ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.126
Committed: Mon Mar 7 23:55:31 2016 UTC (8 years, 2 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.125: +1 -1 lines
Log Message:
typo

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.102 import jsr166e.ForkJoinPool;
10    
11     import java.io.ObjectStreamField;
12     import java.io.Serializable;
13     import java.lang.reflect.ParameterizedType;
14     import java.lang.reflect.Type;
15 dl 1.112 import java.util.AbstractMap;
16 dl 1.24 import java.util.Arrays;
17 dl 1.1 import java.util.Collection;
18 dl 1.102 import java.util.ConcurrentModificationException;
19     import java.util.Enumeration;
20     import java.util.HashMap;
21 dl 1.1 import java.util.Hashtable;
22     import java.util.Iterator;
23 dl 1.102 import java.util.Map;
24 dl 1.1 import java.util.NoSuchElementException;
25 dl 1.102 import java.util.Set;
26 dl 1.1 import java.util.concurrent.ConcurrentMap;
27 dl 1.102 import java.util.concurrent.atomic.AtomicReference;
28 dl 1.82 import java.util.concurrent.atomic.AtomicInteger;
29 dl 1.102 import java.util.concurrent.locks.LockSupport;
30     import java.util.concurrent.locks.ReentrantLock;
31 dl 1.79
32 dl 1.1 /**
33     * A hash table supporting full concurrency of retrievals and
34     * high expected concurrency for updates. This class obeys the
35     * same functional specification as {@link java.util.Hashtable}, and
36     * includes versions of methods corresponding to each method of
37     * {@code Hashtable}. However, even though all operations are
38     * thread-safe, retrieval operations do <em>not</em> entail locking,
39     * and there is <em>not</em> any support for locking the entire table
40     * in a way that prevents all access. This class is fully
41     * interoperable with {@code Hashtable} in programs that rely on its
42     * thread safety but not on its synchronization details.
43     *
44 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
45 dl 1.1 * block, so may overlap with update operations (including {@code put}
46     * and {@code remove}). Retrievals reflect the results of the most
47     * recently <em>completed</em> update operations holding upon their
48 dl 1.59 * onset. (More formally, an update operation for a given key bears a
49     * <em>happens-before</em> relation with any (non-null) retrieval for
50     * that key reporting the updated value.) For aggregate operations
51     * such as {@code putAll} and {@code clear}, concurrent retrievals may
52     * reflect insertion or removal of only some entries. Similarly,
53     * Iterators and Enumerations return elements reflecting the state of
54     * the hash table at some point at or since the creation of the
55     * iterator/enumeration. They do <em>not</em> throw {@link
56     * ConcurrentModificationException}. However, iterators are designed
57     * to be used by only one thread at a time. Bear in mind that the
58     * results of aggregate status methods including {@code size}, {@code
59     * isEmpty}, and {@code containsValue} are typically useful only when
60     * a map is not undergoing concurrent updates in other threads.
61     * Otherwise the results of these methods reflect transient states
62     * that may be adequate for monitoring or estimation purposes, but not
63     * for program control.
64 dl 1.1 *
65 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
66 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
67     * the same slot modulo the table size), with the expected average
68 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
69     * to a 0.75 load factor threshold for resizing). There may be much
70     * variance around this average as mappings are added and removed, but
71     * overall, this maintains a commonly accepted time/space tradeoff for
72     * hash tables. However, resizing this or any other kind of hash
73     * table may be a relatively slow operation. When possible, it is a
74     * good idea to provide a size estimate as an optional {@code
75 dl 1.16 * initialCapacity} constructor argument. An additional optional
76     * {@code loadFactor} constructor argument provides a further means of
77     * customizing initial table capacity by specifying the table density
78     * to be used in calculating the amount of space to allocate for the
79     * given number of elements. Also, for compatibility with previous
80     * versions of this class, constructors may optionally specify an
81     * expected {@code concurrencyLevel} as an additional hint for
82     * internal sizing. Note that using many keys with exactly the same
83 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
84 dl 1.102 * hash table. To ameliorate impact, when keys are {@link Comparable},
85     * this class may use comparison order among keys to help break ties.
86 dl 1.1 *
87 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
88 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
89     * (using {@link #keySet(Object)} when only keys are of interest, and the
90     * mapped values are (perhaps transiently) not used or all take the
91     * same mapping value.
92     *
93 dl 1.1 * <p>This class and its views and iterators implement all of the
94     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
95     * interfaces.
96     *
97 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
98 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
99     *
100 dl 1.102 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
101     * operations that are designed
102     * to be safely, and often sensibly, applied even with maps that are
103     * being concurrently updated by other threads; for example, when
104     * computing a snapshot summary of the values in a shared registry.
105     * There are three kinds of operation, each with four forms, accepting
106     * functions with Keys, Values, Entries, and (Key, Value) arguments
107     * and/or return values. Because the elements of a ConcurrentHashMapV8
108     * are not ordered in any particular way, and may be processed in
109     * different orders in different parallel executions, the correctness
110     * of supplied functions should not depend on any ordering, or on any
111     * other objects or values that may transiently change while
112     * computation is in progress; and except for forEach actions, should
113     * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
114     * objects do not support method {@code setValue}.
115 dl 1.70 *
116     * <ul>
117 jsr166 1.125 * <li>forEach: Perform a given action on each element.
118 dl 1.70 * A variant form applies a given transformation on each element
119 jsr166 1.125 * before performing the action.
120 dl 1.70 *
121 jsr166 1.125 * <li>search: Return the first available non-null result of
122 dl 1.70 * applying a given function on each element; skipping further
123 jsr166 1.125 * search when a result is found.
124 dl 1.70 *
125 jsr166 1.125 * <li>reduce: Accumulate each element. The supplied reduction
126 dl 1.70 * function cannot rely on ordering (more formally, it should be
127     * both associative and commutative). There are five variants:
128     *
129     * <ul>
130     *
131 jsr166 1.125 * <li>Plain reductions. (There is not a form of this method for
132 dl 1.70 * (key, value) function arguments since there is no corresponding
133 jsr166 1.125 * return type.)
134 dl 1.70 *
135 jsr166 1.125 * <li>Mapped reductions that accumulate the results of a given
136     * function applied to each element.
137 dl 1.70 *
138 jsr166 1.125 * <li>Reductions to scalar doubles, longs, and ints, using a
139     * given basis value.
140 dl 1.70 *
141 dl 1.102 * </ul>
142 dl 1.70 * </ul>
143 dl 1.102 *
144     * <p>These bulk operations accept a {@code parallelismThreshold}
145     * argument. Methods proceed sequentially if the current map size is
146     * estimated to be less than the given threshold. Using a value of
147     * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
148     * of {@code 1} results in maximal parallelism by partitioning into
149     * enough subtasks to fully utilize the {@link
150     * ForkJoinPool#commonPool()} that is used for all parallel
151     * computations. Normally, you would initially choose one of these
152     * extreme values, and then measure performance of using in-between
153     * values that trade off overhead versus throughput.
154 dl 1.70 *
155     * <p>The concurrency properties of bulk operations follow
156     * from those of ConcurrentHashMapV8: Any non-null result returned
157     * from {@code get(key)} and related access methods bears a
158     * happens-before relation with the associated insertion or
159     * update. The result of any bulk operation reflects the
160     * composition of these per-element relations (but is not
161     * necessarily atomic with respect to the map as a whole unless it
162     * is somehow known to be quiescent). Conversely, because keys
163     * and values in the map are never null, null serves as a reliable
164     * atomic indicator of the current lack of any result. To
165     * maintain this property, null serves as an implicit basis for
166     * all non-scalar reduction operations. For the double, long, and
167     * int versions, the basis should be one that, when combined with
168     * any other value, returns that other value (more formally, it
169     * should be the identity element for the reduction). Most common
170     * reductions have these properties; for example, computing a sum
171     * with basis 0 or a minimum with basis MAX_VALUE.
172     *
173     * <p>Search and transformation functions provided as arguments
174     * should similarly return null to indicate the lack of any result
175     * (in which case it is not used). In the case of mapped
176     * reductions, this also enables transformations to serve as
177     * filters, returning null (or, in the case of primitive
178     * specializations, the identity basis) if the element should not
179     * be combined. You can create compound transformations and
180     * filterings by composing them yourself under this "null means
181     * there is nothing there now" rule before using them in search or
182     * reduce operations.
183     *
184     * <p>Methods accepting and/or returning Entry arguments maintain
185     * key-value associations. They may be useful for example when
186     * finding the key for the greatest value. Note that "plain" Entry
187     * arguments can be supplied using {@code new
188     * AbstractMap.SimpleEntry(k,v)}.
189     *
190 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
191 dl 1.70 * exception encountered in the application of a supplied
192     * function. Bear in mind when handling such exceptions that other
193     * concurrently executing functions could also have thrown
194     * exceptions, or would have done so if the first exception had
195     * not occurred.
196     *
197 dl 1.84 * <p>Speedups for parallel compared to sequential forms are common
198     * but not guaranteed. Parallel operations involving brief functions
199     * on small maps may execute more slowly than sequential forms if the
200     * underlying work to parallelize the computation is more expensive
201     * than the computation itself. Similarly, parallelization may not
202     * lead to much actual parallelism if all processors are busy
203     * performing unrelated tasks.
204 dl 1.70 *
205 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
206 dl 1.70 *
207     * <p><em>jsr166e note: During transition, this class
208     * uses nested functional interfaces with different names but the
209 jsr166 1.77 * same forms as those expected for JDK8.</em>
210 dl 1.70 *
211 dl 1.1 * <p>This class is a member of the
212     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
213     * Java Collections Framework</a>.
214     *
215 jsr166 1.22 * @since 1.5
216 dl 1.1 * @author Doug Lea
217     * @param <K> the type of keys maintained by this map
218     * @param <V> the type of mapped values
219     */
220 dl 1.112 public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
221 jsr166 1.99 implements ConcurrentMap<K,V>, Serializable {
222 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
223    
224     /**
225 dl 1.102 * An object for traversing and partitioning elements of a source.
226     * This interface provides a subset of the functionality of JDK8
227     * java.util.Spliterator.
228     */
229     public static interface ConcurrentHashMapSpliterator<T> {
230 jsr166 1.103 /**
231 dl 1.102 * If possible, returns a new spliterator covering
232     * approximately one half of the elements, which will not be
233     * covered by this spliterator. Returns null if cannot be
234     * split.
235     */
236     ConcurrentHashMapSpliterator<T> trySplit();
237     /**
238     * Returns an estimate of the number of elements covered by
239     * this Spliterator.
240     */
241     long estimateSize();
242    
243     /** Applies the action to each untraversed element */
244     void forEachRemaining(Action<? super T> action);
245     /** If an element remains, applies the action and returns true. */
246     boolean tryAdvance(Action<? super T> action);
247 dl 1.41 }
248    
249 dl 1.102 // Sams
250     /** Interface describing a void action of one argument */
251     public interface Action<A> { void apply(A a); }
252     /** Interface describing a void action of two arguments */
253     public interface BiAction<A,B> { void apply(A a, B b); }
254     /** Interface describing a function of one argument */
255     public interface Fun<A,T> { T apply(A a); }
256     /** Interface describing a function of two arguments */
257     public interface BiFun<A,B,T> { T apply(A a, B b); }
258     /** Interface describing a function mapping its argument to a double */
259     public interface ObjectToDouble<A> { double apply(A a); }
260     /** Interface describing a function mapping its argument to a long */
261     public interface ObjectToLong<A> { long apply(A a); }
262     /** Interface describing a function mapping its argument to an int */
263     public interface ObjectToInt<A> {int apply(A a); }
264     /** Interface describing a function mapping two arguments to a double */
265     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
266     /** Interface describing a function mapping two arguments to a long */
267     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
268     /** Interface describing a function mapping two arguments to an int */
269     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
270     /** Interface describing a function mapping two doubles to a double */
271     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
272     /** Interface describing a function mapping two longs to a long */
273     public interface LongByLongToLong { long apply(long a, long b); }
274     /** Interface describing a function mapping two ints to an int */
275     public interface IntByIntToInt { int apply(int a, int b); }
276    
277 dl 1.116
278 dl 1.1 /*
279     * Overview:
280     *
281     * The primary design goal of this hash table is to maintain
282     * concurrent readability (typically method get(), but also
283     * iterators and related methods) while minimizing update
284 dl 1.24 * contention. Secondary goals are to keep space consumption about
285     * the same or better than java.util.HashMap, and to support high
286     * initial insertion rates on an empty table by many threads.
287 dl 1.1 *
288 dl 1.102 * This map usually acts as a binned (bucketed) hash table. Each
289     * key-value mapping is held in a Node. Most nodes are instances
290     * of the basic Node class with hash, key, value, and next
291     * fields. However, various subclasses exist: TreeNodes are
292     * arranged in balanced trees, not lists. TreeBins hold the roots
293     * of sets of TreeNodes. ForwardingNodes are placed at the heads
294     * of bins during resizing. ReservationNodes are used as
295     * placeholders while establishing values in computeIfAbsent and
296     * related methods. The types TreeBin, ForwardingNode, and
297     * ReservationNode do not hold normal user keys, values, or
298     * hashes, and are readily distinguishable during search etc
299     * because they have negative hash fields and null key and value
300     * fields. (These special nodes are either uncommon or transient,
301     * so the impact of carrying around some unused fields is
302 jsr166 1.108 * insignificant.)
303 dl 1.1 *
304     * The table is lazily initialized to a power-of-two size upon the
305 dl 1.38 * first insertion. Each bin in the table normally contains a
306     * list of Nodes (most often, the list has only zero or one Node).
307     * Table accesses require volatile/atomic reads, writes, and
308     * CASes. Because there is no other way to arrange this without
309     * adding further indirections, we use intrinsics
310 dl 1.102 * (sun.misc.Unsafe) operations.
311 dl 1.24 *
312 dl 1.82 * We use the top (sign) bit of Node hash fields for control
313     * purposes -- it is available anyway because of addressing
314 dl 1.102 * constraints. Nodes with negative hash fields are specially
315     * handled or ignored in map methods.
316 dl 1.14 *
317 dl 1.27 * Insertion (via put or its variants) of the first node in an
318 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
319 dl 1.38 * by far the most common case for put operations under most
320     * key/hash distributions. Other update operations (insert,
321     * delete, and replace) require locks. We do not want to waste
322     * the space required to associate a distinct lock object with
323     * each bin, so instead use the first node of a bin list itself as
324 dl 1.82 * a lock. Locking support for these locks relies on builtin
325     * "synchronized" monitors.
326 dl 1.24 *
327     * Using the first node of a list as a lock does not by itself
328     * suffice though: When a node is locked, any update must first
329     * validate that it is still the first node after locking it, and
330     * retry if not. Because new nodes are always appended to lists,
331     * once a node is first in a bin, it remains first until deleted
332 dl 1.102 * or the bin becomes invalidated (upon resizing).
333 dl 1.14 *
334 dl 1.24 * The main disadvantage of per-bin locks is that other update
335 dl 1.14 * operations on other nodes in a bin list protected by the same
336     * lock can stall, for example when user equals() or mapping
337 dl 1.38 * functions take a long time. However, statistically, under
338     * random hash codes, this is not a common problem. Ideally, the
339     * frequency of nodes in bins follows a Poisson distribution
340 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
341 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
342     * of 0.75, although with a large variance because of resizing
343     * granularity. Ignoring variance, the expected occurrences of
344     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
345 dl 1.38 * first values are:
346 dl 1.16 *
347 dl 1.38 * 0: 0.60653066
348     * 1: 0.30326533
349     * 2: 0.07581633
350     * 3: 0.01263606
351     * 4: 0.00157952
352     * 5: 0.00015795
353     * 6: 0.00001316
354     * 7: 0.00000094
355     * 8: 0.00000006
356     * more: less than 1 in ten million
357 dl 1.16 *
358     * Lock contention probability for two threads accessing distinct
359 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
360     *
361     * Actual hash code distributions encountered in practice
362     * sometimes deviate significantly from uniform randomness. This
363     * includes the case when N > (1<<30), so some keys MUST collide.
364     * Similarly for dumb or hostile usages in which multiple keys are
365 dl 1.102 * designed to have identical hash codes or ones that differs only
366     * in masked-out high bits. So we use a secondary strategy that
367     * applies when the number of nodes in a bin exceeds a
368     * threshold. These TreeBins use a balanced tree to hold nodes (a
369     * specialized form of red-black trees), bounding search time to
370     * O(log N). Each search step in a TreeBin is at least twice as
371 dl 1.38 * slow as in a regular list, but given that N cannot exceed
372     * (1<<64) (before running out of addresses) this bounds search
373     * steps, lock hold times, etc, to reasonable constants (roughly
374     * 100 nodes inspected per operation worst case) so long as keys
375     * are Comparable (which is very common -- String, Long, etc).
376     * TreeBin nodes (TreeNodes) also maintain the same "next"
377     * traversal pointers as regular nodes, so can be traversed in
378     * iterators in the same way.
379 dl 1.1 *
380 dl 1.38 * The table is resized when occupancy exceeds a percentage
381 dl 1.82 * threshold (nominally, 0.75, but see below). Any thread
382     * noticing an overfull bin may assist in resizing after the
383 dl 1.116 * initiating thread allocates and sets up the replacement array.
384     * However, rather than stalling, these other threads may proceed
385     * with insertions etc. The use of TreeBins shields us from the
386     * worst case effects of overfilling while resizes are in
387 dl 1.82 * progress. Resizing proceeds by transferring bins, one by one,
388 dl 1.116 * from the table to the next table. However, threads claim small
389     * blocks of indices to transfer (via field transferIndex) before
390 dl 1.117 * doing so, reducing contention. A generation stamp in field
391     * sizeCtl ensures that resizings do not overlap. Because we are
392     * using power-of-two expansion, the elements from each bin must
393     * either stay at same index, or move with a power of two
394     * offset. We eliminate unnecessary node creation by catching
395     * cases where old nodes can be reused because their next fields
396     * won't change. On average, only about one-sixth of them need
397     * cloning when a table doubles. The nodes they replace will be
398     * garbage collectable as soon as they are no longer referenced by
399     * any reader thread that may be in the midst of concurrently
400     * traversing table. Upon transfer, the old table bin contains
401     * only a special forwarding node (with hash field "MOVED") that
402     * contains the next table as its key. On encountering a
403     * forwarding node, access and update operations restart, using
404     * the new table.
405 dl 1.82 *
406     * Each bin transfer requires its bin lock, which can stall
407     * waiting for locks while resizing. However, because other
408     * threads can join in and help resize rather than contend for
409     * locks, average aggregate waits become shorter as resizing
410     * progresses. The transfer operation must also ensure that all
411     * accessible bins in both the old and new table are usable by any
412 dl 1.116 * traversal. This is arranged in part by proceeding from the
413     * last bin (table.length - 1) up towards the first. Upon seeing
414     * a forwarding node, traversals (see class Traverser) arrange to
415     * move to the new table without revisiting nodes. To ensure that
416     * no intervening nodes are skipped even when moved out of order,
417     * a stack (see class TableStack) is created on first encounter of
418     * a forwarding node during a traversal, to maintain its place if
419     * later processing the current table. The need for these
420     * save/restore mechanics is relatively rare, but when one
421     * forwarding node is encountered, typically many more will be.
422     * So Traversers use a simple caching scheme to avoid creating so
423     * many new TableStack nodes. (Thanks to Peter Levart for
424     * suggesting use of a stack here.)
425 dl 1.14 *
426 dl 1.24 * The traversal scheme also applies to partial traversals of
427 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
428 dl 1.41 * to support partitioned aggregate operations. Also, read-only
429     * operations give up if ever forwarded to a null table, which
430     * provides support for shutdown-style clearing, which is also not
431     * currently implemented.
432 dl 1.14 *
433     * Lazy table initialization minimizes footprint until first use,
434     * and also avoids resizings when the first operation is from a
435     * putAll, constructor with map argument, or deserialization.
436 dl 1.24 * These cases attempt to override the initial capacity settings,
437     * but harmlessly fail to take effect in cases of races.
438 dl 1.1 *
439 dl 1.82 * The element count is maintained using a specialization of
440     * LongAdder. We need to incorporate a specialization rather than
441     * just use a LongAdder in order to access implicit
442     * contention-sensing that leads to creation of multiple
443     * CounterCells. The counter mechanics avoid contention on
444     * updates but can encounter cache thrashing if read too
445     * frequently during concurrent access. To avoid reading so often,
446     * resizing under contention is attempted only upon adding to a
447     * bin already holding two or more nodes. Under uniform hash
448     * distributions, the probability of this occurring at threshold
449     * is around 13%, meaning that only about 1 in 8 puts check
450 dl 1.102 * threshold (and after resizing, many fewer do so).
451     *
452     * TreeBins use a special form of comparison for search and
453     * related operations (which is the main reason we cannot use
454     * existing collections such as TreeMaps). TreeBins contain
455     * Comparable elements, but may contain others, as well as
456 dl 1.112 * elements that are Comparable but not necessarily Comparable for
457     * the same T, so we cannot invoke compareTo among them. To handle
458     * this, the tree is ordered primarily by hash value, then by
459     * Comparable.compareTo order if applicable. On lookup at a node,
460     * if elements are not comparable or compare as 0 then both left
461     * and right children may need to be searched in the case of tied
462     * hash values. (This corresponds to the full list search that
463     * would be necessary if all elements were non-Comparable and had
464     * tied hashes.) On insertion, to keep a total ordering (or as
465     * close as is required here) across rebalancings, we compare
466     * classes and identityHashCodes as tie-breakers. The red-black
467     * balancing code is updated from pre-jdk-collections
468 dl 1.102 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
469     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
470     * Algorithms" (CLR).
471     *
472     * TreeBins also require an additional locking mechanism. While
473     * list traversal is always possible by readers even during
474 jsr166 1.108 * updates, tree traversal is not, mainly because of tree-rotations
475 dl 1.102 * that may change the root node and/or its linkages. TreeBins
476     * include a simple read-write lock mechanism parasitic on the
477     * main bin-synchronization strategy: Structural adjustments
478     * associated with an insertion or removal are already bin-locked
479     * (and so cannot conflict with other writers) but must wait for
480     * ongoing readers to finish. Since there can be only one such
481     * waiter, we use a simple scheme using a single "waiter" field to
482     * block writers. However, readers need never block. If the root
483     * lock is held, they proceed along the slow traversal path (via
484     * next-pointers) until the lock becomes available or the list is
485     * exhausted, whichever comes first. These cases are not fast, but
486     * maximize aggregate expected throughput.
487 dl 1.14 *
488     * Maintaining API and serialization compatibility with previous
489     * versions of this class introduces several oddities. Mainly: We
490 jsr166 1.124 * leave untouched but unused constructor arguments referring to
491 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
492     * but apply it only to initial table capacity (which is the only
493     * time that we can guarantee to honor it.) We also declare an
494     * unused "Segment" class that is instantiated in minimal form
495     * only when serializing.
496 dl 1.102 *
497 dl 1.112 * Also, solely for compatibility with previous versions of this
498     * class, it extends AbstractMap, even though all of its methods
499     * are overridden, so it is just useless baggage.
500     *
501 dl 1.102 * This file is organized to make things a little easier to follow
502     * while reading than they might otherwise: First the main static
503     * declarations and utilities, then fields, then main public
504     * methods (with a few factorings of multiple public methods into
505     * internal ones), then sizing methods, trees, traversers, and
506     * bulk operations.
507 dl 1.1 */
508    
509     /* ---------------- Constants -------------- */
510    
511     /**
512 dl 1.16 * The largest possible table capacity. This value must be
513     * exactly 1<<30 to stay within Java array allocation and indexing
514 dl 1.24 * bounds for power of two table sizes, and is further required
515     * because the top two bits of 32bit hash fields are used for
516     * control purposes.
517 dl 1.1 */
518 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
519 dl 1.1
520     /**
521 dl 1.14 * The default initial table capacity. Must be a power of 2
522     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
523 dl 1.1 */
524 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
525 dl 1.1
526     /**
527 dl 1.24 * The largest possible (non-power of two) array size.
528     * Needed by toArray and related methods.
529     */
530     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
531    
532     /**
533     * The default concurrency level for this table. Unused but
534     * defined for compatibility with previous versions of this class.
535     */
536     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
537    
538     /**
539 dl 1.16 * The load factor for this table. Overrides of this value in
540     * constructors affect only the initial table capacity. The
541 dl 1.24 * actual floating point value isn't normally used -- it is
542     * simpler to use expressions such as {@code n - (n >>> 2)} for
543     * the associated resizing threshold.
544 dl 1.1 */
545 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
546 dl 1.1
547     /**
548 dl 1.38 * The bin count threshold for using a tree rather than list for a
549 dl 1.102 * bin. Bins are converted to trees when adding an element to a
550     * bin with at least this many nodes. The value must be greater
551     * than 2, and should be at least 8 to mesh with assumptions in
552     * tree removal about conversion back to plain bins upon
553     * shrinkage.
554     */
555     static final int TREEIFY_THRESHOLD = 8;
556    
557     /**
558     * The bin count threshold for untreeifying a (split) bin during a
559     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
560     * most 6 to mesh with shrinkage detection under removal.
561     */
562     static final int UNTREEIFY_THRESHOLD = 6;
563    
564     /**
565     * The smallest table capacity for which bins may be treeified.
566     * (Otherwise the table is resized if too many nodes in a bin.)
567     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
568     * conflicts between resizing and treeification thresholds.
569 dl 1.38 */
570 dl 1.102 static final int MIN_TREEIFY_CAPACITY = 64;
571 dl 1.38
572 dl 1.82 /**
573     * Minimum number of rebinnings per transfer step. Ranges are
574     * subdivided to allow multiple resizer threads. This value
575     * serves as a lower bound to avoid resizers encountering
576     * excessive memory contention. The value should be at least
577     * DEFAULT_CAPACITY.
578     */
579     private static final int MIN_TRANSFER_STRIDE = 16;
580    
581 dl 1.117 /**
582     * The number of bits used for generation stamp in sizeCtl.
583     * Must be at least 6 for 32bit arrays.
584     */
585     private static int RESIZE_STAMP_BITS = 16;
586    
587     /**
588     * The maximum number of threads that can help resize.
589     * Must fit in 32 - RESIZE_STAMP_BITS bits.
590     */
591     private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
592    
593     /**
594     * The bit shift for recording size stamp in sizeCtl.
595     */
596     private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
597    
598 dl 1.24 /*
599 dl 1.82 * Encodings for Node hash fields. See above for explanation.
600 dl 1.1 */
601 dl 1.109 static final int MOVED = -1; // hash for forwarding nodes
602     static final int TREEBIN = -2; // hash for roots of trees
603     static final int RESERVED = -3; // hash for transient reservations
604 dl 1.82 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
605    
606     /** Number of CPUS, to place bounds on some sizings */
607     static final int NCPU = Runtime.getRuntime().availableProcessors();
608    
609 dl 1.102 /** For serialization compatibility. */
610     private static final ObjectStreamField[] serialPersistentFields = {
611     new ObjectStreamField("segments", Segment[].class),
612     new ObjectStreamField("segmentMask", Integer.TYPE),
613     new ObjectStreamField("segmentShift", Integer.TYPE)
614     };
615    
616     /* ---------------- Nodes -------------- */
617    
618     /**
619     * Key-value entry. This class is never exported out as a
620     * user-mutable Map.Entry (i.e., one supporting setValue; see
621     * MapEntry below), but can be used for read-only traversals used
622 jsr166 1.108 * in bulk tasks. Subclasses of Node with a negative hash field
623 dl 1.102 * are special, and contain null keys and values (but are never
624     * exported). Otherwise, keys and vals are never null.
625     */
626     static class Node<K,V> implements Map.Entry<K,V> {
627     final int hash;
628     final K key;
629     volatile V val;
630 dl 1.109 volatile Node<K,V> next;
631 dl 1.102
632     Node(int hash, K key, V val, Node<K,V> next) {
633     this.hash = hash;
634     this.key = key;
635     this.val = val;
636     this.next = next;
637     }
638    
639 jsr166 1.123 public final K getKey() { return key; }
640     public final V getValue() { return val; }
641     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
642     public final String toString() { return key + "=" + val; }
643 dl 1.102 public final V setValue(V value) {
644     throw new UnsupportedOperationException();
645     }
646 dl 1.82
647 dl 1.102 public final boolean equals(Object o) {
648     Object k, v, u; Map.Entry<?,?> e;
649     return ((o instanceof Map.Entry) &&
650     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
651     (v = e.getValue()) != null &&
652     (k == key || k.equals(key)) &&
653     (v == (u = val) || v.equals(u)));
654     }
655 dl 1.82
656 dl 1.102 /**
657     * Virtualized support for map.get(); overridden in subclasses.
658     */
659     Node<K,V> find(int h, Object k) {
660     Node<K,V> e = this;
661     if (k != null) {
662     do {
663     K ek;
664     if (e.hash == h &&
665     ((ek = e.key) == k || (ek != null && k.equals(ek))))
666     return e;
667     } while ((e = e.next) != null);
668     }
669     return null;
670     }
671 dl 1.82 }
672    
673 dl 1.102 /* ---------------- Static utilities -------------- */
674    
675 dl 1.82 /**
676 dl 1.102 * Spreads (XORs) higher bits of hash to lower and also forces top
677     * bit to 0. Because the table uses power-of-two masking, sets of
678     * hashes that vary only in bits above the current mask will
679     * always collide. (Among known examples are sets of Float keys
680     * holding consecutive whole numbers in small tables.) So we
681     * apply a transform that spreads the impact of higher bits
682     * downward. There is a tradeoff between speed, utility, and
683     * quality of bit-spreading. Because many common sets of hashes
684     * are already reasonably distributed (so don't benefit from
685     * spreading), and because we use trees to handle large sets of
686     * collisions in bins, we just XOR some shifted bits in the
687     * cheapest possible way to reduce systematic lossage, as well as
688     * to incorporate impact of the highest bits that would otherwise
689     * never be used in index calculations because of table bounds.
690 dl 1.82 */
691 dl 1.102 static final int spread(int h) {
692     return (h ^ (h >>> 16)) & HASH_BITS;
693 dl 1.82 }
694    
695     /**
696 dl 1.102 * Returns a power of two table size for the given desired capacity.
697     * See Hackers Delight, sec 3.2
698 dl 1.82 */
699 dl 1.102 private static final int tableSizeFor(int c) {
700     int n = c - 1;
701     n |= n >>> 1;
702     n |= n >>> 2;
703     n |= n >>> 4;
704     n |= n >>> 8;
705     n |= n >>> 16;
706     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
707     }
708 dl 1.82
709     /**
710 dl 1.102 * Returns x's Class if it is of the form "class C implements
711     * Comparable<C>", else null.
712 dl 1.82 */
713 dl 1.102 static Class<?> comparableClassFor(Object x) {
714     if (x instanceof Comparable) {
715     Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
716     if ((c = x.getClass()) == String.class) // bypass checks
717     return c;
718     if ((ts = c.getGenericInterfaces()) != null) {
719     for (int i = 0; i < ts.length; ++i) {
720     if (((t = ts[i]) instanceof ParameterizedType) &&
721     ((p = (ParameterizedType)t).getRawType() ==
722     Comparable.class) &&
723     (as = p.getActualTypeArguments()) != null &&
724     as.length == 1 && as[0] == c) // type arg is c
725     return c;
726     }
727     }
728     }
729     return null;
730     }
731 dl 1.82
732     /**
733 dl 1.102 * Returns k.compareTo(x) if x matches kc (k's screened comparable
734     * class), else 0.
735 dl 1.82 */
736 dl 1.102 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
737     static int compareComparables(Class<?> kc, Object k, Object x) {
738     return (x == null || x.getClass() != kc ? 0 :
739     ((Comparable)k).compareTo(x));
740     }
741    
742     /* ---------------- Table element access -------------- */
743    
744     /*
745     * Volatile access methods are used for table elements as well as
746     * elements of in-progress next table while resizing. All uses of
747     * the tab arguments must be null checked by callers. All callers
748     * also paranoically precheck that tab's length is not zero (or an
749     * equivalent check), thus ensuring that any index argument taking
750     * the form of a hash value anded with (length - 1) is a valid
751     * index. Note that, to be correct wrt arbitrary concurrency
752     * errors by users, these checks must operate on local variables,
753     * which accounts for some odd-looking inline assignments below.
754     * Note that calls to setTabAt always occur within locked regions,
755 dl 1.117 * and so in principle require only release ordering, not
756 dl 1.109 * full volatile semantics, but are currently coded as volatile
757     * writes to be conservative.
758 dl 1.102 */
759    
760     @SuppressWarnings("unchecked")
761     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
762     return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
763     }
764 dl 1.24
765 dl 1.102 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
766     Node<K,V> c, Node<K,V> v) {
767     return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
768     }
769 jsr166 1.103
770 dl 1.102 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
771 dl 1.109 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
772 dl 1.102 }
773 jsr166 1.103
774 dl 1.24 /* ---------------- Fields -------------- */
775    
776     /**
777     * The array of bins. Lazily initialized upon first insertion.
778     * Size is always a power of two. Accessed directly by iterators.
779     */
780 dl 1.102 transient volatile Node<K,V>[] table;
781 dl 1.14
782 dl 1.16 /**
783 dl 1.82 * The next table to use; non-null only while resizing.
784     */
785 dl 1.102 private transient volatile Node<K,V>[] nextTable;
786 dl 1.82
787     /**
788     * Base counter value, used mainly when there is no contention,
789     * but also as a fallback during table initialization
790     * races. Updated via CAS.
791 dl 1.16 */
792 dl 1.82 private transient volatile long baseCount;
793 dl 1.24
794     /**
795     * Table initialization and resizing control. When negative, the
796 dl 1.82 * table is being initialized or resized: -1 for initialization,
797     * else -(1 + the number of active resizing threads). Otherwise,
798     * when table is null, holds the initial table size to use upon
799     * creation, or 0 for default. After initialization, holds the
800     * next element count value upon which to resize the table.
801 dl 1.24 */
802     private transient volatile int sizeCtl;
803    
804 dl 1.82 /**
805     * The next table index (plus one) to split while resizing.
806     */
807     private transient volatile int transferIndex;
808    
809     /**
810 dl 1.102 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
811 dl 1.82 */
812 dl 1.102 private transient volatile int cellsBusy;
813 dl 1.82
814     /**
815     * Table of counter cells. When non-null, size is a power of 2.
816     */
817     private transient volatile CounterCell[] counterCells;
818    
819 dl 1.24 // views
820 dl 1.70 private transient KeySetView<K,V> keySet;
821 dl 1.75 private transient ValuesView<K,V> values;
822     private transient EntrySetView<K,V> entrySet;
823 dl 1.24
824 dl 1.16
825 dl 1.102 /* ---------------- Public operations -------------- */
826 dl 1.38
827 dl 1.102 /**
828     * Creates a new, empty map with the default initial table size (16).
829     */
830     public ConcurrentHashMapV8() {
831 dl 1.38 }
832    
833 dl 1.102 /**
834     * Creates a new, empty map with an initial table size
835     * accommodating the specified number of elements without the need
836     * to dynamically resize.
837     *
838     * @param initialCapacity The implementation performs internal
839     * sizing to accommodate this many elements.
840     * @throws IllegalArgumentException if the initial capacity of
841     * elements is negative
842     */
843     public ConcurrentHashMapV8(int initialCapacity) {
844     if (initialCapacity < 0)
845     throw new IllegalArgumentException();
846     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
847     MAXIMUM_CAPACITY :
848     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
849     this.sizeCtl = cap;
850 dl 1.38 }
851    
852 dl 1.102 /**
853     * Creates a new map with the same mappings as the given map.
854     *
855     * @param m the map
856     */
857     public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
858     this.sizeCtl = DEFAULT_CAPACITY;
859     putAll(m);
860 dl 1.38 }
861    
862 dl 1.102 /**
863     * Creates a new, empty map with an initial table size based on
864     * the given number of elements ({@code initialCapacity}) and
865     * initial table density ({@code loadFactor}).
866     *
867     * @param initialCapacity the initial capacity. The implementation
868     * performs internal sizing to accommodate this many elements,
869     * given the specified load factor.
870     * @param loadFactor the load factor (table density) for
871     * establishing the initial table size
872     * @throws IllegalArgumentException if the initial capacity of
873     * elements is negative or the load factor is nonpositive
874     *
875     * @since 1.6
876     */
877     public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
878     this(initialCapacity, loadFactor, 1);
879     }
880 dl 1.1
881     /**
882 dl 1.102 * Creates a new, empty map with an initial table size based on
883     * the given number of elements ({@code initialCapacity}), table
884     * density ({@code loadFactor}), and number of concurrently
885     * updating threads ({@code concurrencyLevel}).
886     *
887     * @param initialCapacity the initial capacity. The implementation
888     * performs internal sizing to accommodate this many elements,
889     * given the specified load factor.
890     * @param loadFactor the load factor (table density) for
891     * establishing the initial table size
892     * @param concurrencyLevel the estimated number of concurrently
893     * updating threads. The implementation may use this value as
894     * a sizing hint.
895     * @throws IllegalArgumentException if the initial capacity is
896     * negative or the load factor or concurrencyLevel are
897     * nonpositive
898 dl 1.1 */
899 dl 1.102 public ConcurrentHashMapV8(int initialCapacity,
900     float loadFactor, int concurrencyLevel) {
901     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
902     throw new IllegalArgumentException();
903     if (initialCapacity < concurrencyLevel) // Use at least as many bins
904     initialCapacity = concurrencyLevel; // as estimated threads
905     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
906     int cap = (size >= (long)MAXIMUM_CAPACITY) ?
907     MAXIMUM_CAPACITY : tableSizeFor((int)size);
908     this.sizeCtl = cap;
909 dl 1.24 }
910 dl 1.1
911 dl 1.102 // Original (since JDK1.2) Map methods
912 dl 1.38
913     /**
914 dl 1.102 * {@inheritDoc}
915 dl 1.38 */
916 dl 1.102 public int size() {
917     long n = sumCount();
918     return ((n < 0L) ? 0 :
919     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
920     (int)n);
921 dl 1.38 }
922 dl 1.1
923 dl 1.38 /**
924 dl 1.102 * {@inheritDoc}
925     */
926     public boolean isEmpty() {
927     return sumCount() <= 0L; // ignore transient negative values
928     }
929    
930     /**
931     * Returns the value to which the specified key is mapped,
932     * or {@code null} if this map contains no mapping for the key.
933 dl 1.38 *
934 dl 1.102 * <p>More formally, if this map contains a mapping from a key
935     * {@code k} to a value {@code v} such that {@code key.equals(k)},
936     * then this method returns {@code v}; otherwise it returns
937     * {@code null}. (There can be at most one such mapping.)
938 dl 1.38 *
939 dl 1.102 * @throws NullPointerException if the specified key is null
940 dl 1.1 */
941 dl 1.102 public V get(Object key) {
942     Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
943     int h = spread(key.hashCode());
944     if ((tab = table) != null && (n = tab.length) > 0 &&
945     (e = tabAt(tab, (n - 1) & h)) != null) {
946     if ((eh = e.hash) == h) {
947     if ((ek = e.key) == key || (ek != null && key.equals(ek)))
948     return e.val;
949     }
950     else if (eh < 0)
951     return (p = e.find(h, key)) != null ? p.val : null;
952     while ((e = e.next) != null) {
953     if (e.hash == h &&
954     ((ek = e.key) == key || (ek != null && key.equals(ek))))
955     return e.val;
956 dl 1.41 }
957     }
958 dl 1.102 return null;
959     }
960 dl 1.41
961 dl 1.102 /**
962     * Tests if the specified object is a key in this table.
963     *
964     * @param key possible key
965     * @return {@code true} if and only if the specified object
966     * is a key in this table, as determined by the
967     * {@code equals} method; {@code false} otherwise
968     * @throws NullPointerException if the specified key is null
969     */
970     public boolean containsKey(Object key) {
971     return get(key) != null;
972     }
973 dl 1.41
974 dl 1.102 /**
975     * Returns {@code true} if this map maps one or more keys to the
976     * specified value. Note: This method may require a full traversal
977     * of the map, and is much slower than method {@code containsKey}.
978     *
979     * @param value value whose presence in this map is to be tested
980     * @return {@code true} if this map maps one or more keys to the
981     * specified value
982     * @throws NullPointerException if the specified value is null
983     */
984     public boolean containsValue(Object value) {
985     if (value == null)
986     throw new NullPointerException();
987     Node<K,V>[] t;
988     if ((t = table) != null) {
989     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
990     for (Node<K,V> p; (p = it.advance()) != null; ) {
991     V v;
992     if ((v = p.val) == value || (v != null && value.equals(v)))
993     return true;
994 dl 1.38 }
995     }
996 dl 1.102 return false;
997     }
998 dl 1.38
999 dl 1.102 /**
1000     * Maps the specified key to the specified value in this table.
1001     * Neither the key nor the value can be null.
1002     *
1003     * <p>The value can be retrieved by calling the {@code get} method
1004     * with a key that is equal to the original key.
1005     *
1006     * @param key key with which the specified value is to be associated
1007     * @param value value to be associated with the specified key
1008     * @return the previous value associated with {@code key}, or
1009     * {@code null} if there was no mapping for {@code key}
1010     * @throws NullPointerException if the specified key or value is null
1011     */
1012     public V put(K key, V value) {
1013     return putVal(key, value, false);
1014     }
1015 dl 1.38
1016 dl 1.102 /** Implementation for put and putIfAbsent */
1017     final V putVal(K key, V value, boolean onlyIfAbsent) {
1018     if (key == null || value == null) throw new NullPointerException();
1019     int hash = spread(key.hashCode());
1020     int binCount = 0;
1021     for (Node<K,V>[] tab = table;;) {
1022     Node<K,V> f; int n, i, fh;
1023     if (tab == null || (n = tab.length) == 0)
1024     tab = initTable();
1025     else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1026     if (casTabAt(tab, i, null,
1027     new Node<K,V>(hash, key, value, null)))
1028     break; // no lock when adding to empty bin
1029 dl 1.38 }
1030 dl 1.102 else if ((fh = f.hash) == MOVED)
1031     tab = helpTransfer(tab, f);
1032 dl 1.38 else {
1033 dl 1.102 V oldVal = null;
1034     synchronized (f) {
1035     if (tabAt(tab, i) == f) {
1036     if (fh >= 0) {
1037     binCount = 1;
1038     for (Node<K,V> e = f;; ++binCount) {
1039     K ek;
1040     if (e.hash == hash &&
1041     ((ek = e.key) == key ||
1042     (ek != null && key.equals(ek)))) {
1043     oldVal = e.val;
1044     if (!onlyIfAbsent)
1045     e.val = value;
1046     break;
1047 dl 1.41 }
1048 dl 1.102 Node<K,V> pred = e;
1049     if ((e = e.next) == null) {
1050     pred.next = new Node<K,V>(hash, key,
1051     value, null);
1052     break;
1053 dl 1.41 }
1054 dl 1.38 }
1055     }
1056 dl 1.102 else if (f instanceof TreeBin) {
1057     Node<K,V> p;
1058     binCount = 2;
1059     if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1060     value)) != null) {
1061     oldVal = p.val;
1062     if (!onlyIfAbsent)
1063     p.val = value;
1064 dl 1.38 }
1065     }
1066     }
1067     }
1068 dl 1.102 if (binCount != 0) {
1069     if (binCount >= TREEIFY_THRESHOLD)
1070     treeifyBin(tab, i);
1071     if (oldVal != null)
1072     return oldVal;
1073     break;
1074     }
1075 dl 1.41 }
1076 dl 1.38 }
1077 dl 1.102 addCount(1L, binCount);
1078     return null;
1079 dl 1.1 }
1080    
1081 dl 1.14 /**
1082 dl 1.102 * Copies all of the mappings from the specified map to this one.
1083     * These mappings replace any mappings that this map had for any of the
1084     * keys currently in the specified map.
1085     *
1086     * @param m mappings to be stored in this map
1087 dl 1.14 */
1088 dl 1.102 public void putAll(Map<? extends K, ? extends V> m) {
1089     tryPresize(m.size());
1090     for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1091     putVal(e.getKey(), e.getValue(), false);
1092 dl 1.38 }
1093    
1094     /**
1095 dl 1.102 * Removes the key (and its corresponding value) from this map.
1096     * This method does nothing if the key is not in the map.
1097     *
1098     * @param key the key that needs to be removed
1099     * @return the previous value associated with {@code key}, or
1100     * {@code null} if there was no mapping for {@code key}
1101     * @throws NullPointerException if the specified key is null
1102 dl 1.38 */
1103 dl 1.102 public V remove(Object key) {
1104     return replaceNode(key, null, null);
1105 dl 1.1 }
1106    
1107 dl 1.27 /**
1108     * Implementation for the four public remove/replace methods:
1109     * Replaces node value with v, conditional upon match of cv if
1110     * non-null. If resulting value is null, delete.
1111     */
1112 dl 1.102 final V replaceNode(Object key, V value, Object cv) {
1113     int hash = spread(key.hashCode());
1114     for (Node<K,V>[] tab = table;;) {
1115     Node<K,V> f; int n, i, fh;
1116     if (tab == null || (n = tab.length) == 0 ||
1117     (f = tabAt(tab, i = (n - 1) & hash)) == null)
1118 dl 1.27 break;
1119 dl 1.102 else if ((fh = f.hash) == MOVED)
1120     tab = helpTransfer(tab, f);
1121     else {
1122     V oldVal = null;
1123     boolean validated = false;
1124     synchronized (f) {
1125     if (tabAt(tab, i) == f) {
1126     if (fh >= 0) {
1127     validated = true;
1128     for (Node<K,V> e = f, pred = null;;) {
1129     K ek;
1130     if (e.hash == hash &&
1131     ((ek = e.key) == key ||
1132     (ek != null && key.equals(ek)))) {
1133     V ev = e.val;
1134     if (cv == null || cv == ev ||
1135     (ev != null && cv.equals(ev))) {
1136     oldVal = ev;
1137     if (value != null)
1138     e.val = value;
1139     else if (pred != null)
1140     pred.next = e.next;
1141     else
1142     setTabAt(tab, i, e.next);
1143     }
1144     break;
1145     }
1146     pred = e;
1147     if ((e = e.next) == null)
1148     break;
1149     }
1150     }
1151     else if (f instanceof TreeBin) {
1152 dl 1.38 validated = true;
1153 dl 1.102 TreeBin<K,V> t = (TreeBin<K,V>)f;
1154     TreeNode<K,V> r, p;
1155     if ((r = t.root) != null &&
1156     (p = r.findTreeNode(hash, key, null)) != null) {
1157 dl 1.84 V pv = p.val;
1158 dl 1.102 if (cv == null || cv == pv ||
1159     (pv != null && cv.equals(pv))) {
1160 dl 1.38 oldVal = pv;
1161 dl 1.102 if (value != null)
1162     p.val = value;
1163     else if (t.removeTreeNode(p))
1164     setTabAt(tab, i, untreeify(t.first));
1165 dl 1.38 }
1166     }
1167     }
1168     }
1169 dl 1.102 }
1170     if (validated) {
1171     if (oldVal != null) {
1172     if (value == null)
1173 dl 1.82 addCount(-1L, -1);
1174 dl 1.102 return oldVal;
1175 dl 1.38 }
1176 dl 1.102 break;
1177 dl 1.38 }
1178     }
1179 dl 1.102 }
1180     return null;
1181     }
1182    
1183     /**
1184     * Removes all of the mappings from this map.
1185     */
1186     public void clear() {
1187     long delta = 0L; // negative number of deletions
1188     int i = 0;
1189     Node<K,V>[] tab = table;
1190     while (tab != null && i < tab.length) {
1191     int fh;
1192     Node<K,V> f = tabAt(tab, i);
1193     if (f == null)
1194     ++i;
1195     else if ((fh = f.hash) == MOVED) {
1196     tab = helpTransfer(tab, f);
1197     i = 0; // restart
1198     }
1199 dl 1.82 else {
1200 jsr166 1.83 synchronized (f) {
1201 dl 1.27 if (tabAt(tab, i) == f) {
1202 dl 1.102 Node<K,V> p = (fh >= 0 ? f :
1203     (f instanceof TreeBin) ?
1204     ((TreeBin<K,V>)f).first : null);
1205     while (p != null) {
1206     --delta;
1207     p = p.next;
1208 dl 1.27 }
1209 dl 1.102 setTabAt(tab, i++, null);
1210 dl 1.27 }
1211     }
1212     }
1213     }
1214 dl 1.102 if (delta != 0L)
1215     addCount(delta, -1);
1216     }
1217    
1218     /**
1219     * Returns a {@link Set} view of the keys contained in this map.
1220     * The set is backed by the map, so changes to the map are
1221     * reflected in the set, and vice-versa. The set supports element
1222     * removal, which removes the corresponding mapping from this map,
1223     * via the {@code Iterator.remove}, {@code Set.remove},
1224     * {@code removeAll}, {@code retainAll}, and {@code clear}
1225     * operations. It does not support the {@code add} or
1226     * {@code addAll} operations.
1227     *
1228     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1229     * that will never throw {@link ConcurrentModificationException},
1230     * and guarantees to traverse elements as they existed upon
1231     * construction of the iterator, and may (but is not guaranteed to)
1232     * reflect any modifications subsequent to construction.
1233     *
1234     * @return the set view
1235     */
1236     public KeySetView<K,V> keySet() {
1237     KeySetView<K,V> ks;
1238     return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1239     }
1240    
1241     /**
1242     * Returns a {@link Collection} view of the values contained in this map.
1243     * The collection is backed by the map, so changes to the map are
1244     * reflected in the collection, and vice-versa. The collection
1245     * supports element removal, which removes the corresponding
1246     * mapping from this map, via the {@code Iterator.remove},
1247     * {@code Collection.remove}, {@code removeAll},
1248     * {@code retainAll}, and {@code clear} operations. It does not
1249     * support the {@code add} or {@code addAll} operations.
1250     *
1251     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1252     * that will never throw {@link ConcurrentModificationException},
1253     * and guarantees to traverse elements as they existed upon
1254     * construction of the iterator, and may (but is not guaranteed to)
1255     * reflect any modifications subsequent to construction.
1256     *
1257     * @return the collection view
1258     */
1259     public Collection<V> values() {
1260     ValuesView<K,V> vs;
1261     return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1262     }
1263    
1264     /**
1265     * Returns a {@link Set} view of the mappings contained in this map.
1266     * The set is backed by the map, so changes to the map are
1267     * reflected in the set, and vice-versa. The set supports element
1268     * removal, which removes the corresponding mapping from the map,
1269     * via the {@code Iterator.remove}, {@code Set.remove},
1270     * {@code removeAll}, {@code retainAll}, and {@code clear}
1271     * operations.
1272     *
1273     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1274     * that will never throw {@link ConcurrentModificationException},
1275     * and guarantees to traverse elements as they existed upon
1276     * construction of the iterator, and may (but is not guaranteed to)
1277     * reflect any modifications subsequent to construction.
1278     *
1279     * @return the set view
1280     */
1281     public Set<Map.Entry<K,V>> entrySet() {
1282     EntrySetView<K,V> es;
1283     return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1284 dl 1.27 }
1285    
1286 dl 1.102 /**
1287     * Returns the hash code value for this {@link Map}, i.e.,
1288     * the sum of, for each key-value pair in the map,
1289     * {@code key.hashCode() ^ value.hashCode()}.
1290     *
1291     * @return the hash code value for this map
1292 dl 1.27 */
1293 dl 1.102 public int hashCode() {
1294     int h = 0;
1295     Node<K,V>[] t;
1296     if ((t = table) != null) {
1297     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1298     for (Node<K,V> p; (p = it.advance()) != null; )
1299     h += p.key.hashCode() ^ p.val.hashCode();
1300     }
1301     return h;
1302     }
1303 dl 1.27
1304 dl 1.102 /**
1305     * Returns a string representation of this map. The string
1306     * representation consists of a list of key-value mappings (in no
1307     * particular order) enclosed in braces ("{@code {}}"). Adjacent
1308     * mappings are separated by the characters {@code ", "} (comma
1309     * and space). Each key-value mapping is rendered as the key
1310     * followed by an equals sign ("{@code =}") followed by the
1311     * associated value.
1312     *
1313     * @return a string representation of this map
1314     */
1315     public String toString() {
1316     Node<K,V>[] t;
1317     int f = (t = table) == null ? 0 : t.length;
1318     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1319     StringBuilder sb = new StringBuilder();
1320     sb.append('{');
1321     Node<K,V> p;
1322     if ((p = it.advance()) != null) {
1323     for (;;) {
1324     K k = p.key;
1325     V v = p.val;
1326     sb.append(k == this ? "(this Map)" : k);
1327     sb.append('=');
1328     sb.append(v == this ? "(this Map)" : v);
1329     if ((p = it.advance()) == null)
1330     break;
1331     sb.append(',').append(' ');
1332 dl 1.14 }
1333 dl 1.102 }
1334     return sb.append('}').toString();
1335     }
1336    
1337     /**
1338     * Compares the specified object with this map for equality.
1339     * Returns {@code true} if the given object is a map with the same
1340     * mappings as this map. This operation may return misleading
1341     * results if either map is concurrently modified during execution
1342     * of this method.
1343     *
1344     * @param o object to be compared for equality with this map
1345     * @return {@code true} if the specified object is equal to this map
1346     */
1347     public boolean equals(Object o) {
1348     if (o != this) {
1349     if (!(o instanceof Map))
1350     return false;
1351     Map<?,?> m = (Map<?,?>) o;
1352     Node<K,V>[] t;
1353     int f = (t = table) == null ? 0 : t.length;
1354     Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1355     for (Node<K,V> p; (p = it.advance()) != null; ) {
1356     V val = p.val;
1357     Object v = m.get(p.key);
1358     if (v == null || (v != val && !v.equals(val)))
1359     return false;
1360 dl 1.38 }
1361 dl 1.102 for (Map.Entry<?,?> e : m.entrySet()) {
1362     Object mk, mv, v;
1363     if ((mk = e.getKey()) == null ||
1364     (mv = e.getValue()) == null ||
1365     (v = get(mk)) == null ||
1366     (mv != v && !mv.equals(v)))
1367     return false;
1368 dl 1.1 }
1369     }
1370 dl 1.102 return true;
1371     }
1372    
1373     /**
1374     * Stripped-down version of helper class used in previous version,
1375     * declared for the sake of serialization compatibility
1376     */
1377     static class Segment<K,V> extends ReentrantLock implements Serializable {
1378     private static final long serialVersionUID = 2249069246763182397L;
1379     final float loadFactor;
1380     Segment(float lf) { this.loadFactor = lf; }
1381 dl 1.27 }
1382    
1383 dl 1.102 /**
1384     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1385     * stream (i.e., serializes it).
1386     * @param s the stream
1387 jsr166 1.113 * @throws java.io.IOException if an I/O error occurs
1388 dl 1.102 * @serialData
1389     * the key (Object) and value (Object)
1390     * for each key-value mapping, followed by a null pair.
1391     * The key-value mappings are emitted in no particular order.
1392     */
1393     private void writeObject(java.io.ObjectOutputStream s)
1394     throws java.io.IOException {
1395     // For serialization compatibility
1396     // Emulate segment calculation from previous version of this class
1397     int sshift = 0;
1398     int ssize = 1;
1399     while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1400     ++sshift;
1401     ssize <<= 1;
1402     }
1403     int segmentShift = 32 - sshift;
1404     int segmentMask = ssize - 1;
1405     @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1406     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1407     for (int i = 0; i < segments.length; ++i)
1408     segments[i] = new Segment<K,V>(LOAD_FACTOR);
1409     s.putFields().put("segments", segments);
1410     s.putFields().put("segmentShift", segmentShift);
1411     s.putFields().put("segmentMask", segmentMask);
1412     s.writeFields();
1413    
1414     Node<K,V>[] t;
1415     if ((t = table) != null) {
1416     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1417     for (Node<K,V> p; (p = it.advance()) != null; ) {
1418     s.writeObject(p.key);
1419     s.writeObject(p.val);
1420 dl 1.27 }
1421 dl 1.102 }
1422     s.writeObject(null);
1423     s.writeObject(null);
1424     segments = null; // throw away
1425     }
1426    
1427     /**
1428     * Reconstitutes the instance from a stream (that is, deserializes it).
1429     * @param s the stream
1430 jsr166 1.113 * @throws ClassNotFoundException if the class of a serialized object
1431     * could not be found
1432     * @throws java.io.IOException if an I/O error occurs
1433 dl 1.102 */
1434     private void readObject(java.io.ObjectInputStream s)
1435     throws java.io.IOException, ClassNotFoundException {
1436     /*
1437     * To improve performance in typical cases, we create nodes
1438     * while reading, then place in table once size is known.
1439     * However, we must also validate uniqueness and deal with
1440     * overpopulated bins while doing so, which requires
1441     * specialized versions of putVal mechanics.
1442     */
1443     sizeCtl = -1; // force exclusion for table construction
1444     s.defaultReadObject();
1445     long size = 0L;
1446     Node<K,V> p = null;
1447     for (;;) {
1448     @SuppressWarnings("unchecked") K k = (K) s.readObject();
1449     @SuppressWarnings("unchecked") V v = (V) s.readObject();
1450     if (k != null && v != null) {
1451     p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1452     ++size;
1453 dl 1.38 }
1454 dl 1.102 else
1455     break;
1456     }
1457     if (size == 0L)
1458     sizeCtl = 0;
1459     else {
1460     int n;
1461     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1462     n = MAXIMUM_CAPACITY;
1463 dl 1.27 else {
1464 dl 1.102 int sz = (int)size;
1465     n = tableSizeFor(sz + (sz >>> 1) + 1);
1466     }
1467 jsr166 1.115 @SuppressWarnings("unchecked")
1468     Node<K,V>[] tab = (Node<K,V>[])new Node<?,?>[n];
1469 dl 1.102 int mask = n - 1;
1470     long added = 0L;
1471     while (p != null) {
1472     boolean insertAtFront;
1473     Node<K,V> next = p.next, first;
1474     int h = p.hash, j = h & mask;
1475     if ((first = tabAt(tab, j)) == null)
1476     insertAtFront = true;
1477     else {
1478     K k = p.key;
1479     if (first.hash < 0) {
1480     TreeBin<K,V> t = (TreeBin<K,V>)first;
1481     if (t.putTreeVal(h, k, p.val) == null)
1482     ++added;
1483     insertAtFront = false;
1484     }
1485     else {
1486     int binCount = 0;
1487     insertAtFront = true;
1488     Node<K,V> q; K qk;
1489     for (q = first; q != null; q = q.next) {
1490     if (q.hash == h &&
1491     ((qk = q.key) == k ||
1492     (qk != null && k.equals(qk)))) {
1493     insertAtFront = false;
1494 dl 1.82 break;
1495     }
1496 dl 1.102 ++binCount;
1497     }
1498     if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1499     insertAtFront = false;
1500     ++added;
1501     p.next = first;
1502     TreeNode<K,V> hd = null, tl = null;
1503     for (q = p; q != null; q = q.next) {
1504     TreeNode<K,V> t = new TreeNode<K,V>
1505     (q.hash, q.key, q.val, null, null);
1506     if ((t.prev = tl) == null)
1507     hd = t;
1508     else
1509     tl.next = t;
1510     tl = t;
1511 dl 1.27 }
1512 dl 1.102 setTabAt(tab, j, new TreeBin<K,V>(hd));
1513 dl 1.27 }
1514 dl 1.38 }
1515 dl 1.82 }
1516 dl 1.102 if (insertAtFront) {
1517     ++added;
1518     p.next = first;
1519     setTabAt(tab, j, p);
1520     }
1521     p = next;
1522     }
1523     table = tab;
1524     sizeCtl = n - (n >>> 2);
1525     baseCount = added;
1526     }
1527     }
1528    
1529     // ConcurrentMap methods
1530    
1531     /**
1532     * {@inheritDoc}
1533     *
1534     * @return the previous value associated with the specified key,
1535     * or {@code null} if there was no mapping for the key
1536     * @throws NullPointerException if the specified key or value is null
1537     */
1538     public V putIfAbsent(K key, V value) {
1539     return putVal(key, value, true);
1540     }
1541    
1542     /**
1543     * {@inheritDoc}
1544     *
1545     * @throws NullPointerException if the specified key is null
1546     */
1547     public boolean remove(Object key, Object value) {
1548     if (key == null)
1549     throw new NullPointerException();
1550     return value != null && replaceNode(key, null, value) != null;
1551     }
1552    
1553     /**
1554     * {@inheritDoc}
1555     *
1556     * @throws NullPointerException if any of the arguments are null
1557     */
1558     public boolean replace(K key, V oldValue, V newValue) {
1559     if (key == null || oldValue == null || newValue == null)
1560     throw new NullPointerException();
1561     return replaceNode(key, newValue, oldValue) != null;
1562     }
1563    
1564     /**
1565     * {@inheritDoc}
1566     *
1567     * @return the previous value associated with the specified key,
1568     * or {@code null} if there was no mapping for the key
1569     * @throws NullPointerException if the specified key or value is null
1570     */
1571     public V replace(K key, V value) {
1572     if (key == null || value == null)
1573     throw new NullPointerException();
1574     return replaceNode(key, value, null);
1575     }
1576    
1577     // Overrides of JDK8+ Map extension method defaults
1578    
1579     /**
1580     * Returns the value to which the specified key is mapped, or the
1581     * given default value if this map contains no mapping for the
1582     * key.
1583     *
1584     * @param key the key whose associated value is to be returned
1585     * @param defaultValue the value to return if this map contains
1586     * no mapping for the given key
1587     * @return the mapping for the key, if present; else the default value
1588     * @throws NullPointerException if the specified key is null
1589     */
1590     public V getOrDefault(Object key, V defaultValue) {
1591     V v;
1592     return (v = get(key)) == null ? defaultValue : v;
1593     }
1594    
1595     public void forEach(BiAction<? super K, ? super V> action) {
1596     if (action == null) throw new NullPointerException();
1597     Node<K,V>[] t;
1598     if ((t = table) != null) {
1599     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1600     for (Node<K,V> p; (p = it.advance()) != null; ) {
1601     action.apply(p.key, p.val);
1602     }
1603     }
1604     }
1605    
1606     public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1607     if (function == null) throw new NullPointerException();
1608     Node<K,V>[] t;
1609     if ((t = table) != null) {
1610     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1611     for (Node<K,V> p; (p = it.advance()) != null; ) {
1612     V oldValue = p.val;
1613     for (K key = p.key;;) {
1614     V newValue = function.apply(key, oldValue);
1615     if (newValue == null)
1616     throw new NullPointerException();
1617     if (replaceNode(key, newValue, oldValue) != null ||
1618     (oldValue = get(key)) == null)
1619     break;
1620 dl 1.1 }
1621     }
1622     }
1623     }
1624    
1625 dl 1.102 /**
1626     * If the specified key is not already associated with a value,
1627     * attempts to compute its value using the given mapping function
1628     * and enters it into this map unless {@code null}. The entire
1629     * method invocation is performed atomically, so the function is
1630     * applied at most once per key. Some attempted update operations
1631     * on this map by other threads may be blocked while computation
1632     * is in progress, so the computation should be short and simple,
1633     * and must not attempt to update any other mappings of this map.
1634     *
1635     * @param key key with which the specified value is to be associated
1636     * @param mappingFunction the function to compute a value
1637     * @return the current (existing or computed) value associated with
1638     * the specified key, or null if the computed value is null
1639     * @throws NullPointerException if the specified key or mappingFunction
1640     * is null
1641     * @throws IllegalStateException if the computation detectably
1642     * attempts a recursive update to this map that would
1643     * otherwise never complete
1644     * @throws RuntimeException or Error if the mappingFunction does so,
1645     * in which case the mapping is left unestablished
1646     */
1647     public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1648     if (key == null || mappingFunction == null)
1649 dl 1.82 throw new NullPointerException();
1650 dl 1.102 int h = spread(key.hashCode());
1651 dl 1.84 V val = null;
1652 dl 1.102 int binCount = 0;
1653     for (Node<K,V>[] tab = table;;) {
1654     Node<K,V> f; int n, i, fh;
1655     if (tab == null || (n = tab.length) == 0)
1656 dl 1.24 tab = initTable();
1657 dl 1.102 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1658     Node<K,V> r = new ReservationNode<K,V>();
1659     synchronized (r) {
1660     if (casTabAt(tab, i, null, r)) {
1661     binCount = 1;
1662     Node<K,V> node = null;
1663 dl 1.82 try {
1664 dl 1.102 if ((val = mappingFunction.apply(key)) != null)
1665     node = new Node<K,V>(h, key, val, null);
1666 dl 1.82 } finally {
1667 dl 1.102 setTabAt(tab, i, node);
1668 dl 1.1 }
1669     }
1670     }
1671 dl 1.102 if (binCount != 0)
1672 dl 1.10 break;
1673 dl 1.1 }
1674 dl 1.102 else if ((fh = f.hash) == MOVED)
1675     tab = helpTransfer(tab, f);
1676     else {
1677     boolean added = false;
1678     synchronized (f) {
1679     if (tabAt(tab, i) == f) {
1680     if (fh >= 0) {
1681     binCount = 1;
1682     for (Node<K,V> e = f;; ++binCount) {
1683     K ek; V ev;
1684     if (e.hash == h &&
1685     ((ek = e.key) == key ||
1686     (ek != null && key.equals(ek)))) {
1687     val = e.val;
1688     break;
1689     }
1690     Node<K,V> pred = e;
1691     if ((e = e.next) == null) {
1692     if ((val = mappingFunction.apply(key)) != null) {
1693     added = true;
1694     pred.next = new Node<K,V>(h, key, val, null);
1695     }
1696     break;
1697 dl 1.38 }
1698     }
1699 dl 1.102 }
1700     else if (f instanceof TreeBin) {
1701     binCount = 2;
1702     TreeBin<K,V> t = (TreeBin<K,V>)f;
1703     TreeNode<K,V> r, p;
1704     if ((r = t.root) != null &&
1705     (p = r.findTreeNode(h, key, null)) != null)
1706     val = p.val;
1707     else if ((val = mappingFunction.apply(key)) != null) {
1708     added = true;
1709     t.putTreeVal(h, key, val);
1710 dl 1.41 }
1711 dl 1.38 }
1712     }
1713     }
1714 dl 1.102 if (binCount != 0) {
1715     if (binCount >= TREEIFY_THRESHOLD)
1716     treeifyBin(tab, i);
1717     if (!added)
1718     return val;
1719     break;
1720     }
1721 dl 1.38 }
1722 dl 1.102 }
1723     if (val != null)
1724     addCount(1L, binCount);
1725     return val;
1726     }
1727    
1728     /**
1729     * If the value for the specified key is present, attempts to
1730     * compute a new mapping given the key and its current mapped
1731     * value. The entire method invocation is performed atomically.
1732     * Some attempted update operations on this map by other threads
1733     * may be blocked while computation is in progress, so the
1734     * computation should be short and simple, and must not attempt to
1735     * update any other mappings of this map.
1736     *
1737     * @param key key with which a value may be associated
1738     * @param remappingFunction the function to compute a value
1739     * @return the new value associated with the specified key, or null if none
1740     * @throws NullPointerException if the specified key or remappingFunction
1741     * is null
1742     * @throws IllegalStateException if the computation detectably
1743     * attempts a recursive update to this map that would
1744     * otherwise never complete
1745     * @throws RuntimeException or Error if the remappingFunction does so,
1746     * in which case the mapping is unchanged
1747     */
1748     public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1749     if (key == null || remappingFunction == null)
1750     throw new NullPointerException();
1751     int h = spread(key.hashCode());
1752     V val = null;
1753     int delta = 0;
1754     int binCount = 0;
1755     for (Node<K,V>[] tab = table;;) {
1756     Node<K,V> f; int n, i, fh;
1757     if (tab == null || (n = tab.length) == 0)
1758     tab = initTable();
1759     else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1760     break;
1761     else if ((fh = f.hash) == MOVED)
1762     tab = helpTransfer(tab, f);
1763 dl 1.82 else {
1764 jsr166 1.83 synchronized (f) {
1765 dl 1.24 if (tabAt(tab, i) == f) {
1766 dl 1.102 if (fh >= 0) {
1767     binCount = 1;
1768     for (Node<K,V> e = f, pred = null;; ++binCount) {
1769     K ek;
1770     if (e.hash == h &&
1771     ((ek = e.key) == key ||
1772     (ek != null && key.equals(ek)))) {
1773     val = remappingFunction.apply(key, e.val);
1774     if (val != null)
1775     e.val = val;
1776     else {
1777     delta = -1;
1778     Node<K,V> en = e.next;
1779     if (pred != null)
1780     pred.next = en;
1781     else
1782     setTabAt(tab, i, en);
1783     }
1784     break;
1785     }
1786     pred = e;
1787     if ((e = e.next) == null)
1788     break;
1789     }
1790     }
1791     else if (f instanceof TreeBin) {
1792     binCount = 2;
1793     TreeBin<K,V> t = (TreeBin<K,V>)f;
1794     TreeNode<K,V> r, p;
1795     if ((r = t.root) != null &&
1796     (p = r.findTreeNode(h, key, null)) != null) {
1797     val = remappingFunction.apply(key, p.val);
1798 dl 1.27 if (val != null)
1799 dl 1.102 p.val = val;
1800 dl 1.41 else {
1801     delta = -1;
1802 dl 1.102 if (t.removeTreeNode(p))
1803     setTabAt(tab, i, untreeify(t.first));
1804 dl 1.1 }
1805     }
1806     }
1807     }
1808     }
1809 dl 1.102 if (binCount != 0)
1810 dl 1.10 break;
1811 dl 1.1 }
1812 dl 1.10 }
1813 dl 1.82 if (delta != 0)
1814 dl 1.102 addCount((long)delta, binCount);
1815 dl 1.84 return val;
1816 dl 1.1 }
1817    
1818 dl 1.102 /**
1819     * Attempts to compute a mapping for the specified key and its
1820     * current mapped value (or {@code null} if there is no current
1821     * mapping). The entire method invocation is performed atomically.
1822     * Some attempted update operations on this map by other threads
1823     * may be blocked while computation is in progress, so the
1824     * computation should be short and simple, and must not attempt to
1825     * update any other mappings of this Map.
1826     *
1827     * @param key key with which the specified value is to be associated
1828     * @param remappingFunction the function to compute a value
1829     * @return the new value associated with the specified key, or null if none
1830     * @throws NullPointerException if the specified key or remappingFunction
1831     * is null
1832     * @throws IllegalStateException if the computation detectably
1833     * attempts a recursive update to this map that would
1834     * otherwise never complete
1835     * @throws RuntimeException or Error if the remappingFunction does so,
1836     * in which case the mapping is unchanged
1837     */
1838     public V compute(K key,
1839     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1840     if (key == null || remappingFunction == null)
1841 dl 1.82 throw new NullPointerException();
1842 dl 1.102 int h = spread(key.hashCode());
1843 dl 1.84 V val = null;
1844 dl 1.52 int delta = 0;
1845 dl 1.102 int binCount = 0;
1846     for (Node<K,V>[] tab = table;;) {
1847     Node<K,V> f; int n, i, fh;
1848     if (tab == null || (n = tab.length) == 0)
1849 dl 1.52 tab = initTable();
1850 dl 1.102 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1851     Node<K,V> r = new ReservationNode<K,V>();
1852     synchronized (r) {
1853     if (casTabAt(tab, i, null, r)) {
1854     binCount = 1;
1855     Node<K,V> node = null;
1856     try {
1857     if ((val = remappingFunction.apply(key, null)) != null) {
1858     delta = 1;
1859     node = new Node<K,V>(h, key, val, null);
1860     }
1861     } finally {
1862     setTabAt(tab, i, node);
1863     }
1864     }
1865     }
1866     if (binCount != 0)
1867 dl 1.52 break;
1868     }
1869 dl 1.102 else if ((fh = f.hash) == MOVED)
1870     tab = helpTransfer(tab, f);
1871     else {
1872     synchronized (f) {
1873     if (tabAt(tab, i) == f) {
1874     if (fh >= 0) {
1875     binCount = 1;
1876     for (Node<K,V> e = f, pred = null;; ++binCount) {
1877     K ek;
1878     if (e.hash == h &&
1879     ((ek = e.key) == key ||
1880     (ek != null && key.equals(ek)))) {
1881     val = remappingFunction.apply(key, e.val);
1882     if (val != null)
1883     e.val = val;
1884     else {
1885     delta = -1;
1886     Node<K,V> en = e.next;
1887     if (pred != null)
1888     pred.next = en;
1889     else
1890     setTabAt(tab, i, en);
1891     }
1892     break;
1893     }
1894     pred = e;
1895     if ((e = e.next) == null) {
1896     val = remappingFunction.apply(key, null);
1897     if (val != null) {
1898     delta = 1;
1899     pred.next =
1900     new Node<K,V>(h, key, val, null);
1901     }
1902     break;
1903     }
1904     }
1905     }
1906     else if (f instanceof TreeBin) {
1907     binCount = 1;
1908     TreeBin<K,V> t = (TreeBin<K,V>)f;
1909     TreeNode<K,V> r, p;
1910     if ((r = t.root) != null)
1911     p = r.findTreeNode(h, key, null);
1912     else
1913     p = null;
1914     V pv = (p == null) ? null : p.val;
1915     val = remappingFunction.apply(key, pv);
1916 dl 1.52 if (val != null) {
1917     if (p != null)
1918     p.val = val;
1919     else {
1920     delta = 1;
1921 dl 1.102 t.putTreeVal(h, key, val);
1922 dl 1.52 }
1923     }
1924     else if (p != null) {
1925     delta = -1;
1926 dl 1.102 if (t.removeTreeNode(p))
1927     setTabAt(tab, i, untreeify(t.first));
1928 dl 1.52 }
1929     }
1930     }
1931     }
1932 dl 1.102 if (binCount != 0) {
1933     if (binCount >= TREEIFY_THRESHOLD)
1934     treeifyBin(tab, i);
1935     break;
1936 dl 1.52 }
1937     }
1938     }
1939 dl 1.82 if (delta != 0)
1940 dl 1.102 addCount((long)delta, binCount);
1941 dl 1.84 return val;
1942 dl 1.52 }
1943    
1944 dl 1.102 /**
1945     * If the specified key is not already associated with a
1946     * (non-null) value, associates it with the given value.
1947     * Otherwise, replaces the value with the results of the given
1948     * remapping function, or removes if {@code null}. The entire
1949     * method invocation is performed atomically. Some attempted
1950     * update operations on this map by other threads may be blocked
1951     * while computation is in progress, so the computation should be
1952     * short and simple, and must not attempt to update any other
1953     * mappings of this Map.
1954     *
1955     * @param key key with which the specified value is to be associated
1956     * @param value the value to use if absent
1957     * @param remappingFunction the function to recompute a value if present
1958     * @return the new value associated with the specified key, or null if none
1959     * @throws NullPointerException if the specified key or the
1960     * remappingFunction is null
1961     * @throws RuntimeException or Error if the remappingFunction does so,
1962     * in which case the mapping is unchanged
1963     */
1964     public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1965     if (key == null || value == null || remappingFunction == null)
1966     throw new NullPointerException();
1967     int h = spread(key.hashCode());
1968     V val = null;
1969     int delta = 0;
1970     int binCount = 0;
1971     for (Node<K,V>[] tab = table;;) {
1972     Node<K,V> f; int n, i, fh;
1973     if (tab == null || (n = tab.length) == 0)
1974     tab = initTable();
1975     else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1976     if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1977     delta = 1;
1978     val = value;
1979 dl 1.27 break;
1980     }
1981 dl 1.102 }
1982     else if ((fh = f.hash) == MOVED)
1983     tab = helpTransfer(tab, f);
1984     else {
1985     synchronized (f) {
1986     if (tabAt(tab, i) == f) {
1987     if (fh >= 0) {
1988     binCount = 1;
1989     for (Node<K,V> e = f, pred = null;; ++binCount) {
1990     K ek;
1991     if (e.hash == h &&
1992     ((ek = e.key) == key ||
1993     (ek != null && key.equals(ek)))) {
1994     val = remappingFunction.apply(e.val, value);
1995     if (val != null)
1996     e.val = val;
1997 dl 1.38 else {
1998 dl 1.102 delta = -1;
1999     Node<K,V> en = e.next;
2000     if (pred != null)
2001     pred.next = en;
2002     else
2003     setTabAt(tab, i, en);
2004 dl 1.38 }
2005 dl 1.102 break;
2006     }
2007     pred = e;
2008     if ((e = e.next) == null) {
2009     delta = 1;
2010     val = value;
2011     pred.next =
2012     new Node<K,V>(h, key, val, null);
2013     break;
2014 dl 1.38 }
2015     }
2016     }
2017 dl 1.102 else if (f instanceof TreeBin) {
2018     binCount = 2;
2019     TreeBin<K,V> t = (TreeBin<K,V>)f;
2020     TreeNode<K,V> r = t.root;
2021     TreeNode<K,V> p = (r == null) ? null :
2022     r.findTreeNode(h, key, null);
2023     val = (p == null) ? value :
2024     remappingFunction.apply(p.val, value);
2025     if (val != null) {
2026     if (p != null)
2027     p.val = val;
2028     else {
2029     delta = 1;
2030     t.putTreeVal(h, key, val);
2031 dl 1.27 }
2032     }
2033 dl 1.102 else if (p != null) {
2034     delta = -1;
2035     if (t.removeTreeNode(p))
2036     setTabAt(tab, i, untreeify(t.first));
2037 dl 1.90 }
2038 dl 1.24 }
2039     }
2040 dl 1.1 }
2041 dl 1.102 if (binCount != 0) {
2042     if (binCount >= TREEIFY_THRESHOLD)
2043     treeifyBin(tab, i);
2044     break;
2045     }
2046 dl 1.1 }
2047     }
2048 dl 1.102 if (delta != 0)
2049     addCount((long)delta, binCount);
2050     return val;
2051 dl 1.1 }
2052    
2053 dl 1.102 // Hashtable legacy methods
2054    
2055 dl 1.82 /**
2056 dl 1.102 * Legacy method testing if some key maps into the specified value
2057     * in this table. This method is identical in functionality to
2058     * {@link #containsValue(Object)}, and exists solely to ensure
2059     * full compatibility with class {@link java.util.Hashtable},
2060     * which supported this method prior to introduction of the
2061     * Java Collections framework.
2062     *
2063     * @param value a value to search for
2064     * @return {@code true} if and only if some key maps to the
2065     * {@code value} argument in this table as
2066     * determined by the {@code equals} method;
2067     * {@code false} otherwise
2068     * @throws NullPointerException if the specified value is null
2069     */
2070     @Deprecated public boolean contains(Object value) {
2071     return containsValue(value);
2072     }
2073    
2074     /**
2075     * Returns an enumeration of the keys in this table.
2076     *
2077     * @return an enumeration of the keys in this table
2078     * @see #keySet()
2079     */
2080     public Enumeration<K> keys() {
2081     Node<K,V>[] t;
2082     int f = (t = table) == null ? 0 : t.length;
2083     return new KeyIterator<K,V>(t, f, 0, f, this);
2084     }
2085    
2086     /**
2087     * Returns an enumeration of the values in this table.
2088     *
2089     * @return an enumeration of the values in this table
2090     * @see #values()
2091     */
2092     public Enumeration<V> elements() {
2093     Node<K,V>[] t;
2094     int f = (t = table) == null ? 0 : t.length;
2095     return new ValueIterator<K,V>(t, f, 0, f, this);
2096     }
2097    
2098     // ConcurrentHashMapV8-only methods
2099    
2100     /**
2101     * Returns the number of mappings. This method should be used
2102     * instead of {@link #size} because a ConcurrentHashMapV8 may
2103     * contain more mappings than can be represented as an int. The
2104     * value returned is an estimate; the actual count may differ if
2105     * there are concurrent insertions or removals.
2106     *
2107     * @return the number of mappings
2108     * @since 1.8
2109     */
2110     public long mappingCount() {
2111     long n = sumCount();
2112     return (n < 0L) ? 0L : n; // ignore transient negative values
2113     }
2114    
2115     /**
2116     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2117     * from the given type to {@code Boolean.TRUE}.
2118     *
2119     * @return the new set
2120     * @since 1.8
2121     */
2122     public static <K> KeySetView<K,Boolean> newKeySet() {
2123     return new KeySetView<K,Boolean>
2124     (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2125     }
2126    
2127     /**
2128     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2129     * from the given type to {@code Boolean.TRUE}.
2130     *
2131     * @param initialCapacity The implementation performs internal
2132     * sizing to accommodate this many elements.
2133 jsr166 1.111 * @return the new set
2134 dl 1.102 * @throws IllegalArgumentException if the initial capacity of
2135     * elements is negative
2136     * @since 1.8
2137     */
2138     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2139     return new KeySetView<K,Boolean>
2140     (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2141     }
2142    
2143     /**
2144     * Returns a {@link Set} view of the keys in this map, using the
2145     * given common mapped value for any additions (i.e., {@link
2146     * Collection#add} and {@link Collection#addAll(Collection)}).
2147     * This is of course only appropriate if it is acceptable to use
2148     * the same value for all additions from this view.
2149     *
2150     * @param mappedValue the mapped value to use for any additions
2151     * @return the set view
2152     * @throws NullPointerException if the mappedValue is null
2153 dl 1.82 */
2154 dl 1.102 public KeySetView<K,V> keySet(V mappedValue) {
2155     if (mappedValue == null)
2156     throw new NullPointerException();
2157     return new KeySetView<K,V>(this, mappedValue);
2158     }
2159    
2160     /* ---------------- Special Nodes -------------- */
2161    
2162     /**
2163     * A node inserted at head of bins during transfer operations.
2164     */
2165     static final class ForwardingNode<K,V> extends Node<K,V> {
2166     final Node<K,V>[] nextTable;
2167     ForwardingNode(Node<K,V>[] tab) {
2168     super(MOVED, null, null, null);
2169     this.nextTable = tab;
2170     }
2171    
2172     Node<K,V> find(int h, Object k) {
2173 dl 1.110 // loop to avoid arbitrarily deep recursion on forwarding nodes
2174     outer: for (Node<K,V>[] tab = nextTable;;) {
2175     Node<K,V> e; int n;
2176     if (k == null || tab == null || (n = tab.length) == 0 ||
2177     (e = tabAt(tab, (n - 1) & h)) == null)
2178     return null;
2179     for (;;) {
2180 dl 1.102 int eh; K ek;
2181     if ((eh = e.hash) == h &&
2182     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2183     return e;
2184 dl 1.110 if (eh < 0) {
2185     if (e instanceof ForwardingNode) {
2186     tab = ((ForwardingNode<K,V>)e).nextTable;
2187     continue outer;
2188     }
2189     else
2190     return e.find(h, k);
2191     }
2192     if ((e = e.next) == null)
2193     return null;
2194     }
2195 dl 1.82 }
2196     }
2197     }
2198    
2199 dl 1.24 /**
2200 dl 1.102 * A place-holder node used in computeIfAbsent and compute
2201 dl 1.24 */
2202 dl 1.102 static final class ReservationNode<K,V> extends Node<K,V> {
2203     ReservationNode() {
2204     super(RESERVED, null, null, null);
2205     }
2206    
2207     Node<K,V> find(int h, Object k) {
2208     return null;
2209     }
2210 dl 1.24 }
2211    
2212 dl 1.102 /* ---------------- Table Initialization and Resizing -------------- */
2213    
2214 dl 1.24 /**
2215 dl 1.117 * Returns the stamp bits for resizing a table of size n.
2216     * Must be negative when shifted left by RESIZE_STAMP_SHIFT.
2217     */
2218     static final int resizeStamp(int n) {
2219 jsr166 1.119 return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1));
2220 dl 1.117 }
2221    
2222     /**
2223 dl 1.24 * Initializes table, using the size recorded in sizeCtl.
2224     */
2225 dl 1.102 private final Node<K,V>[] initTable() {
2226     Node<K,V>[] tab; int sc;
2227     while ((tab = table) == null || tab.length == 0) {
2228 dl 1.24 if ((sc = sizeCtl) < 0)
2229     Thread.yield(); // lost initialization race; just spin
2230 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2231 dl 1.24 try {
2232 dl 1.102 if ((tab = table) == null || tab.length == 0) {
2233 dl 1.24 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2234 jsr166 1.115 @SuppressWarnings("unchecked")
2235 dl 1.117 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2236 dl 1.102 table = tab = nt;
2237 dl 1.27 sc = n - (n >>> 2);
2238 dl 1.24 }
2239     } finally {
2240     sizeCtl = sc;
2241     }
2242     break;
2243     }
2244     }
2245     return tab;
2246     }
2247    
2248     /**
2249 dl 1.82 * Adds to count, and if table is too small and not already
2250     * resizing, initiates transfer. If already resizing, helps
2251     * perform transfer if work is available. Rechecks occupancy
2252     * after a transfer to see if another resize is already needed
2253     * because resizings are lagging additions.
2254     *
2255     * @param x the count to add
2256     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2257     */
2258     private final void addCount(long x, int check) {
2259     CounterCell[] as; long b, s;
2260     if ((as = counterCells) != null ||
2261     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2262     CounterHashCode hc; CounterCell a; long v; int m;
2263     boolean uncontended = true;
2264     if ((hc = threadCounterHashCode.get()) == null ||
2265     as == null || (m = as.length - 1) < 0 ||
2266     (a = as[m & hc.code]) == null ||
2267     !(uncontended =
2268     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2269     fullAddCount(x, hc, uncontended);
2270     return;
2271     }
2272     if (check <= 1)
2273     return;
2274     s = sumCount();
2275     }
2276     if (check >= 0) {
2277 dl 1.117 Node<K,V>[] tab, nt; int n, sc;
2278 dl 1.82 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2279 dl 1.117 (n = tab.length) < MAXIMUM_CAPACITY) {
2280     int rs = resizeStamp(n);
2281 dl 1.82 if (sc < 0) {
2282 dl 1.117 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2283 jsr166 1.119 sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2284     transferIndex <= 0)
2285 dl 1.82 break;
2286 dl 1.117 if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2287 dl 1.82 transfer(tab, nt);
2288 dl 1.24 }
2289 dl 1.117 else if (U.compareAndSwapInt(this, SIZECTL, sc,
2290 jsr166 1.119 (rs << RESIZE_STAMP_SHIFT) + 2))
2291 dl 1.82 transfer(tab, null);
2292     s = sumCount();
2293 dl 1.24 }
2294     }
2295     }
2296    
2297 dl 1.27 /**
2298 dl 1.102 * Helps transfer if a resize is in progress.
2299     */
2300     final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2301     Node<K,V>[] nextTab; int sc;
2302 dl 1.117 if (tab != null && (f instanceof ForwardingNode) &&
2303 dl 1.102 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2304 jsr166 1.119 int rs = resizeStamp(tab.length);
2305 dl 1.117 while (nextTab == nextTable && table == tab &&
2306 jsr166 1.119 (sc = sizeCtl) < 0) {
2307     if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2308 dl 1.117 sc == rs + MAX_RESIZERS || transferIndex <= 0)
2309 jsr166 1.119 break;
2310     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
2311 dl 1.116 transfer(tab, nextTab);
2312     break;
2313     }
2314     }
2315 dl 1.102 return nextTab;
2316     }
2317     return table;
2318     }
2319    
2320     /**
2321 dl 1.27 * Tries to presize table to accommodate the given number of elements.
2322     *
2323     * @param size number of elements (doesn't need to be perfectly accurate)
2324     */
2325 dl 1.102 private final void tryPresize(int size) {
2326 dl 1.27 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2327     tableSizeFor(size + (size >>> 1) + 1);
2328     int sc;
2329     while ((sc = sizeCtl) >= 0) {
2330 dl 1.102 Node<K,V>[] tab = table; int n;
2331 dl 1.27 if (tab == null || (n = tab.length) == 0) {
2332 jsr166 1.30 n = (sc > c) ? sc : c;
2333 dl 1.82 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2334 dl 1.27 try {
2335     if (table == tab) {
2336 jsr166 1.115 @SuppressWarnings("unchecked")
2337 dl 1.117 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
2338 dl 1.102 table = nt;
2339 dl 1.27 sc = n - (n >>> 2);
2340     }
2341     } finally {
2342     sizeCtl = sc;
2343     }
2344     }
2345     }
2346     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2347     break;
2348 dl 1.117 else if (tab == table) {
2349     int rs = resizeStamp(n);
2350     if (sc < 0) {
2351 jsr166 1.119 Node<K,V>[] nt;
2352 dl 1.117 if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
2353     sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
2354     transferIndex <= 0)
2355     break;
2356     if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
2357     transfer(tab, nt);
2358     }
2359     else if (U.compareAndSwapInt(this, SIZECTL, sc,
2360 jsr166 1.119 (rs << RESIZE_STAMP_SHIFT) + 2))
2361 dl 1.117 transfer(tab, null);
2362     }
2363 dl 1.27 }
2364     }
2365    
2366 jsr166 1.92 /**
2367 dl 1.24 * Moves and/or copies the nodes in each bin to new table. See
2368     * above for explanation.
2369     */
2370 dl 1.102 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2371 dl 1.82 int n = tab.length, stride;
2372     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2373     stride = MIN_TRANSFER_STRIDE; // subdivide range
2374     if (nextTab == null) { // initiating
2375     try {
2376 jsr166 1.115 @SuppressWarnings("unchecked")
2377 dl 1.116 Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
2378 dl 1.102 nextTab = nt;
2379 jsr166 1.83 } catch (Throwable ex) { // try to cope with OOME
2380 dl 1.82 sizeCtl = Integer.MAX_VALUE;
2381     return;
2382     }
2383     nextTable = nextTab;
2384     transferIndex = n;
2385     }
2386     int nextn = nextTab.length;
2387 dl 1.102 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2388 dl 1.82 boolean advance = true;
2389 dl 1.110 boolean finishing = false; // to ensure sweep before committing nextTab
2390 dl 1.82 for (int i = 0, bound = 0;;) {
2391 dl 1.116 Node<K,V> f; int fh;
2392 dl 1.82 while (advance) {
2393 dl 1.116 int nextIndex, nextBound;
2394 dl 1.110 if (--i >= bound || finishing)
2395 dl 1.82 advance = false;
2396 dl 1.116 else if ((nextIndex = transferIndex) <= 0) {
2397 dl 1.82 i = -1;
2398     advance = false;
2399     }
2400     else if (U.compareAndSwapInt
2401     (this, TRANSFERINDEX, nextIndex,
2402 jsr166 1.83 nextBound = (nextIndex > stride ?
2403 dl 1.82 nextIndex - stride : 0))) {
2404     bound = nextBound;
2405     i = nextIndex - 1;
2406     advance = false;
2407     }
2408     }
2409     if (i < 0 || i >= n || i + n >= nextn) {
2410 dl 1.116 int sc;
2411 dl 1.110 if (finishing) {
2412     nextTable = null;
2413     table = nextTab;
2414     sizeCtl = (n << 1) - (n >>> 1);
2415     return;
2416     }
2417 dl 1.117 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
2418 dl 1.120 if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
2419 dl 1.116 return;
2420     finishing = advance = true;
2421     i = n; // recheck before commit
2422 dl 1.24 }
2423     }
2424 dl 1.116 else if ((f = tabAt(tab, i)) == null)
2425     advance = casTabAt(tab, i, null, fwd);
2426 dl 1.102 else if ((fh = f.hash) == MOVED)
2427     advance = true; // already processed
2428     else {
2429 jsr166 1.83 synchronized (f) {
2430 dl 1.82 if (tabAt(tab, i) == f) {
2431 dl 1.102 Node<K,V> ln, hn;
2432     if (fh >= 0) {
2433     int runBit = fh & n;
2434     Node<K,V> lastRun = f;
2435     for (Node<K,V> p = f.next; p != null; p = p.next) {
2436     int b = p.hash & n;
2437     if (b != runBit) {
2438     runBit = b;
2439     lastRun = p;
2440     }
2441 dl 1.82 }
2442 dl 1.102 if (runBit == 0) {
2443     ln = lastRun;
2444     hn = null;
2445 dl 1.82 }
2446     else {
2447 dl 1.102 hn = lastRun;
2448     ln = null;
2449     }
2450     for (Node<K,V> p = f; p != lastRun; p = p.next) {
2451     int ph = p.hash; K pk = p.key; V pv = p.val;
2452     if ((ph & n) == 0)
2453     ln = new Node<K,V>(ph, pk, pv, ln);
2454     else
2455     hn = new Node<K,V>(ph, pk, pv, hn);
2456 dl 1.82 }
2457 dl 1.109 setTabAt(nextTab, i, ln);
2458     setTabAt(nextTab, i + n, hn);
2459     setTabAt(tab, i, fwd);
2460     advance = true;
2461 dl 1.82 }
2462 dl 1.102 else if (f instanceof TreeBin) {
2463     TreeBin<K,V> t = (TreeBin<K,V>)f;
2464     TreeNode<K,V> lo = null, loTail = null;
2465     TreeNode<K,V> hi = null, hiTail = null;
2466     int lc = 0, hc = 0;
2467     for (Node<K,V> e = t.first; e != null; e = e.next) {
2468     int h = e.hash;
2469     TreeNode<K,V> p = new TreeNode<K,V>
2470     (h, e.key, e.val, null, null);
2471     if ((h & n) == 0) {
2472     if ((p.prev = loTail) == null)
2473     lo = p;
2474     else
2475     loTail.next = p;
2476     loTail = p;
2477     ++lc;
2478     }
2479     else {
2480     if ((p.prev = hiTail) == null)
2481     hi = p;
2482     else
2483     hiTail.next = p;
2484     hiTail = p;
2485     ++hc;
2486     }
2487     }
2488 jsr166 1.104 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2489     (hc != 0) ? new TreeBin<K,V>(lo) : t;
2490     hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2491     (lc != 0) ? new TreeBin<K,V>(hi) : t;
2492 dl 1.109 setTabAt(nextTab, i, ln);
2493     setTabAt(nextTab, i + n, hn);
2494     setTabAt(tab, i, fwd);
2495     advance = true;
2496 dl 1.82 }
2497 dl 1.24 }
2498     }
2499     }
2500     }
2501     }
2502    
2503 dl 1.102 /* ---------------- Conversion from/to TreeBins -------------- */
2504 dl 1.82
2505 dl 1.102 /**
2506     * Replaces all linked nodes in bin at given index unless table is
2507     * too small, in which case resizes instead.
2508     */
2509     private final void treeifyBin(Node<K,V>[] tab, int index) {
2510     Node<K,V> b; int n, sc;
2511     if (tab != null) {
2512 dl 1.117 if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
2513     tryPresize(n << 1);
2514 dl 1.109 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2515 dl 1.102 synchronized (b) {
2516     if (tabAt(tab, index) == b) {
2517     TreeNode<K,V> hd = null, tl = null;
2518     for (Node<K,V> e = b; e != null; e = e.next) {
2519     TreeNode<K,V> p =
2520     new TreeNode<K,V>(e.hash, e.key, e.val,
2521     null, null);
2522     if ((p.prev = tl) == null)
2523     hd = p;
2524     else
2525     tl.next = p;
2526     tl = p;
2527 dl 1.38 }
2528 dl 1.102 setTabAt(tab, index, new TreeBin<K,V>(hd));
2529 dl 1.38 }
2530     }
2531 dl 1.82 }
2532 dl 1.27 }
2533     }
2534 jsr166 1.119
2535 dl 1.102 /**
2536 jsr166 1.126 * Returns a list of non-TreeNodes replacing those in given list.
2537 dl 1.102 */
2538     static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2539     Node<K,V> hd = null, tl = null;
2540     for (Node<K,V> q = b; q != null; q = q.next) {
2541     Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2542     if (tl == null)
2543     hd = p;
2544     else
2545     tl.next = p;
2546     tl = p;
2547     }
2548     return hd;
2549     }
2550    
2551     /* ---------------- TreeNodes -------------- */
2552 dl 1.14
2553 dl 1.1 /**
2554 dl 1.102 * Nodes for use in TreeBins
2555 dl 1.14 */
2556 dl 1.102 static final class TreeNode<K,V> extends Node<K,V> {
2557     TreeNode<K,V> parent; // red-black tree links
2558     TreeNode<K,V> left;
2559     TreeNode<K,V> right;
2560     TreeNode<K,V> prev; // needed to unlink next upon deletion
2561     boolean red;
2562    
2563     TreeNode(int hash, K key, V val, Node<K,V> next,
2564     TreeNode<K,V> parent) {
2565     super(hash, key, val, next);
2566     this.parent = parent;
2567     }
2568    
2569     Node<K,V> find(int h, Object k) {
2570     return findTreeNode(h, k, null);
2571     }
2572    
2573     /**
2574     * Returns the TreeNode (or null if not found) for the given key
2575     * starting at given root.
2576     */
2577     final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2578     if (k != null) {
2579     TreeNode<K,V> p = this;
2580 jsr166 1.121 do {
2581 dl 1.102 int ph, dir; K pk; TreeNode<K,V> q;
2582     TreeNode<K,V> pl = p.left, pr = p.right;
2583     if ((ph = p.hash) > h)
2584     p = pl;
2585     else if (ph < h)
2586     p = pr;
2587     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2588     return p;
2589 dl 1.112 else if (pl == null)
2590     p = pr;
2591     else if (pr == null)
2592     p = pl;
2593 jsr166 1.103 else if ((kc != null ||
2594 dl 1.102 (kc = comparableClassFor(k)) != null) &&
2595     (dir = compareComparables(kc, k, pk)) != 0)
2596     p = (dir < 0) ? pl : pr;
2597 dl 1.112 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2598     return q;
2599     else
2600 dl 1.102 p = pl;
2601     } while (p != null);
2602     }
2603     return null;
2604     }
2605     }
2606    
2607     /* ---------------- TreeBins -------------- */
2608    
2609     /**
2610     * TreeNodes used at the heads of bins. TreeBins do not hold user
2611     * keys or values, but instead point to list of TreeNodes and
2612     * their root. They also maintain a parasitic read-write lock
2613     * forcing writers (who hold bin lock) to wait for readers (who do
2614     * not) to complete before tree restructuring operations.
2615     */
2616     static final class TreeBin<K,V> extends Node<K,V> {
2617     TreeNode<K,V> root;
2618     volatile TreeNode<K,V> first;
2619     volatile Thread waiter;
2620     volatile int lockState;
2621     // values for lockState
2622     static final int WRITER = 1; // set while holding write lock
2623     static final int WAITER = 2; // set when waiting for write lock
2624     static final int READER = 4; // increment value for setting read lock
2625    
2626     /**
2627 dl 1.112 * Tie-breaking utility for ordering insertions when equal
2628     * hashCodes and non-comparable. We don't require a total
2629     * order, just a consistent insertion rule to maintain
2630     * equivalence across rebalancings. Tie-breaking further than
2631     * necessary simplifies testing a bit.
2632     */
2633     static int tieBreakOrder(Object a, Object b) {
2634     int d;
2635     if (a == null || b == null ||
2636     (d = a.getClass().getName().
2637     compareTo(b.getClass().getName())) == 0)
2638     d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2639     -1 : 1);
2640     return d;
2641     }
2642    
2643     /**
2644 dl 1.102 * Creates bin with initial set of nodes headed by b.
2645     */
2646     TreeBin(TreeNode<K,V> b) {
2647     super(TREEBIN, null, null, null);
2648     this.first = b;
2649     TreeNode<K,V> r = null;
2650     for (TreeNode<K,V> x = b, next; x != null; x = next) {
2651     next = (TreeNode<K,V>)x.next;
2652     x.left = x.right = null;
2653     if (r == null) {
2654     x.parent = null;
2655     x.red = false;
2656     r = x;
2657     }
2658     else {
2659 dl 1.112 K k = x.key;
2660     int h = x.hash;
2661 dl 1.102 Class<?> kc = null;
2662     for (TreeNode<K,V> p = r;;) {
2663     int dir, ph;
2664 dl 1.112 K pk = p.key;
2665     if ((ph = p.hash) > h)
2666 dl 1.102 dir = -1;
2667 dl 1.112 else if (ph < h)
2668 dl 1.102 dir = 1;
2669 dl 1.112 else if ((kc == null &&
2670     (kc = comparableClassFor(k)) == null) ||
2671     (dir = compareComparables(kc, k, pk)) == 0)
2672     dir = tieBreakOrder(k, pk);
2673     TreeNode<K,V> xp = p;
2674 dl 1.102 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2675     x.parent = xp;
2676     if (dir <= 0)
2677     xp.left = x;
2678     else
2679     xp.right = x;
2680     r = balanceInsertion(r, x);
2681     break;
2682     }
2683     }
2684     }
2685     }
2686     this.root = r;
2687 dl 1.112 assert checkInvariants(root);
2688 dl 1.102 }
2689    
2690     /**
2691 jsr166 1.105 * Acquires write lock for tree restructuring.
2692 dl 1.102 */
2693     private final void lockRoot() {
2694     if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2695     contendedLock(); // offload to separate method
2696     }
2697    
2698     /**
2699 jsr166 1.105 * Releases write lock for tree restructuring.
2700 dl 1.102 */
2701     private final void unlockRoot() {
2702     lockState = 0;
2703     }
2704 dl 1.14
2705 dl 1.102 /**
2706 jsr166 1.105 * Possibly blocks awaiting root lock.
2707 dl 1.102 */
2708     private final void contendedLock() {
2709     boolean waiting = false;
2710     for (int s;;) {
2711 dl 1.117 if (((s = lockState) & ~WAITER) == 0) {
2712 dl 1.102 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2713     if (waiting)
2714     waiter = null;
2715     return;
2716     }
2717     }
2718 dl 1.114 else if ((s & WAITER) == 0) {
2719 dl 1.102 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2720     waiting = true;
2721     waiter = Thread.currentThread();
2722     }
2723     }
2724     else if (waiting)
2725     LockSupport.park(this);
2726     }
2727 dl 1.14 }
2728    
2729 dl 1.102 /**
2730     * Returns matching node or null if none. Tries to search
2731 jsr166 1.108 * using tree comparisons from root, but continues linear
2732 dl 1.102 * search when lock not available.
2733     */
2734 dl 1.118 final Node<K,V> find(int h, Object k) {
2735 dl 1.102 if (k != null) {
2736 dl 1.118 for (Node<K,V> e = first; e != null; ) {
2737 dl 1.102 int s; K ek;
2738     if (((s = lockState) & (WAITER|WRITER)) != 0) {
2739     if (e.hash == h &&
2740     ((ek = e.key) == k || (ek != null && k.equals(ek))))
2741     return e;
2742 dl 1.118 e = e.next;
2743 dl 1.102 }
2744     else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2745     s + READER)) {
2746     TreeNode<K,V> r, p;
2747     try {
2748     p = ((r = root) == null ? null :
2749     r.findTreeNode(h, k, null));
2750     } finally {
2751     Thread w;
2752     int ls;
2753     do {} while (!U.compareAndSwapInt
2754     (this, LOCKSTATE,
2755     ls = lockState, ls - READER));
2756     if (ls == (READER|WAITER) && (w = waiter) != null)
2757     LockSupport.unpark(w);
2758     }
2759     return p;
2760     }
2761     }
2762 dl 1.79 }
2763 dl 1.102 return null;
2764 dl 1.41 }
2765    
2766     /**
2767 dl 1.102 * Finds or adds a node.
2768     * @return null if added
2769 dl 1.41 */
2770 dl 1.102 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2771     Class<?> kc = null;
2772 dl 1.112 boolean searched = false;
2773 dl 1.102 for (TreeNode<K,V> p = root;;) {
2774 dl 1.112 int dir, ph; K pk;
2775 dl 1.102 if (p == null) {
2776     first = root = new TreeNode<K,V>(h, k, v, null, null);
2777     break;
2778     }
2779     else if ((ph = p.hash) > h)
2780     dir = -1;
2781     else if (ph < h)
2782     dir = 1;
2783     else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2784     return p;
2785     else if ((kc == null &&
2786     (kc = comparableClassFor(k)) == null) ||
2787     (dir = compareComparables(kc, k, pk)) == 0) {
2788 dl 1.112 if (!searched) {
2789     TreeNode<K,V> q, ch;
2790     searched = true;
2791     if (((ch = p.left) != null &&
2792     (q = ch.findTreeNode(h, k, kc)) != null) ||
2793     ((ch = p.right) != null &&
2794     (q = ch.findTreeNode(h, k, kc)) != null))
2795     return q;
2796     }
2797     dir = tieBreakOrder(k, pk);
2798 dl 1.102 }
2799 dl 1.112
2800 dl 1.102 TreeNode<K,V> xp = p;
2801 dl 1.112 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2802 dl 1.102 TreeNode<K,V> x, f = first;
2803     first = x = new TreeNode<K,V>(h, k, v, f, xp);
2804     if (f != null)
2805     f.prev = x;
2806 dl 1.112 if (dir <= 0)
2807 dl 1.102 xp.left = x;
2808 dl 1.63 else
2809 dl 1.102 xp.right = x;
2810     if (!xp.red)
2811     x.red = true;
2812     else {
2813     lockRoot();
2814     try {
2815     root = balanceInsertion(root, x);
2816     } finally {
2817     unlockRoot();
2818 dl 1.38 }
2819 dl 1.102 }
2820     break;
2821 dl 1.1 }
2822 dl 1.102 }
2823     assert checkInvariants(root);
2824     return null;
2825 dl 1.1 }
2826 dl 1.41
2827 dl 1.102 /**
2828     * Removes the given node, that must be present before this
2829     * call. This is messier than typical red-black deletion code
2830     * because we cannot swap the contents of an interior node
2831     * with a leaf successor that is pinned by "next" pointers
2832     * that are accessible independently of lock. So instead we
2833     * swap the tree linkages.
2834     *
2835 jsr166 1.106 * @return true if now too small, so should be untreeified
2836 dl 1.102 */
2837     final boolean removeTreeNode(TreeNode<K,V> p) {
2838     TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2839     TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2840     TreeNode<K,V> r, rl;
2841     if (pred == null)
2842     first = next;
2843     else
2844     pred.next = next;
2845     if (next != null)
2846     next.prev = pred;
2847     if (first == null) {
2848     root = null;
2849     return true;
2850     }
2851     if ((r = root) == null || r.right == null || // too small
2852     (rl = r.left) == null || rl.left == null)
2853     return true;
2854     lockRoot();
2855     try {
2856     TreeNode<K,V> replacement;
2857     TreeNode<K,V> pl = p.left;
2858     TreeNode<K,V> pr = p.right;
2859     if (pl != null && pr != null) {
2860     TreeNode<K,V> s = pr, sl;
2861     while ((sl = s.left) != null) // find successor
2862     s = sl;
2863     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2864     TreeNode<K,V> sr = s.right;
2865     TreeNode<K,V> pp = p.parent;
2866     if (s == pr) { // p was s's direct parent
2867     p.parent = s;
2868     s.right = p;
2869     }
2870     else {
2871     TreeNode<K,V> sp = s.parent;
2872     if ((p.parent = sp) != null) {
2873     if (s == sp.left)
2874     sp.left = p;
2875     else
2876     sp.right = p;
2877     }
2878     if ((s.right = pr) != null)
2879     pr.parent = s;
2880     }
2881     p.left = null;
2882     if ((p.right = sr) != null)
2883     sr.parent = p;
2884     if ((s.left = pl) != null)
2885     pl.parent = s;
2886     if ((s.parent = pp) == null)
2887     r = s;
2888     else if (p == pp.left)
2889     pp.left = s;
2890     else
2891     pp.right = s;
2892     if (sr != null)
2893     replacement = sr;
2894     else
2895     replacement = p;
2896     }
2897     else if (pl != null)
2898     replacement = pl;
2899     else if (pr != null)
2900     replacement = pr;
2901     else
2902     replacement = p;
2903     if (replacement != p) {
2904     TreeNode<K,V> pp = replacement.parent = p.parent;
2905     if (pp == null)
2906     r = replacement;
2907     else if (p == pp.left)
2908     pp.left = replacement;
2909     else
2910     pp.right = replacement;
2911     p.left = p.right = p.parent = null;
2912     }
2913    
2914     root = (p.red) ? r : balanceDeletion(r, replacement);
2915    
2916     if (p == replacement) { // detach pointers
2917     TreeNode<K,V> pp;
2918     if ((pp = p.parent) != null) {
2919     if (p == pp.left)
2920     pp.left = null;
2921     else if (p == pp.right)
2922     pp.right = null;
2923     p.parent = null;
2924     }
2925     }
2926     } finally {
2927     unlockRoot();
2928     }
2929     assert checkInvariants(root);
2930     return false;
2931 dl 1.41 }
2932    
2933 dl 1.102 /* ------------------------------------------------------------ */
2934     // Red-black tree methods, all adapted from CLR
2935    
2936     static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2937     TreeNode<K,V> p) {
2938     TreeNode<K,V> r, pp, rl;
2939     if (p != null && (r = p.right) != null) {
2940     if ((rl = p.right = r.left) != null)
2941     rl.parent = p;
2942     if ((pp = r.parent = p.parent) == null)
2943     (root = r).red = false;
2944     else if (pp.left == p)
2945     pp.left = r;
2946     else
2947     pp.right = r;
2948     r.left = p;
2949     p.parent = r;
2950     }
2951     return root;
2952 dl 1.41 }
2953    
2954 dl 1.102 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2955     TreeNode<K,V> p) {
2956     TreeNode<K,V> l, pp, lr;
2957     if (p != null && (l = p.left) != null) {
2958     if ((lr = p.left = l.right) != null)
2959     lr.parent = p;
2960     if ((pp = l.parent = p.parent) == null)
2961     (root = l).red = false;
2962     else if (pp.right == p)
2963     pp.right = l;
2964     else
2965     pp.left = l;
2966     l.right = p;
2967     p.parent = l;
2968     }
2969     return root;
2970     }
2971 dl 1.79
2972 dl 1.102 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2973     TreeNode<K,V> x) {
2974     x.red = true;
2975     for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2976     if ((xp = x.parent) == null) {
2977     x.red = false;
2978     return x;
2979     }
2980     else if (!xp.red || (xpp = xp.parent) == null)
2981     return root;
2982     if (xp == (xppl = xpp.left)) {
2983     if ((xppr = xpp.right) != null && xppr.red) {
2984     xppr.red = false;
2985     xp.red = false;
2986     xpp.red = true;
2987     x = xpp;
2988     }
2989     else {
2990     if (x == xp.right) {
2991     root = rotateLeft(root, x = xp);
2992     xpp = (xp = x.parent) == null ? null : xp.parent;
2993     }
2994     if (xp != null) {
2995     xp.red = false;
2996     if (xpp != null) {
2997     xpp.red = true;
2998     root = rotateRight(root, xpp);
2999     }
3000     }
3001     }
3002     }
3003     else {
3004     if (xppl != null && xppl.red) {
3005     xppl.red = false;
3006     xp.red = false;
3007     xpp.red = true;
3008     x = xpp;
3009     }
3010     else {
3011     if (x == xp.left) {
3012     root = rotateRight(root, x = xp);
3013     xpp = (xp = x.parent) == null ? null : xp.parent;
3014     }
3015     if (xp != null) {
3016     xp.red = false;
3017     if (xpp != null) {
3018     xpp.red = true;
3019     root = rotateLeft(root, xpp);
3020     }
3021     }
3022     }
3023     }
3024     }
3025     }
3026 dl 1.79
3027 dl 1.102 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
3028     TreeNode<K,V> x) {
3029 jsr166 1.121 for (TreeNode<K,V> xp, xpl, xpr;;) {
3030 dl 1.102 if (x == null || x == root)
3031     return root;
3032     else if ((xp = x.parent) == null) {
3033     x.red = false;
3034     return x;
3035     }
3036     else if (x.red) {
3037     x.red = false;
3038     return root;
3039     }
3040     else if ((xpl = xp.left) == x) {
3041     if ((xpr = xp.right) != null && xpr.red) {
3042     xpr.red = false;
3043     xp.red = true;
3044     root = rotateLeft(root, xp);
3045     xpr = (xp = x.parent) == null ? null : xp.right;
3046     }
3047     if (xpr == null)
3048     x = xp;
3049     else {
3050     TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3051     if ((sr == null || !sr.red) &&
3052     (sl == null || !sl.red)) {
3053     xpr.red = true;
3054     x = xp;
3055     }
3056     else {
3057     if (sr == null || !sr.red) {
3058     if (sl != null)
3059     sl.red = false;
3060     xpr.red = true;
3061     root = rotateRight(root, xpr);
3062     xpr = (xp = x.parent) == null ?
3063     null : xp.right;
3064     }
3065     if (xpr != null) {
3066     xpr.red = (xp == null) ? false : xp.red;
3067     if ((sr = xpr.right) != null)
3068     sr.red = false;
3069     }
3070     if (xp != null) {
3071     xp.red = false;
3072     root = rotateLeft(root, xp);
3073     }
3074     x = root;
3075     }
3076     }
3077     }
3078     else { // symmetric
3079     if (xpl != null && xpl.red) {
3080     xpl.red = false;
3081     xp.red = true;
3082     root = rotateRight(root, xp);
3083     xpl = (xp = x.parent) == null ? null : xp.left;
3084     }
3085     if (xpl == null)
3086     x = xp;
3087     else {
3088     TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3089     if ((sl == null || !sl.red) &&
3090     (sr == null || !sr.red)) {
3091     xpl.red = true;
3092     x = xp;
3093     }
3094     else {
3095     if (sl == null || !sl.red) {
3096     if (sr != null)
3097     sr.red = false;
3098     xpl.red = true;
3099     root = rotateLeft(root, xpl);
3100     xpl = (xp = x.parent) == null ?
3101     null : xp.left;
3102     }
3103     if (xpl != null) {
3104     xpl.red = (xp == null) ? false : xp.red;
3105     if ((sl = xpl.left) != null)
3106     sl.red = false;
3107     }
3108     if (xp != null) {
3109     xp.red = false;
3110     root = rotateRight(root, xp);
3111     }
3112     x = root;
3113     }
3114     }
3115     }
3116     }
3117     }
3118 jsr166 1.103
3119 dl 1.79 /**
3120 dl 1.102 * Recursive invariant check
3121 dl 1.79 */
3122 dl 1.102 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3123     TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3124     tb = t.prev, tn = (TreeNode<K,V>)t.next;
3125     if (tb != null && tb.next != t)
3126     return false;
3127     if (tn != null && tn.prev != t)
3128     return false;
3129     if (tp != null && t != tp.left && t != tp.right)
3130     return false;
3131     if (tl != null && (tl.parent != t || tl.hash > t.hash))
3132     return false;
3133     if (tr != null && (tr.parent != t || tr.hash < t.hash))
3134     return false;
3135     if (t.red && tl != null && tl.red && tr != null && tr.red)
3136     return false;
3137     if (tl != null && !checkInvariants(tl))
3138     return false;
3139     if (tr != null && !checkInvariants(tr))
3140     return false;
3141     return true;
3142 dl 1.79 }
3143    
3144 dl 1.102 private static final sun.misc.Unsafe U;
3145     private static final long LOCKSTATE;
3146     static {
3147     try {
3148     U = getUnsafe();
3149     Class<?> k = TreeBin.class;
3150     LOCKSTATE = U.objectFieldOffset
3151     (k.getDeclaredField("lockState"));
3152     } catch (Exception e) {
3153     throw new Error(e);
3154     }
3155     }
3156 dl 1.1 }
3157    
3158 dl 1.102 /* ----------------Table Traversal -------------- */
3159 dl 1.1
3160     /**
3161 dl 1.116 * Records the table, its length, and current traversal index for a
3162     * traverser that must process a region of a forwarded table before
3163     * proceeding with current table.
3164     */
3165     static final class TableStack<K,V> {
3166     int length;
3167     int index;
3168     Node<K,V>[] tab;
3169     TableStack<K,V> next;
3170     }
3171    
3172     /**
3173 dl 1.102 * Encapsulates traversal for methods such as containsValue; also
3174     * serves as a base class for other iterators and spliterators.
3175     *
3176     * Method advance visits once each still-valid node that was
3177     * reachable upon iterator construction. It might miss some that
3178     * were added to a bin after the bin was visited, which is OK wrt
3179     * consistency guarantees. Maintaining this property in the face
3180     * of possible ongoing resizes requires a fair amount of
3181     * bookkeeping state that is difficult to optimize away amidst
3182     * volatile accesses. Even so, traversal maintains reasonable
3183     * throughput.
3184 dl 1.1 *
3185 dl 1.102 * Normally, iteration proceeds bin-by-bin traversing lists.
3186     * However, if the table has been resized, then all future steps
3187     * must traverse both the bin at the current index as well as at
3188     * (index + baseSize); and so on for further resizings. To
3189     * paranoically cope with potential sharing by users of iterators
3190     * across threads, iteration terminates if a bounds checks fails
3191     * for a table read.
3192 dl 1.1 */
3193 dl 1.102 static class Traverser<K,V> {
3194     Node<K,V>[] tab; // current table; updated if resized
3195     Node<K,V> next; // the next entry to use
3196 dl 1.116 TableStack<K,V> stack, spare; // to save/restore on ForwardingNodes
3197 dl 1.102 int index; // index of bin to use next
3198     int baseIndex; // current index of initial table
3199     int baseLimit; // index bound for initial table
3200     final int baseSize; // initial table size
3201    
3202     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3203     this.tab = tab;
3204     this.baseSize = size;
3205     this.baseIndex = this.index = index;
3206     this.baseLimit = limit;
3207     this.next = null;
3208     }
3209 dl 1.1
3210 dl 1.102 /**
3211     * Advances if possible, returning next valid node, or null if none.
3212     */
3213     final Node<K,V> advance() {
3214     Node<K,V> e;
3215     if ((e = next) != null)
3216     e = e.next;
3217     for (;;) {
3218 dl 1.116 Node<K,V>[] t; int i, n; // must use locals in checks
3219 dl 1.102 if (e != null)
3220     return next = e;
3221     if (baseIndex >= baseLimit || (t = tab) == null ||
3222     (n = t.length) <= (i = index) || i < 0)
3223     return next = null;
3224 dl 1.116 if ((e = tabAt(t, i)) != null && e.hash < 0) {
3225 dl 1.102 if (e instanceof ForwardingNode) {
3226     tab = ((ForwardingNode<K,V>)e).nextTable;
3227     e = null;
3228 dl 1.116 pushState(t, i, n);
3229 dl 1.102 continue;
3230 dl 1.75 }
3231 dl 1.102 else if (e instanceof TreeBin)
3232     e = ((TreeBin<K,V>)e).first;
3233     else
3234     e = null;
3235 dl 1.75 }
3236 dl 1.116 if (stack != null)
3237     recoverState(n);
3238     else if ((index = i + baseSize) >= n)
3239     index = ++baseIndex; // visit upper slots if present
3240     }
3241     }
3242    
3243     /**
3244     * Saves traversal state upon encountering a forwarding node.
3245     */
3246     private void pushState(Node<K,V>[] t, int i, int n) {
3247     TableStack<K,V> s = spare; // reuse if possible
3248     if (s != null)
3249     spare = s.next;
3250     else
3251     s = new TableStack<K,V>();
3252     s.tab = t;
3253     s.length = n;
3254     s.index = i;
3255     s.next = stack;
3256     stack = s;
3257     }
3258    
3259     /**
3260     * Possibly pops traversal state.
3261     *
3262     * @param n length of current table
3263     */
3264     private void recoverState(int n) {
3265     TableStack<K,V> s; int len;
3266     while ((s = stack) != null && (index += (len = s.length)) >= n) {
3267     n = len;
3268     index = s.index;
3269     tab = s.tab;
3270     s.tab = null;
3271     TableStack<K,V> next = s.next;
3272     s.next = spare; // save for reuse
3273     stack = next;
3274     spare = s;
3275 dl 1.24 }
3276 dl 1.116 if (s == null && (index += baseSize) >= n)
3277     index = ++baseIndex;
3278 dl 1.24 }
3279 dl 1.75 }
3280    
3281     /**
3282 dl 1.102 * Base of key, value, and entry Iterators. Adds fields to
3283 jsr166 1.105 * Traverser to support iterator.remove.
3284 dl 1.75 */
3285 dl 1.102 static class BaseIterator<K,V> extends Traverser<K,V> {
3286     final ConcurrentHashMapV8<K,V> map;
3287     Node<K,V> lastReturned;
3288     BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3289     ConcurrentHashMapV8<K,V> map) {
3290     super(tab, size, index, limit);
3291     this.map = map;
3292     advance();
3293     }
3294    
3295     public final boolean hasNext() { return next != null; }
3296     public final boolean hasMoreElements() { return next != null; }
3297    
3298     public final void remove() {
3299     Node<K,V> p;
3300     if ((p = lastReturned) == null)
3301     throw new IllegalStateException();
3302     lastReturned = null;
3303     map.replaceNode(p.key, null, null);
3304     }
3305 dl 1.75 }
3306    
3307 dl 1.102 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3308     implements Iterator<K>, Enumeration<K> {
3309     KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3310     ConcurrentHashMapV8<K,V> map) {
3311     super(tab, index, size, limit, map);
3312     }
3313    
3314     public final K next() {
3315     Node<K,V> p;
3316     if ((p = next) == null)
3317     throw new NoSuchElementException();
3318     K k = p.key;
3319     lastReturned = p;
3320     advance();
3321     return k;
3322     }
3323    
3324     public final K nextElement() { return next(); }
3325 dl 1.75 }
3326    
3327 dl 1.102 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3328     implements Iterator<V>, Enumeration<V> {
3329     ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3330     ConcurrentHashMapV8<K,V> map) {
3331     super(tab, index, size, limit, map);
3332     }
3333    
3334     public final V next() {
3335     Node<K,V> p;
3336     if ((p = next) == null)
3337     throw new NoSuchElementException();
3338     V v = p.val;
3339     lastReturned = p;
3340     advance();
3341     return v;
3342 dl 1.84 }
3343 dl 1.102
3344     public final V nextElement() { return next(); }
3345 dl 1.75 }
3346    
3347 dl 1.102 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3348     implements Iterator<Map.Entry<K,V>> {
3349     EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3350     ConcurrentHashMapV8<K,V> map) {
3351     super(tab, index, size, limit, map);
3352     }
3353    
3354     public final Map.Entry<K,V> next() {
3355     Node<K,V> p;
3356     if ((p = next) == null)
3357     throw new NoSuchElementException();
3358     K k = p.key;
3359     V v = p.val;
3360     lastReturned = p;
3361     advance();
3362     return new MapEntry<K,V>(k, v, map);
3363 dl 1.84 }
3364 dl 1.75 }
3365    
3366     /**
3367 dl 1.102 * Exported Entry for EntryIterator
3368 dl 1.75 */
3369 dl 1.102 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3370     final K key; // non-null
3371     V val; // non-null
3372     final ConcurrentHashMapV8<K,V> map;
3373     MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3374     this.key = key;
3375     this.val = val;
3376     this.map = map;
3377     }
3378     public K getKey() { return key; }
3379     public V getValue() { return val; }
3380     public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3381     public String toString() { return key + "=" + val; }
3382    
3383     public boolean equals(Object o) {
3384     Object k, v; Map.Entry<?,?> e;
3385     return ((o instanceof Map.Entry) &&
3386     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3387     (v = e.getValue()) != null &&
3388     (k == key || k.equals(key)) &&
3389     (v == val || v.equals(val)));
3390     }
3391    
3392     /**
3393     * Sets our entry's value and writes through to the map. The
3394     * value to return is somewhat arbitrary here. Since we do not
3395     * necessarily track asynchronous changes, the most recent
3396     * "previous" value could be different from what we return (or
3397     * could even have been removed, in which case the put will
3398     * re-establish). We do not and cannot guarantee more.
3399     */
3400     public V setValue(V value) {
3401     if (value == null) throw new NullPointerException();
3402     V v = val;
3403     val = value;
3404     map.put(key, value);
3405     return v;
3406 dl 1.84 }
3407 dl 1.75 }
3408    
3409 dl 1.102 static final class KeySpliterator<K,V> extends Traverser<K,V>
3410     implements ConcurrentHashMapSpliterator<K> {
3411     long est; // size estimate
3412     KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3413     long est) {
3414     super(tab, size, index, limit);
3415     this.est = est;
3416     }
3417    
3418     public ConcurrentHashMapSpliterator<K> trySplit() {
3419     int i, f, h;
3420     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3421     new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3422     f, est >>>= 1);
3423     }
3424    
3425     public void forEachRemaining(Action<? super K> action) {
3426     if (action == null) throw new NullPointerException();
3427     for (Node<K,V> p; (p = advance()) != null;)
3428     action.apply(p.key);
3429     }
3430    
3431     public boolean tryAdvance(Action<? super K> action) {
3432     if (action == null) throw new NullPointerException();
3433     Node<K,V> p;
3434     if ((p = advance()) == null)
3435     return false;
3436     action.apply(p.key);
3437     return true;
3438 dl 1.84 }
3439 dl 1.102
3440     public long estimateSize() { return est; }
3441    
3442 dl 1.75 }
3443    
3444 dl 1.102 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3445     implements ConcurrentHashMapSpliterator<V> {
3446     long est; // size estimate
3447     ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3448     long est) {
3449     super(tab, size, index, limit);
3450     this.est = est;
3451     }
3452    
3453     public ConcurrentHashMapSpliterator<V> trySplit() {
3454     int i, f, h;
3455     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3456     new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3457     f, est >>>= 1);
3458     }
3459    
3460     public void forEachRemaining(Action<? super V> action) {
3461     if (action == null) throw new NullPointerException();
3462     for (Node<K,V> p; (p = advance()) != null;)
3463     action.apply(p.val);
3464     }
3465    
3466     public boolean tryAdvance(Action<? super V> action) {
3467     if (action == null) throw new NullPointerException();
3468     Node<K,V> p;
3469     if ((p = advance()) == null)
3470     return false;
3471     action.apply(p.val);
3472     return true;
3473     }
3474    
3475     public long estimateSize() { return est; }
3476    
3477 dl 1.75 }
3478    
3479 dl 1.102 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3480     implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3481     final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3482     long est; // size estimate
3483     EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3484     long est, ConcurrentHashMapV8<K,V> map) {
3485     super(tab, size, index, limit);
3486     this.map = map;
3487     this.est = est;
3488     }
3489    
3490     public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3491     int i, f, h;
3492     return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3493     new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3494     f, est >>>= 1, map);
3495     }
3496    
3497     public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3498     if (action == null) throw new NullPointerException();
3499     for (Node<K,V> p; (p = advance()) != null; )
3500     action.apply(new MapEntry<K,V>(p.key, p.val, map));
3501     }
3502    
3503     public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3504     if (action == null) throw new NullPointerException();
3505     Node<K,V> p;
3506     if ((p = advance()) == null)
3507     return false;
3508     action.apply(new MapEntry<K,V>(p.key, p.val, map));
3509     return true;
3510     }
3511    
3512     public long estimateSize() { return est; }
3513    
3514 dl 1.75 }
3515    
3516 dl 1.102 // Parallel bulk operations
3517    
3518 dl 1.75 /**
3519 dl 1.102 * Computes initial batch value for bulk tasks. The returned value
3520     * is approximately exp2 of the number of times (minus one) to
3521     * split task by two before executing leaf action. This value is
3522     * faster to compute and more convenient to use as a guide to
3523     * splitting than is the depth, since it is used while dividing by
3524     * two anyway.
3525     */
3526     final int batchFor(long b) {
3527     long n;
3528     if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3529     return 0;
3530     int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3531     return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3532 dl 1.75 }
3533    
3534     /**
3535 dl 1.84 * Performs the given action for each (key, value).
3536     *
3537 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3538     * needed for this operation to be executed in parallel
3539 dl 1.84 * @param action the action
3540 dl 1.102 * @since 1.8
3541 dl 1.75 */
3542 dl 1.102 public void forEach(long parallelismThreshold,
3543     BiAction<? super K,? super V> action) {
3544     if (action == null) throw new NullPointerException();
3545     new ForEachMappingTask<K,V>
3546     (null, batchFor(parallelismThreshold), 0, 0, table,
3547     action).invoke();
3548 dl 1.84 }
3549 dl 1.75
3550 dl 1.84 /**
3551     * Performs the given action for each non-null transformation
3552     * of each (key, value).
3553     *
3554 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3555     * needed for this operation to be executed in parallel
3556 dl 1.84 * @param transformer a function returning the transformation
3557 jsr166 1.91 * for an element, or null if there is no transformation (in
3558 jsr166 1.93 * which case the action is not applied)
3559 dl 1.84 * @param action the action
3560 dl 1.102 * @since 1.8
3561 dl 1.84 */
3562 dl 1.102 public <U> void forEach(long parallelismThreshold,
3563     BiFun<? super K, ? super V, ? extends U> transformer,
3564     Action<? super U> action) {
3565     if (transformer == null || action == null)
3566     throw new NullPointerException();
3567     new ForEachTransformedMappingTask<K,V,U>
3568     (null, batchFor(parallelismThreshold), 0, 0, table,
3569     transformer, action).invoke();
3570 dl 1.84 }
3571 dl 1.75
3572 dl 1.84 /**
3573     * Returns a non-null result from applying the given search
3574     * function on each (key, value), or null if none. Upon
3575     * success, further element processing is suppressed and the
3576     * results of any other parallel invocations of the search
3577     * function are ignored.
3578     *
3579 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3580     * needed for this operation to be executed in parallel
3581 dl 1.84 * @param searchFunction a function returning a non-null
3582     * result on success, else null
3583     * @return a non-null result from applying the given search
3584     * function on each (key, value), or null if none
3585 dl 1.102 * @since 1.8
3586 dl 1.84 */
3587 dl 1.102 public <U> U search(long parallelismThreshold,
3588     BiFun<? super K, ? super V, ? extends U> searchFunction) {
3589     if (searchFunction == null) throw new NullPointerException();
3590     return new SearchMappingsTask<K,V,U>
3591     (null, batchFor(parallelismThreshold), 0, 0, table,
3592     searchFunction, new AtomicReference<U>()).invoke();
3593 dl 1.84 }
3594 dl 1.75
3595 dl 1.84 /**
3596     * Returns the result of accumulating the given transformation
3597     * of all (key, value) pairs using the given reducer to
3598     * combine values, or null if none.
3599     *
3600 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3601     * needed for this operation to be executed in parallel
3602 dl 1.84 * @param transformer a function returning the transformation
3603 jsr166 1.91 * for an element, or null if there is no transformation (in
3604 jsr166 1.93 * which case it is not combined)
3605 dl 1.84 * @param reducer a commutative associative combining function
3606     * @return the result of accumulating the given transformation
3607     * of all (key, value) pairs
3608 dl 1.102 * @since 1.8
3609 dl 1.84 */
3610 dl 1.102 public <U> U reduce(long parallelismThreshold,
3611     BiFun<? super K, ? super V, ? extends U> transformer,
3612     BiFun<? super U, ? super U, ? extends U> reducer) {
3613     if (transformer == null || reducer == null)
3614     throw new NullPointerException();
3615     return new MapReduceMappingsTask<K,V,U>
3616     (null, batchFor(parallelismThreshold), 0, 0, table,
3617     null, transformer, reducer).invoke();
3618 dl 1.84 }
3619 dl 1.75
3620 dl 1.84 /**
3621     * Returns the result of accumulating the given transformation
3622     * of all (key, value) pairs using the given reducer to
3623     * combine values, and the given basis as an identity value.
3624     *
3625 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3626     * needed for this operation to be executed in parallel
3627 dl 1.84 * @param transformer a function returning the transformation
3628     * for an element
3629     * @param basis the identity (initial default value) for the reduction
3630     * @param reducer a commutative associative combining function
3631     * @return the result of accumulating the given transformation
3632     * of all (key, value) pairs
3633 dl 1.102 * @since 1.8
3634 dl 1.84 */
3635 dl 1.107 public double reduceToDouble(long parallelismThreshold,
3636     ObjectByObjectToDouble<? super K, ? super V> transformer,
3637     double basis,
3638     DoubleByDoubleToDouble reducer) {
3639 dl 1.102 if (transformer == null || reducer == null)
3640     throw new NullPointerException();
3641     return new MapReduceMappingsToDoubleTask<K,V>
3642     (null, batchFor(parallelismThreshold), 0, 0, table,
3643     null, transformer, basis, reducer).invoke();
3644 dl 1.84 }
3645    
3646     /**
3647     * Returns the result of accumulating the given transformation
3648     * of all (key, value) pairs using the given reducer to
3649     * combine values, and the given basis as an identity value.
3650     *
3651 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3652     * needed for this operation to be executed in parallel
3653 dl 1.84 * @param transformer a function returning the transformation
3654     * for an element
3655     * @param basis the identity (initial default value) for the reduction
3656     * @param reducer a commutative associative combining function
3657     * @return the result of accumulating the given transformation
3658     * of all (key, value) pairs
3659 dl 1.102 * @since 1.8
3660 dl 1.84 */
3661 dl 1.102 public long reduceToLong(long parallelismThreshold,
3662     ObjectByObjectToLong<? super K, ? super V> transformer,
3663     long basis,
3664     LongByLongToLong reducer) {
3665     if (transformer == null || reducer == null)
3666     throw new NullPointerException();
3667     return new MapReduceMappingsToLongTask<K,V>
3668     (null, batchFor(parallelismThreshold), 0, 0, table,
3669     null, transformer, basis, reducer).invoke();
3670 dl 1.84 }
3671    
3672     /**
3673     * Returns the result of accumulating the given transformation
3674     * of all (key, value) pairs using the given reducer to
3675     * combine values, and the given basis as an identity value.
3676     *
3677 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3678     * needed for this operation to be executed in parallel
3679 dl 1.84 * @param transformer a function returning the transformation
3680     * for an element
3681     * @param basis the identity (initial default value) for the reduction
3682     * @param reducer a commutative associative combining function
3683     * @return the result of accumulating the given transformation
3684     * of all (key, value) pairs
3685 dl 1.102 * @since 1.8
3686 dl 1.84 */
3687 dl 1.102 public int reduceToInt(long parallelismThreshold,
3688     ObjectByObjectToInt<? super K, ? super V> transformer,
3689     int basis,
3690     IntByIntToInt reducer) {
3691     if (transformer == null || reducer == null)
3692     throw new NullPointerException();
3693     return new MapReduceMappingsToIntTask<K,V>
3694     (null, batchFor(parallelismThreshold), 0, 0, table,
3695     null, transformer, basis, reducer).invoke();
3696 dl 1.84 }
3697    
3698     /**
3699     * Performs the given action for each key.
3700     *
3701 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3702     * needed for this operation to be executed in parallel
3703 dl 1.84 * @param action the action
3704 dl 1.102 * @since 1.8
3705 dl 1.84 */
3706 dl 1.102 public void forEachKey(long parallelismThreshold,
3707     Action<? super K> action) {
3708     if (action == null) throw new NullPointerException();
3709     new ForEachKeyTask<K,V>
3710     (null, batchFor(parallelismThreshold), 0, 0, table,
3711     action).invoke();
3712 dl 1.84 }
3713    
3714     /**
3715     * Performs the given action for each non-null transformation
3716     * of each key.
3717     *
3718 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3719     * needed for this operation to be executed in parallel
3720 dl 1.84 * @param transformer a function returning the transformation
3721 jsr166 1.91 * for an element, or null if there is no transformation (in
3722 jsr166 1.93 * which case the action is not applied)
3723 dl 1.84 * @param action the action
3724 dl 1.102 * @since 1.8
3725 dl 1.84 */
3726 dl 1.102 public <U> void forEachKey(long parallelismThreshold,
3727     Fun<? super K, ? extends U> transformer,
3728     Action<? super U> action) {
3729     if (transformer == null || action == null)
3730     throw new NullPointerException();
3731     new ForEachTransformedKeyTask<K,V,U>
3732     (null, batchFor(parallelismThreshold), 0, 0, table,
3733     transformer, action).invoke();
3734 dl 1.84 }
3735    
3736     /**
3737     * Returns a non-null result from applying the given search
3738     * function on each key, or null if none. Upon success,
3739     * further element processing is suppressed and the results of
3740     * any other parallel invocations of the search function are
3741     * ignored.
3742     *
3743 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3744     * needed for this operation to be executed in parallel
3745 dl 1.84 * @param searchFunction a function returning a non-null
3746     * result on success, else null
3747     * @return a non-null result from applying the given search
3748     * function on each key, or null if none
3749 dl 1.102 * @since 1.8
3750 dl 1.84 */
3751 dl 1.102 public <U> U searchKeys(long parallelismThreshold,
3752     Fun<? super K, ? extends U> searchFunction) {
3753     if (searchFunction == null) throw new NullPointerException();
3754     return new SearchKeysTask<K,V,U>
3755     (null, batchFor(parallelismThreshold), 0, 0, table,
3756     searchFunction, new AtomicReference<U>()).invoke();
3757 dl 1.84 }
3758    
3759     /**
3760     * Returns the result of accumulating all keys using the given
3761     * reducer to combine values, or null if none.
3762     *
3763 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3764     * needed for this operation to be executed in parallel
3765 dl 1.84 * @param reducer a commutative associative combining function
3766     * @return the result of accumulating all keys using the given
3767     * reducer to combine values, or null if none
3768 dl 1.102 * @since 1.8
3769 dl 1.84 */
3770 dl 1.102 public K reduceKeys(long parallelismThreshold,
3771     BiFun<? super K, ? super K, ? extends K> reducer) {
3772     if (reducer == null) throw new NullPointerException();
3773     return new ReduceKeysTask<K,V>
3774     (null, batchFor(parallelismThreshold), 0, 0, table,
3775     null, reducer).invoke();
3776 dl 1.84 }
3777    
3778     /**
3779     * Returns the result of accumulating the given transformation
3780     * of all keys using the given reducer to combine values, or
3781     * null if none.
3782     *
3783 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3784     * needed for this operation to be executed in parallel
3785 dl 1.84 * @param transformer a function returning the transformation
3786 jsr166 1.91 * for an element, or null if there is no transformation (in
3787 jsr166 1.93 * which case it is not combined)
3788 dl 1.84 * @param reducer a commutative associative combining function
3789     * @return the result of accumulating the given transformation
3790     * of all keys
3791 dl 1.102 * @since 1.8
3792 dl 1.84 */
3793 dl 1.102 public <U> U reduceKeys(long parallelismThreshold,
3794     Fun<? super K, ? extends U> transformer,
3795 dl 1.84 BiFun<? super U, ? super U, ? extends U> reducer) {
3796 dl 1.102 if (transformer == null || reducer == null)
3797     throw new NullPointerException();
3798     return new MapReduceKeysTask<K,V,U>
3799     (null, batchFor(parallelismThreshold), 0, 0, table,
3800     null, transformer, reducer).invoke();
3801 dl 1.84 }
3802    
3803     /**
3804     * Returns the result of accumulating the given transformation
3805     * of all keys using the given reducer to combine values, and
3806     * the given basis as an identity value.
3807     *
3808 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3809     * needed for this operation to be executed in parallel
3810 dl 1.84 * @param transformer a function returning the transformation
3811     * for an element
3812     * @param basis the identity (initial default value) for the reduction
3813     * @param reducer a commutative associative combining function
3814 dl 1.102 * @return the result of accumulating the given transformation
3815 dl 1.84 * of all keys
3816 dl 1.102 * @since 1.8
3817 dl 1.84 */
3818 dl 1.102 public double reduceKeysToDouble(long parallelismThreshold,
3819     ObjectToDouble<? super K> transformer,
3820     double basis,
3821     DoubleByDoubleToDouble reducer) {
3822     if (transformer == null || reducer == null)
3823     throw new NullPointerException();
3824     return new MapReduceKeysToDoubleTask<K,V>
3825     (null, batchFor(parallelismThreshold), 0, 0, table,
3826     null, transformer, basis, reducer).invoke();
3827 dl 1.84 }
3828    
3829     /**
3830     * Returns the result of accumulating the given transformation
3831     * of all keys using the given reducer to combine values, and
3832     * the given basis as an identity value.
3833     *
3834 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3835     * needed for this operation to be executed in parallel
3836 dl 1.84 * @param transformer a function returning the transformation
3837     * for an element
3838     * @param basis the identity (initial default value) for the reduction
3839     * @param reducer a commutative associative combining function
3840     * @return the result of accumulating the given transformation
3841     * of all keys
3842 dl 1.102 * @since 1.8
3843 dl 1.84 */
3844 dl 1.102 public long reduceKeysToLong(long parallelismThreshold,
3845     ObjectToLong<? super K> transformer,
3846     long basis,
3847     LongByLongToLong reducer) {
3848     if (transformer == null || reducer == null)
3849     throw new NullPointerException();
3850     return new MapReduceKeysToLongTask<K,V>
3851     (null, batchFor(parallelismThreshold), 0, 0, table,
3852     null, transformer, basis, reducer).invoke();
3853 dl 1.84 }
3854    
3855     /**
3856     * Returns the result of accumulating the given transformation
3857     * of all keys using the given reducer to combine values, and
3858     * the given basis as an identity value.
3859     *
3860 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3861     * needed for this operation to be executed in parallel
3862 dl 1.84 * @param transformer a function returning the transformation
3863     * for an element
3864     * @param basis the identity (initial default value) for the reduction
3865     * @param reducer a commutative associative combining function
3866     * @return the result of accumulating the given transformation
3867     * of all keys
3868 dl 1.102 * @since 1.8
3869 dl 1.84 */
3870 dl 1.102 public int reduceKeysToInt(long parallelismThreshold,
3871     ObjectToInt<? super K> transformer,
3872     int basis,
3873     IntByIntToInt reducer) {
3874     if (transformer == null || reducer == null)
3875     throw new NullPointerException();
3876     return new MapReduceKeysToIntTask<K,V>
3877     (null, batchFor(parallelismThreshold), 0, 0, table,
3878     null, transformer, basis, reducer).invoke();
3879 dl 1.84 }
3880    
3881     /**
3882     * Performs the given action for each value.
3883     *
3884 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3885     * needed for this operation to be executed in parallel
3886 dl 1.84 * @param action the action
3887 dl 1.102 * @since 1.8
3888 dl 1.84 */
3889 dl 1.102 public void forEachValue(long parallelismThreshold,
3890     Action<? super V> action) {
3891     if (action == null)
3892     throw new NullPointerException();
3893     new ForEachValueTask<K,V>
3894     (null, batchFor(parallelismThreshold), 0, 0, table,
3895     action).invoke();
3896 dl 1.84 }
3897    
3898     /**
3899     * Performs the given action for each non-null transformation
3900     * of each value.
3901     *
3902 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3903     * needed for this operation to be executed in parallel
3904 dl 1.84 * @param transformer a function returning the transformation
3905 jsr166 1.91 * for an element, or null if there is no transformation (in
3906 jsr166 1.93 * which case the action is not applied)
3907 dl 1.102 * @param action the action
3908     * @since 1.8
3909 dl 1.84 */
3910 dl 1.102 public <U> void forEachValue(long parallelismThreshold,
3911     Fun<? super V, ? extends U> transformer,
3912     Action<? super U> action) {
3913     if (transformer == null || action == null)
3914     throw new NullPointerException();
3915     new ForEachTransformedValueTask<K,V,U>
3916     (null, batchFor(parallelismThreshold), 0, 0, table,
3917     transformer, action).invoke();
3918 dl 1.84 }
3919    
3920     /**
3921     * Returns a non-null result from applying the given search
3922     * function on each value, or null if none. Upon success,
3923     * further element processing is suppressed and the results of
3924     * any other parallel invocations of the search function are
3925     * ignored.
3926     *
3927 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3928     * needed for this operation to be executed in parallel
3929 dl 1.84 * @param searchFunction a function returning a non-null
3930     * result on success, else null
3931     * @return a non-null result from applying the given search
3932     * function on each value, or null if none
3933 dl 1.102 * @since 1.8
3934 dl 1.84 */
3935 dl 1.102 public <U> U searchValues(long parallelismThreshold,
3936     Fun<? super V, ? extends U> searchFunction) {
3937     if (searchFunction == null) throw new NullPointerException();
3938     return new SearchValuesTask<K,V,U>
3939     (null, batchFor(parallelismThreshold), 0, 0, table,
3940     searchFunction, new AtomicReference<U>()).invoke();
3941 dl 1.84 }
3942    
3943     /**
3944     * Returns the result of accumulating all values using the
3945     * given reducer to combine values, or null if none.
3946     *
3947 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3948     * needed for this operation to be executed in parallel
3949 dl 1.84 * @param reducer a commutative associative combining function
3950 dl 1.102 * @return the result of accumulating all values
3951     * @since 1.8
3952 dl 1.84 */
3953 dl 1.102 public V reduceValues(long parallelismThreshold,
3954     BiFun<? super V, ? super V, ? extends V> reducer) {
3955     if (reducer == null) throw new NullPointerException();
3956     return new ReduceValuesTask<K,V>
3957     (null, batchFor(parallelismThreshold), 0, 0, table,
3958     null, reducer).invoke();
3959 dl 1.84 }
3960    
3961     /**
3962     * Returns the result of accumulating the given transformation
3963     * of all values using the given reducer to combine values, or
3964     * null if none.
3965     *
3966 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3967     * needed for this operation to be executed in parallel
3968 dl 1.84 * @param transformer a function returning the transformation
3969 jsr166 1.91 * for an element, or null if there is no transformation (in
3970 jsr166 1.93 * which case it is not combined)
3971 dl 1.84 * @param reducer a commutative associative combining function
3972     * @return the result of accumulating the given transformation
3973     * of all values
3974 dl 1.102 * @since 1.8
3975 dl 1.84 */
3976 dl 1.102 public <U> U reduceValues(long parallelismThreshold,
3977     Fun<? super V, ? extends U> transformer,
3978     BiFun<? super U, ? super U, ? extends U> reducer) {
3979     if (transformer == null || reducer == null)
3980     throw new NullPointerException();
3981     return new MapReduceValuesTask<K,V,U>
3982     (null, batchFor(parallelismThreshold), 0, 0, table,
3983     null, transformer, reducer).invoke();
3984 dl 1.84 }
3985    
3986     /**
3987     * Returns the result of accumulating the given transformation
3988     * of all values using the given reducer to combine values,
3989     * and the given basis as an identity value.
3990     *
3991 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
3992     * needed for this operation to be executed in parallel
3993 dl 1.84 * @param transformer a function returning the transformation
3994     * for an element
3995     * @param basis the identity (initial default value) for the reduction
3996     * @param reducer a commutative associative combining function
3997     * @return the result of accumulating the given transformation
3998     * of all values
3999 dl 1.102 * @since 1.8
4000 dl 1.84 */
4001 dl 1.102 public double reduceValuesToDouble(long parallelismThreshold,
4002     ObjectToDouble<? super V> transformer,
4003     double basis,
4004     DoubleByDoubleToDouble reducer) {
4005     if (transformer == null || reducer == null)
4006     throw new NullPointerException();
4007     return new MapReduceValuesToDoubleTask<K,V>
4008     (null, batchFor(parallelismThreshold), 0, 0, table,
4009     null, transformer, basis, reducer).invoke();
4010 dl 1.84 }
4011    
4012     /**
4013     * Returns the result of accumulating the given transformation
4014     * of all values using the given reducer to combine values,
4015     * and the given basis as an identity value.
4016     *
4017 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4018     * needed for this operation to be executed in parallel
4019 dl 1.84 * @param transformer a function returning the transformation
4020     * for an element
4021     * @param basis the identity (initial default value) for the reduction
4022     * @param reducer a commutative associative combining function
4023     * @return the result of accumulating the given transformation
4024     * of all values
4025 dl 1.102 * @since 1.8
4026 dl 1.84 */
4027 dl 1.102 public long reduceValuesToLong(long parallelismThreshold,
4028     ObjectToLong<? super V> transformer,
4029     long basis,
4030     LongByLongToLong reducer) {
4031     if (transformer == null || reducer == null)
4032     throw new NullPointerException();
4033     return new MapReduceValuesToLongTask<K,V>
4034     (null, batchFor(parallelismThreshold), 0, 0, table,
4035     null, transformer, basis, reducer).invoke();
4036 dl 1.84 }
4037    
4038     /**
4039     * Returns the result of accumulating the given transformation
4040     * of all values using the given reducer to combine values,
4041     * and the given basis as an identity value.
4042     *
4043 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4044     * needed for this operation to be executed in parallel
4045 dl 1.84 * @param transformer a function returning the transformation
4046     * for an element
4047     * @param basis the identity (initial default value) for the reduction
4048     * @param reducer a commutative associative combining function
4049     * @return the result of accumulating the given transformation
4050     * of all values
4051 dl 1.102 * @since 1.8
4052 dl 1.84 */
4053 dl 1.102 public int reduceValuesToInt(long parallelismThreshold,
4054     ObjectToInt<? super V> transformer,
4055     int basis,
4056     IntByIntToInt reducer) {
4057     if (transformer == null || reducer == null)
4058     throw new NullPointerException();
4059     return new MapReduceValuesToIntTask<K,V>
4060     (null, batchFor(parallelismThreshold), 0, 0, table,
4061     null, transformer, basis, reducer).invoke();
4062 dl 1.84 }
4063    
4064     /**
4065     * Performs the given action for each entry.
4066     *
4067 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4068     * needed for this operation to be executed in parallel
4069 dl 1.84 * @param action the action
4070 dl 1.102 * @since 1.8
4071 dl 1.84 */
4072 dl 1.102 public void forEachEntry(long parallelismThreshold,
4073     Action<? super Map.Entry<K,V>> action) {
4074     if (action == null) throw new NullPointerException();
4075     new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
4076     action).invoke();
4077 dl 1.84 }
4078    
4079     /**
4080     * Performs the given action for each non-null transformation
4081     * of each entry.
4082     *
4083 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4084     * needed for this operation to be executed in parallel
4085 dl 1.84 * @param transformer a function returning the transformation
4086 jsr166 1.91 * for an element, or null if there is no transformation (in
4087 jsr166 1.93 * which case the action is not applied)
4088 dl 1.84 * @param action the action
4089 dl 1.102 * @since 1.8
4090 dl 1.84 */
4091 dl 1.102 public <U> void forEachEntry(long parallelismThreshold,
4092     Fun<Map.Entry<K,V>, ? extends U> transformer,
4093     Action<? super U> action) {
4094     if (transformer == null || action == null)
4095     throw new NullPointerException();
4096     new ForEachTransformedEntryTask<K,V,U>
4097     (null, batchFor(parallelismThreshold), 0, 0, table,
4098     transformer, action).invoke();
4099 dl 1.84 }
4100    
4101     /**
4102     * Returns a non-null result from applying the given search
4103     * function on each entry, or null if none. Upon success,
4104     * further element processing is suppressed and the results of
4105     * any other parallel invocations of the search function are
4106     * ignored.
4107     *
4108 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4109     * needed for this operation to be executed in parallel
4110 dl 1.84 * @param searchFunction a function returning a non-null
4111     * result on success, else null
4112     * @return a non-null result from applying the given search
4113     * function on each entry, or null if none
4114 dl 1.102 * @since 1.8
4115 dl 1.84 */
4116 dl 1.102 public <U> U searchEntries(long parallelismThreshold,
4117     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4118     if (searchFunction == null) throw new NullPointerException();
4119     return new SearchEntriesTask<K,V,U>
4120     (null, batchFor(parallelismThreshold), 0, 0, table,
4121     searchFunction, new AtomicReference<U>()).invoke();
4122 dl 1.84 }
4123    
4124     /**
4125     * Returns the result of accumulating all entries using the
4126     * given reducer to combine values, or null if none.
4127     *
4128 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4129     * needed for this operation to be executed in parallel
4130 dl 1.84 * @param reducer a commutative associative combining function
4131     * @return the result of accumulating all entries
4132 dl 1.102 * @since 1.8
4133 dl 1.84 */
4134 dl 1.102 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4135     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4136     if (reducer == null) throw new NullPointerException();
4137     return new ReduceEntriesTask<K,V>
4138     (null, batchFor(parallelismThreshold), 0, 0, table,
4139     null, reducer).invoke();
4140 dl 1.84 }
4141    
4142     /**
4143     * Returns the result of accumulating the given transformation
4144     * of all entries using the given reducer to combine values,
4145     * or null if none.
4146     *
4147 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4148     * needed for this operation to be executed in parallel
4149 dl 1.84 * @param transformer a function returning the transformation
4150 jsr166 1.91 * for an element, or null if there is no transformation (in
4151 jsr166 1.93 * which case it is not combined)
4152 dl 1.84 * @param reducer a commutative associative combining function
4153     * @return the result of accumulating the given transformation
4154     * of all entries
4155 dl 1.102 * @since 1.8
4156 dl 1.84 */
4157 dl 1.102 public <U> U reduceEntries(long parallelismThreshold,
4158     Fun<Map.Entry<K,V>, ? extends U> transformer,
4159     BiFun<? super U, ? super U, ? extends U> reducer) {
4160     if (transformer == null || reducer == null)
4161     throw new NullPointerException();
4162     return new MapReduceEntriesTask<K,V,U>
4163     (null, batchFor(parallelismThreshold), 0, 0, table,
4164     null, transformer, reducer).invoke();
4165 dl 1.84 }
4166    
4167     /**
4168     * Returns the result of accumulating the given transformation
4169     * of all entries using the given reducer to combine values,
4170     * and the given basis as an identity value.
4171     *
4172 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4173     * needed for this operation to be executed in parallel
4174 dl 1.84 * @param transformer a function returning the transformation
4175     * for an element
4176     * @param basis the identity (initial default value) for the reduction
4177     * @param reducer a commutative associative combining function
4178     * @return the result of accumulating the given transformation
4179     * of all entries
4180 dl 1.102 * @since 1.8
4181 dl 1.84 */
4182 dl 1.102 public double reduceEntriesToDouble(long parallelismThreshold,
4183     ObjectToDouble<Map.Entry<K,V>> transformer,
4184     double basis,
4185     DoubleByDoubleToDouble reducer) {
4186     if (transformer == null || reducer == null)
4187     throw new NullPointerException();
4188     return new MapReduceEntriesToDoubleTask<K,V>
4189     (null, batchFor(parallelismThreshold), 0, 0, table,
4190     null, transformer, basis, reducer).invoke();
4191 dl 1.84 }
4192    
4193     /**
4194     * Returns the result of accumulating the given transformation
4195     * of all entries using the given reducer to combine values,
4196     * and the given basis as an identity value.
4197     *
4198 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4199     * needed for this operation to be executed in parallel
4200 dl 1.84 * @param transformer a function returning the transformation
4201     * for an element
4202     * @param basis the identity (initial default value) for the reduction
4203     * @param reducer a commutative associative combining function
4204 dl 1.102 * @return the result of accumulating the given transformation
4205 dl 1.84 * of all entries
4206 dl 1.102 * @since 1.8
4207 dl 1.84 */
4208 dl 1.102 public long reduceEntriesToLong(long parallelismThreshold,
4209     ObjectToLong<Map.Entry<K,V>> transformer,
4210     long basis,
4211     LongByLongToLong reducer) {
4212     if (transformer == null || reducer == null)
4213     throw new NullPointerException();
4214     return new MapReduceEntriesToLongTask<K,V>
4215     (null, batchFor(parallelismThreshold), 0, 0, table,
4216     null, transformer, basis, reducer).invoke();
4217 dl 1.84 }
4218    
4219     /**
4220     * Returns the result of accumulating the given transformation
4221     * of all entries using the given reducer to combine values,
4222     * and the given basis as an identity value.
4223     *
4224 dl 1.102 * @param parallelismThreshold the (estimated) number of elements
4225     * needed for this operation to be executed in parallel
4226 dl 1.84 * @param transformer a function returning the transformation
4227     * for an element
4228     * @param basis the identity (initial default value) for the reduction
4229     * @param reducer a commutative associative combining function
4230     * @return the result of accumulating the given transformation
4231     * of all entries
4232 dl 1.102 * @since 1.8
4233 dl 1.84 */
4234 dl 1.102 public int reduceEntriesToInt(long parallelismThreshold,
4235     ObjectToInt<Map.Entry<K,V>> transformer,
4236     int basis,
4237     IntByIntToInt reducer) {
4238     if (transformer == null || reducer == null)
4239     throw new NullPointerException();
4240     return new MapReduceEntriesToIntTask<K,V>
4241     (null, batchFor(parallelismThreshold), 0, 0, table,
4242     null, transformer, basis, reducer).invoke();
4243 dl 1.84 }
4244    
4245    
4246     /* ----------------Views -------------- */
4247    
4248     /**
4249     * Base class for views.
4250     */
4251 dl 1.102 abstract static class CollectionView<K,V,E>
4252     implements Collection<E>, java.io.Serializable {
4253     private static final long serialVersionUID = 7249069246763182397L;
4254 jsr166 1.99 final ConcurrentHashMapV8<K,V> map;
4255 dl 1.102 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4256 dl 1.84
4257     /**
4258     * Returns the map backing this view.
4259     *
4260     * @return the map backing this view
4261     */
4262     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4263    
4264 dl 1.102 /**
4265     * Removes all of the elements from this view, by removing all
4266     * the mappings from the map backing this view.
4267     */
4268     public final void clear() { map.clear(); }
4269     public final int size() { return map.size(); }
4270     public final boolean isEmpty() { return map.isEmpty(); }
4271 dl 1.84
4272     // implementations below rely on concrete classes supplying these
4273 dl 1.102 // abstract methods
4274     /**
4275     * Returns a "weakly consistent" iterator that will never
4276     * throw {@link ConcurrentModificationException}, and
4277     * guarantees to traverse elements as they existed upon
4278     * construction of the iterator, and may (but is not
4279     * guaranteed to) reflect any modifications subsequent to
4280     * construction.
4281     */
4282     public abstract Iterator<E> iterator();
4283 jsr166 1.88 public abstract boolean contains(Object o);
4284     public abstract boolean remove(Object o);
4285 dl 1.84
4286     private static final String oomeMsg = "Required array size too large";
4287 dl 1.75
4288     public final Object[] toArray() {
4289     long sz = map.mappingCount();
4290 dl 1.102 if (sz > MAX_ARRAY_SIZE)
4291 dl 1.75 throw new OutOfMemoryError(oomeMsg);
4292     int n = (int)sz;
4293     Object[] r = new Object[n];
4294     int i = 0;
4295 dl 1.102 for (E e : this) {
4296 dl 1.75 if (i == n) {
4297     if (n >= MAX_ARRAY_SIZE)
4298     throw new OutOfMemoryError(oomeMsg);
4299     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4300     n = MAX_ARRAY_SIZE;
4301     else
4302     n += (n >>> 1) + 1;
4303     r = Arrays.copyOf(r, n);
4304     }
4305 dl 1.102 r[i++] = e;
4306 dl 1.75 }
4307     return (i == n) ? r : Arrays.copyOf(r, i);
4308     }
4309    
4310 dl 1.102 @SuppressWarnings("unchecked")
4311     public final <T> T[] toArray(T[] a) {
4312 dl 1.75 long sz = map.mappingCount();
4313 dl 1.102 if (sz > MAX_ARRAY_SIZE)
4314 dl 1.75 throw new OutOfMemoryError(oomeMsg);
4315     int m = (int)sz;
4316     T[] r = (a.length >= m) ? a :
4317     (T[])java.lang.reflect.Array
4318     .newInstance(a.getClass().getComponentType(), m);
4319     int n = r.length;
4320     int i = 0;
4321 dl 1.102 for (E e : this) {
4322 dl 1.75 if (i == n) {
4323     if (n >= MAX_ARRAY_SIZE)
4324     throw new OutOfMemoryError(oomeMsg);
4325     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4326     n = MAX_ARRAY_SIZE;
4327     else
4328     n += (n >>> 1) + 1;
4329     r = Arrays.copyOf(r, n);
4330     }
4331 dl 1.102 r[i++] = (T)e;
4332 dl 1.75 }
4333     if (a == r && i < n) {
4334     r[i] = null; // null-terminate
4335     return r;
4336     }
4337     return (i == n) ? r : Arrays.copyOf(r, i);
4338     }
4339    
4340 dl 1.102 /**
4341     * Returns a string representation of this collection.
4342     * The string representation consists of the string representations
4343     * of the collection's elements in the order they are returned by
4344     * its iterator, enclosed in square brackets ({@code "[]"}).
4345     * Adjacent elements are separated by the characters {@code ", "}
4346     * (comma and space). Elements are converted to strings as by
4347     * {@link String#valueOf(Object)}.
4348     *
4349     * @return a string representation of this collection
4350     */
4351 dl 1.75 public final String toString() {
4352     StringBuilder sb = new StringBuilder();
4353     sb.append('[');
4354 dl 1.102 Iterator<E> it = iterator();
4355 dl 1.75 if (it.hasNext()) {
4356     for (;;) {
4357     Object e = it.next();
4358     sb.append(e == this ? "(this Collection)" : e);
4359     if (!it.hasNext())
4360     break;
4361     sb.append(',').append(' ');
4362     }
4363     }
4364     return sb.append(']').toString();
4365     }
4366    
4367     public final boolean containsAll(Collection<?> c) {
4368     if (c != this) {
4369 dl 1.102 for (Object e : c) {
4370 dl 1.75 if (e == null || !contains(e))
4371     return false;
4372     }
4373     }
4374     return true;
4375     }
4376    
4377     public final boolean removeAll(Collection<?> c) {
4378     boolean modified = false;
4379 dl 1.102 for (Iterator<E> it = iterator(); it.hasNext();) {
4380 dl 1.75 if (c.contains(it.next())) {
4381     it.remove();
4382     modified = true;
4383     }
4384     }
4385     return modified;
4386     }
4387    
4388     public final boolean retainAll(Collection<?> c) {
4389     boolean modified = false;
4390 dl 1.102 for (Iterator<E> it = iterator(); it.hasNext();) {
4391 dl 1.75 if (!c.contains(it.next())) {
4392     it.remove();
4393     modified = true;
4394     }
4395     }
4396     return modified;
4397     }
4398    
4399     }
4400    
4401     /**
4402     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4403     * which additions may optionally be enabled by mapping to a
4404 dl 1.102 * common value. This class cannot be directly instantiated.
4405     * See {@link #keySet() keySet()},
4406     * {@link #keySet(Object) keySet(V)},
4407     * {@link #newKeySet() newKeySet()},
4408     * {@link #newKeySet(int) newKeySet(int)}.
4409     *
4410     * @since 1.8
4411 dl 1.75 */
4412 dl 1.102 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4413 dl 1.82 implements Set<K>, java.io.Serializable {
4414 dl 1.75 private static final long serialVersionUID = 7249069246763182397L;
4415     private final V value;
4416 jsr166 1.99 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4417 dl 1.75 super(map);
4418     this.value = value;
4419     }
4420    
4421     /**
4422     * Returns the default mapped value for additions,
4423     * or {@code null} if additions are not supported.
4424     *
4425     * @return the default mapped value for additions, or {@code null}
4426 jsr166 1.93 * if not supported
4427 dl 1.75 */
4428     public V getMappedValue() { return value; }
4429    
4430 dl 1.102 /**
4431     * {@inheritDoc}
4432     * @throws NullPointerException if the specified key is null
4433     */
4434     public boolean contains(Object o) { return map.containsKey(o); }
4435    
4436     /**
4437     * Removes the key from this map view, by removing the key (and its
4438     * corresponding value) from the backing map. This method does
4439     * nothing if the key is not in the map.
4440     *
4441     * @param o the key to be removed from the backing map
4442     * @return {@code true} if the backing map contained the specified key
4443     * @throws NullPointerException if the specified key is null
4444     */
4445     public boolean remove(Object o) { return map.remove(o) != null; }
4446 dl 1.75
4447 dl 1.102 /**
4448     * @return an iterator over the keys of the backing map
4449     */
4450     public Iterator<K> iterator() {
4451     Node<K,V>[] t;
4452     ConcurrentHashMapV8<K,V> m = map;
4453     int f = (t = m.table) == null ? 0 : t.length;
4454     return new KeyIterator<K,V>(t, f, 0, f, m);
4455     }
4456 dl 1.75
4457     /**
4458 dl 1.102 * Adds the specified key to this set view by mapping the key to
4459     * the default mapped value in the backing map, if defined.
4460 dl 1.75 *
4461 dl 1.102 * @param e key to be added
4462     * @return {@code true} if this set changed as a result of the call
4463     * @throws NullPointerException if the specified key is null
4464     * @throws UnsupportedOperationException if no default mapped value
4465     * for additions was provided
4466 dl 1.75 */
4467     public boolean add(K e) {
4468     V v;
4469     if ((v = value) == null)
4470     throw new UnsupportedOperationException();
4471 dl 1.102 return map.putVal(e, v, true) == null;
4472 dl 1.75 }
4473 dl 1.102
4474     /**
4475     * Adds all of the elements in the specified collection to this set,
4476     * as if by calling {@link #add} on each one.
4477     *
4478     * @param c the elements to be inserted into this set
4479     * @return {@code true} if this set changed as a result of the call
4480     * @throws NullPointerException if the collection or any of its
4481     * elements are {@code null}
4482     * @throws UnsupportedOperationException if no default mapped value
4483     * for additions was provided
4484     */
4485 dl 1.75 public boolean addAll(Collection<? extends K> c) {
4486     boolean added = false;
4487     V v;
4488     if ((v = value) == null)
4489     throw new UnsupportedOperationException();
4490     for (K e : c) {
4491 dl 1.102 if (map.putVal(e, v, true) == null)
4492 dl 1.75 added = true;
4493     }
4494     return added;
4495     }
4496 dl 1.102
4497     public int hashCode() {
4498     int h = 0;
4499     for (K e : this)
4500     h += e.hashCode();
4501     return h;
4502     }
4503    
4504 dl 1.75 public boolean equals(Object o) {
4505     Set<?> c;
4506     return ((o instanceof Set) &&
4507     ((c = (Set<?>)o) == this ||
4508     (containsAll(c) && c.containsAll(this))));
4509     }
4510 dl 1.102
4511     public ConcurrentHashMapSpliterator<K> spliterator() {
4512     Node<K,V>[] t;
4513     ConcurrentHashMapV8<K,V> m = map;
4514     long n = m.sumCount();
4515     int f = (t = m.table) == null ? 0 : t.length;
4516     return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4517     }
4518    
4519     public void forEach(Action<? super K> action) {
4520     if (action == null) throw new NullPointerException();
4521     Node<K,V>[] t;
4522     if ((t = map.table) != null) {
4523     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4524     for (Node<K,V> p; (p = it.advance()) != null; )
4525     action.apply(p.key);
4526     }
4527     }
4528 dl 1.75 }
4529    
4530     /**
4531     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4532     * values, in which additions are disabled. This class cannot be
4533 jsr166 1.96 * directly instantiated. See {@link #values()}.
4534 dl 1.75 */
4535 dl 1.102 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4536     implements Collection<V>, java.io.Serializable {
4537     private static final long serialVersionUID = 2249069246763182397L;
4538     ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4539     public final boolean contains(Object o) {
4540     return map.containsValue(o);
4541     }
4542    
4543 dl 1.75 public final boolean remove(Object o) {
4544     if (o != null) {
4545 dl 1.102 for (Iterator<V> it = iterator(); it.hasNext();) {
4546 dl 1.75 if (o.equals(it.next())) {
4547     it.remove();
4548     return true;
4549     }
4550     }
4551     }
4552     return false;
4553     }
4554    
4555     public final Iterator<V> iterator() {
4556 dl 1.102 ConcurrentHashMapV8<K,V> m = map;
4557     Node<K,V>[] t;
4558     int f = (t = m.table) == null ? 0 : t.length;
4559     return new ValueIterator<K,V>(t, f, 0, f, m);
4560 dl 1.75 }
4561 dl 1.102
4562 dl 1.75 public final boolean add(V e) {
4563     throw new UnsupportedOperationException();
4564     }
4565     public final boolean addAll(Collection<? extends V> c) {
4566     throw new UnsupportedOperationException();
4567     }
4568    
4569 dl 1.102 public ConcurrentHashMapSpliterator<V> spliterator() {
4570     Node<K,V>[] t;
4571     ConcurrentHashMapV8<K,V> m = map;
4572     long n = m.sumCount();
4573     int f = (t = m.table) == null ? 0 : t.length;
4574     return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4575     }
4576    
4577     public void forEach(Action<? super V> action) {
4578     if (action == null) throw new NullPointerException();
4579     Node<K,V>[] t;
4580     if ((t = map.table) != null) {
4581     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4582     for (Node<K,V> p; (p = it.advance()) != null; )
4583     action.apply(p.val);
4584     }
4585     }
4586 dl 1.70 }
4587 dl 1.52
4588 dl 1.70 /**
4589 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4590     * entries. This class cannot be directly instantiated. See
4591 jsr166 1.95 * {@link #entrySet()}.
4592 dl 1.70 */
4593 dl 1.102 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4594     implements Set<Map.Entry<K,V>>, java.io.Serializable {
4595     private static final long serialVersionUID = 2249069246763182397L;
4596 jsr166 1.99 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4597 dl 1.102
4598     public boolean contains(Object o) {
4599 dl 1.75 Object k, v, r; Map.Entry<?,?> e;
4600     return ((o instanceof Map.Entry) &&
4601     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4602     (r = map.get(k)) != null &&
4603     (v = e.getValue()) != null &&
4604     (v == r || v.equals(r)));
4605     }
4606 dl 1.102
4607     public boolean remove(Object o) {
4608 dl 1.75 Object k, v; Map.Entry<?,?> e;
4609     return ((o instanceof Map.Entry) &&
4610     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4611     (v = e.getValue()) != null &&
4612     map.remove(k, v));
4613     }
4614    
4615     /**
4616 dl 1.102 * @return an iterator over the entries of the backing map
4617 dl 1.75 */
4618 dl 1.102 public Iterator<Map.Entry<K,V>> iterator() {
4619     ConcurrentHashMapV8<K,V> m = map;
4620     Node<K,V>[] t;
4621     int f = (t = m.table) == null ? 0 : t.length;
4622     return new EntryIterator<K,V>(t, f, 0, f, m);
4623 dl 1.75 }
4624    
4625 dl 1.102 public boolean add(Entry<K,V> e) {
4626     return map.putVal(e.getKey(), e.getValue(), false) == null;
4627 dl 1.75 }
4628 dl 1.102
4629     public boolean addAll(Collection<? extends Entry<K,V>> c) {
4630 dl 1.75 boolean added = false;
4631     for (Entry<K,V> e : c) {
4632     if (add(e))
4633     added = true;
4634     }
4635     return added;
4636     }
4637 dl 1.52
4638 dl 1.102 public final int hashCode() {
4639     int h = 0;
4640     Node<K,V>[] t;
4641     if ((t = map.table) != null) {
4642     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4643     for (Node<K,V> p; (p = it.advance()) != null; ) {
4644     h += p.hashCode();
4645     }
4646     }
4647     return h;
4648 dl 1.52 }
4649    
4650 dl 1.102 public final boolean equals(Object o) {
4651     Set<?> c;
4652     return ((o instanceof Set) &&
4653     ((c = (Set<?>)o) == this ||
4654     (containsAll(c) && c.containsAll(this))));
4655 dl 1.52 }
4656    
4657 dl 1.102 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4658     Node<K,V>[] t;
4659     ConcurrentHashMapV8<K,V> m = map;
4660     long n = m.sumCount();
4661     int f = (t = m.table) == null ? 0 : t.length;
4662     return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4663 dl 1.52 }
4664    
4665 dl 1.102 public void forEach(Action<? super Map.Entry<K,V>> action) {
4666     if (action == null) throw new NullPointerException();
4667     Node<K,V>[] t;
4668     if ((t = map.table) != null) {
4669     Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4670     for (Node<K,V> p; (p = it.advance()) != null; )
4671     action.apply(new MapEntry<K,V>(p.key, p.val, map));
4672     }
4673 dl 1.52 }
4674    
4675 dl 1.102 }
4676 dl 1.52
4677 dl 1.102 // -------------------------------------------------------
4678 dl 1.52
4679 dl 1.102 /**
4680     * Base class for bulk tasks. Repeats some fields and code from
4681     * class Traverser, because we need to subclass CountedCompleter.
4682     */
4683     abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4684     Node<K,V>[] tab; // same as Traverser
4685     Node<K,V> next;
4686     int index;
4687     int baseIndex;
4688     int baseLimit;
4689     final int baseSize;
4690     int batch; // split control
4691    
4692     BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4693     super(par);
4694     this.batch = b;
4695     this.index = this.baseIndex = i;
4696     if ((this.tab = t) == null)
4697     this.baseSize = this.baseLimit = 0;
4698     else if (par == null)
4699     this.baseSize = this.baseLimit = t.length;
4700     else {
4701     this.baseLimit = f;
4702     this.baseSize = par.baseSize;
4703     }
4704 dl 1.52 }
4705    
4706     /**
4707 dl 1.102 * Same as Traverser version
4708 dl 1.52 */
4709 dl 1.102 final Node<K,V> advance() {
4710     Node<K,V> e;
4711     if ((e = next) != null)
4712     e = e.next;
4713     for (;;) {
4714     Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4715     if (e != null)
4716     return next = e;
4717     if (baseIndex >= baseLimit || (t = tab) == null ||
4718     (n = t.length) <= (i = index) || i < 0)
4719     return next = null;
4720     if ((e = tabAt(t, index)) != null && e.hash < 0) {
4721     if (e instanceof ForwardingNode) {
4722     tab = ((ForwardingNode<K,V>)e).nextTable;
4723     e = null;
4724     continue;
4725     }
4726     else if (e instanceof TreeBin)
4727     e = ((TreeBin<K,V>)e).first;
4728     else
4729     e = null;
4730     }
4731     if ((index += baseSize) >= n)
4732     index = ++baseIndex; // visit upper slots if present
4733     }
4734 dl 1.52 }
4735     }
4736    
4737     /*
4738     * Task classes. Coded in a regular but ugly format/style to
4739     * simplify checks that each variant differs in the right way from
4740 dl 1.82 * others. The null screenings exist because compilers cannot tell
4741     * that we've already null-checked task arguments, so we force
4742     * simplest hoisted bypass to help avoid convoluted traps.
4743 dl 1.52 */
4744 dl 1.102 @SuppressWarnings("serial")
4745     static final class ForEachKeyTask<K,V>
4746     extends BulkTask<K,V,Void> {
4747     final Action<? super K> action;
4748 dl 1.52 ForEachKeyTask
4749 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4750     Action<? super K> action) {
4751     super(p, b, i, f, t);
4752 dl 1.52 this.action = action;
4753     }
4754 dl 1.102 public final void compute() {
4755     final Action<? super K> action;
4756 dl 1.82 if ((action = this.action) != null) {
4757 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4758     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4759     addToPendingCount(1);
4760     new ForEachKeyTask<K,V>
4761     (this, batch >>>= 1, baseLimit = h, f, tab,
4762     action).fork();
4763     }
4764     for (Node<K,V> p; (p = advance()) != null;)
4765     action.apply(p.key);
4766 dl 1.82 propagateCompletion();
4767     }
4768 dl 1.52 }
4769     }
4770    
4771 dl 1.102 @SuppressWarnings("serial")
4772     static final class ForEachValueTask<K,V>
4773     extends BulkTask<K,V,Void> {
4774     final Action<? super V> action;
4775 dl 1.52 ForEachValueTask
4776 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4777     Action<? super V> action) {
4778     super(p, b, i, f, t);
4779 dl 1.52 this.action = action;
4780     }
4781 dl 1.102 public final void compute() {
4782     final Action<? super V> action;
4783 dl 1.82 if ((action = this.action) != null) {
4784 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4785     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4786     addToPendingCount(1);
4787     new ForEachValueTask<K,V>
4788     (this, batch >>>= 1, baseLimit = h, f, tab,
4789     action).fork();
4790     }
4791     for (Node<K,V> p; (p = advance()) != null;)
4792     action.apply(p.val);
4793 dl 1.82 propagateCompletion();
4794     }
4795 dl 1.52 }
4796     }
4797    
4798 dl 1.102 @SuppressWarnings("serial")
4799     static final class ForEachEntryTask<K,V>
4800     extends BulkTask<K,V,Void> {
4801     final Action<? super Entry<K,V>> action;
4802 dl 1.52 ForEachEntryTask
4803 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4804     Action<? super Entry<K,V>> action) {
4805     super(p, b, i, f, t);
4806 dl 1.52 this.action = action;
4807     }
4808 dl 1.102 public final void compute() {
4809     final Action<? super Entry<K,V>> action;
4810 dl 1.82 if ((action = this.action) != null) {
4811 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4812     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4813     addToPendingCount(1);
4814     new ForEachEntryTask<K,V>
4815     (this, batch >>>= 1, baseLimit = h, f, tab,
4816     action).fork();
4817     }
4818     for (Node<K,V> p; (p = advance()) != null; )
4819     action.apply(p);
4820 dl 1.82 propagateCompletion();
4821     }
4822 dl 1.52 }
4823     }
4824    
4825 dl 1.102 @SuppressWarnings("serial")
4826     static final class ForEachMappingTask<K,V>
4827     extends BulkTask<K,V,Void> {
4828     final BiAction<? super K, ? super V> action;
4829 dl 1.52 ForEachMappingTask
4830 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4831     BiAction<? super K,? super V> action) {
4832     super(p, b, i, f, t);
4833 dl 1.52 this.action = action;
4834     }
4835 dl 1.102 public final void compute() {
4836     final BiAction<? super K, ? super V> action;
4837 dl 1.82 if ((action = this.action) != null) {
4838 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4839     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4840     addToPendingCount(1);
4841     new ForEachMappingTask<K,V>
4842     (this, batch >>>= 1, baseLimit = h, f, tab,
4843     action).fork();
4844     }
4845     for (Node<K,V> p; (p = advance()) != null; )
4846     action.apply(p.key, p.val);
4847 dl 1.82 propagateCompletion();
4848     }
4849 dl 1.52 }
4850     }
4851    
4852 dl 1.102 @SuppressWarnings("serial")
4853     static final class ForEachTransformedKeyTask<K,V,U>
4854     extends BulkTask<K,V,Void> {
4855 dl 1.52 final Fun<? super K, ? extends U> transformer;
4856 dl 1.102 final Action<? super U> action;
4857 dl 1.52 ForEachTransformedKeyTask
4858 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4859     Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4860     super(p, b, i, f, t);
4861 dl 1.79 this.transformer = transformer; this.action = action;
4862     }
4863 dl 1.102 public final void compute() {
4864 dl 1.79 final Fun<? super K, ? extends U> transformer;
4865 dl 1.102 final Action<? super U> action;
4866 dl 1.82 if ((transformer = this.transformer) != null &&
4867     (action = this.action) != null) {
4868 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4869     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4870     addToPendingCount(1);
4871 dl 1.82 new ForEachTransformedKeyTask<K,V,U>
4872 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4873     transformer, action).fork();
4874     }
4875     for (Node<K,V> p; (p = advance()) != null; ) {
4876     U u;
4877     if ((u = transformer.apply(p.key)) != null)
4878 dl 1.82 action.apply(u);
4879     }
4880     propagateCompletion();
4881 dl 1.52 }
4882     }
4883     }
4884    
4885 dl 1.102 @SuppressWarnings("serial")
4886     static final class ForEachTransformedValueTask<K,V,U>
4887     extends BulkTask<K,V,Void> {
4888 dl 1.52 final Fun<? super V, ? extends U> transformer;
4889 dl 1.102 final Action<? super U> action;
4890 dl 1.52 ForEachTransformedValueTask
4891 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4892     Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4893     super(p, b, i, f, t);
4894 dl 1.79 this.transformer = transformer; this.action = action;
4895     }
4896 dl 1.102 public final void compute() {
4897 dl 1.79 final Fun<? super V, ? extends U> transformer;
4898 dl 1.102 final Action<? super U> action;
4899 dl 1.82 if ((transformer = this.transformer) != null &&
4900     (action = this.action) != null) {
4901 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4902     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4903     addToPendingCount(1);
4904 dl 1.82 new ForEachTransformedValueTask<K,V,U>
4905 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4906     transformer, action).fork();
4907     }
4908     for (Node<K,V> p; (p = advance()) != null; ) {
4909     U u;
4910     if ((u = transformer.apply(p.val)) != null)
4911 dl 1.82 action.apply(u);
4912     }
4913     propagateCompletion();
4914 dl 1.52 }
4915     }
4916     }
4917    
4918 dl 1.102 @SuppressWarnings("serial")
4919     static final class ForEachTransformedEntryTask<K,V,U>
4920     extends BulkTask<K,V,Void> {
4921 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4922 dl 1.102 final Action<? super U> action;
4923 dl 1.52 ForEachTransformedEntryTask
4924 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4925     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4926     super(p, b, i, f, t);
4927 dl 1.79 this.transformer = transformer; this.action = action;
4928     }
4929 dl 1.102 public final void compute() {
4930 dl 1.79 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4931 dl 1.102 final Action<? super U> action;
4932 dl 1.82 if ((transformer = this.transformer) != null &&
4933     (action = this.action) != null) {
4934 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4935     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4936     addToPendingCount(1);
4937 dl 1.82 new ForEachTransformedEntryTask<K,V,U>
4938 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4939     transformer, action).fork();
4940     }
4941     for (Node<K,V> p; (p = advance()) != null; ) {
4942     U u;
4943     if ((u = transformer.apply(p)) != null)
4944 dl 1.82 action.apply(u);
4945     }
4946     propagateCompletion();
4947 dl 1.52 }
4948     }
4949     }
4950    
4951 dl 1.102 @SuppressWarnings("serial")
4952     static final class ForEachTransformedMappingTask<K,V,U>
4953     extends BulkTask<K,V,Void> {
4954 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
4955 dl 1.102 final Action<? super U> action;
4956 dl 1.52 ForEachTransformedMappingTask
4957 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4958 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
4959 dl 1.102 Action<? super U> action) {
4960     super(p, b, i, f, t);
4961 dl 1.79 this.transformer = transformer; this.action = action;
4962 dl 1.52 }
4963 dl 1.102 public final void compute() {
4964 dl 1.79 final BiFun<? super K, ? super V, ? extends U> transformer;
4965 dl 1.102 final Action<? super U> action;
4966 dl 1.82 if ((transformer = this.transformer) != null &&
4967     (action = this.action) != null) {
4968 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
4969     (h = ((f = baseLimit) + i) >>> 1) > i;) {
4970     addToPendingCount(1);
4971 dl 1.82 new ForEachTransformedMappingTask<K,V,U>
4972 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
4973     transformer, action).fork();
4974     }
4975     for (Node<K,V> p; (p = advance()) != null; ) {
4976     U u;
4977     if ((u = transformer.apply(p.key, p.val)) != null)
4978 dl 1.82 action.apply(u);
4979     }
4980     propagateCompletion();
4981 dl 1.52 }
4982     }
4983     }
4984    
4985 dl 1.102 @SuppressWarnings("serial")
4986     static final class SearchKeysTask<K,V,U>
4987     extends BulkTask<K,V,U> {
4988 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
4989     final AtomicReference<U> result;
4990     SearchKeysTask
4991 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4992 dl 1.52 Fun<? super K, ? extends U> searchFunction,
4993     AtomicReference<U> result) {
4994 dl 1.102 super(p, b, i, f, t);
4995 dl 1.52 this.searchFunction = searchFunction; this.result = result;
4996     }
4997 dl 1.79 public final U getRawResult() { return result.get(); }
4998 dl 1.102 public final void compute() {
4999 dl 1.79 final Fun<? super K, ? extends U> searchFunction;
5000     final AtomicReference<U> result;
5001 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5002     (result = this.result) != null) {
5003 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5004     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5005 dl 1.82 if (result.get() != null)
5006     return;
5007 dl 1.102 addToPendingCount(1);
5008 dl 1.82 new SearchKeysTask<K,V,U>
5009 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5010     searchFunction, result).fork();
5011 dl 1.61 }
5012 dl 1.82 while (result.get() == null) {
5013     U u;
5014 dl 1.102 Node<K,V> p;
5015     if ((p = advance()) == null) {
5016 dl 1.82 propagateCompletion();
5017     break;
5018     }
5019 dl 1.102 if ((u = searchFunction.apply(p.key)) != null) {
5020 dl 1.82 if (result.compareAndSet(null, u))
5021     quietlyCompleteRoot();
5022     break;
5023     }
5024 dl 1.52 }
5025     }
5026     }
5027     }
5028    
5029 dl 1.102 @SuppressWarnings("serial")
5030     static final class SearchValuesTask<K,V,U>
5031     extends BulkTask<K,V,U> {
5032 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
5033     final AtomicReference<U> result;
5034     SearchValuesTask
5035 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5036 dl 1.52 Fun<? super V, ? extends U> searchFunction,
5037     AtomicReference<U> result) {
5038 dl 1.102 super(p, b, i, f, t);
5039 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5040     }
5041 dl 1.79 public final U getRawResult() { return result.get(); }
5042 dl 1.102 public final void compute() {
5043 dl 1.79 final Fun<? super V, ? extends U> searchFunction;
5044     final AtomicReference<U> result;
5045 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5046     (result = this.result) != null) {
5047 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5048     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5049 dl 1.82 if (result.get() != null)
5050     return;
5051 dl 1.102 addToPendingCount(1);
5052 dl 1.82 new SearchValuesTask<K,V,U>
5053 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5054     searchFunction, result).fork();
5055 dl 1.61 }
5056 dl 1.82 while (result.get() == null) {
5057 dl 1.102 U u;
5058     Node<K,V> p;
5059     if ((p = advance()) == null) {
5060 dl 1.82 propagateCompletion();
5061     break;
5062     }
5063 dl 1.102 if ((u = searchFunction.apply(p.val)) != null) {
5064 dl 1.82 if (result.compareAndSet(null, u))
5065     quietlyCompleteRoot();
5066     break;
5067     }
5068 dl 1.52 }
5069     }
5070     }
5071     }
5072    
5073 dl 1.102 @SuppressWarnings("serial")
5074     static final class SearchEntriesTask<K,V,U>
5075     extends BulkTask<K,V,U> {
5076 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
5077     final AtomicReference<U> result;
5078     SearchEntriesTask
5079 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5080 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
5081     AtomicReference<U> result) {
5082 dl 1.102 super(p, b, i, f, t);
5083 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5084     }
5085 dl 1.79 public final U getRawResult() { return result.get(); }
5086 dl 1.102 public final void compute() {
5087 dl 1.79 final Fun<Entry<K,V>, ? extends U> searchFunction;
5088     final AtomicReference<U> result;
5089 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5090     (result = this.result) != null) {
5091 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5092     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 dl 1.82 if (result.get() != null)
5094     return;
5095 dl 1.102 addToPendingCount(1);
5096 dl 1.82 new SearchEntriesTask<K,V,U>
5097 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5098     searchFunction, result).fork();
5099 dl 1.61 }
5100 dl 1.82 while (result.get() == null) {
5101 dl 1.102 U u;
5102     Node<K,V> p;
5103     if ((p = advance()) == null) {
5104 dl 1.82 propagateCompletion();
5105     break;
5106     }
5107 dl 1.102 if ((u = searchFunction.apply(p)) != null) {
5108 dl 1.82 if (result.compareAndSet(null, u))
5109     quietlyCompleteRoot();
5110     return;
5111     }
5112 dl 1.52 }
5113     }
5114     }
5115     }
5116    
5117 dl 1.102 @SuppressWarnings("serial")
5118     static final class SearchMappingsTask<K,V,U>
5119     extends BulkTask<K,V,U> {
5120 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5121     final AtomicReference<U> result;
5122     SearchMappingsTask
5123 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5124 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5125     AtomicReference<U> result) {
5126 dl 1.102 super(p, b, i, f, t);
5127 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5128     }
5129 dl 1.79 public final U getRawResult() { return result.get(); }
5130 dl 1.102 public final void compute() {
5131 dl 1.79 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5132     final AtomicReference<U> result;
5133 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5134     (result = this.result) != null) {
5135 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5136     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5137 dl 1.82 if (result.get() != null)
5138     return;
5139 dl 1.102 addToPendingCount(1);
5140 dl 1.82 new SearchMappingsTask<K,V,U>
5141 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5142     searchFunction, result).fork();
5143 dl 1.61 }
5144 dl 1.82 while (result.get() == null) {
5145 dl 1.102 U u;
5146     Node<K,V> p;
5147     if ((p = advance()) == null) {
5148 dl 1.82 propagateCompletion();
5149     break;
5150     }
5151 dl 1.102 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5152 dl 1.82 if (result.compareAndSet(null, u))
5153     quietlyCompleteRoot();
5154     break;
5155     }
5156 dl 1.52 }
5157     }
5158     }
5159     }
5160    
5161 dl 1.102 @SuppressWarnings("serial")
5162     static final class ReduceKeysTask<K,V>
5163     extends BulkTask<K,V,K> {
5164 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5165     K result;
5166 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5167 dl 1.52 ReduceKeysTask
5168 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5169 dl 1.61 ReduceKeysTask<K,V> nextRight,
5170 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5171 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5172 dl 1.52 this.reducer = reducer;
5173     }
5174 dl 1.79 public final K getRawResult() { return result; }
5175 dl 1.102 public final void compute() {
5176 dl 1.82 final BiFun<? super K, ? super K, ? extends K> reducer;
5177     if ((reducer = this.reducer) != null) {
5178 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5179     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5180     addToPendingCount(1);
5181 dl 1.82 (rights = new ReduceKeysTask<K,V>
5182 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5183     rights, reducer)).fork();
5184     }
5185 dl 1.82 K r = null;
5186 dl 1.102 for (Node<K,V> p; (p = advance()) != null; ) {
5187     K u = p.key;
5188     r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5189 dl 1.82 }
5190     result = r;
5191     CountedCompleter<?> c;
5192     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5193 dl 1.102 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5194 dl 1.82 t = (ReduceKeysTask<K,V>)c,
5195     s = t.rights;
5196     while (s != null) {
5197     K tr, sr;
5198     if ((sr = s.result) != null)
5199     t.result = (((tr = t.result) == null) ? sr :
5200     reducer.apply(tr, sr));
5201     s = t.rights = s.nextRight;
5202     }
5203 dl 1.52 }
5204 dl 1.71 }
5205 dl 1.52 }
5206     }
5207    
5208 dl 1.102 @SuppressWarnings("serial")
5209     static final class ReduceValuesTask<K,V>
5210     extends BulkTask<K,V,V> {
5211 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5212     V result;
5213 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5214 dl 1.52 ReduceValuesTask
5215 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5216 dl 1.61 ReduceValuesTask<K,V> nextRight,
5217 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5218 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5219 dl 1.52 this.reducer = reducer;
5220     }
5221 dl 1.79 public final V getRawResult() { return result; }
5222 dl 1.102 public final void compute() {
5223 dl 1.82 final BiFun<? super V, ? super V, ? extends V> reducer;
5224     if ((reducer = this.reducer) != null) {
5225 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5226     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5227     addToPendingCount(1);
5228 dl 1.82 (rights = new ReduceValuesTask<K,V>
5229 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5230     rights, reducer)).fork();
5231     }
5232 dl 1.82 V r = null;
5233 dl 1.102 for (Node<K,V> p; (p = advance()) != null; ) {
5234     V v = p.val;
5235     r = (r == null) ? v : reducer.apply(r, v);
5236 dl 1.82 }
5237     result = r;
5238     CountedCompleter<?> c;
5239     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5240 dl 1.102 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5241 dl 1.82 t = (ReduceValuesTask<K,V>)c,
5242     s = t.rights;
5243     while (s != null) {
5244     V tr, sr;
5245     if ((sr = s.result) != null)
5246     t.result = (((tr = t.result) == null) ? sr :
5247     reducer.apply(tr, sr));
5248     s = t.rights = s.nextRight;
5249     }
5250 dl 1.52 }
5251     }
5252     }
5253     }
5254    
5255 dl 1.102 @SuppressWarnings("serial")
5256     static final class ReduceEntriesTask<K,V>
5257     extends BulkTask<K,V,Map.Entry<K,V>> {
5258 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5259     Map.Entry<K,V> result;
5260 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
5261 dl 1.52 ReduceEntriesTask
5262 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5263 dl 1.63 ReduceEntriesTask<K,V> nextRight,
5264 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5265 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5266 dl 1.52 this.reducer = reducer;
5267     }
5268 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
5269 dl 1.102 public final void compute() {
5270 dl 1.82 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5271     if ((reducer = this.reducer) != null) {
5272 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5273     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5274     addToPendingCount(1);
5275 dl 1.82 (rights = new ReduceEntriesTask<K,V>
5276 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5277     rights, reducer)).fork();
5278     }
5279 dl 1.82 Map.Entry<K,V> r = null;
5280 dl 1.102 for (Node<K,V> p; (p = advance()) != null; )
5281     r = (r == null) ? p : reducer.apply(r, p);
5282 dl 1.82 result = r;
5283     CountedCompleter<?> c;
5284     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5285 dl 1.102 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5286 dl 1.82 t = (ReduceEntriesTask<K,V>)c,
5287     s = t.rights;
5288     while (s != null) {
5289     Map.Entry<K,V> tr, sr;
5290     if ((sr = s.result) != null)
5291     t.result = (((tr = t.result) == null) ? sr :
5292     reducer.apply(tr, sr));
5293     s = t.rights = s.nextRight;
5294     }
5295 dl 1.52 }
5296     }
5297     }
5298     }
5299    
5300 dl 1.102 @SuppressWarnings("serial")
5301     static final class MapReduceKeysTask<K,V,U>
5302     extends BulkTask<K,V,U> {
5303 dl 1.52 final Fun<? super K, ? extends U> transformer;
5304     final BiFun<? super U, ? super U, ? extends U> reducer;
5305     U result;
5306 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
5307 dl 1.52 MapReduceKeysTask
5308 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5309 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
5310 dl 1.52 Fun<? super K, ? extends U> transformer,
5311     BiFun<? super U, ? super U, ? extends U> reducer) {
5312 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5313 dl 1.52 this.transformer = transformer;
5314     this.reducer = reducer;
5315     }
5316 dl 1.79 public final U getRawResult() { return result; }
5317 dl 1.102 public final void compute() {
5318 dl 1.82 final Fun<? super K, ? extends U> transformer;
5319     final BiFun<? super U, ? super U, ? extends U> reducer;
5320     if ((transformer = this.transformer) != null &&
5321     (reducer = this.reducer) != null) {
5322 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5323     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5324     addToPendingCount(1);
5325 dl 1.82 (rights = new MapReduceKeysTask<K,V,U>
5326 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5327     rights, transformer, reducer)).fork();
5328     }
5329     U r = null;
5330     for (Node<K,V> p; (p = advance()) != null; ) {
5331     U u;
5332     if ((u = transformer.apply(p.key)) != null)
5333 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5334     }
5335     result = r;
5336     CountedCompleter<?> c;
5337     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5338 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5339 dl 1.82 t = (MapReduceKeysTask<K,V,U>)c,
5340     s = t.rights;
5341     while (s != null) {
5342     U tr, sr;
5343     if ((sr = s.result) != null)
5344     t.result = (((tr = t.result) == null) ? sr :
5345     reducer.apply(tr, sr));
5346     s = t.rights = s.nextRight;
5347     }
5348 dl 1.52 }
5349     }
5350     }
5351     }
5352    
5353 dl 1.102 @SuppressWarnings("serial")
5354     static final class MapReduceValuesTask<K,V,U>
5355     extends BulkTask<K,V,U> {
5356 dl 1.52 final Fun<? super V, ? extends U> transformer;
5357     final BiFun<? super U, ? super U, ? extends U> reducer;
5358     U result;
5359 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
5360 dl 1.52 MapReduceValuesTask
5361 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5362 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
5363 dl 1.52 Fun<? super V, ? extends U> transformer,
5364     BiFun<? super U, ? super U, ? extends U> reducer) {
5365 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5366 dl 1.52 this.transformer = transformer;
5367     this.reducer = reducer;
5368     }
5369 dl 1.79 public final U getRawResult() { return result; }
5370 dl 1.102 public final void compute() {
5371 dl 1.82 final Fun<? super V, ? extends U> transformer;
5372     final BiFun<? super U, ? super U, ? extends U> reducer;
5373     if ((transformer = this.transformer) != null &&
5374     (reducer = this.reducer) != null) {
5375 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5376     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5377     addToPendingCount(1);
5378 dl 1.82 (rights = new MapReduceValuesTask<K,V,U>
5379 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5380     rights, transformer, reducer)).fork();
5381     }
5382     U r = null;
5383     for (Node<K,V> p; (p = advance()) != null; ) {
5384     U u;
5385     if ((u = transformer.apply(p.val)) != null)
5386 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5387     }
5388     result = r;
5389     CountedCompleter<?> c;
5390     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5391 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5392 dl 1.82 t = (MapReduceValuesTask<K,V,U>)c,
5393     s = t.rights;
5394     while (s != null) {
5395     U tr, sr;
5396     if ((sr = s.result) != null)
5397     t.result = (((tr = t.result) == null) ? sr :
5398     reducer.apply(tr, sr));
5399     s = t.rights = s.nextRight;
5400     }
5401 dl 1.52 }
5402 dl 1.71 }
5403 dl 1.52 }
5404     }
5405    
5406 dl 1.102 @SuppressWarnings("serial")
5407     static final class MapReduceEntriesTask<K,V,U>
5408     extends BulkTask<K,V,U> {
5409 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5410     final BiFun<? super U, ? super U, ? extends U> reducer;
5411     U result;
5412 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
5413 dl 1.52 MapReduceEntriesTask
5414 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5415 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
5416 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
5417     BiFun<? super U, ? super U, ? extends U> reducer) {
5418 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5419 dl 1.52 this.transformer = transformer;
5420     this.reducer = reducer;
5421     }
5422 dl 1.79 public final U getRawResult() { return result; }
5423 dl 1.102 public final void compute() {
5424 dl 1.82 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5425     final BiFun<? super U, ? super U, ? extends U> reducer;
5426     if ((transformer = this.transformer) != null &&
5427     (reducer = this.reducer) != null) {
5428 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5429     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5430     addToPendingCount(1);
5431 dl 1.82 (rights = new MapReduceEntriesTask<K,V,U>
5432 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5433     rights, transformer, reducer)).fork();
5434     }
5435     U r = null;
5436     for (Node<K,V> p; (p = advance()) != null; ) {
5437     U u;
5438     if ((u = transformer.apply(p)) != null)
5439 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5440     }
5441     result = r;
5442     CountedCompleter<?> c;
5443     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5444 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5445 dl 1.82 t = (MapReduceEntriesTask<K,V,U>)c,
5446     s = t.rights;
5447     while (s != null) {
5448     U tr, sr;
5449     if ((sr = s.result) != null)
5450     t.result = (((tr = t.result) == null) ? sr :
5451     reducer.apply(tr, sr));
5452     s = t.rights = s.nextRight;
5453     }
5454 dl 1.52 }
5455     }
5456     }
5457     }
5458    
5459 dl 1.102 @SuppressWarnings("serial")
5460     static final class MapReduceMappingsTask<K,V,U>
5461     extends BulkTask<K,V,U> {
5462 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5463     final BiFun<? super U, ? super U, ? extends U> reducer;
5464     U result;
5465 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
5466 dl 1.52 MapReduceMappingsTask
5467 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5468 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
5469 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5470     BiFun<? super U, ? super U, ? extends U> reducer) {
5471 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5472 dl 1.52 this.transformer = transformer;
5473     this.reducer = reducer;
5474     }
5475 dl 1.79 public final U getRawResult() { return result; }
5476 dl 1.102 public final void compute() {
5477 dl 1.82 final BiFun<? super K, ? super V, ? extends U> transformer;
5478     final BiFun<? super U, ? super U, ? extends U> reducer;
5479     if ((transformer = this.transformer) != null &&
5480     (reducer = this.reducer) != null) {
5481 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5482     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5483     addToPendingCount(1);
5484 dl 1.82 (rights = new MapReduceMappingsTask<K,V,U>
5485 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5486     rights, transformer, reducer)).fork();
5487     }
5488     U r = null;
5489     for (Node<K,V> p; (p = advance()) != null; ) {
5490     U u;
5491     if ((u = transformer.apply(p.key, p.val)) != null)
5492 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
5493     }
5494     result = r;
5495     CountedCompleter<?> c;
5496     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5497 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5498 dl 1.82 t = (MapReduceMappingsTask<K,V,U>)c,
5499     s = t.rights;
5500     while (s != null) {
5501     U tr, sr;
5502     if ((sr = s.result) != null)
5503     t.result = (((tr = t.result) == null) ? sr :
5504     reducer.apply(tr, sr));
5505     s = t.rights = s.nextRight;
5506     }
5507 dl 1.52 }
5508 dl 1.71 }
5509 dl 1.52 }
5510     }
5511    
5512 dl 1.102 @SuppressWarnings("serial")
5513     static final class MapReduceKeysToDoubleTask<K,V>
5514     extends BulkTask<K,V,Double> {
5515 dl 1.52 final ObjectToDouble<? super K> transformer;
5516     final DoubleByDoubleToDouble reducer;
5517     final double basis;
5518     double result;
5519 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5520 dl 1.52 MapReduceKeysToDoubleTask
5521 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5522 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
5523 dl 1.52 ObjectToDouble<? super K> transformer,
5524     double basis,
5525     DoubleByDoubleToDouble reducer) {
5526 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5527 dl 1.52 this.transformer = transformer;
5528     this.basis = basis; this.reducer = reducer;
5529     }
5530 dl 1.79 public final Double getRawResult() { return result; }
5531 dl 1.102 public final void compute() {
5532 dl 1.82 final ObjectToDouble<? super K> transformer;
5533     final DoubleByDoubleToDouble reducer;
5534     if ((transformer = this.transformer) != null &&
5535     (reducer = this.reducer) != null) {
5536     double r = this.basis;
5537 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5538     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5539     addToPendingCount(1);
5540 dl 1.82 (rights = new MapReduceKeysToDoubleTask<K,V>
5541 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5542     rights, transformer, r, reducer)).fork();
5543     }
5544     for (Node<K,V> p; (p = advance()) != null; )
5545     r = reducer.apply(r, transformer.apply(p.key));
5546 dl 1.82 result = r;
5547     CountedCompleter<?> c;
5548     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5549 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5550 dl 1.82 t = (MapReduceKeysToDoubleTask<K,V>)c,
5551     s = t.rights;
5552     while (s != null) {
5553     t.result = reducer.apply(t.result, s.result);
5554     s = t.rights = s.nextRight;
5555     }
5556 dl 1.52 }
5557 dl 1.71 }
5558 dl 1.52 }
5559     }
5560    
5561 dl 1.102 @SuppressWarnings("serial")
5562     static final class MapReduceValuesToDoubleTask<K,V>
5563     extends BulkTask<K,V,Double> {
5564 dl 1.52 final ObjectToDouble<? super V> transformer;
5565     final DoubleByDoubleToDouble reducer;
5566     final double basis;
5567     double result;
5568 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5569 dl 1.52 MapReduceValuesToDoubleTask
5570 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5571 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
5572 dl 1.52 ObjectToDouble<? super V> transformer,
5573     double basis,
5574     DoubleByDoubleToDouble reducer) {
5575 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5576 dl 1.52 this.transformer = transformer;
5577     this.basis = basis; this.reducer = reducer;
5578     }
5579 dl 1.79 public final Double getRawResult() { return result; }
5580 dl 1.102 public final void compute() {
5581 dl 1.82 final ObjectToDouble<? super V> transformer;
5582     final DoubleByDoubleToDouble reducer;
5583     if ((transformer = this.transformer) != null &&
5584     (reducer = this.reducer) != null) {
5585     double r = this.basis;
5586 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5587     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5588     addToPendingCount(1);
5589 dl 1.82 (rights = new MapReduceValuesToDoubleTask<K,V>
5590 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5591     rights, transformer, r, reducer)).fork();
5592     }
5593     for (Node<K,V> p; (p = advance()) != null; )
5594     r = reducer.apply(r, transformer.apply(p.val));
5595 dl 1.82 result = r;
5596     CountedCompleter<?> c;
5597     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5598 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5599 dl 1.82 t = (MapReduceValuesToDoubleTask<K,V>)c,
5600     s = t.rights;
5601     while (s != null) {
5602     t.result = reducer.apply(t.result, s.result);
5603     s = t.rights = s.nextRight;
5604     }
5605 dl 1.52 }
5606 dl 1.71 }
5607 dl 1.52 }
5608     }
5609    
5610 dl 1.102 @SuppressWarnings("serial")
5611     static final class MapReduceEntriesToDoubleTask<K,V>
5612     extends BulkTask<K,V,Double> {
5613 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
5614     final DoubleByDoubleToDouble reducer;
5615     final double basis;
5616     double result;
5617 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5618 dl 1.52 MapReduceEntriesToDoubleTask
5619 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5620 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
5621 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
5622     double basis,
5623     DoubleByDoubleToDouble reducer) {
5624 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5625 dl 1.52 this.transformer = transformer;
5626     this.basis = basis; this.reducer = reducer;
5627     }
5628 dl 1.79 public final Double getRawResult() { return result; }
5629 dl 1.102 public final void compute() {
5630 dl 1.82 final ObjectToDouble<Map.Entry<K,V>> transformer;
5631     final DoubleByDoubleToDouble reducer;
5632     if ((transformer = this.transformer) != null &&
5633     (reducer = this.reducer) != null) {
5634     double r = this.basis;
5635 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5636     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5637     addToPendingCount(1);
5638 dl 1.82 (rights = new MapReduceEntriesToDoubleTask<K,V>
5639 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5640     rights, transformer, r, reducer)).fork();
5641     }
5642     for (Node<K,V> p; (p = advance()) != null; )
5643     r = reducer.apply(r, transformer.apply(p));
5644 dl 1.82 result = r;
5645     CountedCompleter<?> c;
5646     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5647 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5648 dl 1.82 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5649     s = t.rights;
5650     while (s != null) {
5651     t.result = reducer.apply(t.result, s.result);
5652     s = t.rights = s.nextRight;
5653     }
5654 dl 1.52 }
5655 dl 1.71 }
5656 dl 1.52 }
5657     }
5658    
5659 dl 1.102 @SuppressWarnings("serial")
5660     static final class MapReduceMappingsToDoubleTask<K,V>
5661     extends BulkTask<K,V,Double> {
5662 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5663     final DoubleByDoubleToDouble reducer;
5664     final double basis;
5665     double result;
5666 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5667 dl 1.52 MapReduceMappingsToDoubleTask
5668 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5669 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
5670 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
5671     double basis,
5672     DoubleByDoubleToDouble reducer) {
5673 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5674 dl 1.52 this.transformer = transformer;
5675     this.basis = basis; this.reducer = reducer;
5676     }
5677 dl 1.79 public final Double getRawResult() { return result; }
5678 dl 1.102 public final void compute() {
5679 dl 1.82 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5680     final DoubleByDoubleToDouble reducer;
5681     if ((transformer = this.transformer) != null &&
5682     (reducer = this.reducer) != null) {
5683     double r = this.basis;
5684 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5685     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5686     addToPendingCount(1);
5687 dl 1.82 (rights = new MapReduceMappingsToDoubleTask<K,V>
5688 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5689     rights, transformer, r, reducer)).fork();
5690     }
5691     for (Node<K,V> p; (p = advance()) != null; )
5692     r = reducer.apply(r, transformer.apply(p.key, p.val));
5693 dl 1.82 result = r;
5694     CountedCompleter<?> c;
5695     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5696 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5697 dl 1.82 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5698     s = t.rights;
5699     while (s != null) {
5700     t.result = reducer.apply(t.result, s.result);
5701     s = t.rights = s.nextRight;
5702     }
5703 dl 1.52 }
5704 dl 1.71 }
5705 dl 1.52 }
5706     }
5707    
5708 dl 1.102 @SuppressWarnings("serial")
5709     static final class MapReduceKeysToLongTask<K,V>
5710     extends BulkTask<K,V,Long> {
5711 dl 1.52 final ObjectToLong<? super K> transformer;
5712     final LongByLongToLong reducer;
5713     final long basis;
5714     long result;
5715 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
5716 dl 1.52 MapReduceKeysToLongTask
5717 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5718 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
5719 dl 1.52 ObjectToLong<? super K> transformer,
5720     long basis,
5721     LongByLongToLong reducer) {
5722 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5723 dl 1.52 this.transformer = transformer;
5724     this.basis = basis; this.reducer = reducer;
5725     }
5726 dl 1.79 public final Long getRawResult() { return result; }
5727 dl 1.102 public final void compute() {
5728 dl 1.82 final ObjectToLong<? super K> transformer;
5729     final LongByLongToLong reducer;
5730     if ((transformer = this.transformer) != null &&
5731     (reducer = this.reducer) != null) {
5732     long r = this.basis;
5733 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5734     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5735     addToPendingCount(1);
5736 dl 1.82 (rights = new MapReduceKeysToLongTask<K,V>
5737 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5738     rights, transformer, r, reducer)).fork();
5739     }
5740     for (Node<K,V> p; (p = advance()) != null; )
5741     r = reducer.apply(r, transformer.apply(p.key));
5742 dl 1.82 result = r;
5743     CountedCompleter<?> c;
5744     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5745 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5746 dl 1.82 t = (MapReduceKeysToLongTask<K,V>)c,
5747     s = t.rights;
5748     while (s != null) {
5749     t.result = reducer.apply(t.result, s.result);
5750     s = t.rights = s.nextRight;
5751     }
5752 dl 1.52 }
5753 dl 1.71 }
5754 dl 1.52 }
5755     }
5756    
5757 dl 1.102 @SuppressWarnings("serial")
5758     static final class MapReduceValuesToLongTask<K,V>
5759     extends BulkTask<K,V,Long> {
5760 dl 1.52 final ObjectToLong<? super V> transformer;
5761     final LongByLongToLong reducer;
5762     final long basis;
5763     long result;
5764 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
5765 dl 1.52 MapReduceValuesToLongTask
5766 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5767 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
5768 dl 1.52 ObjectToLong<? super V> transformer,
5769     long basis,
5770     LongByLongToLong reducer) {
5771 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5772 dl 1.52 this.transformer = transformer;
5773     this.basis = basis; this.reducer = reducer;
5774     }
5775 dl 1.79 public final Long getRawResult() { return result; }
5776 dl 1.102 public final void compute() {
5777 dl 1.82 final ObjectToLong<? super V> transformer;
5778     final LongByLongToLong reducer;
5779     if ((transformer = this.transformer) != null &&
5780     (reducer = this.reducer) != null) {
5781     long r = this.basis;
5782 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5783     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5784     addToPendingCount(1);
5785 dl 1.82 (rights = new MapReduceValuesToLongTask<K,V>
5786 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5787     rights, transformer, r, reducer)).fork();
5788     }
5789     for (Node<K,V> p; (p = advance()) != null; )
5790     r = reducer.apply(r, transformer.apply(p.val));
5791 dl 1.82 result = r;
5792     CountedCompleter<?> c;
5793     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5794 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5795 dl 1.82 t = (MapReduceValuesToLongTask<K,V>)c,
5796     s = t.rights;
5797     while (s != null) {
5798     t.result = reducer.apply(t.result, s.result);
5799     s = t.rights = s.nextRight;
5800     }
5801 dl 1.52 }
5802 dl 1.71 }
5803 dl 1.52 }
5804     }
5805    
5806 dl 1.102 @SuppressWarnings("serial")
5807     static final class MapReduceEntriesToLongTask<K,V>
5808     extends BulkTask<K,V,Long> {
5809 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
5810     final LongByLongToLong reducer;
5811     final long basis;
5812     long result;
5813 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5814 dl 1.52 MapReduceEntriesToLongTask
5815 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5816 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
5817 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
5818     long basis,
5819     LongByLongToLong reducer) {
5820 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5821 dl 1.52 this.transformer = transformer;
5822     this.basis = basis; this.reducer = reducer;
5823     }
5824 dl 1.79 public final Long getRawResult() { return result; }
5825 dl 1.102 public final void compute() {
5826 dl 1.82 final ObjectToLong<Map.Entry<K,V>> transformer;
5827     final LongByLongToLong reducer;
5828     if ((transformer = this.transformer) != null &&
5829     (reducer = this.reducer) != null) {
5830     long r = this.basis;
5831 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5832     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5833     addToPendingCount(1);
5834 dl 1.82 (rights = new MapReduceEntriesToLongTask<K,V>
5835 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5836     rights, transformer, r, reducer)).fork();
5837     }
5838     for (Node<K,V> p; (p = advance()) != null; )
5839     r = reducer.apply(r, transformer.apply(p));
5840 dl 1.82 result = r;
5841     CountedCompleter<?> c;
5842     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5843 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5844 dl 1.82 t = (MapReduceEntriesToLongTask<K,V>)c,
5845     s = t.rights;
5846     while (s != null) {
5847     t.result = reducer.apply(t.result, s.result);
5848     s = t.rights = s.nextRight;
5849     }
5850 dl 1.52 }
5851     }
5852     }
5853     }
5854    
5855 dl 1.102 @SuppressWarnings("serial")
5856     static final class MapReduceMappingsToLongTask<K,V>
5857     extends BulkTask<K,V,Long> {
5858 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
5859     final LongByLongToLong reducer;
5860     final long basis;
5861     long result;
5862 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5863 dl 1.52 MapReduceMappingsToLongTask
5864 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5865 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
5866 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
5867     long basis,
5868     LongByLongToLong reducer) {
5869 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5870 dl 1.52 this.transformer = transformer;
5871     this.basis = basis; this.reducer = reducer;
5872     }
5873 dl 1.79 public final Long getRawResult() { return result; }
5874 dl 1.102 public final void compute() {
5875 dl 1.82 final ObjectByObjectToLong<? super K, ? super V> transformer;
5876     final LongByLongToLong reducer;
5877     if ((transformer = this.transformer) != null &&
5878     (reducer = this.reducer) != null) {
5879     long r = this.basis;
5880 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5881     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5882     addToPendingCount(1);
5883 dl 1.82 (rights = new MapReduceMappingsToLongTask<K,V>
5884 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5885     rights, transformer, r, reducer)).fork();
5886     }
5887     for (Node<K,V> p; (p = advance()) != null; )
5888     r = reducer.apply(r, transformer.apply(p.key, p.val));
5889 dl 1.82 result = r;
5890     CountedCompleter<?> c;
5891     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5892 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5893 dl 1.82 t = (MapReduceMappingsToLongTask<K,V>)c,
5894     s = t.rights;
5895     while (s != null) {
5896     t.result = reducer.apply(t.result, s.result);
5897     s = t.rights = s.nextRight;
5898     }
5899 dl 1.52 }
5900 dl 1.71 }
5901 dl 1.52 }
5902     }
5903    
5904 dl 1.102 @SuppressWarnings("serial")
5905     static final class MapReduceKeysToIntTask<K,V>
5906     extends BulkTask<K,V,Integer> {
5907 dl 1.52 final ObjectToInt<? super K> transformer;
5908     final IntByIntToInt reducer;
5909     final int basis;
5910     int result;
5911 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
5912 dl 1.52 MapReduceKeysToIntTask
5913 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5914 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
5915 dl 1.52 ObjectToInt<? super K> transformer,
5916     int basis,
5917     IntByIntToInt reducer) {
5918 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5919 dl 1.52 this.transformer = transformer;
5920     this.basis = basis; this.reducer = reducer;
5921     }
5922 dl 1.79 public final Integer getRawResult() { return result; }
5923 dl 1.102 public final void compute() {
5924 dl 1.82 final ObjectToInt<? super K> transformer;
5925     final IntByIntToInt reducer;
5926     if ((transformer = this.transformer) != null &&
5927     (reducer = this.reducer) != null) {
5928     int r = this.basis;
5929 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5930     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5931     addToPendingCount(1);
5932 dl 1.82 (rights = new MapReduceKeysToIntTask<K,V>
5933 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5934     rights, transformer, r, reducer)).fork();
5935     }
5936     for (Node<K,V> p; (p = advance()) != null; )
5937     r = reducer.apply(r, transformer.apply(p.key));
5938 dl 1.82 result = r;
5939     CountedCompleter<?> c;
5940     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5941 dl 1.102 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5942 dl 1.82 t = (MapReduceKeysToIntTask<K,V>)c,
5943     s = t.rights;
5944     while (s != null) {
5945     t.result = reducer.apply(t.result, s.result);
5946     s = t.rights = s.nextRight;
5947     }
5948 dl 1.52 }
5949 dl 1.71 }
5950 dl 1.52 }
5951     }
5952    
5953 dl 1.102 @SuppressWarnings("serial")
5954     static final class MapReduceValuesToIntTask<K,V>
5955     extends BulkTask<K,V,Integer> {
5956 dl 1.52 final ObjectToInt<? super V> transformer;
5957     final IntByIntToInt reducer;
5958     final int basis;
5959     int result;
5960 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
5961 dl 1.52 MapReduceValuesToIntTask
5962 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5963 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
5964 dl 1.52 ObjectToInt<? super V> transformer,
5965     int basis,
5966     IntByIntToInt reducer) {
5967 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
5968 dl 1.52 this.transformer = transformer;
5969     this.basis = basis; this.reducer = reducer;
5970     }
5971 dl 1.79 public final Integer getRawResult() { return result; }
5972 dl 1.102 public final void compute() {
5973 dl 1.82 final ObjectToInt<? super V> transformer;
5974     final IntByIntToInt reducer;
5975     if ((transformer = this.transformer) != null &&
5976     (reducer = this.reducer) != null) {
5977     int r = this.basis;
5978 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
5979     (h = ((f = baseLimit) + i) >>> 1) > i;) {
5980     addToPendingCount(1);
5981 dl 1.82 (rights = new MapReduceValuesToIntTask<K,V>
5982 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
5983     rights, transformer, r, reducer)).fork();
5984     }
5985     for (Node<K,V> p; (p = advance()) != null; )
5986     r = reducer.apply(r, transformer.apply(p.val));
5987 dl 1.82 result = r;
5988     CountedCompleter<?> c;
5989     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5990 dl 1.102 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5991 dl 1.82 t = (MapReduceValuesToIntTask<K,V>)c,
5992     s = t.rights;
5993     while (s != null) {
5994     t.result = reducer.apply(t.result, s.result);
5995     s = t.rights = s.nextRight;
5996     }
5997 dl 1.52 }
5998 dl 1.71 }
5999 dl 1.52 }
6000     }
6001    
6002 dl 1.102 @SuppressWarnings("serial")
6003     static final class MapReduceEntriesToIntTask<K,V>
6004     extends BulkTask<K,V,Integer> {
6005 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
6006     final IntByIntToInt reducer;
6007     final int basis;
6008     int result;
6009 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6010 dl 1.52 MapReduceEntriesToIntTask
6011 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6012 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
6013 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
6014     int basis,
6015     IntByIntToInt reducer) {
6016 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
6017 dl 1.52 this.transformer = transformer;
6018     this.basis = basis; this.reducer = reducer;
6019     }
6020 dl 1.79 public final Integer getRawResult() { return result; }
6021 dl 1.102 public final void compute() {
6022 dl 1.82 final ObjectToInt<Map.Entry<K,V>> transformer;
6023     final IntByIntToInt reducer;
6024     if ((transformer = this.transformer) != null &&
6025     (reducer = this.reducer) != null) {
6026     int r = this.basis;
6027 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
6028     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6029     addToPendingCount(1);
6030 dl 1.82 (rights = new MapReduceEntriesToIntTask<K,V>
6031 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
6032     rights, transformer, r, reducer)).fork();
6033     }
6034     for (Node<K,V> p; (p = advance()) != null; )
6035     r = reducer.apply(r, transformer.apply(p));
6036 dl 1.82 result = r;
6037     CountedCompleter<?> c;
6038     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6039 dl 1.102 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
6040 dl 1.82 t = (MapReduceEntriesToIntTask<K,V>)c,
6041     s = t.rights;
6042     while (s != null) {
6043     t.result = reducer.apply(t.result, s.result);
6044     s = t.rights = s.nextRight;
6045     }
6046 dl 1.52 }
6047     }
6048     }
6049     }
6050    
6051 dl 1.102 @SuppressWarnings("serial")
6052     static final class MapReduceMappingsToIntTask<K,V>
6053     extends BulkTask<K,V,Integer> {
6054 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
6055     final IntByIntToInt reducer;
6056     final int basis;
6057     int result;
6058 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6059 dl 1.52 MapReduceMappingsToIntTask
6060 dl 1.102 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
6061 dl 1.79 MapReduceMappingsToIntTask<K,V> nextRight,
6062 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
6063     int basis,
6064     IntByIntToInt reducer) {
6065 dl 1.102 super(p, b, i, f, t); this.nextRight = nextRight;
6066 dl 1.52 this.transformer = transformer;
6067     this.basis = basis; this.reducer = reducer;
6068     }
6069 dl 1.79 public final Integer getRawResult() { return result; }
6070 dl 1.102 public final void compute() {
6071 dl 1.82 final ObjectByObjectToInt<? super K, ? super V> transformer;
6072     final IntByIntToInt reducer;
6073     if ((transformer = this.transformer) != null &&
6074     (reducer = this.reducer) != null) {
6075     int r = this.basis;
6076 dl 1.102 for (int i = baseIndex, f, h; batch > 0 &&
6077     (h = ((f = baseLimit) + i) >>> 1) > i;) {
6078     addToPendingCount(1);
6079 dl 1.82 (rights = new MapReduceMappingsToIntTask<K,V>
6080 dl 1.102 (this, batch >>>= 1, baseLimit = h, f, tab,
6081     rights, transformer, r, reducer)).fork();
6082     }
6083     for (Node<K,V> p; (p = advance()) != null; )
6084     r = reducer.apply(r, transformer.apply(p.key, p.val));
6085 dl 1.82 result = r;
6086     CountedCompleter<?> c;
6087     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6088 dl 1.102 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6089 dl 1.82 t = (MapReduceMappingsToIntTask<K,V>)c,
6090     s = t.rights;
6091     while (s != null) {
6092     t.result = reducer.apply(t.result, s.result);
6093     s = t.rights = s.nextRight;
6094     }
6095 dl 1.52 }
6096     }
6097     }
6098     }
6099    
6100 dl 1.102 /* ---------------- Counters -------------- */
6101    
6102     // Adapted from LongAdder and Striped64.
6103     // See their internal docs for explanation.
6104    
6105     // A padded cell for distributing counts
6106     static final class CounterCell {
6107     volatile long p0, p1, p2, p3, p4, p5, p6;
6108     volatile long value;
6109     volatile long q0, q1, q2, q3, q4, q5, q6;
6110     CounterCell(long x) { value = x; }
6111     }
6112    
6113     /**
6114     * Holder for the thread-local hash code determining which
6115     * CounterCell to use. The code is initialized via the
6116     * counterHashCodeGenerator, but may be moved upon collisions.
6117     */
6118     static final class CounterHashCode {
6119     int code;
6120     }
6121    
6122     /**
6123 jsr166 1.105 * Generates initial value for per-thread CounterHashCodes.
6124 dl 1.102 */
6125     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6126    
6127     /**
6128     * Increment for counterHashCodeGenerator. See class ThreadLocal
6129     * for explanation.
6130     */
6131     static final int SEED_INCREMENT = 0x61c88647;
6132    
6133     /**
6134     * Per-thread counter hash codes. Shared across all instances.
6135     */
6136     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6137     new ThreadLocal<CounterHashCode>();
6138    
6139    
6140     final long sumCount() {
6141     CounterCell[] as = counterCells; CounterCell a;
6142     long sum = baseCount;
6143     if (as != null) {
6144     for (int i = 0; i < as.length; ++i) {
6145     if ((a = as[i]) != null)
6146     sum += a.value;
6147     }
6148     }
6149     return sum;
6150     }
6151    
6152     // See LongAdder version for explanation
6153     private final void fullAddCount(long x, CounterHashCode hc,
6154     boolean wasUncontended) {
6155     int h;
6156     if (hc == null) {
6157     hc = new CounterHashCode();
6158     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6159     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6160     threadCounterHashCode.set(hc);
6161     }
6162     else
6163     h = hc.code;
6164     boolean collide = false; // True if last slot nonempty
6165     for (;;) {
6166     CounterCell[] as; CounterCell a; int n; long v;
6167     if ((as = counterCells) != null && (n = as.length) > 0) {
6168     if ((a = as[(n - 1) & h]) == null) {
6169     if (cellsBusy == 0) { // Try to attach new Cell
6170     CounterCell r = new CounterCell(x); // Optimistic create
6171     if (cellsBusy == 0 &&
6172     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6173     boolean created = false;
6174     try { // Recheck under lock
6175     CounterCell[] rs; int m, j;
6176     if ((rs = counterCells) != null &&
6177     (m = rs.length) > 0 &&
6178     rs[j = (m - 1) & h] == null) {
6179     rs[j] = r;
6180     created = true;
6181     }
6182     } finally {
6183     cellsBusy = 0;
6184     }
6185     if (created)
6186     break;
6187     continue; // Slot is now non-empty
6188     }
6189     }
6190     collide = false;
6191     }
6192     else if (!wasUncontended) // CAS already known to fail
6193     wasUncontended = true; // Continue after rehash
6194     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6195     break;
6196     else if (counterCells != as || n >= NCPU)
6197     collide = false; // At max size or stale
6198     else if (!collide)
6199     collide = true;
6200     else if (cellsBusy == 0 &&
6201     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6202     try {
6203     if (counterCells == as) {// Expand table unless stale
6204     CounterCell[] rs = new CounterCell[n << 1];
6205     for (int i = 0; i < n; ++i)
6206     rs[i] = as[i];
6207     counterCells = rs;
6208     }
6209     } finally {
6210     cellsBusy = 0;
6211     }
6212     collide = false;
6213     continue; // Retry with expanded table
6214     }
6215     h ^= h << 13; // Rehash
6216     h ^= h >>> 17;
6217     h ^= h << 5;
6218     }
6219     else if (cellsBusy == 0 && counterCells == as &&
6220     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6221     boolean init = false;
6222     try { // Initialize table
6223     if (counterCells == as) {
6224     CounterCell[] rs = new CounterCell[2];
6225     rs[h & 1] = new CounterCell(x);
6226     counterCells = rs;
6227     init = true;
6228     }
6229     } finally {
6230     cellsBusy = 0;
6231     }
6232     if (init)
6233     break;
6234     }
6235     else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6236     break; // Fall back on using base
6237     }
6238     hc.code = h; // Record index for next time
6239     }
6240    
6241 dl 1.52 // Unsafe mechanics
6242 dl 1.82 private static final sun.misc.Unsafe U;
6243     private static final long SIZECTL;
6244     private static final long TRANSFERINDEX;
6245     private static final long BASECOUNT;
6246 dl 1.102 private static final long CELLSBUSY;
6247 dl 1.82 private static final long CELLVALUE;
6248 dl 1.52 private static final long ABASE;
6249     private static final int ASHIFT;
6250    
6251     static {
6252     try {
6253 dl 1.82 U = getUnsafe();
6254 dl 1.52 Class<?> k = ConcurrentHashMapV8.class;
6255 dl 1.82 SIZECTL = U.objectFieldOffset
6256 dl 1.52 (k.getDeclaredField("sizeCtl"));
6257 dl 1.82 TRANSFERINDEX = U.objectFieldOffset
6258     (k.getDeclaredField("transferIndex"));
6259     BASECOUNT = U.objectFieldOffset
6260     (k.getDeclaredField("baseCount"));
6261 dl 1.102 CELLSBUSY = U.objectFieldOffset
6262     (k.getDeclaredField("cellsBusy"));
6263 dl 1.82 Class<?> ck = CounterCell.class;
6264     CELLVALUE = U.objectFieldOffset
6265     (ck.getDeclaredField("value"));
6266 jsr166 1.101 Class<?> ak = Node[].class;
6267     ABASE = U.arrayBaseOffset(ak);
6268     int scale = U.arrayIndexScale(ak);
6269 jsr166 1.89 if ((scale & (scale - 1)) != 0)
6270     throw new Error("data type scale not a power of two");
6271     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6272 dl 1.52 } catch (Exception e) {
6273     throw new Error(e);
6274     }
6275     }
6276    
6277     /**
6278     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6279     * Replace with a simple call to Unsafe.getUnsafe when integrating
6280     * into a jdk.
6281     *
6282     * @return a sun.misc.Unsafe
6283     */
6284     private static sun.misc.Unsafe getUnsafe() {
6285     try {
6286     return sun.misc.Unsafe.getUnsafe();
6287 jsr166 1.87 } catch (SecurityException tryReflectionInstead) {}
6288     try {
6289     return java.security.AccessController.doPrivileged
6290     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6291     public sun.misc.Unsafe run() throws Exception {
6292     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6293     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6294     f.setAccessible(true);
6295     Object x = f.get(null);
6296     if (k.isInstance(x))
6297     return k.cast(x);
6298     }
6299     throw new NoSuchFieldError("the Unsafe");
6300     }});
6301     } catch (java.security.PrivilegedActionException e) {
6302     throw new RuntimeException("Could not initialize intrinsics",
6303     e.getCause());
6304 dl 1.52 }
6305     }
6306 dl 1.1 }