ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.39
Committed: Sat Jun 9 16:54:12 2012 UTC (11 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.38: +3 -3 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7 dl 1.38 // Snapshot Tue Jun 5 14:56:09 2012 Doug Lea (dl at altair)
8    
9 dl 1.1 package jsr166e;
10     import jsr166e.LongAdder;
11 dl 1.24 import java.util.Arrays;
12 dl 1.1 import java.util.Map;
13     import java.util.Set;
14     import java.util.Collection;
15     import java.util.AbstractMap;
16     import java.util.AbstractSet;
17     import java.util.AbstractCollection;
18     import java.util.Hashtable;
19     import java.util.HashMap;
20     import java.util.Iterator;
21     import java.util.Enumeration;
22     import java.util.ConcurrentModificationException;
23     import java.util.NoSuchElementException;
24     import java.util.concurrent.ConcurrentMap;
25 dl 1.37 import java.util.concurrent.ThreadLocalRandom;
26 dl 1.24 import java.util.concurrent.locks.LockSupport;
27 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28 dl 1.1 import java.io.Serializable;
29    
30     /**
31     * A hash table supporting full concurrency of retrievals and
32     * high expected concurrency for updates. This class obeys the
33     * same functional specification as {@link java.util.Hashtable}, and
34     * includes versions of methods corresponding to each method of
35     * {@code Hashtable}. However, even though all operations are
36     * thread-safe, retrieval operations do <em>not</em> entail locking,
37     * and there is <em>not</em> any support for locking the entire table
38     * in a way that prevents all access. This class is fully
39     * interoperable with {@code Hashtable} in programs that rely on its
40     * thread safety but not on its synchronization details.
41     *
42     * <p> Retrieval operations (including {@code get}) generally do not
43     * block, so may overlap with update operations (including {@code put}
44     * and {@code remove}). Retrievals reflect the results of the most
45     * recently <em>completed</em> update operations holding upon their
46     * onset. For aggregate operations such as {@code putAll} and {@code
47     * clear}, concurrent retrievals may reflect insertion or removal of
48     * only some entries. Similarly, Iterators and Enumerations return
49     * elements reflecting the state of the hash table at some point at or
50     * since the creation of the iterator/enumeration. They do
51     * <em>not</em> throw {@link ConcurrentModificationException}.
52     * However, iterators are designed to be used by only one thread at a
53     * time. Bear in mind that the results of aggregate status methods
54     * including {@code size}, {@code isEmpty}, and {@code containsValue}
55     * are typically useful only when a map is not undergoing concurrent
56     * updates in other threads. Otherwise the results of these methods
57     * reflect transient states that may be adequate for monitoring
58 dl 1.16 * or estimation purposes, but not for program control.
59 dl 1.1 *
60 dl 1.16 * <p> The table is dynamically expanded when there are too many
61     * collisions (i.e., keys that have distinct hash codes but fall into
62     * the same slot modulo the table size), with the expected average
63 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
64     * to a 0.75 load factor threshold for resizing). There may be much
65     * variance around this average as mappings are added and removed, but
66     * overall, this maintains a commonly accepted time/space tradeoff for
67     * hash tables. However, resizing this or any other kind of hash
68     * table may be a relatively slow operation. When possible, it is a
69     * good idea to provide a size estimate as an optional {@code
70 dl 1.16 * initialCapacity} constructor argument. An additional optional
71     * {@code loadFactor} constructor argument provides a further means of
72     * customizing initial table capacity by specifying the table density
73     * to be used in calculating the amount of space to allocate for the
74     * given number of elements. Also, for compatibility with previous
75     * versions of this class, constructors may optionally specify an
76     * expected {@code concurrencyLevel} as an additional hint for
77     * internal sizing. Note that using many keys with exactly the same
78 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
79 dl 1.16 * hash table.
80 dl 1.1 *
81     * <p>This class and its views and iterators implement all of the
82     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
83     * interfaces.
84     *
85     * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
86     * does <em>not</em> allow {@code null} to be used as a key or value.
87     *
88     * <p>This class is a member of the
89     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
90     * Java Collections Framework</a>.
91     *
92     * <p><em>jsr166e note: This class is a candidate replacement for
93     * java.util.concurrent.ConcurrentHashMap.<em>
94     *
95 jsr166 1.22 * @since 1.5
96 dl 1.1 * @author Doug Lea
97     * @param <K> the type of keys maintained by this map
98     * @param <V> the type of mapped values
99     */
100     public class ConcurrentHashMapV8<K, V>
101     implements ConcurrentMap<K, V>, Serializable {
102     private static final long serialVersionUID = 7249069246763182397L;
103    
104     /**
105 dl 1.27 * A function computing a mapping from the given key to a value.
106     * This is a place-holder for an upcoming JDK8 interface.
107 dl 1.1 */
108     public static interface MappingFunction<K, V> {
109     /**
110 dl 1.27 * Returns a non-null value for the given key.
111 dl 1.1 *
112     * @param key the (non-null) key
113 dl 1.27 * @return a non-null value
114 dl 1.1 */
115     V map(K key);
116     }
117    
118 dl 1.27 /**
119     * A function computing a new mapping given a key and its current
120     * mapped value (or {@code null} if there is no current
121     * mapping). This is a place-holder for an upcoming JDK8
122     * interface.
123     */
124     public static interface RemappingFunction<K, V> {
125     /**
126     * Returns a new value given a key and its current value.
127     *
128     * @param key the (non-null) key
129     * @param value the current value, or null if there is no mapping
130     * @return a non-null value
131     */
132     V remap(K key, V value);
133     }
134    
135 dl 1.1 /*
136     * Overview:
137     *
138     * The primary design goal of this hash table is to maintain
139     * concurrent readability (typically method get(), but also
140     * iterators and related methods) while minimizing update
141 dl 1.24 * contention. Secondary goals are to keep space consumption about
142     * the same or better than java.util.HashMap, and to support high
143     * initial insertion rates on an empty table by many threads.
144 dl 1.1 *
145     * Each key-value mapping is held in a Node. Because Node fields
146     * can contain special values, they are defined using plain Object
147     * types. Similarly in turn, all internal methods that use them
148 dl 1.14 * work off Object types. And similarly, so do the internal
149     * methods of auxiliary iterator and view classes. All public
150     * generic typed methods relay in/out of these internal methods,
151 dl 1.27 * supplying null-checks and casts as needed. This also allows
152     * many of the public methods to be factored into a smaller number
153     * of internal methods (although sadly not so for the five
154 dl 1.38 * variants of put-related operations). The validation-based
155     * approach explained below leads to a lot of code sprawl because
156     * retry-control precludes factoring into smaller methods.
157 dl 1.1 *
158     * The table is lazily initialized to a power-of-two size upon the
159 dl 1.38 * first insertion. Each bin in the table normally contains a
160     * list of Nodes (most often, the list has only zero or one Node).
161     * Table accesses require volatile/atomic reads, writes, and
162     * CASes. Because there is no other way to arrange this without
163     * adding further indirections, we use intrinsics
164     * (sun.misc.Unsafe) operations. The lists of nodes within bins
165     * are always accurately traversable under volatile reads, so long
166     * as lookups check hash code and non-nullness of value before
167     * checking key equality.
168 dl 1.24 *
169     * We use the top two bits of Node hash fields for control
170     * purposes -- they are available anyway because of addressing
171     * constraints. As explained further below, these top bits are
172 dl 1.27 * used as follows:
173 dl 1.24 * 00 - Normal
174     * 01 - Locked
175     * 11 - Locked and may have a thread waiting for lock
176     * 10 - Node is a forwarding node
177     *
178     * The lower 30 bits of each Node's hash field contain a
179 dl 1.38 * transformation of the key's hash code, except for forwarding
180     * nodes, for which the lower bits are zero (and so always have
181     * hash field == MOVED).
182 dl 1.14 *
183 dl 1.27 * Insertion (via put or its variants) of the first node in an
184 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
185 dl 1.38 * by far the most common case for put operations under most
186     * key/hash distributions. Other update operations (insert,
187     * delete, and replace) require locks. We do not want to waste
188     * the space required to associate a distinct lock object with
189     * each bin, so instead use the first node of a bin list itself as
190     * a lock. Blocking support for these locks relies on the builtin
191     * "synchronized" monitors. However, we also need a tryLock
192     * construction, so we overlay these by using bits of the Node
193     * hash field for lock control (see above), and so normally use
194     * builtin monitors only for blocking and signalling using
195     * wait/notifyAll constructions. See Node.tryAwaitLock.
196 dl 1.24 *
197     * Using the first node of a list as a lock does not by itself
198     * suffice though: When a node is locked, any update must first
199     * validate that it is still the first node after locking it, and
200     * retry if not. Because new nodes are always appended to lists,
201     * once a node is first in a bin, it remains first until deleted
202 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
203     * operations that only conditionally update may inspect nodes
204     * until the point of update. This is a converse of sorts to the
205     * lazy locking technique described by Herlihy & Shavit.
206 dl 1.14 *
207 dl 1.24 * The main disadvantage of per-bin locks is that other update
208 dl 1.14 * operations on other nodes in a bin list protected by the same
209     * lock can stall, for example when user equals() or mapping
210 dl 1.38 * functions take a long time. However, statistically, under
211     * random hash codes, this is not a common problem. Ideally, the
212     * frequency of nodes in bins follows a Poisson distribution
213 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
214 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
215     * of 0.75, although with a large variance because of resizing
216     * granularity. Ignoring variance, the expected occurrences of
217     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
218 dl 1.38 * first values are:
219 dl 1.16 *
220 dl 1.38 * 0: 0.60653066
221     * 1: 0.30326533
222     * 2: 0.07581633
223     * 3: 0.01263606
224     * 4: 0.00157952
225     * 5: 0.00015795
226     * 6: 0.00001316
227     * 7: 0.00000094
228     * 8: 0.00000006
229     * more: less than 1 in ten million
230 dl 1.16 *
231     * Lock contention probability for two threads accessing distinct
232 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
233     *
234     * Actual hash code distributions encountered in practice
235     * sometimes deviate significantly from uniform randomness. This
236     * includes the case when N > (1<<30), so some keys MUST collide.
237     * Similarly for dumb or hostile usages in which multiple keys are
238     * designed to have identical hash codes. Also, although we guard
239     * against the worst effects of this (see method spread), sets of
240     * hashes may differ only in bits that do not impact their bin
241     * index for a given power-of-two mask. So we use a secondary
242     * strategy that applies when the number of nodes in a bin exceeds
243     * a threshold, and at least one of the keys implements
244     * Comparable. These TreeBins use a balanced tree to hold nodes
245     * (a specialized form of red-black trees), bounding search time
246     * to O(log N). Each search step in a TreeBin is around twice as
247     * slow as in a regular list, but given that N cannot exceed
248     * (1<<64) (before running out of addresses) this bounds search
249     * steps, lock hold times, etc, to reasonable constants (roughly
250     * 100 nodes inspected per operation worst case) so long as keys
251     * are Comparable (which is very common -- String, Long, etc).
252     * TreeBin nodes (TreeNodes) also maintain the same "next"
253     * traversal pointers as regular nodes, so can be traversed in
254     * iterators in the same way.
255 dl 1.1 *
256 dl 1.38 * The table is resized when occupancy exceeds a percentage
257 dl 1.24 * threshold (nominally, 0.75, but see below). Only a single
258     * thread performs the resize (using field "sizeCtl", to arrange
259     * exclusion), but the table otherwise remains usable for reads
260     * and updates. Resizing proceeds by transferring bins, one by
261     * one, from the table to the next table. Because we are using
262     * power-of-two expansion, the elements from each bin must either
263     * stay at same index, or move with a power of two offset. We
264     * eliminate unnecessary node creation by catching cases where old
265     * nodes can be reused because their next fields won't change. On
266     * average, only about one-sixth of them need cloning when a table
267     * doubles. The nodes they replace will be garbage collectable as
268     * soon as they are no longer referenced by any reader thread that
269     * may be in the midst of concurrently traversing table. Upon
270     * transfer, the old table bin contains only a special forwarding
271     * node (with hash field "MOVED") that contains the next table as
272     * its key. On encountering a forwarding node, access and update
273     * operations restart, using the new table.
274     *
275     * Each bin transfer requires its bin lock. However, unlike other
276     * cases, a transfer can skip a bin if it fails to acquire its
277 dl 1.38 * lock, and revisit it later (unless it is a TreeBin). Method
278     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
279     * have been skipped because of failure to acquire a lock, and
280     * blocks only if none are available (i.e., only very rarely).
281     * The transfer operation must also ensure that all accessible
282     * bins in both the old and new table are usable by any traversal.
283     * When there are no lock acquisition failures, this is arranged
284     * simply by proceeding from the last bin (table.length - 1) up
285     * towards the first. Upon seeing a forwarding node, traversals
286     * (see class InternalIterator) arrange to move to the new table
287     * without revisiting nodes. However, when any node is skipped
288     * during a transfer, all earlier table bins may have become
289     * visible, so are initialized with a reverse-forwarding node back
290     * to the old table until the new ones are established. (This
291     * sometimes requires transiently locking a forwarding node, which
292     * is possible under the above encoding.) These more expensive
293 dl 1.24 * mechanics trigger only when necessary.
294 dl 1.14 *
295 dl 1.24 * The traversal scheme also applies to partial traversals of
296 dl 1.14 * ranges of bins (via an alternate InternalIterator constructor)
297     * to support partitioned aggregate operations (that are not
298     * otherwise implemented yet). Also, read-only operations give up
299     * if ever forwarded to a null table, which provides support for
300     * shutdown-style clearing, which is also not currently
301     * implemented.
302     *
303     * Lazy table initialization minimizes footprint until first use,
304     * and also avoids resizings when the first operation is from a
305     * putAll, constructor with map argument, or deserialization.
306 dl 1.24 * These cases attempt to override the initial capacity settings,
307     * but harmlessly fail to take effect in cases of races.
308 dl 1.1 *
309     * The element count is maintained using a LongAdder, which avoids
310     * contention on updates but can encounter cache thrashing if read
311 dl 1.14 * too frequently during concurrent access. To avoid reading so
312 dl 1.27 * often, resizing is attempted either when a bin lock is
313     * contended, or upon adding to a bin already holding two or more
314     * nodes (checked before adding in the xIfAbsent methods, after
315     * adding in others). Under uniform hash distributions, the
316     * probability of this occurring at threshold is around 13%,
317     * meaning that only about 1 in 8 puts check threshold (and after
318     * resizing, many fewer do so). But this approximation has high
319     * variance for small table sizes, so we check on any collision
320     * for sizes <= 64. The bulk putAll operation further reduces
321     * contention by only committing count updates upon these size
322     * checks.
323 dl 1.14 *
324     * Maintaining API and serialization compatibility with previous
325     * versions of this class introduces several oddities. Mainly: We
326     * leave untouched but unused constructor arguments refering to
327 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
328     * but apply it only to initial table capacity (which is the only
329     * time that we can guarantee to honor it.) We also declare an
330     * unused "Segment" class that is instantiated in minimal form
331     * only when serializing.
332 dl 1.1 */
333    
334     /* ---------------- Constants -------------- */
335    
336     /**
337 dl 1.16 * The largest possible table capacity. This value must be
338     * exactly 1<<30 to stay within Java array allocation and indexing
339 dl 1.24 * bounds for power of two table sizes, and is further required
340     * because the top two bits of 32bit hash fields are used for
341     * control purposes.
342 dl 1.1 */
343 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
344 dl 1.1
345     /**
346 dl 1.14 * The default initial table capacity. Must be a power of 2
347     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
348 dl 1.1 */
349 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
350 dl 1.1
351     /**
352 dl 1.24 * The largest possible (non-power of two) array size.
353     * Needed by toArray and related methods.
354     */
355     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
356    
357     /**
358     * The default concurrency level for this table. Unused but
359     * defined for compatibility with previous versions of this class.
360     */
361     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
362    
363     /**
364 dl 1.16 * The load factor for this table. Overrides of this value in
365     * constructors affect only the initial table capacity. The
366 dl 1.24 * actual floating point value isn't normally used -- it is
367     * simpler to use expressions such as {@code n - (n >>> 2)} for
368     * the associated resizing threshold.
369 dl 1.1 */
370 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
371 dl 1.1
372     /**
373 dl 1.24 * The buffer size for skipped bins during transfers. The
374     * value is arbitrary but should be large enough to avoid
375     * most locking stalls during resizes.
376     */
377     private static final int TRANSFER_BUFFER_SIZE = 32;
378    
379 dl 1.38 /**
380     * The bin count threshold for using a tree rather than list for a
381     * bin. The value reflects the approximate break-even point for
382     * using tree-based operations.
383     */
384     private static final int TREE_THRESHOLD = 8;
385    
386 dl 1.24 /*
387     * Encodings for special uses of Node hash fields. See above for
388     * explanation.
389 dl 1.1 */
390 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
391 dl 1.24 static final int LOCKED = 0x40000000; // set/tested only as a bit
392     static final int WAITING = 0xc0000000; // both bits set/tested together
393     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
394    
395     /* ---------------- Fields -------------- */
396    
397     /**
398     * The array of bins. Lazily initialized upon first insertion.
399     * Size is always a power of two. Accessed directly by iterators.
400     */
401     transient volatile Node[] table;
402 dl 1.14
403 dl 1.16 /**
404 dl 1.24 * The counter maintaining number of elements.
405 dl 1.16 */
406 dl 1.24 private transient final LongAdder counter;
407    
408     /**
409     * Table initialization and resizing control. When negative, the
410     * table is being initialized or resized. Otherwise, when table is
411     * null, holds the initial table size to use upon creation, or 0
412     * for default. After initialization, holds the next element count
413     * value upon which to resize the table.
414     */
415     private transient volatile int sizeCtl;
416    
417     // views
418     private transient KeySet<K,V> keySet;
419     private transient Values<K,V> values;
420     private transient EntrySet<K,V> entrySet;
421    
422     /** For serialization compatibility. Null unless serialized; see below */
423     private Segment<K,V>[] segments;
424 dl 1.16
425 dl 1.38 /* ---------------- Table element access -------------- */
426    
427     /*
428     * Volatile access methods are used for table elements as well as
429     * elements of in-progress next table while resizing. Uses are
430     * null checked by callers, and implicitly bounds-checked, relying
431     * on the invariants that tab arrays have non-zero size, and all
432     * indices are masked with (tab.length - 1) which is never
433     * negative and always less than length. Note that, to be correct
434     * wrt arbitrary concurrency errors by users, bounds checks must
435     * operate on local variables, which accounts for some odd-looking
436     * inline assignments below.
437     */
438    
439     static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
440     return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
441     }
442    
443     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
444     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
445     }
446    
447     private static final void setTabAt(Node[] tab, int i, Node v) {
448     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
449     }
450    
451 dl 1.14 /* ---------------- Nodes -------------- */
452 dl 1.1
453     /**
454 dl 1.14 * Key-value entry. Note that this is never exported out as a
455 dl 1.24 * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
456 dl 1.29 * below). Nodes with a hash field of MOVED are special, and do
457 dl 1.24 * not contain user keys or values. Otherwise, keys are never
458     * null, and null val fields indicate that a node is in the
459     * process of being deleted or created. For purposes of read-only
460     * access, a key may be read before a val, but can only be used
461     * after checking val to be non-null.
462 dl 1.1 */
463 dl 1.38 static class Node {
464 dl 1.24 volatile int hash;
465 dl 1.14 final Object key;
466     volatile Object val;
467     volatile Node next;
468    
469     Node(int hash, Object key, Object val, Node next) {
470     this.hash = hash;
471     this.key = key;
472     this.val = val;
473     this.next = next;
474     }
475    
476 dl 1.24 /** CompareAndSet the hash field */
477     final boolean casHash(int cmp, int val) {
478     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
479     }
480 dl 1.1
481 dl 1.24 /** The number of spins before blocking for a lock */
482     static final int MAX_SPINS =
483     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
484 dl 1.1
485 dl 1.24 /**
486     * Spins a while if LOCKED bit set and this node is the first
487     * of its bin, and then sets WAITING bits on hash field and
488     * blocks (once) if they are still set. It is OK for this
489     * method to return even if lock is not available upon exit,
490     * which enables these simple single-wait mechanics.
491     *
492     * The corresponding signalling operation is performed within
493     * callers: Upon detecting that WAITING has been set when
494     * unlocking lock (via a failed CAS from non-waiting LOCKED
495     * state), unlockers acquire the sync lock and perform a
496     * notifyAll.
497     */
498     final void tryAwaitLock(Node[] tab, int i) {
499     if (tab != null && i >= 0 && i < tab.length) { // bounds check
500 dl 1.37 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
501 dl 1.24 int spins = MAX_SPINS, h;
502     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
503     if (spins >= 0) {
504 dl 1.37 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
505     if (r >= 0 && --spins == 0)
506     Thread.yield(); // yield before block
507 dl 1.24 }
508     else if (casHash(h, h | WAITING)) {
509 jsr166 1.26 synchronized (this) {
510 dl 1.24 if (tabAt(tab, i) == this &&
511     (hash & WAITING) == WAITING) {
512     try {
513     wait();
514     } catch (InterruptedException ie) {
515     Thread.currentThread().interrupt();
516     }
517     }
518     else
519     notifyAll(); // possibly won race vs signaller
520     }
521     break;
522     }
523     }
524     }
525     }
526 dl 1.1
527 dl 1.24 // Unsafe mechanics for casHash
528     private static final sun.misc.Unsafe UNSAFE;
529     private static final long hashOffset;
530 dl 1.1
531 dl 1.24 static {
532     try {
533     UNSAFE = getUnsafe();
534     Class<?> k = Node.class;
535     hashOffset = UNSAFE.objectFieldOffset
536     (k.getDeclaredField("hash"));
537     } catch (Exception e) {
538     throw new Error(e);
539     }
540     }
541     }
542 dl 1.1
543 dl 1.38 /* ---------------- TreeBins -------------- */
544    
545     /**
546     * Nodes for use in TreeBins
547     */
548     static final class TreeNode extends Node {
549     TreeNode parent; // red-black tree links
550     TreeNode left;
551     TreeNode right;
552     TreeNode prev; // needed to unlink next upon deletion
553     boolean red;
554    
555     TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
556     super(hash, key, val, next);
557     this.parent = parent;
558     }
559     }
560 dl 1.1
561 dl 1.38 /**
562     * A specialized form of red-black tree for use in bins
563     * whose size exceeds a threshold.
564     *
565     * TreeBins use a special form of comparison for search and
566     * related operations (which is the main reason we cannot use
567     * existing collections such as TreeMaps). TreeBins contain
568     * Comparable elements, but may contain others, as well as
569     * elements that are Comparable but not necessarily Comparable<T>
570     * for the same T, so we cannot invoke compareTo among them. To
571     * handle this, the tree is ordered primarily by hash value, then
572     * by getClass().getName() order, and then by Comparator order
573     * among elements of the same class. On lookup at a node, if
574     * non-Comparable, both left and right children may need to be
575     * searched in the case of tied hash values. (This corresponds to
576     * the full list search that would be necessary if all elements
577     * were non-Comparable and had tied hashes.)
578     *
579     * TreeBins also maintain a separate locking discipline than
580     * regular bins. Because they are forwarded via special MOVED
581     * nodes at bin heads (which can never change once established),
582     * we cannot use use those nodes as locks. Instead, TreeBin
583     * extends AbstractQueuedSynchronizer to support a simple form of
584     * read-write lock. For update operations and table validation,
585     * the exclusive form of lock behaves in the same way as bin-head
586     * locks. However, lookups use shared read-lock mechanics to allow
587     * multiple readers in the absence of writers. Additionally,
588     * these lookups do not ever block: While the lock is not
589     * available, they proceed along the slow traversal path (via
590     * next-pointers) until the lock becomes available or the list is
591     * exhausted, whichever comes first. (These cases are not fast,
592     * but maximize aggregate expected throughput.) The AQS mechanics
593     * for doing this are straightforward. The lock state is held as
594     * AQS getState(). Read counts are negative; the write count (1)
595     * is positive. There are no signalling preferences among readers
596     * and writers. Since we don't need to export full Lock API, we
597     * just override the minimal AQS methods and use them directly.
598 dl 1.1 */
599 dl 1.38 static final class TreeBin extends AbstractQueuedSynchronizer {
600     private static final long serialVersionUID = 2249069246763182397L;
601     TreeNode root; // root of tree
602     TreeNode first; // head of next-pointer list
603 dl 1.1
604 dl 1.38 /* AQS overrides */
605     public final boolean isHeldExclusively() { return getState() > 0; }
606     public final boolean tryAcquire(int ignore) {
607     if (compareAndSetState(0, 1)) {
608     setExclusiveOwnerThread(Thread.currentThread());
609     return true;
610     }
611     return false;
612     }
613     public final boolean tryRelease(int ignore) {
614     setExclusiveOwnerThread(null);
615     setState(0);
616     return true;
617     }
618     public final int tryAcquireShared(int ignore) {
619     for (int c;;) {
620     if ((c = getState()) > 0)
621     return -1;
622     if (compareAndSetState(c, c -1))
623     return 1;
624     }
625     }
626     public final boolean tryReleaseShared(int ignore) {
627     int c;
628     do {} while (!compareAndSetState(c = getState(), c + 1));
629     return c == -1;
630     }
631    
632     /**
633     * Return the TreeNode (or null if not found) for the given key
634     * starting at given root.
635     */
636     @SuppressWarnings("unchecked") // suppress Comparable cast warning
637     final TreeNode getTreeNode(int h, Object k, TreeNode p) {
638     Class<?> c = k.getClass();
639     while (p != null) {
640     int dir, ph; Object pk; Class<?> pc; TreeNode r;
641     if (h < (ph = p.hash))
642     dir = -1;
643     else if (h > ph)
644     dir = 1;
645     else if ((pk = p.key) == k || k.equals(pk))
646     return p;
647     else if (c != (pc = pk.getClass()))
648     dir = c.getName().compareTo(pc.getName());
649     else if (k instanceof Comparable)
650     dir = ((Comparable)k).compareTo((Comparable)pk);
651     else
652     dir = 0;
653     TreeNode pr = p.right;
654     if (dir > 0)
655     p = pr;
656     else if (dir == 0 && pr != null && h >= pr.hash &&
657     (r = getTreeNode(h, k, pr)) != null)
658     return r;
659     else
660     p = p.left;
661     }
662     return null;
663     }
664    
665     /**
666     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
667     * read-lock to call getTreeNode, but during failure to get
668     * lock, searches along next links.
669     */
670     final Object getValue(int h, Object k) {
671     Node r = null;
672     int c = getState(); // Must read lock state first
673     for (Node e = first; e != null; e = e.next) {
674     if (c <= 0 && compareAndSetState(c, c - 1)) {
675     try {
676     r = getTreeNode(h, k, root);
677     } finally {
678     releaseShared(0);
679     }
680     break;
681     }
682     else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
683     r = e;
684     break;
685     }
686     else
687     c = getState();
688     }
689     return r == null ? null : r.val;
690     }
691    
692     /**
693     * Find or add a node
694     * @return null if added
695     */
696     @SuppressWarnings("unchecked") // suppress Comparable cast warning
697     final TreeNode putTreeNode(int h, Object k, Object v) {
698     Class<?> c = k.getClass();
699     TreeNode p = root;
700     int dir = 0;
701     if (p != null) {
702     for (;;) {
703     int ph; Object pk; Class<?> pc; TreeNode r;
704     if (h < (ph = p.hash))
705     dir = -1;
706     else if (h > ph)
707     dir = 1;
708     else if ((pk = p.key) == k || k.equals(pk))
709     return p;
710     else if (c != (pc = (pk = p.key).getClass()))
711     dir = c.getName().compareTo(pc.getName());
712     else if (k instanceof Comparable)
713     dir = ((Comparable)k).compareTo((Comparable)pk);
714     else
715     dir = 0;
716     TreeNode pr = p.right, pl;
717     if (dir > 0) {
718     if (pr == null)
719     break;
720     p = pr;
721     }
722     else if (dir == 0 && pr != null && h >= pr.hash &&
723     (r = getTreeNode(h, k, pr)) != null)
724     return r;
725     else if ((pl = p.left) == null)
726     break;
727     else
728     p = pl;
729     }
730     }
731     TreeNode f = first;
732     TreeNode r = first = new TreeNode(h, k, v, f, p);
733     if (p == null)
734     root = r;
735     else {
736     if (dir <= 0)
737     p.left = r;
738     else
739     p.right = r;
740     if (f != null)
741     f.prev = r;
742     fixAfterInsertion(r);
743     }
744     return null;
745     }
746 dl 1.1
747 dl 1.38 /**
748     * Removes the given node, that must be present before this
749     * call. This is messier than typical red-black deletion code
750     * because we cannot swap the contents of an interior node
751     * with a leaf successor that is pinned by "next" pointers
752     * that are accessible independently of lock. So instead we
753     * swap the tree linkages.
754     */
755     final void deleteTreeNode(TreeNode p) {
756     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
757     TreeNode pred = p.prev;
758     if (pred == null)
759     first = next;
760     else
761     pred.next = next;
762     if (next != null)
763     next.prev = pred;
764     TreeNode replacement;
765     TreeNode pl = p.left;
766     TreeNode pr = p.right;
767     if (pl != null && pr != null) {
768     TreeNode s = pr;
769     while (s.left != null) // find successor
770     s = s.left;
771     boolean c = s.red; s.red = p.red; p.red = c; // swap colors
772     TreeNode sr = s.right;
773     TreeNode pp = p.parent;
774     if (s == pr) { // p was s's direct parent
775     p.parent = s;
776     s.right = p;
777     }
778     else {
779     TreeNode sp = s.parent;
780     if ((p.parent = sp) != null) {
781     if (s == sp.left)
782     sp.left = p;
783     else
784     sp.right = p;
785     }
786     if ((s.right = pr) != null)
787     pr.parent = s;
788     }
789     p.left = null;
790     if ((p.right = sr) != null)
791     sr.parent = p;
792     if ((s.left = pl) != null)
793     pl.parent = s;
794     if ((s.parent = pp) == null)
795     root = s;
796     else if (p == pp.left)
797     pp.left = s;
798     else
799     pp.right = s;
800     replacement = sr;
801     }
802     else
803     replacement = (pl != null) ? pl : pr;
804     TreeNode pp = p.parent;
805     if (replacement == null) {
806     if (pp == null) {
807     root = null;
808     return;
809     }
810     replacement = p;
811     }
812     else {
813     replacement.parent = pp;
814     if (pp == null)
815     root = replacement;
816     else if (p == pp.left)
817     pp.left = replacement;
818     else
819     pp.right = replacement;
820     p.left = p.right = p.parent = null;
821     }
822     if (!p.red)
823     fixAfterDeletion(replacement);
824     if (p == replacement && (pp = p.parent) != null) {
825     if (p == pp.left) // detach pointers
826     pp.left = null;
827     else if (p == pp.right)
828     pp.right = null;
829     p.parent = null;
830     }
831     }
832    
833     // CLR code updated from pre-jdk-collections version at
834     // http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java
835    
836     /** From CLR */
837     private void rotateLeft(TreeNode p) {
838     if (p != null) {
839     TreeNode r = p.right, pp, rl;
840     if ((rl = p.right = r.left) != null)
841     rl.parent = p;
842     if ((pp = r.parent = p.parent) == null)
843     root = r;
844     else if (pp.left == p)
845     pp.left = r;
846     else
847     pp.right = r;
848     r.left = p;
849     p.parent = r;
850     }
851     }
852    
853     /** From CLR */
854     private void rotateRight(TreeNode p) {
855     if (p != null) {
856     TreeNode l = p.left, pp, lr;
857     if ((lr = p.left = l.right) != null)
858     lr.parent = p;
859     if ((pp = l.parent = p.parent) == null)
860     root = l;
861     else if (pp.right == p)
862     pp.right = l;
863     else
864     pp.left = l;
865     l.right = p;
866     p.parent = l;
867     }
868     }
869    
870     /** From CLR */
871     private void fixAfterInsertion(TreeNode x) {
872     x.red = true;
873     TreeNode xp, xpp;
874     while (x != null && (xp = x.parent) != null && xp.red &&
875     (xpp = xp.parent) != null) {
876     TreeNode xppl = xpp.left;
877     if (xp == xppl) {
878     TreeNode y = xpp.right;
879     if (y != null && y.red) {
880     y.red = false;
881     xp.red = false;
882     xpp.red = true;
883     x = xpp;
884     }
885     else {
886     if (x == xp.right) {
887     x = xp;
888     rotateLeft(x);
889     xpp = (xp = x.parent) == null ? null : xp.parent;
890     }
891     if (xp != null) {
892     xp.red = false;
893     if (xpp != null) {
894     xpp.red = true;
895     rotateRight(xpp);
896     }
897     }
898     }
899     }
900     else {
901     TreeNode y = xppl;
902     if (y != null && y.red) {
903     y.red = false;
904     xp.red = false;
905     xpp.red = true;
906     x = xpp;
907     }
908     else {
909     if (x == xp.left) {
910     x = xp;
911     rotateRight(x);
912     xpp = (xp = x.parent) == null ? null : xp.parent;
913     }
914     if (xp != null) {
915     xp.red = false;
916     if (xpp != null) {
917     xpp.red = true;
918     rotateLeft(xpp);
919     }
920     }
921     }
922     }
923     }
924     TreeNode r = root;
925     if (r != null && r.red)
926     r.red = false;
927     }
928 dl 1.1
929 dl 1.38 /** From CLR */
930     private void fixAfterDeletion(TreeNode x) {
931     while (x != null) {
932     TreeNode xp, xpl;
933     if (x.red || (xp = x.parent) == null) {
934     x.red = false;
935     break;
936     }
937     if (x == (xpl = xp.left)) {
938     TreeNode sib = xp.right;
939     if (sib != null && sib.red) {
940     sib.red = false;
941     xp.red = true;
942     rotateLeft(xp);
943     sib = (xp = x.parent) == null ? null : xp.right;
944     }
945     if (sib == null)
946     x = xp;
947     else {
948     TreeNode sl = sib.left, sr = sib.right;
949     if ((sr == null || !sr.red) &&
950     (sl == null || !sl.red)) {
951     sib.red = true;
952     x = xp;
953     }
954     else {
955     if (sr == null || !sr.red) {
956     if (sl != null)
957     sl.red = false;
958     sib.red = true;
959     rotateRight(sib);
960     sib = (xp = x.parent) == null ? null : xp.right;
961     }
962     if (sib != null) {
963 jsr166 1.39 sib.red = (xp == null) ? false : xp.red;
964 dl 1.38 if ((sr = sib.right) != null)
965     sr.red = false;
966     }
967     if (xp != null) {
968     xp.red = false;
969     rotateLeft(xp);
970     }
971     x = root;
972     }
973     }
974     }
975     else { // symmetric
976     TreeNode sib = xpl;
977     if (sib != null && sib.red) {
978     sib.red = false;
979     xp.red = true;
980     rotateRight(xp);
981     sib = (xp = x.parent) == null ? null : xp.left;
982     }
983     if (sib == null)
984     x = xp;
985     else {
986     TreeNode sl = sib.left, sr = sib.right;
987     if ((sl == null || !sl.red) &&
988     (sr == null || !sr.red)) {
989     sib.red = true;
990     x = xp;
991     }
992     else {
993     if (sl == null || !sl.red) {
994     if (sr != null)
995     sr.red = false;
996     sib.red = true;
997     rotateLeft(sib);
998     sib = (xp = x.parent) == null ? null : xp.left;
999     }
1000     if (sib != null) {
1001 jsr166 1.39 sib.red = (xp == null) ? false : xp.red;
1002 dl 1.38 if ((sl = sib.left) != null)
1003     sl.red = false;
1004     }
1005     if (xp != null) {
1006     xp.red = false;
1007     rotateRight(xp);
1008     }
1009     x = root;
1010     }
1011     }
1012     }
1013     }
1014     }
1015 dl 1.1 }
1016    
1017 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1018 dl 1.14
1019     /**
1020 dl 1.38 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1021     * Because the table uses power-of-two masking, sets of hashes
1022     * that vary only in bits above the current mask will always
1023     * collide. (Among known examples are sets of Float keys holding
1024     * consecutive whole numbers in small tables.) To counter this,
1025     * we apply a transform that spreads the impact of higher bits
1026     * downward. There is a tradeoff between speed, utility, and
1027     * quality of bit-spreading. Because many common sets of hashes
1028     * are already reaonably distributed across bits (so don't benefit
1029     * from spreading), and because we use trees to handle large sets
1030     * of collisions in bins, we don't need excessively high quality.
1031 dl 1.14 */
1032     private static final int spread(int h) {
1033 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1034     return (h ^ (h >>> 10)) & HASH_BITS;
1035     }
1036    
1037     /**
1038     * Replaces a list bin with a tree bin. Call only when locked.
1039     * Fails to replace if the given key is non-comparable or table
1040     * is, or needs, resizing.
1041     */
1042     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1043     if ((key instanceof Comparable) &&
1044     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1045     TreeBin t = new TreeBin();
1046     for (Node e = tabAt(tab, index); e != null; e = e.next)
1047     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1048     setTabAt(tab, index, new Node(MOVED, t, null, null));
1049     }
1050 dl 1.14 }
1051 dl 1.1
1052 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1053    
1054 dl 1.14 /** Implementation for get and containsKey */
1055 jsr166 1.4 private final Object internalGet(Object k) {
1056 dl 1.1 int h = spread(k.hashCode());
1057 dl 1.14 retry: for (Node[] tab = table; tab != null;) {
1058 dl 1.38 Node e, p; Object ek, ev; int eh; // locals to read fields once
1059 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1060 dl 1.24 if ((eh = e.hash) == MOVED) {
1061 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1062     return ((TreeBin)ek).getValue(h, k);
1063     else { // restart with new table
1064     tab = (Node[])ek;
1065     continue retry;
1066     }
1067 dl 1.1 }
1068 dl 1.38 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1069     ((ek = e.key) == k || k.equals(ek)))
1070 dl 1.24 return ev;
1071 dl 1.1 }
1072     break;
1073     }
1074     return null;
1075     }
1076    
1077 dl 1.27 /**
1078     * Implementation for the four public remove/replace methods:
1079     * Replaces node value with v, conditional upon match of cv if
1080     * non-null. If resulting value is null, delete.
1081     */
1082     private final Object internalReplace(Object k, Object v, Object cv) {
1083     int h = spread(k.hashCode());
1084     Object oldVal = null;
1085     for (Node[] tab = table;;) {
1086 dl 1.38 Node f; int i, fh; Object fk;
1087 dl 1.27 if (tab == null ||
1088     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1089     break;
1090 dl 1.38 else if ((fh = f.hash) == MOVED) {
1091     if ((fk = f.key) instanceof TreeBin) {
1092     TreeBin t = (TreeBin)fk;
1093     boolean validated = false;
1094     boolean deleted = false;
1095     t.acquire(0);
1096     try {
1097     if (tabAt(tab, i) == f) {
1098     validated = true;
1099     TreeNode p = t.getTreeNode(h, k, t.root);
1100     if (p != null) {
1101     Object pv = p.val;
1102     if (cv == null || cv == pv || cv.equals(pv)) {
1103     oldVal = pv;
1104     if ((p.val = v) == null) {
1105     deleted = true;
1106     t.deleteTreeNode(p);
1107     }
1108     }
1109     }
1110     }
1111     } finally {
1112     t.release(0);
1113     }
1114     if (validated) {
1115     if (deleted)
1116     counter.add(-1L);
1117     break;
1118     }
1119     }
1120     else
1121     tab = (Node[])fk;
1122     }
1123 dl 1.27 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1124     break; // rules out possible existence
1125     else if ((fh & LOCKED) != 0) {
1126     checkForResize(); // try resizing if can't get lock
1127     f.tryAwaitLock(tab, i);
1128     }
1129     else if (f.casHash(fh, fh | LOCKED)) {
1130     boolean validated = false;
1131     boolean deleted = false;
1132     try {
1133     if (tabAt(tab, i) == f) {
1134     validated = true;
1135     for (Node e = f, pred = null;;) {
1136     Object ek, ev;
1137     if ((e.hash & HASH_BITS) == h &&
1138     ((ev = e.val) != null) &&
1139     ((ek = e.key) == k || k.equals(ek))) {
1140     if (cv == null || cv == ev || cv.equals(ev)) {
1141     oldVal = ev;
1142     if ((e.val = v) == null) {
1143     deleted = true;
1144     Node en = e.next;
1145     if (pred != null)
1146     pred.next = en;
1147     else
1148     setTabAt(tab, i, en);
1149     }
1150     }
1151     break;
1152     }
1153     pred = e;
1154     if ((e = e.next) == null)
1155     break;
1156     }
1157     }
1158     } finally {
1159     if (!f.casHash(fh | LOCKED, fh)) {
1160     f.hash = fh;
1161 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1162 dl 1.27 }
1163     }
1164     if (validated) {
1165     if (deleted)
1166     counter.add(-1L);
1167     break;
1168     }
1169     }
1170     }
1171     return oldVal;
1172     }
1173    
1174     /*
1175     * Internal versions of the five insertion methods, each a
1176     * little more complicated than the last. All have
1177     * the same basic structure as the first (internalPut):
1178     * 1. If table uninitialized, create
1179     * 2. If bin empty, try to CAS new node
1180     * 3. If bin stale, use new table
1181 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1182     * 5. Lock and validate; if valid, scan and add or update
1183 dl 1.27 *
1184     * The others interweave other checks and/or alternative actions:
1185     * * Plain put checks for and performs resize after insertion.
1186     * * putIfAbsent prescans for mapping without lock (and fails to add
1187     * if present), which also makes pre-emptive resize checks worthwhile.
1188     * * computeIfAbsent extends form used in putIfAbsent with additional
1189     * mechanics to deal with, calls, potential exceptions and null
1190     * returns from function call.
1191     * * compute uses the same function-call mechanics, but without
1192     * the prescans
1193     * * putAll attempts to pre-allocate enough table space
1194     * and more lazily performs count updates and checks.
1195     *
1196     * Someday when details settle down a bit more, it might be worth
1197     * some factoring to reduce sprawl.
1198     */
1199    
1200     /** Implementation for put */
1201     private final Object internalPut(Object k, Object v) {
1202 dl 1.1 int h = spread(k.hashCode());
1203 dl 1.38 int count = 0;
1204 dl 1.14 for (Node[] tab = table;;) {
1205 dl 1.38 int i; Node f; int fh; Object fk;
1206 dl 1.1 if (tab == null)
1207 dl 1.24 tab = initTable();
1208     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1209 dl 1.2 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1210 dl 1.14 break; // no lock when adding to empty bin
1211     }
1212 dl 1.38 else if ((fh = f.hash) == MOVED) {
1213     if ((fk = f.key) instanceof TreeBin) {
1214     TreeBin t = (TreeBin)fk;
1215     Object oldVal = null;
1216     t.acquire(0);
1217     try {
1218     if (tabAt(tab, i) == f) {
1219     count = 2;
1220     TreeNode p = t.putTreeNode(h, k, v);
1221     if (p != null) {
1222     oldVal = p.val;
1223     p.val = v;
1224     }
1225     }
1226     } finally {
1227     t.release(0);
1228     }
1229     if (count != 0) {
1230     if (oldVal != null)
1231     return oldVal;
1232     break;
1233     }
1234     }
1235     else
1236     tab = (Node[])fk;
1237     }
1238 dl 1.27 else if ((fh & LOCKED) != 0) {
1239     checkForResize();
1240     f.tryAwaitLock(tab, i);
1241 dl 1.1 }
1242 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1243 dl 1.27 Object oldVal = null;
1244     try { // needed in case equals() throws
1245 dl 1.24 if (tabAt(tab, i) == f) {
1246 dl 1.38 count = 1;
1247     for (Node e = f;; ++count) {
1248 dl 1.24 Object ek, ev;
1249     if ((e.hash & HASH_BITS) == h &&
1250     (ev = e.val) != null &&
1251     ((ek = e.key) == k || k.equals(ek))) {
1252 dl 1.1 oldVal = ev;
1253 dl 1.27 e.val = v;
1254 dl 1.10 break;
1255 dl 1.1 }
1256 dl 1.10 Node last = e;
1257     if ((e = e.next) == null) {
1258 dl 1.2 last.next = new Node(h, k, v, null);
1259 dl 1.38 if (count >= TREE_THRESHOLD)
1260     replaceWithTreeBin(tab, i, k);
1261 dl 1.10 break;
1262 dl 1.1 }
1263     }
1264     }
1265 dl 1.24 } finally { // unlock and signal if needed
1266     if (!f.casHash(fh | LOCKED, fh)) {
1267     f.hash = fh;
1268 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1269 dl 1.24 }
1270 dl 1.1 }
1271 dl 1.38 if (count != 0) {
1272 dl 1.27 if (oldVal != null)
1273     return oldVal;
1274 dl 1.38 if (tab.length <= 64)
1275     count = 2;
1276 dl 1.1 break;
1277     }
1278     }
1279     }
1280 dl 1.27 counter.add(1L);
1281 dl 1.38 if (count > 1)
1282 dl 1.27 checkForResize();
1283     return null;
1284 dl 1.1 }
1285    
1286 dl 1.27 /** Implementation for putIfAbsent */
1287     private final Object internalPutIfAbsent(Object k, Object v) {
1288 dl 1.1 int h = spread(k.hashCode());
1289 dl 1.38 int count = 0;
1290 dl 1.14 for (Node[] tab = table;;) {
1291 dl 1.27 int i; Node f; int fh; Object fk, fv;
1292     if (tab == null)
1293     tab = initTable();
1294     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1295     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1296     break;
1297     }
1298 dl 1.38 else if ((fh = f.hash) == MOVED) {
1299     if ((fk = f.key) instanceof TreeBin) {
1300     TreeBin t = (TreeBin)fk;
1301     Object oldVal = null;
1302     t.acquire(0);
1303     try {
1304     if (tabAt(tab, i) == f) {
1305     count = 2;
1306     TreeNode p = t.putTreeNode(h, k, v);
1307     if (p != null)
1308     oldVal = p.val;
1309     }
1310     } finally {
1311     t.release(0);
1312     }
1313     if (count != 0) {
1314     if (oldVal != null)
1315     return oldVal;
1316     break;
1317     }
1318     }
1319     else
1320     tab = (Node[])fk;
1321     }
1322 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1323     ((fk = f.key) == k || k.equals(fk)))
1324     return fv;
1325     else {
1326     Node g = f.next;
1327     if (g != null) { // at least 2 nodes -- search and maybe resize
1328     for (Node e = g;;) {
1329     Object ek, ev;
1330     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1331     ((ek = e.key) == k || k.equals(ek)))
1332     return ev;
1333     if ((e = e.next) == null) {
1334     checkForResize();
1335     break;
1336     }
1337     }
1338     }
1339     if (((fh = f.hash) & LOCKED) != 0) {
1340     checkForResize();
1341     f.tryAwaitLock(tab, i);
1342     }
1343     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1344     Object oldVal = null;
1345     try {
1346     if (tabAt(tab, i) == f) {
1347 dl 1.38 count = 1;
1348     for (Node e = f;; ++count) {
1349 dl 1.27 Object ek, ev;
1350     if ((e.hash & HASH_BITS) == h &&
1351     (ev = e.val) != null &&
1352     ((ek = e.key) == k || k.equals(ek))) {
1353 dl 1.1 oldVal = ev;
1354 dl 1.27 break;
1355     }
1356     Node last = e;
1357     if ((e = e.next) == null) {
1358     last.next = new Node(h, k, v, null);
1359 dl 1.38 if (count >= TREE_THRESHOLD)
1360     replaceWithTreeBin(tab, i, k);
1361 dl 1.27 break;
1362 dl 1.1 }
1363     }
1364 dl 1.27 }
1365     } finally {
1366     if (!f.casHash(fh | LOCKED, fh)) {
1367     f.hash = fh;
1368 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1369 dl 1.24 }
1370     }
1371 dl 1.38 if (count != 0) {
1372 dl 1.27 if (oldVal != null)
1373     return oldVal;
1374 dl 1.38 if (tab.length <= 64)
1375     count = 2;
1376 dl 1.27 break;
1377     }
1378     }
1379     }
1380     }
1381     counter.add(1L);
1382 dl 1.38 if (count > 1)
1383     checkForResize();
1384 dl 1.27 return null;
1385     }
1386    
1387     /** Implementation for computeIfAbsent */
1388     private final Object internalComputeIfAbsent(K k,
1389     MappingFunction<? super K, ?> mf) {
1390     int h = spread(k.hashCode());
1391     Object val = null;
1392 dl 1.38 int count = 0;
1393 dl 1.27 for (Node[] tab = table;;) {
1394     Node f; int i, fh; Object fk, fv;
1395     if (tab == null)
1396     tab = initTable();
1397     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1398     Node node = new Node(fh = h | LOCKED, k, null, null);
1399     if (casTabAt(tab, i, null, node)) {
1400 dl 1.38 count = 1;
1401 dl 1.27 try {
1402     if ((val = mf.map(k)) != null)
1403     node.val = val;
1404     } finally {
1405     if (val == null)
1406     setTabAt(tab, i, null);
1407     if (!node.casHash(fh, h)) {
1408     node.hash = h;
1409 jsr166 1.30 synchronized (node) { node.notifyAll(); };
1410 dl 1.27 }
1411 dl 1.1 }
1412     }
1413 dl 1.38 if (count != 0)
1414 dl 1.24 break;
1415 dl 1.27 }
1416 dl 1.38 else if ((fh = f.hash) == MOVED) {
1417     if ((fk = f.key) instanceof TreeBin) {
1418     TreeBin t = (TreeBin)fk;
1419     boolean added = false;
1420     t.acquire(0);
1421     try {
1422     if (tabAt(tab, i) == f) {
1423     count = 1;
1424     TreeNode p = t.getTreeNode(h, k, t.root);
1425     if (p != null)
1426     val = p.val;
1427     else if ((val = mf.map(k)) != null) {
1428     added = true;
1429     count = 2;
1430     t.putTreeNode(h, k, val);
1431     }
1432     }
1433     } finally {
1434     t.release(0);
1435     }
1436     if (count != 0) {
1437     if (!added)
1438     return val;
1439     break;
1440     }
1441     }
1442     else
1443     tab = (Node[])fk;
1444     }
1445 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1446     ((fk = f.key) == k || k.equals(fk)))
1447     return fv;
1448     else {
1449     Node g = f.next;
1450     if (g != null) {
1451     for (Node e = g;;) {
1452     Object ek, ev;
1453     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1454     ((ek = e.key) == k || k.equals(ek)))
1455     return ev;
1456     if ((e = e.next) == null) {
1457     checkForResize();
1458     break;
1459     }
1460     }
1461     }
1462     if (((fh = f.hash) & LOCKED) != 0) {
1463     checkForResize();
1464     f.tryAwaitLock(tab, i);
1465     }
1466     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1467 dl 1.38 boolean added = false;
1468 dl 1.27 try {
1469     if (tabAt(tab, i) == f) {
1470 dl 1.38 count = 1;
1471     for (Node e = f;; ++count) {
1472 dl 1.27 Object ek, ev;
1473     if ((e.hash & HASH_BITS) == h &&
1474     (ev = e.val) != null &&
1475     ((ek = e.key) == k || k.equals(ek))) {
1476     val = ev;
1477     break;
1478     }
1479     Node last = e;
1480     if ((e = e.next) == null) {
1481 dl 1.38 if ((val = mf.map(k)) != null) {
1482     added = true;
1483 dl 1.27 last.next = new Node(h, k, val, null);
1484 dl 1.38 if (count >= TREE_THRESHOLD)
1485     replaceWithTreeBin(tab, i, k);
1486     }
1487 dl 1.27 break;
1488     }
1489     }
1490     }
1491     } finally {
1492     if (!f.casHash(fh | LOCKED, fh)) {
1493     f.hash = fh;
1494 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1495 dl 1.27 }
1496     }
1497 dl 1.38 if (count != 0) {
1498     if (!added)
1499     return val;
1500     if (tab.length <= 64)
1501     count = 2;
1502 dl 1.27 break;
1503 dl 1.38 }
1504 dl 1.1 }
1505     }
1506     }
1507 dl 1.27 if (val == null)
1508     throw new NullPointerException();
1509     counter.add(1L);
1510 dl 1.38 if (count > 1)
1511     checkForResize();
1512 dl 1.27 return val;
1513 dl 1.1 }
1514    
1515 dl 1.27 /** Implementation for compute */
1516 dl 1.1 @SuppressWarnings("unchecked")
1517 dl 1.27 private final Object internalCompute(K k,
1518     RemappingFunction<? super K, V> mf) {
1519 dl 1.1 int h = spread(k.hashCode());
1520 dl 1.27 Object val = null;
1521 dl 1.1 boolean added = false;
1522 dl 1.38 int count = 0;
1523 dl 1.27 for (Node[] tab = table;;) {
1524 dl 1.38 Node f; int i, fh; Object fk;
1525 dl 1.1 if (tab == null)
1526 dl 1.24 tab = initTable();
1527     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1528     Node node = new Node(fh = h | LOCKED, k, null, null);
1529     if (casTabAt(tab, i, null, node)) {
1530     try {
1531 dl 1.38 count = 1;
1532 dl 1.27 if ((val = mf.remap(k, null)) != null) {
1533 dl 1.24 node.val = val;
1534     added = true;
1535     }
1536     } finally {
1537     if (!added)
1538     setTabAt(tab, i, null);
1539     if (!node.casHash(fh, h)) {
1540 dl 1.25 node.hash = h;
1541 jsr166 1.26 synchronized (node) { node.notifyAll(); };
1542 dl 1.1 }
1543     }
1544     }
1545 dl 1.38 if (count != 0)
1546 dl 1.10 break;
1547 dl 1.1 }
1548 dl 1.38 else if ((fh = f.hash) == MOVED) {
1549     if ((fk = f.key) instanceof TreeBin) {
1550     TreeBin t = (TreeBin)fk;
1551     t.acquire(0);
1552     try {
1553     if (tabAt(tab, i) == f) {
1554     count = 1;
1555     TreeNode p = t.getTreeNode(h, k, t.root);
1556 jsr166 1.39 Object pv = (p == null) ? null : p.val;
1557 dl 1.38 if ((val = mf.remap(k, (V)pv)) != null) {
1558     if (p != null)
1559     p.val = val;
1560     else {
1561     count = 2;
1562     added = true;
1563     t.putTreeNode(h, k, val);
1564     }
1565     }
1566     }
1567     } finally {
1568     t.release(0);
1569     }
1570     if (count != 0)
1571     break;
1572     }
1573     else
1574     tab = (Node[])fk;
1575     }
1576 dl 1.27 else if ((fh & LOCKED) != 0) {
1577     checkForResize();
1578     f.tryAwaitLock(tab, i);
1579 dl 1.14 }
1580 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1581     try {
1582     if (tabAt(tab, i) == f) {
1583 dl 1.38 count = 1;
1584     for (Node e = f;; ++count) {
1585 dl 1.27 Object ek, ev;
1586 dl 1.24 if ((e.hash & HASH_BITS) == h &&
1587     (ev = e.val) != null &&
1588     ((ek = e.key) == k || k.equals(ek))) {
1589 dl 1.27 val = mf.remap(k, (V)ev);
1590     if (val != null)
1591     e.val = val;
1592 dl 1.10 break;
1593 dl 1.1 }
1594 dl 1.10 Node last = e;
1595     if ((e = e.next) == null) {
1596 dl 1.27 if ((val = mf.remap(k, null)) != null) {
1597 dl 1.2 last.next = new Node(h, k, val, null);
1598     added = true;
1599 dl 1.38 if (count >= TREE_THRESHOLD)
1600     replaceWithTreeBin(tab, i, k);
1601 dl 1.1 }
1602 dl 1.10 break;
1603 dl 1.1 }
1604     }
1605     }
1606 dl 1.24 } finally {
1607     if (!f.casHash(fh | LOCKED, fh)) {
1608     f.hash = fh;
1609 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1610 dl 1.24 }
1611 dl 1.1 }
1612 dl 1.38 if (count != 0) {
1613     if (tab.length <= 64)
1614     count = 2;
1615 dl 1.10 break;
1616 dl 1.38 }
1617 dl 1.1 }
1618 dl 1.10 }
1619 dl 1.29 if (val == null)
1620     throw new NullPointerException();
1621 dl 1.27 if (added) {
1622     counter.add(1L);
1623 dl 1.38 if (count > 1)
1624 dl 1.27 checkForResize();
1625     }
1626 dl 1.1 return val;
1627     }
1628    
1629 dl 1.27 /** Implementation for putAll */
1630     private final void internalPutAll(Map<?, ?> m) {
1631     tryPresize(m.size());
1632     long delta = 0L; // number of uncommitted additions
1633     boolean npe = false; // to throw exception on exit for nulls
1634     try { // to clean up counts on other exceptions
1635     for (Map.Entry<?, ?> entry : m.entrySet()) {
1636     Object k, v;
1637     if (entry == null || (k = entry.getKey()) == null ||
1638     (v = entry.getValue()) == null) {
1639     npe = true;
1640     break;
1641     }
1642     int h = spread(k.hashCode());
1643     for (Node[] tab = table;;) {
1644 dl 1.38 int i; Node f; int fh; Object fk;
1645 dl 1.27 if (tab == null)
1646     tab = initTable();
1647     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1648     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1649     ++delta;
1650     break;
1651     }
1652     }
1653 dl 1.38 else if ((fh = f.hash) == MOVED) {
1654     if ((fk = f.key) instanceof TreeBin) {
1655     TreeBin t = (TreeBin)fk;
1656     boolean validated = false;
1657     t.acquire(0);
1658     try {
1659     if (tabAt(tab, i) == f) {
1660     validated = true;
1661     TreeNode p = t.getTreeNode(h, k, t.root);
1662     if (p != null)
1663     p.val = v;
1664     else {
1665     t.putTreeNode(h, k, v);
1666     ++delta;
1667     }
1668     }
1669     } finally {
1670     t.release(0);
1671     }
1672     if (validated)
1673     break;
1674     }
1675     else
1676     tab = (Node[])fk;
1677     }
1678 dl 1.27 else if ((fh & LOCKED) != 0) {
1679     counter.add(delta);
1680     delta = 0L;
1681     checkForResize();
1682     f.tryAwaitLock(tab, i);
1683     }
1684     else if (f.casHash(fh, fh | LOCKED)) {
1685 dl 1.38 int count = 0;
1686 dl 1.27 try {
1687     if (tabAt(tab, i) == f) {
1688 dl 1.38 count = 1;
1689     for (Node e = f;; ++count) {
1690 dl 1.27 Object ek, ev;
1691     if ((e.hash & HASH_BITS) == h &&
1692     (ev = e.val) != null &&
1693     ((ek = e.key) == k || k.equals(ek))) {
1694     e.val = v;
1695     break;
1696     }
1697     Node last = e;
1698     if ((e = e.next) == null) {
1699     ++delta;
1700     last.next = new Node(h, k, v, null);
1701 dl 1.38 if (count >= TREE_THRESHOLD)
1702     replaceWithTreeBin(tab, i, k);
1703 dl 1.27 break;
1704     }
1705     }
1706     }
1707     } finally {
1708     if (!f.casHash(fh | LOCKED, fh)) {
1709     f.hash = fh;
1710 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1711 dl 1.27 }
1712     }
1713 dl 1.38 if (count != 0) {
1714     if (count > 1) {
1715 dl 1.27 counter.add(delta);
1716     delta = 0L;
1717     checkForResize();
1718 dl 1.1 }
1719 dl 1.27 break;
1720 dl 1.24 }
1721     }
1722 dl 1.1 }
1723     }
1724 dl 1.27 } finally {
1725     if (delta != 0)
1726     counter.add(delta);
1727 dl 1.1 }
1728 dl 1.27 if (npe)
1729     throw new NullPointerException();
1730 dl 1.1 }
1731    
1732 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
1733 dl 1.24
1734     /**
1735     * Returns a power of two table size for the given desired capacity.
1736     * See Hackers Delight, sec 3.2
1737     */
1738     private static final int tableSizeFor(int c) {
1739     int n = c - 1;
1740     n |= n >>> 1;
1741     n |= n >>> 2;
1742     n |= n >>> 4;
1743     n |= n >>> 8;
1744     n |= n >>> 16;
1745     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1746     }
1747    
1748     /**
1749     * Initializes table, using the size recorded in sizeCtl.
1750     */
1751     private final Node[] initTable() {
1752     Node[] tab; int sc;
1753     while ((tab = table) == null) {
1754     if ((sc = sizeCtl) < 0)
1755     Thread.yield(); // lost initialization race; just spin
1756     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1757     try {
1758     if ((tab = table) == null) {
1759     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1760     tab = table = new Node[n];
1761 dl 1.27 sc = n - (n >>> 2);
1762 dl 1.24 }
1763     } finally {
1764     sizeCtl = sc;
1765     }
1766     break;
1767     }
1768     }
1769     return tab;
1770     }
1771    
1772     /**
1773 dl 1.27 * If table is too small and not already resizing, creates next
1774     * table and transfers bins. Rechecks occupancy after a transfer
1775     * to see if another resize is already needed because resizings
1776     * are lagging additions.
1777     */
1778     private final void checkForResize() {
1779     Node[] tab; int n, sc;
1780     while ((tab = table) != null &&
1781     (n = tab.length) < MAXIMUM_CAPACITY &&
1782     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1783     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1784 dl 1.24 try {
1785 dl 1.27 if (tab == table) {
1786 dl 1.24 table = rebuild(tab);
1787 dl 1.27 sc = (n << 1) - (n >>> 1);
1788 dl 1.24 }
1789     } finally {
1790     sizeCtl = sc;
1791     }
1792     }
1793     }
1794    
1795 dl 1.27 /**
1796     * Tries to presize table to accommodate the given number of elements.
1797     *
1798     * @param size number of elements (doesn't need to be perfectly accurate)
1799     */
1800     private final void tryPresize(int size) {
1801     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1802     tableSizeFor(size + (size >>> 1) + 1);
1803     int sc;
1804     while ((sc = sizeCtl) >= 0) {
1805     Node[] tab = table; int n;
1806     if (tab == null || (n = tab.length) == 0) {
1807 jsr166 1.30 n = (sc > c) ? sc : c;
1808 dl 1.27 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1809     try {
1810     if (table == tab) {
1811     table = new Node[n];
1812     sc = n - (n >>> 2);
1813     }
1814     } finally {
1815     sizeCtl = sc;
1816     }
1817     }
1818     }
1819     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1820     break;
1821     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1822     try {
1823     if (table == tab) {
1824     table = rebuild(tab);
1825     sc = (n << 1) - (n >>> 1);
1826     }
1827     } finally {
1828     sizeCtl = sc;
1829     }
1830     }
1831     }
1832     }
1833    
1834 dl 1.24 /*
1835     * Moves and/or copies the nodes in each bin to new table. See
1836     * above for explanation.
1837     *
1838     * @return the new table
1839     */
1840     private static final Node[] rebuild(Node[] tab) {
1841     int n = tab.length;
1842     Node[] nextTab = new Node[n << 1];
1843     Node fwd = new Node(MOVED, nextTab, null, null);
1844     int[] buffer = null; // holds bins to revisit; null until needed
1845     Node rev = null; // reverse forwarder; null until needed
1846     int nbuffered = 0; // the number of bins in buffer list
1847     int bufferIndex = 0; // buffer index of current buffered bin
1848     int bin = n - 1; // current non-buffered bin or -1 if none
1849    
1850     for (int i = bin;;) { // start upwards sweep
1851     int fh; Node f;
1852     if ((f = tabAt(tab, i)) == null) {
1853     if (bin >= 0) { // no lock needed (or available)
1854     if (!casTabAt(tab, i, f, fwd))
1855     continue;
1856     }
1857     else { // transiently use a locked forwarding node
1858 jsr166 1.33 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1859 dl 1.24 if (!casTabAt(tab, i, f, g))
1860     continue;
1861     setTabAt(nextTab, i, null);
1862     setTabAt(nextTab, i + n, null);
1863     setTabAt(tab, i, fwd);
1864     if (!g.casHash(MOVED|LOCKED, MOVED)) {
1865     g.hash = MOVED;
1866 jsr166 1.26 synchronized (g) { g.notifyAll(); }
1867 dl 1.24 }
1868     }
1869     }
1870 dl 1.38 else if ((fh = f.hash) == MOVED) {
1871     Object fk = f.key;
1872     if (fk instanceof TreeBin) {
1873     TreeBin t = (TreeBin)fk;
1874     boolean validated = false;
1875     t.acquire(0);
1876     try {
1877     if (tabAt(tab, i) == f) {
1878     validated = true;
1879     splitTreeBin(nextTab, i, t);
1880     setTabAt(tab, i, fwd);
1881     }
1882     } finally {
1883     t.release(0);
1884     }
1885     if (!validated)
1886     continue;
1887     }
1888     }
1889     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1890 dl 1.24 boolean validated = false;
1891     try { // split to lo and hi lists; copying as needed
1892     if (tabAt(tab, i) == f) {
1893     validated = true;
1894 dl 1.38 splitBin(nextTab, i, f);
1895 dl 1.24 setTabAt(tab, i, fwd);
1896     }
1897     } finally {
1898     if (!f.casHash(fh | LOCKED, fh)) {
1899     f.hash = fh;
1900 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1901 dl 1.24 }
1902     }
1903     if (!validated)
1904     continue;
1905     }
1906     else {
1907     if (buffer == null) // initialize buffer for revisits
1908     buffer = new int[TRANSFER_BUFFER_SIZE];
1909     if (bin < 0 && bufferIndex > 0) {
1910     int j = buffer[--bufferIndex];
1911     buffer[bufferIndex] = i;
1912     i = j; // swap with another bin
1913     continue;
1914     }
1915     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1916     f.tryAwaitLock(tab, i);
1917     continue; // no other options -- block
1918     }
1919     if (rev == null) // initialize reverse-forwarder
1920     rev = new Node(MOVED, tab, null, null);
1921     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1922     continue; // recheck before adding to list
1923     buffer[nbuffered++] = i;
1924     setTabAt(nextTab, i, rev); // install place-holders
1925     setTabAt(nextTab, i + n, rev);
1926     }
1927    
1928     if (bin > 0)
1929     i = --bin;
1930     else if (buffer != null && nbuffered > 0) {
1931     bin = -1;
1932     i = buffer[bufferIndex = --nbuffered];
1933     }
1934     else
1935     return nextTab;
1936     }
1937     }
1938    
1939 dl 1.27 /**
1940 dl 1.38 * Split a normal bin with list headed by e into lo and hi parts;
1941     * install in given table
1942     */
1943     private static void splitBin(Node[] nextTab, int i, Node e) {
1944     int bit = nextTab.length >>> 1; // bit to split on
1945     int runBit = e.hash & bit;
1946     Node lastRun = e, lo = null, hi = null;
1947     for (Node p = e.next; p != null; p = p.next) {
1948     int b = p.hash & bit;
1949     if (b != runBit) {
1950     runBit = b;
1951     lastRun = p;
1952     }
1953     }
1954     if (runBit == 0)
1955     lo = lastRun;
1956     else
1957     hi = lastRun;
1958     for (Node p = e; p != lastRun; p = p.next) {
1959     int ph = p.hash & HASH_BITS;
1960     Object pk = p.key, pv = p.val;
1961     if ((ph & bit) == 0)
1962     lo = new Node(ph, pk, pv, lo);
1963     else
1964     hi = new Node(ph, pk, pv, hi);
1965     }
1966     setTabAt(nextTab, i, lo);
1967     setTabAt(nextTab, i + bit, hi);
1968     }
1969    
1970     /**
1971     * Split a tree bin into lo and hi parts; install in given table
1972     */
1973     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
1974     int bit = nextTab.length >>> 1;
1975     TreeBin lt = new TreeBin();
1976     TreeBin ht = new TreeBin();
1977     int lc = 0, hc = 0;
1978     for (Node e = t.first; e != null; e = e.next) {
1979     int h = e.hash & HASH_BITS;
1980     Object k = e.key, v = e.val;
1981     if ((h & bit) == 0) {
1982     ++lc;
1983     lt.putTreeNode(h, k, v);
1984     }
1985     else {
1986     ++hc;
1987     ht.putTreeNode(h, k, v);
1988     }
1989     }
1990     Node ln, hn; // throw away trees if too small
1991     if (lc <= (TREE_THRESHOLD >>> 1)) {
1992     ln = null;
1993     for (Node p = lt.first; p != null; p = p.next)
1994     ln = new Node(p.hash, p.key, p.val, ln);
1995     }
1996     else
1997     ln = new Node(MOVED, lt, null, null);
1998     setTabAt(nextTab, i, ln);
1999     if (hc <= (TREE_THRESHOLD >>> 1)) {
2000     hn = null;
2001     for (Node p = ht.first; p != null; p = p.next)
2002     hn = new Node(p.hash, p.key, p.val, hn);
2003     }
2004     else
2005     hn = new Node(MOVED, ht, null, null);
2006     setTabAt(nextTab, i + bit, hn);
2007     }
2008    
2009     /**
2010 dl 1.27 * Implementation for clear. Steps through each bin, removing all
2011     * nodes.
2012     */
2013     private final void internalClear() {
2014     long delta = 0L; // negative number of deletions
2015     int i = 0;
2016     Node[] tab = table;
2017     while (tab != null && i < tab.length) {
2018 dl 1.38 int fh; Object fk;
2019 dl 1.27 Node f = tabAt(tab, i);
2020     if (f == null)
2021     ++i;
2022 dl 1.38 else if ((fh = f.hash) == MOVED) {
2023     if ((fk = f.key) instanceof TreeBin) {
2024     TreeBin t = (TreeBin)fk;
2025     t.acquire(0);
2026     try {
2027     if (tabAt(tab, i) == f) {
2028     for (Node p = t.first; p != null; p = p.next) {
2029     p.val = null;
2030     --delta;
2031     }
2032     t.first = null;
2033     t.root = null;
2034     ++i;
2035     }
2036     } finally {
2037     t.release(0);
2038     }
2039     }
2040     else
2041     tab = (Node[])fk;
2042     }
2043 dl 1.27 else if ((fh & LOCKED) != 0) {
2044     counter.add(delta); // opportunistically update count
2045     delta = 0L;
2046     f.tryAwaitLock(tab, i);
2047     }
2048     else if (f.casHash(fh, fh | LOCKED)) {
2049     try {
2050     if (tabAt(tab, i) == f) {
2051     for (Node e = f; e != null; e = e.next) {
2052 dl 1.38 e.val = null;
2053     --delta;
2054 dl 1.27 }
2055     setTabAt(tab, i, null);
2056 dl 1.38 ++i;
2057 dl 1.27 }
2058     } finally {
2059     if (!f.casHash(fh | LOCKED, fh)) {
2060     f.hash = fh;
2061 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2062 dl 1.27 }
2063     }
2064     }
2065     }
2066     if (delta != 0)
2067     counter.add(delta);
2068     }
2069    
2070 dl 1.14 /* ----------------Table Traversal -------------- */
2071    
2072 dl 1.1 /**
2073 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2074     * serves as a base class for other iterators.
2075     *
2076     * At each step, the iterator snapshots the key ("nextKey") and
2077     * value ("nextVal") of a valid node (i.e., one that, at point of
2078 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2079 dl 1.14 * change (including to null, indicating deletion), field nextVal
2080     * might not be accurate at point of use, but still maintains the
2081     * weak consistency property of holding a value that was once
2082     * valid.
2083     *
2084     * Internal traversals directly access these fields, as in:
2085 jsr166 1.23 * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2086 dl 1.14 *
2087     * Exported iterators (subclasses of ViewIterator) extract key,
2088     * value, or key-value pairs as return values of Iterator.next(),
2089 jsr166 1.17 * and encapsulate the it.next check as hasNext();
2090 dl 1.14 *
2091 dl 1.27 * The iterator visits once each still-valid node that was
2092     * reachable upon iterator construction. It might miss some that
2093     * were added to a bin after the bin was visited, which is OK wrt
2094     * consistency guarantees. Maintaining this property in the face
2095     * of possible ongoing resizes requires a fair amount of
2096     * bookkeeping state that is difficult to optimize away amidst
2097     * volatile accesses. Even so, traversal maintains reasonable
2098     * throughput.
2099 dl 1.14 *
2100     * Normally, iteration proceeds bin-by-bin traversing lists.
2101     * However, if the table has been resized, then all future steps
2102     * must traverse both the bin at the current index as well as at
2103     * (index + baseSize); and so on for further resizings. To
2104     * paranoically cope with potential sharing by users of iterators
2105     * across threads, iteration terminates if a bounds checks fails
2106     * for a table read.
2107     *
2108     * The range-based constructor enables creation of parallel
2109     * range-splitting traversals. (Not yet implemented.)
2110     */
2111     static class InternalIterator {
2112     Node next; // the next entry to use
2113     Node last; // the last entry used
2114     Object nextKey; // cached key field of next
2115     Object nextVal; // cached val field of next
2116     Node[] tab; // current table; updated if resized
2117     int index; // index of bin to use next
2118     int baseIndex; // current index of initial table
2119     final int baseLimit; // index bound for initial table
2120     final int baseSize; // initial table size
2121    
2122     /** Creates iterator for all entries in the table. */
2123     InternalIterator(Node[] tab) {
2124     this.tab = tab;
2125     baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2126     index = baseIndex = 0;
2127     next = null;
2128     advance();
2129     }
2130    
2131     /** Creates iterator for the given range of the table */
2132     InternalIterator(Node[] tab, int lo, int hi) {
2133     this.tab = tab;
2134     baseSize = (tab == null) ? 0 : tab.length;
2135 jsr166 1.15 baseLimit = (hi <= baseSize) ? hi : baseSize;
2136 dl 1.27 index = baseIndex = (lo >= 0) ? lo : 0;
2137 dl 1.14 next = null;
2138     advance();
2139     }
2140    
2141     /** Advances next. See above for explanation. */
2142     final void advance() {
2143     Node e = last = next;
2144     outer: do {
2145 dl 1.24 if (e != null) // advance past used/skipped node
2146 dl 1.1 e = e.next;
2147 dl 1.24 while (e == null) { // get to next non-null bin
2148 dl 1.38 Node[] t; int b, i, n; Object ek; // checks must use locals
2149 dl 1.14 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2150     (t = tab) == null || i >= (n = t.length))
2151     break outer;
2152 dl 1.38 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2153     if ((ek = e.key) instanceof TreeBin)
2154     e = ((TreeBin)ek).first;
2155     else {
2156     tab = (Node[])ek;
2157     continue; // restarts due to null val
2158     }
2159     } // visit upper slots if present
2160     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2161 dl 1.1 }
2162 dl 1.14 nextKey = e.key;
2163 dl 1.24 } while ((nextVal = e.val) == null);// skip deleted or special nodes
2164 dl 1.14 next = e;
2165 dl 1.1 }
2166     }
2167    
2168     /* ---------------- Public operations -------------- */
2169    
2170     /**
2171 dl 1.16 * Creates a new, empty map with the default initial table size (16),
2172 dl 1.1 */
2173 dl 1.16 public ConcurrentHashMapV8() {
2174 dl 1.14 this.counter = new LongAdder();
2175 dl 1.1 }
2176    
2177     /**
2178 dl 1.16 * Creates a new, empty map with an initial table size
2179     * accommodating the specified number of elements without the need
2180     * to dynamically resize.
2181 dl 1.1 *
2182     * @param initialCapacity The implementation performs internal
2183     * sizing to accommodate this many elements.
2184     * @throws IllegalArgumentException if the initial capacity of
2185 jsr166 1.18 * elements is negative
2186 dl 1.1 */
2187 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2188     if (initialCapacity < 0)
2189     throw new IllegalArgumentException();
2190     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2191     MAXIMUM_CAPACITY :
2192     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2193     this.counter = new LongAdder();
2194 dl 1.24 this.sizeCtl = cap;
2195 dl 1.1 }
2196    
2197     /**
2198 dl 1.16 * Creates a new map with the same mappings as the given map.
2199 dl 1.1 *
2200 dl 1.16 * @param m the map
2201 dl 1.1 */
2202 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2203     this.counter = new LongAdder();
2204 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2205 dl 1.27 internalPutAll(m);
2206 dl 1.1 }
2207    
2208     /**
2209 dl 1.16 * Creates a new, empty map with an initial table size based on
2210     * the given number of elements ({@code initialCapacity}) and
2211     * initial table density ({@code loadFactor}).
2212     *
2213     * @param initialCapacity the initial capacity. The implementation
2214     * performs internal sizing to accommodate this many elements,
2215     * given the specified load factor.
2216     * @param loadFactor the load factor (table density) for
2217 jsr166 1.18 * establishing the initial table size
2218 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2219     * elements is negative or the load factor is nonpositive
2220 jsr166 1.22 *
2221     * @since 1.6
2222 dl 1.1 */
2223 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2224     this(initialCapacity, loadFactor, 1);
2225 dl 1.1 }
2226    
2227     /**
2228 dl 1.16 * Creates a new, empty map with an initial table size based on
2229     * the given number of elements ({@code initialCapacity}), table
2230     * density ({@code loadFactor}), and number of concurrently
2231     * updating threads ({@code concurrencyLevel}).
2232 dl 1.1 *
2233 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2234     * performs internal sizing to accommodate this many elements,
2235     * given the specified load factor.
2236     * @param loadFactor the load factor (table density) for
2237 jsr166 1.18 * establishing the initial table size
2238 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2239     * updating threads. The implementation may use this value as
2240     * a sizing hint.
2241     * @throws IllegalArgumentException if the initial capacity is
2242     * negative or the load factor or concurrencyLevel are
2243 jsr166 1.18 * nonpositive
2244 dl 1.1 */
2245 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2246     float loadFactor, int concurrencyLevel) {
2247     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2248     throw new IllegalArgumentException();
2249     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2250     initialCapacity = concurrencyLevel; // as estimated threads
2251     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2252 jsr166 1.33 int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
2253     MAXIMUM_CAPACITY: tableSizeFor((int)size));
2254 dl 1.16 this.counter = new LongAdder();
2255 dl 1.24 this.sizeCtl = cap;
2256 dl 1.1 }
2257    
2258     /**
2259 dl 1.14 * {@inheritDoc}
2260 dl 1.1 */
2261     public boolean isEmpty() {
2262 dl 1.2 return counter.sum() <= 0L; // ignore transient negative values
2263 dl 1.1 }
2264    
2265     /**
2266 dl 1.14 * {@inheritDoc}
2267 dl 1.1 */
2268     public int size() {
2269     long n = counter.sum();
2270 jsr166 1.15 return ((n < 0L) ? 0 :
2271     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2272 dl 1.14 (int)n);
2273 dl 1.1 }
2274    
2275 dl 1.24 final long longSize() { // accurate version of size needed for views
2276     long n = counter.sum();
2277     return (n < 0L) ? 0L : n;
2278     }
2279    
2280 dl 1.1 /**
2281     * Returns the value to which the specified key is mapped,
2282     * or {@code null} if this map contains no mapping for the key.
2283     *
2284     * <p>More formally, if this map contains a mapping from a key
2285     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2286     * then this method returns {@code v}; otherwise it returns
2287     * {@code null}. (There can be at most one such mapping.)
2288     *
2289     * @throws NullPointerException if the specified key is null
2290     */
2291     @SuppressWarnings("unchecked")
2292     public V get(Object key) {
2293     if (key == null)
2294     throw new NullPointerException();
2295     return (V)internalGet(key);
2296     }
2297    
2298     /**
2299     * Tests if the specified object is a key in this table.
2300     *
2301     * @param key possible key
2302     * @return {@code true} if and only if the specified object
2303     * is a key in this table, as determined by the
2304 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2305 dl 1.1 * @throws NullPointerException if the specified key is null
2306     */
2307     public boolean containsKey(Object key) {
2308     if (key == null)
2309     throw new NullPointerException();
2310     return internalGet(key) != null;
2311     }
2312    
2313     /**
2314     * Returns {@code true} if this map maps one or more keys to the
2315 dl 1.14 * specified value. Note: This method may require a full traversal
2316     * of the map, and is much slower than method {@code containsKey}.
2317 dl 1.1 *
2318     * @param value value whose presence in this map is to be tested
2319     * @return {@code true} if this map maps one or more keys to the
2320     * specified value
2321     * @throws NullPointerException if the specified value is null
2322     */
2323     public boolean containsValue(Object value) {
2324     if (value == null)
2325     throw new NullPointerException();
2326 dl 1.14 Object v;
2327     InternalIterator it = new InternalIterator(table);
2328     while (it.next != null) {
2329     if ((v = it.nextVal) == value || value.equals(v))
2330     return true;
2331     it.advance();
2332     }
2333     return false;
2334 dl 1.1 }
2335    
2336     /**
2337     * Legacy method testing if some key maps into the specified value
2338     * in this table. This method is identical in functionality to
2339     * {@link #containsValue}, and exists solely to ensure
2340     * full compatibility with class {@link java.util.Hashtable},
2341     * which supported this method prior to introduction of the
2342     * Java Collections framework.
2343     *
2344     * @param value a value to search for
2345     * @return {@code true} if and only if some key maps to the
2346     * {@code value} argument in this table as
2347     * determined by the {@code equals} method;
2348     * {@code false} otherwise
2349     * @throws NullPointerException if the specified value is null
2350     */
2351     public boolean contains(Object value) {
2352     return containsValue(value);
2353     }
2354    
2355     /**
2356     * Maps the specified key to the specified value in this table.
2357     * Neither the key nor the value can be null.
2358     *
2359     * <p> The value can be retrieved by calling the {@code get} method
2360     * with a key that is equal to the original key.
2361     *
2362     * @param key key with which the specified value is to be associated
2363     * @param value value to be associated with the specified key
2364     * @return the previous value associated with {@code key}, or
2365     * {@code null} if there was no mapping for {@code key}
2366     * @throws NullPointerException if the specified key or value is null
2367     */
2368     @SuppressWarnings("unchecked")
2369     public V put(K key, V value) {
2370     if (key == null || value == null)
2371     throw new NullPointerException();
2372 dl 1.27 return (V)internalPut(key, value);
2373 dl 1.1 }
2374    
2375     /**
2376     * {@inheritDoc}
2377     *
2378     * @return the previous value associated with the specified key,
2379     * or {@code null} if there was no mapping for the key
2380     * @throws NullPointerException if the specified key or value is null
2381     */
2382     @SuppressWarnings("unchecked")
2383     public V putIfAbsent(K key, V value) {
2384     if (key == null || value == null)
2385     throw new NullPointerException();
2386 dl 1.27 return (V)internalPutIfAbsent(key, value);
2387 dl 1.1 }
2388    
2389     /**
2390     * Copies all of the mappings from the specified map to this one.
2391     * These mappings replace any mappings that this map had for any of the
2392     * keys currently in the specified map.
2393     *
2394     * @param m mappings to be stored in this map
2395     */
2396     public void putAll(Map<? extends K, ? extends V> m) {
2397 dl 1.27 internalPutAll(m);
2398 dl 1.1 }
2399    
2400     /**
2401     * If the specified key is not already associated with a value,
2402 dl 1.27 * computes its value using the given mappingFunction and
2403     * enters it into the map. This is equivalent to
2404     * <pre> {@code
2405 jsr166 1.13 * if (map.containsKey(key))
2406     * return map.get(key);
2407     * value = mappingFunction.map(key);
2408 dl 1.27 * map.put(key, value);
2409 jsr166 1.13 * return value;}</pre>
2410 dl 1.1 *
2411 dl 1.27 * except that the action is performed atomically. If the
2412     * function returns {@code null} (in which case a {@code
2413     * NullPointerException} is thrown), or the function itself throws
2414     * an (unchecked) exception, the exception is rethrown to its
2415     * caller, and no mapping is recorded. Some attempted update
2416     * operations on this map by other threads may be blocked while
2417     * computation is in progress, so the computation should be short
2418     * and simple, and must not attempt to update any other mappings
2419     * of this Map. The most appropriate usage is to construct a new
2420     * object serving as an initial mapped value, or memoized result,
2421     * as in:
2422     *
2423 jsr166 1.13 * <pre> {@code
2424 dl 1.5 * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2425 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2426 dl 1.1 *
2427     * @param key key with which the specified value is to be associated
2428     * @param mappingFunction the function to compute a value
2429     * @return the current (existing or computed) value associated with
2430 dl 1.27 * the specified key.
2431     * @throws NullPointerException if the specified key, mappingFunction,
2432     * or computed value is null
2433 dl 1.5 * @throws IllegalStateException if the computation detectably
2434     * attempts a recursive update to this map that would
2435 jsr166 1.18 * otherwise never complete
2436 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2437 jsr166 1.18 * in which case the mapping is left unestablished
2438 dl 1.1 */
2439 dl 1.27 @SuppressWarnings("unchecked")
2440 dl 1.1 public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2441     if (key == null || mappingFunction == null)
2442     throw new NullPointerException();
2443 dl 1.27 return (V)internalComputeIfAbsent(key, mappingFunction);
2444 dl 1.2 }
2445    
2446     /**
2447 dl 1.27 * Computes and enters a new mapping value given a key and
2448     * its current mapped value (or {@code null} if there is no current
2449     * mapping). This is equivalent to
2450 jsr166 1.13 * <pre> {@code
2451 dl 1.27 * map.put(key, remappingFunction.remap(key, map.get(key));
2452     * }</pre>
2453 dl 1.2 *
2454 dl 1.27 * except that the action is performed atomically. If the
2455     * function returns {@code null} (in which case a {@code
2456     * NullPointerException} is thrown), or the function itself throws
2457     * an (unchecked) exception, the exception is rethrown to its
2458     * caller, and current mapping is left unchanged. Some attempted
2459 dl 1.5 * update operations on this map by other threads may be blocked
2460     * while computation is in progress, so the computation should be
2461     * short and simple, and must not attempt to update any other
2462 dl 1.27 * mappings of this Map. For example, to either create or
2463     * append new messages to a value mapping:
2464     *
2465     * <pre> {@code
2466     * Map<Key, String> map = ...;
2467     * final String msg = ...;
2468     * map.compute(key, new RemappingFunction<Key, String>() {
2469     * public String remap(Key k, String v) {
2470 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2471 dl 1.2 *
2472     * @param key key with which the specified value is to be associated
2473 dl 1.27 * @param remappingFunction the function to compute a value
2474     * @return the new value associated with
2475     * the specified key.
2476     * @throws NullPointerException if the specified key or remappingFunction
2477     * or computed value is null
2478 dl 1.5 * @throws IllegalStateException if the computation detectably
2479     * attempts a recursive update to this map that would
2480 jsr166 1.18 * otherwise never complete
2481 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2482 jsr166 1.18 * in which case the mapping is unchanged
2483 dl 1.2 */
2484 dl 1.27 @SuppressWarnings("unchecked")
2485     public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2486     if (key == null || remappingFunction == null)
2487 dl 1.2 throw new NullPointerException();
2488 dl 1.27 return (V)internalCompute(key, remappingFunction);
2489 dl 1.1 }
2490    
2491     /**
2492     * Removes the key (and its corresponding value) from this map.
2493     * This method does nothing if the key is not in the map.
2494     *
2495     * @param key the key that needs to be removed
2496     * @return the previous value associated with {@code key}, or
2497     * {@code null} if there was no mapping for {@code key}
2498     * @throws NullPointerException if the specified key is null
2499     */
2500     @SuppressWarnings("unchecked")
2501     public V remove(Object key) {
2502     if (key == null)
2503     throw new NullPointerException();
2504 jsr166 1.3 return (V)internalReplace(key, null, null);
2505 dl 1.1 }
2506    
2507     /**
2508     * {@inheritDoc}
2509     *
2510     * @throws NullPointerException if the specified key is null
2511     */
2512     public boolean remove(Object key, Object value) {
2513     if (key == null)
2514     throw new NullPointerException();
2515     if (value == null)
2516     return false;
2517     return internalReplace(key, null, value) != null;
2518     }
2519    
2520     /**
2521     * {@inheritDoc}
2522     *
2523     * @throws NullPointerException if any of the arguments are null
2524     */
2525     public boolean replace(K key, V oldValue, V newValue) {
2526     if (key == null || oldValue == null || newValue == null)
2527     throw new NullPointerException();
2528 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
2529 dl 1.1 }
2530    
2531     /**
2532     * {@inheritDoc}
2533     *
2534     * @return the previous value associated with the specified key,
2535     * or {@code null} if there was no mapping for the key
2536     * @throws NullPointerException if the specified key or value is null
2537     */
2538     @SuppressWarnings("unchecked")
2539     public V replace(K key, V value) {
2540     if (key == null || value == null)
2541     throw new NullPointerException();
2542 jsr166 1.3 return (V)internalReplace(key, value, null);
2543 dl 1.1 }
2544    
2545     /**
2546     * Removes all of the mappings from this map.
2547     */
2548     public void clear() {
2549     internalClear();
2550     }
2551    
2552     /**
2553     * Returns a {@link Set} view of the keys contained in this map.
2554     * The set is backed by the map, so changes to the map are
2555     * reflected in the set, and vice-versa. The set supports element
2556     * removal, which removes the corresponding mapping from this map,
2557     * via the {@code Iterator.remove}, {@code Set.remove},
2558     * {@code removeAll}, {@code retainAll}, and {@code clear}
2559     * operations. It does not support the {@code add} or
2560     * {@code addAll} operations.
2561     *
2562     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2563     * that will never throw {@link ConcurrentModificationException},
2564     * and guarantees to traverse elements as they existed upon
2565     * construction of the iterator, and may (but is not guaranteed to)
2566     * reflect any modifications subsequent to construction.
2567     */
2568     public Set<K> keySet() {
2569 dl 1.14 KeySet<K,V> ks = keySet;
2570     return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2571 dl 1.1 }
2572    
2573     /**
2574     * Returns a {@link Collection} view of the values contained in this map.
2575     * The collection is backed by the map, so changes to the map are
2576     * reflected in the collection, and vice-versa. The collection
2577     * supports element removal, which removes the corresponding
2578     * mapping from this map, via the {@code Iterator.remove},
2579     * {@code Collection.remove}, {@code removeAll},
2580     * {@code retainAll}, and {@code clear} operations. It does not
2581     * support the {@code add} or {@code addAll} operations.
2582     *
2583     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2584     * that will never throw {@link ConcurrentModificationException},
2585     * and guarantees to traverse elements as they existed upon
2586     * construction of the iterator, and may (but is not guaranteed to)
2587     * reflect any modifications subsequent to construction.
2588     */
2589     public Collection<V> values() {
2590 dl 1.14 Values<K,V> vs = values;
2591     return (vs != null) ? vs : (values = new Values<K,V>(this));
2592 dl 1.1 }
2593    
2594     /**
2595     * Returns a {@link Set} view of the mappings contained in this map.
2596     * The set is backed by the map, so changes to the map are
2597     * reflected in the set, and vice-versa. The set supports element
2598     * removal, which removes the corresponding mapping from the map,
2599     * via the {@code Iterator.remove}, {@code Set.remove},
2600     * {@code removeAll}, {@code retainAll}, and {@code clear}
2601     * operations. It does not support the {@code add} or
2602     * {@code addAll} operations.
2603     *
2604     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2605     * that will never throw {@link ConcurrentModificationException},
2606     * and guarantees to traverse elements as they existed upon
2607     * construction of the iterator, and may (but is not guaranteed to)
2608     * reflect any modifications subsequent to construction.
2609     */
2610     public Set<Map.Entry<K,V>> entrySet() {
2611 dl 1.14 EntrySet<K,V> es = entrySet;
2612     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2613 dl 1.1 }
2614    
2615     /**
2616     * Returns an enumeration of the keys in this table.
2617     *
2618     * @return an enumeration of the keys in this table
2619     * @see #keySet()
2620     */
2621     public Enumeration<K> keys() {
2622 dl 1.14 return new KeyIterator<K,V>(this);
2623 dl 1.1 }
2624    
2625     /**
2626     * Returns an enumeration of the values in this table.
2627     *
2628     * @return an enumeration of the values in this table
2629     * @see #values()
2630     */
2631     public Enumeration<V> elements() {
2632 dl 1.14 return new ValueIterator<K,V>(this);
2633 dl 1.1 }
2634    
2635     /**
2636 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
2637     * the sum of, for each key-value pair in the map,
2638     * {@code key.hashCode() ^ value.hashCode()}.
2639     *
2640     * @return the hash code value for this map
2641 dl 1.1 */
2642     public int hashCode() {
2643 dl 1.14 int h = 0;
2644     InternalIterator it = new InternalIterator(table);
2645     while (it.next != null) {
2646     h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
2647     it.advance();
2648     }
2649     return h;
2650 dl 1.1 }
2651    
2652     /**
2653 dl 1.2 * Returns a string representation of this map. The string
2654     * representation consists of a list of key-value mappings (in no
2655     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2656     * mappings are separated by the characters {@code ", "} (comma
2657     * and space). Each key-value mapping is rendered as the key
2658     * followed by an equals sign ("{@code =}") followed by the
2659     * associated value.
2660     *
2661     * @return a string representation of this map
2662 dl 1.1 */
2663     public String toString() {
2664 dl 1.14 InternalIterator it = new InternalIterator(table);
2665     StringBuilder sb = new StringBuilder();
2666     sb.append('{');
2667     if (it.next != null) {
2668     for (;;) {
2669     Object k = it.nextKey, v = it.nextVal;
2670     sb.append(k == this ? "(this Map)" : k);
2671     sb.append('=');
2672     sb.append(v == this ? "(this Map)" : v);
2673     it.advance();
2674     if (it.next == null)
2675     break;
2676     sb.append(',').append(' ');
2677     }
2678     }
2679     return sb.append('}').toString();
2680 dl 1.1 }
2681    
2682     /**
2683 dl 1.2 * Compares the specified object with this map for equality.
2684     * Returns {@code true} if the given object is a map with the same
2685     * mappings as this map. This operation may return misleading
2686     * results if either map is concurrently modified during execution
2687     * of this method.
2688     *
2689     * @param o object to be compared for equality with this map
2690     * @return {@code true} if the specified object is equal to this map
2691 dl 1.1 */
2692     public boolean equals(Object o) {
2693 dl 1.14 if (o != this) {
2694     if (!(o instanceof Map))
2695     return false;
2696     Map<?,?> m = (Map<?,?>) o;
2697     InternalIterator it = new InternalIterator(table);
2698     while (it.next != null) {
2699     Object val = it.nextVal;
2700     Object v = m.get(it.nextKey);
2701     if (v == null || (v != val && !v.equals(val)))
2702 dl 1.1 return false;
2703 dl 1.14 it.advance();
2704     }
2705 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
2706 dl 1.14 Object mk, mv, v;
2707     if ((mk = e.getKey()) == null ||
2708     (mv = e.getValue()) == null ||
2709     (v = internalGet(mk)) == null ||
2710     (mv != v && !mv.equals(v)))
2711 dl 1.1 return false;
2712     }
2713 dl 1.14 }
2714     return true;
2715     }
2716    
2717     /* ----------------Iterators -------------- */
2718    
2719     /**
2720     * Base class for key, value, and entry iterators. Adds a map
2721     * reference to InternalIterator to support Iterator.remove.
2722     */
2723     static abstract class ViewIterator<K,V> extends InternalIterator {
2724     final ConcurrentHashMapV8<K, V> map;
2725     ViewIterator(ConcurrentHashMapV8<K, V> map) {
2726     super(map.table);
2727     this.map = map;
2728     }
2729    
2730     public final void remove() {
2731     if (last == null)
2732     throw new IllegalStateException();
2733     map.remove(last.key);
2734     last = null;
2735     }
2736    
2737     public final boolean hasNext() { return next != null; }
2738     public final boolean hasMoreElements() { return next != null; }
2739     }
2740    
2741     static final class KeyIterator<K,V> extends ViewIterator<K,V>
2742     implements Iterator<K>, Enumeration<K> {
2743     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2744    
2745     @SuppressWarnings("unchecked")
2746     public final K next() {
2747     if (next == null)
2748     throw new NoSuchElementException();
2749     Object k = nextKey;
2750     advance();
2751     return (K)k;
2752     }
2753    
2754     public final K nextElement() { return next(); }
2755     }
2756    
2757     static final class ValueIterator<K,V> extends ViewIterator<K,V>
2758     implements Iterator<V>, Enumeration<V> {
2759     ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2760    
2761     @SuppressWarnings("unchecked")
2762     public final V next() {
2763     if (next == null)
2764     throw new NoSuchElementException();
2765     Object v = nextVal;
2766     advance();
2767     return (V)v;
2768     }
2769    
2770     public final V nextElement() { return next(); }
2771     }
2772    
2773     static final class EntryIterator<K,V> extends ViewIterator<K,V>
2774     implements Iterator<Map.Entry<K,V>> {
2775     EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2776    
2777     @SuppressWarnings("unchecked")
2778     public final Map.Entry<K,V> next() {
2779     if (next == null)
2780     throw new NoSuchElementException();
2781     Object k = nextKey;
2782     Object v = nextVal;
2783     advance();
2784 dl 1.24 return new WriteThroughEntry<K,V>((K)k, (V)v, map);
2785     }
2786     }
2787    
2788     static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2789     implements Iterator<Map.Entry<K,V>> {
2790     SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2791    
2792     @SuppressWarnings("unchecked")
2793     public final Map.Entry<K,V> next() {
2794     if (next == null)
2795     throw new NoSuchElementException();
2796     Object k = nextKey;
2797     Object v = nextVal;
2798     advance();
2799     return new SnapshotEntry<K,V>((K)k, (V)v);
2800 dl 1.1 }
2801     }
2802    
2803     /**
2804 dl 1.24 * Base of writeThrough and Snapshot entry classes
2805 dl 1.1 */
2806 dl 1.24 static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
2807 dl 1.14 final K key; // non-null
2808     V val; // non-null
2809 dl 1.24 MapEntry(K key, V val) { this.key = key; this.val = val; }
2810 dl 1.14 public final K getKey() { return key; }
2811     public final V getValue() { return val; }
2812     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
2813     public final String toString(){ return key + "=" + val; }
2814    
2815     public final boolean equals(Object o) {
2816     Object k, v; Map.Entry<?,?> e;
2817     return ((o instanceof Map.Entry) &&
2818     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
2819     (v = e.getValue()) != null &&
2820     (k == key || k.equals(key)) &&
2821     (v == val || v.equals(val)));
2822 dl 1.1 }
2823    
2824 dl 1.24 public abstract V setValue(V value);
2825     }
2826    
2827     /**
2828     * Entry used by EntryIterator.next(), that relays setValue
2829     * changes to the underlying map.
2830     */
2831     static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2832     implements Map.Entry<K, V> {
2833     final ConcurrentHashMapV8<K, V> map;
2834     WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2835     super(key, val);
2836     this.map = map;
2837     }
2838    
2839 dl 1.1 /**
2840     * Sets our entry's value and writes through to the map. The
2841     * value to return is somewhat arbitrary here. Since a
2842     * WriteThroughEntry does not necessarily track asynchronous
2843     * changes, the most recent "previous" value could be
2844     * different from what we return (or could even have been
2845     * removed in which case the put will re-establish). We do not
2846     * and cannot guarantee more.
2847     */
2848 dl 1.14 public final V setValue(V value) {
2849 dl 1.1 if (value == null) throw new NullPointerException();
2850 dl 1.14 V v = val;
2851     val = value;
2852     map.put(key, value);
2853 dl 1.1 return v;
2854     }
2855     }
2856    
2857 dl 1.24 /**
2858     * Internal version of entry, that doesn't write though changes
2859     */
2860     static final class SnapshotEntry<K,V> extends MapEntry<K,V>
2861     implements Map.Entry<K, V> {
2862     SnapshotEntry(K key, V val) { super(key, val); }
2863     public final V setValue(V value) { // only locally update
2864     if (value == null) throw new NullPointerException();
2865     V v = val;
2866     val = value;
2867     return v;
2868     }
2869     }
2870    
2871 dl 1.14 /* ----------------Views -------------- */
2872 dl 1.1
2873 dl 1.24 /**
2874     * Base class for views. This is done mainly to allow adding
2875     * customized parallel traversals (not yet implemented.)
2876 dl 1.14 */
2877 dl 1.24 static abstract class MapView<K, V> {
2878 dl 1.14 final ConcurrentHashMapV8<K, V> map;
2879 dl 1.24 MapView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
2880 dl 1.14 public final int size() { return map.size(); }
2881     public final boolean isEmpty() { return map.isEmpty(); }
2882     public final void clear() { map.clear(); }
2883 dl 1.24
2884     // implementations below rely on concrete classes supplying these
2885     abstract Iterator<?> iter();
2886     abstract public boolean contains(Object o);
2887     abstract public boolean remove(Object o);
2888    
2889     private static final String oomeMsg = "Required array size too large";
2890    
2891     public final Object[] toArray() {
2892     long sz = map.longSize();
2893     if (sz > (long)(MAX_ARRAY_SIZE))
2894     throw new OutOfMemoryError(oomeMsg);
2895     int n = (int)sz;
2896     Object[] r = new Object[n];
2897     int i = 0;
2898     Iterator<?> it = iter();
2899     while (it.hasNext()) {
2900     if (i == n) {
2901     if (n >= MAX_ARRAY_SIZE)
2902     throw new OutOfMemoryError(oomeMsg);
2903     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2904     n = MAX_ARRAY_SIZE;
2905     else
2906     n += (n >>> 1) + 1;
2907     r = Arrays.copyOf(r, n);
2908     }
2909     r[i++] = it.next();
2910     }
2911     return (i == n) ? r : Arrays.copyOf(r, i);
2912     }
2913    
2914     @SuppressWarnings("unchecked")
2915     public final <T> T[] toArray(T[] a) {
2916     long sz = map.longSize();
2917     if (sz > (long)(MAX_ARRAY_SIZE))
2918     throw new OutOfMemoryError(oomeMsg);
2919     int m = (int)sz;
2920     T[] r = (a.length >= m) ? a :
2921     (T[])java.lang.reflect.Array
2922     .newInstance(a.getClass().getComponentType(), m);
2923     int n = r.length;
2924     int i = 0;
2925     Iterator<?> it = iter();
2926     while (it.hasNext()) {
2927     if (i == n) {
2928     if (n >= MAX_ARRAY_SIZE)
2929     throw new OutOfMemoryError(oomeMsg);
2930     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2931     n = MAX_ARRAY_SIZE;
2932     else
2933     n += (n >>> 1) + 1;
2934     r = Arrays.copyOf(r, n);
2935     }
2936     r[i++] = (T)it.next();
2937     }
2938     if (a == r && i < n) {
2939     r[i] = null; // null-terminate
2940     return r;
2941     }
2942     return (i == n) ? r : Arrays.copyOf(r, i);
2943     }
2944    
2945     public final int hashCode() {
2946     int h = 0;
2947     for (Iterator<?> it = iter(); it.hasNext();)
2948     h += it.next().hashCode();
2949     return h;
2950     }
2951    
2952     public final String toString() {
2953     StringBuilder sb = new StringBuilder();
2954     sb.append('[');
2955     Iterator<?> it = iter();
2956     if (it.hasNext()) {
2957     for (;;) {
2958     Object e = it.next();
2959     sb.append(e == this ? "(this Collection)" : e);
2960     if (!it.hasNext())
2961     break;
2962     sb.append(',').append(' ');
2963     }
2964     }
2965     return sb.append(']').toString();
2966     }
2967    
2968     public final boolean containsAll(Collection<?> c) {
2969     if (c != this) {
2970     for (Iterator<?> it = c.iterator(); it.hasNext();) {
2971     Object e = it.next();
2972     if (e == null || !contains(e))
2973     return false;
2974     }
2975     }
2976     return true;
2977     }
2978    
2979 jsr166 1.32 public final boolean removeAll(Collection<?> c) {
2980 dl 1.24 boolean modified = false;
2981     for (Iterator<?> it = iter(); it.hasNext();) {
2982     if (c.contains(it.next())) {
2983     it.remove();
2984     modified = true;
2985     }
2986     }
2987     return modified;
2988     }
2989    
2990     public final boolean retainAll(Collection<?> c) {
2991     boolean modified = false;
2992     for (Iterator<?> it = iter(); it.hasNext();) {
2993     if (!c.contains(it.next())) {
2994     it.remove();
2995     modified = true;
2996     }
2997     }
2998     return modified;
2999     }
3000    
3001     }
3002    
3003     static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
3004     KeySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3005 dl 1.14 public final boolean contains(Object o) { return map.containsKey(o); }
3006     public final boolean remove(Object o) { return map.remove(o) != null; }
3007 dl 1.24
3008 dl 1.14 public final Iterator<K> iterator() {
3009     return new KeyIterator<K,V>(map);
3010 dl 1.1 }
3011 dl 1.24 final Iterator<?> iter() {
3012     return new KeyIterator<K,V>(map);
3013     }
3014     public final boolean add(K e) {
3015     throw new UnsupportedOperationException();
3016     }
3017     public final boolean addAll(Collection<? extends K> c) {
3018     throw new UnsupportedOperationException();
3019     }
3020     public boolean equals(Object o) {
3021     Set<?> c;
3022     return ((o instanceof Set) &&
3023     ((c = (Set<?>)o) == this ||
3024     (containsAll(c) && c.containsAll(this))));
3025     }
3026 dl 1.1 }
3027    
3028 dl 1.24 static final class Values<K,V> extends MapView<K,V>
3029 jsr166 1.34 implements Collection<V> {
3030 dl 1.24 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3031     public final boolean contains(Object o) { return map.containsValue(o); }
3032 dl 1.14
3033 dl 1.24 public final boolean remove(Object o) {
3034     if (o != null) {
3035     Iterator<V> it = new ValueIterator<K,V>(map);
3036     while (it.hasNext()) {
3037     if (o.equals(it.next())) {
3038     it.remove();
3039     return true;
3040     }
3041     }
3042     }
3043     return false;
3044     }
3045 dl 1.14 public final Iterator<V> iterator() {
3046     return new ValueIterator<K,V>(map);
3047 dl 1.1 }
3048 dl 1.24 final Iterator<?> iter() {
3049     return new ValueIterator<K,V>(map);
3050     }
3051     public final boolean add(V e) {
3052     throw new UnsupportedOperationException();
3053     }
3054     public final boolean addAll(Collection<? extends V> c) {
3055     throw new UnsupportedOperationException();
3056     }
3057 dl 1.1 }
3058    
3059 jsr166 1.33 static final class EntrySet<K,V> extends MapView<K,V>
3060 dl 1.24 implements Set<Map.Entry<K,V>> {
3061     EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3062 dl 1.14
3063     public final boolean contains(Object o) {
3064     Object k, v, r; Map.Entry<?,?> e;
3065     return ((o instanceof Map.Entry) &&
3066     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3067     (r = map.get(k)) != null &&
3068     (v = e.getValue()) != null &&
3069     (v == r || v.equals(r)));
3070 dl 1.1 }
3071 dl 1.14
3072     public final boolean remove(Object o) {
3073     Object k, v; Map.Entry<?,?> e;
3074     return ((o instanceof Map.Entry) &&
3075     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3076     (v = e.getValue()) != null &&
3077     map.remove(k, v));
3078 dl 1.1 }
3079 dl 1.24
3080     public final Iterator<Map.Entry<K,V>> iterator() {
3081     return new EntryIterator<K,V>(map);
3082     }
3083     final Iterator<?> iter() {
3084     return new SnapshotEntryIterator<K,V>(map);
3085     }
3086     public final boolean add(Entry<K,V> e) {
3087     throw new UnsupportedOperationException();
3088     }
3089     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3090     throw new UnsupportedOperationException();
3091     }
3092     public boolean equals(Object o) {
3093     Set<?> c;
3094     return ((o instanceof Set) &&
3095     ((c = (Set<?>)o) == this ||
3096     (containsAll(c) && c.containsAll(this))));
3097     }
3098 dl 1.1 }
3099    
3100     /* ---------------- Serialization Support -------------- */
3101    
3102     /**
3103 dl 1.14 * Stripped-down version of helper class used in previous version,
3104     * declared for the sake of serialization compatibility
3105 dl 1.1 */
3106 dl 1.14 static class Segment<K,V> implements Serializable {
3107 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
3108     final float loadFactor;
3109     Segment(float lf) { this.loadFactor = lf; }
3110     }
3111    
3112     /**
3113     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3114     * stream (i.e., serializes it).
3115     * @param s the stream
3116     * @serialData
3117     * the key (Object) and value (Object)
3118     * for each key-value mapping, followed by a null pair.
3119     * The key-value mappings are emitted in no particular order.
3120     */
3121     @SuppressWarnings("unchecked")
3122     private void writeObject(java.io.ObjectOutputStream s)
3123     throws java.io.IOException {
3124     if (segments == null) { // for serialization compatibility
3125     segments = (Segment<K,V>[])
3126     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3127     for (int i = 0; i < segments.length; ++i)
3128 dl 1.16 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3129 dl 1.1 }
3130     s.defaultWriteObject();
3131 dl 1.14 InternalIterator it = new InternalIterator(table);
3132     while (it.next != null) {
3133     s.writeObject(it.nextKey);
3134     s.writeObject(it.nextVal);
3135     it.advance();
3136     }
3137 dl 1.1 s.writeObject(null);
3138     s.writeObject(null);
3139     segments = null; // throw away
3140     }
3141    
3142     /**
3143 jsr166 1.9 * Reconstitutes the instance from a stream (that is, deserializes it).
3144 dl 1.1 * @param s the stream
3145     */
3146     @SuppressWarnings("unchecked")
3147     private void readObject(java.io.ObjectInputStream s)
3148     throws java.io.IOException, ClassNotFoundException {
3149     s.defaultReadObject();
3150     this.segments = null; // unneeded
3151 jsr166 1.21 // initialize transient final field
3152 dl 1.14 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3153    
3154     // Create all nodes, then place in table once size is known
3155     long size = 0L;
3156     Node p = null;
3157 dl 1.1 for (;;) {
3158 dl 1.14 K k = (K) s.readObject();
3159     V v = (V) s.readObject();
3160     if (k != null && v != null) {
3161 dl 1.38 int h = spread(k.hashCode());
3162     p = new Node(h, k, v, p);
3163 dl 1.14 ++size;
3164     }
3165     else
3166 dl 1.1 break;
3167 dl 1.14 }
3168     if (p != null) {
3169     boolean init = false;
3170 dl 1.24 int n;
3171     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3172     n = MAXIMUM_CAPACITY;
3173     else {
3174     int sz = (int)size;
3175     n = tableSizeFor(sz + (sz >>> 1) + 1);
3176     }
3177     int sc = sizeCtl;
3178 dl 1.38 boolean collide = false;
3179 dl 1.24 if (n > sc &&
3180     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3181 dl 1.14 try {
3182     if (table == null) {
3183     init = true;
3184     Node[] tab = new Node[n];
3185     int mask = n - 1;
3186     while (p != null) {
3187     int j = p.hash & mask;
3188     Node next = p.next;
3189 dl 1.38 Node q = p.next = tabAt(tab, j);
3190 dl 1.14 setTabAt(tab, j, p);
3191 dl 1.38 if (!collide && q != null && q.hash == p.hash)
3192     collide = true;
3193 dl 1.14 p = next;
3194     }
3195     table = tab;
3196     counter.add(size);
3197 dl 1.29 sc = n - (n >>> 2);
3198 dl 1.14 }
3199     } finally {
3200 dl 1.24 sizeCtl = sc;
3201 dl 1.14 }
3202 dl 1.38 if (collide) { // rescan and convert to TreeBins
3203     Node[] tab = table;
3204     for (int i = 0; i < tab.length; ++i) {
3205     int c = 0;
3206     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3207     if (++c > TREE_THRESHOLD &&
3208     (e.key instanceof Comparable)) {
3209     replaceWithTreeBin(tab, i, e.key);
3210     break;
3211     }
3212     }
3213     }
3214     }
3215 dl 1.14 }
3216     if (!init) { // Can only happen if unsafely published.
3217     while (p != null) {
3218 dl 1.27 internalPut(p.key, p.val);
3219 dl 1.14 p = p.next;
3220     }
3221     }
3222 dl 1.38
3223 dl 1.1 }
3224     }
3225    
3226     // Unsafe mechanics
3227     private static final sun.misc.Unsafe UNSAFE;
3228     private static final long counterOffset;
3229 dl 1.24 private static final long sizeCtlOffset;
3230 dl 1.1 private static final long ABASE;
3231     private static final int ASHIFT;
3232    
3233     static {
3234     int ss;
3235     try {
3236     UNSAFE = getUnsafe();
3237     Class<?> k = ConcurrentHashMapV8.class;
3238     counterOffset = UNSAFE.objectFieldOffset
3239     (k.getDeclaredField("counter"));
3240 dl 1.24 sizeCtlOffset = UNSAFE.objectFieldOffset
3241     (k.getDeclaredField("sizeCtl"));
3242 dl 1.1 Class<?> sc = Node[].class;
3243     ABASE = UNSAFE.arrayBaseOffset(sc);
3244     ss = UNSAFE.arrayIndexScale(sc);
3245     } catch (Exception e) {
3246     throw new Error(e);
3247     }
3248     if ((ss & (ss-1)) != 0)
3249     throw new Error("data type scale not a power of two");
3250     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
3251     }
3252    
3253     /**
3254     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3255     * Replace with a simple call to Unsafe.getUnsafe when integrating
3256     * into a jdk.
3257     *
3258     * @return a sun.misc.Unsafe
3259     */
3260     private static sun.misc.Unsafe getUnsafe() {
3261     try {
3262     return sun.misc.Unsafe.getUnsafe();
3263     } catch (SecurityException se) {
3264     try {
3265     return java.security.AccessController.doPrivileged
3266     (new java.security
3267     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3268     public sun.misc.Unsafe run() throws Exception {
3269     java.lang.reflect.Field f = sun.misc
3270     .Unsafe.class.getDeclaredField("theUnsafe");
3271     f.setAccessible(true);
3272     return (sun.misc.Unsafe) f.get(null);
3273     }});
3274     } catch (java.security.PrivilegedActionException e) {
3275     throw new RuntimeException("Could not initialize intrinsics",
3276     e.getCause());
3277     }
3278     }
3279     }
3280    
3281     }