ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.112
Committed: Sat Jul 20 16:50:04 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.111: +69 -40 lines
Log Message:
Ensure consistent insertion

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.102 import jsr166e.ForkJoinPool;
10    
11     import java.io.ObjectStreamField;
12     import java.io.Serializable;
13     import java.lang.reflect.ParameterizedType;
14     import java.lang.reflect.Type;
15 dl 1.112 import java.util.AbstractMap;
16 dl 1.24 import java.util.Arrays;
17 dl 1.1 import java.util.Collection;
18 dl 1.102 import java.util.Comparator;
19     import java.util.ConcurrentModificationException;
20     import java.util.Enumeration;
21     import java.util.HashMap;
22 dl 1.1 import java.util.Hashtable;
23     import java.util.Iterator;
24 dl 1.102 import java.util.Map;
25 dl 1.1 import java.util.NoSuchElementException;
26 dl 1.102 import java.util.Set;
27 dl 1.1 import java.util.concurrent.ConcurrentMap;
28 dl 1.102 import java.util.concurrent.atomic.AtomicReference;
29 dl 1.82 import java.util.concurrent.atomic.AtomicInteger;
30 dl 1.102 import java.util.concurrent.locks.LockSupport;
31     import java.util.concurrent.locks.ReentrantLock;
32 dl 1.79
33 dl 1.1 /**
34     * A hash table supporting full concurrency of retrievals and
35     * high expected concurrency for updates. This class obeys the
36     * same functional specification as {@link java.util.Hashtable}, and
37     * includes versions of methods corresponding to each method of
38     * {@code Hashtable}. However, even though all operations are
39     * thread-safe, retrieval operations do <em>not</em> entail locking,
40     * and there is <em>not</em> any support for locking the entire table
41     * in a way that prevents all access. This class is fully
42     * interoperable with {@code Hashtable} in programs that rely on its
43     * thread safety but not on its synchronization details.
44     *
45 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
46 dl 1.1 * block, so may overlap with update operations (including {@code put}
47     * and {@code remove}). Retrievals reflect the results of the most
48     * recently <em>completed</em> update operations holding upon their
49 dl 1.59 * onset. (More formally, an update operation for a given key bears a
50     * <em>happens-before</em> relation with any (non-null) retrieval for
51     * that key reporting the updated value.) For aggregate operations
52     * such as {@code putAll} and {@code clear}, concurrent retrievals may
53     * reflect insertion or removal of only some entries. Similarly,
54     * Iterators and Enumerations return elements reflecting the state of
55     * the hash table at some point at or since the creation of the
56     * iterator/enumeration. They do <em>not</em> throw {@link
57     * ConcurrentModificationException}. However, iterators are designed
58     * to be used by only one thread at a time. Bear in mind that the
59     * results of aggregate status methods including {@code size}, {@code
60     * isEmpty}, and {@code containsValue} are typically useful only when
61     * a map is not undergoing concurrent updates in other threads.
62     * Otherwise the results of these methods reflect transient states
63     * that may be adequate for monitoring or estimation purposes, but not
64     * for program control.
65 dl 1.1 *
66 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
67 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
68     * the same slot modulo the table size), with the expected average
69 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
70     * to a 0.75 load factor threshold for resizing). There may be much
71     * variance around this average as mappings are added and removed, but
72     * overall, this maintains a commonly accepted time/space tradeoff for
73     * hash tables. However, resizing this or any other kind of hash
74     * table may be a relatively slow operation. When possible, it is a
75     * good idea to provide a size estimate as an optional {@code
76 dl 1.16 * initialCapacity} constructor argument. An additional optional
77     * {@code loadFactor} constructor argument provides a further means of
78     * customizing initial table capacity by specifying the table density
79     * to be used in calculating the amount of space to allocate for the
80     * given number of elements. Also, for compatibility with previous
81     * versions of this class, constructors may optionally specify an
82     * expected {@code concurrencyLevel} as an additional hint for
83     * internal sizing. Note that using many keys with exactly the same
84 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
85 dl 1.102 * hash table. To ameliorate impact, when keys are {@link Comparable},
86     * this class may use comparison order among keys to help break ties.
87 dl 1.1 *
88 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90     * (using {@link #keySet(Object)} when only keys are of interest, and the
91     * mapped values are (perhaps transiently) not used or all take the
92     * same mapping value.
93     *
94 dl 1.1 * <p>This class and its views and iterators implement all of the
95     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96     * interfaces.
97     *
98 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
100     *
101 dl 1.102 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102     * operations that are designed
103     * to be safely, and often sensibly, applied even with maps that are
104     * being concurrently updated by other threads; for example, when
105     * computing a snapshot summary of the values in a shared registry.
106     * There are three kinds of operation, each with four forms, accepting
107     * functions with Keys, Values, Entries, and (Key, Value) arguments
108     * and/or return values. Because the elements of a ConcurrentHashMapV8
109     * are not ordered in any particular way, and may be processed in
110     * different orders in different parallel executions, the correctness
111     * of supplied functions should not depend on any ordering, or on any
112     * other objects or values that may transiently change while
113     * computation is in progress; and except for forEach actions, should
114     * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115     * objects do not support method {@code setValue}.
116 dl 1.70 *
117     * <ul>
118     * <li> forEach: Perform a given action on each element.
119     * A variant form applies a given transformation on each element
120     * before performing the action.</li>
121     *
122     * <li> search: Return the first available non-null result of
123     * applying a given function on each element; skipping further
124     * search when a result is found.</li>
125     *
126     * <li> reduce: Accumulate each element. The supplied reduction
127     * function cannot rely on ordering (more formally, it should be
128     * both associative and commutative). There are five variants:
129     *
130     * <ul>
131     *
132     * <li> Plain reductions. (There is not a form of this method for
133     * (key, value) function arguments since there is no corresponding
134     * return type.)</li>
135     *
136     * <li> Mapped reductions that accumulate the results of a given
137     * function applied to each element.</li>
138     *
139     * <li> Reductions to scalar doubles, longs, and ints, using a
140     * given basis value.</li>
141     *
142 dl 1.102 * </ul>
143 dl 1.70 * </li>
144     * </ul>
145 dl 1.102 *
146     * <p>These bulk operations accept a {@code parallelismThreshold}
147     * argument. Methods proceed sequentially if the current map size is
148     * estimated to be less than the given threshold. Using a value of
149     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
150     * of {@code 1} results in maximal parallelism by partitioning into
151     * enough subtasks to fully utilize the {@link
152     * ForkJoinPool#commonPool()} that is used for all parallel
153     * computations. Normally, you would initially choose one of these
154     * extreme values, and then measure performance of using in-between
155     * values that trade off overhead versus throughput.
156 dl 1.70 *
157     * <p>The concurrency properties of bulk operations follow
158     * from those of ConcurrentHashMapV8: Any non-null result returned
159     * from {@code get(key)} and related access methods bears a
160     * happens-before relation with the associated insertion or
161     * update. The result of any bulk operation reflects the
162     * composition of these per-element relations (but is not
163     * necessarily atomic with respect to the map as a whole unless it
164     * is somehow known to be quiescent). Conversely, because keys
165     * and values in the map are never null, null serves as a reliable
166     * atomic indicator of the current lack of any result. To
167     * maintain this property, null serves as an implicit basis for
168     * all non-scalar reduction operations. For the double, long, and
169     * int versions, the basis should be one that, when combined with
170     * any other value, returns that other value (more formally, it
171     * should be the identity element for the reduction). Most common
172     * reductions have these properties; for example, computing a sum
173     * with basis 0 or a minimum with basis MAX_VALUE.
174     *
175     * <p>Search and transformation functions provided as arguments
176     * should similarly return null to indicate the lack of any result
177     * (in which case it is not used). In the case of mapped
178     * reductions, this also enables transformations to serve as
179     * filters, returning null (or, in the case of primitive
180     * specializations, the identity basis) if the element should not
181     * be combined. You can create compound transformations and
182     * filterings by composing them yourself under this "null means
183     * there is nothing there now" rule before using them in search or
184     * reduce operations.
185     *
186     * <p>Methods accepting and/or returning Entry arguments maintain
187     * key-value associations. They may be useful for example when
188     * finding the key for the greatest value. Note that "plain" Entry
189     * arguments can be supplied using {@code new
190     * AbstractMap.SimpleEntry(k,v)}.
191     *
192 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
193 dl 1.70 * exception encountered in the application of a supplied
194     * function. Bear in mind when handling such exceptions that other
195     * concurrently executing functions could also have thrown
196     * exceptions, or would have done so if the first exception had
197     * not occurred.
198     *
199 dl 1.84 * <p>Speedups for parallel compared to sequential forms are common
200     * but not guaranteed. Parallel operations involving brief functions
201     * on small maps may execute more slowly than sequential forms if the
202     * underlying work to parallelize the computation is more expensive
203     * than the computation itself. Similarly, parallelization may not
204     * lead to much actual parallelism if all processors are busy
205     * performing unrelated tasks.
206 dl 1.70 *
207 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
208 dl 1.70 *
209     * <p><em>jsr166e note: During transition, this class
210     * uses nested functional interfaces with different names but the
211 jsr166 1.77 * same forms as those expected for JDK8.</em>
212 dl 1.70 *
213 dl 1.1 * <p>This class is a member of the
214     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215     * Java Collections Framework</a>.
216     *
217 jsr166 1.22 * @since 1.5
218 dl 1.1 * @author Doug Lea
219     * @param <K> the type of keys maintained by this map
220     * @param <V> the type of mapped values
221     */
222 dl 1.112 public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 jsr166 1.99 implements ConcurrentMap<K,V>, Serializable {
224 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
225    
226     /**
227 dl 1.102 * An object for traversing and partitioning elements of a source.
228     * This interface provides a subset of the functionality of JDK8
229     * java.util.Spliterator.
230     */
231     public static interface ConcurrentHashMapSpliterator<T> {
232 jsr166 1.103 /**
233 dl 1.102 * If possible, returns a new spliterator covering
234     * approximately one half of the elements, which will not be
235     * covered by this spliterator. Returns null if cannot be
236     * split.
237     */
238     ConcurrentHashMapSpliterator<T> trySplit();
239     /**
240     * Returns an estimate of the number of elements covered by
241     * this Spliterator.
242     */
243     long estimateSize();
244    
245     /** Applies the action to each untraversed element */
246     void forEachRemaining(Action<? super T> action);
247     /** If an element remains, applies the action and returns true. */
248     boolean tryAdvance(Action<? super T> action);
249 dl 1.41 }
250    
251 dl 1.102 // Sams
252     /** Interface describing a void action of one argument */
253     public interface Action<A> { void apply(A a); }
254     /** Interface describing a void action of two arguments */
255     public interface BiAction<A,B> { void apply(A a, B b); }
256     /** Interface describing a function of one argument */
257     public interface Fun<A,T> { T apply(A a); }
258     /** Interface describing a function of two arguments */
259     public interface BiFun<A,B,T> { T apply(A a, B b); }
260     /** Interface describing a function mapping its argument to a double */
261     public interface ObjectToDouble<A> { double apply(A a); }
262     /** Interface describing a function mapping its argument to a long */
263     public interface ObjectToLong<A> { long apply(A a); }
264     /** Interface describing a function mapping its argument to an int */
265     public interface ObjectToInt<A> {int apply(A a); }
266     /** Interface describing a function mapping two arguments to a double */
267     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268     /** Interface describing a function mapping two arguments to a long */
269     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270     /** Interface describing a function mapping two arguments to an int */
271     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272     /** Interface describing a function mapping two doubles to a double */
273     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274     /** Interface describing a function mapping two longs to a long */
275     public interface LongByLongToLong { long apply(long a, long b); }
276     /** Interface describing a function mapping two ints to an int */
277     public interface IntByIntToInt { int apply(int a, int b); }
278    
279 dl 1.1 /*
280     * Overview:
281     *
282     * The primary design goal of this hash table is to maintain
283     * concurrent readability (typically method get(), but also
284     * iterators and related methods) while minimizing update
285 dl 1.24 * contention. Secondary goals are to keep space consumption about
286     * the same or better than java.util.HashMap, and to support high
287     * initial insertion rates on an empty table by many threads.
288 dl 1.1 *
289 dl 1.102 * This map usually acts as a binned (bucketed) hash table. Each
290     * key-value mapping is held in a Node. Most nodes are instances
291     * of the basic Node class with hash, key, value, and next
292     * fields. However, various subclasses exist: TreeNodes are
293     * arranged in balanced trees, not lists. TreeBins hold the roots
294     * of sets of TreeNodes. ForwardingNodes are placed at the heads
295     * of bins during resizing. ReservationNodes are used as
296     * placeholders while establishing values in computeIfAbsent and
297     * related methods. The types TreeBin, ForwardingNode, and
298     * ReservationNode do not hold normal user keys, values, or
299     * hashes, and are readily distinguishable during search etc
300     * because they have negative hash fields and null key and value
301     * fields. (These special nodes are either uncommon or transient,
302     * so the impact of carrying around some unused fields is
303 jsr166 1.108 * insignificant.)
304 dl 1.1 *
305     * The table is lazily initialized to a power-of-two size upon the
306 dl 1.38 * first insertion. Each bin in the table normally contains a
307     * list of Nodes (most often, the list has only zero or one Node).
308     * Table accesses require volatile/atomic reads, writes, and
309     * CASes. Because there is no other way to arrange this without
310     * adding further indirections, we use intrinsics
311 dl 1.102 * (sun.misc.Unsafe) operations.
312 dl 1.24 *
313 dl 1.82 * We use the top (sign) bit of Node hash fields for control
314     * purposes -- it is available anyway because of addressing
315 dl 1.102 * constraints. Nodes with negative hash fields are specially
316     * handled or ignored in map methods.
317 dl 1.14 *
318 dl 1.27 * Insertion (via put or its variants) of the first node in an
319 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
320 dl 1.38 * by far the most common case for put operations under most
321     * key/hash distributions. Other update operations (insert,
322     * delete, and replace) require locks. We do not want to waste
323     * the space required to associate a distinct lock object with
324     * each bin, so instead use the first node of a bin list itself as
325 dl 1.82 * a lock. Locking support for these locks relies on builtin
326     * "synchronized" monitors.
327 dl 1.24 *
328     * Using the first node of a list as a lock does not by itself
329     * suffice though: When a node is locked, any update must first
330     * validate that it is still the first node after locking it, and
331     * retry if not. Because new nodes are always appended to lists,
332     * once a node is first in a bin, it remains first until deleted
333 dl 1.102 * or the bin becomes invalidated (upon resizing).
334 dl 1.14 *
335 dl 1.24 * The main disadvantage of per-bin locks is that other update
336 dl 1.14 * operations on other nodes in a bin list protected by the same
337     * lock can stall, for example when user equals() or mapping
338 dl 1.38 * functions take a long time. However, statistically, under
339     * random hash codes, this is not a common problem. Ideally, the
340     * frequency of nodes in bins follows a Poisson distribution
341 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
343     * of 0.75, although with a large variance because of resizing
344     * granularity. Ignoring variance, the expected occurrences of
345     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
346 dl 1.38 * first values are:
347 dl 1.16 *
348 dl 1.38 * 0: 0.60653066
349     * 1: 0.30326533
350     * 2: 0.07581633
351     * 3: 0.01263606
352     * 4: 0.00157952
353     * 5: 0.00015795
354     * 6: 0.00001316
355     * 7: 0.00000094
356     * 8: 0.00000006
357     * more: less than 1 in ten million
358 dl 1.16 *
359     * Lock contention probability for two threads accessing distinct
360 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
361     *
362     * Actual hash code distributions encountered in practice
363     * sometimes deviate significantly from uniform randomness. This
364     * includes the case when N > (1<<30), so some keys MUST collide.
365     * Similarly for dumb or hostile usages in which multiple keys are
366 dl 1.102 * designed to have identical hash codes or ones that differs only
367     * in masked-out high bits. So we use a secondary strategy that
368     * applies when the number of nodes in a bin exceeds a
369     * threshold. These TreeBins use a balanced tree to hold nodes (a
370     * specialized form of red-black trees), bounding search time to
371     * O(log N). Each search step in a TreeBin is at least twice as
372 dl 1.38 * slow as in a regular list, but given that N cannot exceed
373     * (1<<64) (before running out of addresses) this bounds search
374     * steps, lock hold times, etc, to reasonable constants (roughly
375     * 100 nodes inspected per operation worst case) so long as keys
376     * are Comparable (which is very common -- String, Long, etc).
377     * TreeBin nodes (TreeNodes) also maintain the same "next"
378     * traversal pointers as regular nodes, so can be traversed in
379     * iterators in the same way.
380 dl 1.1 *
381 dl 1.38 * The table is resized when occupancy exceeds a percentage
382 dl 1.82 * threshold (nominally, 0.75, but see below). Any thread
383     * noticing an overfull bin may assist in resizing after the
384     * initiating thread allocates and sets up the replacement
385     * array. However, rather than stalling, these other threads may
386     * proceed with insertions etc. The use of TreeBins shields us
387     * from the worst case effects of overfilling while resizes are in
388     * progress. Resizing proceeds by transferring bins, one by one,
389     * from the table to the next table. To enable concurrency, the
390     * next table must be (incrementally) prefilled with place-holders
391     * serving as reverse forwarders to the old table. Because we are
392     * using power-of-two expansion, the elements from each bin must
393     * either stay at same index, or move with a power of two
394     * offset. We eliminate unnecessary node creation by catching
395     * cases where old nodes can be reused because their next fields
396     * won't change. On average, only about one-sixth of them need
397     * cloning when a table doubles. The nodes they replace will be
398     * garbage collectable as soon as they are no longer referenced by
399     * any reader thread that may be in the midst of concurrently
400     * traversing table. Upon transfer, the old table bin contains
401     * only a special forwarding node (with hash field "MOVED") that
402     * contains the next table as its key. On encountering a
403     * forwarding node, access and update operations restart, using
404     * the new table.
405     *
406     * Each bin transfer requires its bin lock, which can stall
407     * waiting for locks while resizing. However, because other
408     * threads can join in and help resize rather than contend for
409     * locks, average aggregate waits become shorter as resizing
410     * progresses. The transfer operation must also ensure that all
411     * accessible bins in both the old and new table are usable by any
412     * traversal. This is arranged by proceeding from the last bin
413     * (table.length - 1) up towards the first. Upon seeing a
414     * forwarding node, traversals (see class Traverser) arrange to
415     * move to the new table without revisiting nodes. However, to
416     * ensure that no intervening nodes are skipped, bin splitting can
417     * only begin after the associated reverse-forwarders are in
418     * place.
419 dl 1.14 *
420 dl 1.24 * The traversal scheme also applies to partial traversals of
421 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
422 dl 1.41 * to support partitioned aggregate operations. Also, read-only
423     * operations give up if ever forwarded to a null table, which
424     * provides support for shutdown-style clearing, which is also not
425     * currently implemented.
426 dl 1.14 *
427     * Lazy table initialization minimizes footprint until first use,
428     * and also avoids resizings when the first operation is from a
429     * putAll, constructor with map argument, or deserialization.
430 dl 1.24 * These cases attempt to override the initial capacity settings,
431     * but harmlessly fail to take effect in cases of races.
432 dl 1.1 *
433 dl 1.82 * The element count is maintained using a specialization of
434     * LongAdder. We need to incorporate a specialization rather than
435     * just use a LongAdder in order to access implicit
436     * contention-sensing that leads to creation of multiple
437     * CounterCells. The counter mechanics avoid contention on
438     * updates but can encounter cache thrashing if read too
439     * frequently during concurrent access. To avoid reading so often,
440     * resizing under contention is attempted only upon adding to a
441     * bin already holding two or more nodes. Under uniform hash
442     * distributions, the probability of this occurring at threshold
443     * is around 13%, meaning that only about 1 in 8 puts check
444 dl 1.102 * threshold (and after resizing, many fewer do so).
445     *
446     * TreeBins use a special form of comparison for search and
447     * related operations (which is the main reason we cannot use
448     * existing collections such as TreeMaps). TreeBins contain
449     * Comparable elements, but may contain others, as well as
450 dl 1.112 * elements that are Comparable but not necessarily Comparable for
451     * the same T, so we cannot invoke compareTo among them. To handle
452     * this, the tree is ordered primarily by hash value, then by
453     * Comparable.compareTo order if applicable. On lookup at a node,
454     * if elements are not comparable or compare as 0 then both left
455     * and right children may need to be searched in the case of tied
456     * hash values. (This corresponds to the full list search that
457     * would be necessary if all elements were non-Comparable and had
458     * tied hashes.) On insertion, to keep a total ordering (or as
459     * close as is required here) across rebalancings, we compare
460     * classes and identityHashCodes as tie-breakers. The red-black
461     * balancing code is updated from pre-jdk-collections
462 dl 1.102 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
463     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
464     * Algorithms" (CLR).
465     *
466     * TreeBins also require an additional locking mechanism. While
467     * list traversal is always possible by readers even during
468 jsr166 1.108 * updates, tree traversal is not, mainly because of tree-rotations
469 dl 1.102 * that may change the root node and/or its linkages. TreeBins
470     * include a simple read-write lock mechanism parasitic on the
471     * main bin-synchronization strategy: Structural adjustments
472     * associated with an insertion or removal are already bin-locked
473     * (and so cannot conflict with other writers) but must wait for
474     * ongoing readers to finish. Since there can be only one such
475     * waiter, we use a simple scheme using a single "waiter" field to
476     * block writers. However, readers need never block. If the root
477     * lock is held, they proceed along the slow traversal path (via
478     * next-pointers) until the lock becomes available or the list is
479     * exhausted, whichever comes first. These cases are not fast, but
480     * maximize aggregate expected throughput.
481 dl 1.14 *
482     * Maintaining API and serialization compatibility with previous
483     * versions of this class introduces several oddities. Mainly: We
484     * leave untouched but unused constructor arguments refering to
485 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
486     * but apply it only to initial table capacity (which is the only
487     * time that we can guarantee to honor it.) We also declare an
488     * unused "Segment" class that is instantiated in minimal form
489     * only when serializing.
490 dl 1.102 *
491 dl 1.112 * Also, solely for compatibility with previous versions of this
492     * class, it extends AbstractMap, even though all of its methods
493     * are overridden, so it is just useless baggage.
494     *
495 dl 1.102 * This file is organized to make things a little easier to follow
496     * while reading than they might otherwise: First the main static
497     * declarations and utilities, then fields, then main public
498     * methods (with a few factorings of multiple public methods into
499     * internal ones), then sizing methods, trees, traversers, and
500     * bulk operations.
501 dl 1.1 */
502    
503     /* ---------------- Constants -------------- */
504    
505     /**
506 dl 1.16 * The largest possible table capacity. This value must be
507     * exactly 1<<30 to stay within Java array allocation and indexing
508 dl 1.24 * bounds for power of two table sizes, and is further required
509     * because the top two bits of 32bit hash fields are used for
510     * control purposes.
511 dl 1.1 */
512 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
513 dl 1.1
514     /**
515 dl 1.14 * The default initial table capacity. Must be a power of 2
516     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
517 dl 1.1 */
518 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
519 dl 1.1
520     /**
521 dl 1.24 * The largest possible (non-power of two) array size.
522     * Needed by toArray and related methods.
523     */
524     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
525    
526     /**
527     * The default concurrency level for this table. Unused but
528     * defined for compatibility with previous versions of this class.
529     */
530     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
531    
532     /**
533 dl 1.16 * The load factor for this table. Overrides of this value in
534     * constructors affect only the initial table capacity. The
535 dl 1.24 * actual floating point value isn't normally used -- it is
536     * simpler to use expressions such as {@code n - (n >>> 2)} for
537     * the associated resizing threshold.
538 dl 1.1 */
539 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
540 dl 1.1
541     /**
542 dl 1.38 * The bin count threshold for using a tree rather than list for a
543 dl 1.102 * bin. Bins are converted to trees when adding an element to a
544     * bin with at least this many nodes. The value must be greater
545     * than 2, and should be at least 8 to mesh with assumptions in
546     * tree removal about conversion back to plain bins upon
547     * shrinkage.
548     */
549     static final int TREEIFY_THRESHOLD = 8;
550    
551     /**
552     * The bin count threshold for untreeifying a (split) bin during a
553     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
554     * most 6 to mesh with shrinkage detection under removal.
555     */
556     static final int UNTREEIFY_THRESHOLD = 6;
557    
558     /**
559     * The smallest table capacity for which bins may be treeified.
560     * (Otherwise the table is resized if too many nodes in a bin.)
561     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
562     * conflicts between resizing and treeification thresholds.
563 dl 1.38 */
564 dl 1.102 static final int MIN_TREEIFY_CAPACITY = 64;
565 dl 1.38
566 dl 1.82 /**
567     * Minimum number of rebinnings per transfer step. Ranges are
568     * subdivided to allow multiple resizer threads. This value
569     * serves as a lower bound to avoid resizers encountering
570     * excessive memory contention. The value should be at least
571     * DEFAULT_CAPACITY.
572     */
573     private static final int MIN_TRANSFER_STRIDE = 16;
574    
575 dl 1.24 /*
576 dl 1.82 * Encodings for Node hash fields. See above for explanation.
577 dl 1.1 */
578 dl 1.109 static final int MOVED = -1; // hash for forwarding nodes
579     static final int TREEBIN = -2; // hash for roots of trees
580     static final int RESERVED = -3; // hash for transient reservations
581 dl 1.82 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
582    
583     /** Number of CPUS, to place bounds on some sizings */
584     static final int NCPU = Runtime.getRuntime().availableProcessors();
585    
586 dl 1.102 /** For serialization compatibility. */
587     private static final ObjectStreamField[] serialPersistentFields = {
588     new ObjectStreamField("segments", Segment[].class),
589     new ObjectStreamField("segmentMask", Integer.TYPE),
590     new ObjectStreamField("segmentShift", Integer.TYPE)
591     };
592    
593     /* ---------------- Nodes -------------- */
594    
595     /**
596     * Key-value entry. This class is never exported out as a
597     * user-mutable Map.Entry (i.e., one supporting setValue; see
598     * MapEntry below), but can be used for read-only traversals used
599 jsr166 1.108 * in bulk tasks. Subclasses of Node with a negative hash field
600 dl 1.102 * are special, and contain null keys and values (but are never
601     * exported). Otherwise, keys and vals are never null.
602     */
603     static class Node<K,V> implements Map.Entry<K,V> {
604     final int hash;
605     final K key;
606     volatile V val;
607 dl 1.109 volatile Node<K,V> next;
608 dl 1.102
609     Node(int hash, K key, V val, Node<K,V> next) {
610     this.hash = hash;
611     this.key = key;
612     this.val = val;
613     this.next = next;
614     }
615    
616     public final K getKey() { return key; }
617     public final V getValue() { return val; }
618     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
619     public final String toString(){ return key + "=" + val; }
620     public final V setValue(V value) {
621     throw new UnsupportedOperationException();
622     }
623 dl 1.82
624 dl 1.102 public final boolean equals(Object o) {
625     Object k, v, u; Map.Entry<?,?> e;
626     return ((o instanceof Map.Entry) &&
627     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628     (v = e.getValue()) != null &&
629     (k == key || k.equals(key)) &&
630     (v == (u = val) || v.equals(u)));
631     }
632 dl 1.82
633 dl 1.102 /**
634     * Virtualized support for map.get(); overridden in subclasses.
635     */
636     Node<K,V> find(int h, Object k) {
637     Node<K,V> e = this;
638     if (k != null) {
639     do {
640     K ek;
641     if (e.hash == h &&
642     ((ek = e.key) == k || (ek != null && k.equals(ek))))
643     return e;
644     } while ((e = e.next) != null);
645     }
646     return null;
647     }
648 dl 1.82 }
649    
650 dl 1.102 /* ---------------- Static utilities -------------- */
651    
652 dl 1.82 /**
653 dl 1.102 * Spreads (XORs) higher bits of hash to lower and also forces top
654     * bit to 0. Because the table uses power-of-two masking, sets of
655     * hashes that vary only in bits above the current mask will
656     * always collide. (Among known examples are sets of Float keys
657     * holding consecutive whole numbers in small tables.) So we
658     * apply a transform that spreads the impact of higher bits
659     * downward. There is a tradeoff between speed, utility, and
660     * quality of bit-spreading. Because many common sets of hashes
661     * are already reasonably distributed (so don't benefit from
662     * spreading), and because we use trees to handle large sets of
663     * collisions in bins, we just XOR some shifted bits in the
664     * cheapest possible way to reduce systematic lossage, as well as
665     * to incorporate impact of the highest bits that would otherwise
666     * never be used in index calculations because of table bounds.
667 dl 1.82 */
668 dl 1.102 static final int spread(int h) {
669     return (h ^ (h >>> 16)) & HASH_BITS;
670 dl 1.82 }
671    
672     /**
673 dl 1.102 * Returns a power of two table size for the given desired capacity.
674     * See Hackers Delight, sec 3.2
675 dl 1.82 */
676 dl 1.102 private static final int tableSizeFor(int c) {
677     int n = c - 1;
678     n |= n >>> 1;
679     n |= n >>> 2;
680     n |= n >>> 4;
681     n |= n >>> 8;
682     n |= n >>> 16;
683     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684     }
685 dl 1.82
686     /**
687 dl 1.102 * Returns x's Class if it is of the form "class C implements
688     * Comparable<C>", else null.
689 dl 1.82 */
690 dl 1.102 static Class<?> comparableClassFor(Object x) {
691     if (x instanceof Comparable) {
692     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693     if ((c = x.getClass()) == String.class) // bypass checks
694     return c;
695     if ((ts = c.getGenericInterfaces()) != null) {
696     for (int i = 0; i < ts.length; ++i) {
697     if (((t = ts[i]) instanceof ParameterizedType) &&
698     ((p = (ParameterizedType)t).getRawType() ==
699     Comparable.class) &&
700     (as = p.getActualTypeArguments()) != null &&
701     as.length == 1 && as[0] == c) // type arg is c
702     return c;
703     }
704     }
705     }
706     return null;
707     }
708 dl 1.82
709     /**
710 dl 1.102 * Returns k.compareTo(x) if x matches kc (k's screened comparable
711     * class), else 0.
712 dl 1.82 */
713 dl 1.102 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714     static int compareComparables(Class<?> kc, Object k, Object x) {
715     return (x == null || x.getClass() != kc ? 0 :
716     ((Comparable)k).compareTo(x));
717     }
718    
719     /* ---------------- Table element access -------------- */
720    
721     /*
722     * Volatile access methods are used for table elements as well as
723     * elements of in-progress next table while resizing. All uses of
724     * the tab arguments must be null checked by callers. All callers
725     * also paranoically precheck that tab's length is not zero (or an
726     * equivalent check), thus ensuring that any index argument taking
727     * the form of a hash value anded with (length - 1) is a valid
728     * index. Note that, to be correct wrt arbitrary concurrency
729     * errors by users, these checks must operate on local variables,
730     * which accounts for some odd-looking inline assignments below.
731     * Note that calls to setTabAt always occur within locked regions,
732 dl 1.109 * and so in principle require only release ordering, not need
733     * full volatile semantics, but are currently coded as volatile
734     * writes to be conservative.
735 dl 1.102 */
736    
737     @SuppressWarnings("unchecked")
738     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
739     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
740     }
741 dl 1.24
742 dl 1.102 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
743     Node<K,V> c, Node<K,V> v) {
744     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
745     }
746 jsr166 1.103
747 dl 1.102 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
748 dl 1.109 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
749 dl 1.102 }
750 jsr166 1.103
751 dl 1.24 /* ---------------- Fields -------------- */
752    
753     /**
754     * The array of bins. Lazily initialized upon first insertion.
755     * Size is always a power of two. Accessed directly by iterators.
756     */
757 dl 1.102 transient volatile Node<K,V>[] table;
758 dl 1.14
759 dl 1.16 /**
760 dl 1.82 * The next table to use; non-null only while resizing.
761     */
762 dl 1.102 private transient volatile Node<K,V>[] nextTable;
763 dl 1.82
764     /**
765     * Base counter value, used mainly when there is no contention,
766     * but also as a fallback during table initialization
767     * races. Updated via CAS.
768 dl 1.16 */
769 dl 1.82 private transient volatile long baseCount;
770 dl 1.24
771     /**
772     * Table initialization and resizing control. When negative, the
773 dl 1.82 * table is being initialized or resized: -1 for initialization,
774     * else -(1 + the number of active resizing threads). Otherwise,
775     * when table is null, holds the initial table size to use upon
776     * creation, or 0 for default. After initialization, holds the
777     * next element count value upon which to resize the table.
778 dl 1.24 */
779     private transient volatile int sizeCtl;
780    
781 dl 1.82 /**
782     * The next table index (plus one) to split while resizing.
783     */
784     private transient volatile int transferIndex;
785    
786     /**
787     * The least available table index to split while resizing.
788     */
789     private transient volatile int transferOrigin;
790    
791     /**
792 dl 1.102 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
793 dl 1.82 */
794 dl 1.102 private transient volatile int cellsBusy;
795 dl 1.82
796     /**
797     * Table of counter cells. When non-null, size is a power of 2.
798     */
799     private transient volatile CounterCell[] counterCells;
800    
801 dl 1.24 // views
802 dl 1.70 private transient KeySetView<K,V> keySet;
803 dl 1.75 private transient ValuesView<K,V> values;
804     private transient EntrySetView<K,V> entrySet;
805 dl 1.24
806 dl 1.16
807 dl 1.102 /* ---------------- Public operations -------------- */
808 dl 1.38
809 dl 1.102 /**
810     * Creates a new, empty map with the default initial table size (16).
811     */
812     public ConcurrentHashMapV8() {
813 dl 1.38 }
814    
815 dl 1.102 /**
816     * Creates a new, empty map with an initial table size
817     * accommodating the specified number of elements without the need
818     * to dynamically resize.
819     *
820     * @param initialCapacity The implementation performs internal
821     * sizing to accommodate this many elements.
822     * @throws IllegalArgumentException if the initial capacity of
823     * elements is negative
824     */
825     public ConcurrentHashMapV8(int initialCapacity) {
826     if (initialCapacity < 0)
827     throw new IllegalArgumentException();
828     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
829     MAXIMUM_CAPACITY :
830     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
831     this.sizeCtl = cap;
832 dl 1.38 }
833    
834 dl 1.102 /**
835     * Creates a new map with the same mappings as the given map.
836     *
837     * @param m the map
838     */
839     public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
840     this.sizeCtl = DEFAULT_CAPACITY;
841     putAll(m);
842 dl 1.38 }
843    
844 dl 1.102 /**
845     * Creates a new, empty map with an initial table size based on
846     * the given number of elements ({@code initialCapacity}) and
847     * initial table density ({@code loadFactor}).
848     *
849     * @param initialCapacity the initial capacity. The implementation
850     * performs internal sizing to accommodate this many elements,
851     * given the specified load factor.
852     * @param loadFactor the load factor (table density) for
853     * establishing the initial table size
854     * @throws IllegalArgumentException if the initial capacity of
855     * elements is negative or the load factor is nonpositive
856     *
857     * @since 1.6
858     */
859     public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
860     this(initialCapacity, loadFactor, 1);
861     }
862 dl 1.1
863     /**
864 dl 1.102 * Creates a new, empty map with an initial table size based on
865     * the given number of elements ({@code initialCapacity}), table
866     * density ({@code loadFactor}), and number of concurrently
867     * updating threads ({@code concurrencyLevel}).
868     *
869     * @param initialCapacity the initial capacity. The implementation
870     * performs internal sizing to accommodate this many elements,
871     * given the specified load factor.
872     * @param loadFactor the load factor (table density) for
873     * establishing the initial table size
874     * @param concurrencyLevel the estimated number of concurrently
875     * updating threads. The implementation may use this value as
876     * a sizing hint.
877     * @throws IllegalArgumentException if the initial capacity is
878     * negative or the load factor or concurrencyLevel are
879     * nonpositive
880 dl 1.1 */
881 dl 1.102 public ConcurrentHashMapV8(int initialCapacity,
882     float loadFactor, int concurrencyLevel) {
883     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
884     throw new IllegalArgumentException();
885     if (initialCapacity < concurrencyLevel) // Use at least as many bins
886     initialCapacity = concurrencyLevel; // as estimated threads
887     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
888     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
889     MAXIMUM_CAPACITY : tableSizeFor((int)size);
890     this.sizeCtl = cap;
891 dl 1.24 }
892 dl 1.1
893 dl 1.102 // Original (since JDK1.2) Map methods
894 dl 1.38
895     /**
896 dl 1.102 * {@inheritDoc}
897 dl 1.38 */
898 dl 1.102 public int size() {
899     long n = sumCount();
900     return ((n < 0L) ? 0 :
901     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
902     (int)n);
903 dl 1.38 }
904 dl 1.1
905 dl 1.38 /**
906 dl 1.102 * {@inheritDoc}
907     */
908     public boolean isEmpty() {
909     return sumCount() <= 0L; // ignore transient negative values
910     }
911    
912     /**
913     * Returns the value to which the specified key is mapped,
914     * or {@code null} if this map contains no mapping for the key.
915 dl 1.38 *
916 dl 1.102 * <p>More formally, if this map contains a mapping from a key
917     * {@code k} to a value {@code v} such that {@code key.equals(k)},
918     * then this method returns {@code v}; otherwise it returns
919     * {@code null}. (There can be at most one such mapping.)
920 dl 1.38 *
921 dl 1.102 * @throws NullPointerException if the specified key is null
922 dl 1.1 */
923 dl 1.102 public V get(Object key) {
924     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
925     int h = spread(key.hashCode());
926     if ((tab = table) != null && (n = tab.length) > 0 &&
927     (e = tabAt(tab, (n - 1) & h)) != null) {
928     if ((eh = e.hash) == h) {
929     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
930     return e.val;
931     }
932     else if (eh < 0)
933     return (p = e.find(h, key)) != null ? p.val : null;
934     while ((e = e.next) != null) {
935     if (e.hash == h &&
936     ((ek = e.key) == key || (ek != null && key.equals(ek))))
937     return e.val;
938 dl 1.41 }
939     }
940 dl 1.102 return null;
941     }
942 dl 1.41
943 dl 1.102 /**
944     * Tests if the specified object is a key in this table.
945     *
946     * @param key possible key
947     * @return {@code true} if and only if the specified object
948     * is a key in this table, as determined by the
949     * {@code equals} method; {@code false} otherwise
950     * @throws NullPointerException if the specified key is null
951     */
952     public boolean containsKey(Object key) {
953     return get(key) != null;
954     }
955 dl 1.41
956 dl 1.102 /**
957     * Returns {@code true} if this map maps one or more keys to the
958     * specified value. Note: This method may require a full traversal
959     * of the map, and is much slower than method {@code containsKey}.
960     *
961     * @param value value whose presence in this map is to be tested
962     * @return {@code true} if this map maps one or more keys to the
963     * specified value
964     * @throws NullPointerException if the specified value is null
965     */
966     public boolean containsValue(Object value) {
967     if (value == null)
968     throw new NullPointerException();
969     Node<K,V>[] t;
970     if ((t = table) != null) {
971     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
972     for (Node<K,V> p; (p = it.advance()) != null; ) {
973     V v;
974     if ((v = p.val) == value || (v != null && value.equals(v)))
975     return true;
976 dl 1.38 }
977     }
978 dl 1.102 return false;
979     }
980 dl 1.38
981 dl 1.102 /**
982     * Maps the specified key to the specified value in this table.
983     * Neither the key nor the value can be null.
984     *
985     * <p>The value can be retrieved by calling the {@code get} method
986     * with a key that is equal to the original key.
987     *
988     * @param key key with which the specified value is to be associated
989     * @param value value to be associated with the specified key
990     * @return the previous value associated with {@code key}, or
991     * {@code null} if there was no mapping for {@code key}
992     * @throws NullPointerException if the specified key or value is null
993     */
994     public V put(K key, V value) {
995     return putVal(key, value, false);
996     }
997 dl 1.38
998 dl 1.102 /** Implementation for put and putIfAbsent */
999     final V putVal(K key, V value, boolean onlyIfAbsent) {
1000     if (key == null || value == null) throw new NullPointerException();
1001     int hash = spread(key.hashCode());
1002     int binCount = 0;
1003     for (Node<K,V>[] tab = table;;) {
1004     Node<K,V> f; int n, i, fh;
1005     if (tab == null || (n = tab.length) == 0)
1006     tab = initTable();
1007     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1008     if (casTabAt(tab, i, null,
1009     new Node<K,V>(hash, key, value, null)))
1010     break; // no lock when adding to empty bin
1011 dl 1.38 }
1012 dl 1.102 else if ((fh = f.hash) == MOVED)
1013     tab = helpTransfer(tab, f);
1014 dl 1.38 else {
1015 dl 1.102 V oldVal = null;
1016     synchronized (f) {
1017     if (tabAt(tab, i) == f) {
1018     if (fh >= 0) {
1019     binCount = 1;
1020     for (Node<K,V> e = f;; ++binCount) {
1021     K ek;
1022     if (e.hash == hash &&
1023     ((ek = e.key) == key ||
1024     (ek != null && key.equals(ek)))) {
1025     oldVal = e.val;
1026     if (!onlyIfAbsent)
1027     e.val = value;
1028     break;
1029 dl 1.41 }
1030 dl 1.102 Node<K,V> pred = e;
1031     if ((e = e.next) == null) {
1032     pred.next = new Node<K,V>(hash, key,
1033     value, null);
1034     break;
1035 dl 1.41 }
1036 dl 1.38 }
1037     }
1038 dl 1.102 else if (f instanceof TreeBin) {
1039     Node<K,V> p;
1040     binCount = 2;
1041     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1042     value)) != null) {
1043     oldVal = p.val;
1044     if (!onlyIfAbsent)
1045     p.val = value;
1046 dl 1.38 }
1047     }
1048     }
1049     }
1050 dl 1.102 if (binCount != 0) {
1051     if (binCount >= TREEIFY_THRESHOLD)
1052     treeifyBin(tab, i);
1053     if (oldVal != null)
1054     return oldVal;
1055     break;
1056     }
1057 dl 1.41 }
1058 dl 1.38 }
1059 dl 1.102 addCount(1L, binCount);
1060     return null;
1061 dl 1.1 }
1062    
1063 dl 1.14 /**
1064 dl 1.102 * Copies all of the mappings from the specified map to this one.
1065     * These mappings replace any mappings that this map had for any of the
1066     * keys currently in the specified map.
1067     *
1068     * @param m mappings to be stored in this map
1069 dl 1.14 */
1070 dl 1.102 public void putAll(Map<? extends K, ? extends V> m) {
1071     tryPresize(m.size());
1072     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1073     putVal(e.getKey(), e.getValue(), false);
1074 dl 1.38 }
1075    
1076     /**
1077 dl 1.102 * Removes the key (and its corresponding value) from this map.
1078     * This method does nothing if the key is not in the map.
1079     *
1080     * @param key the key that needs to be removed
1081     * @return the previous value associated with {@code key}, or
1082     * {@code null} if there was no mapping for {@code key}
1083     * @throws NullPointerException if the specified key is null
1084 dl 1.38 */
1085 dl 1.102 public V remove(Object key) {
1086     return replaceNode(key, null, null);
1087 dl 1.1 }
1088    
1089 dl 1.27 /**
1090     * Implementation for the four public remove/replace methods:
1091     * Replaces node value with v, conditional upon match of cv if
1092     * non-null. If resulting value is null, delete.
1093     */
1094 dl 1.102 final V replaceNode(Object key, V value, Object cv) {
1095     int hash = spread(key.hashCode());
1096     for (Node<K,V>[] tab = table;;) {
1097     Node<K,V> f; int n, i, fh;
1098     if (tab == null || (n = tab.length) == 0 ||
1099     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1100 dl 1.27 break;
1101 dl 1.102 else if ((fh = f.hash) == MOVED)
1102     tab = helpTransfer(tab, f);
1103     else {
1104     V oldVal = null;
1105     boolean validated = false;
1106     synchronized (f) {
1107     if (tabAt(tab, i) == f) {
1108     if (fh >= 0) {
1109     validated = true;
1110     for (Node<K,V> e = f, pred = null;;) {
1111     K ek;
1112     if (e.hash == hash &&
1113     ((ek = e.key) == key ||
1114     (ek != null && key.equals(ek)))) {
1115     V ev = e.val;
1116     if (cv == null || cv == ev ||
1117     (ev != null && cv.equals(ev))) {
1118     oldVal = ev;
1119     if (value != null)
1120     e.val = value;
1121     else if (pred != null)
1122     pred.next = e.next;
1123     else
1124     setTabAt(tab, i, e.next);
1125     }
1126     break;
1127     }
1128     pred = e;
1129     if ((e = e.next) == null)
1130     break;
1131     }
1132     }
1133     else if (f instanceof TreeBin) {
1134 dl 1.38 validated = true;
1135 dl 1.102 TreeBin<K,V> t = (TreeBin<K,V>)f;
1136     TreeNode<K,V> r, p;
1137     if ((r = t.root) != null &&
1138     (p = r.findTreeNode(hash, key, null)) != null) {
1139 dl 1.84 V pv = p.val;
1140 dl 1.102 if (cv == null || cv == pv ||
1141     (pv != null && cv.equals(pv))) {
1142 dl 1.38 oldVal = pv;
1143 dl 1.102 if (value != null)
1144     p.val = value;
1145     else if (t.removeTreeNode(p))
1146     setTabAt(tab, i, untreeify(t.first));
1147 dl 1.38 }
1148     }
1149     }
1150     }
1151 dl 1.102 }
1152     if (validated) {
1153     if (oldVal != null) {
1154     if (value == null)
1155 dl 1.82 addCount(-1L, -1);
1156 dl 1.102 return oldVal;
1157 dl 1.38 }
1158 dl 1.102 break;
1159 dl 1.38 }
1160     }
1161 dl 1.102 }
1162     return null;
1163     }
1164    
1165     /**
1166     * Removes all of the mappings from this map.
1167     */
1168     public void clear() {
1169     long delta = 0L; // negative number of deletions
1170     int i = 0;
1171     Node<K,V>[] tab = table;
1172     while (tab != null && i < tab.length) {
1173     int fh;
1174     Node<K,V> f = tabAt(tab, i);
1175     if (f == null)
1176     ++i;
1177     else if ((fh = f.hash) == MOVED) {
1178     tab = helpTransfer(tab, f);
1179     i = 0; // restart
1180     }
1181 dl 1.82 else {
1182 jsr166 1.83 synchronized (f) {
1183 dl 1.27 if (tabAt(tab, i) == f) {
1184 dl 1.102 Node<K,V> p = (fh >= 0 ? f :
1185     (f instanceof TreeBin) ?
1186     ((TreeBin<K,V>)f).first : null);
1187     while (p != null) {
1188     --delta;
1189     p = p.next;
1190 dl 1.27 }
1191 dl 1.102 setTabAt(tab, i++, null);
1192 dl 1.27 }
1193     }
1194     }
1195     }
1196 dl 1.102 if (delta != 0L)
1197     addCount(delta, -1);
1198     }
1199    
1200     /**
1201     * Returns a {@link Set} view of the keys contained in this map.
1202     * The set is backed by the map, so changes to the map are
1203     * reflected in the set, and vice-versa. The set supports element
1204     * removal, which removes the corresponding mapping from this map,
1205     * via the {@code Iterator.remove}, {@code Set.remove},
1206     * {@code removeAll}, {@code retainAll}, and {@code clear}
1207     * operations. It does not support the {@code add} or
1208     * {@code addAll} operations.
1209     *
1210     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211     * that will never throw {@link ConcurrentModificationException},
1212     * and guarantees to traverse elements as they existed upon
1213     * construction of the iterator, and may (but is not guaranteed to)
1214     * reflect any modifications subsequent to construction.
1215     *
1216     * @return the set view
1217     */
1218     public KeySetView<K,V> keySet() {
1219     KeySetView<K,V> ks;
1220     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1221     }
1222    
1223     /**
1224     * Returns a {@link Collection} view of the values contained in this map.
1225     * The collection is backed by the map, so changes to the map are
1226     * reflected in the collection, and vice-versa. The collection
1227     * supports element removal, which removes the corresponding
1228     * mapping from this map, via the {@code Iterator.remove},
1229     * {@code Collection.remove}, {@code removeAll},
1230     * {@code retainAll}, and {@code clear} operations. It does not
1231     * support the {@code add} or {@code addAll} operations.
1232     *
1233     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1234     * that will never throw {@link ConcurrentModificationException},
1235     * and guarantees to traverse elements as they existed upon
1236     * construction of the iterator, and may (but is not guaranteed to)
1237     * reflect any modifications subsequent to construction.
1238     *
1239     * @return the collection view
1240     */
1241     public Collection<V> values() {
1242     ValuesView<K,V> vs;
1243     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1244     }
1245    
1246     /**
1247     * Returns a {@link Set} view of the mappings contained in this map.
1248     * The set is backed by the map, so changes to the map are
1249     * reflected in the set, and vice-versa. The set supports element
1250     * removal, which removes the corresponding mapping from the map,
1251     * via the {@code Iterator.remove}, {@code Set.remove},
1252     * {@code removeAll}, {@code retainAll}, and {@code clear}
1253     * operations.
1254     *
1255     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1256     * that will never throw {@link ConcurrentModificationException},
1257     * and guarantees to traverse elements as they existed upon
1258     * construction of the iterator, and may (but is not guaranteed to)
1259     * reflect any modifications subsequent to construction.
1260     *
1261     * @return the set view
1262     */
1263     public Set<Map.Entry<K,V>> entrySet() {
1264     EntrySetView<K,V> es;
1265     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1266 dl 1.27 }
1267    
1268 dl 1.102 /**
1269     * Returns the hash code value for this {@link Map}, i.e.,
1270     * the sum of, for each key-value pair in the map,
1271     * {@code key.hashCode() ^ value.hashCode()}.
1272     *
1273     * @return the hash code value for this map
1274 dl 1.27 */
1275 dl 1.102 public int hashCode() {
1276     int h = 0;
1277     Node<K,V>[] t;
1278     if ((t = table) != null) {
1279     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1280     for (Node<K,V> p; (p = it.advance()) != null; )
1281     h += p.key.hashCode() ^ p.val.hashCode();
1282     }
1283     return h;
1284     }
1285 dl 1.27
1286 dl 1.102 /**
1287     * Returns a string representation of this map. The string
1288     * representation consists of a list of key-value mappings (in no
1289     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1290     * mappings are separated by the characters {@code ", "} (comma
1291     * and space). Each key-value mapping is rendered as the key
1292     * followed by an equals sign ("{@code =}") followed by the
1293     * associated value.
1294     *
1295     * @return a string representation of this map
1296     */
1297     public String toString() {
1298     Node<K,V>[] t;
1299     int f = (t = table) == null ? 0 : t.length;
1300     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301     StringBuilder sb = new StringBuilder();
1302     sb.append('{');
1303     Node<K,V> p;
1304     if ((p = it.advance()) != null) {
1305     for (;;) {
1306     K k = p.key;
1307     V v = p.val;
1308     sb.append(k == this ? "(this Map)" : k);
1309     sb.append('=');
1310     sb.append(v == this ? "(this Map)" : v);
1311     if ((p = it.advance()) == null)
1312     break;
1313     sb.append(',').append(' ');
1314 dl 1.14 }
1315 dl 1.102 }
1316     return sb.append('}').toString();
1317     }
1318    
1319     /**
1320     * Compares the specified object with this map for equality.
1321     * Returns {@code true} if the given object is a map with the same
1322     * mappings as this map. This operation may return misleading
1323     * results if either map is concurrently modified during execution
1324     * of this method.
1325     *
1326     * @param o object to be compared for equality with this map
1327     * @return {@code true} if the specified object is equal to this map
1328     */
1329     public boolean equals(Object o) {
1330     if (o != this) {
1331     if (!(o instanceof Map))
1332     return false;
1333     Map<?,?> m = (Map<?,?>) o;
1334     Node<K,V>[] t;
1335     int f = (t = table) == null ? 0 : t.length;
1336     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1337     for (Node<K,V> p; (p = it.advance()) != null; ) {
1338     V val = p.val;
1339     Object v = m.get(p.key);
1340     if (v == null || (v != val && !v.equals(val)))
1341     return false;
1342 dl 1.38 }
1343 dl 1.102 for (Map.Entry<?,?> e : m.entrySet()) {
1344     Object mk, mv, v;
1345     if ((mk = e.getKey()) == null ||
1346     (mv = e.getValue()) == null ||
1347     (v = get(mk)) == null ||
1348     (mv != v && !mv.equals(v)))
1349     return false;
1350 dl 1.1 }
1351     }
1352 dl 1.102 return true;
1353     }
1354    
1355     /**
1356     * Stripped-down version of helper class used in previous version,
1357     * declared for the sake of serialization compatibility
1358     */
1359     static class Segment<K,V> extends ReentrantLock implements Serializable {
1360     private static final long serialVersionUID = 2249069246763182397L;
1361     final float loadFactor;
1362     Segment(float lf) { this.loadFactor = lf; }
1363 dl 1.27 }
1364    
1365 dl 1.102 /**
1366     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1367     * stream (i.e., serializes it).
1368     * @param s the stream
1369     * @serialData
1370     * the key (Object) and value (Object)
1371     * for each key-value mapping, followed by a null pair.
1372     * The key-value mappings are emitted in no particular order.
1373     */
1374     private void writeObject(java.io.ObjectOutputStream s)
1375     throws java.io.IOException {
1376     // For serialization compatibility
1377     // Emulate segment calculation from previous version of this class
1378     int sshift = 0;
1379     int ssize = 1;
1380     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381     ++sshift;
1382     ssize <<= 1;
1383     }
1384     int segmentShift = 32 - sshift;
1385     int segmentMask = ssize - 1;
1386     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1387     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1388     for (int i = 0; i < segments.length; ++i)
1389     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1390     s.putFields().put("segments", segments);
1391     s.putFields().put("segmentShift", segmentShift);
1392     s.putFields().put("segmentMask", segmentMask);
1393     s.writeFields();
1394    
1395     Node<K,V>[] t;
1396     if ((t = table) != null) {
1397     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1398     for (Node<K,V> p; (p = it.advance()) != null; ) {
1399     s.writeObject(p.key);
1400     s.writeObject(p.val);
1401 dl 1.27 }
1402 dl 1.102 }
1403     s.writeObject(null);
1404     s.writeObject(null);
1405     segments = null; // throw away
1406     }
1407    
1408     /**
1409     * Reconstitutes the instance from a stream (that is, deserializes it).
1410     * @param s the stream
1411     */
1412     private void readObject(java.io.ObjectInputStream s)
1413     throws java.io.IOException, ClassNotFoundException {
1414     /*
1415     * To improve performance in typical cases, we create nodes
1416     * while reading, then place in table once size is known.
1417     * However, we must also validate uniqueness and deal with
1418     * overpopulated bins while doing so, which requires
1419     * specialized versions of putVal mechanics.
1420     */
1421     sizeCtl = -1; // force exclusion for table construction
1422     s.defaultReadObject();
1423     long size = 0L;
1424     Node<K,V> p = null;
1425     for (;;) {
1426     @SuppressWarnings("unchecked") K k = (K) s.readObject();
1427     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1428     if (k != null && v != null) {
1429     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1430     ++size;
1431 dl 1.38 }
1432 dl 1.102 else
1433     break;
1434     }
1435     if (size == 0L)
1436     sizeCtl = 0;
1437     else {
1438     int n;
1439     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1440     n = MAXIMUM_CAPACITY;
1441 dl 1.27 else {
1442 dl 1.102 int sz = (int)size;
1443     n = tableSizeFor(sz + (sz >>> 1) + 1);
1444     }
1445     @SuppressWarnings({"rawtypes","unchecked"})
1446     Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1447     int mask = n - 1;
1448     long added = 0L;
1449     while (p != null) {
1450     boolean insertAtFront;
1451     Node<K,V> next = p.next, first;
1452     int h = p.hash, j = h & mask;
1453     if ((first = tabAt(tab, j)) == null)
1454     insertAtFront = true;
1455     else {
1456     K k = p.key;
1457     if (first.hash < 0) {
1458     TreeBin<K,V> t = (TreeBin<K,V>)first;
1459     if (t.putTreeVal(h, k, p.val) == null)
1460     ++added;
1461     insertAtFront = false;
1462     }
1463     else {
1464     int binCount = 0;
1465     insertAtFront = true;
1466     Node<K,V> q; K qk;
1467     for (q = first; q != null; q = q.next) {
1468     if (q.hash == h &&
1469     ((qk = q.key) == k ||
1470     (qk != null && k.equals(qk)))) {
1471     insertAtFront = false;
1472 dl 1.82 break;
1473     }
1474 dl 1.102 ++binCount;
1475     }
1476     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1477     insertAtFront = false;
1478     ++added;
1479     p.next = first;
1480     TreeNode<K,V> hd = null, tl = null;
1481     for (q = p; q != null; q = q.next) {
1482     TreeNode<K,V> t = new TreeNode<K,V>
1483     (q.hash, q.key, q.val, null, null);
1484     if ((t.prev = tl) == null)
1485     hd = t;
1486     else
1487     tl.next = t;
1488     tl = t;
1489 dl 1.27 }
1490 dl 1.102 setTabAt(tab, j, new TreeBin<K,V>(hd));
1491 dl 1.27 }
1492 dl 1.38 }
1493 dl 1.82 }
1494 dl 1.102 if (insertAtFront) {
1495     ++added;
1496     p.next = first;
1497     setTabAt(tab, j, p);
1498     }
1499     p = next;
1500     }
1501     table = tab;
1502     sizeCtl = n - (n >>> 2);
1503     baseCount = added;
1504     }
1505     }
1506    
1507     // ConcurrentMap methods
1508    
1509     /**
1510     * {@inheritDoc}
1511     *
1512     * @return the previous value associated with the specified key,
1513     * or {@code null} if there was no mapping for the key
1514     * @throws NullPointerException if the specified key or value is null
1515     */
1516     public V putIfAbsent(K key, V value) {
1517     return putVal(key, value, true);
1518     }
1519    
1520     /**
1521     * {@inheritDoc}
1522     *
1523     * @throws NullPointerException if the specified key is null
1524     */
1525     public boolean remove(Object key, Object value) {
1526     if (key == null)
1527     throw new NullPointerException();
1528     return value != null && replaceNode(key, null, value) != null;
1529     }
1530    
1531     /**
1532     * {@inheritDoc}
1533     *
1534     * @throws NullPointerException if any of the arguments are null
1535     */
1536     public boolean replace(K key, V oldValue, V newValue) {
1537     if (key == null || oldValue == null || newValue == null)
1538     throw new NullPointerException();
1539     return replaceNode(key, newValue, oldValue) != null;
1540     }
1541    
1542     /**
1543     * {@inheritDoc}
1544     *
1545     * @return the previous value associated with the specified key,
1546     * or {@code null} if there was no mapping for the key
1547     * @throws NullPointerException if the specified key or value is null
1548     */
1549     public V replace(K key, V value) {
1550     if (key == null || value == null)
1551     throw new NullPointerException();
1552     return replaceNode(key, value, null);
1553     }
1554    
1555     // Overrides of JDK8+ Map extension method defaults
1556    
1557     /**
1558     * Returns the value to which the specified key is mapped, or the
1559     * given default value if this map contains no mapping for the
1560     * key.
1561     *
1562     * @param key the key whose associated value is to be returned
1563     * @param defaultValue the value to return if this map contains
1564     * no mapping for the given key
1565     * @return the mapping for the key, if present; else the default value
1566     * @throws NullPointerException if the specified key is null
1567     */
1568     public V getOrDefault(Object key, V defaultValue) {
1569     V v;
1570     return (v = get(key)) == null ? defaultValue : v;
1571     }
1572    
1573     public void forEach(BiAction<? super K, ? super V> action) {
1574     if (action == null) throw new NullPointerException();
1575     Node<K,V>[] t;
1576     if ((t = table) != null) {
1577     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578     for (Node<K,V> p; (p = it.advance()) != null; ) {
1579     action.apply(p.key, p.val);
1580     }
1581     }
1582     }
1583    
1584     public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1585     if (function == null) throw new NullPointerException();
1586     Node<K,V>[] t;
1587     if ((t = table) != null) {
1588     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1589     for (Node<K,V> p; (p = it.advance()) != null; ) {
1590     V oldValue = p.val;
1591     for (K key = p.key;;) {
1592     V newValue = function.apply(key, oldValue);
1593     if (newValue == null)
1594     throw new NullPointerException();
1595     if (replaceNode(key, newValue, oldValue) != null ||
1596     (oldValue = get(key)) == null)
1597     break;
1598 dl 1.1 }
1599     }
1600     }
1601     }
1602    
1603 dl 1.102 /**
1604     * If the specified key is not already associated with a value,
1605     * attempts to compute its value using the given mapping function
1606     * and enters it into this map unless {@code null}. The entire
1607     * method invocation is performed atomically, so the function is
1608     * applied at most once per key. Some attempted update operations
1609     * on this map by other threads may be blocked while computation
1610     * is in progress, so the computation should be short and simple,
1611     * and must not attempt to update any other mappings of this map.
1612     *
1613     * @param key key with which the specified value is to be associated
1614     * @param mappingFunction the function to compute a value
1615     * @return the current (existing or computed) value associated with
1616     * the specified key, or null if the computed value is null
1617     * @throws NullPointerException if the specified key or mappingFunction
1618     * is null
1619     * @throws IllegalStateException if the computation detectably
1620     * attempts a recursive update to this map that would
1621     * otherwise never complete
1622     * @throws RuntimeException or Error if the mappingFunction does so,
1623     * in which case the mapping is left unestablished
1624     */
1625     public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1626     if (key == null || mappingFunction == null)
1627 dl 1.82 throw new NullPointerException();
1628 dl 1.102 int h = spread(key.hashCode());
1629 dl 1.84 V val = null;
1630 dl 1.102 int binCount = 0;
1631     for (Node<K,V>[] tab = table;;) {
1632     Node<K,V> f; int n, i, fh;
1633     if (tab == null || (n = tab.length) == 0)
1634 dl 1.24 tab = initTable();
1635 dl 1.102 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1636     Node<K,V> r = new ReservationNode<K,V>();
1637     synchronized (r) {
1638     if (casTabAt(tab, i, null, r)) {
1639     binCount = 1;
1640     Node<K,V> node = null;
1641 dl 1.82 try {
1642 dl 1.102 if ((val = mappingFunction.apply(key)) != null)
1643     node = new Node<K,V>(h, key, val, null);
1644 dl 1.82 } finally {
1645 dl 1.102 setTabAt(tab, i, node);
1646 dl 1.1 }
1647     }
1648     }
1649 dl 1.102 if (binCount != 0)
1650 dl 1.10 break;
1651 dl 1.1 }
1652 dl 1.102 else if ((fh = f.hash) == MOVED)
1653     tab = helpTransfer(tab, f);
1654     else {
1655     boolean added = false;
1656     synchronized (f) {
1657     if (tabAt(tab, i) == f) {
1658     if (fh >= 0) {
1659     binCount = 1;
1660     for (Node<K,V> e = f;; ++binCount) {
1661     K ek; V ev;
1662     if (e.hash == h &&
1663     ((ek = e.key) == key ||
1664     (ek != null && key.equals(ek)))) {
1665     val = e.val;
1666     break;
1667     }
1668     Node<K,V> pred = e;
1669     if ((e = e.next) == null) {
1670     if ((val = mappingFunction.apply(key)) != null) {
1671     added = true;
1672     pred.next = new Node<K,V>(h, key, val, null);
1673     }
1674     break;
1675 dl 1.38 }
1676     }
1677 dl 1.102 }
1678     else if (f instanceof TreeBin) {
1679     binCount = 2;
1680     TreeBin<K,V> t = (TreeBin<K,V>)f;
1681     TreeNode<K,V> r, p;
1682     if ((r = t.root) != null &&
1683     (p = r.findTreeNode(h, key, null)) != null)
1684     val = p.val;
1685     else if ((val = mappingFunction.apply(key)) != null) {
1686     added = true;
1687     t.putTreeVal(h, key, val);
1688 dl 1.41 }
1689 dl 1.38 }
1690     }
1691     }
1692 dl 1.102 if (binCount != 0) {
1693     if (binCount >= TREEIFY_THRESHOLD)
1694     treeifyBin(tab, i);
1695     if (!added)
1696     return val;
1697     break;
1698     }
1699 dl 1.38 }
1700 dl 1.102 }
1701     if (val != null)
1702     addCount(1L, binCount);
1703     return val;
1704     }
1705    
1706     /**
1707     * If the value for the specified key is present, attempts to
1708     * compute a new mapping given the key and its current mapped
1709     * value. The entire method invocation is performed atomically.
1710     * Some attempted update operations on this map by other threads
1711     * may be blocked while computation is in progress, so the
1712     * computation should be short and simple, and must not attempt to
1713     * update any other mappings of this map.
1714     *
1715     * @param key key with which a value may be associated
1716     * @param remappingFunction the function to compute a value
1717     * @return the new value associated with the specified key, or null if none
1718     * @throws NullPointerException if the specified key or remappingFunction
1719     * is null
1720     * @throws IllegalStateException if the computation detectably
1721     * attempts a recursive update to this map that would
1722     * otherwise never complete
1723     * @throws RuntimeException or Error if the remappingFunction does so,
1724     * in which case the mapping is unchanged
1725     */
1726     public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1727     if (key == null || remappingFunction == null)
1728     throw new NullPointerException();
1729     int h = spread(key.hashCode());
1730     V val = null;
1731     int delta = 0;
1732     int binCount = 0;
1733     for (Node<K,V>[] tab = table;;) {
1734     Node<K,V> f; int n, i, fh;
1735     if (tab == null || (n = tab.length) == 0)
1736     tab = initTable();
1737     else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1738     break;
1739     else if ((fh = f.hash) == MOVED)
1740     tab = helpTransfer(tab, f);
1741 dl 1.82 else {
1742 jsr166 1.83 synchronized (f) {
1743 dl 1.24 if (tabAt(tab, i) == f) {
1744 dl 1.102 if (fh >= 0) {
1745     binCount = 1;
1746     for (Node<K,V> e = f, pred = null;; ++binCount) {
1747     K ek;
1748     if (e.hash == h &&
1749     ((ek = e.key) == key ||
1750     (ek != null && key.equals(ek)))) {
1751     val = remappingFunction.apply(key, e.val);
1752     if (val != null)
1753     e.val = val;
1754     else {
1755     delta = -1;
1756     Node<K,V> en = e.next;
1757     if (pred != null)
1758     pred.next = en;
1759     else
1760     setTabAt(tab, i, en);
1761     }
1762     break;
1763     }
1764     pred = e;
1765     if ((e = e.next) == null)
1766     break;
1767     }
1768     }
1769     else if (f instanceof TreeBin) {
1770     binCount = 2;
1771     TreeBin<K,V> t = (TreeBin<K,V>)f;
1772     TreeNode<K,V> r, p;
1773     if ((r = t.root) != null &&
1774     (p = r.findTreeNode(h, key, null)) != null) {
1775     val = remappingFunction.apply(key, p.val);
1776 dl 1.27 if (val != null)
1777 dl 1.102 p.val = val;
1778 dl 1.41 else {
1779     delta = -1;
1780 dl 1.102 if (t.removeTreeNode(p))
1781     setTabAt(tab, i, untreeify(t.first));
1782 dl 1.1 }
1783     }
1784     }
1785     }
1786     }
1787 dl 1.102 if (binCount != 0)
1788 dl 1.10 break;
1789 dl 1.1 }
1790 dl 1.10 }
1791 dl 1.82 if (delta != 0)
1792 dl 1.102 addCount((long)delta, binCount);
1793 dl 1.84 return val;
1794 dl 1.1 }
1795    
1796 dl 1.102 /**
1797     * Attempts to compute a mapping for the specified key and its
1798     * current mapped value (or {@code null} if there is no current
1799     * mapping). The entire method invocation is performed atomically.
1800     * Some attempted update operations on this map by other threads
1801     * may be blocked while computation is in progress, so the
1802     * computation should be short and simple, and must not attempt to
1803     * update any other mappings of this Map.
1804     *
1805     * @param key key with which the specified value is to be associated
1806     * @param remappingFunction the function to compute a value
1807     * @return the new value associated with the specified key, or null if none
1808     * @throws NullPointerException if the specified key or remappingFunction
1809     * is null
1810     * @throws IllegalStateException if the computation detectably
1811     * attempts a recursive update to this map that would
1812     * otherwise never complete
1813     * @throws RuntimeException or Error if the remappingFunction does so,
1814     * in which case the mapping is unchanged
1815     */
1816     public V compute(K key,
1817     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1818     if (key == null || remappingFunction == null)
1819 dl 1.82 throw new NullPointerException();
1820 dl 1.102 int h = spread(key.hashCode());
1821 dl 1.84 V val = null;
1822 dl 1.52 int delta = 0;
1823 dl 1.102 int binCount = 0;
1824     for (Node<K,V>[] tab = table;;) {
1825     Node<K,V> f; int n, i, fh;
1826     if (tab == null || (n = tab.length) == 0)
1827 dl 1.52 tab = initTable();
1828 dl 1.102 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1829     Node<K,V> r = new ReservationNode<K,V>();
1830     synchronized (r) {
1831     if (casTabAt(tab, i, null, r)) {
1832     binCount = 1;
1833     Node<K,V> node = null;
1834     try {
1835     if ((val = remappingFunction.apply(key, null)) != null) {
1836     delta = 1;
1837     node = new Node<K,V>(h, key, val, null);
1838     }
1839     } finally {
1840     setTabAt(tab, i, node);
1841     }
1842     }
1843     }
1844     if (binCount != 0)
1845 dl 1.52 break;
1846     }
1847 dl 1.102 else if ((fh = f.hash) == MOVED)
1848     tab = helpTransfer(tab, f);
1849     else {
1850     synchronized (f) {
1851     if (tabAt(tab, i) == f) {
1852     if (fh >= 0) {
1853     binCount = 1;
1854     for (Node<K,V> e = f, pred = null;; ++binCount) {
1855     K ek;
1856     if (e.hash == h &&
1857     ((ek = e.key) == key ||
1858     (ek != null && key.equals(ek)))) {
1859     val = remappingFunction.apply(key, e.val);
1860     if (val != null)
1861     e.val = val;
1862     else {
1863     delta = -1;
1864     Node<K,V> en = e.next;
1865     if (pred != null)
1866     pred.next = en;
1867     else
1868     setTabAt(tab, i, en);
1869     }
1870     break;
1871     }
1872     pred = e;
1873     if ((e = e.next) == null) {
1874     val = remappingFunction.apply(key, null);
1875     if (val != null) {
1876     delta = 1;
1877     pred.next =
1878     new Node<K,V>(h, key, val, null);
1879     }
1880     break;
1881     }
1882     }
1883     }
1884     else if (f instanceof TreeBin) {
1885     binCount = 1;
1886     TreeBin<K,V> t = (TreeBin<K,V>)f;
1887     TreeNode<K,V> r, p;
1888     if ((r = t.root) != null)
1889     p = r.findTreeNode(h, key, null);
1890     else
1891     p = null;
1892     V pv = (p == null) ? null : p.val;
1893     val = remappingFunction.apply(key, pv);
1894 dl 1.52 if (val != null) {
1895     if (p != null)
1896     p.val = val;
1897     else {
1898     delta = 1;
1899 dl 1.102 t.putTreeVal(h, key, val);
1900 dl 1.52 }
1901     }
1902     else if (p != null) {
1903     delta = -1;
1904 dl 1.102 if (t.removeTreeNode(p))
1905     setTabAt(tab, i, untreeify(t.first));
1906 dl 1.52 }
1907     }
1908     }
1909     }
1910 dl 1.102 if (binCount != 0) {
1911     if (binCount >= TREEIFY_THRESHOLD)
1912     treeifyBin(tab, i);
1913     break;
1914 dl 1.52 }
1915     }
1916     }
1917 dl 1.82 if (delta != 0)
1918 dl 1.102 addCount((long)delta, binCount);
1919 dl 1.84 return val;
1920 dl 1.52 }
1921    
1922 dl 1.102 /**
1923     * If the specified key is not already associated with a
1924     * (non-null) value, associates it with the given value.
1925     * Otherwise, replaces the value with the results of the given
1926     * remapping function, or removes if {@code null}. The entire
1927     * method invocation is performed atomically. Some attempted
1928     * update operations on this map by other threads may be blocked
1929     * while computation is in progress, so the computation should be
1930     * short and simple, and must not attempt to update any other
1931     * mappings of this Map.
1932     *
1933     * @param key key with which the specified value is to be associated
1934     * @param value the value to use if absent
1935     * @param remappingFunction the function to recompute a value if present
1936     * @return the new value associated with the specified key, or null if none
1937     * @throws NullPointerException if the specified key or the
1938     * remappingFunction is null
1939     * @throws RuntimeException or Error if the remappingFunction does so,
1940     * in which case the mapping is unchanged
1941     */
1942     public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1943     if (key == null || value == null || remappingFunction == null)
1944     throw new NullPointerException();
1945     int h = spread(key.hashCode());
1946     V val = null;
1947     int delta = 0;
1948     int binCount = 0;
1949     for (Node<K,V>[] tab = table;;) {
1950     Node<K,V> f; int n, i, fh;
1951     if (tab == null || (n = tab.length) == 0)
1952     tab = initTable();
1953     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1954     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1955     delta = 1;
1956     val = value;
1957 dl 1.27 break;
1958     }
1959 dl 1.102 }
1960     else if ((fh = f.hash) == MOVED)
1961     tab = helpTransfer(tab, f);
1962     else {
1963     synchronized (f) {
1964     if (tabAt(tab, i) == f) {
1965     if (fh >= 0) {
1966     binCount = 1;
1967     for (Node<K,V> e = f, pred = null;; ++binCount) {
1968     K ek;
1969     if (e.hash == h &&
1970     ((ek = e.key) == key ||
1971     (ek != null && key.equals(ek)))) {
1972     val = remappingFunction.apply(e.val, value);
1973     if (val != null)
1974     e.val = val;
1975 dl 1.38 else {
1976 dl 1.102 delta = -1;
1977     Node<K,V> en = e.next;
1978     if (pred != null)
1979     pred.next = en;
1980     else
1981     setTabAt(tab, i, en);
1982 dl 1.38 }
1983 dl 1.102 break;
1984     }
1985     pred = e;
1986     if ((e = e.next) == null) {
1987     delta = 1;
1988     val = value;
1989     pred.next =
1990     new Node<K,V>(h, key, val, null);
1991     break;
1992 dl 1.38 }
1993     }
1994     }
1995 dl 1.102 else if (f instanceof TreeBin) {
1996     binCount = 2;
1997     TreeBin<K,V> t = (TreeBin<K,V>)f;
1998     TreeNode<K,V> r = t.root;
1999     TreeNode<K,V> p = (r == null) ? null :
2000     r.findTreeNode(h, key, null);
2001     val = (p == null) ? value :
2002     remappingFunction.apply(p.val, value);
2003     if (val != null) {
2004     if (p != null)
2005     p.val = val;
2006     else {
2007     delta = 1;
2008     t.putTreeVal(h, key, val);
2009 dl 1.27 }
2010     }
2011 dl 1.102 else if (p != null) {
2012     delta = -1;
2013     if (t.removeTreeNode(p))
2014     setTabAt(tab, i, untreeify(t.first));
2015 dl 1.90 }
2016 dl 1.24 }
2017     }
2018 dl 1.1 }
2019 dl 1.102 if (binCount != 0) {
2020     if (binCount >= TREEIFY_THRESHOLD)
2021     treeifyBin(tab, i);
2022     break;
2023     }
2024 dl 1.1 }
2025     }
2026 dl 1.102 if (delta != 0)
2027     addCount((long)delta, binCount);
2028     return val;
2029 dl 1.1 }
2030    
2031 dl 1.102 // Hashtable legacy methods
2032    
2033 dl 1.82 /**
2034 dl 1.102 * Legacy method testing if some key maps into the specified value
2035     * in this table. This method is identical in functionality to
2036     * {@link #containsValue(Object)}, and exists solely to ensure
2037     * full compatibility with class {@link java.util.Hashtable},
2038     * which supported this method prior to introduction of the
2039     * Java Collections framework.
2040     *
2041     * @param value a value to search for
2042     * @return {@code true} if and only if some key maps to the
2043     * {@code value} argument in this table as
2044     * determined by the {@code equals} method;
2045     * {@code false} otherwise
2046     * @throws NullPointerException if the specified value is null
2047     */
2048     @Deprecated public boolean contains(Object value) {
2049     return containsValue(value);
2050     }
2051    
2052     /**
2053     * Returns an enumeration of the keys in this table.
2054     *
2055     * @return an enumeration of the keys in this table
2056     * @see #keySet()
2057     */
2058     public Enumeration<K> keys() {
2059     Node<K,V>[] t;
2060     int f = (t = table) == null ? 0 : t.length;
2061     return new KeyIterator<K,V>(t, f, 0, f, this);
2062     }
2063    
2064     /**
2065     * Returns an enumeration of the values in this table.
2066     *
2067     * @return an enumeration of the values in this table
2068     * @see #values()
2069     */
2070     public Enumeration<V> elements() {
2071     Node<K,V>[] t;
2072     int f = (t = table) == null ? 0 : t.length;
2073     return new ValueIterator<K,V>(t, f, 0, f, this);
2074     }
2075    
2076     // ConcurrentHashMapV8-only methods
2077    
2078     /**
2079     * Returns the number of mappings. This method should be used
2080     * instead of {@link #size} because a ConcurrentHashMapV8 may
2081     * contain more mappings than can be represented as an int. The
2082     * value returned is an estimate; the actual count may differ if
2083     * there are concurrent insertions or removals.
2084     *
2085     * @return the number of mappings
2086     * @since 1.8
2087     */
2088     public long mappingCount() {
2089     long n = sumCount();
2090     return (n < 0L) ? 0L : n; // ignore transient negative values
2091     }
2092    
2093     /**
2094     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2095     * from the given type to {@code Boolean.TRUE}.
2096     *
2097     * @return the new set
2098     * @since 1.8
2099     */
2100     public static <K> KeySetView<K,Boolean> newKeySet() {
2101     return new KeySetView<K,Boolean>
2102     (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2103     }
2104    
2105     /**
2106     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2107     * from the given type to {@code Boolean.TRUE}.
2108     *
2109     * @param initialCapacity The implementation performs internal
2110     * sizing to accommodate this many elements.
2111 jsr166 1.111 * @return the new set
2112 dl 1.102 * @throws IllegalArgumentException if the initial capacity of
2113     * elements is negative
2114     * @since 1.8
2115     */
2116     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2117     return new KeySetView<K,Boolean>
2118     (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2119     }
2120    
2121     /**
2122     * Returns a {@link Set} view of the keys in this map, using the
2123     * given common mapped value for any additions (i.e., {@link
2124     * Collection#add} and {@link Collection#addAll(Collection)}).
2125     * This is of course only appropriate if it is acceptable to use
2126     * the same value for all additions from this view.
2127     *
2128     * @param mappedValue the mapped value to use for any additions
2129     * @return the set view
2130     * @throws NullPointerException if the mappedValue is null
2131 dl 1.82 */
2132 dl 1.102 public KeySetView<K,V> keySet(V mappedValue) {
2133     if (mappedValue == null)
2134     throw new NullPointerException();
2135     return new KeySetView<K,V>(this, mappedValue);
2136     }
2137    
2138     /* ---------------- Special Nodes -------------- */
2139    
2140     /**
2141     * A node inserted at head of bins during transfer operations.
2142     */
2143     static final class ForwardingNode<K,V> extends Node<K,V> {
2144     final Node<K,V>[] nextTable;
2145     ForwardingNode(Node<K,V>[] tab) {
2146     super(MOVED, null, null, null);
2147     this.nextTable = tab;
2148     }
2149    
2150     Node<K,V> find(int h, Object k) {
2151 dl 1.110 // loop to avoid arbitrarily deep recursion on forwarding nodes
2152     outer: for (Node<K,V>[] tab = nextTable;;) {
2153     Node<K,V> e; int n;
2154     if (k == null || tab == null || (n = tab.length) == 0 ||
2155     (e = tabAt(tab, (n - 1) & h)) == null)
2156     return null;
2157     for (;;) {
2158 dl 1.102 int eh; K ek;
2159     if ((eh = e.hash) == h &&
2160     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2161     return e;
2162 dl 1.110 if (eh < 0) {
2163     if (e instanceof ForwardingNode) {
2164     tab = ((ForwardingNode<K,V>)e).nextTable;
2165     continue outer;
2166     }
2167     else
2168     return e.find(h, k);
2169     }
2170     if ((e = e.next) == null)
2171     return null;
2172     }
2173 dl 1.82 }
2174     }
2175     }
2176    
2177 dl 1.24 /**
2178 dl 1.102 * A place-holder node used in computeIfAbsent and compute
2179 dl 1.24 */
2180 dl 1.102 static final class ReservationNode<K,V> extends Node<K,V> {
2181     ReservationNode() {
2182     super(RESERVED, null, null, null);
2183     }
2184    
2185     Node<K,V> find(int h, Object k) {
2186     return null;
2187     }
2188 dl 1.24 }
2189    
2190 dl 1.102 /* ---------------- Table Initialization and Resizing -------------- */
2191    
2192 dl 1.24 /**
2193     * Initializes table, using the size recorded in sizeCtl.
2194     */
2195 dl 1.102 private final Node<K,V>[] initTable() {
2196     Node<K,V>[] tab; int sc;
2197     while ((tab = table) == null || tab.length == 0) {
2198 dl 1.24 if ((sc = sizeCtl) < 0)
2199     Thread.yield(); // lost initialization race; just spin
2200 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2201 dl 1.24 try {
2202 dl 1.102 if ((tab = table) == null || tab.length == 0) {
2203 dl 1.24 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2204 dl 1.102 @SuppressWarnings({"rawtypes","unchecked"})
2205     Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2206     table = tab = nt;
2207 dl 1.27 sc = n - (n >>> 2);
2208 dl 1.24 }
2209     } finally {
2210     sizeCtl = sc;
2211     }
2212     break;
2213     }
2214     }
2215     return tab;
2216     }
2217    
2218     /**
2219 dl 1.82 * Adds to count, and if table is too small and not already
2220     * resizing, initiates transfer. If already resizing, helps
2221     * perform transfer if work is available. Rechecks occupancy
2222     * after a transfer to see if another resize is already needed
2223     * because resizings are lagging additions.
2224     *
2225     * @param x the count to add
2226     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2227     */
2228     private final void addCount(long x, int check) {
2229     CounterCell[] as; long b, s;
2230     if ((as = counterCells) != null ||
2231     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2232     CounterHashCode hc; CounterCell a; long v; int m;
2233     boolean uncontended = true;
2234     if ((hc = threadCounterHashCode.get()) == null ||
2235     as == null || (m = as.length - 1) < 0 ||
2236     (a = as[m & hc.code]) == null ||
2237     !(uncontended =
2238     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2239     fullAddCount(x, hc, uncontended);
2240     return;
2241     }
2242     if (check <= 1)
2243     return;
2244     s = sumCount();
2245     }
2246     if (check >= 0) {
2247 dl 1.102 Node<K,V>[] tab, nt; int sc;
2248 dl 1.82 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2249     tab.length < MAXIMUM_CAPACITY) {
2250     if (sc < 0) {
2251     if (sc == -1 || transferIndex <= transferOrigin ||
2252     (nt = nextTable) == null)
2253     break;
2254     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2255     transfer(tab, nt);
2256 dl 1.24 }
2257 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2258     transfer(tab, null);
2259     s = sumCount();
2260 dl 1.24 }
2261     }
2262     }
2263    
2264 dl 1.27 /**
2265 dl 1.102 * Helps transfer if a resize is in progress.
2266     */
2267     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2268     Node<K,V>[] nextTab; int sc;
2269     if ((f instanceof ForwardingNode) &&
2270     (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2271     if (nextTab == nextTable && tab == table &&
2272     transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2273     U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2274     transfer(tab, nextTab);
2275     return nextTab;
2276     }
2277     return table;
2278     }
2279    
2280     /**
2281 dl 1.27 * Tries to presize table to accommodate the given number of elements.
2282     *
2283     * @param size number of elements (doesn't need to be perfectly accurate)
2284     */
2285 dl 1.102 private final void tryPresize(int size) {
2286 dl 1.27 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2287     tableSizeFor(size + (size >>> 1) + 1);
2288     int sc;
2289     while ((sc = sizeCtl) >= 0) {
2290 dl 1.102 Node<K,V>[] tab = table; int n;
2291 dl 1.27 if (tab == null || (n = tab.length) == 0) {
2292 jsr166 1.30 n = (sc > c) ? sc : c;
2293 dl 1.82 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2294 dl 1.27 try {
2295     if (table == tab) {
2296 dl 1.102 @SuppressWarnings({"rawtypes","unchecked"})
2297     Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2298     table = nt;
2299 dl 1.27 sc = n - (n >>> 2);
2300     }
2301     } finally {
2302     sizeCtl = sc;
2303     }
2304     }
2305     }
2306     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2307     break;
2308 dl 1.82 else if (tab == table &&
2309     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2310     transfer(tab, null);
2311 dl 1.27 }
2312     }
2313    
2314 jsr166 1.92 /**
2315 dl 1.24 * Moves and/or copies the nodes in each bin to new table. See
2316     * above for explanation.
2317     */
2318 dl 1.102 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2319 dl 1.82 int n = tab.length, stride;
2320     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2321     stride = MIN_TRANSFER_STRIDE; // subdivide range
2322     if (nextTab == null) { // initiating
2323     try {
2324 dl 1.102 @SuppressWarnings({"rawtypes","unchecked"})
2325     Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2326     nextTab = nt;
2327 jsr166 1.83 } catch (Throwable ex) { // try to cope with OOME
2328 dl 1.82 sizeCtl = Integer.MAX_VALUE;
2329     return;
2330     }
2331     nextTable = nextTab;
2332     transferOrigin = n;
2333     transferIndex = n;
2334 dl 1.102 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2335 dl 1.82 for (int k = n; k > 0;) { // progressively reveal ready slots
2336 jsr166 1.83 int nextk = (k > stride) ? k - stride : 0;
2337 dl 1.82 for (int m = nextk; m < k; ++m)
2338     nextTab[m] = rev;
2339     for (int m = n + nextk; m < n + k; ++m)
2340     nextTab[m] = rev;
2341     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2342     }
2343     }
2344     int nextn = nextTab.length;
2345 dl 1.102 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2346 dl 1.82 boolean advance = true;
2347 dl 1.110 boolean finishing = false; // to ensure sweep before committing nextTab
2348 dl 1.82 for (int i = 0, bound = 0;;) {
2349 dl 1.102 int nextIndex, nextBound, fh; Node<K,V> f;
2350 dl 1.82 while (advance) {
2351 dl 1.110 if (--i >= bound || finishing)
2352 dl 1.82 advance = false;
2353     else if ((nextIndex = transferIndex) <= transferOrigin) {
2354     i = -1;
2355     advance = false;
2356     }
2357     else if (U.compareAndSwapInt
2358     (this, TRANSFERINDEX, nextIndex,
2359 jsr166 1.83 nextBound = (nextIndex > stride ?
2360 dl 1.82 nextIndex - stride : 0))) {
2361     bound = nextBound;
2362     i = nextIndex - 1;
2363     advance = false;
2364     }
2365     }
2366     if (i < 0 || i >= n || i + n >= nextn) {
2367 dl 1.110 if (finishing) {
2368     nextTable = null;
2369     table = nextTab;
2370     sizeCtl = (n << 1) - (n >>> 1);
2371     return;
2372     }
2373 dl 1.82 for (int sc;;) {
2374     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2375 dl 1.110 if (sc != -1)
2376     return;
2377     finishing = advance = true;
2378     i = n; // recheck before commit
2379     break;
2380 dl 1.82 }
2381     }
2382     }
2383     else if ((f = tabAt(tab, i)) == null) {
2384     if (casTabAt(tab, i, null, fwd)) {
2385 dl 1.24 setTabAt(nextTab, i, null);
2386     setTabAt(nextTab, i + n, null);
2387 dl 1.82 advance = true;
2388 dl 1.24 }
2389     }
2390 dl 1.102 else if ((fh = f.hash) == MOVED)
2391     advance = true; // already processed
2392     else {
2393 jsr166 1.83 synchronized (f) {
2394 dl 1.82 if (tabAt(tab, i) == f) {
2395 dl 1.102 Node<K,V> ln, hn;
2396     if (fh >= 0) {
2397     int runBit = fh & n;
2398     Node<K,V> lastRun = f;
2399     for (Node<K,V> p = f.next; p != null; p = p.next) {
2400     int b = p.hash & n;
2401     if (b != runBit) {
2402     runBit = b;
2403     lastRun = p;
2404     }
2405 dl 1.82 }
2406 dl 1.102 if (runBit == 0) {
2407     ln = lastRun;
2408     hn = null;
2409 dl 1.82 }
2410     else {
2411 dl 1.102 hn = lastRun;
2412     ln = null;
2413     }
2414     for (Node<K,V> p = f; p != lastRun; p = p.next) {
2415     int ph = p.hash; K pk = p.key; V pv = p.val;
2416     if ((ph & n) == 0)
2417     ln = new Node<K,V>(ph, pk, pv, ln);
2418     else
2419     hn = new Node<K,V>(ph, pk, pv, hn);
2420 dl 1.82 }
2421 dl 1.109 setTabAt(nextTab, i, ln);
2422     setTabAt(nextTab, i + n, hn);
2423     setTabAt(tab, i, fwd);
2424     advance = true;
2425 dl 1.82 }
2426 dl 1.102 else if (f instanceof TreeBin) {
2427     TreeBin<K,V> t = (TreeBin<K,V>)f;
2428     TreeNode<K,V> lo = null, loTail = null;
2429     TreeNode<K,V> hi = null, hiTail = null;
2430     int lc = 0, hc = 0;
2431     for (Node<K,V> e = t.first; e != null; e = e.next) {
2432     int h = e.hash;
2433     TreeNode<K,V> p = new TreeNode<K,V>
2434     (h, e.key, e.val, null, null);
2435     if ((h & n) == 0) {
2436     if ((p.prev = loTail) == null)
2437     lo = p;
2438     else
2439     loTail.next = p;
2440     loTail = p;
2441     ++lc;
2442     }
2443     else {
2444     if ((p.prev = hiTail) == null)
2445     hi = p;
2446     else
2447     hiTail.next = p;
2448     hiTail = p;
2449     ++hc;
2450     }
2451     }
2452 jsr166 1.104 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2453     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2454     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2455     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2456 dl 1.109 setTabAt(nextTab, i, ln);
2457     setTabAt(nextTab, i + n, hn);
2458     setTabAt(tab, i, fwd);
2459     advance = true;
2460 dl 1.82 }
2461 dl 1.24 }
2462     }
2463     }
2464     }
2465     }
2466    
2467 dl 1.102 /* ---------------- Conversion from/to TreeBins -------------- */
2468 dl 1.82
2469 dl 1.102 /**
2470     * Replaces all linked nodes in bin at given index unless table is
2471     * too small, in which case resizes instead.
2472     */
2473     private final void treeifyBin(Node<K,V>[] tab, int index) {
2474     Node<K,V> b; int n, sc;
2475     if (tab != null) {
2476     if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2477     if (tab == table && (sc = sizeCtl) >= 0 &&
2478     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2479     transfer(tab, null);
2480 dl 1.38 }
2481 dl 1.109 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2482 dl 1.102 synchronized (b) {
2483     if (tabAt(tab, index) == b) {
2484     TreeNode<K,V> hd = null, tl = null;
2485     for (Node<K,V> e = b; e != null; e = e.next) {
2486     TreeNode<K,V> p =
2487     new TreeNode<K,V>(e.hash, e.key, e.val,
2488     null, null);
2489     if ((p.prev = tl) == null)
2490     hd = p;
2491     else
2492     tl.next = p;
2493     tl = p;
2494 dl 1.38 }
2495 dl 1.102 setTabAt(tab, index, new TreeBin<K,V>(hd));
2496 dl 1.38 }
2497     }
2498 dl 1.82 }
2499 dl 1.27 }
2500     }
2501    
2502 dl 1.102 /**
2503 jsr166 1.105 * Returns a list on non-TreeNodes replacing those in given list.
2504 dl 1.102 */
2505     static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2506     Node<K,V> hd = null, tl = null;
2507     for (Node<K,V> q = b; q != null; q = q.next) {
2508     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2509     if (tl == null)
2510     hd = p;
2511     else
2512     tl.next = p;
2513     tl = p;
2514     }
2515     return hd;
2516     }
2517    
2518     /* ---------------- TreeNodes -------------- */
2519 dl 1.14
2520 dl 1.1 /**
2521 dl 1.102 * Nodes for use in TreeBins
2522 dl 1.14 */
2523 dl 1.102 static final class TreeNode<K,V> extends Node<K,V> {
2524     TreeNode<K,V> parent; // red-black tree links
2525     TreeNode<K,V> left;
2526     TreeNode<K,V> right;
2527     TreeNode<K,V> prev; // needed to unlink next upon deletion
2528     boolean red;
2529    
2530     TreeNode(int hash, K key, V val, Node<K,V> next,
2531     TreeNode<K,V> parent) {
2532     super(hash, key, val, next);
2533     this.parent = parent;
2534     }
2535    
2536     Node<K,V> find(int h, Object k) {
2537     return findTreeNode(h, k, null);
2538     }
2539    
2540     /**
2541     * Returns the TreeNode (or null if not found) for the given key
2542     * starting at given root.
2543     */
2544     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2545     if (k != null) {
2546     TreeNode<K,V> p = this;
2547     do {
2548     int ph, dir; K pk; TreeNode<K,V> q;
2549     TreeNode<K,V> pl = p.left, pr = p.right;
2550     if ((ph = p.hash) > h)
2551     p = pl;
2552     else if (ph < h)
2553     p = pr;
2554     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2555     return p;
2556 dl 1.112 else if (pl == null)
2557     p = pr;
2558     else if (pr == null)
2559     p = pl;
2560 jsr166 1.103 else if ((kc != null ||
2561 dl 1.102 (kc = comparableClassFor(k)) != null) &&
2562     (dir = compareComparables(kc, k, pk)) != 0)
2563     p = (dir < 0) ? pl : pr;
2564 dl 1.112 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2565     return q;
2566     else
2567 dl 1.102 p = pl;
2568     } while (p != null);
2569     }
2570     return null;
2571     }
2572     }
2573    
2574     /* ---------------- TreeBins -------------- */
2575    
2576     /**
2577     * TreeNodes used at the heads of bins. TreeBins do not hold user
2578     * keys or values, but instead point to list of TreeNodes and
2579     * their root. They also maintain a parasitic read-write lock
2580     * forcing writers (who hold bin lock) to wait for readers (who do
2581     * not) to complete before tree restructuring operations.
2582     */
2583     static final class TreeBin<K,V> extends Node<K,V> {
2584     TreeNode<K,V> root;
2585     volatile TreeNode<K,V> first;
2586     volatile Thread waiter;
2587     volatile int lockState;
2588     // values for lockState
2589     static final int WRITER = 1; // set while holding write lock
2590     static final int WAITER = 2; // set when waiting for write lock
2591     static final int READER = 4; // increment value for setting read lock
2592    
2593     /**
2594 dl 1.112 * Tie-breaking utility for ordering insertions when equal
2595     * hashCodes and non-comparable. We don't require a total
2596     * order, just a consistent insertion rule to maintain
2597     * equivalence across rebalancings. Tie-breaking further than
2598     * necessary simplifies testing a bit.
2599     */
2600     static int tieBreakOrder(Object a, Object b) {
2601     int d;
2602     if (a == null || b == null ||
2603     (d = a.getClass().getName().
2604     compareTo(b.getClass().getName())) == 0)
2605     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2606     -1 : 1);
2607     return d;
2608     }
2609    
2610     /**
2611 dl 1.102 * Creates bin with initial set of nodes headed by b.
2612     */
2613     TreeBin(TreeNode<K,V> b) {
2614     super(TREEBIN, null, null, null);
2615     this.first = b;
2616     TreeNode<K,V> r = null;
2617     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2618     next = (TreeNode<K,V>)x.next;
2619     x.left = x.right = null;
2620     if (r == null) {
2621     x.parent = null;
2622     x.red = false;
2623     r = x;
2624     }
2625     else {
2626 dl 1.112 K k = x.key;
2627     int h = x.hash;
2628 dl 1.102 Class<?> kc = null;
2629     for (TreeNode<K,V> p = r;;) {
2630     int dir, ph;
2631 dl 1.112 K pk = p.key;
2632     if ((ph = p.hash) > h)
2633 dl 1.102 dir = -1;
2634 dl 1.112 else if (ph < h)
2635 dl 1.102 dir = 1;
2636 dl 1.112 else if ((kc == null &&
2637     (kc = comparableClassFor(k)) == null) ||
2638     (dir = compareComparables(kc, k, pk)) == 0)
2639     dir = tieBreakOrder(k, pk);
2640     TreeNode<K,V> xp = p;
2641 dl 1.102 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2642     x.parent = xp;
2643     if (dir <= 0)
2644     xp.left = x;
2645     else
2646     xp.right = x;
2647     r = balanceInsertion(r, x);
2648     break;
2649     }
2650     }
2651     }
2652     }
2653     this.root = r;
2654 dl 1.112 assert checkInvariants(root);
2655 dl 1.102 }
2656    
2657     /**
2658 jsr166 1.105 * Acquires write lock for tree restructuring.
2659 dl 1.102 */
2660     private final void lockRoot() {
2661     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2662     contendedLock(); // offload to separate method
2663     }
2664    
2665     /**
2666 jsr166 1.105 * Releases write lock for tree restructuring.
2667 dl 1.102 */
2668     private final void unlockRoot() {
2669     lockState = 0;
2670     }
2671 dl 1.14
2672 dl 1.102 /**
2673 jsr166 1.105 * Possibly blocks awaiting root lock.
2674 dl 1.102 */
2675     private final void contendedLock() {
2676     boolean waiting = false;
2677     for (int s;;) {
2678     if (((s = lockState) & WRITER) == 0) {
2679     if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2680     if (waiting)
2681     waiter = null;
2682     return;
2683     }
2684     }
2685     else if ((s | WAITER) == 0) {
2686     if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2687     waiting = true;
2688     waiter = Thread.currentThread();
2689     }
2690     }
2691     else if (waiting)
2692     LockSupport.park(this);
2693     }
2694 dl 1.14 }
2695    
2696 dl 1.102 /**
2697     * Returns matching node or null if none. Tries to search
2698 jsr166 1.108 * using tree comparisons from root, but continues linear
2699 dl 1.102 * search when lock not available.
2700     */
2701 dl 1.112 final Node<K,V> find(int h, Object k) {
2702 dl 1.102 if (k != null) {
2703     for (Node<K,V> e = first; e != null; e = e.next) {
2704     int s; K ek;
2705     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2706     if (e.hash == h &&
2707     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2708     return e;
2709     }
2710     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2711     s + READER)) {
2712     TreeNode<K,V> r, p;
2713     try {
2714     p = ((r = root) == null ? null :
2715     r.findTreeNode(h, k, null));
2716     } finally {
2717     Thread w;
2718     int ls;
2719     do {} while (!U.compareAndSwapInt
2720     (this, LOCKSTATE,
2721     ls = lockState, ls - READER));
2722     if (ls == (READER|WAITER) && (w = waiter) != null)
2723     LockSupport.unpark(w);
2724     }
2725     return p;
2726     }
2727     }
2728 dl 1.79 }
2729 dl 1.102 return null;
2730 dl 1.41 }
2731    
2732     /**
2733 dl 1.102 * Finds or adds a node.
2734     * @return null if added
2735 dl 1.41 */
2736 dl 1.102 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2737     Class<?> kc = null;
2738 dl 1.112 boolean searched = false;
2739 dl 1.102 for (TreeNode<K,V> p = root;;) {
2740 dl 1.112 int dir, ph; K pk;
2741 dl 1.102 if (p == null) {
2742     first = root = new TreeNode<K,V>(h, k, v, null, null);
2743     break;
2744     }
2745     else if ((ph = p.hash) > h)
2746     dir = -1;
2747     else if (ph < h)
2748     dir = 1;
2749     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2750     return p;
2751     else if ((kc == null &&
2752     (kc = comparableClassFor(k)) == null) ||
2753     (dir = compareComparables(kc, k, pk)) == 0) {
2754 dl 1.112 if (!searched) {
2755     TreeNode<K,V> q, ch;
2756     searched = true;
2757     if (((ch = p.left) != null &&
2758     (q = ch.findTreeNode(h, k, kc)) != null) ||
2759     ((ch = p.right) != null &&
2760     (q = ch.findTreeNode(h, k, kc)) != null))
2761     return q;
2762     }
2763     dir = tieBreakOrder(k, pk);
2764 dl 1.102 }
2765 dl 1.112
2766 dl 1.102 TreeNode<K,V> xp = p;
2767 dl 1.112 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2768 dl 1.102 TreeNode<K,V> x, f = first;
2769     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2770     if (f != null)
2771     f.prev = x;
2772 dl 1.112 if (dir <= 0)
2773 dl 1.102 xp.left = x;
2774 dl 1.63 else
2775 dl 1.102 xp.right = x;
2776     if (!xp.red)
2777     x.red = true;
2778     else {
2779     lockRoot();
2780     try {
2781     root = balanceInsertion(root, x);
2782     } finally {
2783     unlockRoot();
2784 dl 1.38 }
2785 dl 1.102 }
2786     break;
2787 dl 1.1 }
2788 dl 1.102 }
2789     assert checkInvariants(root);
2790     return null;
2791 dl 1.1 }
2792 dl 1.41
2793 dl 1.102 /**
2794     * Removes the given node, that must be present before this
2795     * call. This is messier than typical red-black deletion code
2796     * because we cannot swap the contents of an interior node
2797     * with a leaf successor that is pinned by "next" pointers
2798     * that are accessible independently of lock. So instead we
2799     * swap the tree linkages.
2800     *
2801 jsr166 1.106 * @return true if now too small, so should be untreeified
2802 dl 1.102 */
2803     final boolean removeTreeNode(TreeNode<K,V> p) {
2804     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2805     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2806     TreeNode<K,V> r, rl;
2807     if (pred == null)
2808     first = next;
2809     else
2810     pred.next = next;
2811     if (next != null)
2812     next.prev = pred;
2813     if (first == null) {
2814     root = null;
2815     return true;
2816     }
2817     if ((r = root) == null || r.right == null || // too small
2818     (rl = r.left) == null || rl.left == null)
2819     return true;
2820     lockRoot();
2821     try {
2822     TreeNode<K,V> replacement;
2823     TreeNode<K,V> pl = p.left;
2824     TreeNode<K,V> pr = p.right;
2825     if (pl != null && pr != null) {
2826     TreeNode<K,V> s = pr, sl;
2827     while ((sl = s.left) != null) // find successor
2828     s = sl;
2829     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2830     TreeNode<K,V> sr = s.right;
2831     TreeNode<K,V> pp = p.parent;
2832     if (s == pr) { // p was s's direct parent
2833     p.parent = s;
2834     s.right = p;
2835     }
2836     else {
2837     TreeNode<K,V> sp = s.parent;
2838     if ((p.parent = sp) != null) {
2839     if (s == sp.left)
2840     sp.left = p;
2841     else
2842     sp.right = p;
2843     }
2844     if ((s.right = pr) != null)
2845     pr.parent = s;
2846     }
2847     p.left = null;
2848     if ((p.right = sr) != null)
2849     sr.parent = p;
2850     if ((s.left = pl) != null)
2851     pl.parent = s;
2852     if ((s.parent = pp) == null)
2853     r = s;
2854     else if (p == pp.left)
2855     pp.left = s;
2856     else
2857     pp.right = s;
2858     if (sr != null)
2859     replacement = sr;
2860     else
2861     replacement = p;
2862     }
2863     else if (pl != null)
2864     replacement = pl;
2865     else if (pr != null)
2866     replacement = pr;
2867     else
2868     replacement = p;
2869     if (replacement != p) {
2870     TreeNode<K,V> pp = replacement.parent = p.parent;
2871     if (pp == null)
2872     r = replacement;
2873     else if (p == pp.left)
2874     pp.left = replacement;
2875     else
2876     pp.right = replacement;
2877     p.left = p.right = p.parent = null;
2878     }
2879    
2880     root = (p.red) ? r : balanceDeletion(r, replacement);
2881    
2882     if (p == replacement) { // detach pointers
2883     TreeNode<K,V> pp;
2884     if ((pp = p.parent) != null) {
2885     if (p == pp.left)
2886     pp.left = null;
2887     else if (p == pp.right)
2888     pp.right = null;
2889     p.parent = null;
2890     }
2891     }
2892     } finally {
2893     unlockRoot();
2894     }
2895     assert checkInvariants(root);
2896     return false;
2897 dl 1.41 }
2898    
2899 dl 1.102 /* ------------------------------------------------------------ */
2900     // Red-black tree methods, all adapted from CLR
2901    
2902     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2903     TreeNode<K,V> p) {
2904     TreeNode<K,V> r, pp, rl;
2905     if (p != null && (r = p.right) != null) {
2906     if ((rl = p.right = r.left) != null)
2907     rl.parent = p;
2908     if ((pp = r.parent = p.parent) == null)
2909     (root = r).red = false;
2910     else if (pp.left == p)
2911     pp.left = r;
2912     else
2913     pp.right = r;
2914     r.left = p;
2915     p.parent = r;
2916     }
2917     return root;
2918 dl 1.41 }
2919    
2920 dl 1.102 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2921     TreeNode<K,V> p) {
2922     TreeNode<K,V> l, pp, lr;
2923     if (p != null && (l = p.left) != null) {
2924     if ((lr = p.left = l.right) != null)
2925     lr.parent = p;
2926     if ((pp = l.parent = p.parent) == null)
2927     (root = l).red = false;
2928     else if (pp.right == p)
2929     pp.right = l;
2930     else
2931     pp.left = l;
2932     l.right = p;
2933     p.parent = l;
2934     }
2935     return root;
2936     }
2937 dl 1.79
2938 dl 1.102 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2939     TreeNode<K,V> x) {
2940     x.red = true;
2941     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2942     if ((xp = x.parent) == null) {
2943     x.red = false;
2944     return x;
2945     }
2946     else if (!xp.red || (xpp = xp.parent) == null)
2947     return root;
2948     if (xp == (xppl = xpp.left)) {
2949     if ((xppr = xpp.right) != null && xppr.red) {
2950     xppr.red = false;
2951     xp.red = false;
2952     xpp.red = true;
2953     x = xpp;
2954     }
2955     else {
2956     if (x == xp.right) {
2957     root = rotateLeft(root, x = xp);
2958     xpp = (xp = x.parent) == null ? null : xp.parent;
2959     }
2960     if (xp != null) {
2961     xp.red = false;
2962     if (xpp != null) {
2963     xpp.red = true;
2964     root = rotateRight(root, xpp);
2965     }
2966     }
2967     }
2968     }
2969     else {
2970     if (xppl != null && xppl.red) {
2971     xppl.red = false;
2972     xp.red = false;
2973     xpp.red = true;
2974     x = xpp;
2975     }
2976     else {
2977     if (x == xp.left) {
2978     root = rotateRight(root, x = xp);
2979     xpp = (xp = x.parent) == null ? null : xp.parent;
2980     }
2981     if (xp != null) {
2982     xp.red = false;
2983     if (xpp != null) {
2984     xpp.red = true;
2985     root = rotateLeft(root, xpp);
2986     }
2987     }
2988     }
2989     }
2990     }
2991     }
2992 dl 1.79
2993 dl 1.102 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2994     TreeNode<K,V> x) {
2995     for (TreeNode<K,V> xp, xpl, xpr;;) {
2996     if (x == null || x == root)
2997     return root;
2998     else if ((xp = x.parent) == null) {
2999     x.red = false;
3000     return x;
3001     }
3002     else if (x.red) {
3003     x.red = false;
3004     return root;
3005     }
3006     else if ((xpl = xp.left) == x) {
3007     if ((xpr = xp.right) != null && xpr.red) {
3008     xpr.red = false;
3009     xp.red = true;
3010     root = rotateLeft(root, xp);
3011     xpr = (xp = x.parent) == null ? null : xp.right;
3012     }
3013     if (xpr == null)
3014     x = xp;
3015     else {
3016     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3017     if ((sr == null || !sr.red) &&
3018     (sl == null || !sl.red)) {
3019     xpr.red = true;
3020     x = xp;
3021     }
3022     else {
3023     if (sr == null || !sr.red) {
3024     if (sl != null)
3025     sl.red = false;
3026     xpr.red = true;
3027     root = rotateRight(root, xpr);
3028     xpr = (xp = x.parent) == null ?
3029     null : xp.right;
3030     }
3031     if (xpr != null) {
3032     xpr.red = (xp == null) ? false : xp.red;
3033     if ((sr = xpr.right) != null)
3034     sr.red = false;
3035     }
3036     if (xp != null) {
3037     xp.red = false;
3038     root = rotateLeft(root, xp);
3039     }
3040     x = root;
3041     }
3042     }
3043     }
3044     else { // symmetric
3045     if (xpl != null && xpl.red) {
3046     xpl.red = false;
3047     xp.red = true;
3048     root = rotateRight(root, xp);
3049     xpl = (xp = x.parent) == null ? null : xp.left;
3050     }
3051     if (xpl == null)
3052     x = xp;
3053     else {
3054     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3055     if ((sl == null || !sl.red) &&
3056     (sr == null || !sr.red)) {
3057     xpl.red = true;
3058     x = xp;
3059     }
3060     else {
3061     if (sl == null || !sl.red) {
3062     if (sr != null)
3063     sr.red = false;
3064     xpl.red = true;
3065     root = rotateLeft(root, xpl);
3066     xpl = (xp = x.parent) == null ?
3067     null : xp.left;
3068     }
3069     if (xpl != null) {
3070     xpl.red = (xp == null) ? false : xp.red;
3071     if ((sl = xpl.left) != null)
3072     sl.red = false;
3073     }
3074     if (xp != null) {
3075     xp.red = false;
3076     root = rotateRight(root, xp);
3077     }
3078     x = root;
3079     }
3080     }
3081     }
3082     }
3083     }
3084 jsr166 1.103
3085 dl 1.79 /**
3086 dl 1.102 * Recursive invariant check
3087 dl 1.79 */
3088 dl 1.102 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3089     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3090     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3091     if (tb != null && tb.next != t)
3092     return false;
3093     if (tn != null && tn.prev != t)
3094     return false;
3095     if (tp != null && t != tp.left && t != tp.right)
3096     return false;
3097     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3098     return false;
3099     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3100     return false;
3101     if (t.red && tl != null && tl.red && tr != null && tr.red)
3102     return false;
3103     if (tl != null && !checkInvariants(tl))
3104     return false;
3105     if (tr != null && !checkInvariants(tr))
3106     return false;
3107     return true;
3108 dl 1.79 }
3109    
3110 dl 1.102 private static final sun.misc.Unsafe U;
3111     private static final long LOCKSTATE;
3112     static {
3113     try {
3114     U = getUnsafe();
3115     Class<?> k = TreeBin.class;
3116     LOCKSTATE = U.objectFieldOffset
3117     (k.getDeclaredField("lockState"));
3118     } catch (Exception e) {
3119     throw new Error(e);
3120     }
3121     }
3122 dl 1.1 }
3123    
3124 dl 1.102 /* ----------------Table Traversal -------------- */
3125 dl 1.1
3126     /**
3127 dl 1.102 * Encapsulates traversal for methods such as containsValue; also
3128     * serves as a base class for other iterators and spliterators.
3129     *
3130     * Method advance visits once each still-valid node that was
3131     * reachable upon iterator construction. It might miss some that
3132     * were added to a bin after the bin was visited, which is OK wrt
3133     * consistency guarantees. Maintaining this property in the face
3134     * of possible ongoing resizes requires a fair amount of
3135     * bookkeeping state that is difficult to optimize away amidst
3136     * volatile accesses. Even so, traversal maintains reasonable
3137     * throughput.
3138 dl 1.1 *
3139 dl 1.102 * Normally, iteration proceeds bin-by-bin traversing lists.
3140     * However, if the table has been resized, then all future steps
3141     * must traverse both the bin at the current index as well as at
3142     * (index + baseSize); and so on for further resizings. To
3143     * paranoically cope with potential sharing by users of iterators
3144     * across threads, iteration terminates if a bounds checks fails
3145     * for a table read.
3146 dl 1.1 */
3147 dl 1.102 static class Traverser<K,V> {
3148     Node<K,V>[] tab; // current table; updated if resized
3149     Node<K,V> next; // the next entry to use
3150     int index; // index of bin to use next
3151     int baseIndex; // current index of initial table
3152     int baseLimit; // index bound for initial table
3153     final int baseSize; // initial table size
3154    
3155     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3156     this.tab = tab;
3157     this.baseSize = size;
3158     this.baseIndex = this.index = index;
3159     this.baseLimit = limit;
3160     this.next = null;
3161     }
3162 dl 1.1
3163 dl 1.102 /**
3164     * Advances if possible, returning next valid node, or null if none.
3165     */
3166     final Node<K,V> advance() {
3167     Node<K,V> e;
3168     if ((e = next) != null)
3169     e = e.next;
3170     for (;;) {
3171     Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3172     if (e != null)
3173     return next = e;
3174     if (baseIndex >= baseLimit || (t = tab) == null ||
3175     (n = t.length) <= (i = index) || i < 0)
3176     return next = null;
3177     if ((e = tabAt(t, index)) != null && e.hash < 0) {
3178     if (e instanceof ForwardingNode) {
3179     tab = ((ForwardingNode<K,V>)e).nextTable;
3180     e = null;
3181     continue;
3182 dl 1.75 }
3183 dl 1.102 else if (e instanceof TreeBin)
3184     e = ((TreeBin<K,V>)e).first;
3185     else
3186     e = null;
3187 dl 1.75 }
3188 dl 1.102 if ((index += baseSize) >= n)
3189     index = ++baseIndex; // visit upper slots if present
3190 dl 1.24 }
3191     }
3192 dl 1.75 }
3193    
3194     /**
3195 dl 1.102 * Base of key, value, and entry Iterators. Adds fields to
3196 jsr166 1.105 * Traverser to support iterator.remove.
3197 dl 1.75 */
3198 dl 1.102 static class BaseIterator<K,V> extends Traverser<K,V> {
3199     final ConcurrentHashMapV8<K,V> map;
3200     Node<K,V> lastReturned;
3201     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3202     ConcurrentHashMapV8<K,V> map) {
3203     super(tab, size, index, limit);
3204     this.map = map;
3205     advance();
3206     }
3207    
3208     public final boolean hasNext() { return next != null; }
3209     public final boolean hasMoreElements() { return next != null; }
3210    
3211     public final void remove() {
3212     Node<K,V> p;
3213     if ((p = lastReturned) == null)
3214     throw new IllegalStateException();
3215     lastReturned = null;
3216     map.replaceNode(p.key, null, null);
3217     }
3218 dl 1.75 }
3219    
3220 dl 1.102 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3221     implements Iterator<K>, Enumeration<K> {
3222     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3223     ConcurrentHashMapV8<K,V> map) {
3224     super(tab, index, size, limit, map);
3225     }
3226    
3227     public final K next() {
3228     Node<K,V> p;
3229     if ((p = next) == null)
3230     throw new NoSuchElementException();
3231     K k = p.key;
3232     lastReturned = p;
3233     advance();
3234     return k;
3235     }
3236    
3237     public final K nextElement() { return next(); }
3238 dl 1.75 }
3239    
3240 dl 1.102 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3241     implements Iterator<V>, Enumeration<V> {
3242     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3243     ConcurrentHashMapV8<K,V> map) {
3244     super(tab, index, size, limit, map);
3245     }
3246    
3247     public final V next() {
3248     Node<K,V> p;
3249     if ((p = next) == null)
3250     throw new NoSuchElementException();
3251     V v = p.val;
3252     lastReturned = p;
3253     advance();
3254     return v;
3255 dl 1.84 }
3256 dl 1.102
3257     public final V nextElement() { return next(); }
3258 dl 1.75 }
3259    
3260 dl 1.102 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3261     implements Iterator<Map.Entry<K,V>> {
3262     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3263     ConcurrentHashMapV8<K,V> map) {
3264     super(tab, index, size, limit, map);
3265     }
3266    
3267     public final Map.Entry<K,V> next() {
3268     Node<K,V> p;
3269     if ((p = next) == null)
3270     throw new NoSuchElementException();
3271     K k = p.key;
3272     V v = p.val;
3273     lastReturned = p;
3274     advance();
3275     return new MapEntry<K,V>(k, v, map);
3276 dl 1.84 }
3277 dl 1.75 }
3278    
3279     /**
3280 dl 1.102 * Exported Entry for EntryIterator
3281 dl 1.75 */
3282 dl 1.102 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3283     final K key; // non-null
3284     V val; // non-null
3285     final ConcurrentHashMapV8<K,V> map;
3286     MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3287     this.key = key;
3288     this.val = val;
3289     this.map = map;
3290     }
3291     public K getKey() { return key; }
3292     public V getValue() { return val; }
3293     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3294     public String toString() { return key + "=" + val; }
3295    
3296     public boolean equals(Object o) {
3297     Object k, v; Map.Entry<?,?> e;
3298     return ((o instanceof Map.Entry) &&
3299     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3300     (v = e.getValue()) != null &&
3301     (k == key || k.equals(key)) &&
3302     (v == val || v.equals(val)));
3303     }
3304    
3305     /**
3306     * Sets our entry's value and writes through to the map. The
3307     * value to return is somewhat arbitrary here. Since we do not
3308     * necessarily track asynchronous changes, the most recent
3309     * "previous" value could be different from what we return (or
3310     * could even have been removed, in which case the put will
3311     * re-establish). We do not and cannot guarantee more.
3312     */
3313     public V setValue(V value) {
3314     if (value == null) throw new NullPointerException();
3315     V v = val;
3316     val = value;
3317     map.put(key, value);
3318     return v;
3319 dl 1.84 }
3320 dl 1.75 }
3321    
3322 dl 1.102 static final class KeySpliterator<K,V> extends Traverser<K,V>
3323     implements ConcurrentHashMapSpliterator<K> {
3324     long est; // size estimate
3325     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3326     long est) {
3327     super(tab, size, index, limit);
3328     this.est = est;
3329     }
3330    
3331     public ConcurrentHashMapSpliterator<K> trySplit() {
3332     int i, f, h;
3333     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3334     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3335     f, est >>>= 1);
3336     }
3337    
3338     public void forEachRemaining(Action<? super K> action) {
3339     if (action == null) throw new NullPointerException();
3340     for (Node<K,V> p; (p = advance()) != null;)
3341     action.apply(p.key);
3342     }
3343    
3344     public boolean tryAdvance(Action<? super K> action) {
3345     if (action == null) throw new NullPointerException();
3346     Node<K,V> p;
3347     if ((p = advance()) == null)
3348     return false;
3349     action.apply(p.key);
3350     return true;
3351 dl 1.84 }
3352 dl 1.102
3353     public long estimateSize() { return est; }
3354    
3355 dl 1.75 }
3356    
3357 dl 1.102 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3358     implements ConcurrentHashMapSpliterator<V> {
3359     long est; // size estimate
3360     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3361     long est) {
3362     super(tab, size, index, limit);
3363     this.est = est;
3364     }
3365    
3366     public ConcurrentHashMapSpliterator<V> trySplit() {
3367     int i, f, h;
3368     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3369     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3370     f, est >>>= 1);
3371     }
3372    
3373     public void forEachRemaining(Action<? super V> action) {
3374     if (action == null) throw new NullPointerException();
3375     for (Node<K,V> p; (p = advance()) != null;)
3376     action.apply(p.val);
3377     }
3378    
3379     public boolean tryAdvance(Action<? super V> action) {
3380     if (action == null) throw new NullPointerException();
3381     Node<K,V> p;
3382     if ((p = advance()) == null)
3383     return false;
3384     action.apply(p.val);
3385     return true;
3386     }
3387    
3388     public long estimateSize() { return est; }
3389    
3390 dl 1.75 }
3391    
3392 dl 1.102 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3393     implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3394     final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3395     long est; // size estimate
3396     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3397     long est, ConcurrentHashMapV8<K,V> map) {
3398     super(tab, size, index, limit);
3399     this.map = map;
3400     this.est = est;
3401     }
3402    
3403     public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3404     int i, f, h;
3405     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3406     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3407     f, est >>>= 1, map);
3408     }
3409    
3410     public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3411     if (action == null) throw new NullPointerException();
3412     for (Node<K,V> p; (p = advance()) != null; )
3413     action.apply(new MapEntry<K,V>(p.key, p.val, map));
3414     }
3415    
3416     public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3417     if (action == null) throw new NullPointerException();
3418     Node<K,V> p;
3419     if ((p = advance()) == null)
3420     return false;
3421     action.apply(new MapEntry<K,V>(p.key, p.val, map));
3422     return true;
3423     }
3424    
3425     public long estimateSize() { return est; }
3426    
3427 dl 1.75 }
3428    
3429 dl 1.102 // Parallel bulk operations
3430    
3431 dl 1.75 /**
3432 dl 1.102 * Computes initial batch value for bulk tasks. The returned value
3433     * is approximately exp2 of the number of times (minus one) to
3434     * split task by two before executing leaf action. This value is
3435     * faster to compute and more convenient to use as a guide to
3436     * splitting than is the depth, since it is used while dividing by
3437     * two anyway.
3438     */
3439     final int batchFor(long b) {
3440     long n;
3441     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3442     return 0;
3443     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3444     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3445 dl 1.75 }
3446    
3447     /**
3448 dl 1.84 * Performs the given action for each (key, value).
3449     *
3450 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3451     * needed for this operation to be executed in parallel
3452 dl 1.84 * @param action the action
3453 dl 1.102 * @since 1.8
3454 dl 1.75 */
3455 dl 1.102 public void forEach(long parallelismThreshold,
3456     BiAction<? super K,? super V> action) {
3457     if (action == null) throw new NullPointerException();
3458     new ForEachMappingTask<K,V>
3459     (null, batchFor(parallelismThreshold), 0, 0, table,
3460     action).invoke();
3461 dl 1.84 }
3462 dl 1.75
3463 dl 1.84 /**
3464     * Performs the given action for each non-null transformation
3465     * of each (key, value).
3466     *
3467 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3468     * needed for this operation to be executed in parallel
3469 dl 1.84 * @param transformer a function returning the transformation
3470 jsr166 1.91 * for an element, or null if there is no transformation (in
3471 jsr166 1.93 * which case the action is not applied)
3472 dl 1.84 * @param action the action
3473 dl 1.102 * @since 1.8
3474 dl 1.84 */
3475 dl 1.102 public <U> void forEach(long parallelismThreshold,
3476     BiFun<? super K, ? super V, ? extends U> transformer,
3477     Action<? super U> action) {
3478     if (transformer == null || action == null)
3479     throw new NullPointerException();
3480     new ForEachTransformedMappingTask<K,V,U>
3481     (null, batchFor(parallelismThreshold), 0, 0, table,
3482     transformer, action).invoke();
3483 dl 1.84 }
3484 dl 1.75
3485 dl 1.84 /**
3486     * Returns a non-null result from applying the given search
3487     * function on each (key, value), or null if none. Upon
3488     * success, further element processing is suppressed and the
3489     * results of any other parallel invocations of the search
3490     * function are ignored.
3491     *
3492 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3493     * needed for this operation to be executed in parallel
3494 dl 1.84 * @param searchFunction a function returning a non-null
3495     * result on success, else null
3496     * @return a non-null result from applying the given search
3497     * function on each (key, value), or null if none
3498 dl 1.102 * @since 1.8
3499 dl 1.84 */
3500 dl 1.102 public <U> U search(long parallelismThreshold,
3501     BiFun<? super K, ? super V, ? extends U> searchFunction) {
3502     if (searchFunction == null) throw new NullPointerException();
3503     return new SearchMappingsTask<K,V,U>
3504     (null, batchFor(parallelismThreshold), 0, 0, table,
3505     searchFunction, new AtomicReference<U>()).invoke();
3506 dl 1.84 }
3507 dl 1.75
3508 dl 1.84 /**
3509     * Returns the result of accumulating the given transformation
3510     * of all (key, value) pairs using the given reducer to
3511     * combine values, or null if none.
3512     *
3513 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3514     * needed for this operation to be executed in parallel
3515 dl 1.84 * @param transformer a function returning the transformation
3516 jsr166 1.91 * for an element, or null if there is no transformation (in
3517 jsr166 1.93 * which case it is not combined)
3518 dl 1.84 * @param reducer a commutative associative combining function
3519     * @return the result of accumulating the given transformation
3520     * of all (key, value) pairs
3521 dl 1.102 * @since 1.8
3522 dl 1.84 */
3523 dl 1.102 public <U> U reduce(long parallelismThreshold,
3524     BiFun<? super K, ? super V, ? extends U> transformer,
3525     BiFun<? super U, ? super U, ? extends U> reducer) {
3526     if (transformer == null || reducer == null)
3527     throw new NullPointerException();
3528     return new MapReduceMappingsTask<K,V,U>
3529     (null, batchFor(parallelismThreshold), 0, 0, table,
3530     null, transformer, reducer).invoke();
3531 dl 1.84 }
3532 dl 1.75
3533 dl 1.84 /**
3534     * Returns the result of accumulating the given transformation
3535     * of all (key, value) pairs using the given reducer to
3536     * combine values, and the given basis as an identity value.
3537     *
3538 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3539     * needed for this operation to be executed in parallel
3540 dl 1.84 * @param transformer a function returning the transformation
3541     * for an element
3542     * @param basis the identity (initial default value) for the reduction
3543     * @param reducer a commutative associative combining function
3544     * @return the result of accumulating the given transformation
3545     * of all (key, value) pairs
3546 dl 1.102 * @since 1.8
3547 dl 1.84 */
3548 dl 1.107 public double reduceToDouble(long parallelismThreshold,
3549     ObjectByObjectToDouble<? super K, ? super V> transformer,
3550     double basis,
3551     DoubleByDoubleToDouble reducer) {
3552 dl 1.102 if (transformer == null || reducer == null)
3553     throw new NullPointerException();
3554     return new MapReduceMappingsToDoubleTask<K,V>
3555     (null, batchFor(parallelismThreshold), 0, 0, table,
3556     null, transformer, basis, reducer).invoke();
3557 dl 1.84 }
3558    
3559     /**
3560     * Returns the result of accumulating the given transformation
3561     * of all (key, value) pairs using the given reducer to
3562     * combine values, and the given basis as an identity value.
3563     *
3564 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3565     * needed for this operation to be executed in parallel
3566 dl 1.84 * @param transformer a function returning the transformation
3567     * for an element
3568     * @param basis the identity (initial default value) for the reduction
3569     * @param reducer a commutative associative combining function
3570     * @return the result of accumulating the given transformation
3571     * of all (key, value) pairs
3572 dl 1.102 * @since 1.8
3573 dl 1.84 */
3574 dl 1.102 public long reduceToLong(long parallelismThreshold,
3575     ObjectByObjectToLong<? super K, ? super V> transformer,
3576     long basis,
3577     LongByLongToLong reducer) {
3578     if (transformer == null || reducer == null)
3579     throw new NullPointerException();
3580     return new MapReduceMappingsToLongTask<K,V>
3581     (null, batchFor(parallelismThreshold), 0, 0, table,
3582     null, transformer, basis, reducer).invoke();
3583 dl 1.84 }
3584    
3585     /**
3586     * Returns the result of accumulating the given transformation
3587     * of all (key, value) pairs using the given reducer to
3588     * combine values, and the given basis as an identity value.
3589     *
3590 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3591     * needed for this operation to be executed in parallel
3592 dl 1.84 * @param transformer a function returning the transformation
3593     * for an element
3594     * @param basis the identity (initial default value) for the reduction
3595     * @param reducer a commutative associative combining function
3596     * @return the result of accumulating the given transformation
3597     * of all (key, value) pairs
3598 dl 1.102 * @since 1.8
3599 dl 1.84 */
3600 dl 1.102 public int reduceToInt(long parallelismThreshold,
3601     ObjectByObjectToInt<? super K, ? super V> transformer,
3602     int basis,
3603     IntByIntToInt reducer) {
3604     if (transformer == null || reducer == null)
3605     throw new NullPointerException();
3606     return new MapReduceMappingsToIntTask<K,V>
3607     (null, batchFor(parallelismThreshold), 0, 0, table,
3608     null, transformer, basis, reducer).invoke();
3609 dl 1.84 }
3610    
3611     /**
3612     * Performs the given action for each key.
3613     *
3614 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3615     * needed for this operation to be executed in parallel
3616 dl 1.84 * @param action the action
3617 dl 1.102 * @since 1.8
3618 dl 1.84 */
3619 dl 1.102 public void forEachKey(long parallelismThreshold,
3620     Action<? super K> action) {
3621     if (action == null) throw new NullPointerException();
3622     new ForEachKeyTask<K,V>
3623     (null, batchFor(parallelismThreshold), 0, 0, table,
3624     action).invoke();
3625 dl 1.84 }
3626    
3627     /**
3628     * Performs the given action for each non-null transformation
3629     * of each key.
3630     *
3631 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3632     * needed for this operation to be executed in parallel
3633 dl 1.84 * @param transformer a function returning the transformation
3634 jsr166 1.91 * for an element, or null if there is no transformation (in
3635 jsr166 1.93 * which case the action is not applied)
3636 dl 1.84 * @param action the action
3637 dl 1.102 * @since 1.8
3638 dl 1.84 */
3639 dl 1.102 public <U> void forEachKey(long parallelismThreshold,
3640     Fun<? super K, ? extends U> transformer,
3641     Action<? super U> action) {
3642     if (transformer == null || action == null)
3643     throw new NullPointerException();
3644     new ForEachTransformedKeyTask<K,V,U>
3645     (null, batchFor(parallelismThreshold), 0, 0, table,
3646     transformer, action).invoke();
3647 dl 1.84 }
3648    
3649     /**
3650     * Returns a non-null result from applying the given search
3651     * function on each key, or null if none. Upon success,
3652     * further element processing is suppressed and the results of
3653     * any other parallel invocations of the search function are
3654     * ignored.
3655     *
3656 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3657     * needed for this operation to be executed in parallel
3658 dl 1.84 * @param searchFunction a function returning a non-null
3659     * result on success, else null
3660     * @return a non-null result from applying the given search
3661     * function on each key, or null if none
3662 dl 1.102 * @since 1.8
3663 dl 1.84 */
3664 dl 1.102 public <U> U searchKeys(long parallelismThreshold,
3665     Fun<? super K, ? extends U> searchFunction) {
3666     if (searchFunction == null) throw new NullPointerException();
3667     return new SearchKeysTask<K,V,U>
3668     (null, batchFor(parallelismThreshold), 0, 0, table,
3669     searchFunction, new AtomicReference<U>()).invoke();
3670 dl 1.84 }
3671    
3672     /**
3673     * Returns the result of accumulating all keys using the given
3674     * reducer to combine values, or null if none.
3675     *
3676 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3677     * needed for this operation to be executed in parallel
3678 dl 1.84 * @param reducer a commutative associative combining function
3679     * @return the result of accumulating all keys using the given
3680     * reducer to combine values, or null if none
3681 dl 1.102 * @since 1.8
3682 dl 1.84 */
3683 dl 1.102 public K reduceKeys(long parallelismThreshold,
3684     BiFun<? super K, ? super K, ? extends K> reducer) {
3685     if (reducer == null) throw new NullPointerException();
3686     return new ReduceKeysTask<K,V>
3687     (null, batchFor(parallelismThreshold), 0, 0, table,
3688     null, reducer).invoke();
3689 dl 1.84 }
3690    
3691     /**
3692     * Returns the result of accumulating the given transformation
3693     * of all keys using the given reducer to combine values, or
3694     * null if none.
3695     *
3696 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3697     * needed for this operation to be executed in parallel
3698 dl 1.84 * @param transformer a function returning the transformation
3699 jsr166 1.91 * for an element, or null if there is no transformation (in
3700 jsr166 1.93 * which case it is not combined)
3701 dl 1.84 * @param reducer a commutative associative combining function
3702     * @return the result of accumulating the given transformation
3703     * of all keys
3704 dl 1.102 * @since 1.8
3705 dl 1.84 */
3706 dl 1.102 public <U> U reduceKeys(long parallelismThreshold,
3707     Fun<? super K, ? extends U> transformer,
3708 dl 1.84 BiFun<? super U, ? super U, ? extends U> reducer) {
3709 dl 1.102 if (transformer == null || reducer == null)
3710     throw new NullPointerException();
3711     return new MapReduceKeysTask<K,V,U>
3712     (null, batchFor(parallelismThreshold), 0, 0, table,
3713     null, transformer, reducer).invoke();
3714 dl 1.84 }
3715    
3716     /**
3717     * Returns the result of accumulating the given transformation
3718     * of all keys using the given reducer to combine values, and
3719     * the given basis as an identity value.
3720     *
3721 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3722     * needed for this operation to be executed in parallel
3723 dl 1.84 * @param transformer a function returning the transformation
3724     * for an element
3725     * @param basis the identity (initial default value) for the reduction
3726     * @param reducer a commutative associative combining function
3727 dl 1.102 * @return the result of accumulating the given transformation
3728 dl 1.84 * of all keys
3729 dl 1.102 * @since 1.8
3730 dl 1.84 */
3731 dl 1.102 public double reduceKeysToDouble(long parallelismThreshold,
3732     ObjectToDouble<? super K> transformer,
3733     double basis,
3734     DoubleByDoubleToDouble reducer) {
3735     if (transformer == null || reducer == null)
3736     throw new NullPointerException();
3737     return new MapReduceKeysToDoubleTask<K,V>
3738     (null, batchFor(parallelismThreshold), 0, 0, table,
3739     null, transformer, basis, reducer).invoke();
3740 dl 1.84 }
3741    
3742     /**
3743     * Returns the result of accumulating the given transformation
3744     * of all keys using the given reducer to combine values, and
3745     * the given basis as an identity value.
3746     *
3747 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3748     * needed for this operation to be executed in parallel
3749 dl 1.84 * @param transformer a function returning the transformation
3750     * for an element
3751     * @param basis the identity (initial default value) for the reduction
3752     * @param reducer a commutative associative combining function
3753     * @return the result of accumulating the given transformation
3754     * of all keys
3755 dl 1.102 * @since 1.8
3756 dl 1.84 */
3757 dl 1.102 public long reduceKeysToLong(long parallelismThreshold,
3758     ObjectToLong<? super K> transformer,
3759     long basis,
3760     LongByLongToLong reducer) {
3761     if (transformer == null || reducer == null)
3762     throw new NullPointerException();
3763     return new MapReduceKeysToLongTask<K,V>
3764     (null, batchFor(parallelismThreshold), 0, 0, table,
3765     null, transformer, basis, reducer).invoke();
3766 dl 1.84 }
3767    
3768     /**
3769     * Returns the result of accumulating the given transformation
3770     * of all keys using the given reducer to combine values, and
3771     * the given basis as an identity value.
3772     *
3773 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3774     * needed for this operation to be executed in parallel
3775 dl 1.84 * @param transformer a function returning the transformation
3776     * for an element
3777     * @param basis the identity (initial default value) for the reduction
3778     * @param reducer a commutative associative combining function
3779     * @return the result of accumulating the given transformation
3780     * of all keys
3781 dl 1.102 * @since 1.8
3782 dl 1.84 */
3783 dl 1.102 public int reduceKeysToInt(long parallelismThreshold,
3784     ObjectToInt<? super K> transformer,
3785     int basis,
3786     IntByIntToInt reducer) {
3787     if (transformer == null || reducer == null)
3788     throw new NullPointerException();
3789     return new MapReduceKeysToIntTask<K,V>
3790     (null, batchFor(parallelismThreshold), 0, 0, table,
3791     null, transformer, basis, reducer).invoke();
3792 dl 1.84 }
3793    
3794     /**
3795     * Performs the given action for each value.
3796     *
3797 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3798     * needed for this operation to be executed in parallel
3799 dl 1.84 * @param action the action
3800 dl 1.102 * @since 1.8
3801 dl 1.84 */
3802 dl 1.102 public void forEachValue(long parallelismThreshold,
3803     Action<? super V> action) {
3804     if (action == null)
3805     throw new NullPointerException();
3806     new ForEachValueTask<K,V>
3807     (null, batchFor(parallelismThreshold), 0, 0, table,
3808     action).invoke();
3809 dl 1.84 }
3810    
3811     /**
3812     * Performs the given action for each non-null transformation
3813     * of each value.
3814     *
3815 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3816     * needed for this operation to be executed in parallel
3817 dl 1.84 * @param transformer a function returning the transformation
3818 jsr166 1.91 * for an element, or null if there is no transformation (in
3819 jsr166 1.93 * which case the action is not applied)
3820 dl 1.102 * @param action the action
3821     * @since 1.8
3822 dl 1.84 */
3823 dl 1.102 public <U> void forEachValue(long parallelismThreshold,
3824     Fun<? super V, ? extends U> transformer,
3825     Action<? super U> action) {
3826     if (transformer == null || action == null)
3827     throw new NullPointerException();
3828     new ForEachTransformedValueTask<K,V,U>
3829     (null, batchFor(parallelismThreshold), 0, 0, table,
3830     transformer, action).invoke();
3831 dl 1.84 }
3832    
3833     /**
3834     * Returns a non-null result from applying the given search
3835     * function on each value, or null if none. Upon success,
3836     * further element processing is suppressed and the results of
3837     * any other parallel invocations of the search function are
3838     * ignored.
3839     *
3840 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3841     * needed for this operation to be executed in parallel
3842 dl 1.84 * @param searchFunction a function returning a non-null
3843     * result on success, else null
3844     * @return a non-null result from applying the given search
3845     * function on each value, or null if none
3846 dl 1.102 * @since 1.8
3847 dl 1.84 */
3848 dl 1.102 public <U> U searchValues(long parallelismThreshold,
3849     Fun<? super V, ? extends U> searchFunction) {
3850     if (searchFunction == null) throw new NullPointerException();
3851     return new SearchValuesTask<K,V,U>
3852     (null, batchFor(parallelismThreshold), 0, 0, table,
3853     searchFunction, new AtomicReference<U>()).invoke();
3854 dl 1.84 }
3855    
3856     /**
3857     * Returns the result of accumulating all values using the
3858     * given reducer to combine values, or null if none.
3859     *
3860 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3861     * needed for this operation to be executed in parallel
3862 dl 1.84 * @param reducer a commutative associative combining function
3863 dl 1.102 * @return the result of accumulating all values
3864     * @since 1.8
3865 dl 1.84 */
3866 dl 1.102 public V reduceValues(long parallelismThreshold,
3867     BiFun<? super V, ? super V, ? extends V> reducer) {
3868     if (reducer == null) throw new NullPointerException();
3869     return new ReduceValuesTask<K,V>
3870     (null, batchFor(parallelismThreshold), 0, 0, table,
3871     null, reducer).invoke();
3872 dl 1.84 }
3873    
3874     /**
3875     * Returns the result of accumulating the given transformation
3876     * of all values using the given reducer to combine values, or
3877     * null if none.
3878     *
3879 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3880     * needed for this operation to be executed in parallel
3881 dl 1.84 * @param transformer a function returning the transformation
3882 jsr166 1.91 * for an element, or null if there is no transformation (in
3883 jsr166 1.93 * which case it is not combined)
3884 dl 1.84 * @param reducer a commutative associative combining function
3885     * @return the result of accumulating the given transformation
3886     * of all values
3887 dl 1.102 * @since 1.8
3888 dl 1.84 */
3889 dl 1.102 public <U> U reduceValues(long parallelismThreshold,
3890     Fun<? super V, ? extends U> transformer,
3891     BiFun<? super U, ? super U, ? extends U> reducer) {
3892     if (transformer == null || reducer == null)
3893     throw new NullPointerException();
3894     return new MapReduceValuesTask<K,V,U>
3895     (null, batchFor(parallelismThreshold), 0, 0, table,
3896     null, transformer, reducer).invoke();
3897 dl 1.84 }
3898    
3899     /**
3900     * Returns the result of accumulating the given transformation
3901     * of all values using the given reducer to combine values,
3902     * and the given basis as an identity value.
3903     *
3904 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3905     * needed for this operation to be executed in parallel
3906 dl 1.84 * @param transformer a function returning the transformation
3907     * for an element
3908     * @param basis the identity (initial default value) for the reduction
3909     * @param reducer a commutative associative combining function
3910     * @return the result of accumulating the given transformation
3911     * of all values
3912 dl 1.102 * @since 1.8
3913 dl 1.84 */
3914 dl 1.102 public double reduceValuesToDouble(long parallelismThreshold,
3915     ObjectToDouble<? super V> transformer,
3916     double basis,
3917     DoubleByDoubleToDouble reducer) {
3918     if (transformer == null || reducer == null)
3919     throw new NullPointerException();
3920     return new MapReduceValuesToDoubleTask<K,V>
3921     (null, batchFor(parallelismThreshold), 0, 0, table,
3922     null, transformer, basis, reducer).invoke();
3923 dl 1.84 }
3924    
3925     /**
3926     * Returns the result of accumulating the given transformation
3927     * of all values using the given reducer to combine values,
3928     * and the given basis as an identity value.
3929     *
3930 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3931     * needed for this operation to be executed in parallel
3932 dl 1.84 * @param transformer a function returning the transformation
3933     * for an element
3934     * @param basis the identity (initial default value) for the reduction
3935     * @param reducer a commutative associative combining function
3936     * @return the result of accumulating the given transformation
3937     * of all values
3938 dl 1.102 * @since 1.8
3939 dl 1.84 */
3940 dl 1.102 public long reduceValuesToLong(long parallelismThreshold,
3941     ObjectToLong<? super V> transformer,
3942     long basis,
3943     LongByLongToLong reducer) {
3944     if (transformer == null || reducer == null)
3945     throw new NullPointerException();
3946     return new MapReduceValuesToLongTask<K,V>
3947     (null, batchFor(parallelismThreshold), 0, 0, table,
3948     null, transformer, basis, reducer).invoke();
3949 dl 1.84 }
3950    
3951     /**
3952     * Returns the result of accumulating the given transformation
3953     * of all values using the given reducer to combine values,
3954     * and the given basis as an identity value.
3955     *
3956 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3957     * needed for this operation to be executed in parallel
3958 dl 1.84 * @param transformer a function returning the transformation
3959     * for an element
3960     * @param basis the identity (initial default value) for the reduction
3961     * @param reducer a commutative associative combining function
3962     * @return the result of accumulating the given transformation
3963     * of all values
3964 dl 1.102 * @since 1.8
3965 dl 1.84 */
3966 dl 1.102 public int reduceValuesToInt(long parallelismThreshold,
3967     ObjectToInt<? super V> transformer,
3968     int basis,
3969     IntByIntToInt reducer) {
3970     if (transformer == null || reducer == null)
3971     throw new NullPointerException();
3972     return new MapReduceValuesToIntTask<K,V>
3973     (null, batchFor(parallelismThreshold), 0, 0, table,
3974     null, transformer, basis, reducer).invoke();
3975 dl 1.84 }
3976    
3977     /**
3978     * Performs the given action for each entry.
3979     *
3980 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3981     * needed for this operation to be executed in parallel
3982 dl 1.84 * @param action the action
3983 dl 1.102 * @since 1.8
3984 dl 1.84 */
3985 dl 1.102 public void forEachEntry(long parallelismThreshold,
3986     Action<? super Map.Entry<K,V>> action) {
3987     if (action == null) throw new NullPointerException();
3988     new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3989     action).invoke();
3990 dl 1.84 }
3991    
3992     /**
3993     * Performs the given action for each non-null transformation
3994     * of each entry.
3995     *
3996 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3997     * needed for this operation to be executed in parallel
3998 dl 1.84 * @param transformer a function returning the transformation
3999 jsr166 1.91 * for an element, or null if there is no transformation (in
4000 jsr166 1.93 * which case the action is not applied)
4001 dl 1.84 * @param action the action
4002 dl 1.102 * @since 1.8
4003 dl 1.84 */
4004 dl 1.102 public <U> void forEachEntry(long parallelismThreshold,
4005     Fun<Map.Entry<K,V>, ? extends U> transformer,
4006     Action<? super U> action) {
4007     if (transformer == null || action == null)
4008     throw new NullPointerException();
4009     new ForEachTransformedEntryTask<K,V,U>
4010     (null, batchFor(parallelismThreshold), 0, 0, table,
4011     transformer, action).invoke();
4012 dl 1.84 }
4013    
4014     /**
4015     * Returns a non-null result from applying the given search
4016     * function on each entry, or null if none. Upon success,
4017     * further element processing is suppressed and the results of
4018     * any other parallel invocations of the search function are
4019     * ignored.
4020     *
4021 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4022     * needed for this operation to be executed in parallel
4023 dl 1.84 * @param searchFunction a function returning a non-null
4024     * result on success, else null
4025     * @return a non-null result from applying the given search
4026     * function on each entry, or null if none
4027 dl 1.102 * @since 1.8
4028 dl 1.84 */
4029 dl 1.102 public <U> U searchEntries(long parallelismThreshold,
4030     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4031     if (searchFunction == null) throw new NullPointerException();
4032     return new SearchEntriesTask<K,V,U>
4033     (null, batchFor(parallelismThreshold), 0, 0, table,
4034     searchFunction, new AtomicReference<U>()).invoke();
4035 dl 1.84 }
4036    
4037     /**
4038     * Returns the result of accumulating all entries using the
4039     * given reducer to combine values, or null if none.
4040     *
4041 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4042     * needed for this operation to be executed in parallel
4043 dl 1.84 * @param reducer a commutative associative combining function
4044     * @return the result of accumulating all entries
4045 dl 1.102 * @since 1.8
4046 dl 1.84 */
4047 dl 1.102 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4048     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4049     if (reducer == null) throw new NullPointerException();
4050     return new ReduceEntriesTask<K,V>
4051     (null, batchFor(parallelismThreshold), 0, 0, table,
4052     null, reducer).invoke();
4053 dl 1.84 }
4054    
4055     /**
4056     * Returns the result of accumulating the given transformation
4057     * of all entries using the given reducer to combine values,
4058     * or null if none.
4059     *
4060 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4061     * needed for this operation to be executed in parallel
4062 dl 1.84 * @param transformer a function returning the transformation
4063 jsr166 1.91 * for an element, or null if there is no transformation (in
4064 jsr166 1.93 * which case it is not combined)
4065 dl 1.84 * @param reducer a commutative associative combining function
4066     * @return the result of accumulating the given transformation
4067     * of all entries
4068 dl 1.102 * @since 1.8
4069 dl 1.84 */
4070 dl 1.102 public <U> U reduceEntries(long parallelismThreshold,
4071     Fun<Map.Entry<K,V>, ? extends U> transformer,
4072     BiFun<? super U, ? super U, ? extends U> reducer) {
4073     if (transformer == null || reducer == null)
4074     throw new NullPointerException();
4075     return new MapReduceEntriesTask<K,V,U>
4076     (null, batchFor(parallelismThreshold), 0, 0, table,
4077     null, transformer, reducer).invoke();
4078 dl 1.84 }
4079    
4080     /**
4081     * Returns the result of accumulating the given transformation
4082     * of all entries using the given reducer to combine values,
4083     * and the given basis as an identity value.
4084     *
4085 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4086     * needed for this operation to be executed in parallel
4087 dl 1.84 * @param transformer a function returning the transformation
4088     * for an element
4089     * @param basis the identity (initial default value) for the reduction
4090     * @param reducer a commutative associative combining function
4091     * @return the result of accumulating the given transformation
4092     * of all entries
4093 dl 1.102 * @since 1.8
4094 dl 1.84 */
4095 dl 1.102 public double reduceEntriesToDouble(long parallelismThreshold,
4096     ObjectToDouble<Map.Entry<K,V>> transformer,
4097     double basis,
4098     DoubleByDoubleToDouble reducer) {
4099     if (transformer == null || reducer == null)
4100     throw new NullPointerException();
4101     return new MapReduceEntriesToDoubleTask<K,V>
4102     (null, batchFor(parallelismThreshold), 0, 0, table,
4103     null, transformer, basis, reducer).invoke();
4104 dl 1.84 }
4105    
4106     /**
4107     * Returns the result of accumulating the given transformation
4108     * of all entries using the given reducer to combine values,
4109     * and the given basis as an identity value.
4110     *
4111 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4112     * needed for this operation to be executed in parallel
4113 dl 1.84 * @param transformer a function returning the transformation
4114     * for an element
4115     * @param basis the identity (initial default value) for the reduction
4116     * @param reducer a commutative associative combining function
4117 dl 1.102 * @return the result of accumulating the given transformation
4118 dl 1.84 * of all entries
4119 dl 1.102 * @since 1.8
4120 dl 1.84 */
4121 dl 1.102 public long reduceEntriesToLong(long parallelismThreshold,
4122     ObjectToLong<Map.Entry<K,V>> transformer,
4123     long basis,
4124     LongByLongToLong reducer) {
4125     if (transformer == null || reducer == null)
4126     throw new NullPointerException();
4127     return new MapReduceEntriesToLongTask<K,V>
4128     (null, batchFor(parallelismThreshold), 0, 0, table,
4129     null, transformer, basis, reducer).invoke();
4130 dl 1.84 }
4131    
4132     /**
4133     * Returns the result of accumulating the given transformation
4134     * of all entries using the given reducer to combine values,
4135     * and the given basis as an identity value.
4136     *
4137 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4138     * needed for this operation to be executed in parallel
4139 dl 1.84 * @param transformer a function returning the transformation
4140     * for an element
4141     * @param basis the identity (initial default value) for the reduction
4142     * @param reducer a commutative associative combining function
4143     * @return the result of accumulating the given transformation
4144     * of all entries
4145 dl 1.102 * @since 1.8
4146 dl 1.84 */
4147 dl 1.102 public int reduceEntriesToInt(long parallelismThreshold,
4148     ObjectToInt<Map.Entry<K,V>> transformer,
4149     int basis,
4150     IntByIntToInt reducer) {
4151     if (transformer == null || reducer == null)
4152     throw new NullPointerException();
4153     return new MapReduceEntriesToIntTask<K,V>
4154     (null, batchFor(parallelismThreshold), 0, 0, table,
4155     null, transformer, basis, reducer).invoke();
4156 dl 1.84 }
4157    
4158    
4159     /* ----------------Views -------------- */
4160    
4161     /**
4162     * Base class for views.
4163     */
4164 dl 1.102 abstract static class CollectionView<K,V,E>
4165     implements Collection<E>, java.io.Serializable {
4166     private static final long serialVersionUID = 7249069246763182397L;
4167 jsr166 1.99 final ConcurrentHashMapV8<K,V> map;
4168 dl 1.102 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4169 dl 1.84
4170     /**
4171     * Returns the map backing this view.
4172     *
4173     * @return the map backing this view
4174     */
4175     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4176    
4177 dl 1.102 /**
4178     * Removes all of the elements from this view, by removing all
4179     * the mappings from the map backing this view.
4180     */
4181     public final void clear() { map.clear(); }
4182     public final int size() { return map.size(); }
4183     public final boolean isEmpty() { return map.isEmpty(); }
4184 dl 1.84
4185     // implementations below rely on concrete classes supplying these
4186 dl 1.102 // abstract methods
4187     /**
4188     * Returns a "weakly consistent" iterator that will never
4189     * throw {@link ConcurrentModificationException}, and
4190     * guarantees to traverse elements as they existed upon
4191     * construction of the iterator, and may (but is not
4192     * guaranteed to) reflect any modifications subsequent to
4193     * construction.
4194     */
4195     public abstract Iterator<E> iterator();
4196 jsr166 1.88 public abstract boolean contains(Object o);
4197     public abstract boolean remove(Object o);
4198 dl 1.84
4199     private static final String oomeMsg = "Required array size too large";
4200 dl 1.75
4201     public final Object[] toArray() {
4202     long sz = map.mappingCount();
4203 dl 1.102 if (sz > MAX_ARRAY_SIZE)
4204 dl 1.75 throw new OutOfMemoryError(oomeMsg);
4205     int n = (int)sz;
4206     Object[] r = new Object[n];
4207     int i = 0;
4208 dl 1.102 for (E e : this) {
4209 dl 1.75 if (i == n) {
4210     if (n >= MAX_ARRAY_SIZE)
4211     throw new OutOfMemoryError(oomeMsg);
4212     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4213     n = MAX_ARRAY_SIZE;
4214     else
4215     n += (n >>> 1) + 1;
4216     r = Arrays.copyOf(r, n);
4217     }
4218 dl 1.102 r[i++] = e;
4219 dl 1.75 }
4220     return (i == n) ? r : Arrays.copyOf(r, i);
4221     }
4222    
4223 dl 1.102 @SuppressWarnings("unchecked")
4224     public final <T> T[] toArray(T[] a) {
4225 dl 1.75 long sz = map.mappingCount();
4226 dl 1.102 if (sz > MAX_ARRAY_SIZE)
4227 dl 1.75 throw new OutOfMemoryError(oomeMsg);
4228     int m = (int)sz;
4229     T[] r = (a.length >= m) ? a :
4230     (T[])java.lang.reflect.Array
4231     .newInstance(a.getClass().getComponentType(), m);
4232     int n = r.length;
4233     int i = 0;
4234 dl 1.102 for (E e : this) {
4235 dl 1.75 if (i == n) {
4236     if (n >= MAX_ARRAY_SIZE)
4237     throw new OutOfMemoryError(oomeMsg);
4238     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4239     n = MAX_ARRAY_SIZE;
4240     else
4241     n += (n >>> 1) + 1;
4242     r = Arrays.copyOf(r, n);
4243     }
4244 dl 1.102 r[i++] = (T)e;
4245 dl 1.75 }
4246     if (a == r && i < n) {
4247     r[i] = null; // null-terminate
4248     return r;
4249     }
4250     return (i == n) ? r : Arrays.copyOf(r, i);
4251     }
4252    
4253 dl 1.102 /**
4254     * Returns a string representation of this collection.
4255     * The string representation consists of the string representations
4256     * of the collection's elements in the order they are returned by
4257     * its iterator, enclosed in square brackets ({@code "[]"}).
4258     * Adjacent elements are separated by the characters {@code ", "}
4259     * (comma and space). Elements are converted to strings as by
4260     * {@link String#valueOf(Object)}.
4261     *
4262     * @return a string representation of this collection
4263     */
4264 dl 1.75 public final String toString() {
4265     StringBuilder sb = new StringBuilder();
4266     sb.append('[');
4267 dl 1.102 Iterator<E> it = iterator();
4268 dl 1.75 if (it.hasNext()) {
4269     for (;;) {
4270     Object e = it.next();
4271     sb.append(e == this ? "(this Collection)" : e);
4272     if (!it.hasNext())
4273     break;
4274     sb.append(',').append(' ');
4275     }
4276     }
4277     return sb.append(']').toString();
4278     }
4279    
4280     public final boolean containsAll(Collection<?> c) {
4281     if (c != this) {
4282 dl 1.102 for (Object e : c) {
4283 dl 1.75 if (e == null || !contains(e))
4284     return false;
4285     }
4286     }
4287     return true;
4288     }
4289    
4290     public final boolean removeAll(Collection<?> c) {
4291     boolean modified = false;
4292 dl 1.102 for (Iterator<E> it = iterator(); it.hasNext();) {
4293 dl 1.75 if (c.contains(it.next())) {
4294     it.remove();
4295     modified = true;
4296     }
4297     }
4298     return modified;
4299     }
4300    
4301     public final boolean retainAll(Collection<?> c) {
4302     boolean modified = false;
4303 dl 1.102 for (Iterator<E> it = iterator(); it.hasNext();) {
4304 dl 1.75 if (!c.contains(it.next())) {
4305     it.remove();
4306     modified = true;
4307     }
4308     }
4309     return modified;
4310     }
4311    
4312     }
4313    
4314     /**
4315     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4316     * which additions may optionally be enabled by mapping to a
4317 dl 1.102 * common value. This class cannot be directly instantiated.
4318     * See {@link #keySet() keySet()},
4319     * {@link #keySet(Object) keySet(V)},
4320     * {@link #newKeySet() newKeySet()},
4321     * {@link #newKeySet(int) newKeySet(int)}.
4322     *
4323     * @since 1.8
4324 dl 1.75 */
4325 dl 1.102 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4326 dl 1.82 implements Set<K>, java.io.Serializable {
4327 dl 1.75 private static final long serialVersionUID = 7249069246763182397L;
4328     private final V value;
4329 jsr166 1.99 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4330 dl 1.75 super(map);
4331     this.value = value;
4332     }
4333    
4334     /**
4335     * Returns the default mapped value for additions,
4336     * or {@code null} if additions are not supported.
4337     *
4338     * @return the default mapped value for additions, or {@code null}
4339 jsr166 1.93 * if not supported
4340 dl 1.75 */
4341     public V getMappedValue() { return value; }
4342    
4343 dl 1.102 /**
4344     * {@inheritDoc}
4345     * @throws NullPointerException if the specified key is null
4346     */
4347     public boolean contains(Object o) { return map.containsKey(o); }
4348    
4349     /**
4350     * Removes the key from this map view, by removing the key (and its
4351     * corresponding value) from the backing map. This method does
4352     * nothing if the key is not in the map.
4353     *
4354     * @param o the key to be removed from the backing map
4355     * @return {@code true} if the backing map contained the specified key
4356     * @throws NullPointerException if the specified key is null
4357     */
4358     public boolean remove(Object o) { return map.remove(o) != null; }
4359 dl 1.75
4360 dl 1.102 /**
4361     * @return an iterator over the keys of the backing map
4362     */
4363     public Iterator<K> iterator() {
4364     Node<K,V>[] t;
4365     ConcurrentHashMapV8<K,V> m = map;
4366     int f = (t = m.table) == null ? 0 : t.length;
4367     return new KeyIterator<K,V>(t, f, 0, f, m);
4368     }
4369 dl 1.75
4370     /**
4371 dl 1.102 * Adds the specified key to this set view by mapping the key to
4372     * the default mapped value in the backing map, if defined.
4373 dl 1.75 *
4374 dl 1.102 * @param e key to be added
4375     * @return {@code true} if this set changed as a result of the call
4376     * @throws NullPointerException if the specified key is null
4377     * @throws UnsupportedOperationException if no default mapped value
4378     * for additions was provided
4379 dl 1.75 */
4380     public boolean add(K e) {
4381     V v;
4382     if ((v = value) == null)
4383     throw new UnsupportedOperationException();
4384 dl 1.102 return map.putVal(e, v, true) == null;
4385 dl 1.75 }
4386 dl 1.102
4387     /**
4388     * Adds all of the elements in the specified collection to this set,
4389     * as if by calling {@link #add} on each one.
4390     *
4391     * @param c the elements to be inserted into this set
4392     * @return {@code true} if this set changed as a result of the call
4393     * @throws NullPointerException if the collection or any of its
4394     * elements are {@code null}
4395     * @throws UnsupportedOperationException if no default mapped value
4396     * for additions was provided
4397     */
4398 dl 1.75 public boolean addAll(Collection<? extends K> c) {
4399     boolean added = false;
4400     V v;
4401     if ((v = value) == null)
4402     throw new UnsupportedOperationException();
4403     for (K e : c) {
4404 dl 1.102 if (map.putVal(e, v, true) == null)
4405 dl 1.75 added = true;
4406     }
4407     return added;
4408     }
4409 dl 1.102
4410     public int hashCode() {
4411     int h = 0;
4412     for (K e : this)
4413     h += e.hashCode();
4414     return h;
4415     }
4416    
4417 dl 1.75 public boolean equals(Object o) {
4418     Set<?> c;
4419     return ((o instanceof Set) &&
4420     ((c = (Set<?>)o) == this ||
4421     (containsAll(c) && c.containsAll(this))));
4422     }
4423 dl 1.102
4424     public ConcurrentHashMapSpliterator<K> spliterator() {
4425     Node<K,V>[] t;
4426     ConcurrentHashMapV8<K,V> m = map;
4427     long n = m.sumCount();
4428     int f = (t = m.table) == null ? 0 : t.length;
4429     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4430     }
4431    
4432     public void forEach(Action<? super K> action) {
4433     if (action == null) throw new NullPointerException();
4434     Node<K,V>[] t;
4435     if ((t = map.table) != null) {
4436     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4437     for (Node<K,V> p; (p = it.advance()) != null; )
4438     action.apply(p.key);
4439     }
4440     }
4441 dl 1.75 }
4442    
4443     /**
4444     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4445     * values, in which additions are disabled. This class cannot be
4446 jsr166 1.96 * directly instantiated. See {@link #values()}.
4447 dl 1.75 */
4448 dl 1.102 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4449     implements Collection<V>, java.io.Serializable {
4450     private static final long serialVersionUID = 2249069246763182397L;
4451     ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4452     public final boolean contains(Object o) {
4453     return map.containsValue(o);
4454     }
4455    
4456 dl 1.75 public final boolean remove(Object o) {
4457     if (o != null) {
4458 dl 1.102 for (Iterator<V> it = iterator(); it.hasNext();) {
4459 dl 1.75 if (o.equals(it.next())) {
4460     it.remove();
4461     return true;
4462     }
4463     }
4464     }
4465     return false;
4466     }
4467    
4468     public final Iterator<V> iterator() {
4469 dl 1.102 ConcurrentHashMapV8<K,V> m = map;
4470     Node<K,V>[] t;
4471     int f = (t = m.table) == null ? 0 : t.length;
4472     return new ValueIterator<K,V>(t, f, 0, f, m);
4473 dl 1.75 }
4474 dl 1.102
4475 dl 1.75 public final boolean add(V e) {
4476     throw new UnsupportedOperationException();
4477     }
4478     public final boolean addAll(Collection<? extends V> c) {
4479     throw new UnsupportedOperationException();
4480     }
4481    
4482 dl 1.102 public ConcurrentHashMapSpliterator<V> spliterator() {
4483     Node<K,V>[] t;
4484     ConcurrentHashMapV8<K,V> m = map;
4485     long n = m.sumCount();
4486     int f = (t = m.table) == null ? 0 : t.length;
4487     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4488     }
4489    
4490     public void forEach(Action<? super V> action) {
4491     if (action == null) throw new NullPointerException();
4492     Node<K,V>[] t;
4493     if ((t = map.table) != null) {
4494     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4495     for (Node<K,V> p; (p = it.advance()) != null; )
4496     action.apply(p.val);
4497     }
4498     }
4499 dl 1.70 }
4500 dl 1.52
4501 dl 1.70 /**
4502 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4503     * entries. This class cannot be directly instantiated. See
4504 jsr166 1.95 * {@link #entrySet()}.
4505 dl 1.70 */
4506 dl 1.102 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4507     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4508     private static final long serialVersionUID = 2249069246763182397L;
4509 jsr166 1.99 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4510 dl 1.102
4511     public boolean contains(Object o) {
4512 dl 1.75 Object k, v, r; Map.Entry<?,?> e;
4513     return ((o instanceof Map.Entry) &&
4514     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4515     (r = map.get(k)) != null &&
4516     (v = e.getValue()) != null &&
4517     (v == r || v.equals(r)));
4518     }
4519 dl 1.102
4520     public boolean remove(Object o) {
4521 dl 1.75 Object k, v; Map.Entry<?,?> e;
4522     return ((o instanceof Map.Entry) &&
4523     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4524     (v = e.getValue()) != null &&
4525     map.remove(k, v));
4526     }
4527    
4528     /**
4529 dl 1.102 * @return an iterator over the entries of the backing map
4530 dl 1.75 */
4531 dl 1.102 public Iterator<Map.Entry<K,V>> iterator() {
4532     ConcurrentHashMapV8<K,V> m = map;
4533     Node<K,V>[] t;
4534     int f = (t = m.table) == null ? 0 : t.length;
4535     return new EntryIterator<K,V>(t, f, 0, f, m);
4536 dl 1.75 }
4537    
4538 dl 1.102 public boolean add(Entry<K,V> e) {
4539     return map.putVal(e.getKey(), e.getValue(), false) == null;
4540 dl 1.75 }
4541 dl 1.102
4542     public boolean addAll(Collection<? extends Entry<K,V>> c) {
4543 dl 1.75 boolean added = false;
4544     for (Entry<K,V> e : c) {
4545     if (add(e))
4546     added = true;
4547     }
4548     return added;
4549     }
4550 dl 1.52
4551 dl 1.102 public final int hashCode() {
4552     int h = 0;
4553     Node<K,V>[] t;
4554     if ((t = map.table) != null) {
4555     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4556     for (Node<K,V> p; (p = it.advance()) != null; ) {
4557     h += p.hashCode();
4558     }
4559     }
4560     return h;
4561 dl 1.52 }
4562    
4563 dl 1.102 public final boolean equals(Object o) {
4564     Set<?> c;
4565     return ((o instanceof Set) &&
4566     ((c = (Set<?>)o) == this ||
4567     (containsAll(c) && c.containsAll(this))));
4568 dl 1.52 }
4569    
4570 dl 1.102 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4571     Node<K,V>[] t;
4572     ConcurrentHashMapV8<K,V> m = map;
4573     long n = m.sumCount();
4574     int f = (t = m.table) == null ? 0 : t.length;
4575     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4576 dl 1.52 }
4577    
4578 dl 1.102 public void forEach(Action<? super Map.Entry<K,V>> action) {
4579     if (action == null) throw new NullPointerException();
4580     Node<K,V>[] t;
4581     if ((t = map.table) != null) {
4582     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583     for (Node<K,V> p; (p = it.advance()) != null; )
4584     action.apply(new MapEntry<K,V>(p.key, p.val, map));
4585     }
4586 dl 1.52 }
4587    
4588 dl 1.102 }
4589 dl 1.52
4590 dl 1.102 // -------------------------------------------------------
4591 dl 1.52
4592 dl 1.102 /**
4593     * Base class for bulk tasks. Repeats some fields and code from
4594     * class Traverser, because we need to subclass CountedCompleter.
4595     */
4596     abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4597     Node<K,V>[] tab; // same as Traverser
4598     Node<K,V> next;
4599     int index;
4600     int baseIndex;
4601     int baseLimit;
4602     final int baseSize;
4603     int batch; // split control
4604    
4605     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4606     super(par);
4607     this.batch = b;
4608     this.index = this.baseIndex = i;
4609     if ((this.tab = t) == null)
4610     this.baseSize = this.baseLimit = 0;
4611     else if (par == null)
4612     this.baseSize = this.baseLimit = t.length;
4613     else {
4614     this.baseLimit = f;
4615     this.baseSize = par.baseSize;
4616     }
4617 dl 1.52 }
4618    
4619     /**
4620 dl 1.102 * Same as Traverser version
4621 dl 1.52 */
4622 dl 1.102 final Node<K,V> advance() {
4623     Node<K,V> e;
4624     if ((e = next) != null)
4625     e = e.next;
4626     for (;;) {
4627     Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4628     if (e != null)
4629     return next = e;
4630     if (baseIndex >= baseLimit || (t = tab) == null ||
4631     (n = t.length) <= (i = index) || i < 0)
4632     return next = null;
4633     if ((e = tabAt(t, index)) != null && e.hash < 0) {
4634     if (e instanceof ForwardingNode) {
4635     tab = ((ForwardingNode<K,V>)e).nextTable;
4636     e = null;
4637     continue;
4638     }
4639     else if (e instanceof TreeBin)
4640     e = ((TreeBin<K,V>)e).first;
4641     else
4642     e = null;
4643     }
4644     if ((index += baseSize) >= n)
4645     index = ++baseIndex; // visit upper slots if present
4646     }
4647 dl 1.52 }
4648     }
4649    
4650     /*
4651     * Task classes. Coded in a regular but ugly format/style to
4652     * simplify checks that each variant differs in the right way from
4653 dl 1.82 * others. The null screenings exist because compilers cannot tell
4654     * that we've already null-checked task arguments, so we force
4655     * simplest hoisted bypass to help avoid convoluted traps.
4656 dl 1.52 */
4657 dl 1.102 @SuppressWarnings("serial")
4658     static final class ForEachKeyTask<K,V>
4659     extends BulkTask<K,V,Void> {
4660     final Action<? super K> action;
4661 dl 1.52 ForEachKeyTask
4662 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4663     Action<? super K> action) {
4664     super(p, b, i, f, t);
4665 dl 1.52 this.action = action;
4666     }
4667 dl 1.102 public final void compute() {
4668     final Action<? super K> action;
4669 dl 1.82 if ((action = this.action) != null) {
4670 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4671     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4672     addToPendingCount(1);
4673     new ForEachKeyTask<K,V>
4674     (this, batch >>>= 1, baseLimit = h, f, tab,
4675     action).fork();
4676     }
4677     for (Node<K,V> p; (p = advance()) != null;)
4678     action.apply(p.key);
4679 dl 1.82 propagateCompletion();
4680     }
4681 dl 1.52 }
4682     }
4683    
4684 dl 1.102 @SuppressWarnings("serial")
4685     static final class ForEachValueTask<K,V>
4686     extends BulkTask<K,V,Void> {
4687     final Action<? super V> action;
4688 dl 1.52 ForEachValueTask
4689 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4690     Action<? super V> action) {
4691     super(p, b, i, f, t);
4692 dl 1.52 this.action = action;
4693     }
4694 dl 1.102 public final void compute() {
4695     final Action<? super V> action;
4696 dl 1.82 if ((action = this.action) != null) {
4697 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4698     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4699     addToPendingCount(1);
4700     new ForEachValueTask<K,V>
4701     (this, batch >>>= 1, baseLimit = h, f, tab,
4702     action).fork();
4703     }
4704     for (Node<K,V> p; (p = advance()) != null;)
4705     action.apply(p.val);
4706 dl 1.82 propagateCompletion();
4707     }
4708 dl 1.52 }
4709     }
4710    
4711 dl 1.102 @SuppressWarnings("serial")
4712     static final class ForEachEntryTask<K,V>
4713     extends BulkTask<K,V,Void> {
4714     final Action<? super Entry<K,V>> action;
4715 dl 1.52 ForEachEntryTask
4716 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4717     Action<? super Entry<K,V>> action) {
4718     super(p, b, i, f, t);
4719 dl 1.52 this.action = action;
4720     }
4721 dl 1.102 public final void compute() {
4722     final Action<? super Entry<K,V>> action;
4723 dl 1.82 if ((action = this.action) != null) {
4724 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4725     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4726     addToPendingCount(1);
4727     new ForEachEntryTask<K,V>
4728     (this, batch >>>= 1, baseLimit = h, f, tab,
4729     action).fork();
4730     }
4731     for (Node<K,V> p; (p = advance()) != null; )
4732     action.apply(p);
4733 dl 1.82 propagateCompletion();
4734     }
4735 dl 1.52 }
4736     }
4737    
4738 dl 1.102 @SuppressWarnings("serial")
4739     static final class ForEachMappingTask<K,V>
4740     extends BulkTask<K,V,Void> {
4741     final BiAction<? super K, ? super V> action;
4742 dl 1.52 ForEachMappingTask
4743 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4744     BiAction<? super K,? super V> action) {
4745     super(p, b, i, f, t);
4746 dl 1.52 this.action = action;
4747     }
4748 dl 1.102 public final void compute() {
4749     final BiAction<? super K, ? super V> action;
4750 dl 1.82 if ((action = this.action) != null) {
4751 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4752     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753     addToPendingCount(1);
4754     new ForEachMappingTask<K,V>
4755     (this, batch >>>= 1, baseLimit = h, f, tab,
4756     action).fork();
4757     }
4758     for (Node<K,V> p; (p = advance()) != null; )
4759     action.apply(p.key, p.val);
4760 dl 1.82 propagateCompletion();
4761     }
4762 dl 1.52 }
4763     }
4764    
4765 dl 1.102 @SuppressWarnings("serial")
4766     static final class ForEachTransformedKeyTask<K,V,U>
4767     extends BulkTask<K,V,Void> {
4768 dl 1.52 final Fun<? super K, ? extends U> transformer;
4769 dl 1.102 final Action<? super U> action;
4770 dl 1.52 ForEachTransformedKeyTask
4771 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4772     Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4773     super(p, b, i, f, t);
4774 dl 1.79 this.transformer = transformer; this.action = action;
4775     }
4776 dl 1.102 public final void compute() {
4777 dl 1.79 final Fun<? super K, ? extends U> transformer;
4778 dl 1.102 final Action<? super U> action;
4779 dl 1.82 if ((transformer = this.transformer) != null &&
4780     (action = this.action) != null) {
4781 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4782     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4783     addToPendingCount(1);
4784 dl 1.82 new ForEachTransformedKeyTask<K,V,U>
4785 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4786     transformer, action).fork();
4787     }
4788     for (Node<K,V> p; (p = advance()) != null; ) {
4789     U u;
4790     if ((u = transformer.apply(p.key)) != null)
4791 dl 1.82 action.apply(u);
4792     }
4793     propagateCompletion();
4794 dl 1.52 }
4795     }
4796     }
4797    
4798 dl 1.102 @SuppressWarnings("serial")
4799     static final class ForEachTransformedValueTask<K,V,U>
4800     extends BulkTask<K,V,Void> {
4801 dl 1.52 final Fun<? super V, ? extends U> transformer;
4802 dl 1.102 final Action<? super U> action;
4803 dl 1.52 ForEachTransformedValueTask
4804 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805     Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4806     super(p, b, i, f, t);
4807 dl 1.79 this.transformer = transformer; this.action = action;
4808     }
4809 dl 1.102 public final void compute() {
4810 dl 1.79 final Fun<? super V, ? extends U> transformer;
4811 dl 1.102 final Action<? super U> action;
4812 dl 1.82 if ((transformer = this.transformer) != null &&
4813     (action = this.action) != null) {
4814 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4815     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4816     addToPendingCount(1);
4817 dl 1.82 new ForEachTransformedValueTask<K,V,U>
4818 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4819     transformer, action).fork();
4820     }
4821     for (Node<K,V> p; (p = advance()) != null; ) {
4822     U u;
4823     if ((u = transformer.apply(p.val)) != null)
4824 dl 1.82 action.apply(u);
4825     }
4826     propagateCompletion();
4827 dl 1.52 }
4828     }
4829     }
4830    
4831 dl 1.102 @SuppressWarnings("serial")
4832     static final class ForEachTransformedEntryTask<K,V,U>
4833     extends BulkTask<K,V,Void> {
4834 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4835 dl 1.102 final Action<? super U> action;
4836 dl 1.52 ForEachTransformedEntryTask
4837 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4838     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4839     super(p, b, i, f, t);
4840 dl 1.79 this.transformer = transformer; this.action = action;
4841     }
4842 dl 1.102 public final void compute() {
4843 dl 1.79 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4844 dl 1.102 final Action<? super U> action;
4845 dl 1.82 if ((transformer = this.transformer) != null &&
4846     (action = this.action) != null) {
4847 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4848     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4849     addToPendingCount(1);
4850 dl 1.82 new ForEachTransformedEntryTask<K,V,U>
4851 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4852     transformer, action).fork();
4853     }
4854     for (Node<K,V> p; (p = advance()) != null; ) {
4855     U u;
4856     if ((u = transformer.apply(p)) != null)
4857 dl 1.82 action.apply(u);
4858     }
4859     propagateCompletion();
4860 dl 1.52 }
4861     }
4862     }
4863    
4864 dl 1.102 @SuppressWarnings("serial")
4865     static final class ForEachTransformedMappingTask<K,V,U>
4866     extends BulkTask<K,V,Void> {
4867 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
4868 dl 1.102 final Action<? super U> action;
4869 dl 1.52 ForEachTransformedMappingTask
4870 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4871 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
4872 dl 1.102 Action<? super U> action) {
4873     super(p, b, i, f, t);
4874 dl 1.79 this.transformer = transformer; this.action = action;
4875 dl 1.52 }
4876 dl 1.102 public final void compute() {
4877 dl 1.79 final BiFun<? super K, ? super V, ? extends U> transformer;
4878 dl 1.102 final Action<? super U> action;
4879 dl 1.82 if ((transformer = this.transformer) != null &&
4880     (action = this.action) != null) {
4881 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4882     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4883     addToPendingCount(1);
4884 dl 1.82 new ForEachTransformedMappingTask<K,V,U>
4885 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4886     transformer, action).fork();
4887     }
4888     for (Node<K,V> p; (p = advance()) != null; ) {
4889     U u;
4890     if ((u = transformer.apply(p.key, p.val)) != null)
4891 dl 1.82 action.apply(u);
4892     }
4893     propagateCompletion();
4894 dl 1.52 }
4895     }
4896     }
4897    
4898 dl 1.102 @SuppressWarnings("serial")
4899     static final class SearchKeysTask<K,V,U>
4900     extends BulkTask<K,V,U> {
4901 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
4902     final AtomicReference<U> result;
4903     SearchKeysTask
4904 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4905 dl 1.52 Fun<? super K, ? extends U> searchFunction,
4906     AtomicReference<U> result) {
4907 dl 1.102 super(p, b, i, f, t);
4908 dl 1.52 this.searchFunction = searchFunction; this.result = result;
4909     }
4910 dl 1.79 public final U getRawResult() { return result.get(); }
4911 dl 1.102 public final void compute() {
4912 dl 1.79 final Fun<? super K, ? extends U> searchFunction;
4913     final AtomicReference<U> result;
4914 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
4915     (result = this.result) != null) {
4916 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4917     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4918 dl 1.82 if (result.get() != null)
4919     return;
4920 dl 1.102 addToPendingCount(1);
4921 dl 1.82 new SearchKeysTask<K,V,U>
4922 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4923     searchFunction, result).fork();
4924 dl 1.61 }
4925 dl 1.82 while (result.get() == null) {
4926     U u;
4927 dl 1.102 Node<K,V> p;
4928     if ((p = advance()) == null) {
4929 dl 1.82 propagateCompletion();
4930     break;
4931     }
4932 dl 1.102 if ((u = searchFunction.apply(p.key)) != null) {
4933 dl 1.82 if (result.compareAndSet(null, u))
4934     quietlyCompleteRoot();
4935     break;
4936     }
4937 dl 1.52 }
4938     }
4939     }
4940     }
4941    
4942 dl 1.102 @SuppressWarnings("serial")
4943     static final class SearchValuesTask<K,V,U>
4944     extends BulkTask<K,V,U> {
4945 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
4946     final AtomicReference<U> result;
4947     SearchValuesTask
4948 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4949 dl 1.52 Fun<? super V, ? extends U> searchFunction,
4950     AtomicReference<U> result) {
4951 dl 1.102 super(p, b, i, f, t);
4952 dl 1.52 this.searchFunction = searchFunction; this.result = result;
4953     }
4954 dl 1.79 public final U getRawResult() { return result.get(); }
4955 dl 1.102 public final void compute() {
4956 dl 1.79 final Fun<? super V, ? extends U> searchFunction;
4957     final AtomicReference<U> result;
4958 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
4959     (result = this.result) != null) {
4960 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4961     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4962 dl 1.82 if (result.get() != null)
4963     return;
4964 dl 1.102 addToPendingCount(1);
4965 dl 1.82 new SearchValuesTask<K,V,U>
4966 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4967     searchFunction, result).fork();
4968 dl 1.61 }
4969 dl 1.82 while (result.get() == null) {
4970 dl 1.102 U u;
4971     Node<K,V> p;
4972     if ((p = advance()) == null) {
4973 dl 1.82 propagateCompletion();
4974     break;
4975     }
4976 dl 1.102 if ((u = searchFunction.apply(p.val)) != null) {
4977 dl 1.82 if (result.compareAndSet(null, u))
4978     quietlyCompleteRoot();
4979     break;
4980     }
4981 dl 1.52 }
4982     }
4983     }
4984     }
4985    
4986 dl 1.102 @SuppressWarnings("serial")
4987     static final class SearchEntriesTask<K,V,U>
4988     extends BulkTask<K,V,U> {
4989 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
4990     final AtomicReference<U> result;
4991     SearchEntriesTask
4992 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
4994     AtomicReference<U> result) {
4995 dl 1.102 super(p, b, i, f, t);
4996 dl 1.52 this.searchFunction = searchFunction; this.result = result;
4997     }
4998 dl 1.79 public final U getRawResult() { return result.get(); }
4999 dl 1.102 public final void compute() {
5000 dl 1.79 final Fun<Entry<K,V>, ? extends U> searchFunction;
5001     final AtomicReference<U> result;
5002 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5003     (result = this.result) != null) {
5004 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5005     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006 dl 1.82 if (result.get() != null)
5007     return;
5008 dl 1.102 addToPendingCount(1);
5009 dl 1.82 new SearchEntriesTask<K,V,U>
5010 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5011     searchFunction, result).fork();
5012 dl 1.61 }
5013 dl 1.82 while (result.get() == null) {
5014 dl 1.102 U u;
5015     Node<K,V> p;
5016     if ((p = advance()) == null) {
5017 dl 1.82 propagateCompletion();
5018     break;
5019     }
5020 dl 1.102 if ((u = searchFunction.apply(p)) != null) {
5021 dl 1.82 if (result.compareAndSet(null, u))
5022     quietlyCompleteRoot();
5023     return;
5024     }
5025 dl 1.52 }
5026     }
5027     }
5028     }
5029    
5030 dl 1.102 @SuppressWarnings("serial")
5031     static final class SearchMappingsTask<K,V,U>
5032     extends BulkTask<K,V,U> {
5033 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5034     final AtomicReference<U> result;
5035     SearchMappingsTask
5036 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5038     AtomicReference<U> result) {
5039 dl 1.102 super(p, b, i, f, t);
5040 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5041     }
5042 dl 1.79 public final U getRawResult() { return result.get(); }
5043 dl 1.102 public final void compute() {
5044 dl 1.79 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5045     final AtomicReference<U> result;
5046 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5047     (result = this.result) != null) {
5048 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5049     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050 dl 1.82 if (result.get() != null)
5051     return;
5052 dl 1.102 addToPendingCount(1);
5053 dl 1.82 new SearchMappingsTask<K,V,U>
5054 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5055     searchFunction, result).fork();
5056 dl 1.61 }
5057 dl 1.82 while (result.get() == null) {
5058 dl 1.102 U u;
5059     Node<K,V> p;
5060     if ((p = advance()) == null) {
5061 dl 1.82 propagateCompletion();
5062     break;
5063     }
5064 dl 1.102 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5065 dl 1.82 if (result.compareAndSet(null, u))
5066     quietlyCompleteRoot();
5067     break;
5068     }
5069 dl 1.52 }
5070     }
5071     }
5072     }
5073    
5074 dl 1.102 @SuppressWarnings("serial")
5075     static final class ReduceKeysTask<K,V>
5076     extends BulkTask<K,V,K> {
5077 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5078     K result;
5079 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5080 dl 1.52 ReduceKeysTask
5081 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082 dl 1.61 ReduceKeysTask<K,V> nextRight,
5083 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5084 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5085 dl 1.52 this.reducer = reducer;
5086     }
5087 dl 1.79 public final K getRawResult() { return result; }
5088 dl 1.102 public final void compute() {
5089 dl 1.82 final BiFun<? super K, ? super K, ? extends K> reducer;
5090     if ((reducer = this.reducer) != null) {
5091 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5092     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093     addToPendingCount(1);
5094 dl 1.82 (rights = new ReduceKeysTask<K,V>
5095 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5096     rights, reducer)).fork();
5097     }
5098 dl 1.82 K r = null;
5099 dl 1.102 for (Node<K,V> p; (p = advance()) != null; ) {
5100     K u = p.key;
5101     r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5102 dl 1.82 }
5103     result = r;
5104     CountedCompleter<?> c;
5105     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5106 dl 1.102 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5107 dl 1.82 t = (ReduceKeysTask<K,V>)c,
5108     s = t.rights;
5109     while (s != null) {
5110     K tr, sr;
5111     if ((sr = s.result) != null)
5112     t.result = (((tr = t.result) == null) ? sr :
5113     reducer.apply(tr, sr));
5114     s = t.rights = s.nextRight;
5115     }
5116 dl 1.52 }
5117 dl 1.71 }
5118 dl 1.52 }
5119     }
5120    
5121 dl 1.102 @SuppressWarnings("serial")
5122     static final class ReduceValuesTask<K,V>
5123     extends BulkTask<K,V,V> {
5124 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5125     V result;
5126 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5127 dl 1.52 ReduceValuesTask
5128 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129 dl 1.61 ReduceValuesTask<K,V> nextRight,
5130 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5131 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5132 dl 1.52 this.reducer = reducer;
5133     }
5134 dl 1.79 public final V getRawResult() { return result; }
5135 dl 1.102 public final void compute() {
5136 dl 1.82 final BiFun<? super V, ? super V, ? extends V> reducer;
5137     if ((reducer = this.reducer) != null) {
5138 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5139     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140     addToPendingCount(1);
5141 dl 1.82 (rights = new ReduceValuesTask<K,V>
5142 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5143     rights, reducer)).fork();
5144     }
5145 dl 1.82 V r = null;
5146 dl 1.102 for (Node<K,V> p; (p = advance()) != null; ) {
5147     V v = p.val;
5148     r = (r == null) ? v : reducer.apply(r, v);
5149 dl 1.82 }
5150     result = r;
5151     CountedCompleter<?> c;
5152     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5153 dl 1.102 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5154 dl 1.82 t = (ReduceValuesTask<K,V>)c,
5155     s = t.rights;
5156     while (s != null) {
5157     V tr, sr;
5158     if ((sr = s.result) != null)
5159     t.result = (((tr = t.result) == null) ? sr :
5160     reducer.apply(tr, sr));
5161     s = t.rights = s.nextRight;
5162     }
5163 dl 1.52 }
5164     }
5165     }
5166     }
5167    
5168 dl 1.102 @SuppressWarnings("serial")
5169     static final class ReduceEntriesTask<K,V>
5170     extends BulkTask<K,V,Map.Entry<K,V>> {
5171 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5172     Map.Entry<K,V> result;
5173 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
5174 dl 1.52 ReduceEntriesTask
5175 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 dl 1.63 ReduceEntriesTask<K,V> nextRight,
5177 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5178 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5179 dl 1.52 this.reducer = reducer;
5180     }
5181 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
5182 dl 1.102 public final void compute() {
5183 dl 1.82 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5184     if ((reducer = this.reducer) != null) {
5185 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5186     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187     addToPendingCount(1);
5188 dl 1.82 (rights = new ReduceEntriesTask<K,V>
5189 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5190     rights, reducer)).fork();
5191     }
5192 dl 1.82 Map.Entry<K,V> r = null;
5193 dl 1.102 for (Node<K,V> p; (p = advance()) != null; )
5194     r = (r == null) ? p : reducer.apply(r, p);
5195 dl 1.82 result = r;
5196     CountedCompleter<?> c;
5197     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5198 dl 1.102 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5199 dl 1.82 t = (ReduceEntriesTask<K,V>)c,
5200     s = t.rights;
5201     while (s != null) {
5202     Map.Entry<K,V> tr, sr;
5203     if ((sr = s.result) != null)
5204     t.result = (((tr = t.result) == null) ? sr :
5205     reducer.apply(tr, sr));
5206     s = t.rights = s.nextRight;
5207     }
5208 dl 1.52 }
5209     }
5210     }
5211     }
5212    
5213 dl 1.102 @SuppressWarnings("serial")
5214     static final class MapReduceKeysTask<K,V,U>
5215     extends BulkTask<K,V,U> {
5216 dl 1.52 final Fun<? super K, ? extends U> transformer;
5217     final BiFun<? super U, ? super U, ? extends U> reducer;
5218     U result;
5219 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
5220 dl 1.52 MapReduceKeysTask
5221 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5222 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
5223 dl 1.52 Fun<? super K, ? extends U> transformer,
5224     BiFun<? super U, ? super U, ? extends U> reducer) {
5225 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5226 dl 1.52 this.transformer = transformer;
5227     this.reducer = reducer;
5228     }
5229 dl 1.79 public final U getRawResult() { return result; }
5230 dl 1.102 public final void compute() {
5231 dl 1.82 final Fun<? super K, ? extends U> transformer;
5232     final BiFun<? super U, ? super U, ? extends U> reducer;
5233     if ((transformer = this.transformer) != null &&
5234     (reducer = this.reducer) != null) {
5235 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5236     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5237     addToPendingCount(1);
5238 dl 1.82 (rights = new MapReduceKeysTask<K,V,U>
5239 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5240     rights, transformer, reducer)).fork();
5241     }
5242     U r = null;
5243     for (Node<K,V> p; (p = advance()) != null; ) {
5244     U u;
5245     if ((u = transformer.apply(p.key)) != null)
5246 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5247     }
5248     result = r;
5249     CountedCompleter<?> c;
5250     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5251 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5252 dl 1.82 t = (MapReduceKeysTask<K,V,U>)c,
5253     s = t.rights;
5254     while (s != null) {
5255     U tr, sr;
5256     if ((sr = s.result) != null)
5257     t.result = (((tr = t.result) == null) ? sr :
5258     reducer.apply(tr, sr));
5259     s = t.rights = s.nextRight;
5260     }
5261 dl 1.52 }
5262     }
5263     }
5264     }
5265    
5266 dl 1.102 @SuppressWarnings("serial")
5267     static final class MapReduceValuesTask<K,V,U>
5268     extends BulkTask<K,V,U> {
5269 dl 1.52 final Fun<? super V, ? extends U> transformer;
5270     final BiFun<? super U, ? super U, ? extends U> reducer;
5271     U result;
5272 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
5273 dl 1.52 MapReduceValuesTask
5274 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5275 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
5276 dl 1.52 Fun<? super V, ? extends U> transformer,
5277     BiFun<? super U, ? super U, ? extends U> reducer) {
5278 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5279 dl 1.52 this.transformer = transformer;
5280     this.reducer = reducer;
5281     }
5282 dl 1.79 public final U getRawResult() { return result; }
5283 dl 1.102 public final void compute() {
5284 dl 1.82 final Fun<? super V, ? extends U> transformer;
5285     final BiFun<? super U, ? super U, ? extends U> reducer;
5286     if ((transformer = this.transformer) != null &&
5287     (reducer = this.reducer) != null) {
5288 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5289     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290     addToPendingCount(1);
5291 dl 1.82 (rights = new MapReduceValuesTask<K,V,U>
5292 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5293     rights, transformer, reducer)).fork();
5294     }
5295     U r = null;
5296     for (Node<K,V> p; (p = advance()) != null; ) {
5297     U u;
5298     if ((u = transformer.apply(p.val)) != null)
5299 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5300     }
5301     result = r;
5302     CountedCompleter<?> c;
5303     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5304 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5305 dl 1.82 t = (MapReduceValuesTask<K,V,U>)c,
5306     s = t.rights;
5307     while (s != null) {
5308     U tr, sr;
5309     if ((sr = s.result) != null)
5310     t.result = (((tr = t.result) == null) ? sr :
5311     reducer.apply(tr, sr));
5312     s = t.rights = s.nextRight;
5313     }
5314 dl 1.52 }
5315 dl 1.71 }
5316 dl 1.52 }
5317     }
5318    
5319 dl 1.102 @SuppressWarnings("serial")
5320     static final class MapReduceEntriesTask<K,V,U>
5321     extends BulkTask<K,V,U> {
5322 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5323     final BiFun<? super U, ? super U, ? extends U> reducer;
5324     U result;
5325 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
5326 dl 1.52 MapReduceEntriesTask
5327 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5328 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
5329 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
5330     BiFun<? super U, ? super U, ? extends U> reducer) {
5331 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5332 dl 1.52 this.transformer = transformer;
5333     this.reducer = reducer;
5334     }
5335 dl 1.79 public final U getRawResult() { return result; }
5336 dl 1.102 public final void compute() {
5337 dl 1.82 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5338     final BiFun<? super U, ? super U, ? extends U> reducer;
5339     if ((transformer = this.transformer) != null &&
5340     (reducer = this.reducer) != null) {
5341 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5342     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343     addToPendingCount(1);
5344 dl 1.82 (rights = new MapReduceEntriesTask<K,V,U>
5345 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5346     rights, transformer, reducer)).fork();
5347     }
5348     U r = null;
5349     for (Node<K,V> p; (p = advance()) != null; ) {
5350     U u;
5351     if ((u = transformer.apply(p)) != null)
5352 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5353     }
5354     result = r;
5355     CountedCompleter<?> c;
5356     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5357 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5358 dl 1.82 t = (MapReduceEntriesTask<K,V,U>)c,
5359     s = t.rights;
5360     while (s != null) {
5361     U tr, sr;
5362     if ((sr = s.result) != null)
5363     t.result = (((tr = t.result) == null) ? sr :
5364     reducer.apply(tr, sr));
5365     s = t.rights = s.nextRight;
5366     }
5367 dl 1.52 }
5368     }
5369     }
5370     }
5371    
5372 dl 1.102 @SuppressWarnings("serial")
5373     static final class MapReduceMappingsTask<K,V,U>
5374     extends BulkTask<K,V,U> {
5375 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5376     final BiFun<? super U, ? super U, ? extends U> reducer;
5377     U result;
5378 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
5379 dl 1.52 MapReduceMappingsTask
5380 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5381 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
5382 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5383     BiFun<? super U, ? super U, ? extends U> reducer) {
5384 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5385 dl 1.52 this.transformer = transformer;
5386     this.reducer = reducer;
5387     }
5388 dl 1.79 public final U getRawResult() { return result; }
5389 dl 1.102 public final void compute() {
5390 dl 1.82 final BiFun<? super K, ? super V, ? extends U> transformer;
5391     final BiFun<? super U, ? super U, ? extends U> reducer;
5392     if ((transformer = this.transformer) != null &&
5393     (reducer = this.reducer) != null) {
5394 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5395     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5396     addToPendingCount(1);
5397 dl 1.82 (rights = new MapReduceMappingsTask<K,V,U>
5398 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5399     rights, transformer, reducer)).fork();
5400     }
5401     U r = null;
5402     for (Node<K,V> p; (p = advance()) != null; ) {
5403     U u;
5404     if ((u = transformer.apply(p.key, p.val)) != null)
5405 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5406     }
5407     result = r;
5408     CountedCompleter<?> c;
5409     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5410 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5411 dl 1.82 t = (MapReduceMappingsTask<K,V,U>)c,
5412     s = t.rights;
5413     while (s != null) {
5414     U tr, sr;
5415     if ((sr = s.result) != null)
5416     t.result = (((tr = t.result) == null) ? sr :
5417     reducer.apply(tr, sr));
5418     s = t.rights = s.nextRight;
5419     }
5420 dl 1.52 }
5421 dl 1.71 }
5422 dl 1.52 }
5423     }
5424    
5425 dl 1.102 @SuppressWarnings("serial")
5426     static final class MapReduceKeysToDoubleTask<K,V>
5427     extends BulkTask<K,V,Double> {
5428 dl 1.52 final ObjectToDouble<? super K> transformer;
5429     final DoubleByDoubleToDouble reducer;
5430     final double basis;
5431     double result;
5432 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5433 dl 1.52 MapReduceKeysToDoubleTask
5434 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5435 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
5436 dl 1.52 ObjectToDouble<? super K> transformer,
5437     double basis,
5438     DoubleByDoubleToDouble reducer) {
5439 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5440 dl 1.52 this.transformer = transformer;
5441     this.basis = basis; this.reducer = reducer;
5442     }
5443 dl 1.79 public final Double getRawResult() { return result; }
5444 dl 1.102 public final void compute() {
5445 dl 1.82 final ObjectToDouble<? super K> transformer;
5446     final DoubleByDoubleToDouble reducer;
5447     if ((transformer = this.transformer) != null &&
5448     (reducer = this.reducer) != null) {
5449     double r = this.basis;
5450 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5451     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5452     addToPendingCount(1);
5453 dl 1.82 (rights = new MapReduceKeysToDoubleTask<K,V>
5454 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5455     rights, transformer, r, reducer)).fork();
5456     }
5457     for (Node<K,V> p; (p = advance()) != null; )
5458     r = reducer.apply(r, transformer.apply(p.key));
5459 dl 1.82 result = r;
5460     CountedCompleter<?> c;
5461     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5462 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5463 dl 1.82 t = (MapReduceKeysToDoubleTask<K,V>)c,
5464     s = t.rights;
5465     while (s != null) {
5466     t.result = reducer.apply(t.result, s.result);
5467     s = t.rights = s.nextRight;
5468     }
5469 dl 1.52 }
5470 dl 1.71 }
5471 dl 1.52 }
5472     }
5473    
5474 dl 1.102 @SuppressWarnings("serial")
5475     static final class MapReduceValuesToDoubleTask<K,V>
5476     extends BulkTask<K,V,Double> {
5477 dl 1.52 final ObjectToDouble<? super V> transformer;
5478     final DoubleByDoubleToDouble reducer;
5479     final double basis;
5480     double result;
5481 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5482 dl 1.52 MapReduceValuesToDoubleTask
5483 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5484 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
5485 dl 1.52 ObjectToDouble<? super V> transformer,
5486     double basis,
5487     DoubleByDoubleToDouble reducer) {
5488 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5489 dl 1.52 this.transformer = transformer;
5490     this.basis = basis; this.reducer = reducer;
5491     }
5492 dl 1.79 public final Double getRawResult() { return result; }
5493 dl 1.102 public final void compute() {
5494 dl 1.82 final ObjectToDouble<? super V> transformer;
5495     final DoubleByDoubleToDouble reducer;
5496     if ((transformer = this.transformer) != null &&
5497     (reducer = this.reducer) != null) {
5498     double r = this.basis;
5499 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5500     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5501     addToPendingCount(1);
5502 dl 1.82 (rights = new MapReduceValuesToDoubleTask<K,V>
5503 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5504     rights, transformer, r, reducer)).fork();
5505     }
5506     for (Node<K,V> p; (p = advance()) != null; )
5507     r = reducer.apply(r, transformer.apply(p.val));
5508 dl 1.82 result = r;
5509     CountedCompleter<?> c;
5510     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5511 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5512 dl 1.82 t = (MapReduceValuesToDoubleTask<K,V>)c,
5513     s = t.rights;
5514     while (s != null) {
5515     t.result = reducer.apply(t.result, s.result);
5516     s = t.rights = s.nextRight;
5517     }
5518 dl 1.52 }
5519 dl 1.71 }
5520 dl 1.52 }
5521     }
5522    
5523 dl 1.102 @SuppressWarnings("serial")
5524     static final class MapReduceEntriesToDoubleTask<K,V>
5525     extends BulkTask<K,V,Double> {
5526 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
5527     final DoubleByDoubleToDouble reducer;
5528     final double basis;
5529     double result;
5530 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5531 dl 1.52 MapReduceEntriesToDoubleTask
5532 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5533 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
5534 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
5535     double basis,
5536     DoubleByDoubleToDouble reducer) {
5537 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5538 dl 1.52 this.transformer = transformer;
5539     this.basis = basis; this.reducer = reducer;
5540     }
5541 dl 1.79 public final Double getRawResult() { return result; }
5542 dl 1.102 public final void compute() {
5543 dl 1.82 final ObjectToDouble<Map.Entry<K,V>> transformer;
5544     final DoubleByDoubleToDouble reducer;
5545     if ((transformer = this.transformer) != null &&
5546     (reducer = this.reducer) != null) {
5547     double r = this.basis;
5548 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5549     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5550     addToPendingCount(1);
5551 dl 1.82 (rights = new MapReduceEntriesToDoubleTask<K,V>
5552 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5553     rights, transformer, r, reducer)).fork();
5554     }
5555     for (Node<K,V> p; (p = advance()) != null; )
5556     r = reducer.apply(r, transformer.apply(p));
5557 dl 1.82 result = r;
5558     CountedCompleter<?> c;
5559     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5560 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5561 dl 1.82 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5562     s = t.rights;
5563     while (s != null) {
5564     t.result = reducer.apply(t.result, s.result);
5565     s = t.rights = s.nextRight;
5566     }
5567 dl 1.52 }
5568 dl 1.71 }
5569 dl 1.52 }
5570     }
5571    
5572 dl 1.102 @SuppressWarnings("serial")
5573     static final class MapReduceMappingsToDoubleTask<K,V>
5574     extends BulkTask<K,V,Double> {
5575 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5576     final DoubleByDoubleToDouble reducer;
5577     final double basis;
5578     double result;
5579 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5580 dl 1.52 MapReduceMappingsToDoubleTask
5581 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5582 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
5583 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
5584     double basis,
5585     DoubleByDoubleToDouble reducer) {
5586 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5587 dl 1.52 this.transformer = transformer;
5588     this.basis = basis; this.reducer = reducer;
5589     }
5590 dl 1.79 public final Double getRawResult() { return result; }
5591 dl 1.102 public final void compute() {
5592 dl 1.82 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5593     final DoubleByDoubleToDouble reducer;
5594     if ((transformer = this.transformer) != null &&
5595     (reducer = this.reducer) != null) {
5596     double r = this.basis;
5597 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5598     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5599     addToPendingCount(1);
5600 dl 1.82 (rights = new MapReduceMappingsToDoubleTask<K,V>
5601 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5602     rights, transformer, r, reducer)).fork();
5603     }
5604     for (Node<K,V> p; (p = advance()) != null; )
5605     r = reducer.apply(r, transformer.apply(p.key, p.val));
5606 dl 1.82 result = r;
5607     CountedCompleter<?> c;
5608     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5609 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5610 dl 1.82 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5611     s = t.rights;
5612     while (s != null) {
5613     t.result = reducer.apply(t.result, s.result);
5614     s = t.rights = s.nextRight;
5615     }
5616 dl 1.52 }
5617 dl 1.71 }
5618 dl 1.52 }
5619     }
5620    
5621 dl 1.102 @SuppressWarnings("serial")
5622     static final class MapReduceKeysToLongTask<K,V>
5623     extends BulkTask<K,V,Long> {
5624 dl 1.52 final ObjectToLong<? super K> transformer;
5625     final LongByLongToLong reducer;
5626     final long basis;
5627     long result;
5628 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
5629 dl 1.52 MapReduceKeysToLongTask
5630 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5631 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
5632 dl 1.52 ObjectToLong<? super K> transformer,
5633     long basis,
5634     LongByLongToLong reducer) {
5635 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5636 dl 1.52 this.transformer = transformer;
5637     this.basis = basis; this.reducer = reducer;
5638     }
5639 dl 1.79 public final Long getRawResult() { return result; }
5640 dl 1.102 public final void compute() {
5641 dl 1.82 final ObjectToLong<? super K> transformer;
5642     final LongByLongToLong reducer;
5643     if ((transformer = this.transformer) != null &&
5644     (reducer = this.reducer) != null) {
5645     long r = this.basis;
5646 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5647     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5648     addToPendingCount(1);
5649 dl 1.82 (rights = new MapReduceKeysToLongTask<K,V>
5650 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5651     rights, transformer, r, reducer)).fork();
5652     }
5653     for (Node<K,V> p; (p = advance()) != null; )
5654     r = reducer.apply(r, transformer.apply(p.key));
5655 dl 1.82 result = r;
5656     CountedCompleter<?> c;
5657     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5658 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5659 dl 1.82 t = (MapReduceKeysToLongTask<K,V>)c,
5660     s = t.rights;
5661     while (s != null) {
5662     t.result = reducer.apply(t.result, s.result);
5663     s = t.rights = s.nextRight;
5664     }
5665 dl 1.52 }
5666 dl 1.71 }
5667 dl 1.52 }
5668     }
5669    
5670 dl 1.102 @SuppressWarnings("serial")
5671     static final class MapReduceValuesToLongTask<K,V>
5672     extends BulkTask<K,V,Long> {
5673 dl 1.52 final ObjectToLong<? super V> transformer;
5674     final LongByLongToLong reducer;
5675     final long basis;
5676     long result;
5677 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
5678 dl 1.52 MapReduceValuesToLongTask
5679 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5680 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
5681 dl 1.52 ObjectToLong<? super V> transformer,
5682     long basis,
5683     LongByLongToLong reducer) {
5684 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5685 dl 1.52 this.transformer = transformer;
5686     this.basis = basis; this.reducer = reducer;
5687     }
5688 dl 1.79 public final Long getRawResult() { return result; }
5689 dl 1.102 public final void compute() {
5690 dl 1.82 final ObjectToLong<? super V> transformer;
5691     final LongByLongToLong reducer;
5692     if ((transformer = this.transformer) != null &&
5693     (reducer = this.reducer) != null) {
5694     long r = this.basis;
5695 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5696     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5697     addToPendingCount(1);
5698 dl 1.82 (rights = new MapReduceValuesToLongTask<K,V>
5699 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5700     rights, transformer, r, reducer)).fork();
5701     }
5702     for (Node<K,V> p; (p = advance()) != null; )
5703     r = reducer.apply(r, transformer.apply(p.val));
5704 dl 1.82 result = r;
5705     CountedCompleter<?> c;
5706     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5707 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5708 dl 1.82 t = (MapReduceValuesToLongTask<K,V>)c,
5709     s = t.rights;
5710     while (s != null) {
5711     t.result = reducer.apply(t.result, s.result);
5712     s = t.rights = s.nextRight;
5713     }
5714 dl 1.52 }
5715 dl 1.71 }
5716 dl 1.52 }
5717     }
5718    
5719 dl 1.102 @SuppressWarnings("serial")
5720     static final class MapReduceEntriesToLongTask<K,V>
5721     extends BulkTask<K,V,Long> {
5722 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
5723     final LongByLongToLong reducer;
5724     final long basis;
5725     long result;
5726 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5727 dl 1.52 MapReduceEntriesToLongTask
5728 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5729 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
5730 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
5731     long basis,
5732     LongByLongToLong reducer) {
5733 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5734 dl 1.52 this.transformer = transformer;
5735     this.basis = basis; this.reducer = reducer;
5736     }
5737 dl 1.79 public final Long getRawResult() { return result; }
5738 dl 1.102 public final void compute() {
5739 dl 1.82 final ObjectToLong<Map.Entry<K,V>> transformer;
5740     final LongByLongToLong reducer;
5741     if ((transformer = this.transformer) != null &&
5742     (reducer = this.reducer) != null) {
5743     long r = this.basis;
5744 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5745     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5746     addToPendingCount(1);
5747 dl 1.82 (rights = new MapReduceEntriesToLongTask<K,V>
5748 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5749     rights, transformer, r, reducer)).fork();
5750     }
5751     for (Node<K,V> p; (p = advance()) != null; )
5752     r = reducer.apply(r, transformer.apply(p));
5753 dl 1.82 result = r;
5754     CountedCompleter<?> c;
5755     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5757 dl 1.82 t = (MapReduceEntriesToLongTask<K,V>)c,
5758     s = t.rights;
5759     while (s != null) {
5760     t.result = reducer.apply(t.result, s.result);
5761     s = t.rights = s.nextRight;
5762     }
5763 dl 1.52 }
5764     }
5765     }
5766     }
5767    
5768 dl 1.102 @SuppressWarnings("serial")
5769     static final class MapReduceMappingsToLongTask<K,V>
5770     extends BulkTask<K,V,Long> {
5771 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
5772     final LongByLongToLong reducer;
5773     final long basis;
5774     long result;
5775 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5776 dl 1.52 MapReduceMappingsToLongTask
5777 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5778 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
5779 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
5780     long basis,
5781     LongByLongToLong reducer) {
5782 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5783 dl 1.52 this.transformer = transformer;
5784     this.basis = basis; this.reducer = reducer;
5785     }
5786 dl 1.79 public final Long getRawResult() { return result; }
5787 dl 1.102 public final void compute() {
5788 dl 1.82 final ObjectByObjectToLong<? super K, ? super V> transformer;
5789     final LongByLongToLong reducer;
5790     if ((transformer = this.transformer) != null &&
5791     (reducer = this.reducer) != null) {
5792     long r = this.basis;
5793 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5794     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5795     addToPendingCount(1);
5796 dl 1.82 (rights = new MapReduceMappingsToLongTask<K,V>
5797 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5798     rights, transformer, r, reducer)).fork();
5799     }
5800     for (Node<K,V> p; (p = advance()) != null; )
5801     r = reducer.apply(r, transformer.apply(p.key, p.val));
5802 dl 1.82 result = r;
5803     CountedCompleter<?> c;
5804     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5805 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5806 dl 1.82 t = (MapReduceMappingsToLongTask<K,V>)c,
5807     s = t.rights;
5808     while (s != null) {
5809     t.result = reducer.apply(t.result, s.result);
5810     s = t.rights = s.nextRight;
5811     }
5812 dl 1.52 }
5813 dl 1.71 }
5814 dl 1.52 }
5815     }
5816    
5817 dl 1.102 @SuppressWarnings("serial")
5818     static final class MapReduceKeysToIntTask<K,V>
5819     extends BulkTask<K,V,Integer> {
5820 dl 1.52 final ObjectToInt<? super K> transformer;
5821     final IntByIntToInt reducer;
5822     final int basis;
5823     int result;
5824 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
5825 dl 1.52 MapReduceKeysToIntTask
5826 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5827 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
5828 dl 1.52 ObjectToInt<? super K> transformer,
5829     int basis,
5830     IntByIntToInt reducer) {
5831 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5832 dl 1.52 this.transformer = transformer;
5833     this.basis = basis; this.reducer = reducer;
5834     }
5835 dl 1.79 public final Integer getRawResult() { return result; }
5836 dl 1.102 public final void compute() {
5837 dl 1.82 final ObjectToInt<? super K> transformer;
5838     final IntByIntToInt reducer;
5839     if ((transformer = this.transformer) != null &&
5840     (reducer = this.reducer) != null) {
5841     int r = this.basis;
5842 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5843     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5844     addToPendingCount(1);
5845 dl 1.82 (rights = new MapReduceKeysToIntTask<K,V>
5846 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5847     rights, transformer, r, reducer)).fork();
5848     }
5849     for (Node<K,V> p; (p = advance()) != null; )
5850     r = reducer.apply(r, transformer.apply(p.key));
5851 dl 1.82 result = r;
5852     CountedCompleter<?> c;
5853     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5855 dl 1.82 t = (MapReduceKeysToIntTask<K,V>)c,
5856     s = t.rights;
5857     while (s != null) {
5858     t.result = reducer.apply(t.result, s.result);
5859     s = t.rights = s.nextRight;
5860     }
5861 dl 1.52 }
5862 dl 1.71 }
5863 dl 1.52 }
5864     }
5865    
5866 dl 1.102 @SuppressWarnings("serial")
5867     static final class MapReduceValuesToIntTask<K,V>
5868     extends BulkTask<K,V,Integer> {
5869 dl 1.52 final ObjectToInt<? super V> transformer;
5870     final IntByIntToInt reducer;
5871     final int basis;
5872     int result;
5873 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
5874 dl 1.52 MapReduceValuesToIntTask
5875 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
5877 dl 1.52 ObjectToInt<? super V> transformer,
5878     int basis,
5879     IntByIntToInt reducer) {
5880 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5881 dl 1.52 this.transformer = transformer;
5882     this.basis = basis; this.reducer = reducer;
5883     }
5884 dl 1.79 public final Integer getRawResult() { return result; }
5885 dl 1.102 public final void compute() {
5886 dl 1.82 final ObjectToInt<? super V> transformer;
5887     final IntByIntToInt reducer;
5888     if ((transformer = this.transformer) != null &&
5889     (reducer = this.reducer) != null) {
5890     int r = this.basis;
5891 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5892     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893     addToPendingCount(1);
5894 dl 1.82 (rights = new MapReduceValuesToIntTask<K,V>
5895 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5896     rights, transformer, r, reducer)).fork();
5897     }
5898     for (Node<K,V> p; (p = advance()) != null; )
5899     r = reducer.apply(r, transformer.apply(p.val));
5900 dl 1.82 result = r;
5901     CountedCompleter<?> c;
5902     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5904 dl 1.82 t = (MapReduceValuesToIntTask<K,V>)c,
5905     s = t.rights;
5906     while (s != null) {
5907     t.result = reducer.apply(t.result, s.result);
5908     s = t.rights = s.nextRight;
5909     }
5910 dl 1.52 }
5911 dl 1.71 }
5912 dl 1.52 }
5913     }
5914    
5915 dl 1.102 @SuppressWarnings("serial")
5916     static final class MapReduceEntriesToIntTask<K,V>
5917     extends BulkTask<K,V,Integer> {
5918 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
5919     final IntByIntToInt reducer;
5920     final int basis;
5921     int result;
5922 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5923 dl 1.52 MapReduceEntriesToIntTask
5924 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5925 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
5926 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
5927     int basis,
5928     IntByIntToInt reducer) {
5929 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5930 dl 1.52 this.transformer = transformer;
5931     this.basis = basis; this.reducer = reducer;
5932     }
5933 dl 1.79 public final Integer getRawResult() { return result; }
5934 dl 1.102 public final void compute() {
5935 dl 1.82 final ObjectToInt<Map.Entry<K,V>> transformer;
5936     final IntByIntToInt reducer;
5937     if ((transformer = this.transformer) != null &&
5938     (reducer = this.reducer) != null) {
5939     int r = this.basis;
5940 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5941     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5942     addToPendingCount(1);
5943 dl 1.82 (rights = new MapReduceEntriesToIntTask<K,V>
5944 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5945     rights, transformer, r, reducer)).fork();
5946     }
5947     for (Node<K,V> p; (p = advance()) != null; )
5948     r = reducer.apply(r, transformer.apply(p));
5949 dl 1.82 result = r;
5950     CountedCompleter<?> c;
5951     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5952 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5953 dl 1.82 t = (MapReduceEntriesToIntTask<K,V>)c,
5954     s = t.rights;
5955     while (s != null) {
5956     t.result = reducer.apply(t.result, s.result);
5957     s = t.rights = s.nextRight;
5958     }
5959 dl 1.52 }
5960     }
5961     }
5962     }
5963    
5964 dl 1.102 @SuppressWarnings("serial")
5965     static final class MapReduceMappingsToIntTask<K,V>
5966     extends BulkTask<K,V,Integer> {
5967 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
5968     final IntByIntToInt reducer;
5969     final int basis;
5970     int result;
5971 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5972 dl 1.52 MapReduceMappingsToIntTask
5973 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5974 dl 1.79 MapReduceMappingsToIntTask<K,V> nextRight,
5975 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
5976     int basis,
5977     IntByIntToInt reducer) {
5978 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5979 dl 1.52 this.transformer = transformer;
5980     this.basis = basis; this.reducer = reducer;
5981     }
5982 dl 1.79 public final Integer getRawResult() { return result; }
5983 dl 1.102 public final void compute() {
5984 dl 1.82 final ObjectByObjectToInt<? super K, ? super V> transformer;
5985     final IntByIntToInt reducer;
5986     if ((transformer = this.transformer) != null &&
5987     (reducer = this.reducer) != null) {
5988     int r = this.basis;
5989 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5990     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5991     addToPendingCount(1);
5992 dl 1.82 (rights = new MapReduceMappingsToIntTask<K,V>
5993 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5994     rights, transformer, r, reducer)).fork();
5995     }
5996     for (Node<K,V> p; (p = advance()) != null; )
5997     r = reducer.apply(r, transformer.apply(p.key, p.val));
5998 dl 1.82 result = r;
5999     CountedCompleter<?> c;
6000     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6002 dl 1.82 t = (MapReduceMappingsToIntTask<K,V>)c,
6003     s = t.rights;
6004     while (s != null) {
6005     t.result = reducer.apply(t.result, s.result);
6006     s = t.rights = s.nextRight;
6007     }
6008 dl 1.52 }
6009     }
6010     }
6011     }
6012    
6013 dl 1.102 /* ---------------- Counters -------------- */
6014    
6015     // Adapted from LongAdder and Striped64.
6016     // See their internal docs for explanation.
6017    
6018     // A padded cell for distributing counts
6019     static final class CounterCell {
6020     volatile long p0, p1, p2, p3, p4, p5, p6;
6021     volatile long value;
6022     volatile long q0, q1, q2, q3, q4, q5, q6;
6023     CounterCell(long x) { value = x; }
6024     }
6025    
6026     /**
6027     * Holder for the thread-local hash code determining which
6028     * CounterCell to use. The code is initialized via the
6029     * counterHashCodeGenerator, but may be moved upon collisions.
6030     */
6031     static final class CounterHashCode {
6032     int code;
6033     }
6034    
6035     /**
6036 jsr166 1.105 * Generates initial value for per-thread CounterHashCodes.
6037 dl 1.102 */
6038     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6039    
6040     /**
6041     * Increment for counterHashCodeGenerator. See class ThreadLocal
6042     * for explanation.
6043     */
6044     static final int SEED_INCREMENT = 0x61c88647;
6045    
6046     /**
6047     * Per-thread counter hash codes. Shared across all instances.
6048     */
6049     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6050     new ThreadLocal<CounterHashCode>();
6051    
6052    
6053     final long sumCount() {
6054     CounterCell[] as = counterCells; CounterCell a;
6055     long sum = baseCount;
6056     if (as != null) {
6057     for (int i = 0; i < as.length; ++i) {
6058     if ((a = as[i]) != null)
6059     sum += a.value;
6060     }
6061     }
6062     return sum;
6063     }
6064    
6065     // See LongAdder version for explanation
6066     private final void fullAddCount(long x, CounterHashCode hc,
6067     boolean wasUncontended) {
6068     int h;
6069     if (hc == null) {
6070     hc = new CounterHashCode();
6071     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6072     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6073     threadCounterHashCode.set(hc);
6074     }
6075     else
6076     h = hc.code;
6077     boolean collide = false; // True if last slot nonempty
6078     for (;;) {
6079     CounterCell[] as; CounterCell a; int n; long v;
6080     if ((as = counterCells) != null && (n = as.length) > 0) {
6081     if ((a = as[(n - 1) & h]) == null) {
6082     if (cellsBusy == 0) { // Try to attach new Cell
6083     CounterCell r = new CounterCell(x); // Optimistic create
6084     if (cellsBusy == 0 &&
6085     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086     boolean created = false;
6087     try { // Recheck under lock
6088     CounterCell[] rs; int m, j;
6089     if ((rs = counterCells) != null &&
6090     (m = rs.length) > 0 &&
6091     rs[j = (m - 1) & h] == null) {
6092     rs[j] = r;
6093     created = true;
6094     }
6095     } finally {
6096     cellsBusy = 0;
6097     }
6098     if (created)
6099     break;
6100     continue; // Slot is now non-empty
6101     }
6102     }
6103     collide = false;
6104     }
6105     else if (!wasUncontended) // CAS already known to fail
6106     wasUncontended = true; // Continue after rehash
6107     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6108     break;
6109     else if (counterCells != as || n >= NCPU)
6110     collide = false; // At max size or stale
6111     else if (!collide)
6112     collide = true;
6113     else if (cellsBusy == 0 &&
6114     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6115     try {
6116     if (counterCells == as) {// Expand table unless stale
6117     CounterCell[] rs = new CounterCell[n << 1];
6118     for (int i = 0; i < n; ++i)
6119     rs[i] = as[i];
6120     counterCells = rs;
6121     }
6122     } finally {
6123     cellsBusy = 0;
6124     }
6125     collide = false;
6126     continue; // Retry with expanded table
6127     }
6128     h ^= h << 13; // Rehash
6129     h ^= h >>> 17;
6130     h ^= h << 5;
6131     }
6132     else if (cellsBusy == 0 && counterCells == as &&
6133     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6134     boolean init = false;
6135     try { // Initialize table
6136     if (counterCells == as) {
6137     CounterCell[] rs = new CounterCell[2];
6138     rs[h & 1] = new CounterCell(x);
6139     counterCells = rs;
6140     init = true;
6141     }
6142     } finally {
6143     cellsBusy = 0;
6144     }
6145     if (init)
6146     break;
6147     }
6148     else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6149     break; // Fall back on using base
6150     }
6151     hc.code = h; // Record index for next time
6152     }
6153    
6154 dl 1.52 // Unsafe mechanics
6155 dl 1.82 private static final sun.misc.Unsafe U;
6156     private static final long SIZECTL;
6157     private static final long TRANSFERINDEX;
6158     private static final long TRANSFERORIGIN;
6159     private static final long BASECOUNT;
6160 dl 1.102 private static final long CELLSBUSY;
6161 dl 1.82 private static final long CELLVALUE;
6162 dl 1.52 private static final long ABASE;
6163     private static final int ASHIFT;
6164    
6165     static {
6166     try {
6167 dl 1.82 U = getUnsafe();
6168 dl 1.52 Class<?> k = ConcurrentHashMapV8.class;
6169 dl 1.82 SIZECTL = U.objectFieldOffset
6170 dl 1.52 (k.getDeclaredField("sizeCtl"));
6171 dl 1.82 TRANSFERINDEX = U.objectFieldOffset
6172     (k.getDeclaredField("transferIndex"));
6173     TRANSFERORIGIN = U.objectFieldOffset
6174     (k.getDeclaredField("transferOrigin"));
6175     BASECOUNT = U.objectFieldOffset
6176     (k.getDeclaredField("baseCount"));
6177 dl 1.102 CELLSBUSY = U.objectFieldOffset
6178     (k.getDeclaredField("cellsBusy"));
6179 dl 1.82 Class<?> ck = CounterCell.class;
6180     CELLVALUE = U.objectFieldOffset
6181     (ck.getDeclaredField("value"));
6182 jsr166 1.101 Class<?> ak = Node[].class;
6183     ABASE = U.arrayBaseOffset(ak);
6184     int scale = U.arrayIndexScale(ak);
6185 jsr166 1.89 if ((scale & (scale - 1)) != 0)
6186     throw new Error("data type scale not a power of two");
6187     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6188 dl 1.52 } catch (Exception e) {
6189     throw new Error(e);
6190     }
6191     }
6192    
6193     /**
6194     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6195     * Replace with a simple call to Unsafe.getUnsafe when integrating
6196     * into a jdk.
6197     *
6198     * @return a sun.misc.Unsafe
6199     */
6200     private static sun.misc.Unsafe getUnsafe() {
6201     try {
6202     return sun.misc.Unsafe.getUnsafe();
6203 jsr166 1.87 } catch (SecurityException tryReflectionInstead) {}
6204     try {
6205     return java.security.AccessController.doPrivileged
6206     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6207     public sun.misc.Unsafe run() throws Exception {
6208     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6209     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6210     f.setAccessible(true);
6211     Object x = f.get(null);
6212     if (k.isInstance(x))
6213     return k.cast(x);
6214     }
6215     throw new NoSuchFieldError("the Unsafe");
6216     }});
6217     } catch (java.security.PrivilegedActionException e) {
6218     throw new RuntimeException("Could not initialize intrinsics",
6219     e.getCause());
6220 dl 1.52 }
6221     }
6222 dl 1.1 }