691     public LongStream longs(long streamSize) {
692     if (streamSize < 0L)
693     throw new IllegalArgumentException(BAD_SIZE);
694     return StreamSupport.longStream
695     (new RandomLongsSpliterator
696     (this, 0L, streamSize, Long.MAX_VALUE, 0L),
697     false);
698     }
699    
700     /**
701     * Returns an effectively unlimited stream of pseudorandom {@code
702     * long} values from this generator and/or one split from it.
703     *
704     * @implNote This method is implemented to be equivalent to {@code
705     * longs(Long.MAX_VALUE)}.
706     *
707     * @return a stream of pseudorandom {@code long} values
708     */
709     public LongStream longs() {
710     return StreamSupport.longStream
711     (new RandomLongsSpliterator
712     (this, 0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
713     false);
714     }
715    
716     /**
717     * Returns a stream producing the given {@code streamSize} number of
718     * pseudorandom {@code long} values from this generator and/or one split
719     * from it; each value conforms to the given origin (inclusive) and bound
720     * (exclusive).
721     *
722     * @param streamSize the number of values to generate
723     * @param randomNumberOrigin the origin (inclusive) of each random value
724     * @param randomNumberBound the bound (exclusive) of each random value
725     * @return a stream of pseudorandom {@code long} values,
726     * each with the given origin (inclusive) and bound (exclusive)
727     * @throws IllegalArgumentException if {@code streamSize} is
728     * less than zero, or {@code randomNumberOrigin}
729     * is greater than or equal to {@code randomNumberBound}
730     */
731     public LongStream longs(long streamSize, long randomNumberOrigin,
732     long randomNumberBound) {
733     if (streamSize < 0L)
734     throw new IllegalArgumentException(BAD_SIZE);
735     if (randomNumberOrigin >= randomNumberBound)
736     throw new IllegalArgumentException(BAD_RANGE);
737     return StreamSupport.longStream
738     (new RandomLongsSpliterator
739     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
740     false);
741     }
742    
743     /**
744     * Returns an effectively unlimited stream of pseudorandom {@code
745     * long} values from this generator and/or one split from it; each value
746     * conforms to the given origin (inclusive) and bound (exclusive).
747     *
748     * @implNote This method is implemented to be equivalent to {@code
749     * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
750     *
751     * @param randomNumberOrigin the origin (inclusive) of each random value
752     * @param randomNumberBound the bound (exclusive) of each random value
753     * @return a stream of pseudorandom {@code long} values,
754     * each with the given origin (inclusive) and bound (exclusive)
755     * @throws IllegalArgumentException if {@code randomNumberOrigin}
756     * is greater than or equal to {@code randomNumberBound}
757     */
758     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
759     if (randomNumberOrigin >= randomNumberBound)
760     throw new IllegalArgumentException(BAD_RANGE);
761     return StreamSupport.longStream
762     (new RandomLongsSpliterator
763     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
764     false);
765     }
766    
767     /**
768     * Returns a stream producing the given {@code streamSize} number of
769     * pseudorandom {@code double} values from this generator and/or one split
770     * from it; each value is between zero (inclusive) and one (exclusive).
771     *
772     * @param streamSize the number of values to generate
773     * @return a stream of {@code double} values
774     * @throws IllegalArgumentException if {@code streamSize} is
775     * less than zero
776     */
777     public DoubleStream doubles(long streamSize) {
778     if (streamSize < 0L)
779     throw new IllegalArgumentException(BAD_SIZE);
780     return StreamSupport.doubleStream
781     (new RandomDoublesSpliterator
782     (this, 0L, streamSize, Double.MAX_VALUE, 0.0),
783     false);
784     }
785    
786     /**
787     * Returns an effectively unlimited stream of pseudorandom {@code
788     * double} values from this generator and/or one split from it; each value
789     * is between zero (inclusive) and one (exclusive).
790     *
791     * @implNote This method is implemented to be equivalent to {@code
792     * doubles(Long.MAX_VALUE)}.
793     *
794     * @return a stream of pseudorandom {@code double} values
795     */
796     public DoubleStream doubles() {
797     return StreamSupport.doubleStream
798     (new RandomDoublesSpliterator
799     (this, 0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
800     false);
801     }
802    
803     /**
804     * Returns a stream producing the given {@code streamSize} number of
805     * pseudorandom {@code double} values from this generator and/or one split
806     * from it; each value conforms to the given origin (inclusive) and bound
807     * (exclusive).
808     *
809     * @param streamSize the number of values to generate
810     * @param randomNumberOrigin the origin (inclusive) of each random value
811     * @param randomNumberBound the bound (exclusive) of each random value
812     * @return a stream of pseudorandom {@code double} values,
813     * each with the given origin (inclusive) and bound (exclusive)
814     * @throws IllegalArgumentException if {@code streamSize} is
815 jsr166 1.4 * less than zero, or {@code randomNumberOrigin}
816 jsr166 1.1 * is greater than or equal to {@code randomNumberBound}
817     */
818     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
819     double randomNumberBound) {
820     if (streamSize < 0L)
821     throw new IllegalArgumentException(BAD_SIZE);
822     if (!(randomNumberOrigin < randomNumberBound))
823     throw new IllegalArgumentException(BAD_RANGE);
824     return StreamSupport.doubleStream
825     (new RandomDoublesSpliterator
826     (this, 0L, streamSize, randomNumberOrigin, randomNumberBound),
827     false);
828     }
829    
830     /**
831     * Returns an effectively unlimited stream of pseudorandom {@code
832     * double} values from this generator and/or one split from it; each value
833     * conforms to the given origin (inclusive) and bound (exclusive).
834     *
835     * @implNote This method is implemented to be equivalent to {@code
836     * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
837     *
838     * @param randomNumberOrigin the origin (inclusive) of each random value
839     * @param randomNumberBound the bound (exclusive) of each random value
840     * @return a stream of pseudorandom {@code double} values,
841     * each with the given origin (inclusive) and bound (exclusive)
842     * @throws IllegalArgumentException if {@code randomNumberOrigin}
843     * is greater than or equal to {@code randomNumberBound}
844     */
845     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
846     if (!(randomNumberOrigin < randomNumberBound))
847     throw new IllegalArgumentException(BAD_RANGE);
848     return StreamSupport.doubleStream
849     (new RandomDoublesSpliterator
850     (this, 0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
851     false);
852     }
853    
854     /**
855     * Spliterator for int streams. We multiplex the four int
856     * versions into one class by treating a bound less than origin as
857     * unbounded, and also by treating "infinite" as equivalent to
858     * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
859     * approach. The long and double versions of this class are
860     * identical except for types.
861     */
862     private static final class RandomIntsSpliterator
863     implements Spliterator.OfInt {
864     final SplittableRandom rng;
865     long index;
866     final long fence;
867     final int origin;
868     final int bound;
869     RandomIntsSpliterator(SplittableRandom rng, long index, long fence,
870     int origin, int bound) {
871     this.rng = rng; this.index = index; this.fence = fence;
872     this.origin = origin; this.bound = bound;
873     }
874    
875     public RandomIntsSpliterator trySplit() {
876     long i = index, m = (i + fence) >>> 1;
877     return (m <= i) ? null :
878     new RandomIntsSpliterator(rng.split(), i, index = m, origin, bound);
879     }
880    
881     public long estimateSize() {
882     return fence - index;
883     }
884    
885     public int characteristics() {
886     return (Spliterator.SIZED | Spliterator.SUBSIZED |
887     Spliterator.NONNULL | Spliterator.IMMUTABLE);
888     }
889    
890     public boolean tryAdvance(IntConsumer consumer) {
891     if (consumer == null) throw new NullPointerException();
892     long i = index, f = fence;
893     if (i < f) {
894     consumer.accept(rng.internalNextInt(origin, bound));
895     index = i + 1;
896     return true;
897     }
898     return false;
899     }
900    
901     public void forEachRemaining(IntConsumer consumer) {
902     if (consumer == null) throw new NullPointerException();
903     long i = index, f = fence;
904     if (i < f) {
905     index = f;
906     SplittableRandom r = rng;
907     int o = origin, b = bound;
908     do {
909     consumer.accept(r.internalNextInt(o, b));
910     } while (++i < f);
911     }
912     }
913     }
914    
915     /**
916     * Spliterator for long streams.
917     */
918     private static final class RandomLongsSpliterator
919     implements Spliterator.OfLong {
920     final SplittableRandom rng;
921     long index;
922     final long fence;
923     final long origin;
924     final long bound;
925     RandomLongsSpliterator(SplittableRandom rng, long index, long fence,
926     long origin, long bound) {
927     this.rng = rng; this.index = index; this.fence = fence;
928     this.origin = origin; this.bound = bound;
929     }
930    
931     public RandomLongsSpliterator trySplit() {
932     long i = index, m = (i + fence) >>> 1;
933     return (m <= i) ? null :
934     new RandomLongsSpliterator(rng.split(), i, index = m, origin, bound);
935     }
936    
937     public long estimateSize() {
938     return fence - index;
939     }
940    
941     public int characteristics() {
942     return (Spliterator.SIZED | Spliterator.SUBSIZED |
943     Spliterator.NONNULL | Spliterator.IMMUTABLE);
944     }
945    
946     public boolean tryAdvance(LongConsumer consumer) {
947     if (consumer == null) throw new NullPointerException();
948     long i = index, f = fence;
949     if (i < f) {
950     consumer.accept(rng.internalNextLong(origin, bound));
951     index = i + 1;
952     return true;
953     }
954     return false;
955     }
956    
957     public void forEachRemaining(LongConsumer consumer) {
958     if (consumer == null) throw new NullPointerException();
959     long i = index, f = fence;
960     if (i < f) {
961     index = f;
962     SplittableRandom r = rng;
963     long o = origin, b = bound;
964     do {
965     consumer.accept(r.internalNextLong(o, b));
966     } while (++i < f);
967     }
968     }
969    
970     }
971    
972     /**
973     * Spliterator for double streams.
974     */
975     private static final class RandomDoublesSpliterator
976     implements Spliterator.OfDouble {
977     final SplittableRandom rng;
978     long index;
979     final long fence;
980     final double origin;
981     final double bound;
982     RandomDoublesSpliterator(SplittableRandom rng, long index, long fence,
983     double origin, double bound) {
984     this.rng = rng; this.index = index; this.fence = fence;
985     this.origin = origin; this.bound = bound;
986     }
987    
988     public RandomDoublesSpliterator trySplit() {
989     long i = index, m = (i + fence) >>> 1;
990     return (m <= i) ? null :
991     new RandomDoublesSpliterator(rng.split(), i, index = m, origin, bound);
992     }
993    
994     public long estimateSize() {
995     return fence - index;
996     }
997    
998     public int characteristics() {
999     return (Spliterator.SIZED | Spliterator.SUBSIZED |
1000     Spliterator.NONNULL | Spliterator.IMMUTABLE);
1001     }
1002    
1003     public boolean tryAdvance(DoubleConsumer consumer) {
1004     if (consumer == null) throw new NullPointerException();
1005     long i = index, f = fence;
1006     if (i < f) {
1007     consumer.accept(rng.internalNextDouble(origin, bound));
1008     index = i + 1;
1009     return true;
1010     }
1011     return false;
1012     }
1013    
1014     public void forEachRemaining(DoubleConsumer consumer) {
1015     if (consumer == null) throw new NullPointerException();
1016     long i = index, f = fence;
1017     if (i < f) {
1018     index = f;
1019     SplittableRandom r = rng;
1020     double o = origin, b = bound;
1021     do {
1022     consumer.accept(r.internalNextDouble(o, b));
1023     } while (++i < f);
1024     }
1025     }
1026     }
1027    
1028     }