ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.117
Committed: Sun Dec 1 13:39:02 2013 UTC (10 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.116: +80 -38 lines
Log Message:
avoid overlapping resize generations; fix RW mask

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.102 import jsr166e.ForkJoinPool;
10    
11     import java.io.ObjectStreamField;
12     import java.io.Serializable;
13     import java.lang.reflect.ParameterizedType;
14     import java.lang.reflect.Type;
15 dl 1.112 import java.util.AbstractMap;
16 dl 1.24 import java.util.Arrays;
17 dl 1.1 import java.util.Collection;
18 dl 1.102 import java.util.Comparator;
19     import java.util.ConcurrentModificationException;
20     import java.util.Enumeration;
21     import java.util.HashMap;
22 dl 1.1 import java.util.Hashtable;
23     import java.util.Iterator;
24 dl 1.102 import java.util.Map;
25 dl 1.1 import java.util.NoSuchElementException;
26 dl 1.102 import java.util.Set;
27 dl 1.1 import java.util.concurrent.ConcurrentMap;
28 dl 1.102 import java.util.concurrent.atomic.AtomicReference;
29 dl 1.82 import java.util.concurrent.atomic.AtomicInteger;
30 dl 1.102 import java.util.concurrent.locks.LockSupport;
31     import java.util.concurrent.locks.ReentrantLock;
32 dl 1.79
33 dl 1.1 /**
34     * A hash table supporting full concurrency of retrievals and
35     * high expected concurrency for updates. This class obeys the
36     * same functional specification as {@link java.util.Hashtable}, and
37     * includes versions of methods corresponding to each method of
38     * {@code Hashtable}. However, even though all operations are
39     * thread-safe, retrieval operations do <em>not</em> entail locking,
40     * and there is <em>not</em> any support for locking the entire table
41     * in a way that prevents all access. This class is fully
42     * interoperable with {@code Hashtable} in programs that rely on its
43     * thread safety but not on its synchronization details.
44     *
45 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
46 dl 1.1 * block, so may overlap with update operations (including {@code put}
47     * and {@code remove}). Retrievals reflect the results of the most
48     * recently <em>completed</em> update operations holding upon their
49 dl 1.59 * onset. (More formally, an update operation for a given key bears a
50     * <em>happens-before</em> relation with any (non-null) retrieval for
51     * that key reporting the updated value.) For aggregate operations
52     * such as {@code putAll} and {@code clear}, concurrent retrievals may
53     * reflect insertion or removal of only some entries. Similarly,
54     * Iterators and Enumerations return elements reflecting the state of
55     * the hash table at some point at or since the creation of the
56     * iterator/enumeration. They do <em>not</em> throw {@link
57     * ConcurrentModificationException}. However, iterators are designed
58     * to be used by only one thread at a time. Bear in mind that the
59     * results of aggregate status methods including {@code size}, {@code
60     * isEmpty}, and {@code containsValue} are typically useful only when
61     * a map is not undergoing concurrent updates in other threads.
62     * Otherwise the results of these methods reflect transient states
63     * that may be adequate for monitoring or estimation purposes, but not
64     * for program control.
65 dl 1.1 *
66 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
67 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
68     * the same slot modulo the table size), with the expected average
69 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
70     * to a 0.75 load factor threshold for resizing). There may be much
71     * variance around this average as mappings are added and removed, but
72     * overall, this maintains a commonly accepted time/space tradeoff for
73     * hash tables. However, resizing this or any other kind of hash
74     * table may be a relatively slow operation. When possible, it is a
75     * good idea to provide a size estimate as an optional {@code
76 dl 1.16 * initialCapacity} constructor argument. An additional optional
77     * {@code loadFactor} constructor argument provides a further means of
78     * customizing initial table capacity by specifying the table density
79     * to be used in calculating the amount of space to allocate for the
80     * given number of elements. Also, for compatibility with previous
81     * versions of this class, constructors may optionally specify an
82     * expected {@code concurrencyLevel} as an additional hint for
83     * internal sizing. Note that using many keys with exactly the same
84 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
85 dl 1.102 * hash table. To ameliorate impact, when keys are {@link Comparable},
86     * this class may use comparison order among keys to help break ties.
87 dl 1.1 *
88 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90     * (using {@link #keySet(Object)} when only keys are of interest, and the
91     * mapped values are (perhaps transiently) not used or all take the
92     * same mapping value.
93     *
94 dl 1.1 * <p>This class and its views and iterators implement all of the
95     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96     * interfaces.
97     *
98 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
100     *
101 dl 1.102 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102     * operations that are designed
103     * to be safely, and often sensibly, applied even with maps that are
104     * being concurrently updated by other threads; for example, when
105     * computing a snapshot summary of the values in a shared registry.
106     * There are three kinds of operation, each with four forms, accepting
107     * functions with Keys, Values, Entries, and (Key, Value) arguments
108     * and/or return values. Because the elements of a ConcurrentHashMapV8
109     * are not ordered in any particular way, and may be processed in
110     * different orders in different parallel executions, the correctness
111     * of supplied functions should not depend on any ordering, or on any
112     * other objects or values that may transiently change while
113     * computation is in progress; and except for forEach actions, should
114     * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115     * objects do not support method {@code setValue}.
116 dl 1.70 *
117     * <ul>
118     * <li> forEach: Perform a given action on each element.
119     * A variant form applies a given transformation on each element
120     * before performing the action.</li>
121     *
122     * <li> search: Return the first available non-null result of
123     * applying a given function on each element; skipping further
124     * search when a result is found.</li>
125     *
126     * <li> reduce: Accumulate each element. The supplied reduction
127     * function cannot rely on ordering (more formally, it should be
128     * both associative and commutative). There are five variants:
129     *
130     * <ul>
131     *
132     * <li> Plain reductions. (There is not a form of this method for
133     * (key, value) function arguments since there is no corresponding
134     * return type.)</li>
135     *
136     * <li> Mapped reductions that accumulate the results of a given
137     * function applied to each element.</li>
138     *
139     * <li> Reductions to scalar doubles, longs, and ints, using a
140     * given basis value.</li>
141     *
142 dl 1.102 * </ul>
143 dl 1.70 * </li>
144     * </ul>
145 dl 1.102 *
146     * <p>These bulk operations accept a {@code parallelismThreshold}
147     * argument. Methods proceed sequentially if the current map size is
148     * estimated to be less than the given threshold. Using a value of
149     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
150     * of {@code 1} results in maximal parallelism by partitioning into
151     * enough subtasks to fully utilize the {@link
152     * ForkJoinPool#commonPool()} that is used for all parallel
153     * computations. Normally, you would initially choose one of these
154     * extreme values, and then measure performance of using in-between
155     * values that trade off overhead versus throughput.
156 dl 1.70 *
157     * <p>The concurrency properties of bulk operations follow
158     * from those of ConcurrentHashMapV8: Any non-null result returned
159     * from {@code get(key)} and related access methods bears a
160     * happens-before relation with the associated insertion or
161     * update. The result of any bulk operation reflects the
162     * composition of these per-element relations (but is not
163     * necessarily atomic with respect to the map as a whole unless it
164     * is somehow known to be quiescent). Conversely, because keys
165     * and values in the map are never null, null serves as a reliable
166     * atomic indicator of the current lack of any result. To
167     * maintain this property, null serves as an implicit basis for
168     * all non-scalar reduction operations. For the double, long, and
169     * int versions, the basis should be one that, when combined with
170     * any other value, returns that other value (more formally, it
171     * should be the identity element for the reduction). Most common
172     * reductions have these properties; for example, computing a sum
173     * with basis 0 or a minimum with basis MAX_VALUE.
174     *
175     * <p>Search and transformation functions provided as arguments
176     * should similarly return null to indicate the lack of any result
177     * (in which case it is not used). In the case of mapped
178     * reductions, this also enables transformations to serve as
179     * filters, returning null (or, in the case of primitive
180     * specializations, the identity basis) if the element should not
181     * be combined. You can create compound transformations and
182     * filterings by composing them yourself under this "null means
183     * there is nothing there now" rule before using them in search or
184     * reduce operations.
185     *
186     * <p>Methods accepting and/or returning Entry arguments maintain
187     * key-value associations. They may be useful for example when
188     * finding the key for the greatest value. Note that "plain" Entry
189     * arguments can be supplied using {@code new
190     * AbstractMap.SimpleEntry(k,v)}.
191     *
192 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
193 dl 1.70 * exception encountered in the application of a supplied
194     * function. Bear in mind when handling such exceptions that other
195     * concurrently executing functions could also have thrown
196     * exceptions, or would have done so if the first exception had
197     * not occurred.
198     *
199 dl 1.84 * <p>Speedups for parallel compared to sequential forms are common
200     * but not guaranteed. Parallel operations involving brief functions
201     * on small maps may execute more slowly than sequential forms if the
202     * underlying work to parallelize the computation is more expensive
203     * than the computation itself. Similarly, parallelization may not
204     * lead to much actual parallelism if all processors are busy
205     * performing unrelated tasks.
206 dl 1.70 *
207 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
208 dl 1.70 *
209     * <p><em>jsr166e note: During transition, this class
210     * uses nested functional interfaces with different names but the
211 jsr166 1.77 * same forms as those expected for JDK8.</em>
212 dl 1.70 *
213 dl 1.1 * <p>This class is a member of the
214     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215     * Java Collections Framework</a>.
216     *
217 jsr166 1.22 * @since 1.5
218 dl 1.1 * @author Doug Lea
219     * @param <K> the type of keys maintained by this map
220     * @param <V> the type of mapped values
221     */
222 dl 1.112 public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 jsr166 1.99 implements ConcurrentMap<K,V>, Serializable {
224 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
225    
226     /**
227 dl 1.102 * An object for traversing and partitioning elements of a source.
228     * This interface provides a subset of the functionality of JDK8
229     * java.util.Spliterator.
230     */
231     public static interface ConcurrentHashMapSpliterator<T> {
232 jsr166 1.103 /**
233 dl 1.102 * If possible, returns a new spliterator covering
234     * approximately one half of the elements, which will not be
235     * covered by this spliterator. Returns null if cannot be
236     * split.
237     */
238     ConcurrentHashMapSpliterator<T> trySplit();
239     /**
240     * Returns an estimate of the number of elements covered by
241     * this Spliterator.
242     */
243     long estimateSize();
244    
245     /** Applies the action to each untraversed element */
246     void forEachRemaining(Action<? super T> action);
247     /** If an element remains, applies the action and returns true. */
248     boolean tryAdvance(Action<? super T> action);
249 dl 1.41 }
250    
251 dl 1.102 // Sams
252     /** Interface describing a void action of one argument */
253     public interface Action<A> { void apply(A a); }
254     /** Interface describing a void action of two arguments */
255     public interface BiAction<A,B> { void apply(A a, B b); }
256     /** Interface describing a function of one argument */
257     public interface Fun<A,T> { T apply(A a); }
258     /** Interface describing a function of two arguments */
259     public interface BiFun<A,B,T> { T apply(A a, B b); }
260     /** Interface describing a function mapping its argument to a double */
261     public interface ObjectToDouble<A> { double apply(A a); }
262     /** Interface describing a function mapping its argument to a long */
263     public interface ObjectToLong<A> { long apply(A a); }
264     /** Interface describing a function mapping its argument to an int */
265     public interface ObjectToInt<A> {int apply(A a); }
266     /** Interface describing a function mapping two arguments to a double */
267     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268     /** Interface describing a function mapping two arguments to a long */
269     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270     /** Interface describing a function mapping two arguments to an int */
271     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272     /** Interface describing a function mapping two doubles to a double */
273     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274     /** Interface describing a function mapping two longs to a long */
275     public interface LongByLongToLong { long apply(long a, long b); }
276     /** Interface describing a function mapping two ints to an int */
277     public interface IntByIntToInt { int apply(int a, int b); }
278    
279 dl 1.116
280 dl 1.1 /*
281     * Overview:
282     *
283     * The primary design goal of this hash table is to maintain
284     * concurrent readability (typically method get(), but also
285     * iterators and related methods) while minimizing update
286 dl 1.24 * contention. Secondary goals are to keep space consumption about
287     * the same or better than java.util.HashMap, and to support high
288     * initial insertion rates on an empty table by many threads.
289 dl 1.1 *
290 dl 1.102 * This map usually acts as a binned (bucketed) hash table. Each
291     * key-value mapping is held in a Node. Most nodes are instances
292     * of the basic Node class with hash, key, value, and next
293     * fields. However, various subclasses exist: TreeNodes are
294     * arranged in balanced trees, not lists. TreeBins hold the roots
295     * of sets of TreeNodes. ForwardingNodes are placed at the heads
296     * of bins during resizing. ReservationNodes are used as
297     * placeholders while establishing values in computeIfAbsent and
298     * related methods. The types TreeBin, ForwardingNode, and
299     * ReservationNode do not hold normal user keys, values, or
300     * hashes, and are readily distinguishable during search etc
301     * because they have negative hash fields and null key and value
302     * fields. (These special nodes are either uncommon or transient,
303     * so the impact of carrying around some unused fields is
304 jsr166 1.108 * insignificant.)
305 dl 1.1 *
306     * The table is lazily initialized to a power-of-two size upon the
307 dl 1.38 * first insertion. Each bin in the table normally contains a
308     * list of Nodes (most often, the list has only zero or one Node).
309     * Table accesses require volatile/atomic reads, writes, and
310     * CASes. Because there is no other way to arrange this without
311     * adding further indirections, we use intrinsics
312 dl 1.102 * (sun.misc.Unsafe) operations.
313 dl 1.24 *
314 dl 1.82 * We use the top (sign) bit of Node hash fields for control
315     * purposes -- it is available anyway because of addressing
316 dl 1.102 * constraints. Nodes with negative hash fields are specially
317     * handled or ignored in map methods.
318 dl 1.14 *
319 dl 1.27 * Insertion (via put or its variants) of the first node in an
320 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
321 dl 1.38 * by far the most common case for put operations under most
322     * key/hash distributions. Other update operations (insert,
323     * delete, and replace) require locks. We do not want to waste
324     * the space required to associate a distinct lock object with
325     * each bin, so instead use the first node of a bin list itself as
326 dl 1.82 * a lock. Locking support for these locks relies on builtin
327     * "synchronized" monitors.
328 dl 1.24 *
329     * Using the first node of a list as a lock does not by itself
330     * suffice though: When a node is locked, any update must first
331     * validate that it is still the first node after locking it, and
332     * retry if not. Because new nodes are always appended to lists,
333     * once a node is first in a bin, it remains first until deleted
334 dl 1.102 * or the bin becomes invalidated (upon resizing).
335 dl 1.14 *
336 dl 1.24 * The main disadvantage of per-bin locks is that other update
337 dl 1.14 * operations on other nodes in a bin list protected by the same
338     * lock can stall, for example when user equals() or mapping
339 dl 1.38 * functions take a long time. However, statistically, under
340     * random hash codes, this is not a common problem. Ideally, the
341     * frequency of nodes in bins follows a Poisson distribution
342 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
343 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
344     * of 0.75, although with a large variance because of resizing
345     * granularity. Ignoring variance, the expected occurrences of
346     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
347 dl 1.38 * first values are:
348 dl 1.16 *
349 dl 1.38 * 0: 0.60653066
350     * 1: 0.30326533
351     * 2: 0.07581633
352     * 3: 0.01263606
353     * 4: 0.00157952
354     * 5: 0.00015795
355     * 6: 0.00001316
356     * 7: 0.00000094
357     * 8: 0.00000006
358     * more: less than 1 in ten million
359 dl 1.16 *
360     * Lock contention probability for two threads accessing distinct
361 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
362     *
363     * Actual hash code distributions encountered in practice
364     * sometimes deviate significantly from uniform randomness. This
365     * includes the case when N > (1<<30), so some keys MUST collide.
366     * Similarly for dumb or hostile usages in which multiple keys are
367 dl 1.102 * designed to have identical hash codes or ones that differs only
368     * in masked-out high bits. So we use a secondary strategy that
369     * applies when the number of nodes in a bin exceeds a
370     * threshold. These TreeBins use a balanced tree to hold nodes (a
371     * specialized form of red-black trees), bounding search time to
372     * O(log N). Each search step in a TreeBin is at least twice as
373 dl 1.38 * slow as in a regular list, but given that N cannot exceed
374     * (1<<64) (before running out of addresses) this bounds search
375     * steps, lock hold times, etc, to reasonable constants (roughly
376     * 100 nodes inspected per operation worst case) so long as keys
377     * are Comparable (which is very common -- String, Long, etc).
378     * TreeBin nodes (TreeNodes) also maintain the same "next"
379     * traversal pointers as regular nodes, so can be traversed in
380     * iterators in the same way.
381 dl 1.1 *
382 dl 1.38 * The table is resized when occupancy exceeds a percentage
383 dl 1.82 * threshold (nominally, 0.75, but see below). Any thread
384     * noticing an overfull bin may assist in resizing after the
385 dl 1.116 * initiating thread allocates and sets up the replacement array.
386     * However, rather than stalling, these other threads may proceed
387     * with insertions etc. The use of TreeBins shields us from the
388     * worst case effects of overfilling while resizes are in
389 dl 1.82 * progress. Resizing proceeds by transferring bins, one by one,
390 dl 1.116 * from the table to the next table. However, threads claim small
391     * blocks of indices to transfer (via field transferIndex) before
392 dl 1.117 * doing so, reducing contention. A generation stamp in field
393     * sizeCtl ensures that resizings do not overlap. Because we are
394     * using power-of-two expansion, the elements from each bin must
395     * either stay at same index, or move with a power of two
396     * offset. We eliminate unnecessary node creation by catching
397     * cases where old nodes can be reused because their next fields
398     * won't change. On average, only about one-sixth of them need
399     * cloning when a table doubles. The nodes they replace will be
400     * garbage collectable as soon as they are no longer referenced by
401     * any reader thread that may be in the midst of concurrently
402     * traversing table. Upon transfer, the old table bin contains
403     * only a special forwarding node (with hash field "MOVED") that
404     * contains the next table as its key. On encountering a
405     * forwarding node, access and update operations restart, using
406     * the new table.
407 dl 1.82 *
408     * Each bin transfer requires its bin lock, which can stall
409     * waiting for locks while resizing. However, because other
410     * threads can join in and help resize rather than contend for
411     * locks, average aggregate waits become shorter as resizing
412     * progresses. The transfer operation must also ensure that all
413     * accessible bins in both the old and new table are usable by any
414 dl 1.116 * traversal. This is arranged in part by proceeding from the
415     * last bin (table.length - 1) up towards the first. Upon seeing
416     * a forwarding node, traversals (see class Traverser) arrange to
417     * move to the new table without revisiting nodes. To ensure that
418     * no intervening nodes are skipped even when moved out of order,
419     * a stack (see class TableStack) is created on first encounter of
420     * a forwarding node during a traversal, to maintain its place if
421     * later processing the current table. The need for these
422     * save/restore mechanics is relatively rare, but when one
423     * forwarding node is encountered, typically many more will be.
424     * So Traversers use a simple caching scheme to avoid creating so
425     * many new TableStack nodes. (Thanks to Peter Levart for
426     * suggesting use of a stack here.)
427 dl 1.14 *
428 dl 1.24 * The traversal scheme also applies to partial traversals of
429 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
430 dl 1.41 * to support partitioned aggregate operations. Also, read-only
431     * operations give up if ever forwarded to a null table, which
432     * provides support for shutdown-style clearing, which is also not
433     * currently implemented.
434 dl 1.14 *
435     * Lazy table initialization minimizes footprint until first use,
436     * and also avoids resizings when the first operation is from a
437     * putAll, constructor with map argument, or deserialization.
438 dl 1.24 * These cases attempt to override the initial capacity settings,
439     * but harmlessly fail to take effect in cases of races.
440 dl 1.1 *
441 dl 1.82 * The element count is maintained using a specialization of
442     * LongAdder. We need to incorporate a specialization rather than
443     * just use a LongAdder in order to access implicit
444     * contention-sensing that leads to creation of multiple
445     * CounterCells. The counter mechanics avoid contention on
446     * updates but can encounter cache thrashing if read too
447     * frequently during concurrent access. To avoid reading so often,
448     * resizing under contention is attempted only upon adding to a
449     * bin already holding two or more nodes. Under uniform hash
450     * distributions, the probability of this occurring at threshold
451     * is around 13%, meaning that only about 1 in 8 puts check
452 dl 1.102 * threshold (and after resizing, many fewer do so).
453     *
454     * TreeBins use a special form of comparison for search and
455     * related operations (which is the main reason we cannot use
456     * existing collections such as TreeMaps). TreeBins contain
457     * Comparable elements, but may contain others, as well as
458 dl 1.112 * elements that are Comparable but not necessarily Comparable for
459     * the same T, so we cannot invoke compareTo among them. To handle
460     * this, the tree is ordered primarily by hash value, then by
461     * Comparable.compareTo order if applicable. On lookup at a node,
462     * if elements are not comparable or compare as 0 then both left
463     * and right children may need to be searched in the case of tied
464     * hash values. (This corresponds to the full list search that
465     * would be necessary if all elements were non-Comparable and had
466     * tied hashes.) On insertion, to keep a total ordering (or as
467     * close as is required here) across rebalancings, we compare
468     * classes and identityHashCodes as tie-breakers. The red-black
469     * balancing code is updated from pre-jdk-collections
470 dl 1.102 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
471     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
472     * Algorithms" (CLR).
473     *
474     * TreeBins also require an additional locking mechanism. While
475     * list traversal is always possible by readers even during
476 jsr166 1.108 * updates, tree traversal is not, mainly because of tree-rotations
477 dl 1.102 * that may change the root node and/or its linkages. TreeBins
478     * include a simple read-write lock mechanism parasitic on the
479     * main bin-synchronization strategy: Structural adjustments
480     * associated with an insertion or removal are already bin-locked
481     * (and so cannot conflict with other writers) but must wait for
482     * ongoing readers to finish. Since there can be only one such
483     * waiter, we use a simple scheme using a single "waiter" field to
484     * block writers. However, readers need never block. If the root
485     * lock is held, they proceed along the slow traversal path (via
486     * next-pointers) until the lock becomes available or the list is
487     * exhausted, whichever comes first. These cases are not fast, but
488     * maximize aggregate expected throughput.
489 dl 1.14 *
490     * Maintaining API and serialization compatibility with previous
491     * versions of this class introduces several oddities. Mainly: We
492     * leave untouched but unused constructor arguments refering to
493 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
494     * but apply it only to initial table capacity (which is the only
495     * time that we can guarantee to honor it.) We also declare an
496     * unused "Segment" class that is instantiated in minimal form
497     * only when serializing.
498 dl 1.102 *
499 dl 1.112 * Also, solely for compatibility with previous versions of this
500     * class, it extends AbstractMap, even though all of its methods
501     * are overridden, so it is just useless baggage.
502     *
503 dl 1.102 * This file is organized to make things a little easier to follow
504     * while reading than they might otherwise: First the main static
505     * declarations and utilities, then fields, then main public
506     * methods (with a few factorings of multiple public methods into
507     * internal ones), then sizing methods, trees, traversers, and
508     * bulk operations.
509 dl 1.1 */
510    
511     /* ---------------- Constants -------------- */
512    
513     /**
514 dl 1.16 * The largest possible table capacity. This value must be
515     * exactly 1<<30 to stay within Java array allocation and indexing
516 dl 1.24 * bounds for power of two table sizes, and is further required
517     * because the top two bits of 32bit hash fields are used for
518     * control purposes.
519 dl 1.1 */
520 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
521 dl 1.1
522     /**
523 dl 1.14 * The default initial table capacity. Must be a power of 2
524     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
525 dl 1.1 */
526 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
527 dl 1.1
528     /**
529 dl 1.24 * The largest possible (non-power of two) array size.
530     * Needed by toArray and related methods.
531     */
532     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
533    
534     /**
535     * The default concurrency level for this table. Unused but
536     * defined for compatibility with previous versions of this class.
537     */
538     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
539    
540     /**
541 dl 1.16 * The load factor for this table. Overrides of this value in
542     * constructors affect only the initial table capacity. The
543 dl 1.24 * actual floating point value isn't normally used -- it is
544     * simpler to use expressions such as {@code n - (n >>> 2)} for
545     * the associated resizing threshold.
546 dl 1.1 */
547 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
548 dl 1.1
549     /**
550 dl 1.38 * The bin count threshold for using a tree rather than list for a
551 dl 1.102 * bin. Bins are converted to trees when adding an element to a
552     * bin with at least this many nodes. The value must be greater
553     * than 2, and should be at least 8 to mesh with assumptions in
554     * tree removal about conversion back to plain bins upon
555     * shrinkage.
556     */
557     static final int TREEIFY_THRESHOLD = 8;
558    
559     /**
560     * The bin count threshold for untreeifying a (split) bin during a
561     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
562     * most 6 to mesh with shrinkage detection under removal.
563     */
564     static final int UNTREEIFY_THRESHOLD = 6;
565    
566     /**
567     * The smallest table capacity for which bins may be treeified.
568     * (Otherwise the table is resized if too many nodes in a bin.)
569     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
570     * conflicts between resizing and treeification thresholds.
571 dl 1.38 */
572 dl 1.102 static final int MIN_TREEIFY_CAPACITY = 64;
573 dl 1.38
574 dl 1.82 /**
575     * Minimum number of rebinnings per transfer step. Ranges are
576     * subdivided to allow multiple resizer threads. This value
577     * serves as a lower bound to avoid resizers encountering
578     * excessive memory contention. The value should be at least
579     * DEFAULT_CAPACITY.
580     */
581     private static final int MIN_TRANSFER_STRIDE = 16;
582    
583 dl 1.117 /**
584     * The number of bits used for generation stamp in sizeCtl.
585     * Must be at least 6 for 32bit arrays.
586     */
587     private static int RESIZE_STAMP_BITS = 16;
588    
589     /**
590     * The maximum number of threads that can help resize.
591     * Must fit in 32 - RESIZE_STAMP_BITS bits.
592     */
593     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
594    
595     /**
596     * The bit shift for recording size stamp in sizeCtl.
597     */
598     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
599    
600 dl 1.24 /*
601 dl 1.82 * Encodings for Node hash fields. See above for explanation.
602 dl 1.1 */
603 dl 1.109 static final int MOVED = -1; // hash for forwarding nodes
604     static final int TREEBIN = -2; // hash for roots of trees
605     static final int RESERVED = -3; // hash for transient reservations
606 dl 1.82 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
607    
608     /** Number of CPUS, to place bounds on some sizings */
609     static final int NCPU = Runtime.getRuntime().availableProcessors();
610    
611 dl 1.102 /** For serialization compatibility. */
612     private static final ObjectStreamField[] serialPersistentFields = {
613     new ObjectStreamField("segments", Segment[].class),
614     new ObjectStreamField("segmentMask", Integer.TYPE),
615     new ObjectStreamField("segmentShift", Integer.TYPE)
616     };
617    
618     /* ---------------- Nodes -------------- */
619    
620     /**
621     * Key-value entry. This class is never exported out as a
622     * user-mutable Map.Entry (i.e., one supporting setValue; see
623     * MapEntry below), but can be used for read-only traversals used
624 jsr166 1.108 * in bulk tasks. Subclasses of Node with a negative hash field
625 dl 1.102 * are special, and contain null keys and values (but are never
626     * exported). Otherwise, keys and vals are never null.
627     */
628     static class Node<K,V> implements Map.Entry<K,V> {
629     final int hash;
630     final K key;
631     volatile V val;
632 dl 1.109 volatile Node<K,V> next;
633 dl 1.102
634     Node(int hash, K key, V val, Node<K,V> next) {
635     this.hash = hash;
636     this.key = key;
637     this.val = val;
638     this.next = next;
639     }
640    
641     public final K getKey() { return key; }
642     public final V getValue() { return val; }
643     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
644     public final String toString(){ return key + "=" + val; }
645     public final V setValue(V value) {
646     throw new UnsupportedOperationException();
647     }
648 dl 1.82
649 dl 1.102 public final boolean equals(Object o) {
650     Object k, v, u; Map.Entry<?,?> e;
651     return ((o instanceof Map.Entry) &&
652     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
653     (v = e.getValue()) != null &&
654     (k == key || k.equals(key)) &&
655     (v == (u = val) || v.equals(u)));
656     }
657 dl 1.82
658 dl 1.102 /**
659     * Virtualized support for map.get(); overridden in subclasses.
660     */
661     Node<K,V> find(int h, Object k) {
662     Node<K,V> e = this;
663     if (k != null) {
664     do {
665     K ek;
666     if (e.hash == h &&
667     ((ek = e.key) == k || (ek != null && k.equals(ek))))
668     return e;
669     } while ((e = e.next) != null);
670     }
671     return null;
672     }
673 dl 1.82 }
674    
675 dl 1.102 /* ---------------- Static utilities -------------- */
676    
677 dl 1.82 /**
678 dl 1.102 * Spreads (XORs) higher bits of hash to lower and also forces top
679     * bit to 0. Because the table uses power-of-two masking, sets of
680     * hashes that vary only in bits above the current mask will
681     * always collide. (Among known examples are sets of Float keys
682     * holding consecutive whole numbers in small tables.) So we
683     * apply a transform that spreads the impact of higher bits
684     * downward. There is a tradeoff between speed, utility, and
685     * quality of bit-spreading. Because many common sets of hashes
686     * are already reasonably distributed (so don't benefit from
687     * spreading), and because we use trees to handle large sets of
688     * collisions in bins, we just XOR some shifted bits in the
689     * cheapest possible way to reduce systematic lossage, as well as
690     * to incorporate impact of the highest bits that would otherwise
691     * never be used in index calculations because of table bounds.
692 dl 1.82 */
693 dl 1.102 static final int spread(int h) {
694     return (h ^ (h >>> 16)) & HASH_BITS;
695 dl 1.82 }
696    
697     /**
698 dl 1.102 * Returns a power of two table size for the given desired capacity.
699     * See Hackers Delight, sec 3.2
700 dl 1.82 */
701 dl 1.102 private static final int tableSizeFor(int c) {
702     int n = c - 1;
703     n |= n >>> 1;
704     n |= n >>> 2;
705     n |= n >>> 4;
706     n |= n >>> 8;
707     n |= n >>> 16;
708     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
709     }
710 dl 1.82
711     /**
712 dl 1.102 * Returns x's Class if it is of the form "class C implements
713     * Comparable<C>", else null.
714 dl 1.82 */
715 dl 1.102 static Class<?> comparableClassFor(Object x) {
716     if (x instanceof Comparable) {
717     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
718     if ((c = x.getClass()) == String.class) // bypass checks
719     return c;
720     if ((ts = c.getGenericInterfaces()) != null) {
721     for (int i = 0; i < ts.length; ++i) {
722     if (((t = ts[i]) instanceof ParameterizedType) &&
723     ((p = (ParameterizedType)t).getRawType() ==
724     Comparable.class) &&
725     (as = p.getActualTypeArguments()) != null &&
726     as.length == 1 && as[0] == c) // type arg is c
727     return c;
728     }
729     }
730     }
731     return null;
732     }
733 dl 1.82
734     /**
735 dl 1.102 * Returns k.compareTo(x) if x matches kc (k's screened comparable
736     * class), else 0.
737 dl 1.82 */
738 dl 1.102 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
739     static int compareComparables(Class<?> kc, Object k, Object x) {
740     return (x == null || x.getClass() != kc ? 0 :
741     ((Comparable)k).compareTo(x));
742     }
743    
744     /* ---------------- Table element access -------------- */
745    
746     /*
747     * Volatile access methods are used for table elements as well as
748     * elements of in-progress next table while resizing. All uses of
749     * the tab arguments must be null checked by callers. All callers
750     * also paranoically precheck that tab's length is not zero (or an
751     * equivalent check), thus ensuring that any index argument taking
752     * the form of a hash value anded with (length - 1) is a valid
753     * index. Note that, to be correct wrt arbitrary concurrency
754     * errors by users, these checks must operate on local variables,
755     * which accounts for some odd-looking inline assignments below.
756     * Note that calls to setTabAt always occur within locked regions,
757 dl 1.117 * and so in principle require only release ordering, not
758 dl 1.109 * full volatile semantics, but are currently coded as volatile
759     * writes to be conservative.
760 dl 1.102 */
761    
762     @SuppressWarnings("unchecked")
763     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
764     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
765     }
766 dl 1.24
767 dl 1.102 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
768     Node<K,V> c, Node<K,V> v) {
769     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
770     }
771 jsr166 1.103
772 dl 1.102 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
773 dl 1.109 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
774 dl 1.102 }
775 jsr166 1.103
776 dl 1.24 /* ---------------- Fields -------------- */
777    
778     /**
779     * The array of bins. Lazily initialized upon first insertion.
780     * Size is always a power of two. Accessed directly by iterators.
781     */
782 dl 1.102 transient volatile Node<K,V>[] table;
783 dl 1.14
784 dl 1.16 /**
785 dl 1.82 * The next table to use; non-null only while resizing.
786     */
787 dl 1.102 private transient volatile Node<K,V>[] nextTable;
788 dl 1.82
789     /**
790     * Base counter value, used mainly when there is no contention,
791     * but also as a fallback during table initialization
792     * races. Updated via CAS.
793 dl 1.16 */
794 dl 1.82 private transient volatile long baseCount;
795 dl 1.24
796     /**
797     * Table initialization and resizing control. When negative, the
798 dl 1.82 * table is being initialized or resized: -1 for initialization,
799     * else -(1 + the number of active resizing threads). Otherwise,
800     * when table is null, holds the initial table size to use upon
801     * creation, or 0 for default. After initialization, holds the
802     * next element count value upon which to resize the table.
803 dl 1.24 */
804     private transient volatile int sizeCtl;
805    
806 dl 1.82 /**
807     * The next table index (plus one) to split while resizing.
808     */
809     private transient volatile int transferIndex;
810    
811     /**
812 dl 1.102 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
813 dl 1.82 */
814 dl 1.102 private transient volatile int cellsBusy;
815 dl 1.82
816     /**
817     * Table of counter cells. When non-null, size is a power of 2.
818     */
819     private transient volatile CounterCell[] counterCells;
820    
821 dl 1.24 // views
822 dl 1.70 private transient KeySetView<K,V> keySet;
823 dl 1.75 private transient ValuesView<K,V> values;
824     private transient EntrySetView<K,V> entrySet;
825 dl 1.24
826 dl 1.16
827 dl 1.102 /* ---------------- Public operations -------------- */
828 dl 1.38
829 dl 1.102 /**
830     * Creates a new, empty map with the default initial table size (16).
831     */
832     public ConcurrentHashMapV8() {
833 dl 1.38 }
834    
835 dl 1.102 /**
836     * Creates a new, empty map with an initial table size
837     * accommodating the specified number of elements without the need
838     * to dynamically resize.
839     *
840     * @param initialCapacity The implementation performs internal
841     * sizing to accommodate this many elements.
842     * @throws IllegalArgumentException if the initial capacity of
843     * elements is negative
844     */
845     public ConcurrentHashMapV8(int initialCapacity) {
846     if (initialCapacity < 0)
847     throw new IllegalArgumentException();
848     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
849     MAXIMUM_CAPACITY :
850     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
851     this.sizeCtl = cap;
852 dl 1.38 }
853    
854 dl 1.102 /**
855     * Creates a new map with the same mappings as the given map.
856     *
857     * @param m the map
858     */
859     public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
860     this.sizeCtl = DEFAULT_CAPACITY;
861     putAll(m);
862 dl 1.38 }
863    
864 dl 1.102 /**
865     * Creates a new, empty map with an initial table size based on
866     * the given number of elements ({@code initialCapacity}) and
867     * initial table density ({@code loadFactor}).
868     *
869     * @param initialCapacity the initial capacity. The implementation
870     * performs internal sizing to accommodate this many elements,
871     * given the specified load factor.
872     * @param loadFactor the load factor (table density) for
873     * establishing the initial table size
874     * @throws IllegalArgumentException if the initial capacity of
875     * elements is negative or the load factor is nonpositive
876     *
877     * @since 1.6
878     */
879     public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
880     this(initialCapacity, loadFactor, 1);
881     }
882 dl 1.1
883     /**
884 dl 1.102 * Creates a new, empty map with an initial table size based on
885     * the given number of elements ({@code initialCapacity}), table
886     * density ({@code loadFactor}), and number of concurrently
887     * updating threads ({@code concurrencyLevel}).
888     *
889     * @param initialCapacity the initial capacity. The implementation
890     * performs internal sizing to accommodate this many elements,
891     * given the specified load factor.
892     * @param loadFactor the load factor (table density) for
893     * establishing the initial table size
894     * @param concurrencyLevel the estimated number of concurrently
895     * updating threads. The implementation may use this value as
896     * a sizing hint.
897     * @throws IllegalArgumentException if the initial capacity is
898     * negative or the load factor or concurrencyLevel are
899     * nonpositive
900 dl 1.1 */
901 dl 1.102 public ConcurrentHashMapV8(int initialCapacity,
902     float loadFactor, int concurrencyLevel) {
903     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
904     throw new IllegalArgumentException();
905     if (initialCapacity < concurrencyLevel) // Use at least as many bins
906     initialCapacity = concurrencyLevel; // as estimated threads
907     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
908     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
909     MAXIMUM_CAPACITY : tableSizeFor((int)size);
910     this.sizeCtl = cap;
911 dl 1.24 }
912 dl 1.1
913 dl 1.102 // Original (since JDK1.2) Map methods
914 dl 1.38
915     /**
916 dl 1.102 * {@inheritDoc}
917 dl 1.38 */
918 dl 1.102 public int size() {
919     long n = sumCount();
920     return ((n < 0L) ? 0 :
921     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
922     (int)n);
923 dl 1.38 }
924 dl 1.1
925 dl 1.38 /**
926 dl 1.102 * {@inheritDoc}
927     */
928     public boolean isEmpty() {
929     return sumCount() <= 0L; // ignore transient negative values
930     }
931    
932     /**
933     * Returns the value to which the specified key is mapped,
934     * or {@code null} if this map contains no mapping for the key.
935 dl 1.38 *
936 dl 1.102 * <p>More formally, if this map contains a mapping from a key
937     * {@code k} to a value {@code v} such that {@code key.equals(k)},
938     * then this method returns {@code v}; otherwise it returns
939     * {@code null}. (There can be at most one such mapping.)
940 dl 1.38 *
941 dl 1.102 * @throws NullPointerException if the specified key is null
942 dl 1.1 */
943 dl 1.102 public V get(Object key) {
944     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
945     int h = spread(key.hashCode());
946     if ((tab = table) != null && (n = tab.length) > 0 &&
947     (e = tabAt(tab, (n - 1) & h)) != null) {
948     if ((eh = e.hash) == h) {
949     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
950     return e.val;
951     }
952     else if (eh < 0)
953     return (p = e.find(h, key)) != null ? p.val : null;
954     while ((e = e.next) != null) {
955     if (e.hash == h &&
956     ((ek = e.key) == key || (ek != null && key.equals(ek))))
957     return e.val;
958 dl 1.41 }
959     }
960 dl 1.102 return null;
961     }
962 dl 1.41
963 dl 1.102 /**
964     * Tests if the specified object is a key in this table.
965     *
966     * @param key possible key
967     * @return {@code true} if and only if the specified object
968     * is a key in this table, as determined by the
969     * {@code equals} method; {@code false} otherwise
970     * @throws NullPointerException if the specified key is null
971     */
972     public boolean containsKey(Object key) {
973     return get(key) != null;
974     }
975 dl 1.41
976 dl 1.102 /**
977     * Returns {@code true} if this map maps one or more keys to the
978     * specified value. Note: This method may require a full traversal
979     * of the map, and is much slower than method {@code containsKey}.
980     *
981     * @param value value whose presence in this map is to be tested
982     * @return {@code true} if this map maps one or more keys to the
983     * specified value
984     * @throws NullPointerException if the specified value is null
985     */
986     public boolean containsValue(Object value) {
987     if (value == null)
988     throw new NullPointerException();
989     Node<K,V>[] t;
990     if ((t = table) != null) {
991     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
992     for (Node<K,V> p; (p = it.advance()) != null; ) {
993     V v;
994     if ((v = p.val) == value || (v != null && value.equals(v)))
995     return true;
996 dl 1.38 }
997     }
998 dl 1.102 return false;
999     }
1000 dl 1.38
1001 dl 1.102 /**
1002     * Maps the specified key to the specified value in this table.
1003     * Neither the key nor the value can be null.
1004     *
1005     * <p>The value can be retrieved by calling the {@code get} method
1006     * with a key that is equal to the original key.
1007     *
1008     * @param key key with which the specified value is to be associated
1009     * @param value value to be associated with the specified key
1010     * @return the previous value associated with {@code key}, or
1011     * {@code null} if there was no mapping for {@code key}
1012     * @throws NullPointerException if the specified key or value is null
1013     */
1014     public V put(K key, V value) {
1015     return putVal(key, value, false);
1016     }
1017 dl 1.38
1018 dl 1.102 /** Implementation for put and putIfAbsent */
1019     final V putVal(K key, V value, boolean onlyIfAbsent) {
1020     if (key == null || value == null) throw new NullPointerException();
1021     int hash = spread(key.hashCode());
1022     int binCount = 0;
1023     for (Node<K,V>[] tab = table;;) {
1024     Node<K,V> f; int n, i, fh;
1025     if (tab == null || (n = tab.length) == 0)
1026     tab = initTable();
1027     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1028     if (casTabAt(tab, i, null,
1029     new Node<K,V>(hash, key, value, null)))
1030     break; // no lock when adding to empty bin
1031 dl 1.38 }
1032 dl 1.102 else if ((fh = f.hash) == MOVED)
1033     tab = helpTransfer(tab, f);
1034 dl 1.38 else {
1035 dl 1.102 V oldVal = null;
1036     synchronized (f) {
1037     if (tabAt(tab, i) == f) {
1038     if (fh >= 0) {
1039     binCount = 1;
1040     for (Node<K,V> e = f;; ++binCount) {
1041     K ek;
1042     if (e.hash == hash &&
1043     ((ek = e.key) == key ||
1044     (ek != null && key.equals(ek)))) {
1045     oldVal = e.val;
1046     if (!onlyIfAbsent)
1047     e.val = value;
1048     break;
1049 dl 1.41 }
1050 dl 1.102 Node<K,V> pred = e;
1051     if ((e = e.next) == null) {
1052     pred.next = new Node<K,V>(hash, key,
1053     value, null);
1054     break;
1055 dl 1.41 }
1056 dl 1.38 }
1057     }
1058 dl 1.102 else if (f instanceof TreeBin) {
1059     Node<K,V> p;
1060     binCount = 2;
1061     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1062     value)) != null) {
1063     oldVal = p.val;
1064     if (!onlyIfAbsent)
1065     p.val = value;
1066 dl 1.38 }
1067     }
1068     }
1069     }
1070 dl 1.102 if (binCount != 0) {
1071     if (binCount >= TREEIFY_THRESHOLD)
1072     treeifyBin(tab, i);
1073     if (oldVal != null)
1074     return oldVal;
1075     break;
1076     }
1077 dl 1.41 }
1078 dl 1.38 }
1079 dl 1.102 addCount(1L, binCount);
1080     return null;
1081 dl 1.1 }
1082    
1083 dl 1.14 /**
1084 dl 1.102 * Copies all of the mappings from the specified map to this one.
1085     * These mappings replace any mappings that this map had for any of the
1086     * keys currently in the specified map.
1087     *
1088     * @param m mappings to be stored in this map
1089 dl 1.14 */
1090 dl 1.102 public void putAll(Map<? extends K, ? extends V> m) {
1091     tryPresize(m.size());
1092     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1093     putVal(e.getKey(), e.getValue(), false);
1094 dl 1.38 }
1095    
1096     /**
1097 dl 1.102 * Removes the key (and its corresponding value) from this map.
1098     * This method does nothing if the key is not in the map.
1099     *
1100     * @param key the key that needs to be removed
1101     * @return the previous value associated with {@code key}, or
1102     * {@code null} if there was no mapping for {@code key}
1103     * @throws NullPointerException if the specified key is null
1104 dl 1.38 */
1105 dl 1.102 public V remove(Object key) {
1106     return replaceNode(key, null, null);
1107 dl 1.1 }
1108    
1109 dl 1.27 /**
1110     * Implementation for the four public remove/replace methods:
1111     * Replaces node value with v, conditional upon match of cv if
1112     * non-null. If resulting value is null, delete.
1113     */
1114 dl 1.102 final V replaceNode(Object key, V value, Object cv) {
1115     int hash = spread(key.hashCode());
1116     for (Node<K,V>[] tab = table;;) {
1117     Node<K,V> f; int n, i, fh;
1118     if (tab == null || (n = tab.length) == 0 ||
1119     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1120 dl 1.27 break;
1121 dl 1.102 else if ((fh = f.hash) == MOVED)
1122     tab = helpTransfer(tab, f);
1123     else {
1124     V oldVal = null;
1125     boolean validated = false;
1126     synchronized (f) {
1127     if (tabAt(tab, i) == f) {
1128     if (fh >= 0) {
1129     validated = true;
1130     for (Node<K,V> e = f, pred = null;;) {
1131     K ek;
1132     if (e.hash == hash &&
1133     ((ek = e.key) == key ||
1134     (ek != null && key.equals(ek)))) {
1135     V ev = e.val;
1136     if (cv == null || cv == ev ||
1137     (ev != null && cv.equals(ev))) {
1138     oldVal = ev;
1139     if (value != null)
1140     e.val = value;
1141     else if (pred != null)
1142     pred.next = e.next;
1143     else
1144     setTabAt(tab, i, e.next);
1145     }
1146     break;
1147     }
1148     pred = e;
1149     if ((e = e.next) == null)
1150     break;
1151     }
1152     }
1153     else if (f instanceof TreeBin) {
1154 dl 1.38 validated = true;
1155 dl 1.102 TreeBin<K,V> t = (TreeBin<K,V>)f;
1156     TreeNode<K,V> r, p;
1157     if ((r = t.root) != null &&
1158     (p = r.findTreeNode(hash, key, null)) != null) {
1159 dl 1.84 V pv = p.val;
1160 dl 1.102 if (cv == null || cv == pv ||
1161     (pv != null && cv.equals(pv))) {
1162 dl 1.38 oldVal = pv;
1163 dl 1.102 if (value != null)
1164     p.val = value;
1165     else if (t.removeTreeNode(p))
1166     setTabAt(tab, i, untreeify(t.first));
1167 dl 1.38 }
1168     }
1169     }
1170     }
1171 dl 1.102 }
1172     if (validated) {
1173     if (oldVal != null) {
1174     if (value == null)
1175 dl 1.82 addCount(-1L, -1);
1176 dl 1.102 return oldVal;
1177 dl 1.38 }
1178 dl 1.102 break;
1179 dl 1.38 }
1180     }
1181 dl 1.102 }
1182     return null;
1183     }
1184    
1185     /**
1186     * Removes all of the mappings from this map.
1187     */
1188     public void clear() {
1189     long delta = 0L; // negative number of deletions
1190     int i = 0;
1191     Node<K,V>[] tab = table;
1192     while (tab != null && i < tab.length) {
1193     int fh;
1194     Node<K,V> f = tabAt(tab, i);
1195     if (f == null)
1196     ++i;
1197     else if ((fh = f.hash) == MOVED) {
1198     tab = helpTransfer(tab, f);
1199     i = 0; // restart
1200     }
1201 dl 1.82 else {
1202 jsr166 1.83 synchronized (f) {
1203 dl 1.27 if (tabAt(tab, i) == f) {
1204 dl 1.102 Node<K,V> p = (fh >= 0 ? f :
1205     (f instanceof TreeBin) ?
1206     ((TreeBin<K,V>)f).first : null);
1207     while (p != null) {
1208     --delta;
1209     p = p.next;
1210 dl 1.27 }
1211 dl 1.102 setTabAt(tab, i++, null);
1212 dl 1.27 }
1213     }
1214     }
1215     }
1216 dl 1.102 if (delta != 0L)
1217     addCount(delta, -1);
1218     }
1219    
1220     /**
1221     * Returns a {@link Set} view of the keys contained in this map.
1222     * The set is backed by the map, so changes to the map are
1223     * reflected in the set, and vice-versa. The set supports element
1224     * removal, which removes the corresponding mapping from this map,
1225     * via the {@code Iterator.remove}, {@code Set.remove},
1226     * {@code removeAll}, {@code retainAll}, and {@code clear}
1227     * operations. It does not support the {@code add} or
1228     * {@code addAll} operations.
1229     *
1230     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1231     * that will never throw {@link ConcurrentModificationException},
1232     * and guarantees to traverse elements as they existed upon
1233     * construction of the iterator, and may (but is not guaranteed to)
1234     * reflect any modifications subsequent to construction.
1235     *
1236     * @return the set view
1237     */
1238     public KeySetView<K,V> keySet() {
1239     KeySetView<K,V> ks;
1240     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1241     }
1242    
1243     /**
1244     * Returns a {@link Collection} view of the values contained in this map.
1245     * The collection is backed by the map, so changes to the map are
1246     * reflected in the collection, and vice-versa. The collection
1247     * supports element removal, which removes the corresponding
1248     * mapping from this map, via the {@code Iterator.remove},
1249     * {@code Collection.remove}, {@code removeAll},
1250     * {@code retainAll}, and {@code clear} operations. It does not
1251     * support the {@code add} or {@code addAll} operations.
1252     *
1253     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1254     * that will never throw {@link ConcurrentModificationException},
1255     * and guarantees to traverse elements as they existed upon
1256     * construction of the iterator, and may (but is not guaranteed to)
1257     * reflect any modifications subsequent to construction.
1258     *
1259     * @return the collection view
1260     */
1261     public Collection<V> values() {
1262     ValuesView<K,V> vs;
1263     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1264     }
1265    
1266     /**
1267     * Returns a {@link Set} view of the mappings contained in this map.
1268     * The set is backed by the map, so changes to the map are
1269     * reflected in the set, and vice-versa. The set supports element
1270     * removal, which removes the corresponding mapping from the map,
1271     * via the {@code Iterator.remove}, {@code Set.remove},
1272     * {@code removeAll}, {@code retainAll}, and {@code clear}
1273     * operations.
1274     *
1275     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1276     * that will never throw {@link ConcurrentModificationException},
1277     * and guarantees to traverse elements as they existed upon
1278     * construction of the iterator, and may (but is not guaranteed to)
1279     * reflect any modifications subsequent to construction.
1280     *
1281     * @return the set view
1282     */
1283     public Set<Map.Entry<K,V>> entrySet() {
1284     EntrySetView<K,V> es;
1285     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1286 dl 1.27 }
1287    
1288 dl 1.102 /**
1289     * Returns the hash code value for this {@link Map}, i.e.,
1290     * the sum of, for each key-value pair in the map,
1291     * {@code key.hashCode() ^ value.hashCode()}.
1292     *
1293     * @return the hash code value for this map
1294 dl 1.27 */
1295 dl 1.102 public int hashCode() {
1296     int h = 0;
1297     Node<K,V>[] t;
1298     if ((t = table) != null) {
1299     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1300     for (Node<K,V> p; (p = it.advance()) != null; )
1301     h += p.key.hashCode() ^ p.val.hashCode();
1302     }
1303     return h;
1304     }
1305 dl 1.27
1306 dl 1.102 /**
1307     * Returns a string representation of this map. The string
1308     * representation consists of a list of key-value mappings (in no
1309     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1310     * mappings are separated by the characters {@code ", "} (comma
1311     * and space). Each key-value mapping is rendered as the key
1312     * followed by an equals sign ("{@code =}") followed by the
1313     * associated value.
1314     *
1315     * @return a string representation of this map
1316     */
1317     public String toString() {
1318     Node<K,V>[] t;
1319     int f = (t = table) == null ? 0 : t.length;
1320     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1321     StringBuilder sb = new StringBuilder();
1322     sb.append('{');
1323     Node<K,V> p;
1324     if ((p = it.advance()) != null) {
1325     for (;;) {
1326     K k = p.key;
1327     V v = p.val;
1328     sb.append(k == this ? "(this Map)" : k);
1329     sb.append('=');
1330     sb.append(v == this ? "(this Map)" : v);
1331     if ((p = it.advance()) == null)
1332     break;
1333     sb.append(',').append(' ');
1334 dl 1.14 }
1335 dl 1.102 }
1336     return sb.append('}').toString();
1337     }
1338    
1339     /**
1340     * Compares the specified object with this map for equality.
1341     * Returns {@code true} if the given object is a map with the same
1342     * mappings as this map. This operation may return misleading
1343     * results if either map is concurrently modified during execution
1344     * of this method.
1345     *
1346     * @param o object to be compared for equality with this map
1347     * @return {@code true} if the specified object is equal to this map
1348     */
1349     public boolean equals(Object o) {
1350     if (o != this) {
1351     if (!(o instanceof Map))
1352     return false;
1353     Map<?,?> m = (Map<?,?>) o;
1354     Node<K,V>[] t;
1355     int f = (t = table) == null ? 0 : t.length;
1356     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1357     for (Node<K,V> p; (p = it.advance()) != null; ) {
1358     V val = p.val;
1359     Object v = m.get(p.key);
1360     if (v == null || (v != val && !v.equals(val)))
1361     return false;
1362 dl 1.38 }
1363 dl 1.102 for (Map.Entry<?,?> e : m.entrySet()) {
1364     Object mk, mv, v;
1365     if ((mk = e.getKey()) == null ||
1366     (mv = e.getValue()) == null ||
1367     (v = get(mk)) == null ||
1368     (mv != v && !mv.equals(v)))
1369     return false;
1370 dl 1.1 }
1371     }
1372 dl 1.102 return true;
1373     }
1374    
1375     /**
1376     * Stripped-down version of helper class used in previous version,
1377     * declared for the sake of serialization compatibility
1378     */
1379     static class Segment<K,V> extends ReentrantLock implements Serializable {
1380     private static final long serialVersionUID = 2249069246763182397L;
1381     final float loadFactor;
1382     Segment(float lf) { this.loadFactor = lf; }
1383 dl 1.27 }
1384    
1385 dl 1.102 /**
1386     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1387     * stream (i.e., serializes it).
1388     * @param s the stream
1389 jsr166 1.113 * @throws java.io.IOException if an I/O error occurs
1390 dl 1.102 * @serialData
1391     * the key (Object) and value (Object)
1392     * for each key-value mapping, followed by a null pair.
1393     * The key-value mappings are emitted in no particular order.
1394     */
1395     private void writeObject(java.io.ObjectOutputStream s)
1396     throws java.io.IOException {
1397     // For serialization compatibility
1398     // Emulate segment calculation from previous version of this class
1399     int sshift = 0;
1400     int ssize = 1;
1401     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1402     ++sshift;
1403     ssize <<= 1;
1404     }
1405     int segmentShift = 32 - sshift;
1406     int segmentMask = ssize - 1;
1407     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1408     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1409     for (int i = 0; i < segments.length; ++i)
1410     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1411     s.putFields().put("segments", segments);
1412     s.putFields().put("segmentShift", segmentShift);
1413     s.putFields().put("segmentMask", segmentMask);
1414     s.writeFields();
1415    
1416     Node<K,V>[] t;
1417     if ((t = table) != null) {
1418     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1419     for (Node<K,V> p; (p = it.advance()) != null; ) {
1420     s.writeObject(p.key);
1421     s.writeObject(p.val);
1422 dl 1.27 }
1423 dl 1.102 }
1424     s.writeObject(null);
1425     s.writeObject(null);
1426     segments = null; // throw away
1427     }
1428    
1429     /**
1430     * Reconstitutes the instance from a stream (that is, deserializes it).
1431     * @param s the stream
1432 jsr166 1.113 * @throws ClassNotFoundException if the class of a serialized object
1433     * could not be found
1434     * @throws java.io.IOException if an I/O error occurs
1435 dl 1.102 */
1436     private void readObject(java.io.ObjectInputStream s)
1437     throws java.io.IOException, ClassNotFoundException {
1438     /*
1439     * To improve performance in typical cases, we create nodes
1440     * while reading, then place in table once size is known.
1441     * However, we must also validate uniqueness and deal with
1442     * overpopulated bins while doing so, which requires
1443     * specialized versions of putVal mechanics.
1444     */
1445     sizeCtl = -1; // force exclusion for table construction
1446     s.defaultReadObject();
1447     long size = 0L;
1448     Node<K,V> p = null;
1449     for (;;) {
1450     @SuppressWarnings("unchecked") K k = (K) s.readObject();
1451     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1452     if (k != null && v != null) {
1453     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1454     ++size;
1455 dl 1.38 }
1456 dl 1.102 else
1457     break;
1458     }
1459     if (size == 0L)
1460     sizeCtl = 0;
1461     else {
1462     int n;
1463     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1464     n = MAXIMUM_CAPACITY;
1465 dl 1.27 else {
1466 dl 1.102 int sz = (int)size;
1467     n = tableSizeFor(sz + (sz >>> 1) + 1);
1468     }
1469 jsr166 1.115 @SuppressWarnings("unchecked")
1470     Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1471 dl 1.102 int mask = n - 1;
1472     long added = 0L;
1473     while (p != null) {
1474     boolean insertAtFront;
1475     Node<K,V> next = p.next, first;
1476     int h = p.hash, j = h & mask;
1477     if ((first = tabAt(tab, j)) == null)
1478     insertAtFront = true;
1479     else {
1480     K k = p.key;
1481     if (first.hash < 0) {
1482     TreeBin<K,V> t = (TreeBin<K,V>)first;
1483     if (t.putTreeVal(h, k, p.val) == null)
1484     ++added;
1485     insertAtFront = false;
1486     }
1487     else {
1488     int binCount = 0;
1489     insertAtFront = true;
1490     Node<K,V> q; K qk;
1491     for (q = first; q != null; q = q.next) {
1492     if (q.hash == h &&
1493     ((qk = q.key) == k ||
1494     (qk != null && k.equals(qk)))) {
1495     insertAtFront = false;
1496 dl 1.82 break;
1497     }
1498 dl 1.102 ++binCount;
1499     }
1500     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1501     insertAtFront = false;
1502     ++added;
1503     p.next = first;
1504     TreeNode<K,V> hd = null, tl = null;
1505     for (q = p; q != null; q = q.next) {
1506     TreeNode<K,V> t = new TreeNode<K,V>
1507     (q.hash, q.key, q.val, null, null);
1508     if ((t.prev = tl) == null)
1509     hd = t;
1510     else
1511     tl.next = t;
1512     tl = t;
1513 dl 1.27 }
1514 dl 1.102 setTabAt(tab, j, new TreeBin<K,V>(hd));
1515 dl 1.27 }
1516 dl 1.38 }
1517 dl 1.82 }
1518 dl 1.102 if (insertAtFront) {
1519     ++added;
1520     p.next = first;
1521     setTabAt(tab, j, p);
1522     }
1523     p = next;
1524     }
1525     table = tab;
1526     sizeCtl = n - (n >>> 2);
1527     baseCount = added;
1528     }
1529     }
1530    
1531     // ConcurrentMap methods
1532    
1533     /**
1534     * {@inheritDoc}
1535     *
1536     * @return the previous value associated with the specified key,
1537     * or {@code null} if there was no mapping for the key
1538     * @throws NullPointerException if the specified key or value is null
1539     */
1540     public V putIfAbsent(K key, V value) {
1541     return putVal(key, value, true);
1542     }
1543    
1544     /**
1545     * {@inheritDoc}
1546     *
1547     * @throws NullPointerException if the specified key is null
1548     */
1549     public boolean remove(Object key, Object value) {
1550     if (key == null)
1551     throw new NullPointerException();
1552     return value != null && replaceNode(key, null, value) != null;
1553     }
1554    
1555     /**
1556     * {@inheritDoc}
1557     *
1558     * @throws NullPointerException if any of the arguments are null
1559     */
1560     public boolean replace(K key, V oldValue, V newValue) {
1561     if (key == null || oldValue == null || newValue == null)
1562     throw new NullPointerException();
1563     return replaceNode(key, newValue, oldValue) != null;
1564     }
1565    
1566     /**
1567     * {@inheritDoc}
1568     *
1569     * @return the previous value associated with the specified key,
1570     * or {@code null} if there was no mapping for the key
1571     * @throws NullPointerException if the specified key or value is null
1572     */
1573     public V replace(K key, V value) {
1574     if (key == null || value == null)
1575     throw new NullPointerException();
1576     return replaceNode(key, value, null);
1577     }
1578    
1579     // Overrides of JDK8+ Map extension method defaults
1580    
1581     /**
1582     * Returns the value to which the specified key is mapped, or the
1583     * given default value if this map contains no mapping for the
1584     * key.
1585     *
1586     * @param key the key whose associated value is to be returned
1587     * @param defaultValue the value to return if this map contains
1588     * no mapping for the given key
1589     * @return the mapping for the key, if present; else the default value
1590     * @throws NullPointerException if the specified key is null
1591     */
1592     public V getOrDefault(Object key, V defaultValue) {
1593     V v;
1594     return (v = get(key)) == null ? defaultValue : v;
1595     }
1596    
1597     public void forEach(BiAction<? super K, ? super V> action) {
1598     if (action == null) throw new NullPointerException();
1599     Node<K,V>[] t;
1600     if ((t = table) != null) {
1601     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1602     for (Node<K,V> p; (p = it.advance()) != null; ) {
1603     action.apply(p.key, p.val);
1604     }
1605     }
1606     }
1607    
1608     public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1609     if (function == null) throw new NullPointerException();
1610     Node<K,V>[] t;
1611     if ((t = table) != null) {
1612     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1613     for (Node<K,V> p; (p = it.advance()) != null; ) {
1614     V oldValue = p.val;
1615     for (K key = p.key;;) {
1616     V newValue = function.apply(key, oldValue);
1617     if (newValue == null)
1618     throw new NullPointerException();
1619     if (replaceNode(key, newValue, oldValue) != null ||
1620     (oldValue = get(key)) == null)
1621     break;
1622 dl 1.1 }
1623     }
1624     }
1625     }
1626    
1627 dl 1.102 /**
1628     * If the specified key is not already associated with a value,
1629     * attempts to compute its value using the given mapping function
1630     * and enters it into this map unless {@code null}. The entire
1631     * method invocation is performed atomically, so the function is
1632     * applied at most once per key. Some attempted update operations
1633     * on this map by other threads may be blocked while computation
1634     * is in progress, so the computation should be short and simple,
1635     * and must not attempt to update any other mappings of this map.
1636     *
1637     * @param key key with which the specified value is to be associated
1638     * @param mappingFunction the function to compute a value
1639     * @return the current (existing or computed) value associated with
1640     * the specified key, or null if the computed value is null
1641     * @throws NullPointerException if the specified key or mappingFunction
1642     * is null
1643     * @throws IllegalStateException if the computation detectably
1644     * attempts a recursive update to this map that would
1645     * otherwise never complete
1646     * @throws RuntimeException or Error if the mappingFunction does so,
1647     * in which case the mapping is left unestablished
1648     */
1649     public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1650     if (key == null || mappingFunction == null)
1651 dl 1.82 throw new NullPointerException();
1652 dl 1.102 int h = spread(key.hashCode());
1653 dl 1.84 V val = null;
1654 dl 1.102 int binCount = 0;
1655     for (Node<K,V>[] tab = table;;) {
1656     Node<K,V> f; int n, i, fh;
1657     if (tab == null || (n = tab.length) == 0)
1658 dl 1.24 tab = initTable();
1659 dl 1.102 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1660     Node<K,V> r = new ReservationNode<K,V>();
1661     synchronized (r) {
1662     if (casTabAt(tab, i, null, r)) {
1663     binCount = 1;
1664     Node<K,V> node = null;
1665 dl 1.82 try {
1666 dl 1.102 if ((val = mappingFunction.apply(key)) != null)
1667     node = new Node<K,V>(h, key, val, null);
1668 dl 1.82 } finally {
1669 dl 1.102 setTabAt(tab, i, node);
1670 dl 1.1 }
1671     }
1672     }
1673 dl 1.102 if (binCount != 0)
1674 dl 1.10 break;
1675 dl 1.1 }
1676 dl 1.102 else if ((fh = f.hash) == MOVED)
1677     tab = helpTransfer(tab, f);
1678     else {
1679     boolean added = false;
1680     synchronized (f) {
1681     if (tabAt(tab, i) == f) {
1682     if (fh >= 0) {
1683     binCount = 1;
1684     for (Node<K,V> e = f;; ++binCount) {
1685     K ek; V ev;
1686     if (e.hash == h &&
1687     ((ek = e.key) == key ||
1688     (ek != null && key.equals(ek)))) {
1689     val = e.val;
1690     break;
1691     }
1692     Node<K,V> pred = e;
1693     if ((e = e.next) == null) {
1694     if ((val = mappingFunction.apply(key)) != null) {
1695     added = true;
1696     pred.next = new Node<K,V>(h, key, val, null);
1697     }
1698     break;
1699 dl 1.38 }
1700     }
1701 dl 1.102 }
1702     else if (f instanceof TreeBin) {
1703     binCount = 2;
1704     TreeBin<K,V> t = (TreeBin<K,V>)f;
1705     TreeNode<K,V> r, p;
1706     if ((r = t.root) != null &&
1707     (p = r.findTreeNode(h, key, null)) != null)
1708     val = p.val;
1709     else if ((val = mappingFunction.apply(key)) != null) {
1710     added = true;
1711     t.putTreeVal(h, key, val);
1712 dl 1.41 }
1713 dl 1.38 }
1714     }
1715     }
1716 dl 1.102 if (binCount != 0) {
1717     if (binCount >= TREEIFY_THRESHOLD)
1718     treeifyBin(tab, i);
1719     if (!added)
1720     return val;
1721     break;
1722     }
1723 dl 1.38 }
1724 dl 1.102 }
1725     if (val != null)
1726     addCount(1L, binCount);
1727     return val;
1728     }
1729    
1730     /**
1731     * If the value for the specified key is present, attempts to
1732     * compute a new mapping given the key and its current mapped
1733     * value. The entire method invocation is performed atomically.
1734     * Some attempted update operations on this map by other threads
1735     * may be blocked while computation is in progress, so the
1736     * computation should be short and simple, and must not attempt to
1737     * update any other mappings of this map.
1738     *
1739     * @param key key with which a value may be associated
1740     * @param remappingFunction the function to compute a value
1741     * @return the new value associated with the specified key, or null if none
1742     * @throws NullPointerException if the specified key or remappingFunction
1743     * is null
1744     * @throws IllegalStateException if the computation detectably
1745     * attempts a recursive update to this map that would
1746     * otherwise never complete
1747     * @throws RuntimeException or Error if the remappingFunction does so,
1748     * in which case the mapping is unchanged
1749     */
1750     public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1751     if (key == null || remappingFunction == null)
1752     throw new NullPointerException();
1753     int h = spread(key.hashCode());
1754     V val = null;
1755     int delta = 0;
1756     int binCount = 0;
1757     for (Node<K,V>[] tab = table;;) {
1758     Node<K,V> f; int n, i, fh;
1759     if (tab == null || (n = tab.length) == 0)
1760     tab = initTable();
1761     else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1762     break;
1763     else if ((fh = f.hash) == MOVED)
1764     tab = helpTransfer(tab, f);
1765 dl 1.82 else {
1766 jsr166 1.83 synchronized (f) {
1767 dl 1.24 if (tabAt(tab, i) == f) {
1768 dl 1.102 if (fh >= 0) {
1769     binCount = 1;
1770     for (Node<K,V> e = f, pred = null;; ++binCount) {
1771     K ek;
1772     if (e.hash == h &&
1773     ((ek = e.key) == key ||
1774     (ek != null && key.equals(ek)))) {
1775     val = remappingFunction.apply(key, e.val);
1776     if (val != null)
1777     e.val = val;
1778     else {
1779     delta = -1;
1780     Node<K,V> en = e.next;
1781     if (pred != null)
1782     pred.next = en;
1783     else
1784     setTabAt(tab, i, en);
1785     }
1786     break;
1787     }
1788     pred = e;
1789     if ((e = e.next) == null)
1790     break;
1791     }
1792     }
1793     else if (f instanceof TreeBin) {
1794     binCount = 2;
1795     TreeBin<K,V> t = (TreeBin<K,V>)f;
1796     TreeNode<K,V> r, p;
1797     if ((r = t.root) != null &&
1798     (p = r.findTreeNode(h, key, null)) != null) {
1799     val = remappingFunction.apply(key, p.val);
1800 dl 1.27 if (val != null)
1801 dl 1.102 p.val = val;
1802 dl 1.41 else {
1803     delta = -1;
1804 dl 1.102 if (t.removeTreeNode(p))
1805     setTabAt(tab, i, untreeify(t.first));
1806 dl 1.1 }
1807     }
1808     }
1809     }
1810     }
1811 dl 1.102 if (binCount != 0)
1812 dl 1.10 break;
1813 dl 1.1 }
1814 dl 1.10 }
1815 dl 1.82 if (delta != 0)
1816 dl 1.102 addCount((long)delta, binCount);
1817 dl 1.84 return val;
1818 dl 1.1 }
1819    
1820 dl 1.102 /**
1821     * Attempts to compute a mapping for the specified key and its
1822     * current mapped value (or {@code null} if there is no current
1823     * mapping). The entire method invocation is performed atomically.
1824     * Some attempted update operations on this map by other threads
1825     * may be blocked while computation is in progress, so the
1826     * computation should be short and simple, and must not attempt to
1827     * update any other mappings of this Map.
1828     *
1829     * @param key key with which the specified value is to be associated
1830     * @param remappingFunction the function to compute a value
1831     * @return the new value associated with the specified key, or null if none
1832     * @throws NullPointerException if the specified key or remappingFunction
1833     * is null
1834     * @throws IllegalStateException if the computation detectably
1835     * attempts a recursive update to this map that would
1836     * otherwise never complete
1837     * @throws RuntimeException or Error if the remappingFunction does so,
1838     * in which case the mapping is unchanged
1839     */
1840     public V compute(K key,
1841     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1842     if (key == null || remappingFunction == null)
1843 dl 1.82 throw new NullPointerException();
1844 dl 1.102 int h = spread(key.hashCode());
1845 dl 1.84 V val = null;
1846 dl 1.52 int delta = 0;
1847 dl 1.102 int binCount = 0;
1848     for (Node<K,V>[] tab = table;;) {
1849     Node<K,V> f; int n, i, fh;
1850     if (tab == null || (n = tab.length) == 0)
1851 dl 1.52 tab = initTable();
1852 dl 1.102 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1853     Node<K,V> r = new ReservationNode<K,V>();
1854     synchronized (r) {
1855     if (casTabAt(tab, i, null, r)) {
1856     binCount = 1;
1857     Node<K,V> node = null;
1858     try {
1859     if ((val = remappingFunction.apply(key, null)) != null) {
1860     delta = 1;
1861     node = new Node<K,V>(h, key, val, null);
1862     }
1863     } finally {
1864     setTabAt(tab, i, node);
1865     }
1866     }
1867     }
1868     if (binCount != 0)
1869 dl 1.52 break;
1870     }
1871 dl 1.102 else if ((fh = f.hash) == MOVED)
1872     tab = helpTransfer(tab, f);
1873     else {
1874     synchronized (f) {
1875     if (tabAt(tab, i) == f) {
1876     if (fh >= 0) {
1877     binCount = 1;
1878     for (Node<K,V> e = f, pred = null;; ++binCount) {
1879     K ek;
1880     if (e.hash == h &&
1881     ((ek = e.key) == key ||
1882     (ek != null && key.equals(ek)))) {
1883     val = remappingFunction.apply(key, e.val);
1884     if (val != null)
1885     e.val = val;
1886     else {
1887     delta = -1;
1888     Node<K,V> en = e.next;
1889     if (pred != null)
1890     pred.next = en;
1891     else
1892     setTabAt(tab, i, en);
1893     }
1894     break;
1895     }
1896     pred = e;
1897     if ((e = e.next) == null) {
1898     val = remappingFunction.apply(key, null);
1899     if (val != null) {
1900     delta = 1;
1901     pred.next =
1902     new Node<K,V>(h, key, val, null);
1903     }
1904     break;
1905     }
1906     }
1907     }
1908     else if (f instanceof TreeBin) {
1909     binCount = 1;
1910     TreeBin<K,V> t = (TreeBin<K,V>)f;
1911     TreeNode<K,V> r, p;
1912     if ((r = t.root) != null)
1913     p = r.findTreeNode(h, key, null);
1914     else
1915     p = null;
1916     V pv = (p == null) ? null : p.val;
1917     val = remappingFunction.apply(key, pv);
1918 dl 1.52 if (val != null) {
1919     if (p != null)
1920     p.val = val;
1921     else {
1922     delta = 1;
1923 dl 1.102 t.putTreeVal(h, key, val);
1924 dl 1.52 }
1925     }
1926     else if (p != null) {
1927     delta = -1;
1928 dl 1.102 if (t.removeTreeNode(p))
1929     setTabAt(tab, i, untreeify(t.first));
1930 dl 1.52 }
1931     }
1932     }
1933     }
1934 dl 1.102 if (binCount != 0) {
1935     if (binCount >= TREEIFY_THRESHOLD)
1936     treeifyBin(tab, i);
1937     break;
1938 dl 1.52 }
1939     }
1940     }
1941 dl 1.82 if (delta != 0)
1942 dl 1.102 addCount((long)delta, binCount);
1943 dl 1.84 return val;
1944 dl 1.52 }
1945    
1946 dl 1.102 /**
1947     * If the specified key is not already associated with a
1948     * (non-null) value, associates it with the given value.
1949     * Otherwise, replaces the value with the results of the given
1950     * remapping function, or removes if {@code null}. The entire
1951     * method invocation is performed atomically. Some attempted
1952     * update operations on this map by other threads may be blocked
1953     * while computation is in progress, so the computation should be
1954     * short and simple, and must not attempt to update any other
1955     * mappings of this Map.
1956     *
1957     * @param key key with which the specified value is to be associated
1958     * @param value the value to use if absent
1959     * @param remappingFunction the function to recompute a value if present
1960     * @return the new value associated with the specified key, or null if none
1961     * @throws NullPointerException if the specified key or the
1962     * remappingFunction is null
1963     * @throws RuntimeException or Error if the remappingFunction does so,
1964     * in which case the mapping is unchanged
1965     */
1966     public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1967     if (key == null || value == null || remappingFunction == null)
1968     throw new NullPointerException();
1969     int h = spread(key.hashCode());
1970     V val = null;
1971     int delta = 0;
1972     int binCount = 0;
1973     for (Node<K,V>[] tab = table;;) {
1974     Node<K,V> f; int n, i, fh;
1975     if (tab == null || (n = tab.length) == 0)
1976     tab = initTable();
1977     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1978     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1979     delta = 1;
1980     val = value;
1981 dl 1.27 break;
1982     }
1983 dl 1.102 }
1984     else if ((fh = f.hash) == MOVED)
1985     tab = helpTransfer(tab, f);
1986     else {
1987     synchronized (f) {
1988     if (tabAt(tab, i) == f) {
1989     if (fh >= 0) {
1990     binCount = 1;
1991     for (Node<K,V> e = f, pred = null;; ++binCount) {
1992     K ek;
1993     if (e.hash == h &&
1994     ((ek = e.key) == key ||
1995     (ek != null && key.equals(ek)))) {
1996     val = remappingFunction.apply(e.val, value);
1997     if (val != null)
1998     e.val = val;
1999 dl 1.38 else {
2000 dl 1.102 delta = -1;
2001     Node<K,V> en = e.next;
2002     if (pred != null)
2003     pred.next = en;
2004     else
2005     setTabAt(tab, i, en);
2006 dl 1.38 }
2007 dl 1.102 break;
2008     }
2009     pred = e;
2010     if ((e = e.next) == null) {
2011     delta = 1;
2012     val = value;
2013     pred.next =
2014     new Node<K,V>(h, key, val, null);
2015     break;
2016 dl 1.38 }
2017     }
2018     }
2019 dl 1.102 else if (f instanceof TreeBin) {
2020     binCount = 2;
2021     TreeBin<K,V> t = (TreeBin<K,V>)f;
2022     TreeNode<K,V> r = t.root;
2023     TreeNode<K,V> p = (r == null) ? null :
2024     r.findTreeNode(h, key, null);
2025     val = (p == null) ? value :
2026     remappingFunction.apply(p.val, value);
2027     if (val != null) {
2028     if (p != null)
2029     p.val = val;
2030     else {
2031     delta = 1;
2032     t.putTreeVal(h, key, val);
2033 dl 1.27 }
2034     }
2035 dl 1.102 else if (p != null) {
2036     delta = -1;
2037     if (t.removeTreeNode(p))
2038     setTabAt(tab, i, untreeify(t.first));
2039 dl 1.90 }
2040 dl 1.24 }
2041     }
2042 dl 1.1 }
2043 dl 1.102 if (binCount != 0) {
2044     if (binCount >= TREEIFY_THRESHOLD)
2045     treeifyBin(tab, i);
2046     break;
2047     }
2048 dl 1.1 }
2049     }
2050 dl 1.102 if (delta != 0)
2051     addCount((long)delta, binCount);
2052     return val;
2053 dl 1.1 }
2054    
2055 dl 1.102 // Hashtable legacy methods
2056    
2057 dl 1.82 /**
2058 dl 1.102 * Legacy method testing if some key maps into the specified value
2059     * in this table. This method is identical in functionality to
2060     * {@link #containsValue(Object)}, and exists solely to ensure
2061     * full compatibility with class {@link java.util.Hashtable},
2062     * which supported this method prior to introduction of the
2063     * Java Collections framework.
2064     *
2065     * @param value a value to search for
2066     * @return {@code true} if and only if some key maps to the
2067     * {@code value} argument in this table as
2068     * determined by the {@code equals} method;
2069     * {@code false} otherwise
2070     * @throws NullPointerException if the specified value is null
2071     */
2072     @Deprecated public boolean contains(Object value) {
2073     return containsValue(value);
2074     }
2075    
2076     /**
2077     * Returns an enumeration of the keys in this table.
2078     *
2079     * @return an enumeration of the keys in this table
2080     * @see #keySet()
2081     */
2082     public Enumeration<K> keys() {
2083     Node<K,V>[] t;
2084     int f = (t = table) == null ? 0 : t.length;
2085     return new KeyIterator<K,V>(t, f, 0, f, this);
2086     }
2087    
2088     /**
2089     * Returns an enumeration of the values in this table.
2090     *
2091     * @return an enumeration of the values in this table
2092     * @see #values()
2093     */
2094     public Enumeration<V> elements() {
2095     Node<K,V>[] t;
2096     int f = (t = table) == null ? 0 : t.length;
2097     return new ValueIterator<K,V>(t, f, 0, f, this);
2098     }
2099    
2100     // ConcurrentHashMapV8-only methods
2101    
2102     /**
2103     * Returns the number of mappings. This method should be used
2104     * instead of {@link #size} because a ConcurrentHashMapV8 may
2105     * contain more mappings than can be represented as an int. The
2106     * value returned is an estimate; the actual count may differ if
2107     * there are concurrent insertions or removals.
2108     *
2109     * @return the number of mappings
2110     * @since 1.8
2111     */
2112     public long mappingCount() {
2113     long n = sumCount();
2114     return (n < 0L) ? 0L : n; // ignore transient negative values
2115     }
2116    
2117     /**
2118     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2119     * from the given type to {@code Boolean.TRUE}.
2120     *
2121     * @return the new set
2122     * @since 1.8
2123     */
2124     public static <K> KeySetView<K,Boolean> newKeySet() {
2125     return new KeySetView<K,Boolean>
2126     (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2127     }
2128    
2129     /**
2130     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2131     * from the given type to {@code Boolean.TRUE}.
2132     *
2133     * @param initialCapacity The implementation performs internal
2134     * sizing to accommodate this many elements.
2135 jsr166 1.111 * @return the new set
2136 dl 1.102 * @throws IllegalArgumentException if the initial capacity of
2137     * elements is negative
2138     * @since 1.8
2139     */
2140     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2141     return new KeySetView<K,Boolean>
2142     (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2143     }
2144    
2145     /**
2146     * Returns a {@link Set} view of the keys in this map, using the
2147     * given common mapped value for any additions (i.e., {@link
2148     * Collection#add} and {@link Collection#addAll(Collection)}).
2149     * This is of course only appropriate if it is acceptable to use
2150     * the same value for all additions from this view.
2151     *
2152     * @param mappedValue the mapped value to use for any additions
2153     * @return the set view
2154     * @throws NullPointerException if the mappedValue is null
2155 dl 1.82 */
2156 dl 1.102 public KeySetView<K,V> keySet(V mappedValue) {
2157     if (mappedValue == null)
2158     throw new NullPointerException();
2159     return new KeySetView<K,V>(this, mappedValue);
2160     }
2161    
2162     /* ---------------- Special Nodes -------------- */
2163    
2164     /**
2165     * A node inserted at head of bins during transfer operations.
2166     */
2167     static final class ForwardingNode<K,V> extends Node<K,V> {
2168     final Node<K,V>[] nextTable;
2169     ForwardingNode(Node<K,V>[] tab) {
2170     super(MOVED, null, null, null);
2171     this.nextTable = tab;
2172     }
2173    
2174     Node<K,V> find(int h, Object k) {
2175 dl 1.110 // loop to avoid arbitrarily deep recursion on forwarding nodes
2176     outer: for (Node<K,V>[] tab = nextTable;;) {
2177     Node<K,V> e; int n;
2178     if (k == null || tab == null || (n = tab.length) == 0 ||
2179     (e = tabAt(tab, (n - 1) & h)) == null)
2180     return null;
2181     for (;;) {
2182 dl 1.102 int eh; K ek;
2183     if ((eh = e.hash) == h &&
2184     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2185     return e;
2186 dl 1.110 if (eh < 0) {
2187     if (e instanceof ForwardingNode) {
2188     tab = ((ForwardingNode<K,V>)e).nextTable;
2189     continue outer;
2190     }
2191     else
2192     return e.find(h, k);
2193     }
2194     if ((e = e.next) == null)
2195     return null;
2196     }
2197 dl 1.82 }
2198     }
2199     }
2200    
2201 dl 1.24 /**
2202 dl 1.102 * A place-holder node used in computeIfAbsent and compute
2203 dl 1.24 */
2204 dl 1.102 static final class ReservationNode<K,V> extends Node<K,V> {
2205     ReservationNode() {
2206     super(RESERVED, null, null, null);
2207     }
2208    
2209     Node<K,V> find(int h, Object k) {
2210     return null;
2211     }
2212 dl 1.24 }
2213    
2214 dl 1.102 /* ---------------- Table Initialization and Resizing -------------- */
2215    
2216 dl 1.24 /**
2217 dl 1.117 * Returns the stamp bits for resizing a table of size n.
2218     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2219     */
2220     static final int resizeStamp(int n) {
2221     return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2222     }
2223    
2224     /**
2225 dl 1.24 * Initializes table, using the size recorded in sizeCtl.
2226     */
2227 dl 1.102 private final Node<K,V>[] initTable() {
2228     Node<K,V>[] tab; int sc;
2229     while ((tab = table) == null || tab.length == 0) {
2230 dl 1.24 if ((sc = sizeCtl) < 0)
2231     Thread.yield(); // lost initialization race; just spin
2232 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2233 dl 1.24 try {
2234 dl 1.102 if ((tab = table) == null || tab.length == 0) {
2235 dl 1.24 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2236 jsr166 1.115 @SuppressWarnings("unchecked")
2237 dl 1.117 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2238 dl 1.102 table = tab = nt;
2239 dl 1.27 sc = n - (n >>> 2);
2240 dl 1.24 }
2241     } finally {
2242     sizeCtl = sc;
2243     }
2244     break;
2245     }
2246     }
2247     return tab;
2248     }
2249    
2250     /**
2251 dl 1.82 * Adds to count, and if table is too small and not already
2252     * resizing, initiates transfer. If already resizing, helps
2253     * perform transfer if work is available. Rechecks occupancy
2254     * after a transfer to see if another resize is already needed
2255     * because resizings are lagging additions.
2256     *
2257     * @param x the count to add
2258     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2259     */
2260     private final void addCount(long x, int check) {
2261     CounterCell[] as; long b, s;
2262     if ((as = counterCells) != null ||
2263     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2264     CounterHashCode hc; CounterCell a; long v; int m;
2265     boolean uncontended = true;
2266     if ((hc = threadCounterHashCode.get()) == null ||
2267     as == null || (m = as.length - 1) < 0 ||
2268     (a = as[m & hc.code]) == null ||
2269     !(uncontended =
2270     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2271     fullAddCount(x, hc, uncontended);
2272     return;
2273     }
2274     if (check <= 1)
2275     return;
2276     s = sumCount();
2277     }
2278     if (check >= 0) {
2279 dl 1.117 Node<K,V>[] tab, nt; int n, sc;
2280 dl 1.82 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2281 dl 1.117 (n = tab.length) < MAXIMUM_CAPACITY) {
2282     int rs = resizeStamp(n);
2283 dl 1.82 if (sc < 0) {
2284 dl 1.117 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2285     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2286     transferIndex <= 0)
2287 dl 1.82 break;
2288 dl 1.117 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2289 dl 1.82 transfer(tab, nt);
2290 dl 1.24 }
2291 dl 1.117 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2292     (rs << RESIZE_STAMP_SHIFT) + 2))
2293 dl 1.82 transfer(tab, null);
2294     s = sumCount();
2295 dl 1.24 }
2296     }
2297     }
2298    
2299 dl 1.27 /**
2300 dl 1.102 * Helps transfer if a resize is in progress.
2301     */
2302     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2303     Node<K,V>[] nextTab; int sc;
2304 dl 1.117 if (tab != null && (f instanceof ForwardingNode) &&
2305 dl 1.102 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2306 dl 1.117 int rs = resizeStamp(tab.length);
2307     while (nextTab == nextTable && table == tab &&
2308     (sc = sizeCtl) < 0) {
2309     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2310     sc == rs + MAX_RESIZERS || transferIndex <= 0)
2311     break;
2312     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2313 dl 1.116 transfer(tab, nextTab);
2314     break;
2315     }
2316     }
2317 dl 1.102 return nextTab;
2318     }
2319     return table;
2320     }
2321    
2322     /**
2323 dl 1.27 * Tries to presize table to accommodate the given number of elements.
2324     *
2325     * @param size number of elements (doesn't need to be perfectly accurate)
2326     */
2327 dl 1.102 private final void tryPresize(int size) {
2328 dl 1.27 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2329     tableSizeFor(size + (size >>> 1) + 1);
2330     int sc;
2331     while ((sc = sizeCtl) >= 0) {
2332 dl 1.102 Node<K,V>[] tab = table; int n;
2333 dl 1.27 if (tab == null || (n = tab.length) == 0) {
2334 jsr166 1.30 n = (sc > c) ? sc : c;
2335 dl 1.82 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2336 dl 1.27 try {
2337     if (table == tab) {
2338 jsr166 1.115 @SuppressWarnings("unchecked")
2339 dl 1.117 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2340 dl 1.102 table = nt;
2341 dl 1.27 sc = n - (n >>> 2);
2342     }
2343     } finally {
2344     sizeCtl = sc;
2345     }
2346     }
2347     }
2348     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2349     break;
2350 dl 1.117 else if (tab == table) {
2351     int rs = resizeStamp(n);
2352     if (sc < 0) {
2353     Node<K,V>[] nt;
2354     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2355     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2356     transferIndex <= 0)
2357     break;
2358     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2359     transfer(tab, nt);
2360     }
2361     else if (U.compareAndSwapInt(this, SIZECTL, sc,
2362     (rs << RESIZE_STAMP_SHIFT) + 2))
2363     transfer(tab, null);
2364     }
2365 dl 1.27 }
2366     }
2367    
2368 jsr166 1.92 /**
2369 dl 1.24 * Moves and/or copies the nodes in each bin to new table. See
2370     * above for explanation.
2371     */
2372 dl 1.102 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2373 dl 1.82 int n = tab.length, stride;
2374     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2375     stride = MIN_TRANSFER_STRIDE; // subdivide range
2376     if (nextTab == null) { // initiating
2377     try {
2378 jsr166 1.115 @SuppressWarnings("unchecked")
2379 dl 1.116 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2380 dl 1.102 nextTab = nt;
2381 jsr166 1.83 } catch (Throwable ex) { // try to cope with OOME
2382 dl 1.82 sizeCtl = Integer.MAX_VALUE;
2383     return;
2384     }
2385     nextTable = nextTab;
2386     transferIndex = n;
2387     }
2388     int nextn = nextTab.length;
2389 dl 1.102 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2390 dl 1.82 boolean advance = true;
2391 dl 1.110 boolean finishing = false; // to ensure sweep before committing nextTab
2392 dl 1.82 for (int i = 0, bound = 0;;) {
2393 dl 1.116 Node<K,V> f; int fh;
2394 dl 1.82 while (advance) {
2395 dl 1.116 int nextIndex, nextBound;
2396 dl 1.110 if (--i >= bound || finishing)
2397 dl 1.82 advance = false;
2398 dl 1.116 else if ((nextIndex = transferIndex) <= 0) {
2399 dl 1.82 i = -1;
2400     advance = false;
2401     }
2402     else if (U.compareAndSwapInt
2403     (this, TRANSFERINDEX, nextIndex,
2404 jsr166 1.83 nextBound = (nextIndex > stride ?
2405 dl 1.82 nextIndex - stride : 0))) {
2406     bound = nextBound;
2407     i = nextIndex - 1;
2408     advance = false;
2409     }
2410     }
2411     if (i < 0 || i >= n || i + n >= nextn) {
2412 dl 1.116 int sc;
2413 dl 1.110 if (finishing) {
2414     nextTable = null;
2415     table = nextTab;
2416     sizeCtl = (n << 1) - (n >>> 1);
2417     return;
2418     }
2419 dl 1.117 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2420     if ((sc - 2) != resizeStamp(n))
2421 dl 1.116 return;
2422     finishing = advance = true;
2423     i = n; // recheck before commit
2424 dl 1.24 }
2425     }
2426 dl 1.116 else if ((f = tabAt(tab, i)) == null)
2427     advance = casTabAt(tab, i, null, fwd);
2428 dl 1.102 else if ((fh = f.hash) == MOVED)
2429     advance = true; // already processed
2430     else {
2431 jsr166 1.83 synchronized (f) {
2432 dl 1.82 if (tabAt(tab, i) == f) {
2433 dl 1.102 Node<K,V> ln, hn;
2434     if (fh >= 0) {
2435     int runBit = fh & n;
2436     Node<K,V> lastRun = f;
2437     for (Node<K,V> p = f.next; p != null; p = p.next) {
2438     int b = p.hash & n;
2439     if (b != runBit) {
2440     runBit = b;
2441     lastRun = p;
2442     }
2443 dl 1.82 }
2444 dl 1.102 if (runBit == 0) {
2445     ln = lastRun;
2446     hn = null;
2447 dl 1.82 }
2448     else {
2449 dl 1.102 hn = lastRun;
2450     ln = null;
2451     }
2452     for (Node<K,V> p = f; p != lastRun; p = p.next) {
2453     int ph = p.hash; K pk = p.key; V pv = p.val;
2454     if ((ph & n) == 0)
2455     ln = new Node<K,V>(ph, pk, pv, ln);
2456     else
2457     hn = new Node<K,V>(ph, pk, pv, hn);
2458 dl 1.82 }
2459 dl 1.109 setTabAt(nextTab, i, ln);
2460     setTabAt(nextTab, i + n, hn);
2461     setTabAt(tab, i, fwd);
2462     advance = true;
2463 dl 1.82 }
2464 dl 1.102 else if (f instanceof TreeBin) {
2465     TreeBin<K,V> t = (TreeBin<K,V>)f;
2466     TreeNode<K,V> lo = null, loTail = null;
2467     TreeNode<K,V> hi = null, hiTail = null;
2468     int lc = 0, hc = 0;
2469     for (Node<K,V> e = t.first; e != null; e = e.next) {
2470     int h = e.hash;
2471     TreeNode<K,V> p = new TreeNode<K,V>
2472     (h, e.key, e.val, null, null);
2473     if ((h & n) == 0) {
2474     if ((p.prev = loTail) == null)
2475     lo = p;
2476     else
2477     loTail.next = p;
2478     loTail = p;
2479     ++lc;
2480     }
2481     else {
2482     if ((p.prev = hiTail) == null)
2483     hi = p;
2484     else
2485     hiTail.next = p;
2486     hiTail = p;
2487     ++hc;
2488     }
2489     }
2490 jsr166 1.104 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2491     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2492     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2493     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2494 dl 1.109 setTabAt(nextTab, i, ln);
2495     setTabAt(nextTab, i + n, hn);
2496     setTabAt(tab, i, fwd);
2497     advance = true;
2498 dl 1.82 }
2499 dl 1.24 }
2500     }
2501     }
2502     }
2503     }
2504    
2505 dl 1.102 /* ---------------- Conversion from/to TreeBins -------------- */
2506 dl 1.82
2507 dl 1.102 /**
2508     * Replaces all linked nodes in bin at given index unless table is
2509     * too small, in which case resizes instead.
2510     */
2511     private final void treeifyBin(Node<K,V>[] tab, int index) {
2512     Node<K,V> b; int n, sc;
2513     if (tab != null) {
2514 dl 1.117 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2515     tryPresize(n << 1);
2516 dl 1.109 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2517 dl 1.102 synchronized (b) {
2518     if (tabAt(tab, index) == b) {
2519     TreeNode<K,V> hd = null, tl = null;
2520     for (Node<K,V> e = b; e != null; e = e.next) {
2521     TreeNode<K,V> p =
2522     new TreeNode<K,V>(e.hash, e.key, e.val,
2523     null, null);
2524     if ((p.prev = tl) == null)
2525     hd = p;
2526     else
2527     tl.next = p;
2528     tl = p;
2529 dl 1.38 }
2530 dl 1.102 setTabAt(tab, index, new TreeBin<K,V>(hd));
2531 dl 1.38 }
2532     }
2533 dl 1.82 }
2534 dl 1.27 }
2535     }
2536 dl 1.102 /**
2537 jsr166 1.105 * Returns a list on non-TreeNodes replacing those in given list.
2538 dl 1.102 */
2539     static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2540     Node<K,V> hd = null, tl = null;
2541     for (Node<K,V> q = b; q != null; q = q.next) {
2542     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2543     if (tl == null)
2544     hd = p;
2545     else
2546     tl.next = p;
2547     tl = p;
2548     }
2549     return hd;
2550     }
2551    
2552     /* ---------------- TreeNodes -------------- */
2553 dl 1.14
2554 dl 1.1 /**
2555 dl 1.102 * Nodes for use in TreeBins
2556 dl 1.14 */
2557 dl 1.102 static final class TreeNode<K,V> extends Node<K,V> {
2558     TreeNode<K,V> parent; // red-black tree links
2559     TreeNode<K,V> left;
2560     TreeNode<K,V> right;
2561     TreeNode<K,V> prev; // needed to unlink next upon deletion
2562     boolean red;
2563    
2564     TreeNode(int hash, K key, V val, Node<K,V> next,
2565     TreeNode<K,V> parent) {
2566     super(hash, key, val, next);
2567     this.parent = parent;
2568     }
2569    
2570     Node<K,V> find(int h, Object k) {
2571     return findTreeNode(h, k, null);
2572     }
2573    
2574     /**
2575     * Returns the TreeNode (or null if not found) for the given key
2576     * starting at given root.
2577     */
2578     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2579     if (k != null) {
2580     TreeNode<K,V> p = this;
2581     do {
2582     int ph, dir; K pk; TreeNode<K,V> q;
2583     TreeNode<K,V> pl = p.left, pr = p.right;
2584     if ((ph = p.hash) > h)
2585     p = pl;
2586     else if (ph < h)
2587     p = pr;
2588     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2589     return p;
2590 dl 1.112 else if (pl == null)
2591     p = pr;
2592     else if (pr == null)
2593     p = pl;
2594 jsr166 1.103 else if ((kc != null ||
2595 dl 1.102 (kc = comparableClassFor(k)) != null) &&
2596     (dir = compareComparables(kc, k, pk)) != 0)
2597     p = (dir < 0) ? pl : pr;
2598 dl 1.112 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2599     return q;
2600     else
2601 dl 1.102 p = pl;
2602     } while (p != null);
2603     }
2604     return null;
2605     }
2606     }
2607    
2608     /* ---------------- TreeBins -------------- */
2609    
2610     /**
2611     * TreeNodes used at the heads of bins. TreeBins do not hold user
2612     * keys or values, but instead point to list of TreeNodes and
2613     * their root. They also maintain a parasitic read-write lock
2614     * forcing writers (who hold bin lock) to wait for readers (who do
2615     * not) to complete before tree restructuring operations.
2616     */
2617     static final class TreeBin<K,V> extends Node<K,V> {
2618     TreeNode<K,V> root;
2619     volatile TreeNode<K,V> first;
2620     volatile Thread waiter;
2621     volatile int lockState;
2622     // values for lockState
2623     static final int WRITER = 1; // set while holding write lock
2624     static final int WAITER = 2; // set when waiting for write lock
2625     static final int READER = 4; // increment value for setting read lock
2626    
2627     /**
2628 dl 1.112 * Tie-breaking utility for ordering insertions when equal
2629     * hashCodes and non-comparable. We don't require a total
2630     * order, just a consistent insertion rule to maintain
2631     * equivalence across rebalancings. Tie-breaking further than
2632     * necessary simplifies testing a bit.
2633     */
2634     static int tieBreakOrder(Object a, Object b) {
2635     int d;
2636     if (a == null || b == null ||
2637     (d = a.getClass().getName().
2638     compareTo(b.getClass().getName())) == 0)
2639     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2640     -1 : 1);
2641     return d;
2642     }
2643    
2644     /**
2645 dl 1.102 * Creates bin with initial set of nodes headed by b.
2646     */
2647     TreeBin(TreeNode<K,V> b) {
2648     super(TREEBIN, null, null, null);
2649     this.first = b;
2650     TreeNode<K,V> r = null;
2651     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2652     next = (TreeNode<K,V>)x.next;
2653     x.left = x.right = null;
2654     if (r == null) {
2655     x.parent = null;
2656     x.red = false;
2657     r = x;
2658     }
2659     else {
2660 dl 1.112 K k = x.key;
2661     int h = x.hash;
2662 dl 1.102 Class<?> kc = null;
2663     for (TreeNode<K,V> p = r;;) {
2664     int dir, ph;
2665 dl 1.112 K pk = p.key;
2666     if ((ph = p.hash) > h)
2667 dl 1.102 dir = -1;
2668 dl 1.112 else if (ph < h)
2669 dl 1.102 dir = 1;
2670 dl 1.112 else if ((kc == null &&
2671     (kc = comparableClassFor(k)) == null) ||
2672     (dir = compareComparables(kc, k, pk)) == 0)
2673     dir = tieBreakOrder(k, pk);
2674     TreeNode<K,V> xp = p;
2675 dl 1.102 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2676     x.parent = xp;
2677     if (dir <= 0)
2678     xp.left = x;
2679     else
2680     xp.right = x;
2681     r = balanceInsertion(r, x);
2682     break;
2683     }
2684     }
2685     }
2686     }
2687     this.root = r;
2688 dl 1.112 assert checkInvariants(root);
2689 dl 1.102 }
2690    
2691     /**
2692 jsr166 1.105 * Acquires write lock for tree restructuring.
2693 dl 1.102 */
2694     private final void lockRoot() {
2695     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2696     contendedLock(); // offload to separate method
2697     }
2698    
2699     /**
2700 jsr166 1.105 * Releases write lock for tree restructuring.
2701 dl 1.102 */
2702     private final void unlockRoot() {
2703     lockState = 0;
2704     }
2705 dl 1.14
2706 dl 1.102 /**
2707 jsr166 1.105 * Possibly blocks awaiting root lock.
2708 dl 1.102 */
2709     private final void contendedLock() {
2710     boolean waiting = false;
2711     for (int s;;) {
2712 dl 1.117 if (((s = lockState) & ~WAITER) == 0) {
2713 dl 1.102 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2714     if (waiting)
2715     waiter = null;
2716     return;
2717     }
2718     }
2719 dl 1.114 else if ((s & WAITER) == 0) {
2720 dl 1.102 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2721     waiting = true;
2722     waiter = Thread.currentThread();
2723     }
2724     }
2725     else if (waiting)
2726     LockSupport.park(this);
2727     }
2728 dl 1.14 }
2729    
2730 dl 1.102 /**
2731     * Returns matching node or null if none. Tries to search
2732 jsr166 1.108 * using tree comparisons from root, but continues linear
2733 dl 1.102 * search when lock not available.
2734     */
2735 dl 1.112 final Node<K,V> find(int h, Object k) {
2736 dl 1.102 if (k != null) {
2737     for (Node<K,V> e = first; e != null; e = e.next) {
2738     int s; K ek;
2739     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2740     if (e.hash == h &&
2741     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2742     return e;
2743     }
2744     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2745     s + READER)) {
2746     TreeNode<K,V> r, p;
2747     try {
2748     p = ((r = root) == null ? null :
2749     r.findTreeNode(h, k, null));
2750     } finally {
2751     Thread w;
2752     int ls;
2753     do {} while (!U.compareAndSwapInt
2754     (this, LOCKSTATE,
2755     ls = lockState, ls - READER));
2756     if (ls == (READER|WAITER) && (w = waiter) != null)
2757     LockSupport.unpark(w);
2758     }
2759     return p;
2760     }
2761     }
2762 dl 1.79 }
2763 dl 1.102 return null;
2764 dl 1.41 }
2765    
2766     /**
2767 dl 1.102 * Finds or adds a node.
2768     * @return null if added
2769 dl 1.41 */
2770 dl 1.102 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2771     Class<?> kc = null;
2772 dl 1.112 boolean searched = false;
2773 dl 1.102 for (TreeNode<K,V> p = root;;) {
2774 dl 1.112 int dir, ph; K pk;
2775 dl 1.102 if (p == null) {
2776     first = root = new TreeNode<K,V>(h, k, v, null, null);
2777     break;
2778     }
2779     else if ((ph = p.hash) > h)
2780     dir = -1;
2781     else if (ph < h)
2782     dir = 1;
2783     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2784     return p;
2785     else if ((kc == null &&
2786     (kc = comparableClassFor(k)) == null) ||
2787     (dir = compareComparables(kc, k, pk)) == 0) {
2788 dl 1.112 if (!searched) {
2789     TreeNode<K,V> q, ch;
2790     searched = true;
2791     if (((ch = p.left) != null &&
2792     (q = ch.findTreeNode(h, k, kc)) != null) ||
2793     ((ch = p.right) != null &&
2794     (q = ch.findTreeNode(h, k, kc)) != null))
2795     return q;
2796     }
2797     dir = tieBreakOrder(k, pk);
2798 dl 1.102 }
2799 dl 1.112
2800 dl 1.102 TreeNode<K,V> xp = p;
2801 dl 1.112 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802 dl 1.102 TreeNode<K,V> x, f = first;
2803     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2804     if (f != null)
2805     f.prev = x;
2806 dl 1.112 if (dir <= 0)
2807 dl 1.102 xp.left = x;
2808 dl 1.63 else
2809 dl 1.102 xp.right = x;
2810     if (!xp.red)
2811     x.red = true;
2812     else {
2813     lockRoot();
2814     try {
2815     root = balanceInsertion(root, x);
2816     } finally {
2817     unlockRoot();
2818 dl 1.38 }
2819 dl 1.102 }
2820     break;
2821 dl 1.1 }
2822 dl 1.102 }
2823     assert checkInvariants(root);
2824     return null;
2825 dl 1.1 }
2826 dl 1.41
2827 dl 1.102 /**
2828     * Removes the given node, that must be present before this
2829     * call. This is messier than typical red-black deletion code
2830     * because we cannot swap the contents of an interior node
2831     * with a leaf successor that is pinned by "next" pointers
2832     * that are accessible independently of lock. So instead we
2833     * swap the tree linkages.
2834     *
2835 jsr166 1.106 * @return true if now too small, so should be untreeified
2836 dl 1.102 */
2837     final boolean removeTreeNode(TreeNode<K,V> p) {
2838     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2839     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2840     TreeNode<K,V> r, rl;
2841     if (pred == null)
2842     first = next;
2843     else
2844     pred.next = next;
2845     if (next != null)
2846     next.prev = pred;
2847     if (first == null) {
2848     root = null;
2849     return true;
2850     }
2851     if ((r = root) == null || r.right == null || // too small
2852     (rl = r.left) == null || rl.left == null)
2853     return true;
2854     lockRoot();
2855     try {
2856     TreeNode<K,V> replacement;
2857     TreeNode<K,V> pl = p.left;
2858     TreeNode<K,V> pr = p.right;
2859     if (pl != null && pr != null) {
2860     TreeNode<K,V> s = pr, sl;
2861     while ((sl = s.left) != null) // find successor
2862     s = sl;
2863     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2864     TreeNode<K,V> sr = s.right;
2865     TreeNode<K,V> pp = p.parent;
2866     if (s == pr) { // p was s's direct parent
2867     p.parent = s;
2868     s.right = p;
2869     }
2870     else {
2871     TreeNode<K,V> sp = s.parent;
2872     if ((p.parent = sp) != null) {
2873     if (s == sp.left)
2874     sp.left = p;
2875     else
2876     sp.right = p;
2877     }
2878     if ((s.right = pr) != null)
2879     pr.parent = s;
2880     }
2881     p.left = null;
2882     if ((p.right = sr) != null)
2883     sr.parent = p;
2884     if ((s.left = pl) != null)
2885     pl.parent = s;
2886     if ((s.parent = pp) == null)
2887     r = s;
2888     else if (p == pp.left)
2889     pp.left = s;
2890     else
2891     pp.right = s;
2892     if (sr != null)
2893     replacement = sr;
2894     else
2895     replacement = p;
2896     }
2897     else if (pl != null)
2898     replacement = pl;
2899     else if (pr != null)
2900     replacement = pr;
2901     else
2902     replacement = p;
2903     if (replacement != p) {
2904     TreeNode<K,V> pp = replacement.parent = p.parent;
2905     if (pp == null)
2906     r = replacement;
2907     else if (p == pp.left)
2908     pp.left = replacement;
2909     else
2910     pp.right = replacement;
2911     p.left = p.right = p.parent = null;
2912     }
2913    
2914     root = (p.red) ? r : balanceDeletion(r, replacement);
2915    
2916     if (p == replacement) { // detach pointers
2917     TreeNode<K,V> pp;
2918     if ((pp = p.parent) != null) {
2919     if (p == pp.left)
2920     pp.left = null;
2921     else if (p == pp.right)
2922     pp.right = null;
2923     p.parent = null;
2924     }
2925     }
2926     } finally {
2927     unlockRoot();
2928     }
2929     assert checkInvariants(root);
2930     return false;
2931 dl 1.41 }
2932    
2933 dl 1.102 /* ------------------------------------------------------------ */
2934     // Red-black tree methods, all adapted from CLR
2935    
2936     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2937     TreeNode<K,V> p) {
2938     TreeNode<K,V> r, pp, rl;
2939     if (p != null && (r = p.right) != null) {
2940     if ((rl = p.right = r.left) != null)
2941     rl.parent = p;
2942     if ((pp = r.parent = p.parent) == null)
2943     (root = r).red = false;
2944     else if (pp.left == p)
2945     pp.left = r;
2946     else
2947     pp.right = r;
2948     r.left = p;
2949     p.parent = r;
2950     }
2951     return root;
2952 dl 1.41 }
2953    
2954 dl 1.102 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2955     TreeNode<K,V> p) {
2956     TreeNode<K,V> l, pp, lr;
2957     if (p != null && (l = p.left) != null) {
2958     if ((lr = p.left = l.right) != null)
2959     lr.parent = p;
2960     if ((pp = l.parent = p.parent) == null)
2961     (root = l).red = false;
2962     else if (pp.right == p)
2963     pp.right = l;
2964     else
2965     pp.left = l;
2966     l.right = p;
2967     p.parent = l;
2968     }
2969     return root;
2970     }
2971 dl 1.79
2972 dl 1.102 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2973     TreeNode<K,V> x) {
2974     x.red = true;
2975     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2976     if ((xp = x.parent) == null) {
2977     x.red = false;
2978     return x;
2979     }
2980     else if (!xp.red || (xpp = xp.parent) == null)
2981     return root;
2982     if (xp == (xppl = xpp.left)) {
2983     if ((xppr = xpp.right) != null && xppr.red) {
2984     xppr.red = false;
2985     xp.red = false;
2986     xpp.red = true;
2987     x = xpp;
2988     }
2989     else {
2990     if (x == xp.right) {
2991     root = rotateLeft(root, x = xp);
2992     xpp = (xp = x.parent) == null ? null : xp.parent;
2993     }
2994     if (xp != null) {
2995     xp.red = false;
2996     if (xpp != null) {
2997     xpp.red = true;
2998     root = rotateRight(root, xpp);
2999     }
3000     }
3001     }
3002     }
3003     else {
3004     if (xppl != null && xppl.red) {
3005     xppl.red = false;
3006     xp.red = false;
3007     xpp.red = true;
3008     x = xpp;
3009     }
3010     else {
3011     if (x == xp.left) {
3012     root = rotateRight(root, x = xp);
3013     xpp = (xp = x.parent) == null ? null : xp.parent;
3014     }
3015     if (xp != null) {
3016     xp.red = false;
3017     if (xpp != null) {
3018     xpp.red = true;
3019     root = rotateLeft(root, xpp);
3020     }
3021     }
3022     }
3023     }
3024     }
3025     }
3026 dl 1.79
3027 dl 1.102 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3028     TreeNode<K,V> x) {
3029     for (TreeNode<K,V> xp, xpl, xpr;;) {
3030     if (x == null || x == root)
3031     return root;
3032     else if ((xp = x.parent) == null) {
3033     x.red = false;
3034     return x;
3035     }
3036     else if (x.red) {
3037     x.red = false;
3038     return root;
3039     }
3040     else if ((xpl = xp.left) == x) {
3041     if ((xpr = xp.right) != null && xpr.red) {
3042     xpr.red = false;
3043     xp.red = true;
3044     root = rotateLeft(root, xp);
3045     xpr = (xp = x.parent) == null ? null : xp.right;
3046     }
3047     if (xpr == null)
3048     x = xp;
3049     else {
3050     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3051     if ((sr == null || !sr.red) &&
3052     (sl == null || !sl.red)) {
3053     xpr.red = true;
3054     x = xp;
3055     }
3056     else {
3057     if (sr == null || !sr.red) {
3058     if (sl != null)
3059     sl.red = false;
3060     xpr.red = true;
3061     root = rotateRight(root, xpr);
3062     xpr = (xp = x.parent) == null ?
3063     null : xp.right;
3064     }
3065     if (xpr != null) {
3066     xpr.red = (xp == null) ? false : xp.red;
3067     if ((sr = xpr.right) != null)
3068     sr.red = false;
3069     }
3070     if (xp != null) {
3071     xp.red = false;
3072     root = rotateLeft(root, xp);
3073     }
3074     x = root;
3075     }
3076     }
3077     }
3078     else { // symmetric
3079     if (xpl != null && xpl.red) {
3080     xpl.red = false;
3081     xp.red = true;
3082     root = rotateRight(root, xp);
3083     xpl = (xp = x.parent) == null ? null : xp.left;
3084     }
3085     if (xpl == null)
3086     x = xp;
3087     else {
3088     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3089     if ((sl == null || !sl.red) &&
3090     (sr == null || !sr.red)) {
3091     xpl.red = true;
3092     x = xp;
3093     }
3094     else {
3095     if (sl == null || !sl.red) {
3096     if (sr != null)
3097     sr.red = false;
3098     xpl.red = true;
3099     root = rotateLeft(root, xpl);
3100     xpl = (xp = x.parent) == null ?
3101     null : xp.left;
3102     }
3103     if (xpl != null) {
3104     xpl.red = (xp == null) ? false : xp.red;
3105     if ((sl = xpl.left) != null)
3106     sl.red = false;
3107     }
3108     if (xp != null) {
3109     xp.red = false;
3110     root = rotateRight(root, xp);
3111     }
3112     x = root;
3113     }
3114     }
3115     }
3116     }
3117     }
3118 jsr166 1.103
3119 dl 1.79 /**
3120 dl 1.102 * Recursive invariant check
3121 dl 1.79 */
3122 dl 1.102 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3123     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3124     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3125     if (tb != null && tb.next != t)
3126     return false;
3127     if (tn != null && tn.prev != t)
3128     return false;
3129     if (tp != null && t != tp.left && t != tp.right)
3130     return false;
3131     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3132     return false;
3133     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3134     return false;
3135     if (t.red && tl != null && tl.red && tr != null && tr.red)
3136     return false;
3137     if (tl != null && !checkInvariants(tl))
3138     return false;
3139     if (tr != null && !checkInvariants(tr))
3140     return false;
3141     return true;
3142 dl 1.79 }
3143    
3144 dl 1.102 private static final sun.misc.Unsafe U;
3145     private static final long LOCKSTATE;
3146     static {
3147     try {
3148     U = getUnsafe();
3149     Class<?> k = TreeBin.class;
3150     LOCKSTATE = U.objectFieldOffset
3151     (k.getDeclaredField("lockState"));
3152     } catch (Exception e) {
3153     throw new Error(e);
3154     }
3155     }
3156 dl 1.1 }
3157    
3158 dl 1.102 /* ----------------Table Traversal -------------- */
3159 dl 1.1
3160     /**
3161 dl 1.116 * Records the table, its length, and current traversal index for a
3162     * traverser that must process a region of a forwarded table before
3163     * proceeding with current table.
3164     */
3165     static final class TableStack<K,V> {
3166     int length;
3167     int index;
3168     Node<K,V>[] tab;
3169     TableStack<K,V> next;
3170     }
3171    
3172     /**
3173 dl 1.102 * Encapsulates traversal for methods such as containsValue; also
3174     * serves as a base class for other iterators and spliterators.
3175     *
3176     * Method advance visits once each still-valid node that was
3177     * reachable upon iterator construction. It might miss some that
3178     * were added to a bin after the bin was visited, which is OK wrt
3179     * consistency guarantees. Maintaining this property in the face
3180     * of possible ongoing resizes requires a fair amount of
3181     * bookkeeping state that is difficult to optimize away amidst
3182     * volatile accesses. Even so, traversal maintains reasonable
3183     * throughput.
3184 dl 1.1 *
3185 dl 1.102 * Normally, iteration proceeds bin-by-bin traversing lists.
3186     * However, if the table has been resized, then all future steps
3187     * must traverse both the bin at the current index as well as at
3188     * (index + baseSize); and so on for further resizings. To
3189     * paranoically cope with potential sharing by users of iterators
3190     * across threads, iteration terminates if a bounds checks fails
3191     * for a table read.
3192 dl 1.1 */
3193 dl 1.102 static class Traverser<K,V> {
3194     Node<K,V>[] tab; // current table; updated if resized
3195     Node<K,V> next; // the next entry to use
3196 dl 1.116 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3197 dl 1.102 int index; // index of bin to use next
3198     int baseIndex; // current index of initial table
3199     int baseLimit; // index bound for initial table
3200     final int baseSize; // initial table size
3201    
3202     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3203     this.tab = tab;
3204     this.baseSize = size;
3205     this.baseIndex = this.index = index;
3206     this.baseLimit = limit;
3207     this.next = null;
3208     }
3209 dl 1.1
3210 dl 1.102 /**
3211     * Advances if possible, returning next valid node, or null if none.
3212     */
3213     final Node<K,V> advance() {
3214     Node<K,V> e;
3215     if ((e = next) != null)
3216     e = e.next;
3217     for (;;) {
3218 dl 1.116 Node<K,V>[] t; int i, n; // must use locals in checks
3219 dl 1.102 if (e != null)
3220     return next = e;
3221     if (baseIndex >= baseLimit || (t = tab) == null ||
3222     (n = t.length) <= (i = index) || i < 0)
3223     return next = null;
3224 dl 1.116 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3225 dl 1.102 if (e instanceof ForwardingNode) {
3226     tab = ((ForwardingNode<K,V>)e).nextTable;
3227     e = null;
3228 dl 1.116 pushState(t, i, n);
3229 dl 1.102 continue;
3230 dl 1.75 }
3231 dl 1.102 else if (e instanceof TreeBin)
3232     e = ((TreeBin<K,V>)e).first;
3233     else
3234     e = null;
3235 dl 1.75 }
3236 dl 1.116 if (stack != null)
3237     recoverState(n);
3238     else if ((index = i + baseSize) >= n)
3239     index = ++baseIndex; // visit upper slots if present
3240     }
3241     }
3242    
3243     /**
3244     * Saves traversal state upon encountering a forwarding node.
3245     */
3246     private void pushState(Node<K,V>[] t, int i, int n) {
3247     TableStack<K,V> s = spare; // reuse if possible
3248     if (s != null)
3249     spare = s.next;
3250     else
3251     s = new TableStack<K,V>();
3252     s.tab = t;
3253     s.length = n;
3254     s.index = i;
3255     s.next = stack;
3256     stack = s;
3257     }
3258    
3259     /**
3260     * Possibly pops traversal state.
3261     *
3262     * @param n length of current table
3263     */
3264     private void recoverState(int n) {
3265     TableStack<K,V> s; int len;
3266     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3267     n = len;
3268     index = s.index;
3269     tab = s.tab;
3270     s.tab = null;
3271     TableStack<K,V> next = s.next;
3272     s.next = spare; // save for reuse
3273     stack = next;
3274     spare = s;
3275 dl 1.24 }
3276 dl 1.116 if (s == null && (index += baseSize) >= n)
3277     index = ++baseIndex;
3278 dl 1.24 }
3279 dl 1.75 }
3280    
3281     /**
3282 dl 1.102 * Base of key, value, and entry Iterators. Adds fields to
3283 jsr166 1.105 * Traverser to support iterator.remove.
3284 dl 1.75 */
3285 dl 1.102 static class BaseIterator<K,V> extends Traverser<K,V> {
3286     final ConcurrentHashMapV8<K,V> map;
3287     Node<K,V> lastReturned;
3288     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3289     ConcurrentHashMapV8<K,V> map) {
3290     super(tab, size, index, limit);
3291     this.map = map;
3292     advance();
3293     }
3294    
3295     public final boolean hasNext() { return next != null; }
3296     public final boolean hasMoreElements() { return next != null; }
3297    
3298     public final void remove() {
3299     Node<K,V> p;
3300     if ((p = lastReturned) == null)
3301     throw new IllegalStateException();
3302     lastReturned = null;
3303     map.replaceNode(p.key, null, null);
3304     }
3305 dl 1.75 }
3306    
3307 dl 1.102 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3308     implements Iterator<K>, Enumeration<K> {
3309     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3310     ConcurrentHashMapV8<K,V> map) {
3311     super(tab, index, size, limit, map);
3312     }
3313    
3314     public final K next() {
3315     Node<K,V> p;
3316     if ((p = next) == null)
3317     throw new NoSuchElementException();
3318     K k = p.key;
3319     lastReturned = p;
3320     advance();
3321     return k;
3322     }
3323    
3324     public final K nextElement() { return next(); }
3325 dl 1.75 }
3326    
3327 dl 1.102 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3328     implements Iterator<V>, Enumeration<V> {
3329     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3330     ConcurrentHashMapV8<K,V> map) {
3331     super(tab, index, size, limit, map);
3332     }
3333    
3334     public final V next() {
3335     Node<K,V> p;
3336     if ((p = next) == null)
3337     throw new NoSuchElementException();
3338     V v = p.val;
3339     lastReturned = p;
3340     advance();
3341     return v;
3342 dl 1.84 }
3343 dl 1.102
3344     public final V nextElement() { return next(); }
3345 dl 1.75 }
3346    
3347 dl 1.102 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3348     implements Iterator<Map.Entry<K,V>> {
3349     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3350     ConcurrentHashMapV8<K,V> map) {
3351     super(tab, index, size, limit, map);
3352     }
3353    
3354     public final Map.Entry<K,V> next() {
3355     Node<K,V> p;
3356     if ((p = next) == null)
3357     throw new NoSuchElementException();
3358     K k = p.key;
3359     V v = p.val;
3360     lastReturned = p;
3361     advance();
3362     return new MapEntry<K,V>(k, v, map);
3363 dl 1.84 }
3364 dl 1.75 }
3365    
3366     /**
3367 dl 1.102 * Exported Entry for EntryIterator
3368 dl 1.75 */
3369 dl 1.102 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3370     final K key; // non-null
3371     V val; // non-null
3372     final ConcurrentHashMapV8<K,V> map;
3373     MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3374     this.key = key;
3375     this.val = val;
3376     this.map = map;
3377     }
3378     public K getKey() { return key; }
3379     public V getValue() { return val; }
3380     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3381     public String toString() { return key + "=" + val; }
3382    
3383     public boolean equals(Object o) {
3384     Object k, v; Map.Entry<?,?> e;
3385     return ((o instanceof Map.Entry) &&
3386     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3387     (v = e.getValue()) != null &&
3388     (k == key || k.equals(key)) &&
3389     (v == val || v.equals(val)));
3390     }
3391    
3392     /**
3393     * Sets our entry's value and writes through to the map. The
3394     * value to return is somewhat arbitrary here. Since we do not
3395     * necessarily track asynchronous changes, the most recent
3396     * "previous" value could be different from what we return (or
3397     * could even have been removed, in which case the put will
3398     * re-establish). We do not and cannot guarantee more.
3399     */
3400     public V setValue(V value) {
3401     if (value == null) throw new NullPointerException();
3402     V v = val;
3403     val = value;
3404     map.put(key, value);
3405     return v;
3406 dl 1.84 }
3407 dl 1.75 }
3408    
3409 dl 1.102 static final class KeySpliterator<K,V> extends Traverser<K,V>
3410     implements ConcurrentHashMapSpliterator<K> {
3411     long est; // size estimate
3412     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3413     long est) {
3414     super(tab, size, index, limit);
3415     this.est = est;
3416     }
3417    
3418     public ConcurrentHashMapSpliterator<K> trySplit() {
3419     int i, f, h;
3420     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3421     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3422     f, est >>>= 1);
3423     }
3424    
3425     public void forEachRemaining(Action<? super K> action) {
3426     if (action == null) throw new NullPointerException();
3427     for (Node<K,V> p; (p = advance()) != null;)
3428     action.apply(p.key);
3429     }
3430    
3431     public boolean tryAdvance(Action<? super K> action) {
3432     if (action == null) throw new NullPointerException();
3433     Node<K,V> p;
3434     if ((p = advance()) == null)
3435     return false;
3436     action.apply(p.key);
3437     return true;
3438 dl 1.84 }
3439 dl 1.102
3440     public long estimateSize() { return est; }
3441    
3442 dl 1.75 }
3443    
3444 dl 1.102 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3445     implements ConcurrentHashMapSpliterator<V> {
3446     long est; // size estimate
3447     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3448     long est) {
3449     super(tab, size, index, limit);
3450     this.est = est;
3451     }
3452    
3453     public ConcurrentHashMapSpliterator<V> trySplit() {
3454     int i, f, h;
3455     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3456     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3457     f, est >>>= 1);
3458     }
3459    
3460     public void forEachRemaining(Action<? super V> action) {
3461     if (action == null) throw new NullPointerException();
3462     for (Node<K,V> p; (p = advance()) != null;)
3463     action.apply(p.val);
3464     }
3465    
3466     public boolean tryAdvance(Action<? super V> action) {
3467     if (action == null) throw new NullPointerException();
3468     Node<K,V> p;
3469     if ((p = advance()) == null)
3470     return false;
3471     action.apply(p.val);
3472     return true;
3473     }
3474    
3475     public long estimateSize() { return est; }
3476    
3477 dl 1.75 }
3478    
3479 dl 1.102 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3480     implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3481     final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3482     long est; // size estimate
3483     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3484     long est, ConcurrentHashMapV8<K,V> map) {
3485     super(tab, size, index, limit);
3486     this.map = map;
3487     this.est = est;
3488     }
3489    
3490     public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3491     int i, f, h;
3492     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3493     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3494     f, est >>>= 1, map);
3495     }
3496    
3497     public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3498     if (action == null) throw new NullPointerException();
3499     for (Node<K,V> p; (p = advance()) != null; )
3500     action.apply(new MapEntry<K,V>(p.key, p.val, map));
3501     }
3502    
3503     public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3504     if (action == null) throw new NullPointerException();
3505     Node<K,V> p;
3506     if ((p = advance()) == null)
3507     return false;
3508     action.apply(new MapEntry<K,V>(p.key, p.val, map));
3509     return true;
3510     }
3511    
3512     public long estimateSize() { return est; }
3513    
3514 dl 1.75 }
3515    
3516 dl 1.102 // Parallel bulk operations
3517    
3518 dl 1.75 /**
3519 dl 1.102 * Computes initial batch value for bulk tasks. The returned value
3520     * is approximately exp2 of the number of times (minus one) to
3521     * split task by two before executing leaf action. This value is
3522     * faster to compute and more convenient to use as a guide to
3523     * splitting than is the depth, since it is used while dividing by
3524     * two anyway.
3525     */
3526     final int batchFor(long b) {
3527     long n;
3528     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3529     return 0;
3530     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3531     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3532 dl 1.75 }
3533    
3534     /**
3535 dl 1.84 * Performs the given action for each (key, value).
3536     *
3537 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3538     * needed for this operation to be executed in parallel
3539 dl 1.84 * @param action the action
3540 dl 1.102 * @since 1.8
3541 dl 1.75 */
3542 dl 1.102 public void forEach(long parallelismThreshold,
3543     BiAction<? super K,? super V> action) {
3544     if (action == null) throw new NullPointerException();
3545     new ForEachMappingTask<K,V>
3546     (null, batchFor(parallelismThreshold), 0, 0, table,
3547     action).invoke();
3548 dl 1.84 }
3549 dl 1.75
3550 dl 1.84 /**
3551     * Performs the given action for each non-null transformation
3552     * of each (key, value).
3553     *
3554 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3555     * needed for this operation to be executed in parallel
3556 dl 1.84 * @param transformer a function returning the transformation
3557 jsr166 1.91 * for an element, or null if there is no transformation (in
3558 jsr166 1.93 * which case the action is not applied)
3559 dl 1.84 * @param action the action
3560 dl 1.102 * @since 1.8
3561 dl 1.84 */
3562 dl 1.102 public <U> void forEach(long parallelismThreshold,
3563     BiFun<? super K, ? super V, ? extends U> transformer,
3564     Action<? super U> action) {
3565     if (transformer == null || action == null)
3566     throw new NullPointerException();
3567     new ForEachTransformedMappingTask<K,V,U>
3568     (null, batchFor(parallelismThreshold), 0, 0, table,
3569     transformer, action).invoke();
3570 dl 1.84 }
3571 dl 1.75
3572 dl 1.84 /**
3573     * Returns a non-null result from applying the given search
3574     * function on each (key, value), or null if none. Upon
3575     * success, further element processing is suppressed and the
3576     * results of any other parallel invocations of the search
3577     * function are ignored.
3578     *
3579 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3580     * needed for this operation to be executed in parallel
3581 dl 1.84 * @param searchFunction a function returning a non-null
3582     * result on success, else null
3583     * @return a non-null result from applying the given search
3584     * function on each (key, value), or null if none
3585 dl 1.102 * @since 1.8
3586 dl 1.84 */
3587 dl 1.102 public <U> U search(long parallelismThreshold,
3588     BiFun<? super K, ? super V, ? extends U> searchFunction) {
3589     if (searchFunction == null) throw new NullPointerException();
3590     return new SearchMappingsTask<K,V,U>
3591     (null, batchFor(parallelismThreshold), 0, 0, table,
3592     searchFunction, new AtomicReference<U>()).invoke();
3593 dl 1.84 }
3594 dl 1.75
3595 dl 1.84 /**
3596     * Returns the result of accumulating the given transformation
3597     * of all (key, value) pairs using the given reducer to
3598     * combine values, or null if none.
3599     *
3600 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3601     * needed for this operation to be executed in parallel
3602 dl 1.84 * @param transformer a function returning the transformation
3603 jsr166 1.91 * for an element, or null if there is no transformation (in
3604 jsr166 1.93 * which case it is not combined)
3605 dl 1.84 * @param reducer a commutative associative combining function
3606     * @return the result of accumulating the given transformation
3607     * of all (key, value) pairs
3608 dl 1.102 * @since 1.8
3609 dl 1.84 */
3610 dl 1.102 public <U> U reduce(long parallelismThreshold,
3611     BiFun<? super K, ? super V, ? extends U> transformer,
3612     BiFun<? super U, ? super U, ? extends U> reducer) {
3613     if (transformer == null || reducer == null)
3614     throw new NullPointerException();
3615     return new MapReduceMappingsTask<K,V,U>
3616     (null, batchFor(parallelismThreshold), 0, 0, table,
3617     null, transformer, reducer).invoke();
3618 dl 1.84 }
3619 dl 1.75
3620 dl 1.84 /**
3621     * Returns the result of accumulating the given transformation
3622     * of all (key, value) pairs using the given reducer to
3623     * combine values, and the given basis as an identity value.
3624     *
3625 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3626     * needed for this operation to be executed in parallel
3627 dl 1.84 * @param transformer a function returning the transformation
3628     * for an element
3629     * @param basis the identity (initial default value) for the reduction
3630     * @param reducer a commutative associative combining function
3631     * @return the result of accumulating the given transformation
3632     * of all (key, value) pairs
3633 dl 1.102 * @since 1.8
3634 dl 1.84 */
3635 dl 1.107 public double reduceToDouble(long parallelismThreshold,
3636     ObjectByObjectToDouble<? super K, ? super V> transformer,
3637     double basis,
3638     DoubleByDoubleToDouble reducer) {
3639 dl 1.102 if (transformer == null || reducer == null)
3640     throw new NullPointerException();
3641     return new MapReduceMappingsToDoubleTask<K,V>
3642     (null, batchFor(parallelismThreshold), 0, 0, table,
3643     null, transformer, basis, reducer).invoke();
3644 dl 1.84 }
3645    
3646     /**
3647     * Returns the result of accumulating the given transformation
3648     * of all (key, value) pairs using the given reducer to
3649     * combine values, and the given basis as an identity value.
3650     *
3651 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3652     * needed for this operation to be executed in parallel
3653 dl 1.84 * @param transformer a function returning the transformation
3654     * for an element
3655     * @param basis the identity (initial default value) for the reduction
3656     * @param reducer a commutative associative combining function
3657     * @return the result of accumulating the given transformation
3658     * of all (key, value) pairs
3659 dl 1.102 * @since 1.8
3660 dl 1.84 */
3661 dl 1.102 public long reduceToLong(long parallelismThreshold,
3662     ObjectByObjectToLong<? super K, ? super V> transformer,
3663     long basis,
3664     LongByLongToLong reducer) {
3665     if (transformer == null || reducer == null)
3666     throw new NullPointerException();
3667     return new MapReduceMappingsToLongTask<K,V>
3668     (null, batchFor(parallelismThreshold), 0, 0, table,
3669     null, transformer, basis, reducer).invoke();
3670 dl 1.84 }
3671    
3672     /**
3673     * Returns the result of accumulating the given transformation
3674     * of all (key, value) pairs using the given reducer to
3675     * combine values, and the given basis as an identity value.
3676     *
3677 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3678     * needed for this operation to be executed in parallel
3679 dl 1.84 * @param transformer a function returning the transformation
3680     * for an element
3681     * @param basis the identity (initial default value) for the reduction
3682     * @param reducer a commutative associative combining function
3683     * @return the result of accumulating the given transformation
3684     * of all (key, value) pairs
3685 dl 1.102 * @since 1.8
3686 dl 1.84 */
3687 dl 1.102 public int reduceToInt(long parallelismThreshold,
3688     ObjectByObjectToInt<? super K, ? super V> transformer,
3689     int basis,
3690     IntByIntToInt reducer) {
3691     if (transformer == null || reducer == null)
3692     throw new NullPointerException();
3693     return new MapReduceMappingsToIntTask<K,V>
3694     (null, batchFor(parallelismThreshold), 0, 0, table,
3695     null, transformer, basis, reducer).invoke();
3696 dl 1.84 }
3697    
3698     /**
3699     * Performs the given action for each key.
3700     *
3701 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3702     * needed for this operation to be executed in parallel
3703 dl 1.84 * @param action the action
3704 dl 1.102 * @since 1.8
3705 dl 1.84 */
3706 dl 1.102 public void forEachKey(long parallelismThreshold,
3707     Action<? super K> action) {
3708     if (action == null) throw new NullPointerException();
3709     new ForEachKeyTask<K,V>
3710     (null, batchFor(parallelismThreshold), 0, 0, table,
3711     action).invoke();
3712 dl 1.84 }
3713    
3714     /**
3715     * Performs the given action for each non-null transformation
3716     * of each key.
3717     *
3718 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3719     * needed for this operation to be executed in parallel
3720 dl 1.84 * @param transformer a function returning the transformation
3721 jsr166 1.91 * for an element, or null if there is no transformation (in
3722 jsr166 1.93 * which case the action is not applied)
3723 dl 1.84 * @param action the action
3724 dl 1.102 * @since 1.8
3725 dl 1.84 */
3726 dl 1.102 public <U> void forEachKey(long parallelismThreshold,
3727     Fun<? super K, ? extends U> transformer,
3728     Action<? super U> action) {
3729     if (transformer == null || action == null)
3730     throw new NullPointerException();
3731     new ForEachTransformedKeyTask<K,V,U>
3732     (null, batchFor(parallelismThreshold), 0, 0, table,
3733     transformer, action).invoke();
3734 dl 1.84 }
3735    
3736     /**
3737     * Returns a non-null result from applying the given search
3738     * function on each key, or null if none. Upon success,
3739     * further element processing is suppressed and the results of
3740     * any other parallel invocations of the search function are
3741     * ignored.
3742     *
3743 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3744     * needed for this operation to be executed in parallel
3745 dl 1.84 * @param searchFunction a function returning a non-null
3746     * result on success, else null
3747     * @return a non-null result from applying the given search
3748     * function on each key, or null if none
3749 dl 1.102 * @since 1.8
3750 dl 1.84 */
3751 dl 1.102 public <U> U searchKeys(long parallelismThreshold,
3752     Fun<? super K, ? extends U> searchFunction) {
3753     if (searchFunction == null) throw new NullPointerException();
3754     return new SearchKeysTask<K,V,U>
3755     (null, batchFor(parallelismThreshold), 0, 0, table,
3756     searchFunction, new AtomicReference<U>()).invoke();
3757 dl 1.84 }
3758    
3759     /**
3760     * Returns the result of accumulating all keys using the given
3761     * reducer to combine values, or null if none.
3762     *
3763 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3764     * needed for this operation to be executed in parallel
3765 dl 1.84 * @param reducer a commutative associative combining function
3766     * @return the result of accumulating all keys using the given
3767     * reducer to combine values, or null if none
3768 dl 1.102 * @since 1.8
3769 dl 1.84 */
3770 dl 1.102 public K reduceKeys(long parallelismThreshold,
3771     BiFun<? super K, ? super K, ? extends K> reducer) {
3772     if (reducer == null) throw new NullPointerException();
3773     return new ReduceKeysTask<K,V>
3774     (null, batchFor(parallelismThreshold), 0, 0, table,
3775     null, reducer).invoke();
3776 dl 1.84 }
3777    
3778     /**
3779     * Returns the result of accumulating the given transformation
3780     * of all keys using the given reducer to combine values, or
3781     * null if none.
3782     *
3783 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3784     * needed for this operation to be executed in parallel
3785 dl 1.84 * @param transformer a function returning the transformation
3786 jsr166 1.91 * for an element, or null if there is no transformation (in
3787 jsr166 1.93 * which case it is not combined)
3788 dl 1.84 * @param reducer a commutative associative combining function
3789     * @return the result of accumulating the given transformation
3790     * of all keys
3791 dl 1.102 * @since 1.8
3792 dl 1.84 */
3793 dl 1.102 public <U> U reduceKeys(long parallelismThreshold,
3794     Fun<? super K, ? extends U> transformer,
3795 dl 1.84 BiFun<? super U, ? super U, ? extends U> reducer) {
3796 dl 1.102 if (transformer == null || reducer == null)
3797     throw new NullPointerException();
3798     return new MapReduceKeysTask<K,V,U>
3799     (null, batchFor(parallelismThreshold), 0, 0, table,
3800     null, transformer, reducer).invoke();
3801 dl 1.84 }
3802    
3803     /**
3804     * Returns the result of accumulating the given transformation
3805     * of all keys using the given reducer to combine values, and
3806     * the given basis as an identity value.
3807     *
3808 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3809     * needed for this operation to be executed in parallel
3810 dl 1.84 * @param transformer a function returning the transformation
3811     * for an element
3812     * @param basis the identity (initial default value) for the reduction
3813     * @param reducer a commutative associative combining function
3814 dl 1.102 * @return the result of accumulating the given transformation
3815 dl 1.84 * of all keys
3816 dl 1.102 * @since 1.8
3817 dl 1.84 */
3818 dl 1.102 public double reduceKeysToDouble(long parallelismThreshold,
3819     ObjectToDouble<? super K> transformer,
3820     double basis,
3821     DoubleByDoubleToDouble reducer) {
3822     if (transformer == null || reducer == null)
3823     throw new NullPointerException();
3824     return new MapReduceKeysToDoubleTask<K,V>
3825     (null, batchFor(parallelismThreshold), 0, 0, table,
3826     null, transformer, basis, reducer).invoke();
3827 dl 1.84 }
3828    
3829     /**
3830     * Returns the result of accumulating the given transformation
3831     * of all keys using the given reducer to combine values, and
3832     * the given basis as an identity value.
3833     *
3834 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3835     * needed for this operation to be executed in parallel
3836 dl 1.84 * @param transformer a function returning the transformation
3837     * for an element
3838     * @param basis the identity (initial default value) for the reduction
3839     * @param reducer a commutative associative combining function
3840     * @return the result of accumulating the given transformation
3841     * of all keys
3842 dl 1.102 * @since 1.8
3843 dl 1.84 */
3844 dl 1.102 public long reduceKeysToLong(long parallelismThreshold,
3845     ObjectToLong<? super K> transformer,
3846     long basis,
3847     LongByLongToLong reducer) {
3848     if (transformer == null || reducer == null)
3849     throw new NullPointerException();
3850     return new MapReduceKeysToLongTask<K,V>
3851     (null, batchFor(parallelismThreshold), 0, 0, table,
3852     null, transformer, basis, reducer).invoke();
3853 dl 1.84 }
3854    
3855     /**
3856     * Returns the result of accumulating the given transformation
3857     * of all keys using the given reducer to combine values, and
3858     * the given basis as an identity value.
3859     *
3860 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3861     * needed for this operation to be executed in parallel
3862 dl 1.84 * @param transformer a function returning the transformation
3863     * for an element
3864     * @param basis the identity (initial default value) for the reduction
3865     * @param reducer a commutative associative combining function
3866     * @return the result of accumulating the given transformation
3867     * of all keys
3868 dl 1.102 * @since 1.8
3869 dl 1.84 */
3870 dl 1.102 public int reduceKeysToInt(long parallelismThreshold,
3871     ObjectToInt<? super K> transformer,
3872     int basis,
3873     IntByIntToInt reducer) {
3874     if (transformer == null || reducer == null)
3875     throw new NullPointerException();
3876     return new MapReduceKeysToIntTask<K,V>
3877     (null, batchFor(parallelismThreshold), 0, 0, table,
3878     null, transformer, basis, reducer).invoke();
3879 dl 1.84 }
3880    
3881     /**
3882     * Performs the given action for each value.
3883     *
3884 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3885     * needed for this operation to be executed in parallel
3886 dl 1.84 * @param action the action
3887 dl 1.102 * @since 1.8
3888 dl 1.84 */
3889 dl 1.102 public void forEachValue(long parallelismThreshold,
3890     Action<? super V> action) {
3891     if (action == null)
3892     throw new NullPointerException();
3893     new ForEachValueTask<K,V>
3894     (null, batchFor(parallelismThreshold), 0, 0, table,
3895     action).invoke();
3896 dl 1.84 }
3897    
3898     /**
3899     * Performs the given action for each non-null transformation
3900     * of each value.
3901     *
3902 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3903     * needed for this operation to be executed in parallel
3904 dl 1.84 * @param transformer a function returning the transformation
3905 jsr166 1.91 * for an element, or null if there is no transformation (in
3906 jsr166 1.93 * which case the action is not applied)
3907 dl 1.102 * @param action the action
3908     * @since 1.8
3909 dl 1.84 */
3910 dl 1.102 public <U> void forEachValue(long parallelismThreshold,
3911     Fun<? super V, ? extends U> transformer,
3912     Action<? super U> action) {
3913     if (transformer == null || action == null)
3914     throw new NullPointerException();
3915     new ForEachTransformedValueTask<K,V,U>
3916     (null, batchFor(parallelismThreshold), 0, 0, table,
3917     transformer, action).invoke();
3918 dl 1.84 }
3919    
3920     /**
3921     * Returns a non-null result from applying the given search
3922     * function on each value, or null if none. Upon success,
3923     * further element processing is suppressed and the results of
3924     * any other parallel invocations of the search function are
3925     * ignored.
3926     *
3927 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3928     * needed for this operation to be executed in parallel
3929 dl 1.84 * @param searchFunction a function returning a non-null
3930     * result on success, else null
3931     * @return a non-null result from applying the given search
3932     * function on each value, or null if none
3933 dl 1.102 * @since 1.8
3934 dl 1.84 */
3935 dl 1.102 public <U> U searchValues(long parallelismThreshold,
3936     Fun<? super V, ? extends U> searchFunction) {
3937     if (searchFunction == null) throw new NullPointerException();
3938     return new SearchValuesTask<K,V,U>
3939     (null, batchFor(parallelismThreshold), 0, 0, table,
3940     searchFunction, new AtomicReference<U>()).invoke();
3941 dl 1.84 }
3942    
3943     /**
3944     * Returns the result of accumulating all values using the
3945     * given reducer to combine values, or null if none.
3946     *
3947 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3948     * needed for this operation to be executed in parallel
3949 dl 1.84 * @param reducer a commutative associative combining function
3950 dl 1.102 * @return the result of accumulating all values
3951     * @since 1.8
3952 dl 1.84 */
3953 dl 1.102 public V reduceValues(long parallelismThreshold,
3954     BiFun<? super V, ? super V, ? extends V> reducer) {
3955     if (reducer == null) throw new NullPointerException();
3956     return new ReduceValuesTask<K,V>
3957     (null, batchFor(parallelismThreshold), 0, 0, table,
3958     null, reducer).invoke();
3959 dl 1.84 }
3960    
3961     /**
3962     * Returns the result of accumulating the given transformation
3963     * of all values using the given reducer to combine values, or
3964     * null if none.
3965     *
3966 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3967     * needed for this operation to be executed in parallel
3968 dl 1.84 * @param transformer a function returning the transformation
3969 jsr166 1.91 * for an element, or null if there is no transformation (in
3970 jsr166 1.93 * which case it is not combined)
3971 dl 1.84 * @param reducer a commutative associative combining function
3972     * @return the result of accumulating the given transformation
3973     * of all values
3974 dl 1.102 * @since 1.8
3975 dl 1.84 */
3976 dl 1.102 public <U> U reduceValues(long parallelismThreshold,
3977     Fun<? super V, ? extends U> transformer,
3978     BiFun<? super U, ? super U, ? extends U> reducer) {
3979     if (transformer == null || reducer == null)
3980     throw new NullPointerException();
3981     return new MapReduceValuesTask<K,V,U>
3982     (null, batchFor(parallelismThreshold), 0, 0, table,
3983     null, transformer, reducer).invoke();
3984 dl 1.84 }
3985    
3986     /**
3987     * Returns the result of accumulating the given transformation
3988     * of all values using the given reducer to combine values,
3989     * and the given basis as an identity value.
3990     *
3991 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3992     * needed for this operation to be executed in parallel
3993 dl 1.84 * @param transformer a function returning the transformation
3994     * for an element
3995     * @param basis the identity (initial default value) for the reduction
3996     * @param reducer a commutative associative combining function
3997     * @return the result of accumulating the given transformation
3998     * of all values
3999 dl 1.102 * @since 1.8
4000 dl 1.84 */
4001 dl 1.102 public double reduceValuesToDouble(long parallelismThreshold,
4002     ObjectToDouble<? super V> transformer,
4003     double basis,
4004     DoubleByDoubleToDouble reducer) {
4005     if (transformer == null || reducer == null)
4006     throw new NullPointerException();
4007     return new MapReduceValuesToDoubleTask<K,V>
4008     (null, batchFor(parallelismThreshold), 0, 0, table,
4009     null, transformer, basis, reducer).invoke();
4010 dl 1.84 }
4011    
4012     /**
4013     * Returns the result of accumulating the given transformation
4014     * of all values using the given reducer to combine values,
4015     * and the given basis as an identity value.
4016     *
4017 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4018     * needed for this operation to be executed in parallel
4019 dl 1.84 * @param transformer a function returning the transformation
4020     * for an element
4021     * @param basis the identity (initial default value) for the reduction
4022     * @param reducer a commutative associative combining function
4023     * @return the result of accumulating the given transformation
4024     * of all values
4025 dl 1.102 * @since 1.8
4026 dl 1.84 */
4027 dl 1.102 public long reduceValuesToLong(long parallelismThreshold,
4028     ObjectToLong<? super V> transformer,
4029     long basis,
4030     LongByLongToLong reducer) {
4031     if (transformer == null || reducer == null)
4032     throw new NullPointerException();
4033     return new MapReduceValuesToLongTask<K,V>
4034     (null, batchFor(parallelismThreshold), 0, 0, table,
4035     null, transformer, basis, reducer).invoke();
4036 dl 1.84 }
4037    
4038     /**
4039     * Returns the result of accumulating the given transformation
4040     * of all values using the given reducer to combine values,
4041     * and the given basis as an identity value.
4042     *
4043 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4044     * needed for this operation to be executed in parallel
4045 dl 1.84 * @param transformer a function returning the transformation
4046     * for an element
4047     * @param basis the identity (initial default value) for the reduction
4048     * @param reducer a commutative associative combining function
4049     * @return the result of accumulating the given transformation
4050     * of all values
4051 dl 1.102 * @since 1.8
4052 dl 1.84 */
4053 dl 1.102 public int reduceValuesToInt(long parallelismThreshold,
4054     ObjectToInt<? super V> transformer,
4055     int basis,
4056     IntByIntToInt reducer) {
4057     if (transformer == null || reducer == null)
4058     throw new NullPointerException();
4059     return new MapReduceValuesToIntTask<K,V>
4060     (null, batchFor(parallelismThreshold), 0, 0, table,
4061     null, transformer, basis, reducer).invoke();
4062 dl 1.84 }
4063    
4064     /**
4065     * Performs the given action for each entry.
4066     *
4067 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4068     * needed for this operation to be executed in parallel
4069 dl 1.84 * @param action the action
4070 dl 1.102 * @since 1.8
4071 dl 1.84 */
4072 dl 1.102 public void forEachEntry(long parallelismThreshold,
4073     Action<? super Map.Entry<K,V>> action) {
4074     if (action == null) throw new NullPointerException();
4075     new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4076     action).invoke();
4077 dl 1.84 }
4078    
4079     /**
4080     * Performs the given action for each non-null transformation
4081     * of each entry.
4082     *
4083 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4084     * needed for this operation to be executed in parallel
4085 dl 1.84 * @param transformer a function returning the transformation
4086 jsr166 1.91 * for an element, or null if there is no transformation (in
4087 jsr166 1.93 * which case the action is not applied)
4088 dl 1.84 * @param action the action
4089 dl 1.102 * @since 1.8
4090 dl 1.84 */
4091 dl 1.102 public <U> void forEachEntry(long parallelismThreshold,
4092     Fun<Map.Entry<K,V>, ? extends U> transformer,
4093     Action<? super U> action) {
4094     if (transformer == null || action == null)
4095     throw new NullPointerException();
4096     new ForEachTransformedEntryTask<K,V,U>
4097     (null, batchFor(parallelismThreshold), 0, 0, table,
4098     transformer, action).invoke();
4099 dl 1.84 }
4100    
4101     /**
4102     * Returns a non-null result from applying the given search
4103     * function on each entry, or null if none. Upon success,
4104     * further element processing is suppressed and the results of
4105     * any other parallel invocations of the search function are
4106     * ignored.
4107     *
4108 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4109     * needed for this operation to be executed in parallel
4110 dl 1.84 * @param searchFunction a function returning a non-null
4111     * result on success, else null
4112     * @return a non-null result from applying the given search
4113     * function on each entry, or null if none
4114 dl 1.102 * @since 1.8
4115 dl 1.84 */
4116 dl 1.102 public <U> U searchEntries(long parallelismThreshold,
4117     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4118     if (searchFunction == null) throw new NullPointerException();
4119     return new SearchEntriesTask<K,V,U>
4120     (null, batchFor(parallelismThreshold), 0, 0, table,
4121     searchFunction, new AtomicReference<U>()).invoke();
4122 dl 1.84 }
4123    
4124     /**
4125     * Returns the result of accumulating all entries using the
4126     * given reducer to combine values, or null if none.
4127     *
4128 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4129     * needed for this operation to be executed in parallel
4130 dl 1.84 * @param reducer a commutative associative combining function
4131     * @return the result of accumulating all entries
4132 dl 1.102 * @since 1.8
4133 dl 1.84 */
4134 dl 1.102 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4135     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4136     if (reducer == null) throw new NullPointerException();
4137     return new ReduceEntriesTask<K,V>
4138     (null, batchFor(parallelismThreshold), 0, 0, table,
4139     null, reducer).invoke();
4140 dl 1.84 }
4141    
4142     /**
4143     * Returns the result of accumulating the given transformation
4144     * of all entries using the given reducer to combine values,
4145     * or null if none.
4146     *
4147 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4148     * needed for this operation to be executed in parallel
4149 dl 1.84 * @param transformer a function returning the transformation
4150 jsr166 1.91 * for an element, or null if there is no transformation (in
4151 jsr166 1.93 * which case it is not combined)
4152 dl 1.84 * @param reducer a commutative associative combining function
4153     * @return the result of accumulating the given transformation
4154     * of all entries
4155 dl 1.102 * @since 1.8
4156 dl 1.84 */
4157 dl 1.102 public <U> U reduceEntries(long parallelismThreshold,
4158     Fun<Map.Entry<K,V>, ? extends U> transformer,
4159     BiFun<? super U, ? super U, ? extends U> reducer) {
4160     if (transformer == null || reducer == null)
4161     throw new NullPointerException();
4162     return new MapReduceEntriesTask<K,V,U>
4163     (null, batchFor(parallelismThreshold), 0, 0, table,
4164     null, transformer, reducer).invoke();
4165 dl 1.84 }
4166    
4167     /**
4168     * Returns the result of accumulating the given transformation
4169     * of all entries using the given reducer to combine values,
4170     * and the given basis as an identity value.
4171     *
4172 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4173     * needed for this operation to be executed in parallel
4174 dl 1.84 * @param transformer a function returning the transformation
4175     * for an element
4176     * @param basis the identity (initial default value) for the reduction
4177     * @param reducer a commutative associative combining function
4178     * @return the result of accumulating the given transformation
4179     * of all entries
4180 dl 1.102 * @since 1.8
4181 dl 1.84 */
4182 dl 1.102 public double reduceEntriesToDouble(long parallelismThreshold,
4183     ObjectToDouble<Map.Entry<K,V>> transformer,
4184     double basis,
4185     DoubleByDoubleToDouble reducer) {
4186     if (transformer == null || reducer == null)
4187     throw new NullPointerException();
4188     return new MapReduceEntriesToDoubleTask<K,V>
4189     (null, batchFor(parallelismThreshold), 0, 0, table,
4190     null, transformer, basis, reducer).invoke();
4191 dl 1.84 }
4192    
4193     /**
4194     * Returns the result of accumulating the given transformation
4195     * of all entries using the given reducer to combine values,
4196     * and the given basis as an identity value.
4197     *
4198 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4199     * needed for this operation to be executed in parallel
4200 dl 1.84 * @param transformer a function returning the transformation
4201     * for an element
4202     * @param basis the identity (initial default value) for the reduction
4203     * @param reducer a commutative associative combining function
4204 dl 1.102 * @return the result of accumulating the given transformation
4205 dl 1.84 * of all entries
4206 dl 1.102 * @since 1.8
4207 dl 1.84 */
4208 dl 1.102 public long reduceEntriesToLong(long parallelismThreshold,
4209     ObjectToLong<Map.Entry<K,V>> transformer,
4210     long basis,
4211     LongByLongToLong reducer) {
4212     if (transformer == null || reducer == null)
4213     throw new NullPointerException();
4214     return new MapReduceEntriesToLongTask<K,V>
4215     (null, batchFor(parallelismThreshold), 0, 0, table,
4216     null, transformer, basis, reducer).invoke();
4217 dl 1.84 }
4218    
4219     /**
4220     * Returns the result of accumulating the given transformation
4221     * of all entries using the given reducer to combine values,
4222     * and the given basis as an identity value.
4223     *
4224 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4225     * needed for this operation to be executed in parallel
4226 dl 1.84 * @param transformer a function returning the transformation
4227     * for an element
4228     * @param basis the identity (initial default value) for the reduction
4229     * @param reducer a commutative associative combining function
4230     * @return the result of accumulating the given transformation
4231     * of all entries
4232 dl 1.102 * @since 1.8
4233 dl 1.84 */
4234 dl 1.102 public int reduceEntriesToInt(long parallelismThreshold,
4235     ObjectToInt<Map.Entry<K,V>> transformer,
4236     int basis,
4237     IntByIntToInt reducer) {
4238     if (transformer == null || reducer == null)
4239     throw new NullPointerException();
4240     return new MapReduceEntriesToIntTask<K,V>
4241     (null, batchFor(parallelismThreshold), 0, 0, table,
4242     null, transformer, basis, reducer).invoke();
4243 dl 1.84 }
4244    
4245    
4246     /* ----------------Views -------------- */
4247    
4248     /**
4249     * Base class for views.
4250     */
4251 dl 1.102 abstract static class CollectionView<K,V,E>
4252     implements Collection<E>, java.io.Serializable {
4253     private static final long serialVersionUID = 7249069246763182397L;
4254 jsr166 1.99 final ConcurrentHashMapV8<K,V> map;
4255 dl 1.102 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4256 dl 1.84
4257     /**
4258     * Returns the map backing this view.
4259     *
4260     * @return the map backing this view
4261     */
4262     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4263    
4264 dl 1.102 /**
4265     * Removes all of the elements from this view, by removing all
4266     * the mappings from the map backing this view.
4267     */
4268     public final void clear() { map.clear(); }
4269     public final int size() { return map.size(); }
4270     public final boolean isEmpty() { return map.isEmpty(); }
4271 dl 1.84
4272     // implementations below rely on concrete classes supplying these
4273 dl 1.102 // abstract methods
4274     /**
4275     * Returns a "weakly consistent" iterator that will never
4276     * throw {@link ConcurrentModificationException}, and
4277     * guarantees to traverse elements as they existed upon
4278     * construction of the iterator, and may (but is not
4279     * guaranteed to) reflect any modifications subsequent to
4280     * construction.
4281     */
4282     public abstract Iterator<E> iterator();
4283 jsr166 1.88 public abstract boolean contains(Object o);
4284     public abstract boolean remove(Object o);
4285 dl 1.84
4286     private static final String oomeMsg = "Required array size too large";
4287 dl 1.75
4288     public final Object[] toArray() {
4289     long sz = map.mappingCount();
4290 dl 1.102 if (sz > MAX_ARRAY_SIZE)
4291 dl 1.75 throw new OutOfMemoryError(oomeMsg);
4292     int n = (int)sz;
4293     Object[] r = new Object[n];
4294     int i = 0;
4295 dl 1.102 for (E e : this) {
4296 dl 1.75 if (i == n) {
4297     if (n >= MAX_ARRAY_SIZE)
4298     throw new OutOfMemoryError(oomeMsg);
4299     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4300     n = MAX_ARRAY_SIZE;
4301     else
4302     n += (n >>> 1) + 1;
4303     r = Arrays.copyOf(r, n);
4304     }
4305 dl 1.102 r[i++] = e;
4306 dl 1.75 }
4307     return (i == n) ? r : Arrays.copyOf(r, i);
4308     }
4309    
4310 dl 1.102 @SuppressWarnings("unchecked")
4311     public final <T> T[] toArray(T[] a) {
4312 dl 1.75 long sz = map.mappingCount();
4313 dl 1.102 if (sz > MAX_ARRAY_SIZE)
4314 dl 1.75 throw new OutOfMemoryError(oomeMsg);
4315     int m = (int)sz;
4316     T[] r = (a.length >= m) ? a :
4317     (T[])java.lang.reflect.Array
4318     .newInstance(a.getClass().getComponentType(), m);
4319     int n = r.length;
4320     int i = 0;
4321 dl 1.102 for (E e : this) {
4322 dl 1.75 if (i == n) {
4323     if (n >= MAX_ARRAY_SIZE)
4324     throw new OutOfMemoryError(oomeMsg);
4325     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4326     n = MAX_ARRAY_SIZE;
4327     else
4328     n += (n >>> 1) + 1;
4329     r = Arrays.copyOf(r, n);
4330     }
4331 dl 1.102 r[i++] = (T)e;
4332 dl 1.75 }
4333     if (a == r && i < n) {
4334     r[i] = null; // null-terminate
4335     return r;
4336     }
4337     return (i == n) ? r : Arrays.copyOf(r, i);
4338     }
4339    
4340 dl 1.102 /**
4341     * Returns a string representation of this collection.
4342     * The string representation consists of the string representations
4343     * of the collection's elements in the order they are returned by
4344     * its iterator, enclosed in square brackets ({@code "[]"}).
4345     * Adjacent elements are separated by the characters {@code ", "}
4346     * (comma and space). Elements are converted to strings as by
4347     * {@link String#valueOf(Object)}.
4348     *
4349     * @return a string representation of this collection
4350     */
4351 dl 1.75 public final String toString() {
4352     StringBuilder sb = new StringBuilder();
4353     sb.append('[');
4354 dl 1.102 Iterator<E> it = iterator();
4355 dl 1.75 if (it.hasNext()) {
4356     for (;;) {
4357     Object e = it.next();
4358     sb.append(e == this ? "(this Collection)" : e);
4359     if (!it.hasNext())
4360     break;
4361     sb.append(',').append(' ');
4362     }
4363     }
4364     return sb.append(']').toString();
4365     }
4366    
4367     public final boolean containsAll(Collection<?> c) {
4368     if (c != this) {
4369 dl 1.102 for (Object e : c) {
4370 dl 1.75 if (e == null || !contains(e))
4371     return false;
4372     }
4373     }
4374     return true;
4375     }
4376    
4377     public final boolean removeAll(Collection<?> c) {
4378     boolean modified = false;
4379 dl 1.102 for (Iterator<E> it = iterator(); it.hasNext();) {
4380 dl 1.75 if (c.contains(it.next())) {
4381     it.remove();
4382     modified = true;
4383     }
4384     }
4385     return modified;
4386     }
4387    
4388     public final boolean retainAll(Collection<?> c) {
4389     boolean modified = false;
4390 dl 1.102 for (Iterator<E> it = iterator(); it.hasNext();) {
4391 dl 1.75 if (!c.contains(it.next())) {
4392     it.remove();
4393     modified = true;
4394     }
4395     }
4396     return modified;
4397     }
4398    
4399     }
4400    
4401     /**
4402     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4403     * which additions may optionally be enabled by mapping to a
4404 dl 1.102 * common value. This class cannot be directly instantiated.
4405     * See {@link #keySet() keySet()},
4406     * {@link #keySet(Object) keySet(V)},
4407     * {@link #newKeySet() newKeySet()},
4408     * {@link #newKeySet(int) newKeySet(int)}.
4409     *
4410     * @since 1.8
4411 dl 1.75 */
4412 dl 1.102 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4413 dl 1.82 implements Set<K>, java.io.Serializable {
4414 dl 1.75 private static final long serialVersionUID = 7249069246763182397L;
4415     private final V value;
4416 jsr166 1.99 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4417 dl 1.75 super(map);
4418     this.value = value;
4419     }
4420    
4421     /**
4422     * Returns the default mapped value for additions,
4423     * or {@code null} if additions are not supported.
4424     *
4425     * @return the default mapped value for additions, or {@code null}
4426 jsr166 1.93 * if not supported
4427 dl 1.75 */
4428     public V getMappedValue() { return value; }
4429    
4430 dl 1.102 /**
4431     * {@inheritDoc}
4432     * @throws NullPointerException if the specified key is null
4433     */
4434     public boolean contains(Object o) { return map.containsKey(o); }
4435    
4436     /**
4437     * Removes the key from this map view, by removing the key (and its
4438     * corresponding value) from the backing map. This method does
4439     * nothing if the key is not in the map.
4440     *
4441     * @param o the key to be removed from the backing map
4442     * @return {@code true} if the backing map contained the specified key
4443     * @throws NullPointerException if the specified key is null
4444     */
4445     public boolean remove(Object o) { return map.remove(o) != null; }
4446 dl 1.75
4447 dl 1.102 /**
4448     * @return an iterator over the keys of the backing map
4449     */
4450     public Iterator<K> iterator() {
4451     Node<K,V>[] t;
4452     ConcurrentHashMapV8<K,V> m = map;
4453     int f = (t = m.table) == null ? 0 : t.length;
4454     return new KeyIterator<K,V>(t, f, 0, f, m);
4455     }
4456 dl 1.75
4457     /**
4458 dl 1.102 * Adds the specified key to this set view by mapping the key to
4459     * the default mapped value in the backing map, if defined.
4460 dl 1.75 *
4461 dl 1.102 * @param e key to be added
4462     * @return {@code true} if this set changed as a result of the call
4463     * @throws NullPointerException if the specified key is null
4464     * @throws UnsupportedOperationException if no default mapped value
4465     * for additions was provided
4466 dl 1.75 */
4467     public boolean add(K e) {
4468     V v;
4469     if ((v = value) == null)
4470     throw new UnsupportedOperationException();
4471 dl 1.102 return map.putVal(e, v, true) == null;
4472 dl 1.75 }
4473 dl 1.102
4474     /**
4475     * Adds all of the elements in the specified collection to this set,
4476     * as if by calling {@link #add} on each one.
4477     *
4478     * @param c the elements to be inserted into this set
4479     * @return {@code true} if this set changed as a result of the call
4480     * @throws NullPointerException if the collection or any of its
4481     * elements are {@code null}
4482     * @throws UnsupportedOperationException if no default mapped value
4483     * for additions was provided
4484     */
4485 dl 1.75 public boolean addAll(Collection<? extends K> c) {
4486     boolean added = false;
4487     V v;
4488     if ((v = value) == null)
4489     throw new UnsupportedOperationException();
4490     for (K e : c) {
4491 dl 1.102 if (map.putVal(e, v, true) == null)
4492 dl 1.75 added = true;
4493     }
4494     return added;
4495     }
4496 dl 1.102
4497     public int hashCode() {
4498     int h = 0;
4499     for (K e : this)
4500     h += e.hashCode();
4501     return h;
4502     }
4503    
4504 dl 1.75 public boolean equals(Object o) {
4505     Set<?> c;
4506     return ((o instanceof Set) &&
4507     ((c = (Set<?>)o) == this ||
4508     (containsAll(c) && c.containsAll(this))));
4509     }
4510 dl 1.102
4511     public ConcurrentHashMapSpliterator<K> spliterator() {
4512     Node<K,V>[] t;
4513     ConcurrentHashMapV8<K,V> m = map;
4514     long n = m.sumCount();
4515     int f = (t = m.table) == null ? 0 : t.length;
4516     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4517     }
4518    
4519     public void forEach(Action<? super K> action) {
4520     if (action == null) throw new NullPointerException();
4521     Node<K,V>[] t;
4522     if ((t = map.table) != null) {
4523     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4524     for (Node<K,V> p; (p = it.advance()) != null; )
4525     action.apply(p.key);
4526     }
4527     }
4528 dl 1.75 }
4529    
4530     /**
4531     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4532     * values, in which additions are disabled. This class cannot be
4533 jsr166 1.96 * directly instantiated. See {@link #values()}.
4534 dl 1.75 */
4535 dl 1.102 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4536     implements Collection<V>, java.io.Serializable {
4537     private static final long serialVersionUID = 2249069246763182397L;
4538     ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4539     public final boolean contains(Object o) {
4540     return map.containsValue(o);
4541     }
4542    
4543 dl 1.75 public final boolean remove(Object o) {
4544     if (o != null) {
4545 dl 1.102 for (Iterator<V> it = iterator(); it.hasNext();) {
4546 dl 1.75 if (o.equals(it.next())) {
4547     it.remove();
4548     return true;
4549     }
4550     }
4551     }
4552     return false;
4553     }
4554    
4555     public final Iterator<V> iterator() {
4556 dl 1.102 ConcurrentHashMapV8<K,V> m = map;
4557     Node<K,V>[] t;
4558     int f = (t = m.table) == null ? 0 : t.length;
4559     return new ValueIterator<K,V>(t, f, 0, f, m);
4560 dl 1.75 }
4561 dl 1.102
4562 dl 1.75 public final boolean add(V e) {
4563     throw new UnsupportedOperationException();
4564     }
4565     public final boolean addAll(Collection<? extends V> c) {
4566     throw new UnsupportedOperationException();
4567     }
4568    
4569 dl 1.102 public ConcurrentHashMapSpliterator<V> spliterator() {
4570     Node<K,V>[] t;
4571     ConcurrentHashMapV8<K,V> m = map;
4572     long n = m.sumCount();
4573     int f = (t = m.table) == null ? 0 : t.length;
4574     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4575     }
4576    
4577     public void forEach(Action<? super V> action) {
4578     if (action == null) throw new NullPointerException();
4579     Node<K,V>[] t;
4580     if ((t = map.table) != null) {
4581     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4582     for (Node<K,V> p; (p = it.advance()) != null; )
4583     action.apply(p.val);
4584     }
4585     }
4586 dl 1.70 }
4587 dl 1.52
4588 dl 1.70 /**
4589 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4590     * entries. This class cannot be directly instantiated. See
4591 jsr166 1.95 * {@link #entrySet()}.
4592 dl 1.70 */
4593 dl 1.102 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4594     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4595     private static final long serialVersionUID = 2249069246763182397L;
4596 jsr166 1.99 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4597 dl 1.102
4598     public boolean contains(Object o) {
4599 dl 1.75 Object k, v, r; Map.Entry<?,?> e;
4600     return ((o instanceof Map.Entry) &&
4601     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4602     (r = map.get(k)) != null &&
4603     (v = e.getValue()) != null &&
4604     (v == r || v.equals(r)));
4605     }
4606 dl 1.102
4607     public boolean remove(Object o) {
4608 dl 1.75 Object k, v; Map.Entry<?,?> e;
4609     return ((o instanceof Map.Entry) &&
4610     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4611     (v = e.getValue()) != null &&
4612     map.remove(k, v));
4613     }
4614    
4615     /**
4616 dl 1.102 * @return an iterator over the entries of the backing map
4617 dl 1.75 */
4618 dl 1.102 public Iterator<Map.Entry<K,V>> iterator() {
4619     ConcurrentHashMapV8<K,V> m = map;
4620     Node<K,V>[] t;
4621     int f = (t = m.table) == null ? 0 : t.length;
4622     return new EntryIterator<K,V>(t, f, 0, f, m);
4623 dl 1.75 }
4624    
4625 dl 1.102 public boolean add(Entry<K,V> e) {
4626     return map.putVal(e.getKey(), e.getValue(), false) == null;
4627 dl 1.75 }
4628 dl 1.102
4629     public boolean addAll(Collection<? extends Entry<K,V>> c) {
4630 dl 1.75 boolean added = false;
4631     for (Entry<K,V> e : c) {
4632     if (add(e))
4633     added = true;
4634     }
4635     return added;
4636     }
4637 dl 1.52
4638 dl 1.102 public final int hashCode() {
4639     int h = 0;
4640     Node<K,V>[] t;
4641     if ((t = map.table) != null) {
4642     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4643     for (Node<K,V> p; (p = it.advance()) != null; ) {
4644     h += p.hashCode();
4645     }
4646     }
4647     return h;
4648 dl 1.52 }
4649    
4650 dl 1.102 public final boolean equals(Object o) {
4651     Set<?> c;
4652     return ((o instanceof Set) &&
4653     ((c = (Set<?>)o) == this ||
4654     (containsAll(c) && c.containsAll(this))));
4655 dl 1.52 }
4656    
4657 dl 1.102 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4658     Node<K,V>[] t;
4659     ConcurrentHashMapV8<K,V> m = map;
4660     long n = m.sumCount();
4661     int f = (t = m.table) == null ? 0 : t.length;
4662     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4663 dl 1.52 }
4664    
4665 dl 1.102 public void forEach(Action<? super Map.Entry<K,V>> action) {
4666     if (action == null) throw new NullPointerException();
4667     Node<K,V>[] t;
4668     if ((t = map.table) != null) {
4669     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4670     for (Node<K,V> p; (p = it.advance()) != null; )
4671     action.apply(new MapEntry<K,V>(p.key, p.val, map));
4672     }
4673 dl 1.52 }
4674    
4675 dl 1.102 }
4676 dl 1.52
4677 dl 1.102 // -------------------------------------------------------
4678 dl 1.52
4679 dl 1.102 /**
4680     * Base class for bulk tasks. Repeats some fields and code from
4681     * class Traverser, because we need to subclass CountedCompleter.
4682     */
4683     abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4684     Node<K,V>[] tab; // same as Traverser
4685     Node<K,V> next;
4686     int index;
4687     int baseIndex;
4688     int baseLimit;
4689     final int baseSize;
4690     int batch; // split control
4691    
4692     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4693     super(par);
4694     this.batch = b;
4695     this.index = this.baseIndex = i;
4696     if ((this.tab = t) == null)
4697     this.baseSize = this.baseLimit = 0;
4698     else if (par == null)
4699     this.baseSize = this.baseLimit = t.length;
4700     else {
4701     this.baseLimit = f;
4702     this.baseSize = par.baseSize;
4703     }
4704 dl 1.52 }
4705    
4706     /**
4707 dl 1.102 * Same as Traverser version
4708 dl 1.52 */
4709 dl 1.102 final Node<K,V> advance() {
4710     Node<K,V> e;
4711     if ((e = next) != null)
4712     e = e.next;
4713     for (;;) {
4714     Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4715     if (e != null)
4716     return next = e;
4717     if (baseIndex >= baseLimit || (t = tab) == null ||
4718     (n = t.length) <= (i = index) || i < 0)
4719     return next = null;
4720     if ((e = tabAt(t, index)) != null && e.hash < 0) {
4721     if (e instanceof ForwardingNode) {
4722     tab = ((ForwardingNode<K,V>)e).nextTable;
4723     e = null;
4724     continue;
4725     }
4726     else if (e instanceof TreeBin)
4727     e = ((TreeBin<K,V>)e).first;
4728     else
4729     e = null;
4730     }
4731     if ((index += baseSize) >= n)
4732     index = ++baseIndex; // visit upper slots if present
4733     }
4734 dl 1.52 }
4735     }
4736    
4737     /*
4738     * Task classes. Coded in a regular but ugly format/style to
4739     * simplify checks that each variant differs in the right way from
4740 dl 1.82 * others. The null screenings exist because compilers cannot tell
4741     * that we've already null-checked task arguments, so we force
4742     * simplest hoisted bypass to help avoid convoluted traps.
4743 dl 1.52 */
4744 dl 1.102 @SuppressWarnings("serial")
4745     static final class ForEachKeyTask<K,V>
4746     extends BulkTask<K,V,Void> {
4747     final Action<? super K> action;
4748 dl 1.52 ForEachKeyTask
4749 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4750     Action<? super K> action) {
4751     super(p, b, i, f, t);
4752 dl 1.52 this.action = action;
4753     }
4754 dl 1.102 public final void compute() {
4755     final Action<? super K> action;
4756 dl 1.82 if ((action = this.action) != null) {
4757 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4758     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4759     addToPendingCount(1);
4760     new ForEachKeyTask<K,V>
4761     (this, batch >>>= 1, baseLimit = h, f, tab,
4762     action).fork();
4763     }
4764     for (Node<K,V> p; (p = advance()) != null;)
4765     action.apply(p.key);
4766 dl 1.82 propagateCompletion();
4767     }
4768 dl 1.52 }
4769     }
4770    
4771 dl 1.102 @SuppressWarnings("serial")
4772     static final class ForEachValueTask<K,V>
4773     extends BulkTask<K,V,Void> {
4774     final Action<? super V> action;
4775 dl 1.52 ForEachValueTask
4776 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4777     Action<? super V> action) {
4778     super(p, b, i, f, t);
4779 dl 1.52 this.action = action;
4780     }
4781 dl 1.102 public final void compute() {
4782     final Action<? super V> action;
4783 dl 1.82 if ((action = this.action) != null) {
4784 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4785     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4786     addToPendingCount(1);
4787     new ForEachValueTask<K,V>
4788     (this, batch >>>= 1, baseLimit = h, f, tab,
4789     action).fork();
4790     }
4791     for (Node<K,V> p; (p = advance()) != null;)
4792     action.apply(p.val);
4793 dl 1.82 propagateCompletion();
4794     }
4795 dl 1.52 }
4796     }
4797    
4798 dl 1.102 @SuppressWarnings("serial")
4799     static final class ForEachEntryTask<K,V>
4800     extends BulkTask<K,V,Void> {
4801     final Action<? super Entry<K,V>> action;
4802 dl 1.52 ForEachEntryTask
4803 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4804     Action<? super Entry<K,V>> action) {
4805     super(p, b, i, f, t);
4806 dl 1.52 this.action = action;
4807     }
4808 dl 1.102 public final void compute() {
4809     final Action<? super Entry<K,V>> action;
4810 dl 1.82 if ((action = this.action) != null) {
4811 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4812     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4813     addToPendingCount(1);
4814     new ForEachEntryTask<K,V>
4815     (this, batch >>>= 1, baseLimit = h, f, tab,
4816     action).fork();
4817     }
4818     for (Node<K,V> p; (p = advance()) != null; )
4819     action.apply(p);
4820 dl 1.82 propagateCompletion();
4821     }
4822 dl 1.52 }
4823     }
4824    
4825 dl 1.102 @SuppressWarnings("serial")
4826     static final class ForEachMappingTask<K,V>
4827     extends BulkTask<K,V,Void> {
4828     final BiAction<? super K, ? super V> action;
4829 dl 1.52 ForEachMappingTask
4830 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4831     BiAction<? super K,? super V> action) {
4832     super(p, b, i, f, t);
4833 dl 1.52 this.action = action;
4834     }
4835 dl 1.102 public final void compute() {
4836     final BiAction<? super K, ? super V> action;
4837 dl 1.82 if ((action = this.action) != null) {
4838 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4839     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4840     addToPendingCount(1);
4841     new ForEachMappingTask<K,V>
4842     (this, batch >>>= 1, baseLimit = h, f, tab,
4843     action).fork();
4844     }
4845     for (Node<K,V> p; (p = advance()) != null; )
4846     action.apply(p.key, p.val);
4847 dl 1.82 propagateCompletion();
4848     }
4849 dl 1.52 }
4850     }
4851    
4852 dl 1.102 @SuppressWarnings("serial")
4853     static final class ForEachTransformedKeyTask<K,V,U>
4854     extends BulkTask<K,V,Void> {
4855 dl 1.52 final Fun<? super K, ? extends U> transformer;
4856 dl 1.102 final Action<? super U> action;
4857 dl 1.52 ForEachTransformedKeyTask
4858 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4859     Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4860     super(p, b, i, f, t);
4861 dl 1.79 this.transformer = transformer; this.action = action;
4862     }
4863 dl 1.102 public final void compute() {
4864 dl 1.79 final Fun<? super K, ? extends U> transformer;
4865 dl 1.102 final Action<? super U> action;
4866 dl 1.82 if ((transformer = this.transformer) != null &&
4867     (action = this.action) != null) {
4868 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4869     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870     addToPendingCount(1);
4871 dl 1.82 new ForEachTransformedKeyTask<K,V,U>
4872 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4873     transformer, action).fork();
4874     }
4875     for (Node<K,V> p; (p = advance()) != null; ) {
4876     U u;
4877     if ((u = transformer.apply(p.key)) != null)
4878 dl 1.82 action.apply(u);
4879     }
4880     propagateCompletion();
4881 dl 1.52 }
4882     }
4883     }
4884    
4885 dl 1.102 @SuppressWarnings("serial")
4886     static final class ForEachTransformedValueTask<K,V,U>
4887     extends BulkTask<K,V,Void> {
4888 dl 1.52 final Fun<? super V, ? extends U> transformer;
4889 dl 1.102 final Action<? super U> action;
4890 dl 1.52 ForEachTransformedValueTask
4891 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4892     Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4893     super(p, b, i, f, t);
4894 dl 1.79 this.transformer = transformer; this.action = action;
4895     }
4896 dl 1.102 public final void compute() {
4897 dl 1.79 final Fun<? super V, ? extends U> transformer;
4898 dl 1.102 final Action<? super U> action;
4899 dl 1.82 if ((transformer = this.transformer) != null &&
4900     (action = this.action) != null) {
4901 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4902     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4903     addToPendingCount(1);
4904 dl 1.82 new ForEachTransformedValueTask<K,V,U>
4905 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4906     transformer, action).fork();
4907     }
4908     for (Node<K,V> p; (p = advance()) != null; ) {
4909     U u;
4910     if ((u = transformer.apply(p.val)) != null)
4911 dl 1.82 action.apply(u);
4912     }
4913     propagateCompletion();
4914 dl 1.52 }
4915     }
4916     }
4917    
4918 dl 1.102 @SuppressWarnings("serial")
4919     static final class ForEachTransformedEntryTask<K,V,U>
4920     extends BulkTask<K,V,Void> {
4921 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4922 dl 1.102 final Action<? super U> action;
4923 dl 1.52 ForEachTransformedEntryTask
4924 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4925     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4926     super(p, b, i, f, t);
4927 dl 1.79 this.transformer = transformer; this.action = action;
4928     }
4929 dl 1.102 public final void compute() {
4930 dl 1.79 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4931 dl 1.102 final Action<? super U> action;
4932 dl 1.82 if ((transformer = this.transformer) != null &&
4933     (action = this.action) != null) {
4934 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4935     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4936     addToPendingCount(1);
4937 dl 1.82 new ForEachTransformedEntryTask<K,V,U>
4938 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4939     transformer, action).fork();
4940     }
4941     for (Node<K,V> p; (p = advance()) != null; ) {
4942     U u;
4943     if ((u = transformer.apply(p)) != null)
4944 dl 1.82 action.apply(u);
4945     }
4946     propagateCompletion();
4947 dl 1.52 }
4948     }
4949     }
4950    
4951 dl 1.102 @SuppressWarnings("serial")
4952     static final class ForEachTransformedMappingTask<K,V,U>
4953     extends BulkTask<K,V,Void> {
4954 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
4955 dl 1.102 final Action<? super U> action;
4956 dl 1.52 ForEachTransformedMappingTask
4957 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4958 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
4959 dl 1.102 Action<? super U> action) {
4960     super(p, b, i, f, t);
4961 dl 1.79 this.transformer = transformer; this.action = action;
4962 dl 1.52 }
4963 dl 1.102 public final void compute() {
4964 dl 1.79 final BiFun<? super K, ? super V, ? extends U> transformer;
4965 dl 1.102 final Action<? super U> action;
4966 dl 1.82 if ((transformer = this.transformer) != null &&
4967     (action = this.action) != null) {
4968 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4969     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970     addToPendingCount(1);
4971 dl 1.82 new ForEachTransformedMappingTask<K,V,U>
4972 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4973     transformer, action).fork();
4974     }
4975     for (Node<K,V> p; (p = advance()) != null; ) {
4976     U u;
4977     if ((u = transformer.apply(p.key, p.val)) != null)
4978 dl 1.82 action.apply(u);
4979     }
4980     propagateCompletion();
4981 dl 1.52 }
4982     }
4983     }
4984    
4985 dl 1.102 @SuppressWarnings("serial")
4986     static final class SearchKeysTask<K,V,U>
4987     extends BulkTask<K,V,U> {
4988 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
4989     final AtomicReference<U> result;
4990     SearchKeysTask
4991 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4992 dl 1.52 Fun<? super K, ? extends U> searchFunction,
4993     AtomicReference<U> result) {
4994 dl 1.102 super(p, b, i, f, t);
4995 dl 1.52 this.searchFunction = searchFunction; this.result = result;
4996     }
4997 dl 1.79 public final U getRawResult() { return result.get(); }
4998 dl 1.102 public final void compute() {
4999 dl 1.79 final Fun<? super K, ? extends U> searchFunction;
5000     final AtomicReference<U> result;
5001 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5002     (result = this.result) != null) {
5003 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5004     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 dl 1.82 if (result.get() != null)
5006     return;
5007 dl 1.102 addToPendingCount(1);
5008 dl 1.82 new SearchKeysTask<K,V,U>
5009 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5010     searchFunction, result).fork();
5011 dl 1.61 }
5012 dl 1.82 while (result.get() == null) {
5013     U u;
5014 dl 1.102 Node<K,V> p;
5015     if ((p = advance()) == null) {
5016 dl 1.82 propagateCompletion();
5017     break;
5018     }
5019 dl 1.102 if ((u = searchFunction.apply(p.key)) != null) {
5020 dl 1.82 if (result.compareAndSet(null, u))
5021     quietlyCompleteRoot();
5022     break;
5023     }
5024 dl 1.52 }
5025     }
5026     }
5027     }
5028    
5029 dl 1.102 @SuppressWarnings("serial")
5030     static final class SearchValuesTask<K,V,U>
5031     extends BulkTask<K,V,U> {
5032 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
5033     final AtomicReference<U> result;
5034     SearchValuesTask
5035 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036 dl 1.52 Fun<? super V, ? extends U> searchFunction,
5037     AtomicReference<U> result) {
5038 dl 1.102 super(p, b, i, f, t);
5039 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5040     }
5041 dl 1.79 public final U getRawResult() { return result.get(); }
5042 dl 1.102 public final void compute() {
5043 dl 1.79 final Fun<? super V, ? extends U> searchFunction;
5044     final AtomicReference<U> result;
5045 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5046     (result = this.result) != null) {
5047 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5048     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5049 dl 1.82 if (result.get() != null)
5050     return;
5051 dl 1.102 addToPendingCount(1);
5052 dl 1.82 new SearchValuesTask<K,V,U>
5053 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5054     searchFunction, result).fork();
5055 dl 1.61 }
5056 dl 1.82 while (result.get() == null) {
5057 dl 1.102 U u;
5058     Node<K,V> p;
5059     if ((p = advance()) == null) {
5060 dl 1.82 propagateCompletion();
5061     break;
5062     }
5063 dl 1.102 if ((u = searchFunction.apply(p.val)) != null) {
5064 dl 1.82 if (result.compareAndSet(null, u))
5065     quietlyCompleteRoot();
5066     break;
5067     }
5068 dl 1.52 }
5069     }
5070     }
5071     }
5072    
5073 dl 1.102 @SuppressWarnings("serial")
5074     static final class SearchEntriesTask<K,V,U>
5075     extends BulkTask<K,V,U> {
5076 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
5077     final AtomicReference<U> result;
5078     SearchEntriesTask
5079 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5080 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
5081     AtomicReference<U> result) {
5082 dl 1.102 super(p, b, i, f, t);
5083 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5084     }
5085 dl 1.79 public final U getRawResult() { return result.get(); }
5086 dl 1.102 public final void compute() {
5087 dl 1.79 final Fun<Entry<K,V>, ? extends U> searchFunction;
5088     final AtomicReference<U> result;
5089 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5090     (result = this.result) != null) {
5091 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5092     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 dl 1.82 if (result.get() != null)
5094     return;
5095 dl 1.102 addToPendingCount(1);
5096 dl 1.82 new SearchEntriesTask<K,V,U>
5097 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5098     searchFunction, result).fork();
5099 dl 1.61 }
5100 dl 1.82 while (result.get() == null) {
5101 dl 1.102 U u;
5102     Node<K,V> p;
5103     if ((p = advance()) == null) {
5104 dl 1.82 propagateCompletion();
5105     break;
5106     }
5107 dl 1.102 if ((u = searchFunction.apply(p)) != null) {
5108 dl 1.82 if (result.compareAndSet(null, u))
5109     quietlyCompleteRoot();
5110     return;
5111     }
5112 dl 1.52 }
5113     }
5114     }
5115     }
5116    
5117 dl 1.102 @SuppressWarnings("serial")
5118     static final class SearchMappingsTask<K,V,U>
5119     extends BulkTask<K,V,U> {
5120 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5121     final AtomicReference<U> result;
5122     SearchMappingsTask
5123 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5125     AtomicReference<U> result) {
5126 dl 1.102 super(p, b, i, f, t);
5127 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5128     }
5129 dl 1.79 public final U getRawResult() { return result.get(); }
5130 dl 1.102 public final void compute() {
5131 dl 1.79 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5132     final AtomicReference<U> result;
5133 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5134     (result = this.result) != null) {
5135 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5136     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5137 dl 1.82 if (result.get() != null)
5138     return;
5139 dl 1.102 addToPendingCount(1);
5140 dl 1.82 new SearchMappingsTask<K,V,U>
5141 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5142     searchFunction, result).fork();
5143 dl 1.61 }
5144 dl 1.82 while (result.get() == null) {
5145 dl 1.102 U u;
5146     Node<K,V> p;
5147     if ((p = advance()) == null) {
5148 dl 1.82 propagateCompletion();
5149     break;
5150     }
5151 dl 1.102 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5152 dl 1.82 if (result.compareAndSet(null, u))
5153     quietlyCompleteRoot();
5154     break;
5155     }
5156 dl 1.52 }
5157     }
5158     }
5159     }
5160    
5161 dl 1.102 @SuppressWarnings("serial")
5162     static final class ReduceKeysTask<K,V>
5163     extends BulkTask<K,V,K> {
5164 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5165     K result;
5166 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5167 dl 1.52 ReduceKeysTask
5168 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5169 dl 1.61 ReduceKeysTask<K,V> nextRight,
5170 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5171 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5172 dl 1.52 this.reducer = reducer;
5173     }
5174 dl 1.79 public final K getRawResult() { return result; }
5175 dl 1.102 public final void compute() {
5176 dl 1.82 final BiFun<? super K, ? super K, ? extends K> reducer;
5177     if ((reducer = this.reducer) != null) {
5178 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5179     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5180     addToPendingCount(1);
5181 dl 1.82 (rights = new ReduceKeysTask<K,V>
5182 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5183     rights, reducer)).fork();
5184     }
5185 dl 1.82 K r = null;
5186 dl 1.102 for (Node<K,V> p; (p = advance()) != null; ) {
5187     K u = p.key;
5188     r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5189 dl 1.82 }
5190     result = r;
5191     CountedCompleter<?> c;
5192     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5193 dl 1.102 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5194 dl 1.82 t = (ReduceKeysTask<K,V>)c,
5195     s = t.rights;
5196     while (s != null) {
5197     K tr, sr;
5198     if ((sr = s.result) != null)
5199     t.result = (((tr = t.result) == null) ? sr :
5200     reducer.apply(tr, sr));
5201     s = t.rights = s.nextRight;
5202     }
5203 dl 1.52 }
5204 dl 1.71 }
5205 dl 1.52 }
5206     }
5207    
5208 dl 1.102 @SuppressWarnings("serial")
5209     static final class ReduceValuesTask<K,V>
5210     extends BulkTask<K,V,V> {
5211 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5212     V result;
5213 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5214 dl 1.52 ReduceValuesTask
5215 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5216 dl 1.61 ReduceValuesTask<K,V> nextRight,
5217 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5218 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5219 dl 1.52 this.reducer = reducer;
5220     }
5221 dl 1.79 public final V getRawResult() { return result; }
5222 dl 1.102 public final void compute() {
5223 dl 1.82 final BiFun<? super V, ? super V, ? extends V> reducer;
5224     if ((reducer = this.reducer) != null) {
5225 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5226     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5227     addToPendingCount(1);
5228 dl 1.82 (rights = new ReduceValuesTask<K,V>
5229 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5230     rights, reducer)).fork();
5231     }
5232 dl 1.82 V r = null;
5233 dl 1.102 for (Node<K,V> p; (p = advance()) != null; ) {
5234     V v = p.val;
5235     r = (r == null) ? v : reducer.apply(r, v);
5236 dl 1.82 }
5237     result = r;
5238     CountedCompleter<?> c;
5239     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5240 dl 1.102 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5241 dl 1.82 t = (ReduceValuesTask<K,V>)c,
5242     s = t.rights;
5243     while (s != null) {
5244     V tr, sr;
5245     if ((sr = s.result) != null)
5246     t.result = (((tr = t.result) == null) ? sr :
5247     reducer.apply(tr, sr));
5248     s = t.rights = s.nextRight;
5249     }
5250 dl 1.52 }
5251     }
5252     }
5253     }
5254    
5255 dl 1.102 @SuppressWarnings("serial")
5256     static final class ReduceEntriesTask<K,V>
5257     extends BulkTask<K,V,Map.Entry<K,V>> {
5258 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5259     Map.Entry<K,V> result;
5260 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
5261 dl 1.52 ReduceEntriesTask
5262 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5263 dl 1.63 ReduceEntriesTask<K,V> nextRight,
5264 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5265 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5266 dl 1.52 this.reducer = reducer;
5267     }
5268 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
5269 dl 1.102 public final void compute() {
5270 dl 1.82 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5271     if ((reducer = this.reducer) != null) {
5272 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5273     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5274     addToPendingCount(1);
5275 dl 1.82 (rights = new ReduceEntriesTask<K,V>
5276 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5277     rights, reducer)).fork();
5278     }
5279 dl 1.82 Map.Entry<K,V> r = null;
5280 dl 1.102 for (Node<K,V> p; (p = advance()) != null; )
5281     r = (r == null) ? p : reducer.apply(r, p);
5282 dl 1.82 result = r;
5283     CountedCompleter<?> c;
5284     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5285 dl 1.102 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5286 dl 1.82 t = (ReduceEntriesTask<K,V>)c,
5287     s = t.rights;
5288     while (s != null) {
5289     Map.Entry<K,V> tr, sr;
5290     if ((sr = s.result) != null)
5291     t.result = (((tr = t.result) == null) ? sr :
5292     reducer.apply(tr, sr));
5293     s = t.rights = s.nextRight;
5294     }
5295 dl 1.52 }
5296     }
5297     }
5298     }
5299    
5300 dl 1.102 @SuppressWarnings("serial")
5301     static final class MapReduceKeysTask<K,V,U>
5302     extends BulkTask<K,V,U> {
5303 dl 1.52 final Fun<? super K, ? extends U> transformer;
5304     final BiFun<? super U, ? super U, ? extends U> reducer;
5305     U result;
5306 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
5307 dl 1.52 MapReduceKeysTask
5308 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
5310 dl 1.52 Fun<? super K, ? extends U> transformer,
5311     BiFun<? super U, ? super U, ? extends U> reducer) {
5312 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5313 dl 1.52 this.transformer = transformer;
5314     this.reducer = reducer;
5315     }
5316 dl 1.79 public final U getRawResult() { return result; }
5317 dl 1.102 public final void compute() {
5318 dl 1.82 final Fun<? super K, ? extends U> transformer;
5319     final BiFun<? super U, ? super U, ? extends U> reducer;
5320     if ((transformer = this.transformer) != null &&
5321     (reducer = this.reducer) != null) {
5322 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5323     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5324     addToPendingCount(1);
5325 dl 1.82 (rights = new MapReduceKeysTask<K,V,U>
5326 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5327     rights, transformer, reducer)).fork();
5328     }
5329     U r = null;
5330     for (Node<K,V> p; (p = advance()) != null; ) {
5331     U u;
5332     if ((u = transformer.apply(p.key)) != null)
5333 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5334     }
5335     result = r;
5336     CountedCompleter<?> c;
5337     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5338 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5339 dl 1.82 t = (MapReduceKeysTask<K,V,U>)c,
5340     s = t.rights;
5341     while (s != null) {
5342     U tr, sr;
5343     if ((sr = s.result) != null)
5344     t.result = (((tr = t.result) == null) ? sr :
5345     reducer.apply(tr, sr));
5346     s = t.rights = s.nextRight;
5347     }
5348 dl 1.52 }
5349     }
5350     }
5351     }
5352    
5353 dl 1.102 @SuppressWarnings("serial")
5354     static final class MapReduceValuesTask<K,V,U>
5355     extends BulkTask<K,V,U> {
5356 dl 1.52 final Fun<? super V, ? extends U> transformer;
5357     final BiFun<? super U, ? super U, ? extends U> reducer;
5358     U result;
5359 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
5360 dl 1.52 MapReduceValuesTask
5361 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5362 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
5363 dl 1.52 Fun<? super V, ? extends U> transformer,
5364     BiFun<? super U, ? super U, ? extends U> reducer) {
5365 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5366 dl 1.52 this.transformer = transformer;
5367     this.reducer = reducer;
5368     }
5369 dl 1.79 public final U getRawResult() { return result; }
5370 dl 1.102 public final void compute() {
5371 dl 1.82 final Fun<? super V, ? extends U> transformer;
5372     final BiFun<? super U, ? super U, ? extends U> reducer;
5373     if ((transformer = this.transformer) != null &&
5374     (reducer = this.reducer) != null) {
5375 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5376     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377     addToPendingCount(1);
5378 dl 1.82 (rights = new MapReduceValuesTask<K,V,U>
5379 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5380     rights, transformer, reducer)).fork();
5381     }
5382     U r = null;
5383     for (Node<K,V> p; (p = advance()) != null; ) {
5384     U u;
5385     if ((u = transformer.apply(p.val)) != null)
5386 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5387     }
5388     result = r;
5389     CountedCompleter<?> c;
5390     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5392 dl 1.82 t = (MapReduceValuesTask<K,V,U>)c,
5393     s = t.rights;
5394     while (s != null) {
5395     U tr, sr;
5396     if ((sr = s.result) != null)
5397     t.result = (((tr = t.result) == null) ? sr :
5398     reducer.apply(tr, sr));
5399     s = t.rights = s.nextRight;
5400     }
5401 dl 1.52 }
5402 dl 1.71 }
5403 dl 1.52 }
5404     }
5405    
5406 dl 1.102 @SuppressWarnings("serial")
5407     static final class MapReduceEntriesTask<K,V,U>
5408     extends BulkTask<K,V,U> {
5409 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5410     final BiFun<? super U, ? super U, ? extends U> reducer;
5411     U result;
5412 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
5413 dl 1.52 MapReduceEntriesTask
5414 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5415 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
5416 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
5417     BiFun<? super U, ? super U, ? extends U> reducer) {
5418 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5419 dl 1.52 this.transformer = transformer;
5420     this.reducer = reducer;
5421     }
5422 dl 1.79 public final U getRawResult() { return result; }
5423 dl 1.102 public final void compute() {
5424 dl 1.82 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5425     final BiFun<? super U, ? super U, ? extends U> reducer;
5426     if ((transformer = this.transformer) != null &&
5427     (reducer = this.reducer) != null) {
5428 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5429     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5430     addToPendingCount(1);
5431 dl 1.82 (rights = new MapReduceEntriesTask<K,V,U>
5432 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5433     rights, transformer, reducer)).fork();
5434     }
5435     U r = null;
5436     for (Node<K,V> p; (p = advance()) != null; ) {
5437     U u;
5438     if ((u = transformer.apply(p)) != null)
5439 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5440     }
5441     result = r;
5442     CountedCompleter<?> c;
5443     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5444 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5445 dl 1.82 t = (MapReduceEntriesTask<K,V,U>)c,
5446     s = t.rights;
5447     while (s != null) {
5448     U tr, sr;
5449     if ((sr = s.result) != null)
5450     t.result = (((tr = t.result) == null) ? sr :
5451     reducer.apply(tr, sr));
5452     s = t.rights = s.nextRight;
5453     }
5454 dl 1.52 }
5455     }
5456     }
5457     }
5458    
5459 dl 1.102 @SuppressWarnings("serial")
5460     static final class MapReduceMappingsTask<K,V,U>
5461     extends BulkTask<K,V,U> {
5462 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5463     final BiFun<? super U, ? super U, ? extends U> reducer;
5464     U result;
5465 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
5466 dl 1.52 MapReduceMappingsTask
5467 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5468 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
5469 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5470     BiFun<? super U, ? super U, ? extends U> reducer) {
5471 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5472 dl 1.52 this.transformer = transformer;
5473     this.reducer = reducer;
5474     }
5475 dl 1.79 public final U getRawResult() { return result; }
5476 dl 1.102 public final void compute() {
5477 dl 1.82 final BiFun<? super K, ? super V, ? extends U> transformer;
5478     final BiFun<? super U, ? super U, ? extends U> reducer;
5479     if ((transformer = this.transformer) != null &&
5480     (reducer = this.reducer) != null) {
5481 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5482     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483     addToPendingCount(1);
5484 dl 1.82 (rights = new MapReduceMappingsTask<K,V,U>
5485 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5486     rights, transformer, reducer)).fork();
5487     }
5488     U r = null;
5489     for (Node<K,V> p; (p = advance()) != null; ) {
5490     U u;
5491     if ((u = transformer.apply(p.key, p.val)) != null)
5492 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5493     }
5494     result = r;
5495     CountedCompleter<?> c;
5496     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5497 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5498 dl 1.82 t = (MapReduceMappingsTask<K,V,U>)c,
5499     s = t.rights;
5500     while (s != null) {
5501     U tr, sr;
5502     if ((sr = s.result) != null)
5503     t.result = (((tr = t.result) == null) ? sr :
5504     reducer.apply(tr, sr));
5505     s = t.rights = s.nextRight;
5506     }
5507 dl 1.52 }
5508 dl 1.71 }
5509 dl 1.52 }
5510     }
5511    
5512 dl 1.102 @SuppressWarnings("serial")
5513     static final class MapReduceKeysToDoubleTask<K,V>
5514     extends BulkTask<K,V,Double> {
5515 dl 1.52 final ObjectToDouble<? super K> transformer;
5516     final DoubleByDoubleToDouble reducer;
5517     final double basis;
5518     double result;
5519 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5520 dl 1.52 MapReduceKeysToDoubleTask
5521 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5522 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
5523 dl 1.52 ObjectToDouble<? super K> transformer,
5524     double basis,
5525     DoubleByDoubleToDouble reducer) {
5526 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5527 dl 1.52 this.transformer = transformer;
5528     this.basis = basis; this.reducer = reducer;
5529     }
5530 dl 1.79 public final Double getRawResult() { return result; }
5531 dl 1.102 public final void compute() {
5532 dl 1.82 final ObjectToDouble<? super K> transformer;
5533     final DoubleByDoubleToDouble reducer;
5534     if ((transformer = this.transformer) != null &&
5535     (reducer = this.reducer) != null) {
5536     double r = this.basis;
5537 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5538     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5539     addToPendingCount(1);
5540 dl 1.82 (rights = new MapReduceKeysToDoubleTask<K,V>
5541 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5542     rights, transformer, r, reducer)).fork();
5543     }
5544     for (Node<K,V> p; (p = advance()) != null; )
5545     r = reducer.apply(r, transformer.apply(p.key));
5546 dl 1.82 result = r;
5547     CountedCompleter<?> c;
5548     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5549 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5550 dl 1.82 t = (MapReduceKeysToDoubleTask<K,V>)c,
5551     s = t.rights;
5552     while (s != null) {
5553     t.result = reducer.apply(t.result, s.result);
5554     s = t.rights = s.nextRight;
5555     }
5556 dl 1.52 }
5557 dl 1.71 }
5558 dl 1.52 }
5559     }
5560    
5561 dl 1.102 @SuppressWarnings("serial")
5562     static final class MapReduceValuesToDoubleTask<K,V>
5563     extends BulkTask<K,V,Double> {
5564 dl 1.52 final ObjectToDouble<? super V> transformer;
5565     final DoubleByDoubleToDouble reducer;
5566     final double basis;
5567     double result;
5568 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5569 dl 1.52 MapReduceValuesToDoubleTask
5570 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5571 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
5572 dl 1.52 ObjectToDouble<? super V> transformer,
5573     double basis,
5574     DoubleByDoubleToDouble reducer) {
5575 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5576 dl 1.52 this.transformer = transformer;
5577     this.basis = basis; this.reducer = reducer;
5578     }
5579 dl 1.79 public final Double getRawResult() { return result; }
5580 dl 1.102 public final void compute() {
5581 dl 1.82 final ObjectToDouble<? super V> transformer;
5582     final DoubleByDoubleToDouble reducer;
5583     if ((transformer = this.transformer) != null &&
5584     (reducer = this.reducer) != null) {
5585     double r = this.basis;
5586 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5587     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5588     addToPendingCount(1);
5589 dl 1.82 (rights = new MapReduceValuesToDoubleTask<K,V>
5590 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5591     rights, transformer, r, reducer)).fork();
5592     }
5593     for (Node<K,V> p; (p = advance()) != null; )
5594     r = reducer.apply(r, transformer.apply(p.val));
5595 dl 1.82 result = r;
5596     CountedCompleter<?> c;
5597     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5598 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5599 dl 1.82 t = (MapReduceValuesToDoubleTask<K,V>)c,
5600     s = t.rights;
5601     while (s != null) {
5602     t.result = reducer.apply(t.result, s.result);
5603     s = t.rights = s.nextRight;
5604     }
5605 dl 1.52 }
5606 dl 1.71 }
5607 dl 1.52 }
5608     }
5609    
5610 dl 1.102 @SuppressWarnings("serial")
5611     static final class MapReduceEntriesToDoubleTask<K,V>
5612     extends BulkTask<K,V,Double> {
5613 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
5614     final DoubleByDoubleToDouble reducer;
5615     final double basis;
5616     double result;
5617 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5618 dl 1.52 MapReduceEntriesToDoubleTask
5619 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5620 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
5621 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
5622     double basis,
5623     DoubleByDoubleToDouble reducer) {
5624 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5625 dl 1.52 this.transformer = transformer;
5626     this.basis = basis; this.reducer = reducer;
5627     }
5628 dl 1.79 public final Double getRawResult() { return result; }
5629 dl 1.102 public final void compute() {
5630 dl 1.82 final ObjectToDouble<Map.Entry<K,V>> transformer;
5631     final DoubleByDoubleToDouble reducer;
5632     if ((transformer = this.transformer) != null &&
5633     (reducer = this.reducer) != null) {
5634     double r = this.basis;
5635 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5636     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5637     addToPendingCount(1);
5638 dl 1.82 (rights = new MapReduceEntriesToDoubleTask<K,V>
5639 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5640     rights, transformer, r, reducer)).fork();
5641     }
5642     for (Node<K,V> p; (p = advance()) != null; )
5643     r = reducer.apply(r, transformer.apply(p));
5644 dl 1.82 result = r;
5645     CountedCompleter<?> c;
5646     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5647 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5648 dl 1.82 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5649     s = t.rights;
5650     while (s != null) {
5651     t.result = reducer.apply(t.result, s.result);
5652     s = t.rights = s.nextRight;
5653     }
5654 dl 1.52 }
5655 dl 1.71 }
5656 dl 1.52 }
5657     }
5658    
5659 dl 1.102 @SuppressWarnings("serial")
5660     static final class MapReduceMappingsToDoubleTask<K,V>
5661     extends BulkTask<K,V,Double> {
5662 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5663     final DoubleByDoubleToDouble reducer;
5664     final double basis;
5665     double result;
5666 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5667 dl 1.52 MapReduceMappingsToDoubleTask
5668 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5669 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
5670 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
5671     double basis,
5672     DoubleByDoubleToDouble reducer) {
5673 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5674 dl 1.52 this.transformer = transformer;
5675     this.basis = basis; this.reducer = reducer;
5676     }
5677 dl 1.79 public final Double getRawResult() { return result; }
5678 dl 1.102 public final void compute() {
5679 dl 1.82 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5680     final DoubleByDoubleToDouble reducer;
5681     if ((transformer = this.transformer) != null &&
5682     (reducer = this.reducer) != null) {
5683     double r = this.basis;
5684 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5685     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686     addToPendingCount(1);
5687 dl 1.82 (rights = new MapReduceMappingsToDoubleTask<K,V>
5688 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5689     rights, transformer, r, reducer)).fork();
5690     }
5691     for (Node<K,V> p; (p = advance()) != null; )
5692     r = reducer.apply(r, transformer.apply(p.key, p.val));
5693 dl 1.82 result = r;
5694     CountedCompleter<?> c;
5695     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5696 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5697 dl 1.82 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5698     s = t.rights;
5699     while (s != null) {
5700     t.result = reducer.apply(t.result, s.result);
5701     s = t.rights = s.nextRight;
5702     }
5703 dl 1.52 }
5704 dl 1.71 }
5705 dl 1.52 }
5706     }
5707    
5708 dl 1.102 @SuppressWarnings("serial")
5709     static final class MapReduceKeysToLongTask<K,V>
5710     extends BulkTask<K,V,Long> {
5711 dl 1.52 final ObjectToLong<? super K> transformer;
5712     final LongByLongToLong reducer;
5713     final long basis;
5714     long result;
5715 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
5716 dl 1.52 MapReduceKeysToLongTask
5717 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5718 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
5719 dl 1.52 ObjectToLong<? super K> transformer,
5720     long basis,
5721     LongByLongToLong reducer) {
5722 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5723 dl 1.52 this.transformer = transformer;
5724     this.basis = basis; this.reducer = reducer;
5725     }
5726 dl 1.79 public final Long getRawResult() { return result; }
5727 dl 1.102 public final void compute() {
5728 dl 1.82 final ObjectToLong<? super K> transformer;
5729     final LongByLongToLong reducer;
5730     if ((transformer = this.transformer) != null &&
5731     (reducer = this.reducer) != null) {
5732     long r = this.basis;
5733 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5734     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5735     addToPendingCount(1);
5736 dl 1.82 (rights = new MapReduceKeysToLongTask<K,V>
5737 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5738     rights, transformer, r, reducer)).fork();
5739     }
5740     for (Node<K,V> p; (p = advance()) != null; )
5741     r = reducer.apply(r, transformer.apply(p.key));
5742 dl 1.82 result = r;
5743     CountedCompleter<?> c;
5744     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5745 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5746 dl 1.82 t = (MapReduceKeysToLongTask<K,V>)c,
5747     s = t.rights;
5748     while (s != null) {
5749     t.result = reducer.apply(t.result, s.result);
5750     s = t.rights = s.nextRight;
5751     }
5752 dl 1.52 }
5753 dl 1.71 }
5754 dl 1.52 }
5755     }
5756    
5757 dl 1.102 @SuppressWarnings("serial")
5758     static final class MapReduceValuesToLongTask<K,V>
5759     extends BulkTask<K,V,Long> {
5760 dl 1.52 final ObjectToLong<? super V> transformer;
5761     final LongByLongToLong reducer;
5762     final long basis;
5763     long result;
5764 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
5765 dl 1.52 MapReduceValuesToLongTask
5766 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5767 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
5768 dl 1.52 ObjectToLong<? super V> transformer,
5769     long basis,
5770     LongByLongToLong reducer) {
5771 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5772 dl 1.52 this.transformer = transformer;
5773     this.basis = basis; this.reducer = reducer;
5774     }
5775 dl 1.79 public final Long getRawResult() { return result; }
5776 dl 1.102 public final void compute() {
5777 dl 1.82 final ObjectToLong<? super V> transformer;
5778     final LongByLongToLong reducer;
5779     if ((transformer = this.transformer) != null &&
5780     (reducer = this.reducer) != null) {
5781     long r = this.basis;
5782 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5783     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5784     addToPendingCount(1);
5785 dl 1.82 (rights = new MapReduceValuesToLongTask<K,V>
5786 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5787     rights, transformer, r, reducer)).fork();
5788     }
5789     for (Node<K,V> p; (p = advance()) != null; )
5790     r = reducer.apply(r, transformer.apply(p.val));
5791 dl 1.82 result = r;
5792     CountedCompleter<?> c;
5793     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5794 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5795 dl 1.82 t = (MapReduceValuesToLongTask<K,V>)c,
5796     s = t.rights;
5797     while (s != null) {
5798     t.result = reducer.apply(t.result, s.result);
5799     s = t.rights = s.nextRight;
5800     }
5801 dl 1.52 }
5802 dl 1.71 }
5803 dl 1.52 }
5804     }
5805    
5806 dl 1.102 @SuppressWarnings("serial")
5807     static final class MapReduceEntriesToLongTask<K,V>
5808     extends BulkTask<K,V,Long> {
5809 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
5810     final LongByLongToLong reducer;
5811     final long basis;
5812     long result;
5813 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5814 dl 1.52 MapReduceEntriesToLongTask
5815 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5816 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
5817 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
5818     long basis,
5819     LongByLongToLong reducer) {
5820 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5821 dl 1.52 this.transformer = transformer;
5822     this.basis = basis; this.reducer = reducer;
5823     }
5824 dl 1.79 public final Long getRawResult() { return result; }
5825 dl 1.102 public final void compute() {
5826 dl 1.82 final ObjectToLong<Map.Entry<K,V>> transformer;
5827     final LongByLongToLong reducer;
5828     if ((transformer = this.transformer) != null &&
5829     (reducer = this.reducer) != null) {
5830     long r = this.basis;
5831 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5832     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5833     addToPendingCount(1);
5834 dl 1.82 (rights = new MapReduceEntriesToLongTask<K,V>
5835 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5836     rights, transformer, r, reducer)).fork();
5837     }
5838     for (Node<K,V> p; (p = advance()) != null; )
5839     r = reducer.apply(r, transformer.apply(p));
5840 dl 1.82 result = r;
5841     CountedCompleter<?> c;
5842     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5843 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5844 dl 1.82 t = (MapReduceEntriesToLongTask<K,V>)c,
5845     s = t.rights;
5846     while (s != null) {
5847     t.result = reducer.apply(t.result, s.result);
5848     s = t.rights = s.nextRight;
5849     }
5850 dl 1.52 }
5851     }
5852     }
5853     }
5854    
5855 dl 1.102 @SuppressWarnings("serial")
5856     static final class MapReduceMappingsToLongTask<K,V>
5857     extends BulkTask<K,V,Long> {
5858 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
5859     final LongByLongToLong reducer;
5860     final long basis;
5861     long result;
5862 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5863 dl 1.52 MapReduceMappingsToLongTask
5864 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
5866 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
5867     long basis,
5868     LongByLongToLong reducer) {
5869 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5870 dl 1.52 this.transformer = transformer;
5871     this.basis = basis; this.reducer = reducer;
5872     }
5873 dl 1.79 public final Long getRawResult() { return result; }
5874 dl 1.102 public final void compute() {
5875 dl 1.82 final ObjectByObjectToLong<? super K, ? super V> transformer;
5876     final LongByLongToLong reducer;
5877     if ((transformer = this.transformer) != null &&
5878     (reducer = this.reducer) != null) {
5879     long r = this.basis;
5880 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5881     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882     addToPendingCount(1);
5883 dl 1.82 (rights = new MapReduceMappingsToLongTask<K,V>
5884 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5885     rights, transformer, r, reducer)).fork();
5886     }
5887     for (Node<K,V> p; (p = advance()) != null; )
5888     r = reducer.apply(r, transformer.apply(p.key, p.val));
5889 dl 1.82 result = r;
5890     CountedCompleter<?> c;
5891     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5893 dl 1.82 t = (MapReduceMappingsToLongTask<K,V>)c,
5894     s = t.rights;
5895     while (s != null) {
5896     t.result = reducer.apply(t.result, s.result);
5897     s = t.rights = s.nextRight;
5898     }
5899 dl 1.52 }
5900 dl 1.71 }
5901 dl 1.52 }
5902     }
5903    
5904 dl 1.102 @SuppressWarnings("serial")
5905     static final class MapReduceKeysToIntTask<K,V>
5906     extends BulkTask<K,V,Integer> {
5907 dl 1.52 final ObjectToInt<? super K> transformer;
5908     final IntByIntToInt reducer;
5909     final int basis;
5910     int result;
5911 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
5912 dl 1.52 MapReduceKeysToIntTask
5913 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
5915 dl 1.52 ObjectToInt<? super K> transformer,
5916     int basis,
5917     IntByIntToInt reducer) {
5918 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5919 dl 1.52 this.transformer = transformer;
5920     this.basis = basis; this.reducer = reducer;
5921     }
5922 dl 1.79 public final Integer getRawResult() { return result; }
5923 dl 1.102 public final void compute() {
5924 dl 1.82 final ObjectToInt<? super K> transformer;
5925     final IntByIntToInt reducer;
5926     if ((transformer = this.transformer) != null &&
5927     (reducer = this.reducer) != null) {
5928     int r = this.basis;
5929 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5930     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931     addToPendingCount(1);
5932 dl 1.82 (rights = new MapReduceKeysToIntTask<K,V>
5933 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5934     rights, transformer, r, reducer)).fork();
5935     }
5936     for (Node<K,V> p; (p = advance()) != null; )
5937     r = reducer.apply(r, transformer.apply(p.key));
5938 dl 1.82 result = r;
5939     CountedCompleter<?> c;
5940     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5942 dl 1.82 t = (MapReduceKeysToIntTask<K,V>)c,
5943     s = t.rights;
5944     while (s != null) {
5945     t.result = reducer.apply(t.result, s.result);
5946     s = t.rights = s.nextRight;
5947     }
5948 dl 1.52 }
5949 dl 1.71 }
5950 dl 1.52 }
5951     }
5952    
5953 dl 1.102 @SuppressWarnings("serial")
5954     static final class MapReduceValuesToIntTask<K,V>
5955     extends BulkTask<K,V,Integer> {
5956 dl 1.52 final ObjectToInt<? super V> transformer;
5957     final IntByIntToInt reducer;
5958     final int basis;
5959     int result;
5960 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
5961 dl 1.52 MapReduceValuesToIntTask
5962 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
5964 dl 1.52 ObjectToInt<? super V> transformer,
5965     int basis,
5966     IntByIntToInt reducer) {
5967 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5968 dl 1.52 this.transformer = transformer;
5969     this.basis = basis; this.reducer = reducer;
5970     }
5971 dl 1.79 public final Integer getRawResult() { return result; }
5972 dl 1.102 public final void compute() {
5973 dl 1.82 final ObjectToInt<? super V> transformer;
5974     final IntByIntToInt reducer;
5975     if ((transformer = this.transformer) != null &&
5976     (reducer = this.reducer) != null) {
5977     int r = this.basis;
5978 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5979     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980     addToPendingCount(1);
5981 dl 1.82 (rights = new MapReduceValuesToIntTask<K,V>
5982 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5983     rights, transformer, r, reducer)).fork();
5984     }
5985     for (Node<K,V> p; (p = advance()) != null; )
5986     r = reducer.apply(r, transformer.apply(p.val));
5987 dl 1.82 result = r;
5988     CountedCompleter<?> c;
5989     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5991 dl 1.82 t = (MapReduceValuesToIntTask<K,V>)c,
5992     s = t.rights;
5993     while (s != null) {
5994     t.result = reducer.apply(t.result, s.result);
5995     s = t.rights = s.nextRight;
5996     }
5997 dl 1.52 }
5998 dl 1.71 }
5999 dl 1.52 }
6000     }
6001    
6002 dl 1.102 @SuppressWarnings("serial")
6003     static final class MapReduceEntriesToIntTask<K,V>
6004     extends BulkTask<K,V,Integer> {
6005 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
6006     final IntByIntToInt reducer;
6007     final int basis;
6008     int result;
6009 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6010 dl 1.52 MapReduceEntriesToIntTask
6011 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6012 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
6013 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
6014     int basis,
6015     IntByIntToInt reducer) {
6016 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
6017 dl 1.52 this.transformer = transformer;
6018     this.basis = basis; this.reducer = reducer;
6019     }
6020 dl 1.79 public final Integer getRawResult() { return result; }
6021 dl 1.102 public final void compute() {
6022 dl 1.82 final ObjectToInt<Map.Entry<K,V>> transformer;
6023     final IntByIntToInt reducer;
6024     if ((transformer = this.transformer) != null &&
6025     (reducer = this.reducer) != null) {
6026     int r = this.basis;
6027 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
6028     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6029     addToPendingCount(1);
6030 dl 1.82 (rights = new MapReduceEntriesToIntTask<K,V>
6031 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
6032     rights, transformer, r, reducer)).fork();
6033     }
6034     for (Node<K,V> p; (p = advance()) != null; )
6035     r = reducer.apply(r, transformer.apply(p));
6036 dl 1.82 result = r;
6037     CountedCompleter<?> c;
6038     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6040 dl 1.82 t = (MapReduceEntriesToIntTask<K,V>)c,
6041     s = t.rights;
6042     while (s != null) {
6043     t.result = reducer.apply(t.result, s.result);
6044     s = t.rights = s.nextRight;
6045     }
6046 dl 1.52 }
6047     }
6048     }
6049     }
6050    
6051 dl 1.102 @SuppressWarnings("serial")
6052     static final class MapReduceMappingsToIntTask<K,V>
6053     extends BulkTask<K,V,Integer> {
6054 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
6055     final IntByIntToInt reducer;
6056     final int basis;
6057     int result;
6058 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6059 dl 1.52 MapReduceMappingsToIntTask
6060 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061 dl 1.79 MapReduceMappingsToIntTask<K,V> nextRight,
6062 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
6063     int basis,
6064     IntByIntToInt reducer) {
6065 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
6066 dl 1.52 this.transformer = transformer;
6067     this.basis = basis; this.reducer = reducer;
6068     }
6069 dl 1.79 public final Integer getRawResult() { return result; }
6070 dl 1.102 public final void compute() {
6071 dl 1.82 final ObjectByObjectToInt<? super K, ? super V> transformer;
6072     final IntByIntToInt reducer;
6073     if ((transformer = this.transformer) != null &&
6074     (reducer = this.reducer) != null) {
6075     int r = this.basis;
6076 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
6077     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078     addToPendingCount(1);
6079 dl 1.82 (rights = new MapReduceMappingsToIntTask<K,V>
6080 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
6081     rights, transformer, r, reducer)).fork();
6082     }
6083     for (Node<K,V> p; (p = advance()) != null; )
6084     r = reducer.apply(r, transformer.apply(p.key, p.val));
6085 dl 1.82 result = r;
6086     CountedCompleter<?> c;
6087     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6089 dl 1.82 t = (MapReduceMappingsToIntTask<K,V>)c,
6090     s = t.rights;
6091     while (s != null) {
6092     t.result = reducer.apply(t.result, s.result);
6093     s = t.rights = s.nextRight;
6094     }
6095 dl 1.52 }
6096     }
6097     }
6098     }
6099    
6100 dl 1.102 /* ---------------- Counters -------------- */
6101    
6102     // Adapted from LongAdder and Striped64.
6103     // See their internal docs for explanation.
6104    
6105     // A padded cell for distributing counts
6106     static final class CounterCell {
6107     volatile long p0, p1, p2, p3, p4, p5, p6;
6108     volatile long value;
6109     volatile long q0, q1, q2, q3, q4, q5, q6;
6110     CounterCell(long x) { value = x; }
6111     }
6112    
6113     /**
6114     * Holder for the thread-local hash code determining which
6115     * CounterCell to use. The code is initialized via the
6116     * counterHashCodeGenerator, but may be moved upon collisions.
6117     */
6118     static final class CounterHashCode {
6119     int code;
6120     }
6121    
6122     /**
6123 jsr166 1.105 * Generates initial value for per-thread CounterHashCodes.
6124 dl 1.102 */
6125     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6126    
6127     /**
6128     * Increment for counterHashCodeGenerator. See class ThreadLocal
6129     * for explanation.
6130     */
6131     static final int SEED_INCREMENT = 0x61c88647;
6132    
6133     /**
6134     * Per-thread counter hash codes. Shared across all instances.
6135     */
6136     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6137     new ThreadLocal<CounterHashCode>();
6138    
6139    
6140     final long sumCount() {
6141     CounterCell[] as = counterCells; CounterCell a;
6142     long sum = baseCount;
6143     if (as != null) {
6144     for (int i = 0; i < as.length; ++i) {
6145     if ((a = as[i]) != null)
6146     sum += a.value;
6147     }
6148     }
6149     return sum;
6150     }
6151    
6152     // See LongAdder version for explanation
6153     private final void fullAddCount(long x, CounterHashCode hc,
6154     boolean wasUncontended) {
6155     int h;
6156     if (hc == null) {
6157     hc = new CounterHashCode();
6158     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6159     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6160     threadCounterHashCode.set(hc);
6161     }
6162     else
6163     h = hc.code;
6164     boolean collide = false; // True if last slot nonempty
6165     for (;;) {
6166     CounterCell[] as; CounterCell a; int n; long v;
6167     if ((as = counterCells) != null && (n = as.length) > 0) {
6168     if ((a = as[(n - 1) & h]) == null) {
6169     if (cellsBusy == 0) { // Try to attach new Cell
6170     CounterCell r = new CounterCell(x); // Optimistic create
6171     if (cellsBusy == 0 &&
6172     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6173     boolean created = false;
6174     try { // Recheck under lock
6175     CounterCell[] rs; int m, j;
6176     if ((rs = counterCells) != null &&
6177     (m = rs.length) > 0 &&
6178     rs[j = (m - 1) & h] == null) {
6179     rs[j] = r;
6180     created = true;
6181     }
6182     } finally {
6183     cellsBusy = 0;
6184     }
6185     if (created)
6186     break;
6187     continue; // Slot is now non-empty
6188     }
6189     }
6190     collide = false;
6191     }
6192     else if (!wasUncontended) // CAS already known to fail
6193     wasUncontended = true; // Continue after rehash
6194     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6195     break;
6196     else if (counterCells != as || n >= NCPU)
6197     collide = false; // At max size or stale
6198     else if (!collide)
6199     collide = true;
6200     else if (cellsBusy == 0 &&
6201     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6202     try {
6203     if (counterCells == as) {// Expand table unless stale
6204     CounterCell[] rs = new CounterCell[n << 1];
6205     for (int i = 0; i < n; ++i)
6206     rs[i] = as[i];
6207     counterCells = rs;
6208     }
6209     } finally {
6210     cellsBusy = 0;
6211     }
6212     collide = false;
6213     continue; // Retry with expanded table
6214     }
6215     h ^= h << 13; // Rehash
6216     h ^= h >>> 17;
6217     h ^= h << 5;
6218     }
6219     else if (cellsBusy == 0 && counterCells == as &&
6220     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6221     boolean init = false;
6222     try { // Initialize table
6223     if (counterCells == as) {
6224     CounterCell[] rs = new CounterCell[2];
6225     rs[h & 1] = new CounterCell(x);
6226     counterCells = rs;
6227     init = true;
6228     }
6229     } finally {
6230     cellsBusy = 0;
6231     }
6232     if (init)
6233     break;
6234     }
6235     else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6236     break; // Fall back on using base
6237     }
6238     hc.code = h; // Record index for next time
6239     }
6240    
6241 dl 1.52 // Unsafe mechanics
6242 dl 1.82 private static final sun.misc.Unsafe U;
6243     private static final long SIZECTL;
6244     private static final long TRANSFERINDEX;
6245     private static final long BASECOUNT;
6246 dl 1.102 private static final long CELLSBUSY;
6247 dl 1.82 private static final long CELLVALUE;
6248 dl 1.52 private static final long ABASE;
6249     private static final int ASHIFT;
6250    
6251     static {
6252     try {
6253 dl 1.82 U = getUnsafe();
6254 dl 1.52 Class<?> k = ConcurrentHashMapV8.class;
6255 dl 1.82 SIZECTL = U.objectFieldOffset
6256 dl 1.52 (k.getDeclaredField("sizeCtl"));
6257 dl 1.82 TRANSFERINDEX = U.objectFieldOffset
6258     (k.getDeclaredField("transferIndex"));
6259     BASECOUNT = U.objectFieldOffset
6260     (k.getDeclaredField("baseCount"));
6261 dl 1.102 CELLSBUSY = U.objectFieldOffset
6262     (k.getDeclaredField("cellsBusy"));
6263 dl 1.82 Class<?> ck = CounterCell.class;
6264     CELLVALUE = U.objectFieldOffset
6265     (ck.getDeclaredField("value"));
6266 jsr166 1.101 Class<?> ak = Node[].class;
6267     ABASE = U.arrayBaseOffset(ak);
6268     int scale = U.arrayIndexScale(ak);
6269 jsr166 1.89 if ((scale & (scale - 1)) != 0)
6270     throw new Error("data type scale not a power of two");
6271     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6272 dl 1.52 } catch (Exception e) {
6273     throw new Error(e);
6274     }
6275     }
6276    
6277     /**
6278     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6279     * Replace with a simple call to Unsafe.getUnsafe when integrating
6280     * into a jdk.
6281     *
6282     * @return a sun.misc.Unsafe
6283     */
6284     private static sun.misc.Unsafe getUnsafe() {
6285     try {
6286     return sun.misc.Unsafe.getUnsafe();
6287 jsr166 1.87 } catch (SecurityException tryReflectionInstead) {}
6288     try {
6289     return java.security.AccessController.doPrivileged
6290     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6291     public sun.misc.Unsafe run() throws Exception {
6292     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6293     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6294     f.setAccessible(true);
6295     Object x = f.get(null);
6296     if (k.isInstance(x))
6297     return k.cast(x);
6298     }
6299     throw new NoSuchFieldError("the Unsafe");
6300     }});
6301     } catch (java.security.PrivilegedActionException e) {
6302     throw new RuntimeException("Could not initialize intrinsics",
6303     e.getCause());
6304 dl 1.52 }
6305     }
6306 dl 1.1 }