ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.53
Committed: Mon Aug 13 18:13:30 2012 UTC (11 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.52: +18 -18 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8     import jsr166e.LongAdder;
9 dl 1.52 import jsr166e.ForkJoinPool;
10     import jsr166e.ForkJoinTask;
11    
12     import java.util.Comparator;
13 dl 1.24 import java.util.Arrays;
14 dl 1.1 import java.util.Map;
15     import java.util.Set;
16     import java.util.Collection;
17     import java.util.AbstractMap;
18     import java.util.AbstractSet;
19     import java.util.AbstractCollection;
20     import java.util.Hashtable;
21     import java.util.HashMap;
22     import java.util.Iterator;
23     import java.util.Enumeration;
24     import java.util.ConcurrentModificationException;
25     import java.util.NoSuchElementException;
26     import java.util.concurrent.ConcurrentMap;
27 dl 1.37 import java.util.concurrent.ThreadLocalRandom;
28 dl 1.24 import java.util.concurrent.locks.LockSupport;
29 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
31    
32 dl 1.1 import java.io.Serializable;
33    
34     /**
35     * A hash table supporting full concurrency of retrievals and
36     * high expected concurrency for updates. This class obeys the
37     * same functional specification as {@link java.util.Hashtable}, and
38     * includes versions of methods corresponding to each method of
39     * {@code Hashtable}. However, even though all operations are
40     * thread-safe, retrieval operations do <em>not</em> entail locking,
41     * and there is <em>not</em> any support for locking the entire table
42     * in a way that prevents all access. This class is fully
43     * interoperable with {@code Hashtable} in programs that rely on its
44     * thread safety but not on its synchronization details.
45     *
46     * <p> Retrieval operations (including {@code get}) generally do not
47     * block, so may overlap with update operations (including {@code put}
48     * and {@code remove}). Retrievals reflect the results of the most
49     * recently <em>completed</em> update operations holding upon their
50     * onset. For aggregate operations such as {@code putAll} and {@code
51     * clear}, concurrent retrievals may reflect insertion or removal of
52     * only some entries. Similarly, Iterators and Enumerations return
53     * elements reflecting the state of the hash table at some point at or
54     * since the creation of the iterator/enumeration. They do
55     * <em>not</em> throw {@link ConcurrentModificationException}.
56     * However, iterators are designed to be used by only one thread at a
57     * time. Bear in mind that the results of aggregate status methods
58     * including {@code size}, {@code isEmpty}, and {@code containsValue}
59     * are typically useful only when a map is not undergoing concurrent
60     * updates in other threads. Otherwise the results of these methods
61     * reflect transient states that may be adequate for monitoring
62 dl 1.16 * or estimation purposes, but not for program control.
63 dl 1.1 *
64 dl 1.16 * <p> The table is dynamically expanded when there are too many
65     * collisions (i.e., keys that have distinct hash codes but fall into
66     * the same slot modulo the table size), with the expected average
67 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
68     * to a 0.75 load factor threshold for resizing). There may be much
69     * variance around this average as mappings are added and removed, but
70     * overall, this maintains a commonly accepted time/space tradeoff for
71     * hash tables. However, resizing this or any other kind of hash
72     * table may be a relatively slow operation. When possible, it is a
73     * good idea to provide a size estimate as an optional {@code
74 dl 1.16 * initialCapacity} constructor argument. An additional optional
75     * {@code loadFactor} constructor argument provides a further means of
76     * customizing initial table capacity by specifying the table density
77     * to be used in calculating the amount of space to allocate for the
78     * given number of elements. Also, for compatibility with previous
79     * versions of this class, constructors may optionally specify an
80     * expected {@code concurrencyLevel} as an additional hint for
81     * internal sizing. Note that using many keys with exactly the same
82 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
83 dl 1.16 * hash table.
84 dl 1.1 *
85     * <p>This class and its views and iterators implement all of the
86     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
87     * interfaces.
88     *
89     * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
90     * does <em>not</em> allow {@code null} to be used as a key or value.
91     *
92     * <p>This class is a member of the
93     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
94     * Java Collections Framework</a>.
95     *
96     * <p><em>jsr166e note: This class is a candidate replacement for
97 dl 1.52 * java.util.concurrent.ConcurrentHashMap. During transition, this
98     * class declares and uses nested functional interfaces with different
99     * names but the same forms as those expected for JDK8.<em>
100 dl 1.1 *
101 jsr166 1.22 * @since 1.5
102 dl 1.1 * @author Doug Lea
103     * @param <K> the type of keys maintained by this map
104     * @param <V> the type of mapped values
105     */
106     public class ConcurrentHashMapV8<K, V>
107 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
108 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
109    
110     /**
111 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
112     * directly, but can also be partitioned (before traversal) by
113     * creating another Spliterator that covers a non-overlapping
114     * portion of the elements, and so may be amenable to parallel
115     * execution.
116     *
117     * <p> This interface exports a subset of expected JDK8
118     * functionality.
119     *
120     * <p>Sample usage: Here is one (of the several) ways to compute
121     * the sum of the values held in a map using the ForkJoin
122     * framework. As illustrated here, Spliterators are well suited to
123     * designs in which a task repeatedly splits off half its work
124     * into forked subtasks until small enough to process directly,
125 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
126     * be used in completion-based designs.
127 dl 1.41 *
128     * <pre>
129     * {@code ConcurrentHashMapV8<String, Long> m = ...
130 dl 1.52 * // split as if have 8 * parallelism, for load balance
131     * int n = m.size();
132     * int p = aForkJoinPool.getParallelism() * 8;
133     * int split = (n < p)? n : p;
134     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
135 dl 1.41 * // ...
136     * static class SumValues extends RecursiveTask<Long> {
137     * final Spliterator<Long> s;
138 dl 1.52 * final int split; // split while > 1
139 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
140     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
141     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
142     * }
143     * public Long compute() {
144     * long sum = 0;
145     * SumValues subtasks = null; // fork subtasks
146 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
147     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
148 dl 1.41 * while (s.hasNext()) // directly process remaining elements
149     * sum += s.next();
150     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
151     * sum += t.join(); // collect subtask results
152     * return sum;
153     * }
154     * }
155     * }</pre>
156     */
157     public static interface Spliterator<T> extends Iterator<T> {
158     /**
159     * Returns a Spliterator covering approximately half of the
160     * elements, guaranteed not to overlap with those subsequently
161     * returned by this Spliterator. After invoking this method,
162     * the current Spliterator will <em>not</em> produce any of
163     * the elements of the returned Spliterator, but the two
164     * Spliterators together will produce all of the elements that
165     * would have been produced by this Spliterator had this
166     * method not been called. The exact number of elements
167     * produced by the returned Spliterator is not guaranteed, and
168     * may be zero (i.e., with {@code hasNext()} reporting {@code
169     * false}) if this Spliterator cannot be further split.
170     *
171     * @return a Spliterator covering approximately half of the
172     * elements
173     * @throws IllegalStateException if this Spliterator has
174 jsr166 1.45 * already commenced traversing elements
175 dl 1.41 */
176     Spliterator<T> split();
177     }
178    
179 dl 1.1 /*
180     * Overview:
181     *
182     * The primary design goal of this hash table is to maintain
183     * concurrent readability (typically method get(), but also
184     * iterators and related methods) while minimizing update
185 dl 1.24 * contention. Secondary goals are to keep space consumption about
186     * the same or better than java.util.HashMap, and to support high
187     * initial insertion rates on an empty table by many threads.
188 dl 1.1 *
189     * Each key-value mapping is held in a Node. Because Node fields
190     * can contain special values, they are defined using plain Object
191     * types. Similarly in turn, all internal methods that use them
192 dl 1.14 * work off Object types. And similarly, so do the internal
193     * methods of auxiliary iterator and view classes. All public
194     * generic typed methods relay in/out of these internal methods,
195 dl 1.27 * supplying null-checks and casts as needed. This also allows
196     * many of the public methods to be factored into a smaller number
197     * of internal methods (although sadly not so for the five
198 dl 1.38 * variants of put-related operations). The validation-based
199     * approach explained below leads to a lot of code sprawl because
200     * retry-control precludes factoring into smaller methods.
201 dl 1.1 *
202     * The table is lazily initialized to a power-of-two size upon the
203 dl 1.38 * first insertion. Each bin in the table normally contains a
204     * list of Nodes (most often, the list has only zero or one Node).
205     * Table accesses require volatile/atomic reads, writes, and
206     * CASes. Because there is no other way to arrange this without
207     * adding further indirections, we use intrinsics
208     * (sun.misc.Unsafe) operations. The lists of nodes within bins
209     * are always accurately traversable under volatile reads, so long
210     * as lookups check hash code and non-nullness of value before
211     * checking key equality.
212 dl 1.24 *
213     * We use the top two bits of Node hash fields for control
214     * purposes -- they are available anyway because of addressing
215     * constraints. As explained further below, these top bits are
216 dl 1.27 * used as follows:
217 dl 1.24 * 00 - Normal
218     * 01 - Locked
219     * 11 - Locked and may have a thread waiting for lock
220     * 10 - Node is a forwarding node
221     *
222     * The lower 30 bits of each Node's hash field contain a
223 dl 1.38 * transformation of the key's hash code, except for forwarding
224     * nodes, for which the lower bits are zero (and so always have
225     * hash field == MOVED).
226 dl 1.14 *
227 dl 1.27 * Insertion (via put or its variants) of the first node in an
228 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
229 dl 1.38 * by far the most common case for put operations under most
230     * key/hash distributions. Other update operations (insert,
231     * delete, and replace) require locks. We do not want to waste
232     * the space required to associate a distinct lock object with
233     * each bin, so instead use the first node of a bin list itself as
234     * a lock. Blocking support for these locks relies on the builtin
235     * "synchronized" monitors. However, we also need a tryLock
236     * construction, so we overlay these by using bits of the Node
237     * hash field for lock control (see above), and so normally use
238     * builtin monitors only for blocking and signalling using
239     * wait/notifyAll constructions. See Node.tryAwaitLock.
240 dl 1.24 *
241     * Using the first node of a list as a lock does not by itself
242     * suffice though: When a node is locked, any update must first
243     * validate that it is still the first node after locking it, and
244     * retry if not. Because new nodes are always appended to lists,
245     * once a node is first in a bin, it remains first until deleted
246 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
247     * operations that only conditionally update may inspect nodes
248     * until the point of update. This is a converse of sorts to the
249     * lazy locking technique described by Herlihy & Shavit.
250 dl 1.14 *
251 dl 1.24 * The main disadvantage of per-bin locks is that other update
252 dl 1.14 * operations on other nodes in a bin list protected by the same
253     * lock can stall, for example when user equals() or mapping
254 dl 1.38 * functions take a long time. However, statistically, under
255     * random hash codes, this is not a common problem. Ideally, the
256     * frequency of nodes in bins follows a Poisson distribution
257 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
258 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
259     * of 0.75, although with a large variance because of resizing
260     * granularity. Ignoring variance, the expected occurrences of
261     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
262 dl 1.38 * first values are:
263 dl 1.16 *
264 dl 1.38 * 0: 0.60653066
265     * 1: 0.30326533
266     * 2: 0.07581633
267     * 3: 0.01263606
268     * 4: 0.00157952
269     * 5: 0.00015795
270     * 6: 0.00001316
271     * 7: 0.00000094
272     * 8: 0.00000006
273     * more: less than 1 in ten million
274 dl 1.16 *
275     * Lock contention probability for two threads accessing distinct
276 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
277     *
278     * Actual hash code distributions encountered in practice
279     * sometimes deviate significantly from uniform randomness. This
280     * includes the case when N > (1<<30), so some keys MUST collide.
281     * Similarly for dumb or hostile usages in which multiple keys are
282     * designed to have identical hash codes. Also, although we guard
283     * against the worst effects of this (see method spread), sets of
284     * hashes may differ only in bits that do not impact their bin
285     * index for a given power-of-two mask. So we use a secondary
286     * strategy that applies when the number of nodes in a bin exceeds
287     * a threshold, and at least one of the keys implements
288     * Comparable. These TreeBins use a balanced tree to hold nodes
289     * (a specialized form of red-black trees), bounding search time
290     * to O(log N). Each search step in a TreeBin is around twice as
291     * slow as in a regular list, but given that N cannot exceed
292     * (1<<64) (before running out of addresses) this bounds search
293     * steps, lock hold times, etc, to reasonable constants (roughly
294     * 100 nodes inspected per operation worst case) so long as keys
295     * are Comparable (which is very common -- String, Long, etc).
296     * TreeBin nodes (TreeNodes) also maintain the same "next"
297     * traversal pointers as regular nodes, so can be traversed in
298     * iterators in the same way.
299 dl 1.1 *
300 dl 1.38 * The table is resized when occupancy exceeds a percentage
301 dl 1.24 * threshold (nominally, 0.75, but see below). Only a single
302     * thread performs the resize (using field "sizeCtl", to arrange
303     * exclusion), but the table otherwise remains usable for reads
304     * and updates. Resizing proceeds by transferring bins, one by
305     * one, from the table to the next table. Because we are using
306     * power-of-two expansion, the elements from each bin must either
307     * stay at same index, or move with a power of two offset. We
308     * eliminate unnecessary node creation by catching cases where old
309     * nodes can be reused because their next fields won't change. On
310     * average, only about one-sixth of them need cloning when a table
311     * doubles. The nodes they replace will be garbage collectable as
312     * soon as they are no longer referenced by any reader thread that
313     * may be in the midst of concurrently traversing table. Upon
314     * transfer, the old table bin contains only a special forwarding
315     * node (with hash field "MOVED") that contains the next table as
316     * its key. On encountering a forwarding node, access and update
317     * operations restart, using the new table.
318     *
319     * Each bin transfer requires its bin lock. However, unlike other
320     * cases, a transfer can skip a bin if it fails to acquire its
321 dl 1.38 * lock, and revisit it later (unless it is a TreeBin). Method
322     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
323     * have been skipped because of failure to acquire a lock, and
324     * blocks only if none are available (i.e., only very rarely).
325     * The transfer operation must also ensure that all accessible
326     * bins in both the old and new table are usable by any traversal.
327     * When there are no lock acquisition failures, this is arranged
328     * simply by proceeding from the last bin (table.length - 1) up
329     * towards the first. Upon seeing a forwarding node, traversals
330 dl 1.52 * (see class Iter) arrange to move to the new table
331 dl 1.38 * without revisiting nodes. However, when any node is skipped
332     * during a transfer, all earlier table bins may have become
333     * visible, so are initialized with a reverse-forwarding node back
334     * to the old table until the new ones are established. (This
335     * sometimes requires transiently locking a forwarding node, which
336     * is possible under the above encoding.) These more expensive
337 dl 1.24 * mechanics trigger only when necessary.
338 dl 1.14 *
339 dl 1.24 * The traversal scheme also applies to partial traversals of
340 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
341 dl 1.41 * to support partitioned aggregate operations. Also, read-only
342     * operations give up if ever forwarded to a null table, which
343     * provides support for shutdown-style clearing, which is also not
344     * currently implemented.
345 dl 1.14 *
346     * Lazy table initialization minimizes footprint until first use,
347     * and also avoids resizings when the first operation is from a
348     * putAll, constructor with map argument, or deserialization.
349 dl 1.24 * These cases attempt to override the initial capacity settings,
350     * but harmlessly fail to take effect in cases of races.
351 dl 1.1 *
352     * The element count is maintained using a LongAdder, which avoids
353     * contention on updates but can encounter cache thrashing if read
354 dl 1.14 * too frequently during concurrent access. To avoid reading so
355 dl 1.27 * often, resizing is attempted either when a bin lock is
356     * contended, or upon adding to a bin already holding two or more
357     * nodes (checked before adding in the xIfAbsent methods, after
358     * adding in others). Under uniform hash distributions, the
359     * probability of this occurring at threshold is around 13%,
360     * meaning that only about 1 in 8 puts check threshold (and after
361     * resizing, many fewer do so). But this approximation has high
362     * variance for small table sizes, so we check on any collision
363     * for sizes <= 64. The bulk putAll operation further reduces
364     * contention by only committing count updates upon these size
365     * checks.
366 dl 1.14 *
367     * Maintaining API and serialization compatibility with previous
368     * versions of this class introduces several oddities. Mainly: We
369     * leave untouched but unused constructor arguments refering to
370 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
371     * but apply it only to initial table capacity (which is the only
372     * time that we can guarantee to honor it.) We also declare an
373     * unused "Segment" class that is instantiated in minimal form
374     * only when serializing.
375 dl 1.1 */
376    
377     /* ---------------- Constants -------------- */
378    
379     /**
380 dl 1.16 * The largest possible table capacity. This value must be
381     * exactly 1<<30 to stay within Java array allocation and indexing
382 dl 1.24 * bounds for power of two table sizes, and is further required
383     * because the top two bits of 32bit hash fields are used for
384     * control purposes.
385 dl 1.1 */
386 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
387 dl 1.1
388     /**
389 dl 1.14 * The default initial table capacity. Must be a power of 2
390     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
391 dl 1.1 */
392 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
393 dl 1.1
394     /**
395 dl 1.24 * The largest possible (non-power of two) array size.
396     * Needed by toArray and related methods.
397     */
398     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
399    
400     /**
401     * The default concurrency level for this table. Unused but
402     * defined for compatibility with previous versions of this class.
403     */
404     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
405    
406     /**
407 dl 1.16 * The load factor for this table. Overrides of this value in
408     * constructors affect only the initial table capacity. The
409 dl 1.24 * actual floating point value isn't normally used -- it is
410     * simpler to use expressions such as {@code n - (n >>> 2)} for
411     * the associated resizing threshold.
412 dl 1.1 */
413 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
414 dl 1.1
415     /**
416 dl 1.24 * The buffer size for skipped bins during transfers. The
417     * value is arbitrary but should be large enough to avoid
418     * most locking stalls during resizes.
419     */
420     private static final int TRANSFER_BUFFER_SIZE = 32;
421    
422 dl 1.38 /**
423     * The bin count threshold for using a tree rather than list for a
424     * bin. The value reflects the approximate break-even point for
425     * using tree-based operations.
426     */
427     private static final int TREE_THRESHOLD = 8;
428    
429 dl 1.24 /*
430     * Encodings for special uses of Node hash fields. See above for
431     * explanation.
432 dl 1.1 */
433 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
434 dl 1.24 static final int LOCKED = 0x40000000; // set/tested only as a bit
435     static final int WAITING = 0xc0000000; // both bits set/tested together
436     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
437    
438     /* ---------------- Fields -------------- */
439    
440     /**
441     * The array of bins. Lazily initialized upon first insertion.
442     * Size is always a power of two. Accessed directly by iterators.
443     */
444     transient volatile Node[] table;
445 dl 1.14
446 dl 1.16 /**
447 dl 1.24 * The counter maintaining number of elements.
448 dl 1.16 */
449 dl 1.24 private transient final LongAdder counter;
450    
451     /**
452     * Table initialization and resizing control. When negative, the
453     * table is being initialized or resized. Otherwise, when table is
454     * null, holds the initial table size to use upon creation, or 0
455     * for default. After initialization, holds the next element count
456     * value upon which to resize the table.
457     */
458     private transient volatile int sizeCtl;
459    
460     // views
461     private transient KeySet<K,V> keySet;
462     private transient Values<K,V> values;
463     private transient EntrySet<K,V> entrySet;
464    
465     /** For serialization compatibility. Null unless serialized; see below */
466     private Segment<K,V>[] segments;
467 dl 1.16
468 dl 1.38 /* ---------------- Table element access -------------- */
469    
470     /*
471     * Volatile access methods are used for table elements as well as
472     * elements of in-progress next table while resizing. Uses are
473     * null checked by callers, and implicitly bounds-checked, relying
474     * on the invariants that tab arrays have non-zero size, and all
475     * indices are masked with (tab.length - 1) which is never
476     * negative and always less than length. Note that, to be correct
477     * wrt arbitrary concurrency errors by users, bounds checks must
478     * operate on local variables, which accounts for some odd-looking
479     * inline assignments below.
480     */
481    
482 dl 1.52 static final Node tabAt(Node[] tab, int i) { // used by Iter
483 dl 1.38 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
484     }
485    
486     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
487     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
488     }
489    
490     private static final void setTabAt(Node[] tab, int i, Node v) {
491     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
492     }
493    
494 dl 1.14 /* ---------------- Nodes -------------- */
495 dl 1.1
496     /**
497 dl 1.14 * Key-value entry. Note that this is never exported out as a
498 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
499     * field of MOVED are special, and do not contain user keys or
500     * values. Otherwise, keys are never null, and null val fields
501     * indicate that a node is in the process of being deleted or
502     * created. For purposes of read-only access, a key may be read
503     * before a val, but can only be used after checking val to be
504     * non-null.
505 dl 1.1 */
506 dl 1.38 static class Node {
507 dl 1.24 volatile int hash;
508 dl 1.14 final Object key;
509     volatile Object val;
510     volatile Node next;
511    
512     Node(int hash, Object key, Object val, Node next) {
513     this.hash = hash;
514     this.key = key;
515     this.val = val;
516     this.next = next;
517     }
518    
519 dl 1.24 /** CompareAndSet the hash field */
520     final boolean casHash(int cmp, int val) {
521     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
522     }
523 dl 1.1
524 dl 1.24 /** The number of spins before blocking for a lock */
525     static final int MAX_SPINS =
526     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
527 dl 1.1
528 dl 1.24 /**
529     * Spins a while if LOCKED bit set and this node is the first
530     * of its bin, and then sets WAITING bits on hash field and
531     * blocks (once) if they are still set. It is OK for this
532     * method to return even if lock is not available upon exit,
533     * which enables these simple single-wait mechanics.
534     *
535     * The corresponding signalling operation is performed within
536     * callers: Upon detecting that WAITING has been set when
537     * unlocking lock (via a failed CAS from non-waiting LOCKED
538     * state), unlockers acquire the sync lock and perform a
539     * notifyAll.
540     */
541     final void tryAwaitLock(Node[] tab, int i) {
542     if (tab != null && i >= 0 && i < tab.length) { // bounds check
543 dl 1.37 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
544 dl 1.24 int spins = MAX_SPINS, h;
545     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
546     if (spins >= 0) {
547 dl 1.37 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
548     if (r >= 0 && --spins == 0)
549     Thread.yield(); // yield before block
550 dl 1.24 }
551     else if (casHash(h, h | WAITING)) {
552 jsr166 1.26 synchronized (this) {
553 dl 1.24 if (tabAt(tab, i) == this &&
554     (hash & WAITING) == WAITING) {
555     try {
556     wait();
557     } catch (InterruptedException ie) {
558     Thread.currentThread().interrupt();
559     }
560     }
561     else
562     notifyAll(); // possibly won race vs signaller
563     }
564     break;
565     }
566     }
567     }
568     }
569 dl 1.1
570 dl 1.24 // Unsafe mechanics for casHash
571     private static final sun.misc.Unsafe UNSAFE;
572     private static final long hashOffset;
573 dl 1.1
574 dl 1.24 static {
575     try {
576     UNSAFE = getUnsafe();
577     Class<?> k = Node.class;
578     hashOffset = UNSAFE.objectFieldOffset
579     (k.getDeclaredField("hash"));
580     } catch (Exception e) {
581     throw new Error(e);
582     }
583     }
584     }
585 dl 1.1
586 dl 1.38 /* ---------------- TreeBins -------------- */
587    
588     /**
589     * Nodes for use in TreeBins
590     */
591     static final class TreeNode extends Node {
592     TreeNode parent; // red-black tree links
593     TreeNode left;
594     TreeNode right;
595     TreeNode prev; // needed to unlink next upon deletion
596     boolean red;
597    
598     TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
599     super(hash, key, val, next);
600     this.parent = parent;
601     }
602     }
603 dl 1.1
604 dl 1.38 /**
605     * A specialized form of red-black tree for use in bins
606     * whose size exceeds a threshold.
607     *
608     * TreeBins use a special form of comparison for search and
609     * related operations (which is the main reason we cannot use
610     * existing collections such as TreeMaps). TreeBins contain
611     * Comparable elements, but may contain others, as well as
612     * elements that are Comparable but not necessarily Comparable<T>
613     * for the same T, so we cannot invoke compareTo among them. To
614     * handle this, the tree is ordered primarily by hash value, then
615     * by getClass().getName() order, and then by Comparator order
616     * among elements of the same class. On lookup at a node, if
617 dl 1.41 * elements are not comparable or compare as 0, both left and
618     * right children may need to be searched in the case of tied hash
619     * values. (This corresponds to the full list search that would be
620     * necessary if all elements were non-Comparable and had tied
621     * hashes.) The red-black balancing code is updated from
622     * pre-jdk-collections
623     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
624     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
625     * Algorithms" (CLR).
626 dl 1.38 *
627     * TreeBins also maintain a separate locking discipline than
628     * regular bins. Because they are forwarded via special MOVED
629     * nodes at bin heads (which can never change once established),
630 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
631 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
632     * read-write lock. For update operations and table validation,
633     * the exclusive form of lock behaves in the same way as bin-head
634     * locks. However, lookups use shared read-lock mechanics to allow
635     * multiple readers in the absence of writers. Additionally,
636     * these lookups do not ever block: While the lock is not
637     * available, they proceed along the slow traversal path (via
638     * next-pointers) until the lock becomes available or the list is
639     * exhausted, whichever comes first. (These cases are not fast,
640     * but maximize aggregate expected throughput.) The AQS mechanics
641     * for doing this are straightforward. The lock state is held as
642     * AQS getState(). Read counts are negative; the write count (1)
643     * is positive. There are no signalling preferences among readers
644     * and writers. Since we don't need to export full Lock API, we
645     * just override the minimal AQS methods and use them directly.
646 dl 1.1 */
647 dl 1.38 static final class TreeBin extends AbstractQueuedSynchronizer {
648     private static final long serialVersionUID = 2249069246763182397L;
649 dl 1.41 transient TreeNode root; // root of tree
650     transient TreeNode first; // head of next-pointer list
651 dl 1.1
652 dl 1.38 /* AQS overrides */
653     public final boolean isHeldExclusively() { return getState() > 0; }
654     public final boolean tryAcquire(int ignore) {
655     if (compareAndSetState(0, 1)) {
656     setExclusiveOwnerThread(Thread.currentThread());
657     return true;
658     }
659     return false;
660     }
661     public final boolean tryRelease(int ignore) {
662     setExclusiveOwnerThread(null);
663     setState(0);
664     return true;
665     }
666     public final int tryAcquireShared(int ignore) {
667     for (int c;;) {
668     if ((c = getState()) > 0)
669     return -1;
670     if (compareAndSetState(c, c -1))
671     return 1;
672     }
673     }
674     public final boolean tryReleaseShared(int ignore) {
675     int c;
676     do {} while (!compareAndSetState(c = getState(), c + 1));
677     return c == -1;
678     }
679    
680 dl 1.41 /** From CLR */
681     private void rotateLeft(TreeNode p) {
682     if (p != null) {
683     TreeNode r = p.right, pp, rl;
684     if ((rl = p.right = r.left) != null)
685     rl.parent = p;
686     if ((pp = r.parent = p.parent) == null)
687     root = r;
688     else if (pp.left == p)
689     pp.left = r;
690     else
691     pp.right = r;
692     r.left = p;
693     p.parent = r;
694     }
695     }
696    
697     /** From CLR */
698     private void rotateRight(TreeNode p) {
699     if (p != null) {
700     TreeNode l = p.left, pp, lr;
701     if ((lr = p.left = l.right) != null)
702     lr.parent = p;
703     if ((pp = l.parent = p.parent) == null)
704     root = l;
705     else if (pp.right == p)
706     pp.right = l;
707     else
708     pp.left = l;
709     l.right = p;
710     p.parent = l;
711     }
712     }
713    
714 dl 1.38 /**
715     * Return the TreeNode (or null if not found) for the given key
716     * starting at given root.
717     */
718     @SuppressWarnings("unchecked") // suppress Comparable cast warning
719 dl 1.52 final TreeNode getTreeNode(int h, Object k, TreeNode p) {
720 dl 1.38 Class<?> c = k.getClass();
721     while (p != null) {
722 dl 1.41 int dir, ph; Object pk; Class<?> pc;
723     if ((ph = p.hash) == h) {
724     if ((pk = p.key) == k || k.equals(pk))
725     return p;
726     if (c != (pc = pk.getClass()) ||
727     !(k instanceof Comparable) ||
728     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
729 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
730 dl 1.41 TreeNode r = null, s = null, pl, pr;
731     if (dir >= 0) {
732     if ((pl = p.left) != null && h <= pl.hash)
733     s = pl;
734     }
735     else if ((pr = p.right) != null && h >= pr.hash)
736     s = pr;
737     if (s != null && (r = getTreeNode(h, k, s)) != null)
738     return r;
739     }
740     }
741 dl 1.38 else
742 dl 1.41 dir = (h < ph) ? -1 : 1;
743     p = (dir > 0) ? p.right : p.left;
744 dl 1.38 }
745     return null;
746     }
747    
748     /**
749     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
750     * read-lock to call getTreeNode, but during failure to get
751     * lock, searches along next links.
752     */
753     final Object getValue(int h, Object k) {
754     Node r = null;
755     int c = getState(); // Must read lock state first
756     for (Node e = first; e != null; e = e.next) {
757     if (c <= 0 && compareAndSetState(c, c - 1)) {
758     try {
759     r = getTreeNode(h, k, root);
760     } finally {
761     releaseShared(0);
762     }
763     break;
764     }
765     else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
766     r = e;
767     break;
768     }
769     else
770     c = getState();
771     }
772     return r == null ? null : r.val;
773     }
774    
775     /**
776 jsr166 1.45 * Finds or adds a node.
777 dl 1.38 * @return null if added
778     */
779     @SuppressWarnings("unchecked") // suppress Comparable cast warning
780 dl 1.52 final TreeNode putTreeNode(int h, Object k, Object v) {
781 dl 1.38 Class<?> c = k.getClass();
782 dl 1.41 TreeNode pp = root, p = null;
783 dl 1.38 int dir = 0;
784 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
785     int ph; Object pk; Class<?> pc;
786     p = pp;
787     if ((ph = p.hash) == h) {
788     if ((pk = p.key) == k || k.equals(pk))
789 dl 1.38 return p;
790 dl 1.41 if (c != (pc = pk.getClass()) ||
791     !(k instanceof Comparable) ||
792     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
793 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
794 dl 1.41 TreeNode r = null, s = null, pl, pr;
795     if (dir >= 0) {
796     if ((pl = p.left) != null && h <= pl.hash)
797     s = pl;
798     }
799     else if ((pr = p.right) != null && h >= pr.hash)
800     s = pr;
801     if (s != null && (r = getTreeNode(h, k, s)) != null)
802     return r;
803 dl 1.38 }
804     }
805 dl 1.41 else
806     dir = (h < ph) ? -1 : 1;
807     pp = (dir > 0) ? p.right : p.left;
808 dl 1.38 }
809 dl 1.41
810 dl 1.38 TreeNode f = first;
811 dl 1.41 TreeNode x = first = new TreeNode(h, k, v, f, p);
812 dl 1.38 if (p == null)
813 dl 1.41 root = x;
814     else { // attach and rebalance; adapted from CLR
815     TreeNode xp, xpp;
816     if (f != null)
817     f.prev = x;
818 dl 1.38 if (dir <= 0)
819 dl 1.41 p.left = x;
820 dl 1.38 else
821 dl 1.41 p.right = x;
822     x.red = true;
823     while (x != null && (xp = x.parent) != null && xp.red &&
824     (xpp = xp.parent) != null) {
825     TreeNode xppl = xpp.left;
826     if (xp == xppl) {
827     TreeNode y = xpp.right;
828     if (y != null && y.red) {
829     y.red = false;
830     xp.red = false;
831     xpp.red = true;
832     x = xpp;
833     }
834     else {
835     if (x == xp.right) {
836     rotateLeft(x = xp);
837     xpp = (xp = x.parent) == null ? null : xp.parent;
838     }
839     if (xp != null) {
840     xp.red = false;
841     if (xpp != null) {
842     xpp.red = true;
843     rotateRight(xpp);
844     }
845     }
846     }
847     }
848     else {
849     TreeNode y = xppl;
850     if (y != null && y.red) {
851     y.red = false;
852     xp.red = false;
853     xpp.red = true;
854     x = xpp;
855     }
856     else {
857     if (x == xp.left) {
858     rotateRight(x = xp);
859     xpp = (xp = x.parent) == null ? null : xp.parent;
860     }
861     if (xp != null) {
862     xp.red = false;
863     if (xpp != null) {
864     xpp.red = true;
865     rotateLeft(xpp);
866     }
867     }
868     }
869     }
870     }
871     TreeNode r = root;
872     if (r != null && r.red)
873     r.red = false;
874 dl 1.38 }
875     return null;
876     }
877 dl 1.1
878 dl 1.38 /**
879     * Removes the given node, that must be present before this
880     * call. This is messier than typical red-black deletion code
881     * because we cannot swap the contents of an interior node
882     * with a leaf successor that is pinned by "next" pointers
883     * that are accessible independently of lock. So instead we
884     * swap the tree linkages.
885     */
886     final void deleteTreeNode(TreeNode p) {
887     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
888     TreeNode pred = p.prev;
889     if (pred == null)
890     first = next;
891     else
892     pred.next = next;
893     if (next != null)
894     next.prev = pred;
895     TreeNode replacement;
896     TreeNode pl = p.left;
897     TreeNode pr = p.right;
898     if (pl != null && pr != null) {
899 dl 1.41 TreeNode s = pr, sl;
900     while ((sl = s.left) != null) // find successor
901     s = sl;
902 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
903     TreeNode sr = s.right;
904     TreeNode pp = p.parent;
905     if (s == pr) { // p was s's direct parent
906     p.parent = s;
907     s.right = p;
908     }
909     else {
910     TreeNode sp = s.parent;
911     if ((p.parent = sp) != null) {
912     if (s == sp.left)
913     sp.left = p;
914     else
915     sp.right = p;
916     }
917     if ((s.right = pr) != null)
918     pr.parent = s;
919     }
920     p.left = null;
921     if ((p.right = sr) != null)
922     sr.parent = p;
923     if ((s.left = pl) != null)
924     pl.parent = s;
925     if ((s.parent = pp) == null)
926     root = s;
927     else if (p == pp.left)
928     pp.left = s;
929     else
930     pp.right = s;
931     replacement = sr;
932     }
933     else
934     replacement = (pl != null) ? pl : pr;
935     TreeNode pp = p.parent;
936     if (replacement == null) {
937     if (pp == null) {
938     root = null;
939     return;
940     }
941     replacement = p;
942     }
943     else {
944     replacement.parent = pp;
945     if (pp == null)
946     root = replacement;
947     else if (p == pp.left)
948     pp.left = replacement;
949     else
950     pp.right = replacement;
951     p.left = p.right = p.parent = null;
952     }
953 dl 1.41 if (!p.red) { // rebalance, from CLR
954     TreeNode x = replacement;
955     while (x != null) {
956     TreeNode xp, xpl;
957     if (x.red || (xp = x.parent) == null) {
958     x.red = false;
959     break;
960 dl 1.38 }
961 dl 1.41 if (x == (xpl = xp.left)) {
962     TreeNode sib = xp.right;
963     if (sib != null && sib.red) {
964     sib.red = false;
965     xp.red = true;
966     rotateLeft(xp);
967     sib = (xp = x.parent) == null ? null : xp.right;
968 dl 1.38 }
969 dl 1.41 if (sib == null)
970 dl 1.38 x = xp;
971     else {
972 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
973     if ((sr == null || !sr.red) &&
974     (sl == null || !sl.red)) {
975 dl 1.38 sib.red = true;
976 dl 1.41 x = xp;
977 dl 1.38 }
978 dl 1.41 else {
979     if (sr == null || !sr.red) {
980     if (sl != null)
981     sl.red = false;
982     sib.red = true;
983     rotateRight(sib);
984     sib = (xp = x.parent) == null ? null : xp.right;
985     }
986     if (sib != null) {
987 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
988 dl 1.41 if ((sr = sib.right) != null)
989     sr.red = false;
990     }
991     if (xp != null) {
992     xp.red = false;
993     rotateLeft(xp);
994     }
995     x = root;
996 dl 1.38 }
997     }
998     }
999 dl 1.41 else { // symmetric
1000     TreeNode sib = xpl;
1001     if (sib != null && sib.red) {
1002     sib.red = false;
1003     xp.red = true;
1004     rotateRight(xp);
1005     sib = (xp = x.parent) == null ? null : xp.left;
1006     }
1007     if (sib == null)
1008 dl 1.38 x = xp;
1009     else {
1010 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1011     if ((sl == null || !sl.red) &&
1012     (sr == null || !sr.red)) {
1013 dl 1.38 sib.red = true;
1014 dl 1.41 x = xp;
1015 dl 1.38 }
1016 dl 1.41 else {
1017     if (sl == null || !sl.red) {
1018     if (sr != null)
1019     sr.red = false;
1020     sib.red = true;
1021     rotateLeft(sib);
1022     sib = (xp = x.parent) == null ? null : xp.left;
1023     }
1024     if (sib != null) {
1025 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1026 dl 1.41 if ((sl = sib.left) != null)
1027     sl.red = false;
1028     }
1029     if (xp != null) {
1030     xp.red = false;
1031     rotateRight(xp);
1032     }
1033     x = root;
1034 dl 1.38 }
1035     }
1036     }
1037     }
1038     }
1039 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1040     if (p == pp.left) // detach pointers
1041     pp.left = null;
1042     else if (p == pp.right)
1043     pp.right = null;
1044     p.parent = null;
1045     }
1046 dl 1.38 }
1047 dl 1.1 }
1048    
1049 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1050 dl 1.14
1051     /**
1052 dl 1.38 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1053     * Because the table uses power-of-two masking, sets of hashes
1054     * that vary only in bits above the current mask will always
1055     * collide. (Among known examples are sets of Float keys holding
1056     * consecutive whole numbers in small tables.) To counter this,
1057     * we apply a transform that spreads the impact of higher bits
1058     * downward. There is a tradeoff between speed, utility, and
1059     * quality of bit-spreading. Because many common sets of hashes
1060 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1061 dl 1.38 * from spreading), and because we use trees to handle large sets
1062     * of collisions in bins, we don't need excessively high quality.
1063 dl 1.14 */
1064     private static final int spread(int h) {
1065 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1066     return (h ^ (h >>> 10)) & HASH_BITS;
1067     }
1068    
1069     /**
1070     * Replaces a list bin with a tree bin. Call only when locked.
1071     * Fails to replace if the given key is non-comparable or table
1072     * is, or needs, resizing.
1073     */
1074     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1075     if ((key instanceof Comparable) &&
1076     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1077     TreeBin t = new TreeBin();
1078     for (Node e = tabAt(tab, index); e != null; e = e.next)
1079     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1080     setTabAt(tab, index, new Node(MOVED, t, null, null));
1081     }
1082 dl 1.14 }
1083 dl 1.1
1084 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1085    
1086 dl 1.14 /** Implementation for get and containsKey */
1087 jsr166 1.4 private final Object internalGet(Object k) {
1088 dl 1.1 int h = spread(k.hashCode());
1089 dl 1.14 retry: for (Node[] tab = table; tab != null;) {
1090 dl 1.38 Node e, p; Object ek, ev; int eh; // locals to read fields once
1091 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1092 dl 1.24 if ((eh = e.hash) == MOVED) {
1093 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1094     return ((TreeBin)ek).getValue(h, k);
1095     else { // restart with new table
1096     tab = (Node[])ek;
1097     continue retry;
1098     }
1099 dl 1.1 }
1100 dl 1.38 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1101     ((ek = e.key) == k || k.equals(ek)))
1102 dl 1.24 return ev;
1103 dl 1.1 }
1104     break;
1105     }
1106     return null;
1107     }
1108    
1109 dl 1.27 /**
1110     * Implementation for the four public remove/replace methods:
1111     * Replaces node value with v, conditional upon match of cv if
1112     * non-null. If resulting value is null, delete.
1113     */
1114     private final Object internalReplace(Object k, Object v, Object cv) {
1115     int h = spread(k.hashCode());
1116     Object oldVal = null;
1117     for (Node[] tab = table;;) {
1118 dl 1.38 Node f; int i, fh; Object fk;
1119 dl 1.27 if (tab == null ||
1120     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1121     break;
1122 dl 1.38 else if ((fh = f.hash) == MOVED) {
1123     if ((fk = f.key) instanceof TreeBin) {
1124     TreeBin t = (TreeBin)fk;
1125     boolean validated = false;
1126     boolean deleted = false;
1127     t.acquire(0);
1128     try {
1129     if (tabAt(tab, i) == f) {
1130     validated = true;
1131     TreeNode p = t.getTreeNode(h, k, t.root);
1132     if (p != null) {
1133     Object pv = p.val;
1134     if (cv == null || cv == pv || cv.equals(pv)) {
1135     oldVal = pv;
1136     if ((p.val = v) == null) {
1137     deleted = true;
1138     t.deleteTreeNode(p);
1139     }
1140     }
1141     }
1142     }
1143     } finally {
1144     t.release(0);
1145     }
1146     if (validated) {
1147     if (deleted)
1148     counter.add(-1L);
1149     break;
1150     }
1151     }
1152     else
1153     tab = (Node[])fk;
1154     }
1155 dl 1.27 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1156     break; // rules out possible existence
1157     else if ((fh & LOCKED) != 0) {
1158     checkForResize(); // try resizing if can't get lock
1159     f.tryAwaitLock(tab, i);
1160     }
1161     else if (f.casHash(fh, fh | LOCKED)) {
1162     boolean validated = false;
1163     boolean deleted = false;
1164     try {
1165     if (tabAt(tab, i) == f) {
1166     validated = true;
1167     for (Node e = f, pred = null;;) {
1168     Object ek, ev;
1169     if ((e.hash & HASH_BITS) == h &&
1170     ((ev = e.val) != null) &&
1171     ((ek = e.key) == k || k.equals(ek))) {
1172     if (cv == null || cv == ev || cv.equals(ev)) {
1173     oldVal = ev;
1174     if ((e.val = v) == null) {
1175     deleted = true;
1176     Node en = e.next;
1177     if (pred != null)
1178     pred.next = en;
1179     else
1180     setTabAt(tab, i, en);
1181     }
1182     }
1183     break;
1184     }
1185     pred = e;
1186     if ((e = e.next) == null)
1187     break;
1188     }
1189     }
1190     } finally {
1191     if (!f.casHash(fh | LOCKED, fh)) {
1192     f.hash = fh;
1193 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1194 dl 1.27 }
1195     }
1196     if (validated) {
1197     if (deleted)
1198     counter.add(-1L);
1199     break;
1200     }
1201     }
1202     }
1203     return oldVal;
1204     }
1205    
1206     /*
1207     * Internal versions of the five insertion methods, each a
1208     * little more complicated than the last. All have
1209     * the same basic structure as the first (internalPut):
1210     * 1. If table uninitialized, create
1211     * 2. If bin empty, try to CAS new node
1212     * 3. If bin stale, use new table
1213 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1214     * 5. Lock and validate; if valid, scan and add or update
1215 dl 1.27 *
1216     * The others interweave other checks and/or alternative actions:
1217     * * Plain put checks for and performs resize after insertion.
1218     * * putIfAbsent prescans for mapping without lock (and fails to add
1219     * if present), which also makes pre-emptive resize checks worthwhile.
1220     * * computeIfAbsent extends form used in putIfAbsent with additional
1221     * mechanics to deal with, calls, potential exceptions and null
1222     * returns from function call.
1223     * * compute uses the same function-call mechanics, but without
1224     * the prescans
1225     * * putAll attempts to pre-allocate enough table space
1226     * and more lazily performs count updates and checks.
1227     *
1228     * Someday when details settle down a bit more, it might be worth
1229     * some factoring to reduce sprawl.
1230     */
1231    
1232     /** Implementation for put */
1233     private final Object internalPut(Object k, Object v) {
1234 dl 1.1 int h = spread(k.hashCode());
1235 dl 1.38 int count = 0;
1236 dl 1.14 for (Node[] tab = table;;) {
1237 dl 1.38 int i; Node f; int fh; Object fk;
1238 dl 1.1 if (tab == null)
1239 dl 1.24 tab = initTable();
1240     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1241 dl 1.2 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1242 dl 1.14 break; // no lock when adding to empty bin
1243     }
1244 dl 1.38 else if ((fh = f.hash) == MOVED) {
1245     if ((fk = f.key) instanceof TreeBin) {
1246     TreeBin t = (TreeBin)fk;
1247     Object oldVal = null;
1248     t.acquire(0);
1249     try {
1250     if (tabAt(tab, i) == f) {
1251     count = 2;
1252     TreeNode p = t.putTreeNode(h, k, v);
1253     if (p != null) {
1254     oldVal = p.val;
1255     p.val = v;
1256     }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261     if (count != 0) {
1262     if (oldVal != null)
1263     return oldVal;
1264     break;
1265     }
1266     }
1267     else
1268     tab = (Node[])fk;
1269     }
1270 dl 1.27 else if ((fh & LOCKED) != 0) {
1271     checkForResize();
1272     f.tryAwaitLock(tab, i);
1273 dl 1.1 }
1274 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1275 dl 1.27 Object oldVal = null;
1276     try { // needed in case equals() throws
1277 dl 1.24 if (tabAt(tab, i) == f) {
1278 dl 1.38 count = 1;
1279     for (Node e = f;; ++count) {
1280 dl 1.24 Object ek, ev;
1281     if ((e.hash & HASH_BITS) == h &&
1282     (ev = e.val) != null &&
1283     ((ek = e.key) == k || k.equals(ek))) {
1284 dl 1.1 oldVal = ev;
1285 dl 1.27 e.val = v;
1286 dl 1.10 break;
1287 dl 1.1 }
1288 dl 1.10 Node last = e;
1289     if ((e = e.next) == null) {
1290 dl 1.2 last.next = new Node(h, k, v, null);
1291 dl 1.38 if (count >= TREE_THRESHOLD)
1292     replaceWithTreeBin(tab, i, k);
1293 dl 1.10 break;
1294 dl 1.1 }
1295     }
1296     }
1297 dl 1.24 } finally { // unlock and signal if needed
1298     if (!f.casHash(fh | LOCKED, fh)) {
1299     f.hash = fh;
1300 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1301 dl 1.24 }
1302 dl 1.1 }
1303 dl 1.38 if (count != 0) {
1304 dl 1.27 if (oldVal != null)
1305     return oldVal;
1306 dl 1.38 if (tab.length <= 64)
1307     count = 2;
1308 dl 1.1 break;
1309     }
1310     }
1311     }
1312 dl 1.27 counter.add(1L);
1313 dl 1.38 if (count > 1)
1314 dl 1.27 checkForResize();
1315     return null;
1316 dl 1.1 }
1317    
1318 dl 1.27 /** Implementation for putIfAbsent */
1319     private final Object internalPutIfAbsent(Object k, Object v) {
1320 dl 1.1 int h = spread(k.hashCode());
1321 dl 1.38 int count = 0;
1322 dl 1.14 for (Node[] tab = table;;) {
1323 dl 1.27 int i; Node f; int fh; Object fk, fv;
1324     if (tab == null)
1325     tab = initTable();
1326     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1327     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1328     break;
1329     }
1330 dl 1.38 else if ((fh = f.hash) == MOVED) {
1331     if ((fk = f.key) instanceof TreeBin) {
1332     TreeBin t = (TreeBin)fk;
1333     Object oldVal = null;
1334     t.acquire(0);
1335     try {
1336     if (tabAt(tab, i) == f) {
1337     count = 2;
1338     TreeNode p = t.putTreeNode(h, k, v);
1339     if (p != null)
1340     oldVal = p.val;
1341     }
1342     } finally {
1343     t.release(0);
1344     }
1345     if (count != 0) {
1346     if (oldVal != null)
1347     return oldVal;
1348     break;
1349     }
1350     }
1351     else
1352     tab = (Node[])fk;
1353     }
1354 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1355     ((fk = f.key) == k || k.equals(fk)))
1356     return fv;
1357     else {
1358     Node g = f.next;
1359     if (g != null) { // at least 2 nodes -- search and maybe resize
1360     for (Node e = g;;) {
1361     Object ek, ev;
1362     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1363     ((ek = e.key) == k || k.equals(ek)))
1364     return ev;
1365     if ((e = e.next) == null) {
1366     checkForResize();
1367     break;
1368     }
1369     }
1370     }
1371     if (((fh = f.hash) & LOCKED) != 0) {
1372     checkForResize();
1373     f.tryAwaitLock(tab, i);
1374     }
1375     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1376     Object oldVal = null;
1377     try {
1378     if (tabAt(tab, i) == f) {
1379 dl 1.38 count = 1;
1380     for (Node e = f;; ++count) {
1381 dl 1.27 Object ek, ev;
1382     if ((e.hash & HASH_BITS) == h &&
1383     (ev = e.val) != null &&
1384     ((ek = e.key) == k || k.equals(ek))) {
1385 dl 1.1 oldVal = ev;
1386 dl 1.27 break;
1387     }
1388     Node last = e;
1389     if ((e = e.next) == null) {
1390     last.next = new Node(h, k, v, null);
1391 dl 1.38 if (count >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.27 break;
1394 dl 1.1 }
1395     }
1396 dl 1.27 }
1397     } finally {
1398     if (!f.casHash(fh | LOCKED, fh)) {
1399     f.hash = fh;
1400 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1401 dl 1.24 }
1402     }
1403 dl 1.38 if (count != 0) {
1404 dl 1.27 if (oldVal != null)
1405     return oldVal;
1406 dl 1.38 if (tab.length <= 64)
1407     count = 2;
1408 dl 1.27 break;
1409     }
1410     }
1411     }
1412     }
1413     counter.add(1L);
1414 dl 1.38 if (count > 1)
1415     checkForResize();
1416 dl 1.27 return null;
1417     }
1418    
1419     /** Implementation for computeIfAbsent */
1420     private final Object internalComputeIfAbsent(K k,
1421 dl 1.52 Fun<? super K, ?> mf) {
1422 dl 1.27 int h = spread(k.hashCode());
1423     Object val = null;
1424 dl 1.38 int count = 0;
1425 dl 1.27 for (Node[] tab = table;;) {
1426     Node f; int i, fh; Object fk, fv;
1427     if (tab == null)
1428     tab = initTable();
1429     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1430     Node node = new Node(fh = h | LOCKED, k, null, null);
1431     if (casTabAt(tab, i, null, node)) {
1432 dl 1.38 count = 1;
1433 dl 1.27 try {
1434 dl 1.52 if ((val = mf.apply(k)) != null)
1435 dl 1.27 node.val = val;
1436     } finally {
1437     if (val == null)
1438     setTabAt(tab, i, null);
1439     if (!node.casHash(fh, h)) {
1440     node.hash = h;
1441 jsr166 1.30 synchronized (node) { node.notifyAll(); };
1442 dl 1.27 }
1443 dl 1.1 }
1444     }
1445 dl 1.38 if (count != 0)
1446 dl 1.24 break;
1447 dl 1.27 }
1448 dl 1.38 else if ((fh = f.hash) == MOVED) {
1449     if ((fk = f.key) instanceof TreeBin) {
1450     TreeBin t = (TreeBin)fk;
1451     boolean added = false;
1452     t.acquire(0);
1453     try {
1454     if (tabAt(tab, i) == f) {
1455     count = 1;
1456     TreeNode p = t.getTreeNode(h, k, t.root);
1457     if (p != null)
1458     val = p.val;
1459 dl 1.52 else if ((val = mf.apply(k)) != null) {
1460 dl 1.38 added = true;
1461     count = 2;
1462     t.putTreeNode(h, k, val);
1463     }
1464     }
1465     } finally {
1466     t.release(0);
1467     }
1468     if (count != 0) {
1469     if (!added)
1470     return val;
1471     break;
1472     }
1473     }
1474     else
1475     tab = (Node[])fk;
1476     }
1477 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1478     ((fk = f.key) == k || k.equals(fk)))
1479     return fv;
1480     else {
1481     Node g = f.next;
1482     if (g != null) {
1483     for (Node e = g;;) {
1484     Object ek, ev;
1485     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1486     ((ek = e.key) == k || k.equals(ek)))
1487     return ev;
1488     if ((e = e.next) == null) {
1489     checkForResize();
1490     break;
1491     }
1492     }
1493     }
1494     if (((fh = f.hash) & LOCKED) != 0) {
1495     checkForResize();
1496     f.tryAwaitLock(tab, i);
1497     }
1498     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1499 dl 1.38 boolean added = false;
1500 dl 1.27 try {
1501     if (tabAt(tab, i) == f) {
1502 dl 1.38 count = 1;
1503     for (Node e = f;; ++count) {
1504 dl 1.27 Object ek, ev;
1505     if ((e.hash & HASH_BITS) == h &&
1506     (ev = e.val) != null &&
1507     ((ek = e.key) == k || k.equals(ek))) {
1508     val = ev;
1509     break;
1510     }
1511     Node last = e;
1512     if ((e = e.next) == null) {
1513 dl 1.52 if ((val = mf.apply(k)) != null) {
1514 dl 1.38 added = true;
1515 dl 1.27 last.next = new Node(h, k, val, null);
1516 dl 1.38 if (count >= TREE_THRESHOLD)
1517     replaceWithTreeBin(tab, i, k);
1518     }
1519 dl 1.27 break;
1520     }
1521     }
1522     }
1523     } finally {
1524     if (!f.casHash(fh | LOCKED, fh)) {
1525     f.hash = fh;
1526 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1527 dl 1.27 }
1528     }
1529 dl 1.38 if (count != 0) {
1530     if (!added)
1531     return val;
1532     if (tab.length <= 64)
1533     count = 2;
1534 dl 1.27 break;
1535 dl 1.38 }
1536 dl 1.1 }
1537     }
1538     }
1539 dl 1.41 if (val != null) {
1540     counter.add(1L);
1541     if (count > 1)
1542     checkForResize();
1543     }
1544 dl 1.27 return val;
1545 dl 1.1 }
1546    
1547 dl 1.27 /** Implementation for compute */
1548 dl 1.1 @SuppressWarnings("unchecked")
1549 dl 1.52 private final Object internalCompute(K k, boolean onlyIfPresent,
1550     BiFun<? super K, ? super V, ? extends V> mf) {
1551 dl 1.1 int h = spread(k.hashCode());
1552 dl 1.27 Object val = null;
1553 dl 1.41 int delta = 0;
1554 dl 1.38 int count = 0;
1555 dl 1.27 for (Node[] tab = table;;) {
1556 dl 1.38 Node f; int i, fh; Object fk;
1557 dl 1.1 if (tab == null)
1558 dl 1.24 tab = initTable();
1559     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1560 dl 1.52 if (onlyIfPresent)
1561     break;
1562 dl 1.24 Node node = new Node(fh = h | LOCKED, k, null, null);
1563     if (casTabAt(tab, i, null, node)) {
1564     try {
1565 dl 1.38 count = 1;
1566 dl 1.52 if ((val = mf.apply(k, null)) != null) {
1567 dl 1.24 node.val = val;
1568 dl 1.41 delta = 1;
1569 dl 1.24 }
1570     } finally {
1571 dl 1.41 if (delta == 0)
1572 dl 1.24 setTabAt(tab, i, null);
1573     if (!node.casHash(fh, h)) {
1574 dl 1.25 node.hash = h;
1575 jsr166 1.26 synchronized (node) { node.notifyAll(); };
1576 dl 1.1 }
1577     }
1578     }
1579 dl 1.38 if (count != 0)
1580 dl 1.10 break;
1581 dl 1.1 }
1582 dl 1.38 else if ((fh = f.hash) == MOVED) {
1583     if ((fk = f.key) instanceof TreeBin) {
1584     TreeBin t = (TreeBin)fk;
1585     t.acquire(0);
1586     try {
1587     if (tabAt(tab, i) == f) {
1588     count = 1;
1589     TreeNode p = t.getTreeNode(h, k, t.root);
1590 jsr166 1.39 Object pv = (p == null) ? null : p.val;
1591 dl 1.52 if ((val = mf.apply(k, (V)pv)) != null) {
1592 dl 1.38 if (p != null)
1593     p.val = val;
1594     else {
1595     count = 2;
1596 dl 1.41 delta = 1;
1597 dl 1.38 t.putTreeNode(h, k, val);
1598     }
1599     }
1600 dl 1.41 else if (p != null) {
1601     delta = -1;
1602     t.deleteTreeNode(p);
1603     }
1604 dl 1.38 }
1605     } finally {
1606     t.release(0);
1607     }
1608     if (count != 0)
1609     break;
1610     }
1611     else
1612     tab = (Node[])fk;
1613     }
1614 dl 1.27 else if ((fh & LOCKED) != 0) {
1615     checkForResize();
1616     f.tryAwaitLock(tab, i);
1617 dl 1.14 }
1618 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1619     try {
1620     if (tabAt(tab, i) == f) {
1621 dl 1.38 count = 1;
1622 dl 1.41 for (Node e = f, pred = null;; ++count) {
1623 dl 1.27 Object ek, ev;
1624 dl 1.24 if ((e.hash & HASH_BITS) == h &&
1625     (ev = e.val) != null &&
1626     ((ek = e.key) == k || k.equals(ek))) {
1627 dl 1.52 val = mf.apply(k, (V)ev);
1628 dl 1.27 if (val != null)
1629     e.val = val;
1630 dl 1.41 else {
1631     delta = -1;
1632     Node en = e.next;
1633     if (pred != null)
1634     pred.next = en;
1635     else
1636     setTabAt(tab, i, en);
1637     }
1638 dl 1.10 break;
1639 dl 1.1 }
1640 dl 1.41 pred = e;
1641 dl 1.10 if ((e = e.next) == null) {
1642 dl 1.52 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1643 dl 1.41 pred.next = new Node(h, k, val, null);
1644     delta = 1;
1645 dl 1.38 if (count >= TREE_THRESHOLD)
1646     replaceWithTreeBin(tab, i, k);
1647 dl 1.1 }
1648 dl 1.10 break;
1649 dl 1.1 }
1650     }
1651     }
1652 dl 1.24 } finally {
1653     if (!f.casHash(fh | LOCKED, fh)) {
1654     f.hash = fh;
1655 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1656 dl 1.24 }
1657 dl 1.1 }
1658 dl 1.38 if (count != 0) {
1659     if (tab.length <= 64)
1660     count = 2;
1661 dl 1.10 break;
1662 dl 1.38 }
1663 dl 1.1 }
1664 dl 1.10 }
1665 dl 1.41 if (delta != 0) {
1666     counter.add((long)delta);
1667 dl 1.38 if (count > 1)
1668 dl 1.27 checkForResize();
1669     }
1670 dl 1.1 return val;
1671     }
1672    
1673 dl 1.52 private final Object internalMerge(K k, V v,
1674     BiFun<? super V, ? super V, ? extends V> mf) {
1675     int h = spread(k.hashCode());
1676     Object val = null;
1677     int delta = 0;
1678     int count = 0;
1679     for (Node[] tab = table;;) {
1680     int i; Node f; int fh; Object fk, fv;
1681     if (tab == null)
1682     tab = initTable();
1683     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1684     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1685     delta = 1;
1686     val = v;
1687     break;
1688     }
1689     }
1690     else if ((fh = f.hash) == MOVED) {
1691     if ((fk = f.key) instanceof TreeBin) {
1692     TreeBin t = (TreeBin)fk;
1693     t.acquire(0);
1694     try {
1695     if (tabAt(tab, i) == f) {
1696     count = 1;
1697     TreeNode p = t.getTreeNode(h, k, t.root);
1698     val = (p == null) ? v : mf.apply((V)p.val, v);
1699     if (val != null) {
1700     if (p != null)
1701     p.val = val;
1702     else {
1703     count = 2;
1704     delta = 1;
1705     t.putTreeNode(h, k, val);
1706     }
1707     }
1708     else if (p != null) {
1709     delta = -1;
1710     t.deleteTreeNode(p);
1711     }
1712     }
1713     } finally {
1714     t.release(0);
1715     }
1716     if (count != 0)
1717     break;
1718     }
1719     else
1720     tab = (Node[])fk;
1721     }
1722     else if ((fh & LOCKED) != 0) {
1723     checkForResize();
1724     f.tryAwaitLock(tab, i);
1725     }
1726     else if (f.casHash(fh, fh | LOCKED)) {
1727     try {
1728     if (tabAt(tab, i) == f) {
1729     count = 1;
1730     for (Node e = f, pred = null;; ++count) {
1731     Object ek, ev;
1732     if ((e.hash & HASH_BITS) == h &&
1733     (ev = e.val) != null &&
1734     ((ek = e.key) == k || k.equals(ek))) {
1735     val = mf.apply(v, (V)ev);
1736     if (val != null)
1737     e.val = val;
1738     else {
1739     delta = -1;
1740     Node en = e.next;
1741     if (pred != null)
1742     pred.next = en;
1743     else
1744     setTabAt(tab, i, en);
1745     }
1746     break;
1747     }
1748     pred = e;
1749     if ((e = e.next) == null) {
1750     val = v;
1751     pred.next = new Node(h, k, val, null);
1752     delta = 1;
1753     if (count >= TREE_THRESHOLD)
1754     replaceWithTreeBin(tab, i, k);
1755     break;
1756     }
1757     }
1758     }
1759     } finally {
1760     if (!f.casHash(fh | LOCKED, fh)) {
1761     f.hash = fh;
1762     synchronized (f) { f.notifyAll(); };
1763     }
1764     }
1765     if (count != 0) {
1766     if (tab.length <= 64)
1767     count = 2;
1768     break;
1769     }
1770     }
1771     }
1772     if (delta != 0) {
1773     counter.add((long)delta);
1774     if (count > 1)
1775     checkForResize();
1776     }
1777     return val;
1778     }
1779    
1780 dl 1.27 /** Implementation for putAll */
1781     private final void internalPutAll(Map<?, ?> m) {
1782     tryPresize(m.size());
1783     long delta = 0L; // number of uncommitted additions
1784     boolean npe = false; // to throw exception on exit for nulls
1785     try { // to clean up counts on other exceptions
1786     for (Map.Entry<?, ?> entry : m.entrySet()) {
1787     Object k, v;
1788     if (entry == null || (k = entry.getKey()) == null ||
1789     (v = entry.getValue()) == null) {
1790     npe = true;
1791     break;
1792     }
1793     int h = spread(k.hashCode());
1794     for (Node[] tab = table;;) {
1795 dl 1.38 int i; Node f; int fh; Object fk;
1796 dl 1.27 if (tab == null)
1797     tab = initTable();
1798     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1799     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1800     ++delta;
1801     break;
1802     }
1803     }
1804 dl 1.38 else if ((fh = f.hash) == MOVED) {
1805     if ((fk = f.key) instanceof TreeBin) {
1806     TreeBin t = (TreeBin)fk;
1807     boolean validated = false;
1808     t.acquire(0);
1809     try {
1810     if (tabAt(tab, i) == f) {
1811     validated = true;
1812     TreeNode p = t.getTreeNode(h, k, t.root);
1813     if (p != null)
1814     p.val = v;
1815     else {
1816     t.putTreeNode(h, k, v);
1817     ++delta;
1818     }
1819     }
1820     } finally {
1821     t.release(0);
1822     }
1823     if (validated)
1824     break;
1825     }
1826     else
1827     tab = (Node[])fk;
1828     }
1829 dl 1.27 else if ((fh & LOCKED) != 0) {
1830     counter.add(delta);
1831     delta = 0L;
1832     checkForResize();
1833     f.tryAwaitLock(tab, i);
1834     }
1835     else if (f.casHash(fh, fh | LOCKED)) {
1836 dl 1.38 int count = 0;
1837 dl 1.27 try {
1838     if (tabAt(tab, i) == f) {
1839 dl 1.38 count = 1;
1840     for (Node e = f;; ++count) {
1841 dl 1.27 Object ek, ev;
1842     if ((e.hash & HASH_BITS) == h &&
1843     (ev = e.val) != null &&
1844     ((ek = e.key) == k || k.equals(ek))) {
1845     e.val = v;
1846     break;
1847     }
1848     Node last = e;
1849     if ((e = e.next) == null) {
1850     ++delta;
1851     last.next = new Node(h, k, v, null);
1852 dl 1.38 if (count >= TREE_THRESHOLD)
1853     replaceWithTreeBin(tab, i, k);
1854 dl 1.27 break;
1855     }
1856     }
1857     }
1858     } finally {
1859     if (!f.casHash(fh | LOCKED, fh)) {
1860     f.hash = fh;
1861 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1862 dl 1.27 }
1863     }
1864 dl 1.38 if (count != 0) {
1865     if (count > 1) {
1866 dl 1.27 counter.add(delta);
1867     delta = 0L;
1868     checkForResize();
1869 dl 1.1 }
1870 dl 1.27 break;
1871 dl 1.24 }
1872     }
1873 dl 1.1 }
1874     }
1875 dl 1.27 } finally {
1876     if (delta != 0)
1877     counter.add(delta);
1878 dl 1.1 }
1879 dl 1.27 if (npe)
1880     throw new NullPointerException();
1881 dl 1.1 }
1882    
1883 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
1884 dl 1.24
1885     /**
1886     * Returns a power of two table size for the given desired capacity.
1887     * See Hackers Delight, sec 3.2
1888     */
1889     private static final int tableSizeFor(int c) {
1890     int n = c - 1;
1891     n |= n >>> 1;
1892     n |= n >>> 2;
1893     n |= n >>> 4;
1894     n |= n >>> 8;
1895     n |= n >>> 16;
1896     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1897     }
1898    
1899     /**
1900     * Initializes table, using the size recorded in sizeCtl.
1901     */
1902     private final Node[] initTable() {
1903     Node[] tab; int sc;
1904     while ((tab = table) == null) {
1905     if ((sc = sizeCtl) < 0)
1906     Thread.yield(); // lost initialization race; just spin
1907     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1908     try {
1909     if ((tab = table) == null) {
1910     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1911     tab = table = new Node[n];
1912 dl 1.27 sc = n - (n >>> 2);
1913 dl 1.24 }
1914     } finally {
1915     sizeCtl = sc;
1916     }
1917     break;
1918     }
1919     }
1920     return tab;
1921     }
1922    
1923     /**
1924 dl 1.27 * If table is too small and not already resizing, creates next
1925     * table and transfers bins. Rechecks occupancy after a transfer
1926     * to see if another resize is already needed because resizings
1927     * are lagging additions.
1928     */
1929     private final void checkForResize() {
1930     Node[] tab; int n, sc;
1931     while ((tab = table) != null &&
1932     (n = tab.length) < MAXIMUM_CAPACITY &&
1933     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1934     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1935 dl 1.24 try {
1936 dl 1.27 if (tab == table) {
1937 dl 1.24 table = rebuild(tab);
1938 dl 1.27 sc = (n << 1) - (n >>> 1);
1939 dl 1.24 }
1940     } finally {
1941     sizeCtl = sc;
1942     }
1943     }
1944     }
1945    
1946 dl 1.27 /**
1947     * Tries to presize table to accommodate the given number of elements.
1948     *
1949     * @param size number of elements (doesn't need to be perfectly accurate)
1950     */
1951     private final void tryPresize(int size) {
1952     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1953     tableSizeFor(size + (size >>> 1) + 1);
1954     int sc;
1955     while ((sc = sizeCtl) >= 0) {
1956     Node[] tab = table; int n;
1957     if (tab == null || (n = tab.length) == 0) {
1958 jsr166 1.30 n = (sc > c) ? sc : c;
1959 dl 1.27 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1960     try {
1961     if (table == tab) {
1962     table = new Node[n];
1963     sc = n - (n >>> 2);
1964     }
1965     } finally {
1966     sizeCtl = sc;
1967     }
1968     }
1969     }
1970     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971     break;
1972     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1973     try {
1974     if (table == tab) {
1975     table = rebuild(tab);
1976     sc = (n << 1) - (n >>> 1);
1977     }
1978     } finally {
1979     sizeCtl = sc;
1980     }
1981     }
1982     }
1983     }
1984    
1985 dl 1.24 /*
1986     * Moves and/or copies the nodes in each bin to new table. See
1987     * above for explanation.
1988     *
1989     * @return the new table
1990     */
1991     private static final Node[] rebuild(Node[] tab) {
1992     int n = tab.length;
1993     Node[] nextTab = new Node[n << 1];
1994     Node fwd = new Node(MOVED, nextTab, null, null);
1995     int[] buffer = null; // holds bins to revisit; null until needed
1996     Node rev = null; // reverse forwarder; null until needed
1997     int nbuffered = 0; // the number of bins in buffer list
1998     int bufferIndex = 0; // buffer index of current buffered bin
1999     int bin = n - 1; // current non-buffered bin or -1 if none
2000    
2001     for (int i = bin;;) { // start upwards sweep
2002     int fh; Node f;
2003     if ((f = tabAt(tab, i)) == null) {
2004     if (bin >= 0) { // no lock needed (or available)
2005     if (!casTabAt(tab, i, f, fwd))
2006     continue;
2007     }
2008     else { // transiently use a locked forwarding node
2009 jsr166 1.33 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2010 dl 1.24 if (!casTabAt(tab, i, f, g))
2011     continue;
2012     setTabAt(nextTab, i, null);
2013     setTabAt(nextTab, i + n, null);
2014     setTabAt(tab, i, fwd);
2015     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2016     g.hash = MOVED;
2017 jsr166 1.26 synchronized (g) { g.notifyAll(); }
2018 dl 1.24 }
2019     }
2020     }
2021 dl 1.38 else if ((fh = f.hash) == MOVED) {
2022     Object fk = f.key;
2023     if (fk instanceof TreeBin) {
2024     TreeBin t = (TreeBin)fk;
2025     boolean validated = false;
2026     t.acquire(0);
2027     try {
2028     if (tabAt(tab, i) == f) {
2029     validated = true;
2030     splitTreeBin(nextTab, i, t);
2031     setTabAt(tab, i, fwd);
2032     }
2033     } finally {
2034     t.release(0);
2035     }
2036     if (!validated)
2037     continue;
2038     }
2039     }
2040     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2041 dl 1.24 boolean validated = false;
2042     try { // split to lo and hi lists; copying as needed
2043     if (tabAt(tab, i) == f) {
2044     validated = true;
2045 dl 1.38 splitBin(nextTab, i, f);
2046 dl 1.24 setTabAt(tab, i, fwd);
2047     }
2048     } finally {
2049     if (!f.casHash(fh | LOCKED, fh)) {
2050     f.hash = fh;
2051 jsr166 1.26 synchronized (f) { f.notifyAll(); };
2052 dl 1.24 }
2053     }
2054     if (!validated)
2055     continue;
2056     }
2057     else {
2058     if (buffer == null) // initialize buffer for revisits
2059     buffer = new int[TRANSFER_BUFFER_SIZE];
2060     if (bin < 0 && bufferIndex > 0) {
2061     int j = buffer[--bufferIndex];
2062     buffer[bufferIndex] = i;
2063     i = j; // swap with another bin
2064     continue;
2065     }
2066     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2067     f.tryAwaitLock(tab, i);
2068     continue; // no other options -- block
2069     }
2070     if (rev == null) // initialize reverse-forwarder
2071     rev = new Node(MOVED, tab, null, null);
2072     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2073     continue; // recheck before adding to list
2074     buffer[nbuffered++] = i;
2075     setTabAt(nextTab, i, rev); // install place-holders
2076     setTabAt(nextTab, i + n, rev);
2077     }
2078    
2079     if (bin > 0)
2080     i = --bin;
2081     else if (buffer != null && nbuffered > 0) {
2082     bin = -1;
2083     i = buffer[bufferIndex = --nbuffered];
2084     }
2085     else
2086     return nextTab;
2087     }
2088     }
2089    
2090 dl 1.27 /**
2091 jsr166 1.45 * Splits a normal bin with list headed by e into lo and hi parts;
2092     * installs in given table.
2093 dl 1.38 */
2094     private static void splitBin(Node[] nextTab, int i, Node e) {
2095     int bit = nextTab.length >>> 1; // bit to split on
2096     int runBit = e.hash & bit;
2097     Node lastRun = e, lo = null, hi = null;
2098     for (Node p = e.next; p != null; p = p.next) {
2099     int b = p.hash & bit;
2100     if (b != runBit) {
2101     runBit = b;
2102     lastRun = p;
2103     }
2104     }
2105     if (runBit == 0)
2106     lo = lastRun;
2107     else
2108     hi = lastRun;
2109     for (Node p = e; p != lastRun; p = p.next) {
2110     int ph = p.hash & HASH_BITS;
2111     Object pk = p.key, pv = p.val;
2112     if ((ph & bit) == 0)
2113     lo = new Node(ph, pk, pv, lo);
2114     else
2115     hi = new Node(ph, pk, pv, hi);
2116     }
2117     setTabAt(nextTab, i, lo);
2118     setTabAt(nextTab, i + bit, hi);
2119     }
2120    
2121     /**
2122 jsr166 1.45 * Splits a tree bin into lo and hi parts; installs in given table.
2123 dl 1.38 */
2124     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2125     int bit = nextTab.length >>> 1;
2126     TreeBin lt = new TreeBin();
2127     TreeBin ht = new TreeBin();
2128     int lc = 0, hc = 0;
2129     for (Node e = t.first; e != null; e = e.next) {
2130     int h = e.hash & HASH_BITS;
2131     Object k = e.key, v = e.val;
2132     if ((h & bit) == 0) {
2133     ++lc;
2134     lt.putTreeNode(h, k, v);
2135     }
2136     else {
2137     ++hc;
2138     ht.putTreeNode(h, k, v);
2139     }
2140     }
2141     Node ln, hn; // throw away trees if too small
2142     if (lc <= (TREE_THRESHOLD >>> 1)) {
2143     ln = null;
2144     for (Node p = lt.first; p != null; p = p.next)
2145     ln = new Node(p.hash, p.key, p.val, ln);
2146     }
2147     else
2148     ln = new Node(MOVED, lt, null, null);
2149     setTabAt(nextTab, i, ln);
2150     if (hc <= (TREE_THRESHOLD >>> 1)) {
2151     hn = null;
2152     for (Node p = ht.first; p != null; p = p.next)
2153     hn = new Node(p.hash, p.key, p.val, hn);
2154     }
2155     else
2156     hn = new Node(MOVED, ht, null, null);
2157     setTabAt(nextTab, i + bit, hn);
2158     }
2159    
2160     /**
2161 dl 1.27 * Implementation for clear. Steps through each bin, removing all
2162     * nodes.
2163     */
2164     private final void internalClear() {
2165     long delta = 0L; // negative number of deletions
2166     int i = 0;
2167     Node[] tab = table;
2168     while (tab != null && i < tab.length) {
2169 dl 1.38 int fh; Object fk;
2170 dl 1.27 Node f = tabAt(tab, i);
2171     if (f == null)
2172     ++i;
2173 dl 1.38 else if ((fh = f.hash) == MOVED) {
2174     if ((fk = f.key) instanceof TreeBin) {
2175     TreeBin t = (TreeBin)fk;
2176     t.acquire(0);
2177     try {
2178     if (tabAt(tab, i) == f) {
2179     for (Node p = t.first; p != null; p = p.next) {
2180     p.val = null;
2181     --delta;
2182     }
2183     t.first = null;
2184     t.root = null;
2185     ++i;
2186     }
2187     } finally {
2188     t.release(0);
2189     }
2190     }
2191     else
2192     tab = (Node[])fk;
2193     }
2194 dl 1.27 else if ((fh & LOCKED) != 0) {
2195     counter.add(delta); // opportunistically update count
2196     delta = 0L;
2197     f.tryAwaitLock(tab, i);
2198     }
2199     else if (f.casHash(fh, fh | LOCKED)) {
2200     try {
2201     if (tabAt(tab, i) == f) {
2202     for (Node e = f; e != null; e = e.next) {
2203 dl 1.38 e.val = null;
2204     --delta;
2205 dl 1.27 }
2206     setTabAt(tab, i, null);
2207 dl 1.38 ++i;
2208 dl 1.27 }
2209     } finally {
2210     if (!f.casHash(fh | LOCKED, fh)) {
2211     f.hash = fh;
2212 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2213 dl 1.27 }
2214     }
2215     }
2216     }
2217     if (delta != 0)
2218     counter.add(delta);
2219     }
2220    
2221 dl 1.14 /* ----------------Table Traversal -------------- */
2222    
2223 dl 1.1 /**
2224 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2225     * serves as a base class for other iterators.
2226     *
2227     * At each step, the iterator snapshots the key ("nextKey") and
2228     * value ("nextVal") of a valid node (i.e., one that, at point of
2229 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2230 dl 1.14 * change (including to null, indicating deletion), field nextVal
2231     * might not be accurate at point of use, but still maintains the
2232     * weak consistency property of holding a value that was once
2233     * valid.
2234     *
2235     * Internal traversals directly access these fields, as in:
2236 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2237 dl 1.14 *
2238 dl 1.41 * Exported iterators must track whether the iterator has advanced
2239     * (in hasNext vs next) (by setting/checking/nulling field
2240     * nextVal), and then extract key, value, or key-value pairs as
2241     * return values of next().
2242 dl 1.14 *
2243 dl 1.27 * The iterator visits once each still-valid node that was
2244     * reachable upon iterator construction. It might miss some that
2245     * were added to a bin after the bin was visited, which is OK wrt
2246     * consistency guarantees. Maintaining this property in the face
2247     * of possible ongoing resizes requires a fair amount of
2248     * bookkeeping state that is difficult to optimize away amidst
2249     * volatile accesses. Even so, traversal maintains reasonable
2250     * throughput.
2251 dl 1.14 *
2252     * Normally, iteration proceeds bin-by-bin traversing lists.
2253     * However, if the table has been resized, then all future steps
2254     * must traverse both the bin at the current index as well as at
2255     * (index + baseSize); and so on for further resizings. To
2256     * paranoically cope with potential sharing by users of iterators
2257     * across threads, iteration terminates if a bounds checks fails
2258     * for a table read.
2259 dl 1.52 *
2260     * This class extends ForkJoinTask to streamline parallel
2261     * iteration in bulk operations (see BulkTask). This adds only an
2262     * int of space overhead, which is close enough to negligible in
2263     * cases where it is not needed to not worry about it.
2264 dl 1.14 */
2265 dl 1.52 static class Traverser<K,V,R> extends ForkJoinTask<R> {
2266 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2267 dl 1.14 Node next; // the next entry to use
2268     Node last; // the last entry used
2269     Object nextKey; // cached key field of next
2270     Object nextVal; // cached val field of next
2271     Node[] tab; // current table; updated if resized
2272     int index; // index of bin to use next
2273     int baseIndex; // current index of initial table
2274 dl 1.41 int baseLimit; // index bound for initial table
2275 dl 1.14 final int baseSize; // initial table size
2276    
2277     /** Creates iterator for all entries in the table. */
2278 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2279 dl 1.41 this.tab = (this.map = map).table;
2280 dl 1.14 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2281     }
2282    
2283 dl 1.52 /** Creates iterator for split() methods */
2284     Traverser(Traverser<K,V,?> it, boolean split) {
2285 dl 1.41 this.map = it.map;
2286     this.tab = it.tab;
2287     this.baseSize = it.baseSize;
2288     int lo = it.baseIndex;
2289     int hi = this.baseLimit = it.baseLimit;
2290 dl 1.52 int i;
2291     if (split) // adjust parent
2292     i = it.baseLimit = (lo + hi + 1) >>> 1;
2293     else // clone parent
2294     i = lo;
2295     this.index = this.baseIndex = i;
2296 dl 1.41 }
2297    
2298     /**
2299 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2300 dl 1.41 * See above for explanation.
2301     */
2302     final Object advance() {
2303 dl 1.14 Node e = last = next;
2304 dl 1.41 Object ev = null;
2305 dl 1.14 outer: do {
2306 dl 1.24 if (e != null) // advance past used/skipped node
2307 dl 1.1 e = e.next;
2308 dl 1.24 while (e == null) { // get to next non-null bin
2309 dl 1.38 Node[] t; int b, i, n; Object ek; // checks must use locals
2310 dl 1.14 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2311     (t = tab) == null || i >= (n = t.length))
2312     break outer;
2313 dl 1.38 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2314     if ((ek = e.key) instanceof TreeBin)
2315     e = ((TreeBin)ek).first;
2316     else {
2317     tab = (Node[])ek;
2318     continue; // restarts due to null val
2319     }
2320     } // visit upper slots if present
2321     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2322 dl 1.1 }
2323 dl 1.14 nextKey = e.key;
2324 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2325 dl 1.14 next = e;
2326 dl 1.41 return nextVal = ev;
2327 dl 1.1 }
2328 dl 1.41
2329     public final void remove() {
2330     if (nextVal == null)
2331     advance();
2332     Node e = last;
2333     if (e == null)
2334     throw new IllegalStateException();
2335     last = null;
2336     map.remove(e.key);
2337     }
2338    
2339     public final boolean hasNext() {
2340     return nextVal != null || advance() != null;
2341     }
2342    
2343     public final boolean hasMoreElements() { return hasNext(); }
2344 dl 1.52 public final void setRawResult(Object x) { }
2345     public R getRawResult() { return null; }
2346     public boolean exec() { return true; }
2347 dl 1.1 }
2348    
2349     /* ---------------- Public operations -------------- */
2350    
2351     /**
2352 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2353 dl 1.1 */
2354 dl 1.16 public ConcurrentHashMapV8() {
2355 dl 1.14 this.counter = new LongAdder();
2356 dl 1.1 }
2357    
2358     /**
2359 dl 1.16 * Creates a new, empty map with an initial table size
2360     * accommodating the specified number of elements without the need
2361     * to dynamically resize.
2362 dl 1.1 *
2363     * @param initialCapacity The implementation performs internal
2364     * sizing to accommodate this many elements.
2365     * @throws IllegalArgumentException if the initial capacity of
2366 jsr166 1.18 * elements is negative
2367 dl 1.1 */
2368 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2369     if (initialCapacity < 0)
2370     throw new IllegalArgumentException();
2371     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2372     MAXIMUM_CAPACITY :
2373     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2374     this.counter = new LongAdder();
2375 dl 1.24 this.sizeCtl = cap;
2376 dl 1.1 }
2377    
2378     /**
2379 dl 1.16 * Creates a new map with the same mappings as the given map.
2380 dl 1.1 *
2381 dl 1.16 * @param m the map
2382 dl 1.1 */
2383 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2384     this.counter = new LongAdder();
2385 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2386 dl 1.27 internalPutAll(m);
2387 dl 1.1 }
2388    
2389     /**
2390 dl 1.16 * Creates a new, empty map with an initial table size based on
2391     * the given number of elements ({@code initialCapacity}) and
2392     * initial table density ({@code loadFactor}).
2393     *
2394     * @param initialCapacity the initial capacity. The implementation
2395     * performs internal sizing to accommodate this many elements,
2396     * given the specified load factor.
2397     * @param loadFactor the load factor (table density) for
2398 jsr166 1.18 * establishing the initial table size
2399 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2400     * elements is negative or the load factor is nonpositive
2401 jsr166 1.22 *
2402     * @since 1.6
2403 dl 1.1 */
2404 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2405     this(initialCapacity, loadFactor, 1);
2406 dl 1.1 }
2407    
2408     /**
2409 dl 1.16 * Creates a new, empty map with an initial table size based on
2410     * the given number of elements ({@code initialCapacity}), table
2411     * density ({@code loadFactor}), and number of concurrently
2412     * updating threads ({@code concurrencyLevel}).
2413 dl 1.1 *
2414 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2415     * performs internal sizing to accommodate this many elements,
2416     * given the specified load factor.
2417     * @param loadFactor the load factor (table density) for
2418 jsr166 1.18 * establishing the initial table size
2419 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2420     * updating threads. The implementation may use this value as
2421     * a sizing hint.
2422     * @throws IllegalArgumentException if the initial capacity is
2423     * negative or the load factor or concurrencyLevel are
2424 jsr166 1.18 * nonpositive
2425 dl 1.1 */
2426 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2427     float loadFactor, int concurrencyLevel) {
2428     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2429     throw new IllegalArgumentException();
2430     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2431     initialCapacity = concurrencyLevel; // as estimated threads
2432     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2433 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2434     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2435 dl 1.16 this.counter = new LongAdder();
2436 dl 1.24 this.sizeCtl = cap;
2437 dl 1.1 }
2438    
2439     /**
2440 dl 1.14 * {@inheritDoc}
2441 dl 1.1 */
2442     public boolean isEmpty() {
2443 dl 1.2 return counter.sum() <= 0L; // ignore transient negative values
2444 dl 1.1 }
2445    
2446     /**
2447 dl 1.14 * {@inheritDoc}
2448 dl 1.1 */
2449     public int size() {
2450     long n = counter.sum();
2451 jsr166 1.15 return ((n < 0L) ? 0 :
2452     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2453 dl 1.14 (int)n);
2454 dl 1.1 }
2455    
2456 dl 1.52 /**
2457     * Returns the number of mappings. This method should be used
2458     * instead of {@link #size} because a ConcurrentHashMap may
2459     * contain more mappings than can be represented as an int. The
2460     * value returned is a snapshot; the actual count may differ if
2461     * there are ongoing concurrent insertions of removals.
2462     *
2463     * @return the number of mappings
2464     */
2465     public long mappingCount() {
2466 dl 1.24 long n = counter.sum();
2467     return (n < 0L) ? 0L : n;
2468     }
2469    
2470 dl 1.1 /**
2471     * Returns the value to which the specified key is mapped,
2472     * or {@code null} if this map contains no mapping for the key.
2473     *
2474     * <p>More formally, if this map contains a mapping from a key
2475     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2476     * then this method returns {@code v}; otherwise it returns
2477     * {@code null}. (There can be at most one such mapping.)
2478     *
2479     * @throws NullPointerException if the specified key is null
2480     */
2481     @SuppressWarnings("unchecked")
2482 dl 1.52 public V get(Object key) {
2483 dl 1.1 if (key == null)
2484     throw new NullPointerException();
2485     return (V)internalGet(key);
2486     }
2487    
2488     /**
2489     * Tests if the specified object is a key in this table.
2490     *
2491     * @param key possible key
2492     * @return {@code true} if and only if the specified object
2493     * is a key in this table, as determined by the
2494 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2495 dl 1.1 * @throws NullPointerException if the specified key is null
2496     */
2497     public boolean containsKey(Object key) {
2498     if (key == null)
2499     throw new NullPointerException();
2500     return internalGet(key) != null;
2501     }
2502    
2503     /**
2504     * Returns {@code true} if this map maps one or more keys to the
2505 dl 1.14 * specified value. Note: This method may require a full traversal
2506     * of the map, and is much slower than method {@code containsKey}.
2507 dl 1.1 *
2508     * @param value value whose presence in this map is to be tested
2509     * @return {@code true} if this map maps one or more keys to the
2510     * specified value
2511     * @throws NullPointerException if the specified value is null
2512     */
2513     public boolean containsValue(Object value) {
2514     if (value == null)
2515     throw new NullPointerException();
2516 dl 1.14 Object v;
2517 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2518 dl 1.41 while ((v = it.advance()) != null) {
2519     if (v == value || value.equals(v))
2520 dl 1.14 return true;
2521     }
2522     return false;
2523 dl 1.1 }
2524    
2525     /**
2526     * Legacy method testing if some key maps into the specified value
2527     * in this table. This method is identical in functionality to
2528     * {@link #containsValue}, and exists solely to ensure
2529     * full compatibility with class {@link java.util.Hashtable},
2530     * which supported this method prior to introduction of the
2531     * Java Collections framework.
2532     *
2533     * @param value a value to search for
2534     * @return {@code true} if and only if some key maps to the
2535     * {@code value} argument in this table as
2536     * determined by the {@code equals} method;
2537     * {@code false} otherwise
2538     * @throws NullPointerException if the specified value is null
2539     */
2540     public boolean contains(Object value) {
2541     return containsValue(value);
2542     }
2543    
2544     /**
2545     * Maps the specified key to the specified value in this table.
2546     * Neither the key nor the value can be null.
2547     *
2548     * <p> The value can be retrieved by calling the {@code get} method
2549     * with a key that is equal to the original key.
2550     *
2551     * @param key key with which the specified value is to be associated
2552     * @param value value to be associated with the specified key
2553     * @return the previous value associated with {@code key}, or
2554     * {@code null} if there was no mapping for {@code key}
2555     * @throws NullPointerException if the specified key or value is null
2556     */
2557     @SuppressWarnings("unchecked")
2558 dl 1.52 public V put(K key, V value) {
2559 dl 1.1 if (key == null || value == null)
2560     throw new NullPointerException();
2561 dl 1.27 return (V)internalPut(key, value);
2562 dl 1.1 }
2563    
2564     /**
2565     * {@inheritDoc}
2566     *
2567     * @return the previous value associated with the specified key,
2568     * or {@code null} if there was no mapping for the key
2569     * @throws NullPointerException if the specified key or value is null
2570     */
2571     @SuppressWarnings("unchecked")
2572 dl 1.52 public V putIfAbsent(K key, V value) {
2573 dl 1.1 if (key == null || value == null)
2574     throw new NullPointerException();
2575 dl 1.27 return (V)internalPutIfAbsent(key, value);
2576 dl 1.1 }
2577    
2578     /**
2579     * Copies all of the mappings from the specified map to this one.
2580     * These mappings replace any mappings that this map had for any of the
2581     * keys currently in the specified map.
2582     *
2583     * @param m mappings to be stored in this map
2584     */
2585     public void putAll(Map<? extends K, ? extends V> m) {
2586 dl 1.27 internalPutAll(m);
2587 dl 1.1 }
2588    
2589     /**
2590     * If the specified key is not already associated with a value,
2591 dl 1.41 * computes its value using the given mappingFunction and enters
2592     * it into the map unless null. This is equivalent to
2593 dl 1.27 * <pre> {@code
2594 jsr166 1.13 * if (map.containsKey(key))
2595     * return map.get(key);
2596 dl 1.52 * value = mappingFunction.apply(key);
2597 dl 1.41 * if (value != null)
2598     * map.put(key, value);
2599 jsr166 1.13 * return value;}</pre>
2600 dl 1.1 *
2601 dl 1.27 * except that the action is performed atomically. If the
2602 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2603     * function itself throws an (unchecked) exception, the exception
2604     * is rethrown to its caller, and no mapping is recorded. Some
2605     * attempted update operations on this map by other threads may be
2606     * blocked while computation is in progress, so the computation
2607     * should be short and simple, and must not attempt to update any
2608     * other mappings of this Map. The most appropriate usage is to
2609     * construct a new object serving as an initial mapped value, or
2610     * memoized result, as in:
2611 dl 1.27 *
2612 jsr166 1.13 * <pre> {@code
2613 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2614 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2615 dl 1.1 *
2616     * @param key key with which the specified value is to be associated
2617     * @param mappingFunction the function to compute a value
2618     * @return the current (existing or computed) value associated with
2619 dl 1.41 * the specified key, or null if the computed value is null.
2620     * @throws NullPointerException if the specified key or mappingFunction
2621     * is null
2622 dl 1.5 * @throws IllegalStateException if the computation detectably
2623     * attempts a recursive update to this map that would
2624 jsr166 1.18 * otherwise never complete
2625 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2626 jsr166 1.18 * in which case the mapping is left unestablished
2627 dl 1.1 */
2628 dl 1.27 @SuppressWarnings("unchecked")
2629 dl 1.52 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2630 dl 1.1 if (key == null || mappingFunction == null)
2631     throw new NullPointerException();
2632 dl 1.27 return (V)internalComputeIfAbsent(key, mappingFunction);
2633 dl 1.2 }
2634    
2635     /**
2636 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2637     * its current mapped value. This is equivalent to
2638     * <pre> {@code
2639     * if (map.containsKey(key)) {
2640     * value = remappingFunction.apply(key, map.get(key));
2641     * if (value != null)
2642     * map.put(key, value);
2643     * else
2644     * map.remove(key);
2645     * }
2646     * }</pre>
2647     *
2648     * except that the action is performed atomically. If the
2649     * function returns {@code null}, the mapping is removed. If the
2650     * function itself throws an (unchecked) exception, the exception
2651     * is rethrown to its caller, and the current mapping is left
2652     * unchanged. Some attempted update operations on this map by
2653     * other threads may be blocked while computation is in progress,
2654     * so the computation should be short and simple, and must not
2655     * attempt to update any other mappings of this Map. For example,
2656     * to either create or append new messages to a value mapping:
2657     *
2658     * @param key key with which the specified value is to be associated
2659     * @param remappingFunction the function to compute a value
2660     * @return the new value associated with
2661     * the specified key, or null if none.
2662     * @throws NullPointerException if the specified key or remappingFunction
2663     * is null
2664     * @throws IllegalStateException if the computation detectably
2665     * attempts a recursive update to this map that would
2666     * otherwise never complete
2667     * @throws RuntimeException or Error if the remappingFunction does so,
2668     * in which case the mapping is unchanged
2669     */
2670     public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2671     if (key == null || remappingFunction == null)
2672     throw new NullPointerException();
2673     return (V)internalCompute(key, true, remappingFunction);
2674     }
2675    
2676     /**
2677 dl 1.41 * Computes a new mapping value given a key and
2678 dl 1.27 * its current mapped value (or {@code null} if there is no current
2679     * mapping). This is equivalent to
2680 jsr166 1.13 * <pre> {@code
2681 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2682 dl 1.41 * if (value != null)
2683     * map.put(key, value);
2684     * else
2685     * map.remove(key);
2686 dl 1.27 * }</pre>
2687 dl 1.2 *
2688 dl 1.27 * except that the action is performed atomically. If the
2689 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2690     * function itself throws an (unchecked) exception, the exception
2691     * is rethrown to its caller, and the current mapping is left
2692     * unchanged. Some attempted update operations on this map by
2693     * other threads may be blocked while computation is in progress,
2694     * so the computation should be short and simple, and must not
2695     * attempt to update any other mappings of this Map. For example,
2696     * to either create or append new messages to a value mapping:
2697 dl 1.27 *
2698     * <pre> {@code
2699     * Map<Key, String> map = ...;
2700     * final String msg = ...;
2701 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2702     * public String apply(Key k, String v) {
2703 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2704 dl 1.2 *
2705     * @param key key with which the specified value is to be associated
2706 dl 1.27 * @param remappingFunction the function to compute a value
2707     * @return the new value associated with
2708 dl 1.41 * the specified key, or null if none.
2709 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2710 dl 1.41 * is null
2711 dl 1.5 * @throws IllegalStateException if the computation detectably
2712     * attempts a recursive update to this map that would
2713 jsr166 1.18 * otherwise never complete
2714 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2715 jsr166 1.18 * in which case the mapping is unchanged
2716 dl 1.2 */
2717 dl 1.52 // @SuppressWarnings("unchecked")
2718     public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2719 dl 1.27 if (key == null || remappingFunction == null)
2720 dl 1.2 throw new NullPointerException();
2721 dl 1.52 return (V)internalCompute(key, false, remappingFunction);
2722     }
2723    
2724     /**
2725     * If the specified key is not already associated
2726     * with a value, associate it with the given value.
2727     * Otherwise, replace the value with the results of
2728     * the given remapping function. This is equivalent to:
2729     * <pre> {@code
2730     * if (!map.containsKey(key))
2731     * map.put(value);
2732     * else {
2733     * newValue = remappingFunction.apply(map.get(key), value);
2734     * if (value != null)
2735     * map.put(key, value);
2736     * else
2737     * map.remove(key);
2738     * }
2739     * }</pre>
2740     * except that the action is performed atomically. If the
2741     * function returns {@code null}, the mapping is removed. If the
2742     * function itself throws an (unchecked) exception, the exception
2743     * is rethrown to its caller, and the current mapping is left
2744     * unchanged. Some attempted update operations on this map by
2745     * other threads may be blocked while computation is in progress,
2746     * so the computation should be short and simple, and must not
2747     * attempt to update any other mappings of this Map.
2748     */
2749     // @SuppressWarnings("unchecked")
2750     public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2751     if (key == null || value == null || remappingFunction == null)
2752     throw new NullPointerException();
2753     return (V)internalMerge(key, value, remappingFunction);
2754 dl 1.1 }
2755    
2756     /**
2757     * Removes the key (and its corresponding value) from this map.
2758     * This method does nothing if the key is not in the map.
2759     *
2760     * @param key the key that needs to be removed
2761     * @return the previous value associated with {@code key}, or
2762     * {@code null} if there was no mapping for {@code key}
2763     * @throws NullPointerException if the specified key is null
2764     */
2765     @SuppressWarnings("unchecked")
2766 dl 1.52 public V remove(Object key) {
2767 dl 1.1 if (key == null)
2768     throw new NullPointerException();
2769 jsr166 1.3 return (V)internalReplace(key, null, null);
2770 dl 1.1 }
2771    
2772     /**
2773     * {@inheritDoc}
2774     *
2775     * @throws NullPointerException if the specified key is null
2776     */
2777     public boolean remove(Object key, Object value) {
2778     if (key == null)
2779     throw new NullPointerException();
2780     if (value == null)
2781     return false;
2782     return internalReplace(key, null, value) != null;
2783     }
2784    
2785     /**
2786     * {@inheritDoc}
2787     *
2788     * @throws NullPointerException if any of the arguments are null
2789     */
2790     public boolean replace(K key, V oldValue, V newValue) {
2791     if (key == null || oldValue == null || newValue == null)
2792     throw new NullPointerException();
2793 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
2794 dl 1.1 }
2795    
2796     /**
2797     * {@inheritDoc}
2798     *
2799     * @return the previous value associated with the specified key,
2800     * or {@code null} if there was no mapping for the key
2801     * @throws NullPointerException if the specified key or value is null
2802     */
2803     @SuppressWarnings("unchecked")
2804 dl 1.52 public V replace(K key, V value) {
2805 dl 1.1 if (key == null || value == null)
2806     throw new NullPointerException();
2807 jsr166 1.3 return (V)internalReplace(key, value, null);
2808 dl 1.1 }
2809    
2810     /**
2811     * Removes all of the mappings from this map.
2812     */
2813     public void clear() {
2814     internalClear();
2815     }
2816    
2817     /**
2818     * Returns a {@link Set} view of the keys contained in this map.
2819     * The set is backed by the map, so changes to the map are
2820     * reflected in the set, and vice-versa. The set supports element
2821     * removal, which removes the corresponding mapping from this map,
2822     * via the {@code Iterator.remove}, {@code Set.remove},
2823     * {@code removeAll}, {@code retainAll}, and {@code clear}
2824     * operations. It does not support the {@code add} or
2825     * {@code addAll} operations.
2826     *
2827     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2828     * that will never throw {@link ConcurrentModificationException},
2829     * and guarantees to traverse elements as they existed upon
2830     * construction of the iterator, and may (but is not guaranteed to)
2831     * reflect any modifications subsequent to construction.
2832     */
2833     public Set<K> keySet() {
2834 dl 1.14 KeySet<K,V> ks = keySet;
2835     return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2836 dl 1.1 }
2837    
2838     /**
2839     * Returns a {@link Collection} view of the values contained in this map.
2840     * The collection is backed by the map, so changes to the map are
2841     * reflected in the collection, and vice-versa. The collection
2842     * supports element removal, which removes the corresponding
2843     * mapping from this map, via the {@code Iterator.remove},
2844     * {@code Collection.remove}, {@code removeAll},
2845     * {@code retainAll}, and {@code clear} operations. It does not
2846     * support the {@code add} or {@code addAll} operations.
2847     *
2848     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2849     * that will never throw {@link ConcurrentModificationException},
2850     * and guarantees to traverse elements as they existed upon
2851     * construction of the iterator, and may (but is not guaranteed to)
2852     * reflect any modifications subsequent to construction.
2853     */
2854     public Collection<V> values() {
2855 dl 1.14 Values<K,V> vs = values;
2856     return (vs != null) ? vs : (values = new Values<K,V>(this));
2857 dl 1.1 }
2858    
2859     /**
2860     * Returns a {@link Set} view of the mappings contained in this map.
2861     * The set is backed by the map, so changes to the map are
2862     * reflected in the set, and vice-versa. The set supports element
2863     * removal, which removes the corresponding mapping from the map,
2864     * via the {@code Iterator.remove}, {@code Set.remove},
2865     * {@code removeAll}, {@code retainAll}, and {@code clear}
2866     * operations. It does not support the {@code add} or
2867     * {@code addAll} operations.
2868     *
2869     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2870     * that will never throw {@link ConcurrentModificationException},
2871     * and guarantees to traverse elements as they existed upon
2872     * construction of the iterator, and may (but is not guaranteed to)
2873     * reflect any modifications subsequent to construction.
2874     */
2875     public Set<Map.Entry<K,V>> entrySet() {
2876 dl 1.14 EntrySet<K,V> es = entrySet;
2877     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2878 dl 1.1 }
2879    
2880     /**
2881     * Returns an enumeration of the keys in this table.
2882     *
2883     * @return an enumeration of the keys in this table
2884     * @see #keySet()
2885     */
2886     public Enumeration<K> keys() {
2887 dl 1.14 return new KeyIterator<K,V>(this);
2888 dl 1.1 }
2889    
2890     /**
2891     * Returns an enumeration of the values in this table.
2892     *
2893     * @return an enumeration of the values in this table
2894     * @see #values()
2895     */
2896     public Enumeration<V> elements() {
2897 dl 1.14 return new ValueIterator<K,V>(this);
2898 dl 1.1 }
2899    
2900     /**
2901 dl 1.41 * Returns a partionable iterator of the keys in this map.
2902     *
2903     * @return a partionable iterator of the keys in this map
2904     */
2905     public Spliterator<K> keySpliterator() {
2906     return new KeyIterator<K,V>(this);
2907     }
2908    
2909     /**
2910     * Returns a partionable iterator of the values in this map.
2911     *
2912     * @return a partionable iterator of the values in this map
2913     */
2914     public Spliterator<V> valueSpliterator() {
2915     return new ValueIterator<K,V>(this);
2916     }
2917    
2918     /**
2919     * Returns a partionable iterator of the entries in this map.
2920     *
2921     * @return a partionable iterator of the entries in this map
2922     */
2923     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2924     return new EntryIterator<K,V>(this);
2925     }
2926    
2927     /**
2928 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
2929     * the sum of, for each key-value pair in the map,
2930     * {@code key.hashCode() ^ value.hashCode()}.
2931     *
2932     * @return the hash code value for this map
2933 dl 1.1 */
2934     public int hashCode() {
2935 dl 1.14 int h = 0;
2936 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2937 dl 1.41 Object v;
2938     while ((v = it.advance()) != null) {
2939     h += it.nextKey.hashCode() ^ v.hashCode();
2940 dl 1.14 }
2941     return h;
2942 dl 1.1 }
2943    
2944     /**
2945 dl 1.2 * Returns a string representation of this map. The string
2946     * representation consists of a list of key-value mappings (in no
2947     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2948     * mappings are separated by the characters {@code ", "} (comma
2949     * and space). Each key-value mapping is rendered as the key
2950     * followed by an equals sign ("{@code =}") followed by the
2951     * associated value.
2952     *
2953     * @return a string representation of this map
2954 dl 1.1 */
2955     public String toString() {
2956 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2957 dl 1.14 StringBuilder sb = new StringBuilder();
2958     sb.append('{');
2959 dl 1.41 Object v;
2960     if ((v = it.advance()) != null) {
2961 dl 1.14 for (;;) {
2962 dl 1.41 Object k = it.nextKey;
2963 dl 1.14 sb.append(k == this ? "(this Map)" : k);
2964     sb.append('=');
2965     sb.append(v == this ? "(this Map)" : v);
2966 dl 1.41 if ((v = it.advance()) == null)
2967 dl 1.14 break;
2968     sb.append(',').append(' ');
2969     }
2970     }
2971     return sb.append('}').toString();
2972 dl 1.1 }
2973    
2974     /**
2975 dl 1.2 * Compares the specified object with this map for equality.
2976     * Returns {@code true} if the given object is a map with the same
2977     * mappings as this map. This operation may return misleading
2978     * results if either map is concurrently modified during execution
2979     * of this method.
2980     *
2981     * @param o object to be compared for equality with this map
2982     * @return {@code true} if the specified object is equal to this map
2983 dl 1.1 */
2984     public boolean equals(Object o) {
2985 dl 1.14 if (o != this) {
2986     if (!(o instanceof Map))
2987     return false;
2988     Map<?,?> m = (Map<?,?>) o;
2989 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2990 dl 1.41 Object val;
2991     while ((val = it.advance()) != null) {
2992 dl 1.14 Object v = m.get(it.nextKey);
2993     if (v == null || (v != val && !v.equals(val)))
2994 dl 1.1 return false;
2995 dl 1.14 }
2996 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
2997 dl 1.14 Object mk, mv, v;
2998     if ((mk = e.getKey()) == null ||
2999     (mv = e.getValue()) == null ||
3000     (v = internalGet(mk)) == null ||
3001     (mv != v && !mv.equals(v)))
3002 dl 1.1 return false;
3003     }
3004 dl 1.14 }
3005     return true;
3006     }
3007    
3008     /* ----------------Iterators -------------- */
3009    
3010 dl 1.52 static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3011 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3012     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3013 dl 1.52 KeyIterator(Traverser<K,V,Object> it, boolean split) {
3014 dl 1.41 super(it, split);
3015     }
3016     public KeyIterator<K,V> split() {
3017     if (last != null || (next != null && nextVal == null))
3018     throw new IllegalStateException();
3019     return new KeyIterator<K,V>(this, true);
3020 dl 1.14 }
3021     @SuppressWarnings("unchecked")
3022 dl 1.52 public final K next() {
3023 dl 1.41 if (nextVal == null && advance() == null)
3024 dl 1.14 throw new NoSuchElementException();
3025     Object k = nextKey;
3026 dl 1.41 nextVal = null;
3027     return (K) k;
3028 dl 1.14 }
3029    
3030     public final K nextElement() { return next(); }
3031     }
3032    
3033 dl 1.52 static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3034 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3035 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3036 dl 1.52 ValueIterator(Traverser<K,V,Object> it, boolean split) {
3037 dl 1.41 super(it, split);
3038     }
3039     public ValueIterator<K,V> split() {
3040     if (last != null || (next != null && nextVal == null))
3041     throw new IllegalStateException();
3042     return new ValueIterator<K,V>(this, true);
3043     }
3044    
3045 dl 1.14 @SuppressWarnings("unchecked")
3046 dl 1.52 public final V next() {
3047 dl 1.41 Object v;
3048     if ((v = nextVal) == null && (v = advance()) == null)
3049 dl 1.14 throw new NoSuchElementException();
3050 dl 1.41 nextVal = null;
3051     return (V) v;
3052 dl 1.14 }
3053    
3054     public final V nextElement() { return next(); }
3055     }
3056    
3057 dl 1.52 static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3058 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3059 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3060 dl 1.52 EntryIterator(Traverser<K,V,Object> it, boolean split) {
3061 dl 1.41 super(it, split);
3062     }
3063     public EntryIterator<K,V> split() {
3064     if (last != null || (next != null && nextVal == null))
3065     throw new IllegalStateException();
3066     return new EntryIterator<K,V>(this, true);
3067     }
3068 dl 1.24
3069     @SuppressWarnings("unchecked")
3070 dl 1.52 public final Map.Entry<K,V> next() {
3071 dl 1.41 Object v;
3072     if ((v = nextVal) == null && (v = advance()) == null)
3073 dl 1.24 throw new NoSuchElementException();
3074     Object k = nextKey;
3075 dl 1.41 nextVal = null;
3076     return new MapEntry<K,V>((K)k, (V)v, map);
3077 dl 1.1 }
3078     }
3079    
3080     /**
3081 dl 1.41 * Exported Entry for iterators
3082 dl 1.1 */
3083 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3084 dl 1.14 final K key; // non-null
3085     V val; // non-null
3086 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3087     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3088     this.key = key;
3089     this.val = val;
3090     this.map = map;
3091     }
3092 dl 1.14 public final K getKey() { return key; }
3093     public final V getValue() { return val; }
3094     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3095     public final String toString(){ return key + "=" + val; }
3096    
3097     public final boolean equals(Object o) {
3098     Object k, v; Map.Entry<?,?> e;
3099     return ((o instanceof Map.Entry) &&
3100     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3101     (v = e.getValue()) != null &&
3102     (k == key || k.equals(key)) &&
3103     (v == val || v.equals(val)));
3104 dl 1.1 }
3105    
3106     /**
3107     * Sets our entry's value and writes through to the map. The
3108 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3109     * necessarily track asynchronous changes, the most recent
3110 dl 1.41 * "previous" value could be different from what we return (or
3111     * could even have been removed in which case the put will
3112     * re-establish). We do not and cannot guarantee more.
3113 dl 1.1 */
3114 dl 1.14 public final V setValue(V value) {
3115 dl 1.1 if (value == null) throw new NullPointerException();
3116 dl 1.14 V v = val;
3117     val = value;
3118     map.put(key, value);
3119 dl 1.1 return v;
3120     }
3121     }
3122    
3123 dl 1.14 /* ----------------Views -------------- */
3124 dl 1.1
3125 dl 1.24 /**
3126 dl 1.41 * Base class for views.
3127 dl 1.14 */
3128 dl 1.52 static abstract class CHMView<K, V> {
3129 dl 1.14 final ConcurrentHashMapV8<K, V> map;
3130 dl 1.52 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3131 dl 1.14 public final int size() { return map.size(); }
3132     public final boolean isEmpty() { return map.isEmpty(); }
3133     public final void clear() { map.clear(); }
3134 dl 1.24
3135     // implementations below rely on concrete classes supplying these
3136 dl 1.41 abstract public Iterator<?> iterator();
3137 dl 1.24 abstract public boolean contains(Object o);
3138     abstract public boolean remove(Object o);
3139    
3140     private static final String oomeMsg = "Required array size too large";
3141    
3142     public final Object[] toArray() {
3143 dl 1.52 long sz = map.mappingCount();
3144 dl 1.24 if (sz > (long)(MAX_ARRAY_SIZE))
3145     throw new OutOfMemoryError(oomeMsg);
3146     int n = (int)sz;
3147     Object[] r = new Object[n];
3148     int i = 0;
3149 dl 1.41 Iterator<?> it = iterator();
3150 dl 1.24 while (it.hasNext()) {
3151     if (i == n) {
3152     if (n >= MAX_ARRAY_SIZE)
3153     throw new OutOfMemoryError(oomeMsg);
3154     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3155     n = MAX_ARRAY_SIZE;
3156     else
3157     n += (n >>> 1) + 1;
3158     r = Arrays.copyOf(r, n);
3159     }
3160     r[i++] = it.next();
3161     }
3162     return (i == n) ? r : Arrays.copyOf(r, i);
3163     }
3164    
3165     @SuppressWarnings("unchecked")
3166 dl 1.52 public final <T> T[] toArray(T[] a) {
3167     long sz = map.mappingCount();
3168 dl 1.24 if (sz > (long)(MAX_ARRAY_SIZE))
3169     throw new OutOfMemoryError(oomeMsg);
3170     int m = (int)sz;
3171     T[] r = (a.length >= m) ? a :
3172     (T[])java.lang.reflect.Array
3173     .newInstance(a.getClass().getComponentType(), m);
3174     int n = r.length;
3175     int i = 0;
3176 dl 1.41 Iterator<?> it = iterator();
3177 dl 1.24 while (it.hasNext()) {
3178     if (i == n) {
3179     if (n >= MAX_ARRAY_SIZE)
3180     throw new OutOfMemoryError(oomeMsg);
3181     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3182     n = MAX_ARRAY_SIZE;
3183     else
3184     n += (n >>> 1) + 1;
3185     r = Arrays.copyOf(r, n);
3186     }
3187     r[i++] = (T)it.next();
3188     }
3189     if (a == r && i < n) {
3190     r[i] = null; // null-terminate
3191     return r;
3192     }
3193     return (i == n) ? r : Arrays.copyOf(r, i);
3194     }
3195    
3196     public final int hashCode() {
3197     int h = 0;
3198 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();)
3199 dl 1.24 h += it.next().hashCode();
3200     return h;
3201     }
3202    
3203     public final String toString() {
3204     StringBuilder sb = new StringBuilder();
3205     sb.append('[');
3206 dl 1.41 Iterator<?> it = iterator();
3207 dl 1.24 if (it.hasNext()) {
3208     for (;;) {
3209     Object e = it.next();
3210     sb.append(e == this ? "(this Collection)" : e);
3211     if (!it.hasNext())
3212     break;
3213     sb.append(',').append(' ');
3214     }
3215     }
3216     return sb.append(']').toString();
3217     }
3218    
3219     public final boolean containsAll(Collection<?> c) {
3220     if (c != this) {
3221     for (Iterator<?> it = c.iterator(); it.hasNext();) {
3222     Object e = it.next();
3223     if (e == null || !contains(e))
3224     return false;
3225     }
3226     }
3227     return true;
3228     }
3229    
3230 jsr166 1.32 public final boolean removeAll(Collection<?> c) {
3231 dl 1.24 boolean modified = false;
3232 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();) {
3233 dl 1.24 if (c.contains(it.next())) {
3234     it.remove();
3235     modified = true;
3236     }
3237     }
3238     return modified;
3239     }
3240    
3241     public final boolean retainAll(Collection<?> c) {
3242     boolean modified = false;
3243 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();) {
3244 dl 1.24 if (!c.contains(it.next())) {
3245     it.remove();
3246     modified = true;
3247     }
3248     }
3249     return modified;
3250     }
3251    
3252     }
3253    
3254 dl 1.52 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3255     KeySet(ConcurrentHashMapV8<K, V> map) {
3256     super(map);
3257     }
3258 dl 1.14 public final boolean contains(Object o) { return map.containsKey(o); }
3259     public final boolean remove(Object o) { return map.remove(o) != null; }
3260     public final Iterator<K> iterator() {
3261     return new KeyIterator<K,V>(map);
3262 dl 1.1 }
3263 dl 1.24 public final boolean add(K e) {
3264     throw new UnsupportedOperationException();
3265     }
3266     public final boolean addAll(Collection<? extends K> c) {
3267     throw new UnsupportedOperationException();
3268     }
3269     public boolean equals(Object o) {
3270     Set<?> c;
3271     return ((o instanceof Set) &&
3272     ((c = (Set<?>)o) == this ||
3273     (containsAll(c) && c.containsAll(this))));
3274     }
3275 dl 1.1 }
3276    
3277 dl 1.52
3278     static final class Values<K,V> extends CHMView<K,V>
3279 jsr166 1.34 implements Collection<V> {
3280 dl 1.24 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3281     public final boolean contains(Object o) { return map.containsValue(o); }
3282     public final boolean remove(Object o) {
3283     if (o != null) {
3284     Iterator<V> it = new ValueIterator<K,V>(map);
3285     while (it.hasNext()) {
3286     if (o.equals(it.next())) {
3287     it.remove();
3288     return true;
3289     }
3290     }
3291     }
3292     return false;
3293     }
3294 dl 1.14 public final Iterator<V> iterator() {
3295     return new ValueIterator<K,V>(map);
3296 dl 1.1 }
3297 dl 1.24 public final boolean add(V e) {
3298     throw new UnsupportedOperationException();
3299     }
3300     public final boolean addAll(Collection<? extends V> c) {
3301     throw new UnsupportedOperationException();
3302     }
3303 dl 1.52
3304 dl 1.1 }
3305    
3306 dl 1.52 static final class EntrySet<K,V> extends CHMView<K,V>
3307 dl 1.24 implements Set<Map.Entry<K,V>> {
3308     EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3309 dl 1.14 public final boolean contains(Object o) {
3310     Object k, v, r; Map.Entry<?,?> e;
3311     return ((o instanceof Map.Entry) &&
3312     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3313     (r = map.get(k)) != null &&
3314     (v = e.getValue()) != null &&
3315     (v == r || v.equals(r)));
3316 dl 1.1 }
3317 dl 1.14 public final boolean remove(Object o) {
3318     Object k, v; Map.Entry<?,?> e;
3319     return ((o instanceof Map.Entry) &&
3320     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3321     (v = e.getValue()) != null &&
3322     map.remove(k, v));
3323 dl 1.1 }
3324 dl 1.24 public final Iterator<Map.Entry<K,V>> iterator() {
3325     return new EntryIterator<K,V>(map);
3326     }
3327     public final boolean add(Entry<K,V> e) {
3328     throw new UnsupportedOperationException();
3329     }
3330     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3331     throw new UnsupportedOperationException();
3332     }
3333     public boolean equals(Object o) {
3334     Set<?> c;
3335     return ((o instanceof Set) &&
3336     ((c = (Set<?>)o) == this ||
3337     (containsAll(c) && c.containsAll(this))));
3338     }
3339 dl 1.1 }
3340    
3341     /* ---------------- Serialization Support -------------- */
3342    
3343     /**
3344 dl 1.14 * Stripped-down version of helper class used in previous version,
3345     * declared for the sake of serialization compatibility
3346 dl 1.1 */
3347 dl 1.14 static class Segment<K,V> implements Serializable {
3348 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
3349     final float loadFactor;
3350     Segment(float lf) { this.loadFactor = lf; }
3351     }
3352    
3353     /**
3354     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3355     * stream (i.e., serializes it).
3356     * @param s the stream
3357     * @serialData
3358     * the key (Object) and value (Object)
3359     * for each key-value mapping, followed by a null pair.
3360     * The key-value mappings are emitted in no particular order.
3361     */
3362     @SuppressWarnings("unchecked")
3363 dl 1.52 private void writeObject(java.io.ObjectOutputStream s)
3364     throws java.io.IOException {
3365 dl 1.1 if (segments == null) { // for serialization compatibility
3366     segments = (Segment<K,V>[])
3367     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3368     for (int i = 0; i < segments.length; ++i)
3369 dl 1.16 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3370 dl 1.1 }
3371     s.defaultWriteObject();
3372 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3373 dl 1.41 Object v;
3374     while ((v = it.advance()) != null) {
3375 dl 1.14 s.writeObject(it.nextKey);
3376 dl 1.41 s.writeObject(v);
3377 dl 1.14 }
3378 dl 1.1 s.writeObject(null);
3379     s.writeObject(null);
3380     segments = null; // throw away
3381     }
3382    
3383     /**
3384 jsr166 1.9 * Reconstitutes the instance from a stream (that is, deserializes it).
3385 dl 1.1 * @param s the stream
3386     */
3387     @SuppressWarnings("unchecked")
3388 dl 1.52 private void readObject(java.io.ObjectInputStream s)
3389     throws java.io.IOException, ClassNotFoundException {
3390 dl 1.1 s.defaultReadObject();
3391     this.segments = null; // unneeded
3392 jsr166 1.21 // initialize transient final field
3393 dl 1.14 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3394    
3395     // Create all nodes, then place in table once size is known
3396     long size = 0L;
3397     Node p = null;
3398 dl 1.1 for (;;) {
3399 dl 1.14 K k = (K) s.readObject();
3400     V v = (V) s.readObject();
3401     if (k != null && v != null) {
3402 dl 1.38 int h = spread(k.hashCode());
3403     p = new Node(h, k, v, p);
3404 dl 1.14 ++size;
3405     }
3406     else
3407 dl 1.1 break;
3408 dl 1.14 }
3409     if (p != null) {
3410     boolean init = false;
3411 dl 1.24 int n;
3412     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3413     n = MAXIMUM_CAPACITY;
3414     else {
3415     int sz = (int)size;
3416     n = tableSizeFor(sz + (sz >>> 1) + 1);
3417     }
3418     int sc = sizeCtl;
3419 dl 1.38 boolean collide = false;
3420 dl 1.24 if (n > sc &&
3421     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3422 dl 1.14 try {
3423     if (table == null) {
3424     init = true;
3425     Node[] tab = new Node[n];
3426     int mask = n - 1;
3427     while (p != null) {
3428     int j = p.hash & mask;
3429     Node next = p.next;
3430 dl 1.38 Node q = p.next = tabAt(tab, j);
3431 dl 1.14 setTabAt(tab, j, p);
3432 dl 1.38 if (!collide && q != null && q.hash == p.hash)
3433     collide = true;
3434 dl 1.14 p = next;
3435     }
3436     table = tab;
3437     counter.add(size);
3438 dl 1.29 sc = n - (n >>> 2);
3439 dl 1.14 }
3440     } finally {
3441 dl 1.24 sizeCtl = sc;
3442 dl 1.14 }
3443 dl 1.38 if (collide) { // rescan and convert to TreeBins
3444     Node[] tab = table;
3445     for (int i = 0; i < tab.length; ++i) {
3446     int c = 0;
3447     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3448     if (++c > TREE_THRESHOLD &&
3449     (e.key instanceof Comparable)) {
3450     replaceWithTreeBin(tab, i, e.key);
3451     break;
3452     }
3453     }
3454     }
3455     }
3456 dl 1.14 }
3457     if (!init) { // Can only happen if unsafely published.
3458     while (p != null) {
3459 dl 1.27 internalPut(p.key, p.val);
3460 dl 1.14 p = p.next;
3461     }
3462     }
3463 dl 1.1 }
3464     }
3465    
3466    
3467 dl 1.52 // -------------------------------------------------------
3468    
3469     // Sams
3470     /** Interface describing a void action of one argument */
3471     public interface Action<A> { void apply(A a); }
3472     /** Interface describing a void action of two arguments */
3473     public interface BiAction<A,B> { void apply(A a, B b); }
3474     /** Interface describing a function of one argument */
3475     public interface Fun<A,T> { T apply(A a); }
3476     /** Interface describing a function of two arguments */
3477     public interface BiFun<A,B,T> { T apply(A a, B b); }
3478     /** Interface describing a function of no arguments */
3479     public interface Generator<T> { T apply(); }
3480     /** Interface describing a function mapping its argument to a double */
3481     public interface ObjectToDouble<A> { double apply(A a); }
3482     /** Interface describing a function mapping its argument to a long */
3483     public interface ObjectToLong<A> { long apply(A a); }
3484     /** Interface describing a function mapping its argument to an int */
3485     public interface ObjectToInt<A> {int apply(A a); }
3486     /** Interface describing a function mapping two arguments to a double */
3487     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3488     /** Interface describing a function mapping two arguments to a long */
3489     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3490     /** Interface describing a function mapping two arguments to an int */
3491     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3492     /** Interface describing a function mapping a double to a double */
3493     public interface DoubleToDouble { double apply(double a); }
3494     /** Interface describing a function mapping a long to a long */
3495     public interface LongToLong { long apply(long a); }
3496     /** Interface describing a function mapping an int to an int */
3497     public interface IntToInt { int apply(int a); }
3498     /** Interface describing a function mapping two doubles to a double */
3499     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3500     /** Interface describing a function mapping two longs to a long */
3501     public interface LongByLongToLong { long apply(long a, long b); }
3502     /** Interface describing a function mapping two ints to an int */
3503     public interface IntByIntToInt { int apply(int a, int b); }
3504    
3505    
3506     // -------------------------------------------------------
3507    
3508     /**
3509     * Returns an extended {@link Parallel} view of this map using the
3510     * given executor for bulk parallel operations.
3511     *
3512     * @param executor the executor
3513     * @return a parallel view
3514     */
3515     public Parallel parallel(ForkJoinPool executor) {
3516     return new Parallel(executor);
3517     }
3518    
3519     /**
3520     * An extended view of a ConcurrentHashMap supporting bulk
3521     * parallel operations. These operations are designed to be be
3522     * safely, and often sensibly, applied even with maps that are
3523     * being concurrently updated by other threads; for example, when
3524     * computing a snapshot summary of the values in a shared
3525     * registry. There are three kinds of operation, each with four
3526     * forms, accepting functions with Keys, Values, Entries, and
3527     * (Key, Value) arguments and/or return values. Because the
3528     * elements of a ConcurrentHashMap are not ordered in any
3529     * particular way, and may be processed in different orders in
3530     * different parallel executions, the correctness of supplied
3531     * functions should not depend on any ordering, or on any other
3532     * objects or values that may transiently change while computation
3533     * is in progress; and except for forEach actions, should ideally
3534     * be side-effect-free.
3535     *
3536     * <ul>
3537     * <li> forEach: Perform a given action on each element.
3538     * A variant form applies a given transformation on each element
3539     * before performing the action.</li>
3540     *
3541     * <li> search: Return the first available non-null result of
3542     * applying a given function on each element; skipping further
3543     * search when a result is found.</li>
3544     *
3545     * <li> reduce: Accumulate each element. The supplied reduction
3546     * function cannot rely on ordering (more formally, it should be
3547     * both associative and commutative). There are five variants:
3548     *
3549     * <ul>
3550     *
3551     * <li> Plain reductions. (There is not a form of this method for
3552     * (key, value) function arguments since there is no corresponding
3553     * return type.)</li>
3554     *
3555     * <li> Mapped reductions that accumulate the results of a given
3556     * function applied to each element.</li>
3557     *
3558     * <li> Reductions to scalar doubles, longs, and ints, using a
3559     * given basis value.</li>
3560     *
3561     * </li>
3562     * </ul>
3563     * </ul>
3564     *
3565     * <p>The concurrency properties of the bulk operations follow
3566     * from those of ConcurrentHashMap: Any non-null result returned
3567     * from {@code get(key)} and related access methods bears a
3568     * happens-before relation with the associated insertion or
3569     * update. The result of any bulk operation reflects the
3570     * composition of these per-element relations (but is not
3571     * necessarily atomic with respect to the map as a whole unless it
3572     * is somehow known to be quiescent). Conversely, because keys
3573     * and values in the map are never null, null serves as a reliable
3574     * atomic indicator of the current lack of any result. To
3575     * maintain this property, null serves as an implicit basis for
3576     * all non-scalar reduction operations. For the double, long, and
3577     * int versions, the basis should be one that, when combined with
3578     * any other value, returns that other value (more formally, it
3579     * should be the identity element for the reduction). Most common
3580     * reductions have these properties; for example, computing a sum
3581     * with basis 0 or a minimum with basis MAX_VALUE.
3582     *
3583     * <p>Search and transformation functions provided as arguments
3584     * should similarly return null to indicate the lack of any result
3585     * (in which case it is not used). In the case of mapped
3586     * reductions, this also enables transformations to serve as
3587     * filters, returning null (or, in the case of primitive
3588     * specializations, the identity basis) if the element should not
3589     * be combined. You can create compound transformations and
3590     * filterings by composing them yourself under this "null means
3591     * there is nothing there now" rule before using them in search or
3592     * reduce operations.
3593     *
3594     * <p>Methods accepting and/or returning Entry arguments maintain
3595     * key-value associations. They may be useful for example when
3596     * finding the key for the greatest value. Note that "plain" Entry
3597     * arguments can be supplied using {@code new
3598     * AbstractMap.SimpleEntry(k,v)}.
3599     *
3600     * <p> Bulk operations may complete abruptly, throwing an
3601     * exception encountered in the application of a supplied
3602     * function. Bear in mind when handling such exceptions that other
3603     * concurrently executing functions could also have thrown
3604     * exceptions, or would have done so if the first exception had
3605     * not occurred.
3606     *
3607     * <p>Parallel speedups compared to sequential processing are
3608     * common but not guaranteed. Operations involving brief
3609     * functions on small maps may execute more slowly than sequential
3610     * loops if the underlying work to parallelize the computation is
3611     * more expensive than the computation itself. Similarly,
3612     * parallelization may not lead to much actual parallelism if all
3613     * processors are busy performing unrelated tasks.
3614     *
3615     * <p> All arguments to all task methods must be non-null.
3616     *
3617     * <p><em>jsr166e note: During transition, this class
3618     * uses nested functional interfaces with different names but the
3619     * same forms as those expected for JDK8.<em>
3620     */
3621     public class Parallel {
3622     final ForkJoinPool fjp;
3623    
3624     /**
3625     * Returns an extended view of this map using the given
3626     * executor for bulk parallel operations.
3627     *
3628     * @param executor the executor
3629     */
3630     public Parallel(ForkJoinPool executor) {
3631     this.fjp = executor;
3632     }
3633    
3634     /**
3635     * Performs the given action for each (key, value).
3636     *
3637     * @param action the action
3638     */
3639 jsr166 1.53 public void forEach(BiAction<K,V> action) {
3640 dl 1.52 fjp.invoke(ForkJoinTasks.forEach
3641     (ConcurrentHashMapV8.this, action));
3642     }
3643    
3644     /**
3645     * Performs the given action for each non-null transformation
3646     * of each (key, value).
3647     *
3648     * @param transformer a function returning the transformation
3649     * for an element, or null of there is no transformation (in
3650     * which case the action is not applied).
3651     * @param action the action
3652     */
3653 jsr166 1.53 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3654 dl 1.52 Action<U> action) {
3655     fjp.invoke(ForkJoinTasks.forEach
3656     (ConcurrentHashMapV8.this, transformer, action));
3657     }
3658    
3659     /**
3660     * Returns a non-null result from applying the given search
3661     * function on each (key, value), or null if none. Further
3662     * element processing is suppressed upon success. However,
3663     * this method does not return until other in-progress
3664     * parallel invocations of the search function also complete.
3665     *
3666     * @param searchFunction a function returning a non-null
3667     * result on success, else null
3668     * @return a non-null result from applying the given search
3669     * function on each (key, value), or null if none
3670     */
3671     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3672     return fjp.invoke(ForkJoinTasks.search
3673     (ConcurrentHashMapV8.this, searchFunction));
3674 dl 1.1 }
3675    
3676 dl 1.52 /**
3677     * Returns the result of accumulating the given transformation
3678     * of all (key, value) pairs using the given reducer to
3679     * combine values, or null if none.
3680     *
3681     * @param transformer a function returning the transformation
3682     * for an element, or null of there is no transformation (in
3683     * which case it is not combined).
3684     * @param reducer a commutative associative combining function
3685     * @return the result of accumulating the given transformation
3686     * of all (key, value) pairs
3687     */
3688     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3689     BiFun<? super U, ? super U, ? extends U> reducer) {
3690     return fjp.invoke(ForkJoinTasks.reduce
3691     (ConcurrentHashMapV8.this, transformer, reducer));
3692 dl 1.1 }
3693    
3694 dl 1.52 /**
3695     * Returns the result of accumulating the given transformation
3696     * of all (key, value) pairs using the given reducer to
3697     * combine values, and the given basis as an identity value.
3698     *
3699     * @param transformer a function returning the transformation
3700     * for an element
3701     * @param basis the identity (initial default value) for the reduction
3702     * @param reducer a commutative associative combining function
3703     * @return the result of accumulating the given transformation
3704     * of all (key, value) pairs
3705     */
3706     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3707     double basis,
3708     DoubleByDoubleToDouble reducer) {
3709     return fjp.invoke(ForkJoinTasks.reduceToDouble
3710     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3711     }
3712    
3713     /**
3714     * Returns the result of accumulating the given transformation
3715     * of all (key, value) pairs using the given reducer to
3716     * combine values, and the given basis as an identity value.
3717     *
3718     * @param transformer a function returning the transformation
3719     * for an element
3720     * @param basis the identity (initial default value) for the reduction
3721     * @param reducer a commutative associative combining function
3722     * @return the result of accumulating the given transformation
3723     * of all (key, value) pairs using the given reducer to
3724     * combine values, and the given basis as an identity value.
3725     */
3726     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3727     long basis,
3728     LongByLongToLong reducer) {
3729     return fjp.invoke(ForkJoinTasks.reduceToLong
3730     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3731     }
3732    
3733     /**
3734     * Returns the result of accumulating the given transformation
3735     * of all (key, value) pairs using the given reducer to
3736     * combine values, and the given basis as an identity value.
3737     *
3738     * @param transformer a function returning the transformation
3739     * for an element
3740     * @param basis the identity (initial default value) for the reduction
3741     * @param reducer a commutative associative combining function
3742     * @return the result of accumulating the given transformation
3743     * of all (key, value) pairs
3744     */
3745     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3746     int basis,
3747     IntByIntToInt reducer) {
3748     return fjp.invoke(ForkJoinTasks.reduceToInt
3749     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3750     }
3751    
3752     /**
3753     * Performs the given action for each key
3754     *
3755     * @param action the action
3756     */
3757 jsr166 1.53 public void forEachKey(Action<K> action) {
3758 dl 1.52 fjp.invoke(ForkJoinTasks.forEachKey
3759     (ConcurrentHashMapV8.this, action));
3760     }
3761    
3762     /**
3763     * Performs the given action for each non-null transformation
3764     * of each key
3765     *
3766     * @param transformer a function returning the transformation
3767     * for an element, or null of there is no transformation (in
3768     * which case the action is not applied).
3769     * @param action the action
3770     */
3771 jsr166 1.53 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3772 dl 1.52 Action<U> action) {
3773     fjp.invoke(ForkJoinTasks.forEachKey
3774     (ConcurrentHashMapV8.this, transformer, action));
3775     }
3776    
3777     /**
3778     * Returns a non-null result from applying the given search
3779     * function on each key, or null if none. Further element
3780     * processing is suppressed upon success. However, this method
3781     * does not return until other in-progress parallel
3782     * invocations of the search function also complete.
3783     *
3784     * @param searchFunction a function returning a non-null
3785     * result on success, else null
3786     * @return a non-null result from applying the given search
3787     * function on each key, or null if none
3788     */
3789     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3790     return fjp.invoke(ForkJoinTasks.searchKeys
3791     (ConcurrentHashMapV8.this, searchFunction));
3792     }
3793    
3794     /**
3795     * Returns the result of accumulating all keys using the given
3796     * reducer to combine values, or null if none.
3797     *
3798     * @param reducer a commutative associative combining function
3799     * @return the result of accumulating all keys using the given
3800     * reducer to combine values, or null if none
3801     */
3802     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3803     return fjp.invoke(ForkJoinTasks.reduceKeys
3804     (ConcurrentHashMapV8.this, reducer));
3805     }
3806    
3807     /**
3808     * Returns the result of accumulating the given transformation
3809     * of all keys using the given reducer to combine values, or
3810     * null if none.
3811     *
3812     * @param transformer a function returning the transformation
3813     * for an element, or null of there is no transformation (in
3814     * which case it is not combined).
3815     * @param reducer a commutative associative combining function
3816     * @return the result of accumulating the given transformation
3817     * of all keys
3818     */
3819     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3820     BiFun<? super U, ? super U, ? extends U> reducer) {
3821     return fjp.invoke(ForkJoinTasks.reduceKeys
3822     (ConcurrentHashMapV8.this, transformer, reducer));
3823     }
3824    
3825     /**
3826     * Returns the result of accumulating the given transformation
3827     * of all keys using the given reducer to combine values, and
3828     * the given basis as an identity value.
3829     *
3830     * @param transformer a function returning the transformation
3831     * for an element
3832     * @param basis the identity (initial default value) for the reduction
3833     * @param reducer a commutative associative combining function
3834     * @return the result of accumulating the given transformation
3835     * of all keys
3836     */
3837     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3838     double basis,
3839     DoubleByDoubleToDouble reducer) {
3840     return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3841     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3842     }
3843    
3844     /**
3845     * Returns the result of accumulating the given transformation
3846     * of all keys using the given reducer to combine values, and
3847     * the given basis as an identity value.
3848     *
3849     * @param transformer a function returning the transformation
3850     * for an element
3851     * @param basis the identity (initial default value) for the reduction
3852     * @param reducer a commutative associative combining function
3853     * @return the result of accumulating the given transformation
3854     * of all keys
3855     */
3856     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3857     long basis,
3858     LongByLongToLong reducer) {
3859     return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3860     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3861     }
3862    
3863     /**
3864     * Returns the result of accumulating the given transformation
3865     * of all keys using the given reducer to combine values, and
3866     * the given basis as an identity value.
3867     *
3868     * @param transformer a function returning the transformation
3869     * for an element
3870     * @param basis the identity (initial default value) for the reduction
3871     * @param reducer a commutative associative combining function
3872     * @return the result of accumulating the given transformation
3873     * of all keys
3874     */
3875     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3876     int basis,
3877     IntByIntToInt reducer) {
3878     return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3879     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3880     }
3881    
3882     /**
3883     * Performs the given action for each value
3884     *
3885     * @param action the action
3886     */
3887 jsr166 1.53 public void forEachValue(Action<V> action) {
3888 dl 1.52 fjp.invoke(ForkJoinTasks.forEachValue
3889     (ConcurrentHashMapV8.this, action));
3890     }
3891    
3892     /**
3893     * Performs the given action for each non-null transformation
3894     * of each value
3895     *
3896     * @param transformer a function returning the transformation
3897     * for an element, or null of there is no transformation (in
3898     * which case the action is not applied).
3899     */
3900 jsr166 1.53 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3901 dl 1.52 Action<U> action) {
3902     fjp.invoke(ForkJoinTasks.forEachValue
3903     (ConcurrentHashMapV8.this, transformer, action));
3904     }
3905    
3906     /**
3907     * Returns a non-null result from applying the given search
3908     * function on each value, or null if none. Further element
3909     * processing is suppressed upon success. However, this method
3910     * does not return until other in-progress parallel
3911     * invocations of the search function also complete.
3912     *
3913     * @param searchFunction a function returning a non-null
3914     * result on success, else null
3915     * @return a non-null result from applying the given search
3916     * function on each value, or null if none
3917     *
3918     */
3919     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3920     return fjp.invoke(ForkJoinTasks.searchValues
3921     (ConcurrentHashMapV8.this, searchFunction));
3922     }
3923    
3924     /**
3925     * Returns the result of accumulating all values using the
3926     * given reducer to combine values, or null if none.
3927     *
3928     * @param reducer a commutative associative combining function
3929     * @return the result of accumulating all values
3930     */
3931     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3932     return fjp.invoke(ForkJoinTasks.reduceValues
3933     (ConcurrentHashMapV8.this, reducer));
3934     }
3935    
3936     /**
3937     * Returns the result of accumulating the given transformation
3938     * of all values using the given reducer to combine values, or
3939     * null if none.
3940     *
3941     * @param transformer a function returning the transformation
3942     * for an element, or null of there is no transformation (in
3943     * which case it is not combined).
3944     * @param reducer a commutative associative combining function
3945     * @return the result of accumulating the given transformation
3946     * of all values
3947     */
3948     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3949     BiFun<? super U, ? super U, ? extends U> reducer) {
3950     return fjp.invoke(ForkJoinTasks.reduceValues
3951     (ConcurrentHashMapV8.this, transformer, reducer));
3952     }
3953    
3954     /**
3955     * Returns the result of accumulating the given transformation
3956     * of all values using the given reducer to combine values,
3957     * and the given basis as an identity value.
3958     *
3959     * @param transformer a function returning the transformation
3960     * for an element
3961     * @param basis the identity (initial default value) for the reduction
3962     * @param reducer a commutative associative combining function
3963     * @return the result of accumulating the given transformation
3964     * of all values
3965     */
3966     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3967     double basis,
3968     DoubleByDoubleToDouble reducer) {
3969     return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3970     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3971     }
3972    
3973     /**
3974     * Returns the result of accumulating the given transformation
3975     * of all values using the given reducer to combine values,
3976     * and the given basis as an identity value.
3977     *
3978     * @param transformer a function returning the transformation
3979     * for an element
3980     * @param basis the identity (initial default value) for the reduction
3981     * @param reducer a commutative associative combining function
3982     * @return the result of accumulating the given transformation
3983     * of all values
3984     */
3985     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3986     long basis,
3987     LongByLongToLong reducer) {
3988     return fjp.invoke(ForkJoinTasks.reduceValuesToLong
3989     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3990     }
3991    
3992     /**
3993     * Returns the result of accumulating the given transformation
3994     * of all values using the given reducer to combine values,
3995     * and the given basis as an identity value.
3996     *
3997     * @param transformer a function returning the transformation
3998     * for an element
3999     * @param basis the identity (initial default value) for the reduction
4000     * @param reducer a commutative associative combining function
4001     * @return the result of accumulating the given transformation
4002     * of all values
4003     */
4004     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4005     int basis,
4006     IntByIntToInt reducer) {
4007     return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4008     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4009     }
4010    
4011     /**
4012     * Perform the given action for each entry
4013     *
4014     * @param action the action
4015     */
4016 jsr166 1.53 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4017 dl 1.52 fjp.invoke(ForkJoinTasks.forEachEntry
4018     (ConcurrentHashMapV8.this, action));
4019     }
4020    
4021     /**
4022     * Perform the given action for each non-null transformation
4023     * of each entry
4024     *
4025     * @param transformer a function returning the transformation
4026     * for an element, or null of there is no transformation (in
4027     * which case the action is not applied).
4028     * @param action the action
4029     */
4030 jsr166 1.53 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4031 dl 1.52 Action<U> action) {
4032     fjp.invoke(ForkJoinTasks.forEachEntry
4033     (ConcurrentHashMapV8.this, transformer, action));
4034     }
4035    
4036     /**
4037     * Returns a non-null result from applying the given search
4038     * function on each entry, or null if none. Further element
4039     * processing is suppressed upon success. However, this method
4040     * does not return until other in-progress parallel
4041     * invocations of the search function also complete.
4042     *
4043     * @param searchFunction a function returning a non-null
4044     * result on success, else null
4045     * @return a non-null result from applying the given search
4046     * function on each entry, or null if none
4047     */
4048     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4049     return fjp.invoke(ForkJoinTasks.searchEntries
4050     (ConcurrentHashMapV8.this, searchFunction));
4051     }
4052    
4053     /**
4054     * Returns the result of accumulating all entries using the
4055     * given reducer to combine values, or null if none.
4056     *
4057     * @param reducer a commutative associative combining function
4058     * @return the result of accumulating all entries
4059     */
4060     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4061     return fjp.invoke(ForkJoinTasks.reduceEntries
4062     (ConcurrentHashMapV8.this, reducer));
4063     }
4064    
4065     /**
4066     * Returns the result of accumulating the given transformation
4067     * of all entries using the given reducer to combine values,
4068     * or null if none.
4069     *
4070     * @param transformer a function returning the transformation
4071     * for an element, or null of there is no transformation (in
4072     * which case it is not combined).
4073     * @param reducer a commutative associative combining function
4074     * @return the result of accumulating the given transformation
4075     * of all entries
4076     */
4077     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4078     BiFun<? super U, ? super U, ? extends U> reducer) {
4079     return fjp.invoke(ForkJoinTasks.reduceEntries
4080     (ConcurrentHashMapV8.this, transformer, reducer));
4081     }
4082    
4083     /**
4084     * Returns the result of accumulating the given transformation
4085     * of all entries using the given reducer to combine values,
4086     * and the given basis as an identity value.
4087     *
4088     * @param transformer a function returning the transformation
4089     * for an element
4090     * @param basis the identity (initial default value) for the reduction
4091     * @param reducer a commutative associative combining function
4092     * @return the result of accumulating the given transformation
4093     * of all entries
4094     */
4095     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4096     double basis,
4097     DoubleByDoubleToDouble reducer) {
4098     return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4099     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4100     }
4101    
4102     /**
4103     * Returns the result of accumulating the given transformation
4104     * of all entries using the given reducer to combine values,
4105     * and the given basis as an identity value.
4106     *
4107     * @param transformer a function returning the transformation
4108     * for an element
4109     * @param basis the identity (initial default value) for the reduction
4110     * @param reducer a commutative associative combining function
4111     * @return the result of accumulating the given transformation
4112     * of all entries
4113     */
4114     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4115     long basis,
4116     LongByLongToLong reducer) {
4117     return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4118     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4119     }
4120    
4121     /**
4122     * Returns the result of accumulating the given transformation
4123     * of all entries using the given reducer to combine values,
4124     * and the given basis as an identity value.
4125     *
4126     * @param transformer a function returning the transformation
4127     * for an element
4128     * @param basis the identity (initial default value) for the reduction
4129     * @param reducer a commutative associative combining function
4130     * @return the result of accumulating the given transformation
4131     * of all entries
4132     */
4133     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4134     int basis,
4135     IntByIntToInt reducer) {
4136     return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4137     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4138     }
4139     }
4140    
4141     // ---------------------------------------------------------------------
4142    
4143     /**
4144     * Predefined tasks for performing bulk parallel operations on
4145     * ConcurrentHashMaps. These tasks follow the forms and rules used
4146     * in class {@link Parallel}. Each method has the same name, but
4147     * returns a task rather than invoking it. These methods may be
4148     * useful in custom applications such as submitting a task without
4149     * waiting for completion, or combining with other tasks.
4150     */
4151     public static class ForkJoinTasks {
4152     private ForkJoinTasks() {}
4153    
4154     /**
4155     * Returns a task that when invoked, performs the given
4156     * action for each (key, value)
4157     *
4158     * @param map the map
4159     * @param action the action
4160     * @return the task
4161     */
4162 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4163 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4164     BiAction<K,V> action) {
4165     if (action == null) throw new NullPointerException();
4166     return new ForEachMappingTask<K,V>(map, action);
4167     }
4168    
4169     /**
4170     * Returns a task that when invoked, performs the given
4171     * action for each non-null transformation of each (key, value)
4172     *
4173     * @param map the map
4174     * @param transformer a function returning the transformation
4175     * for an element, or null of there is no transformation (in
4176     * which case the action is not applied).
4177     * @param action the action
4178     * @return the task
4179     */
4180 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4181 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4182     BiFun<? super K, ? super V, ? extends U> transformer,
4183     Action<U> action) {
4184     if (transformer == null || action == null)
4185     throw new NullPointerException();
4186     return new ForEachTransformedMappingTask<K,V,U>
4187     (map, transformer, action);
4188     }
4189    
4190     /**
4191     * Returns a task that when invoked, returns a non-null
4192     * result from applying the given search function on each
4193     * (key, value), or null if none. Further element processing
4194     * is suppressed upon success. However, this method does not
4195     * return until other in-progress parallel invocations of the
4196     * search function also complete.
4197     *
4198     * @param map the map
4199     * @param searchFunction a function returning a non-null
4200     * result on success, else null
4201     * @return the task
4202     */
4203     public static <K,V,U> ForkJoinTask<U> search
4204     (ConcurrentHashMapV8<K,V> map,
4205     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4206     if (searchFunction == null) throw new NullPointerException();
4207     return new SearchMappingsTask<K,V,U>
4208     (map, searchFunction,
4209     new AtomicReference<U>());
4210     }
4211    
4212     /**
4213     * Returns a task that when invoked, returns the result of
4214     * accumulating the given transformation of all (key, value) pairs
4215     * using the given reducer to combine values, or null if none.
4216     *
4217     * @param map the map
4218     * @param transformer a function returning the transformation
4219     * for an element, or null of there is no transformation (in
4220     * which case it is not combined).
4221     * @param reducer a commutative associative combining function
4222     * @return the task
4223     */
4224     public static <K,V,U> ForkJoinTask<U> reduce
4225     (ConcurrentHashMapV8<K,V> map,
4226     BiFun<? super K, ? super V, ? extends U> transformer,
4227     BiFun<? super U, ? super U, ? extends U> reducer) {
4228     if (transformer == null || reducer == null)
4229     throw new NullPointerException();
4230     return new MapReduceMappingsTask<K,V,U>
4231     (map, transformer, reducer);
4232     }
4233    
4234     /**
4235     * Returns a task that when invoked, returns the result of
4236     * accumulating the given transformation of all (key, value) pairs
4237     * using the given reducer to combine values, and the given
4238     * basis as an identity value.
4239     *
4240     * @param map the map
4241     * @param transformer a function returning the transformation
4242     * for an element
4243     * @param basis the identity (initial default value) for the reduction
4244     * @param reducer a commutative associative combining function
4245     * @return the task
4246     */
4247     public static <K,V> ForkJoinTask<Double> reduceToDouble
4248     (ConcurrentHashMapV8<K,V> map,
4249     ObjectByObjectToDouble<? super K, ? super V> transformer,
4250     double basis,
4251     DoubleByDoubleToDouble reducer) {
4252     if (transformer == null || reducer == null)
4253     throw new NullPointerException();
4254     return new MapReduceMappingsToDoubleTask<K,V>
4255     (map, transformer, basis, reducer);
4256     }
4257    
4258     /**
4259     * Returns a task that when invoked, returns the result of
4260     * accumulating the given transformation of all (key, value) pairs
4261     * using the given reducer to combine values, and the given
4262     * basis as an identity value.
4263     *
4264     * @param map the map
4265     * @param transformer a function returning the transformation
4266     * for an element
4267     * @param basis the identity (initial default value) for the reduction
4268     * @param reducer a commutative associative combining function
4269     * @return the task
4270     */
4271     public static <K,V> ForkJoinTask<Long> reduceToLong
4272     (ConcurrentHashMapV8<K,V> map,
4273     ObjectByObjectToLong<? super K, ? super V> transformer,
4274     long basis,
4275     LongByLongToLong reducer) {
4276     if (transformer == null || reducer == null)
4277     throw new NullPointerException();
4278     return new MapReduceMappingsToLongTask<K,V>
4279     (map, transformer, basis, reducer);
4280     }
4281    
4282     /**
4283     * Returns a task that when invoked, returns the result of
4284     * accumulating the given transformation of all (key, value) pairs
4285     * using the given reducer to combine values, and the given
4286     * basis as an identity value.
4287     *
4288     * @param transformer a function returning the transformation
4289     * for an element
4290     * @param basis the identity (initial default value) for the reduction
4291     * @param reducer a commutative associative combining function
4292     * @return the task
4293     */
4294     public static <K,V> ForkJoinTask<Integer> reduceToInt
4295     (ConcurrentHashMapV8<K,V> map,
4296     ObjectByObjectToInt<? super K, ? super V> transformer,
4297     int basis,
4298     IntByIntToInt reducer) {
4299     if (transformer == null || reducer == null)
4300     throw new NullPointerException();
4301     return new MapReduceMappingsToIntTask<K,V>
4302     (map, transformer, basis, reducer);
4303     }
4304    
4305     /**
4306     * Returns a task that when invoked, performs the given action
4307     * for each key
4308     *
4309     * @param map the map
4310     * @param action the action
4311     * @return the task
4312     */
4313 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
4314 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4315     Action<K> action) {
4316     if (action == null) throw new NullPointerException();
4317     return new ForEachKeyTask<K,V>(map, action);
4318     }
4319    
4320     /**
4321     * Returns a task that when invoked, performs the given action
4322     * for each non-null transformation of each key
4323     *
4324     * @param map the map
4325     * @param transformer a function returning the transformation
4326     * for an element, or null of there is no transformation (in
4327     * which case the action is not applied).
4328     * @param action the action
4329     * @return the task
4330     */
4331 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
4332 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4333     Fun<? super K, ? extends U> transformer,
4334     Action<U> action) {
4335     if (transformer == null || action == null)
4336     throw new NullPointerException();
4337     return new ForEachTransformedKeyTask<K,V,U>
4338     (map, transformer, action);
4339     }
4340    
4341     /**
4342     * Returns a task that when invoked, returns a non-null result
4343     * from applying the given search function on each key, or
4344     * null if none. Further element processing is suppressed
4345     * upon success. However, this method does not return until
4346     * other in-progress parallel invocations of the search
4347     * function also complete.
4348     *
4349     * @param map the map
4350     * @param searchFunction a function returning a non-null
4351     * result on success, else null
4352     * @return the task
4353     */
4354     public static <K,V,U> ForkJoinTask<U> searchKeys
4355     (ConcurrentHashMapV8<K,V> map,
4356     Fun<? super K, ? extends U> searchFunction) {
4357     if (searchFunction == null) throw new NullPointerException();
4358     return new SearchKeysTask<K,V,U>
4359     (map, searchFunction,
4360     new AtomicReference<U>());
4361     }
4362    
4363     /**
4364     * Returns a task that when invoked, returns the result of
4365     * accumulating all keys using the given reducer to combine
4366     * values, or null if none.
4367     *
4368     * @param map the map
4369     * @param reducer a commutative associative combining function
4370     * @return the task
4371     */
4372     public static <K,V> ForkJoinTask<K> reduceKeys
4373     (ConcurrentHashMapV8<K,V> map,
4374     BiFun<? super K, ? super K, ? extends K> reducer) {
4375     if (reducer == null) throw new NullPointerException();
4376     return new ReduceKeysTask<K,V>
4377     (map, reducer);
4378     }
4379     /**
4380     * Returns a task that when invoked, returns the result of
4381     * accumulating the given transformation of all keys using the given
4382     * reducer to combine values, or null if none.
4383     *
4384     * @param map the map
4385     * @param transformer a function returning the transformation
4386     * for an element, or null of there is no transformation (in
4387     * which case it is not combined).
4388     * @param reducer a commutative associative combining function
4389     * @return the task
4390     */
4391     public static <K,V,U> ForkJoinTask<U> reduceKeys
4392     (ConcurrentHashMapV8<K,V> map,
4393     Fun<? super K, ? extends U> transformer,
4394     BiFun<? super U, ? super U, ? extends U> reducer) {
4395     if (transformer == null || reducer == null)
4396     throw new NullPointerException();
4397     return new MapReduceKeysTask<K,V,U>
4398     (map, transformer, reducer);
4399     }
4400    
4401     /**
4402     * Returns a task that when invoked, returns the result of
4403     * accumulating the given transformation of all keys using the given
4404     * reducer to combine values, and the given basis as an
4405     * identity value.
4406     *
4407     * @param map the map
4408     * @param transformer a function returning the transformation
4409     * for an element
4410     * @param basis the identity (initial default value) for the reduction
4411     * @param reducer a commutative associative combining function
4412     * @return the task
4413     */
4414     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4415     (ConcurrentHashMapV8<K,V> map,
4416     ObjectToDouble<? super K> transformer,
4417     double basis,
4418     DoubleByDoubleToDouble reducer) {
4419     if (transformer == null || reducer == null)
4420     throw new NullPointerException();
4421     return new MapReduceKeysToDoubleTask<K,V>
4422     (map, transformer, basis, reducer);
4423     }
4424    
4425     /**
4426     * Returns a task that when invoked, returns the result of
4427     * accumulating the given transformation of all keys using the given
4428     * reducer to combine values, and the given basis as an
4429     * identity value.
4430     *
4431     * @param map the map
4432     * @param transformer a function returning the transformation
4433     * for an element
4434     * @param basis the identity (initial default value) for the reduction
4435     * @param reducer a commutative associative combining function
4436     * @return the task
4437     */
4438     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4439     (ConcurrentHashMapV8<K,V> map,
4440     ObjectToLong<? super K> transformer,
4441     long basis,
4442     LongByLongToLong reducer) {
4443     if (transformer == null || reducer == null)
4444     throw new NullPointerException();
4445     return new MapReduceKeysToLongTask<K,V>
4446     (map, transformer, basis, reducer);
4447     }
4448    
4449     /**
4450     * Returns a task that when invoked, returns the result of
4451     * accumulating the given transformation of all keys using the given
4452     * reducer to combine values, and the given basis as an
4453     * identity value.
4454     *
4455     * @param map the map
4456     * @param transformer a function returning the transformation
4457     * for an element
4458     * @param basis the identity (initial default value) for the reduction
4459     * @param reducer a commutative associative combining function
4460     * @return the task
4461     */
4462     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4463     (ConcurrentHashMapV8<K,V> map,
4464     ObjectToInt<? super K> transformer,
4465     int basis,
4466     IntByIntToInt reducer) {
4467     if (transformer == null || reducer == null)
4468     throw new NullPointerException();
4469     return new MapReduceKeysToIntTask<K,V>
4470     (map, transformer, basis, reducer);
4471     }
4472    
4473     /**
4474     * Returns a task that when invoked, performs the given action
4475     * for each value
4476     *
4477     * @param map the map
4478     * @param action the action
4479     */
4480 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
4481 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4482     Action<V> action) {
4483     if (action == null) throw new NullPointerException();
4484     return new ForEachValueTask<K,V>(map, action);
4485     }
4486    
4487     /**
4488     * Returns a task that when invoked, performs the given action
4489     * for each non-null transformation of each value
4490     *
4491     * @param map the map
4492     * @param transformer a function returning the transformation
4493     * for an element, or null of there is no transformation (in
4494     * which case the action is not applied).
4495     * @param action the action
4496     */
4497 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
4498 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4499     Fun<? super V, ? extends U> transformer,
4500     Action<U> action) {
4501     if (transformer == null || action == null)
4502     throw new NullPointerException();
4503     return new ForEachTransformedValueTask<K,V,U>
4504     (map, transformer, action);
4505     }
4506    
4507     /**
4508     * Returns a task that when invoked, returns a non-null result
4509     * from applying the given search function on each value, or
4510     * null if none. Further element processing is suppressed
4511     * upon success. However, this method does not return until
4512     * other in-progress parallel invocations of the search
4513     * function also complete.
4514     *
4515     * @param map the map
4516     * @param searchFunction a function returning a non-null
4517     * result on success, else null
4518     * @return the task
4519     *
4520     */
4521     public static <K,V,U> ForkJoinTask<U> searchValues
4522     (ConcurrentHashMapV8<K,V> map,
4523     Fun<? super V, ? extends U> searchFunction) {
4524     if (searchFunction == null) throw new NullPointerException();
4525     return new SearchValuesTask<K,V,U>
4526     (map, searchFunction,
4527     new AtomicReference<U>());
4528     }
4529    
4530     /**
4531     * Returns a task that when invoked, returns the result of
4532     * accumulating all values using the given reducer to combine
4533     * values, or null if none.
4534     *
4535     * @param map the map
4536     * @param reducer a commutative associative combining function
4537     * @return the task
4538     */
4539     public static <K,V> ForkJoinTask<V> reduceValues
4540     (ConcurrentHashMapV8<K,V> map,
4541     BiFun<? super V, ? super V, ? extends V> reducer) {
4542     if (reducer == null) throw new NullPointerException();
4543     return new ReduceValuesTask<K,V>
4544     (map, reducer);
4545     }
4546    
4547     /**
4548     * Returns a task that when invoked, returns the result of
4549     * accumulating the given transformation of all values using the
4550     * given reducer to combine values, or null if none.
4551     *
4552     * @param map the map
4553     * @param transformer a function returning the transformation
4554     * for an element, or null of there is no transformation (in
4555     * which case it is not combined).
4556     * @param reducer a commutative associative combining function
4557     * @return the task
4558     */
4559     public static <K,V,U> ForkJoinTask<U> reduceValues
4560     (ConcurrentHashMapV8<K,V> map,
4561     Fun<? super V, ? extends U> transformer,
4562     BiFun<? super U, ? super U, ? extends U> reducer) {
4563     if (transformer == null || reducer == null)
4564     throw new NullPointerException();
4565     return new MapReduceValuesTask<K,V,U>
4566     (map, transformer, reducer);
4567     }
4568    
4569     /**
4570     * Returns a task that when invoked, returns the result of
4571     * accumulating the given transformation of all values using the
4572     * given reducer to combine values, and the given basis as an
4573     * identity value.
4574     *
4575     * @param map the map
4576     * @param transformer a function returning the transformation
4577     * for an element
4578     * @param basis the identity (initial default value) for the reduction
4579     * @param reducer a commutative associative combining function
4580     * @return the task
4581     */
4582     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4583     (ConcurrentHashMapV8<K,V> map,
4584     ObjectToDouble<? super V> transformer,
4585     double basis,
4586     DoubleByDoubleToDouble reducer) {
4587     if (transformer == null || reducer == null)
4588     throw new NullPointerException();
4589     return new MapReduceValuesToDoubleTask<K,V>
4590     (map, transformer, basis, reducer);
4591     }
4592    
4593     /**
4594     * Returns a task that when invoked, returns the result of
4595     * accumulating the given transformation of all values using the
4596     * given reducer to combine values, and the given basis as an
4597     * identity value.
4598     *
4599     * @param map the map
4600     * @param transformer a function returning the transformation
4601     * for an element
4602     * @param basis the identity (initial default value) for the reduction
4603     * @param reducer a commutative associative combining function
4604     * @return the task
4605     */
4606     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4607     (ConcurrentHashMapV8<K,V> map,
4608     ObjectToLong<? super V> transformer,
4609     long basis,
4610     LongByLongToLong reducer) {
4611     if (transformer == null || reducer == null)
4612     throw new NullPointerException();
4613     return new MapReduceValuesToLongTask<K,V>
4614     (map, transformer, basis, reducer);
4615     }
4616    
4617     /**
4618     * Returns a task that when invoked, returns the result of
4619     * accumulating the given transformation of all values using the
4620     * given reducer to combine values, and the given basis as an
4621     * identity value.
4622     *
4623     * @param map the map
4624     * @param transformer a function returning the transformation
4625     * for an element
4626     * @param basis the identity (initial default value) for the reduction
4627     * @param reducer a commutative associative combining function
4628     * @return the task
4629     */
4630     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4631     (ConcurrentHashMapV8<K,V> map,
4632     ObjectToInt<? super V> transformer,
4633     int basis,
4634     IntByIntToInt reducer) {
4635     if (transformer == null || reducer == null)
4636     throw new NullPointerException();
4637     return new MapReduceValuesToIntTask<K,V>
4638     (map, transformer, basis, reducer);
4639     }
4640    
4641     /**
4642     * Returns a task that when invoked, perform the given action
4643     * for each entry
4644     *
4645     * @param map the map
4646     * @param action the action
4647     */
4648 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
4649 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4650     Action<Map.Entry<K,V>> action) {
4651     if (action == null) throw new NullPointerException();
4652     return new ForEachEntryTask<K,V>(map, action);
4653     }
4654    
4655     /**
4656     * Returns a task that when invoked, perform the given action
4657     * for each non-null transformation of each entry
4658     *
4659     * @param map the map
4660     * @param transformer a function returning the transformation
4661     * for an element, or null of there is no transformation (in
4662     * which case the action is not applied).
4663     * @param action the action
4664     */
4665 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4666 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4667     Fun<Map.Entry<K,V>, ? extends U> transformer,
4668     Action<U> action) {
4669     if (transformer == null || action == null)
4670     throw new NullPointerException();
4671     return new ForEachTransformedEntryTask<K,V,U>
4672     (map, transformer, action);
4673     }
4674    
4675     /**
4676     * Returns a task that when invoked, returns a non-null result
4677     * from applying the given search function on each entry, or
4678     * null if none. Further element processing is suppressed
4679     * upon success. However, this method does not return until
4680     * other in-progress parallel invocations of the search
4681     * function also complete.
4682     *
4683     * @param map the map
4684     * @param searchFunction a function returning a non-null
4685     * result on success, else null
4686     * @return the task
4687     *
4688     */
4689     public static <K,V,U> ForkJoinTask<U> searchEntries
4690     (ConcurrentHashMapV8<K,V> map,
4691     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4692     if (searchFunction == null) throw new NullPointerException();
4693     return new SearchEntriesTask<K,V,U>
4694     (map, searchFunction,
4695     new AtomicReference<U>());
4696     }
4697    
4698     /**
4699     * Returns a task that when invoked, returns the result of
4700     * accumulating all entries using the given reducer to combine
4701     * values, or null if none.
4702     *
4703     * @param map the map
4704     * @param reducer a commutative associative combining function
4705     * @return the task
4706     */
4707     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4708     (ConcurrentHashMapV8<K,V> map,
4709     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4710     if (reducer == null) throw new NullPointerException();
4711     return new ReduceEntriesTask<K,V>
4712     (map, reducer);
4713     }
4714    
4715     /**
4716     * Returns a task that when invoked, returns the result of
4717     * accumulating the given transformation of all entries using the
4718     * given reducer to combine values, or null if none.
4719     *
4720     * @param map the map
4721     * @param transformer a function returning the transformation
4722     * for an element, or null of there is no transformation (in
4723     * which case it is not combined).
4724     * @param reducer a commutative associative combining function
4725     * @return the task
4726     */
4727     public static <K,V,U> ForkJoinTask<U> reduceEntries
4728     (ConcurrentHashMapV8<K,V> map,
4729     Fun<Map.Entry<K,V>, ? extends U> transformer,
4730     BiFun<? super U, ? super U, ? extends U> reducer) {
4731     if (transformer == null || reducer == null)
4732     throw new NullPointerException();
4733     return new MapReduceEntriesTask<K,V,U>
4734     (map, transformer, reducer);
4735     }
4736    
4737     /**
4738     * Returns a task that when invoked, returns the result of
4739     * accumulating the given transformation of all entries using the
4740     * given reducer to combine values, and the given basis as an
4741     * identity value.
4742     *
4743     * @param map the map
4744     * @param transformer a function returning the transformation
4745     * for an element
4746     * @param basis the identity (initial default value) for the reduction
4747     * @param reducer a commutative associative combining function
4748     * @return the task
4749     */
4750     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4751     (ConcurrentHashMapV8<K,V> map,
4752     ObjectToDouble<Map.Entry<K,V>> transformer,
4753     double basis,
4754     DoubleByDoubleToDouble reducer) {
4755     if (transformer == null || reducer == null)
4756     throw new NullPointerException();
4757     return new MapReduceEntriesToDoubleTask<K,V>
4758     (map, transformer, basis, reducer);
4759     }
4760    
4761     /**
4762     * Returns a task that when invoked, returns the result of
4763     * accumulating the given transformation of all entries using the
4764     * given reducer to combine values, and the given basis as an
4765     * identity value.
4766     *
4767     * @param map the map
4768     * @param transformer a function returning the transformation
4769     * for an element
4770     * @param basis the identity (initial default value) for the reduction
4771     * @param reducer a commutative associative combining function
4772     * @return the task
4773     */
4774     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4775     (ConcurrentHashMapV8<K,V> map,
4776     ObjectToLong<Map.Entry<K,V>> transformer,
4777     long basis,
4778     LongByLongToLong reducer) {
4779     if (transformer == null || reducer == null)
4780     throw new NullPointerException();
4781     return new MapReduceEntriesToLongTask<K,V>
4782     (map, transformer, basis, reducer);
4783     }
4784    
4785     /**
4786     * Returns a task that when invoked, returns the result of
4787     * accumulating the given transformation of all entries using the
4788     * given reducer to combine values, and the given basis as an
4789     * identity value.
4790     *
4791     * @param map the map
4792     * @param transformer a function returning the transformation
4793     * for an element
4794     * @param basis the identity (initial default value) for the reduction
4795     * @param reducer a commutative associative combining function
4796     * @return the task
4797     */
4798     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4799     (ConcurrentHashMapV8<K,V> map,
4800     ObjectToInt<Map.Entry<K,V>> transformer,
4801     int basis,
4802     IntByIntToInt reducer) {
4803     if (transformer == null || reducer == null)
4804     throw new NullPointerException();
4805     return new MapReduceEntriesToIntTask<K,V>
4806     (map, transformer, basis, reducer);
4807     }
4808     }
4809    
4810     // -------------------------------------------------------
4811    
4812     /**
4813     * Base for FJ tasks for bulk operations. This adds a variant of
4814     * CountedCompleters and some split and merge bookeeping to
4815     * iterator functionality. The forEach and reduce methods are
4816     * similar to those illustrated in CountedCompleter documentation,
4817     * except that bottom-up reduction completions perform them within
4818     * their compute methods. The search methods are like forEach
4819     * except they continually poll for success and exit early. Also,
4820     * exceptions are handled in a simpler manner, by just trying to
4821     * complete root task exceptionally.
4822     */
4823     static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4824     final BulkTask<K,V,?> parent; // completion target
4825     int batch; // split control
4826     int pending; // completion control
4827    
4828     /** Constructor for root tasks */
4829     BulkTask(ConcurrentHashMapV8<K,V> map) {
4830     super(map);
4831     this.parent = null;
4832     this.batch = -1; // force call to batch() on execution
4833     }
4834    
4835     /** Constructor for subtasks */
4836     BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4837     super(parent, split);
4838     this.parent = parent;
4839     this.batch = batch;
4840     }
4841    
4842     // FJ methods
4843    
4844     /**
4845     * Propagate completion. Note that all reduce actions
4846     * bypass this method to combine while completing.
4847     */
4848     final void tryComplete() {
4849     BulkTask<K,V,?> a = this, s = a;
4850     for (int c;;) {
4851     if ((c = a.pending) == 0) {
4852     if ((a = (s = a).parent) == null) {
4853     s.quietlyComplete();
4854     break;
4855     }
4856     }
4857     else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4858     break;
4859     }
4860     }
4861    
4862     /**
4863     * Force root task to throw exception unless already complete.
4864     */
4865     final void tryAbortComputation(Throwable ex) {
4866     for (BulkTask<K,V,?> a = this;;) {
4867     BulkTask<K,V,?> p = a.parent;
4868     if (p == null) {
4869     a.completeExceptionally(ex);
4870     break;
4871     }
4872     a = p;
4873     }
4874     }
4875    
4876     public final boolean exec() {
4877     try {
4878     compute();
4879     }
4880 jsr166 1.53 catch (Throwable ex) {
4881 dl 1.52 tryAbortComputation(ex);
4882     }
4883     return false;
4884     }
4885    
4886     public abstract void compute();
4887    
4888     // utilities
4889    
4890     /** CompareAndSet pending count */
4891     final boolean casPending(int cmp, int val) {
4892     return U.compareAndSwapInt(this, PENDING, cmp, val);
4893     }
4894    
4895     /**
4896     * Return approx exp2 of the number of times (minus one) to
4897     * split task by two before executing leaf action. This value
4898     * is faster to compute and more convenient to use as a guide
4899     * to splitting than is the depth, since it is used while
4900     * dividing by two anyway.
4901     */
4902     final int batch() {
4903     int b = batch;
4904     if (b < 0) {
4905     long n = map.counter.sum();
4906     int sp = getPool().getParallelism() << 3; // slack of 8
4907 jsr166 1.53 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4908 dl 1.52 }
4909     return b;
4910     }
4911    
4912     /**
4913     * Error message for hoisted null checks of functions
4914     */
4915     static final String NullFunctionMessage =
4916     "Unexpected null function";
4917    
4918     /**
4919     * Return exportable snapshot entry
4920     */
4921     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4922     return new AbstractMap.SimpleEntry(k, v);
4923     }
4924    
4925     // Unsafe mechanics
4926     private static final sun.misc.Unsafe U;
4927     private static final long PENDING;
4928     static {
4929     try {
4930     U = sun.misc.Unsafe.getUnsafe();
4931     PENDING = U.objectFieldOffset
4932     (BulkTask.class.getDeclaredField("pending"));
4933     } catch (Exception e) {
4934     throw new Error(e);
4935     }
4936     }
4937     }
4938    
4939     /*
4940     * Task classes. Coded in a regular but ugly format/style to
4941     * simplify checks that each variant differs in the right way from
4942     * others.
4943     */
4944    
4945     static final class ForEachKeyTask<K,V>
4946     extends BulkTask<K,V,Void> {
4947     final Action<K> action;
4948     ForEachKeyTask
4949     (ConcurrentHashMapV8<K,V> m,
4950     Action<K> action) {
4951     super(m);
4952     this.action = action;
4953     }
4954     ForEachKeyTask
4955     (BulkTask<K,V,?> p, int b, boolean split,
4956     Action<K> action) {
4957     super(p, b, split);
4958     this.action = action;
4959     }
4960     public final void compute() {
4961     final Action<K> action = this.action;
4962     if (action == null)
4963     throw new Error(NullFunctionMessage);
4964     int b = batch(), c;
4965     while (b > 1 && baseIndex != baseLimit) {
4966     do {} while (!casPending(c = pending, c+1));
4967     new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4968     }
4969     while (advance() != null)
4970     action.apply((K)nextKey);
4971     tryComplete();
4972     }
4973     }
4974    
4975     static final class ForEachValueTask<K,V>
4976     extends BulkTask<K,V,Void> {
4977     final Action<V> action;
4978     ForEachValueTask
4979     (ConcurrentHashMapV8<K,V> m,
4980     Action<V> action) {
4981     super(m);
4982     this.action = action;
4983     }
4984     ForEachValueTask
4985     (BulkTask<K,V,?> p, int b, boolean split,
4986     Action<V> action) {
4987     super(p, b, split);
4988     this.action = action;
4989     }
4990     public final void compute() {
4991     final Action<V> action = this.action;
4992     if (action == null)
4993     throw new Error(NullFunctionMessage);
4994     int b = batch(), c;
4995     while (b > 1 && baseIndex != baseLimit) {
4996     do {} while (!casPending(c = pending, c+1));
4997     new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
4998     }
4999     Object v;
5000     while ((v = advance()) != null)
5001     action.apply((V)v);
5002     tryComplete();
5003     }
5004     }
5005    
5006     static final class ForEachEntryTask<K,V>
5007     extends BulkTask<K,V,Void> {
5008     final Action<Entry<K,V>> action;
5009     ForEachEntryTask
5010     (ConcurrentHashMapV8<K,V> m,
5011     Action<Entry<K,V>> action) {
5012     super(m);
5013     this.action = action;
5014     }
5015     ForEachEntryTask
5016     (BulkTask<K,V,?> p, int b, boolean split,
5017     Action<Entry<K,V>> action) {
5018     super(p, b, split);
5019     this.action = action;
5020     }
5021     public final void compute() {
5022     final Action<Entry<K,V>> action = this.action;
5023     if (action == null)
5024     throw new Error(NullFunctionMessage);
5025     int b = batch(), c;
5026     while (b > 1 && baseIndex != baseLimit) {
5027     do {} while (!casPending(c = pending, c+1));
5028     new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
5029     }
5030     Object v;
5031     while ((v = advance()) != null)
5032     action.apply(entryFor((K)nextKey, (V)v));
5033     tryComplete();
5034     }
5035     }
5036    
5037     static final class ForEachMappingTask<K,V>
5038     extends BulkTask<K,V,Void> {
5039     final BiAction<K,V> action;
5040     ForEachMappingTask
5041     (ConcurrentHashMapV8<K,V> m,
5042     BiAction<K,V> action) {
5043     super(m);
5044     this.action = action;
5045     }
5046     ForEachMappingTask
5047     (BulkTask<K,V,?> p, int b, boolean split,
5048     BiAction<K,V> action) {
5049     super(p, b, split);
5050     this.action = action;
5051     }
5052    
5053     public final void compute() {
5054     final BiAction<K,V> action = this.action;
5055     if (action == null)
5056     throw new Error(NullFunctionMessage);
5057     int b = batch(), c;
5058     while (b > 1 && baseIndex != baseLimit) {
5059     do {} while (!casPending(c = pending, c+1));
5060     new ForEachMappingTask<K,V>(this, b >>>= 1, true,
5061     action).fork();
5062     }
5063     Object v;
5064     while ((v = advance()) != null)
5065     action.apply((K)nextKey, (V)v);
5066     tryComplete();
5067     }
5068     }
5069    
5070     static final class ForEachTransformedKeyTask<K,V,U>
5071     extends BulkTask<K,V,Void> {
5072     final Fun<? super K, ? extends U> transformer;
5073     final Action<U> action;
5074     ForEachTransformedKeyTask
5075     (ConcurrentHashMapV8<K,V> m,
5076     Fun<? super K, ? extends U> transformer,
5077     Action<U> action) {
5078     super(m);
5079     this.transformer = transformer;
5080     this.action = action;
5081    
5082     }
5083     ForEachTransformedKeyTask
5084     (BulkTask<K,V,?> p, int b, boolean split,
5085     Fun<? super K, ? extends U> transformer,
5086     Action<U> action) {
5087     super(p, b, split);
5088     this.transformer = transformer;
5089     this.action = action;
5090     }
5091     public final void compute() {
5092     final Fun<? super K, ? extends U> transformer =
5093     this.transformer;
5094     final Action<U> action = this.action;
5095     if (transformer == null || action == null)
5096     throw new Error(NullFunctionMessage);
5097     int b = batch(), c;
5098     while (b > 1 && baseIndex != baseLimit) {
5099     do {} while (!casPending(c = pending, c+1));
5100     new ForEachTransformedKeyTask<K,V,U>
5101     (this, b >>>= 1, true, transformer, action).fork();
5102     }
5103     U u;
5104     while (advance() != null) {
5105     if ((u = transformer.apply((K)nextKey)) != null)
5106     action.apply(u);
5107     }
5108     tryComplete();
5109     }
5110     }
5111    
5112     static final class ForEachTransformedValueTask<K,V,U>
5113     extends BulkTask<K,V,Void> {
5114     final Fun<? super V, ? extends U> transformer;
5115     final Action<U> action;
5116     ForEachTransformedValueTask
5117     (ConcurrentHashMapV8<K,V> m,
5118     Fun<? super V, ? extends U> transformer,
5119     Action<U> action) {
5120     super(m);
5121     this.transformer = transformer;
5122     this.action = action;
5123    
5124     }
5125     ForEachTransformedValueTask
5126     (BulkTask<K,V,?> p, int b, boolean split,
5127     Fun<? super V, ? extends U> transformer,
5128     Action<U> action) {
5129     super(p, b, split);
5130     this.transformer = transformer;
5131     this.action = action;
5132     }
5133     public final void compute() {
5134     final Fun<? super V, ? extends U> transformer =
5135     this.transformer;
5136     final Action<U> action = this.action;
5137     if (transformer == null || action == null)
5138     throw new Error(NullFunctionMessage);
5139     int b = batch(), c;
5140     while (b > 1 && baseIndex != baseLimit) {
5141     do {} while (!casPending(c = pending, c+1));
5142     new ForEachTransformedValueTask<K,V,U>
5143     (this, b >>>= 1, true, transformer, action).fork();
5144     }
5145     Object v; U u;
5146     while ((v = advance()) != null) {
5147     if ((u = transformer.apply((V)v)) != null)
5148     action.apply(u);
5149     }
5150     tryComplete();
5151     }
5152     }
5153    
5154     static final class ForEachTransformedEntryTask<K,V,U>
5155     extends BulkTask<K,V,Void> {
5156     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5157     final Action<U> action;
5158     ForEachTransformedEntryTask
5159     (ConcurrentHashMapV8<K,V> m,
5160     Fun<Map.Entry<K,V>, ? extends U> transformer,
5161     Action<U> action) {
5162     super(m);
5163     this.transformer = transformer;
5164     this.action = action;
5165    
5166     }
5167     ForEachTransformedEntryTask
5168     (BulkTask<K,V,?> p, int b, boolean split,
5169     Fun<Map.Entry<K,V>, ? extends U> transformer,
5170     Action<U> action) {
5171     super(p, b, split);
5172     this.transformer = transformer;
5173     this.action = action;
5174     }
5175     public final void compute() {
5176     final Fun<Map.Entry<K,V>, ? extends U> transformer =
5177     this.transformer;
5178     final Action<U> action = this.action;
5179     if (transformer == null || action == null)
5180     throw new Error(NullFunctionMessage);
5181     int b = batch(), c;
5182     while (b > 1 && baseIndex != baseLimit) {
5183     do {} while (!casPending(c = pending, c+1));
5184     new ForEachTransformedEntryTask<K,V,U>
5185     (this, b >>>= 1, true, transformer, action).fork();
5186     }
5187     Object v; U u;
5188     while ((v = advance()) != null) {
5189     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5190     action.apply(u);
5191     }
5192     tryComplete();
5193     }
5194     }
5195    
5196     static final class ForEachTransformedMappingTask<K,V,U>
5197     extends BulkTask<K,V,Void> {
5198     final BiFun<? super K, ? super V, ? extends U> transformer;
5199     final Action<U> action;
5200     ForEachTransformedMappingTask
5201     (ConcurrentHashMapV8<K,V> m,
5202     BiFun<? super K, ? super V, ? extends U> transformer,
5203     Action<U> action) {
5204     super(m);
5205     this.transformer = transformer;
5206     this.action = action;
5207    
5208     }
5209     ForEachTransformedMappingTask
5210     (BulkTask<K,V,?> p, int b, boolean split,
5211     BiFun<? super K, ? super V, ? extends U> transformer,
5212     Action<U> action) {
5213     super(p, b, split);
5214     this.transformer = transformer;
5215     this.action = action;
5216     }
5217     public final void compute() {
5218     final BiFun<? super K, ? super V, ? extends U> transformer =
5219     this.transformer;
5220     final Action<U> action = this.action;
5221     if (transformer == null || action == null)
5222     throw new Error(NullFunctionMessage);
5223     int b = batch(), c;
5224     while (b > 1 && baseIndex != baseLimit) {
5225     do {} while (!casPending(c = pending, c+1));
5226     new ForEachTransformedMappingTask<K,V,U>
5227     (this, b >>>= 1, true, transformer, action).fork();
5228     }
5229     Object v; U u;
5230     while ((v = advance()) != null) {
5231     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5232     action.apply(u);
5233     }
5234     tryComplete();
5235     }
5236     }
5237    
5238     static final class SearchKeysTask<K,V,U>
5239     extends BulkTask<K,V,U> {
5240     final Fun<? super K, ? extends U> searchFunction;
5241     final AtomicReference<U> result;
5242     SearchKeysTask
5243     (ConcurrentHashMapV8<K,V> m,
5244     Fun<? super K, ? extends U> searchFunction,
5245     AtomicReference<U> result) {
5246     super(m);
5247     this.searchFunction = searchFunction; this.result = result;
5248     }
5249     SearchKeysTask
5250     (BulkTask<K,V,?> p, int b, boolean split,
5251     Fun<? super K, ? extends U> searchFunction,
5252     AtomicReference<U> result) {
5253     super(p, b, split);
5254     this.searchFunction = searchFunction; this.result = result;
5255     }
5256     public final void compute() {
5257     AtomicReference<U> result = this.result;
5258     final Fun<? super K, ? extends U> searchFunction =
5259     this.searchFunction;
5260     if (searchFunction == null || result == null)
5261     throw new Error(NullFunctionMessage);
5262     int b = batch(), c;
5263     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5264     do {} while (!casPending(c = pending, c+1));
5265     new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5266     searchFunction, result).fork();
5267     }
5268     U u;
5269     while (result.get() == null && advance() != null) {
5270     if ((u = searchFunction.apply((K)nextKey)) != null) {
5271     result.compareAndSet(null, u);
5272     break;
5273     }
5274     }
5275     tryComplete();
5276     }
5277     public final U getRawResult() { return result.get(); }
5278     }
5279    
5280     static final class SearchValuesTask<K,V,U>
5281     extends BulkTask<K,V,U> {
5282     final Fun<? super V, ? extends U> searchFunction;
5283     final AtomicReference<U> result;
5284     SearchValuesTask
5285     (ConcurrentHashMapV8<K,V> m,
5286     Fun<? super V, ? extends U> searchFunction,
5287     AtomicReference<U> result) {
5288     super(m);
5289     this.searchFunction = searchFunction; this.result = result;
5290     }
5291     SearchValuesTask
5292     (BulkTask<K,V,?> p, int b, boolean split,
5293     Fun<? super V, ? extends U> searchFunction,
5294     AtomicReference<U> result) {
5295     super(p, b, split);
5296     this.searchFunction = searchFunction; this.result = result;
5297     }
5298     public final void compute() {
5299     AtomicReference<U> result = this.result;
5300     final Fun<? super V, ? extends U> searchFunction =
5301     this.searchFunction;
5302     if (searchFunction == null || result == null)
5303     throw new Error(NullFunctionMessage);
5304     int b = batch(), c;
5305     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5306     do {} while (!casPending(c = pending, c+1));
5307     new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5308     searchFunction, result).fork();
5309     }
5310     Object v; U u;
5311     while (result.get() == null && (v = advance()) != null) {
5312     if ((u = searchFunction.apply((V)v)) != null) {
5313     result.compareAndSet(null, u);
5314     break;
5315     }
5316     }
5317     tryComplete();
5318     }
5319     public final U getRawResult() { return result.get(); }
5320     }
5321    
5322     static final class SearchEntriesTask<K,V,U>
5323     extends BulkTask<K,V,U> {
5324     final Fun<Entry<K,V>, ? extends U> searchFunction;
5325     final AtomicReference<U> result;
5326     SearchEntriesTask
5327     (ConcurrentHashMapV8<K,V> m,
5328     Fun<Entry<K,V>, ? extends U> searchFunction,
5329     AtomicReference<U> result) {
5330     super(m);
5331     this.searchFunction = searchFunction; this.result = result;
5332     }
5333     SearchEntriesTask
5334     (BulkTask<K,V,?> p, int b, boolean split,
5335     Fun<Entry<K,V>, ? extends U> searchFunction,
5336     AtomicReference<U> result) {
5337     super(p, b, split);
5338     this.searchFunction = searchFunction; this.result = result;
5339     }
5340     public final void compute() {
5341     AtomicReference<U> result = this.result;
5342     final Fun<Entry<K,V>, ? extends U> searchFunction =
5343     this.searchFunction;
5344     if (searchFunction == null || result == null)
5345     throw new Error(NullFunctionMessage);
5346     int b = batch(), c;
5347     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5348     do {} while (!casPending(c = pending, c+1));
5349     new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5350     searchFunction, result).fork();
5351     }
5352     Object v; U u;
5353     while (result.get() == null && (v = advance()) != null) {
5354     if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5355     result.compareAndSet(null, u);
5356     break;
5357     }
5358     }
5359     tryComplete();
5360     }
5361     public final U getRawResult() { return result.get(); }
5362     }
5363    
5364     static final class SearchMappingsTask<K,V,U>
5365     extends BulkTask<K,V,U> {
5366     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5367     final AtomicReference<U> result;
5368     SearchMappingsTask
5369     (ConcurrentHashMapV8<K,V> m,
5370     BiFun<? super K, ? super V, ? extends U> searchFunction,
5371     AtomicReference<U> result) {
5372     super(m);
5373     this.searchFunction = searchFunction; this.result = result;
5374     }
5375     SearchMappingsTask
5376     (BulkTask<K,V,?> p, int b, boolean split,
5377     BiFun<? super K, ? super V, ? extends U> searchFunction,
5378     AtomicReference<U> result) {
5379     super(p, b, split);
5380     this.searchFunction = searchFunction; this.result = result;
5381     }
5382     public final void compute() {
5383     AtomicReference<U> result = this.result;
5384     final BiFun<? super K, ? super V, ? extends U> searchFunction =
5385     this.searchFunction;
5386     if (searchFunction == null || result == null)
5387     throw new Error(NullFunctionMessage);
5388     int b = batch(), c;
5389     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5390     do {} while (!casPending(c = pending, c+1));
5391     new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5392     searchFunction, result).fork();
5393     }
5394     Object v; U u;
5395     while (result.get() == null && (v = advance()) != null) {
5396     if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5397     result.compareAndSet(null, u);
5398     break;
5399     }
5400     }
5401     tryComplete();
5402     }
5403     public final U getRawResult() { return result.get(); }
5404     }
5405    
5406     static final class ReduceKeysTask<K,V>
5407     extends BulkTask<K,V,K> {
5408     final BiFun<? super K, ? super K, ? extends K> reducer;
5409     K result;
5410     ReduceKeysTask<K,V> sibling;
5411     ReduceKeysTask
5412     (ConcurrentHashMapV8<K,V> m,
5413     BiFun<? super K, ? super K, ? extends K> reducer) {
5414     super(m);
5415     this.reducer = reducer;
5416     }
5417     ReduceKeysTask
5418     (BulkTask<K,V,?> p, int b, boolean split,
5419     BiFun<? super K, ? super K, ? extends K> reducer) {
5420     super(p, b, split);
5421     this.reducer = reducer;
5422     }
5423    
5424     public final void compute() {
5425     ReduceKeysTask<K,V> t = this;
5426     final BiFun<? super K, ? super K, ? extends K> reducer =
5427     this.reducer;
5428     if (reducer == null)
5429     throw new Error(NullFunctionMessage);
5430     int b = batch();
5431     while (b > 1 && t.baseIndex != t.baseLimit) {
5432     b >>>= 1;
5433     t.pending = 1;
5434     ReduceKeysTask<K,V> rt =
5435     new ReduceKeysTask<K,V>
5436     (t, b, true, reducer);
5437     t = new ReduceKeysTask<K,V>
5438     (t, b, false, reducer);
5439     t.sibling = rt;
5440     rt.sibling = t;
5441     rt.fork();
5442     }
5443     K r = null;
5444     while (t.advance() != null) {
5445     K u = (K)t.nextKey;
5446     r = (r == null) ? u : reducer.apply(r, u);
5447     }
5448     t.result = r;
5449     for (;;) {
5450     int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5451     if ((par = t.parent) == null ||
5452     !(par instanceof ReduceKeysTask)) {
5453     t.quietlyComplete();
5454     break;
5455     }
5456     else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5457     if ((s = t.sibling) != null && (u = s.result) != null)
5458     r = (r == null) ? u : reducer.apply(r, u);
5459     (t = p).result = r;
5460     }
5461     else if (p.casPending(c, 0))
5462     break;
5463     }
5464     }
5465     public final K getRawResult() { return result; }
5466     }
5467    
5468     static final class ReduceValuesTask<K,V>
5469     extends BulkTask<K,V,V> {
5470     final BiFun<? super V, ? super V, ? extends V> reducer;
5471     V result;
5472     ReduceValuesTask<K,V> sibling;
5473     ReduceValuesTask
5474     (ConcurrentHashMapV8<K,V> m,
5475     BiFun<? super V, ? super V, ? extends V> reducer) {
5476     super(m);
5477     this.reducer = reducer;
5478     }
5479     ReduceValuesTask
5480     (BulkTask<K,V,?> p, int b, boolean split,
5481     BiFun<? super V, ? super V, ? extends V> reducer) {
5482     super(p, b, split);
5483     this.reducer = reducer;
5484     }
5485    
5486     public final void compute() {
5487     ReduceValuesTask<K,V> t = this;
5488     final BiFun<? super V, ? super V, ? extends V> reducer =
5489     this.reducer;
5490     if (reducer == null)
5491     throw new Error(NullFunctionMessage);
5492     int b = batch();
5493     while (b > 1 && t.baseIndex != t.baseLimit) {
5494     b >>>= 1;
5495     t.pending = 1;
5496     ReduceValuesTask<K,V> rt =
5497     new ReduceValuesTask<K,V>
5498     (t, b, true, reducer);
5499     t = new ReduceValuesTask<K,V>
5500     (t, b, false, reducer);
5501     t.sibling = rt;
5502     rt.sibling = t;
5503     rt.fork();
5504     }
5505     V r = null;
5506     Object v;
5507     while ((v = t.advance()) != null) {
5508     V u = (V)v;
5509     r = (r == null) ? u : reducer.apply(r, u);
5510     }
5511     t.result = r;
5512     for (;;) {
5513     int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5514     if ((par = t.parent) == null ||
5515     !(par instanceof ReduceValuesTask)) {
5516     t.quietlyComplete();
5517     break;
5518     }
5519     else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5520     if ((s = t.sibling) != null && (u = s.result) != null)
5521     r = (r == null) ? u : reducer.apply(r, u);
5522     (t = p).result = r;
5523     }
5524     else if (p.casPending(c, 0))
5525     break;
5526     }
5527     }
5528     public final V getRawResult() { return result; }
5529     }
5530    
5531     static final class ReduceEntriesTask<K,V>
5532     extends BulkTask<K,V,Map.Entry<K,V>> {
5533     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5534     Map.Entry<K,V> result;
5535     ReduceEntriesTask<K,V> sibling;
5536     ReduceEntriesTask
5537     (ConcurrentHashMapV8<K,V> m,
5538     BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5539     super(m);
5540     this.reducer = reducer;
5541     }
5542     ReduceEntriesTask
5543     (BulkTask<K,V,?> p, int b, boolean split,
5544     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5545     super(p, b, split);
5546     this.reducer = reducer;
5547     }
5548    
5549     public final void compute() {
5550     ReduceEntriesTask<K,V> t = this;
5551     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5552     this.reducer;
5553     if (reducer == null)
5554     throw new Error(NullFunctionMessage);
5555     int b = batch();
5556     while (b > 1 && t.baseIndex != t.baseLimit) {
5557     b >>>= 1;
5558     t.pending = 1;
5559     ReduceEntriesTask<K,V> rt =
5560     new ReduceEntriesTask<K,V>
5561     (t, b, true, reducer);
5562     t = new ReduceEntriesTask<K,V>
5563     (t, b, false, reducer);
5564     t.sibling = rt;
5565     rt.sibling = t;
5566     rt.fork();
5567     }
5568     Map.Entry<K,V> r = null;
5569     Object v;
5570     while ((v = t.advance()) != null) {
5571     Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5572     r = (r == null) ? u : reducer.apply(r, u);
5573     }
5574     t.result = r;
5575     for (;;) {
5576     int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5577     Map.Entry<K,V> u;
5578     if ((par = t.parent) == null ||
5579     !(par instanceof ReduceEntriesTask)) {
5580     t.quietlyComplete();
5581     break;
5582     }
5583     else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5584     if ((s = t.sibling) != null && (u = s.result) != null)
5585     r = (r == null) ? u : reducer.apply(r, u);
5586     (t = p).result = r;
5587     }
5588     else if (p.casPending(c, 0))
5589     break;
5590     }
5591     }
5592     public final Map.Entry<K,V> getRawResult() { return result; }
5593     }
5594    
5595     static final class MapReduceKeysTask<K,V,U>
5596     extends BulkTask<K,V,U> {
5597     final Fun<? super K, ? extends U> transformer;
5598     final BiFun<? super U, ? super U, ? extends U> reducer;
5599     U result;
5600     MapReduceKeysTask<K,V,U> sibling;
5601     MapReduceKeysTask
5602     (ConcurrentHashMapV8<K,V> m,
5603     Fun<? super K, ? extends U> transformer,
5604     BiFun<? super U, ? super U, ? extends U> reducer) {
5605     super(m);
5606     this.transformer = transformer;
5607     this.reducer = reducer;
5608     }
5609     MapReduceKeysTask
5610     (BulkTask<K,V,?> p, int b, boolean split,
5611     Fun<? super K, ? extends U> transformer,
5612     BiFun<? super U, ? super U, ? extends U> reducer) {
5613     super(p, b, split);
5614     this.transformer = transformer;
5615     this.reducer = reducer;
5616     }
5617     public final void compute() {
5618     MapReduceKeysTask<K,V,U> t = this;
5619     final Fun<? super K, ? extends U> transformer =
5620     this.transformer;
5621     final BiFun<? super U, ? super U, ? extends U> reducer =
5622     this.reducer;
5623     if (transformer == null || reducer == null)
5624     throw new Error(NullFunctionMessage);
5625     int b = batch();
5626     while (b > 1 && t.baseIndex != t.baseLimit) {
5627     b >>>= 1;
5628     t.pending = 1;
5629     MapReduceKeysTask<K,V,U> rt =
5630     new MapReduceKeysTask<K,V,U>
5631     (t, b, true, transformer, reducer);
5632     t = new MapReduceKeysTask<K,V,U>
5633     (t, b, false, transformer, reducer);
5634     t.sibling = rt;
5635     rt.sibling = t;
5636     rt.fork();
5637     }
5638     U r = null, u;
5639     while (t.advance() != null) {
5640     if ((u = transformer.apply((K)t.nextKey)) != null)
5641     r = (r == null) ? u : reducer.apply(r, u);
5642     }
5643     t.result = r;
5644     for (;;) {
5645     int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5646     if ((par = t.parent) == null ||
5647     !(par instanceof MapReduceKeysTask)) {
5648     t.quietlyComplete();
5649     break;
5650     }
5651     else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5652     if ((s = t.sibling) != null && (u = s.result) != null)
5653     r = (r == null) ? u : reducer.apply(r, u);
5654     (t = p).result = r;
5655     }
5656     else if (p.casPending(c, 0))
5657     break;
5658     }
5659     }
5660     public final U getRawResult() { return result; }
5661     }
5662    
5663     static final class MapReduceValuesTask<K,V,U>
5664     extends BulkTask<K,V,U> {
5665     final Fun<? super V, ? extends U> transformer;
5666     final BiFun<? super U, ? super U, ? extends U> reducer;
5667     U result;
5668     MapReduceValuesTask<K,V,U> sibling;
5669     MapReduceValuesTask
5670     (ConcurrentHashMapV8<K,V> m,
5671     Fun<? super V, ? extends U> transformer,
5672     BiFun<? super U, ? super U, ? extends U> reducer) {
5673     super(m);
5674     this.transformer = transformer;
5675     this.reducer = reducer;
5676     }
5677     MapReduceValuesTask
5678     (BulkTask<K,V,?> p, int b, boolean split,
5679     Fun<? super V, ? extends U> transformer,
5680     BiFun<? super U, ? super U, ? extends U> reducer) {
5681     super(p, b, split);
5682     this.transformer = transformer;
5683     this.reducer = reducer;
5684     }
5685     public final void compute() {
5686     MapReduceValuesTask<K,V,U> t = this;
5687     final Fun<? super V, ? extends U> transformer =
5688     this.transformer;
5689     final BiFun<? super U, ? super U, ? extends U> reducer =
5690     this.reducer;
5691     if (transformer == null || reducer == null)
5692     throw new Error(NullFunctionMessage);
5693     int b = batch();
5694     while (b > 1 && t.baseIndex != t.baseLimit) {
5695     b >>>= 1;
5696     t.pending = 1;
5697     MapReduceValuesTask<K,V,U> rt =
5698     new MapReduceValuesTask<K,V,U>
5699     (t, b, true, transformer, reducer);
5700     t = new MapReduceValuesTask<K,V,U>
5701     (t, b, false, transformer, reducer);
5702     t.sibling = rt;
5703     rt.sibling = t;
5704     rt.fork();
5705     }
5706     U r = null, u;
5707     Object v;
5708     while ((v = t.advance()) != null) {
5709     if ((u = transformer.apply((V)v)) != null)
5710     r = (r == null) ? u : reducer.apply(r, u);
5711     }
5712     t.result = r;
5713     for (;;) {
5714     int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5715     if ((par = t.parent) == null ||
5716     !(par instanceof MapReduceValuesTask)) {
5717     t.quietlyComplete();
5718     break;
5719     }
5720     else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5721     if ((s = t.sibling) != null && (u = s.result) != null)
5722     r = (r == null) ? u : reducer.apply(r, u);
5723     (t = p).result = r;
5724     }
5725     else if (p.casPending(c, 0))
5726     break;
5727     }
5728     }
5729     public final U getRawResult() { return result; }
5730     }
5731    
5732     static final class MapReduceEntriesTask<K,V,U>
5733     extends BulkTask<K,V,U> {
5734     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5735     final BiFun<? super U, ? super U, ? extends U> reducer;
5736     U result;
5737     MapReduceEntriesTask<K,V,U> sibling;
5738     MapReduceEntriesTask
5739     (ConcurrentHashMapV8<K,V> m,
5740     Fun<Map.Entry<K,V>, ? extends U> transformer,
5741     BiFun<? super U, ? super U, ? extends U> reducer) {
5742     super(m);
5743     this.transformer = transformer;
5744     this.reducer = reducer;
5745     }
5746     MapReduceEntriesTask
5747     (BulkTask<K,V,?> p, int b, boolean split,
5748     Fun<Map.Entry<K,V>, ? extends U> transformer,
5749     BiFun<? super U, ? super U, ? extends U> reducer) {
5750     super(p, b, split);
5751     this.transformer = transformer;
5752     this.reducer = reducer;
5753     }
5754     public final void compute() {
5755     MapReduceEntriesTask<K,V,U> t = this;
5756     final Fun<Map.Entry<K,V>, ? extends U> transformer =
5757     this.transformer;
5758     final BiFun<? super U, ? super U, ? extends U> reducer =
5759     this.reducer;
5760     if (transformer == null || reducer == null)
5761     throw new Error(NullFunctionMessage);
5762     int b = batch();
5763     while (b > 1 && t.baseIndex != t.baseLimit) {
5764     b >>>= 1;
5765     t.pending = 1;
5766     MapReduceEntriesTask<K,V,U> rt =
5767     new MapReduceEntriesTask<K,V,U>
5768     (t, b, true, transformer, reducer);
5769     t = new MapReduceEntriesTask<K,V,U>
5770     (t, b, false, transformer, reducer);
5771     t.sibling = rt;
5772     rt.sibling = t;
5773     rt.fork();
5774     }
5775     U r = null, u;
5776     Object v;
5777     while ((v = t.advance()) != null) {
5778     if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5779     r = (r == null) ? u : reducer.apply(r, u);
5780     }
5781     t.result = r;
5782     for (;;) {
5783     int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5784     if ((par = t.parent) == null ||
5785     !(par instanceof MapReduceEntriesTask)) {
5786     t.quietlyComplete();
5787     break;
5788     }
5789     else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5790     if ((s = t.sibling) != null && (u = s.result) != null)
5791     r = (r == null) ? u : reducer.apply(r, u);
5792     (t = p).result = r;
5793     }
5794     else if (p.casPending(c, 0))
5795     break;
5796     }
5797     }
5798     public final U getRawResult() { return result; }
5799     }
5800    
5801     static final class MapReduceMappingsTask<K,V,U>
5802     extends BulkTask<K,V,U> {
5803     final BiFun<? super K, ? super V, ? extends U> transformer;
5804     final BiFun<? super U, ? super U, ? extends U> reducer;
5805     U result;
5806     MapReduceMappingsTask<K,V,U> sibling;
5807     MapReduceMappingsTask
5808     (ConcurrentHashMapV8<K,V> m,
5809     BiFun<? super K, ? super V, ? extends U> transformer,
5810     BiFun<? super U, ? super U, ? extends U> reducer) {
5811     super(m);
5812     this.transformer = transformer;
5813     this.reducer = reducer;
5814     }
5815     MapReduceMappingsTask
5816     (BulkTask<K,V,?> p, int b, boolean split,
5817     BiFun<? super K, ? super V, ? extends U> transformer,
5818     BiFun<? super U, ? super U, ? extends U> reducer) {
5819     super(p, b, split);
5820     this.transformer = transformer;
5821     this.reducer = reducer;
5822     }
5823     public final void compute() {
5824     MapReduceMappingsTask<K,V,U> t = this;
5825     final BiFun<? super K, ? super V, ? extends U> transformer =
5826     this.transformer;
5827     final BiFun<? super U, ? super U, ? extends U> reducer =
5828     this.reducer;
5829     if (transformer == null || reducer == null)
5830     throw new Error(NullFunctionMessage);
5831     int b = batch();
5832     while (b > 1 && t.baseIndex != t.baseLimit) {
5833     b >>>= 1;
5834     t.pending = 1;
5835     MapReduceMappingsTask<K,V,U> rt =
5836     new MapReduceMappingsTask<K,V,U>
5837     (t, b, true, transformer, reducer);
5838     t = new MapReduceMappingsTask<K,V,U>
5839     (t, b, false, transformer, reducer);
5840     t.sibling = rt;
5841     rt.sibling = t;
5842     rt.fork();
5843     }
5844     U r = null, u;
5845     Object v;
5846     while ((v = t.advance()) != null) {
5847     if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5848     r = (r == null) ? u : reducer.apply(r, u);
5849     }
5850     for (;;) {
5851     int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5852     if ((par = t.parent) == null ||
5853     !(par instanceof MapReduceMappingsTask)) {
5854     t.quietlyComplete();
5855     break;
5856     }
5857     else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5858     if ((s = t.sibling) != null && (u = s.result) != null)
5859     r = (r == null) ? u : reducer.apply(r, u);
5860     (t = p).result = r;
5861     }
5862     else if (p.casPending(c, 0))
5863     break;
5864     }
5865     }
5866     public final U getRawResult() { return result; }
5867     }
5868    
5869     static final class MapReduceKeysToDoubleTask<K,V>
5870     extends BulkTask<K,V,Double> {
5871     final ObjectToDouble<? super K> transformer;
5872     final DoubleByDoubleToDouble reducer;
5873     final double basis;
5874     double result;
5875     MapReduceKeysToDoubleTask<K,V> sibling;
5876     MapReduceKeysToDoubleTask
5877     (ConcurrentHashMapV8<K,V> m,
5878     ObjectToDouble<? super K> transformer,
5879     double basis,
5880     DoubleByDoubleToDouble reducer) {
5881     super(m);
5882     this.transformer = transformer;
5883     this.basis = basis; this.reducer = reducer;
5884     }
5885     MapReduceKeysToDoubleTask
5886     (BulkTask<K,V,?> p, int b, boolean split,
5887     ObjectToDouble<? super K> transformer,
5888     double basis,
5889     DoubleByDoubleToDouble reducer) {
5890     super(p, b, split);
5891     this.transformer = transformer;
5892     this.basis = basis; this.reducer = reducer;
5893     }
5894     public final void compute() {
5895     MapReduceKeysToDoubleTask<K,V> t = this;
5896     final ObjectToDouble<? super K> transformer =
5897     this.transformer;
5898     final DoubleByDoubleToDouble reducer = this.reducer;
5899     if (transformer == null || reducer == null)
5900     throw new Error(NullFunctionMessage);
5901     final double id = this.basis;
5902     int b = batch();
5903     while (b > 1 && t.baseIndex != t.baseLimit) {
5904     b >>>= 1;
5905     t.pending = 1;
5906     MapReduceKeysToDoubleTask<K,V> rt =
5907     new MapReduceKeysToDoubleTask<K,V>
5908     (t, b, true, transformer, id, reducer);
5909     t = new MapReduceKeysToDoubleTask<K,V>
5910     (t, b, false, transformer, id, reducer);
5911     t.sibling = rt;
5912     rt.sibling = t;
5913     rt.fork();
5914     }
5915     double r = id;
5916     while (t.advance() != null)
5917     r = reducer.apply(r, transformer.apply((K)t.nextKey));
5918     t.result = r;
5919     for (;;) {
5920     int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5921     if ((par = t.parent) == null ||
5922     !(par instanceof MapReduceKeysToDoubleTask)) {
5923     t.quietlyComplete();
5924     break;
5925     }
5926     else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5927     if ((s = t.sibling) != null)
5928     r = reducer.apply(r, s.result);
5929     (t = p).result = r;
5930     }
5931     else if (p.casPending(c, 0))
5932     break;
5933     }
5934     }
5935     public final Double getRawResult() { return result; }
5936     }
5937    
5938     static final class MapReduceValuesToDoubleTask<K,V>
5939     extends BulkTask<K,V,Double> {
5940     final ObjectToDouble<? super V> transformer;
5941     final DoubleByDoubleToDouble reducer;
5942     final double basis;
5943     double result;
5944     MapReduceValuesToDoubleTask<K,V> sibling;
5945     MapReduceValuesToDoubleTask
5946     (ConcurrentHashMapV8<K,V> m,
5947     ObjectToDouble<? super V> transformer,
5948     double basis,
5949     DoubleByDoubleToDouble reducer) {
5950     super(m);
5951     this.transformer = transformer;
5952     this.basis = basis; this.reducer = reducer;
5953     }
5954     MapReduceValuesToDoubleTask
5955     (BulkTask<K,V,?> p, int b, boolean split,
5956     ObjectToDouble<? super V> transformer,
5957     double basis,
5958     DoubleByDoubleToDouble reducer) {
5959     super(p, b, split);
5960     this.transformer = transformer;
5961     this.basis = basis; this.reducer = reducer;
5962     }
5963     public final void compute() {
5964     MapReduceValuesToDoubleTask<K,V> t = this;
5965     final ObjectToDouble<? super V> transformer =
5966     this.transformer;
5967     final DoubleByDoubleToDouble reducer = this.reducer;
5968     if (transformer == null || reducer == null)
5969     throw new Error(NullFunctionMessage);
5970     final double id = this.basis;
5971     int b = batch();
5972     while (b > 1 && t.baseIndex != t.baseLimit) {
5973     b >>>= 1;
5974     t.pending = 1;
5975     MapReduceValuesToDoubleTask<K,V> rt =
5976     new MapReduceValuesToDoubleTask<K,V>
5977     (t, b, true, transformer, id, reducer);
5978     t = new MapReduceValuesToDoubleTask<K,V>
5979     (t, b, false, transformer, id, reducer);
5980     t.sibling = rt;
5981     rt.sibling = t;
5982     rt.fork();
5983     }
5984     double r = id;
5985     Object v;
5986     while ((v = t.advance()) != null)
5987     r = reducer.apply(r, transformer.apply((V)v));
5988     t.result = r;
5989     for (;;) {
5990     int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
5991     if ((par = t.parent) == null ||
5992     !(par instanceof MapReduceValuesToDoubleTask)) {
5993     t.quietlyComplete();
5994     break;
5995     }
5996     else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
5997     if ((s = t.sibling) != null)
5998     r = reducer.apply(r, s.result);
5999     (t = p).result = r;
6000     }
6001     else if (p.casPending(c, 0))
6002     break;
6003     }
6004     }
6005     public final Double getRawResult() { return result; }
6006     }
6007    
6008     static final class MapReduceEntriesToDoubleTask<K,V>
6009     extends BulkTask<K,V,Double> {
6010     final ObjectToDouble<Map.Entry<K,V>> transformer;
6011     final DoubleByDoubleToDouble reducer;
6012     final double basis;
6013     double result;
6014     MapReduceEntriesToDoubleTask<K,V> sibling;
6015     MapReduceEntriesToDoubleTask
6016     (ConcurrentHashMapV8<K,V> m,
6017     ObjectToDouble<Map.Entry<K,V>> transformer,
6018     double basis,
6019     DoubleByDoubleToDouble reducer) {
6020     super(m);
6021     this.transformer = transformer;
6022     this.basis = basis; this.reducer = reducer;
6023     }
6024     MapReduceEntriesToDoubleTask
6025     (BulkTask<K,V,?> p, int b, boolean split,
6026     ObjectToDouble<Map.Entry<K,V>> transformer,
6027     double basis,
6028     DoubleByDoubleToDouble reducer) {
6029     super(p, b, split);
6030     this.transformer = transformer;
6031     this.basis = basis; this.reducer = reducer;
6032     }
6033     public final void compute() {
6034     MapReduceEntriesToDoubleTask<K,V> t = this;
6035     final ObjectToDouble<Map.Entry<K,V>> transformer =
6036     this.transformer;
6037     final DoubleByDoubleToDouble reducer = this.reducer;
6038     if (transformer == null || reducer == null)
6039     throw new Error(NullFunctionMessage);
6040     final double id = this.basis;
6041     int b = batch();
6042     while (b > 1 && t.baseIndex != t.baseLimit) {
6043     b >>>= 1;
6044     t.pending = 1;
6045     MapReduceEntriesToDoubleTask<K,V> rt =
6046     new MapReduceEntriesToDoubleTask<K,V>
6047     (t, b, true, transformer, id, reducer);
6048     t = new MapReduceEntriesToDoubleTask<K,V>
6049     (t, b, false, transformer, id, reducer);
6050     t.sibling = rt;
6051     rt.sibling = t;
6052     rt.fork();
6053     }
6054     double r = id;
6055     Object v;
6056     while ((v = t.advance()) != null)
6057     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6058     t.result = r;
6059     for (;;) {
6060     int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6061     if ((par = t.parent) == null ||
6062     !(par instanceof MapReduceEntriesToDoubleTask)) {
6063     t.quietlyComplete();
6064     break;
6065     }
6066     else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6067     if ((s = t.sibling) != null)
6068     r = reducer.apply(r, s.result);
6069     (t = p).result = r;
6070     }
6071     else if (p.casPending(c, 0))
6072     break;
6073     }
6074     }
6075     public final Double getRawResult() { return result; }
6076     }
6077    
6078     static final class MapReduceMappingsToDoubleTask<K,V>
6079     extends BulkTask<K,V,Double> {
6080     final ObjectByObjectToDouble<? super K, ? super V> transformer;
6081     final DoubleByDoubleToDouble reducer;
6082     final double basis;
6083     double result;
6084     MapReduceMappingsToDoubleTask<K,V> sibling;
6085     MapReduceMappingsToDoubleTask
6086     (ConcurrentHashMapV8<K,V> m,
6087     ObjectByObjectToDouble<? super K, ? super V> transformer,
6088     double basis,
6089     DoubleByDoubleToDouble reducer) {
6090     super(m);
6091     this.transformer = transformer;
6092     this.basis = basis; this.reducer = reducer;
6093     }
6094     MapReduceMappingsToDoubleTask
6095     (BulkTask<K,V,?> p, int b, boolean split,
6096     ObjectByObjectToDouble<? super K, ? super V> transformer,
6097     double basis,
6098     DoubleByDoubleToDouble reducer) {
6099     super(p, b, split);
6100     this.transformer = transformer;
6101     this.basis = basis; this.reducer = reducer;
6102     }
6103     public final void compute() {
6104     MapReduceMappingsToDoubleTask<K,V> t = this;
6105     final ObjectByObjectToDouble<? super K, ? super V> transformer =
6106     this.transformer;
6107     final DoubleByDoubleToDouble reducer = this.reducer;
6108     if (transformer == null || reducer == null)
6109     throw new Error(NullFunctionMessage);
6110     final double id = this.basis;
6111     int b = batch();
6112     while (b > 1 && t.baseIndex != t.baseLimit) {
6113     b >>>= 1;
6114     t.pending = 1;
6115     MapReduceMappingsToDoubleTask<K,V> rt =
6116     new MapReduceMappingsToDoubleTask<K,V>
6117     (t, b, true, transformer, id, reducer);
6118     t = new MapReduceMappingsToDoubleTask<K,V>
6119     (t, b, false, transformer, id, reducer);
6120     t.sibling = rt;
6121     rt.sibling = t;
6122     rt.fork();
6123     }
6124     double r = id;
6125     Object v;
6126     while ((v = t.advance()) != null)
6127     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6128     t.result = r;
6129     for (;;) {
6130     int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6131     if ((par = t.parent) == null ||
6132     !(par instanceof MapReduceMappingsToDoubleTask)) {
6133     t.quietlyComplete();
6134     break;
6135     }
6136     else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6137     if ((s = t.sibling) != null)
6138     r = reducer.apply(r, s.result);
6139     (t = p).result = r;
6140     }
6141     else if (p.casPending(c, 0))
6142     break;
6143     }
6144     }
6145     public final Double getRawResult() { return result; }
6146     }
6147    
6148     static final class MapReduceKeysToLongTask<K,V>
6149     extends BulkTask<K,V,Long> {
6150     final ObjectToLong<? super K> transformer;
6151     final LongByLongToLong reducer;
6152     final long basis;
6153     long result;
6154     MapReduceKeysToLongTask<K,V> sibling;
6155     MapReduceKeysToLongTask
6156     (ConcurrentHashMapV8<K,V> m,
6157     ObjectToLong<? super K> transformer,
6158     long basis,
6159     LongByLongToLong reducer) {
6160     super(m);
6161     this.transformer = transformer;
6162     this.basis = basis; this.reducer = reducer;
6163     }
6164     MapReduceKeysToLongTask
6165     (BulkTask<K,V,?> p, int b, boolean split,
6166     ObjectToLong<? super K> transformer,
6167     long basis,
6168     LongByLongToLong reducer) {
6169     super(p, b, split);
6170     this.transformer = transformer;
6171     this.basis = basis; this.reducer = reducer;
6172     }
6173     public final void compute() {
6174     MapReduceKeysToLongTask<K,V> t = this;
6175     final ObjectToLong<? super K> transformer =
6176     this.transformer;
6177     final LongByLongToLong reducer = this.reducer;
6178     if (transformer == null || reducer == null)
6179     throw new Error(NullFunctionMessage);
6180     final long id = this.basis;
6181     int b = batch();
6182     while (b > 1 && t.baseIndex != t.baseLimit) {
6183     b >>>= 1;
6184     t.pending = 1;
6185     MapReduceKeysToLongTask<K,V> rt =
6186     new MapReduceKeysToLongTask<K,V>
6187     (t, b, true, transformer, id, reducer);
6188     t = new MapReduceKeysToLongTask<K,V>
6189     (t, b, false, transformer, id, reducer);
6190     t.sibling = rt;
6191     rt.sibling = t;
6192     rt.fork();
6193     }
6194     long r = id;
6195     while (t.advance() != null)
6196     r = reducer.apply(r, transformer.apply((K)t.nextKey));
6197     t.result = r;
6198     for (;;) {
6199     int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6200     if ((par = t.parent) == null ||
6201     !(par instanceof MapReduceKeysToLongTask)) {
6202     t.quietlyComplete();
6203     break;
6204     }
6205     else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6206     if ((s = t.sibling) != null)
6207     r = reducer.apply(r, s.result);
6208     (t = p).result = r;
6209     }
6210     else if (p.casPending(c, 0))
6211     break;
6212     }
6213     }
6214     public final Long getRawResult() { return result; }
6215     }
6216    
6217     static final class MapReduceValuesToLongTask<K,V>
6218     extends BulkTask<K,V,Long> {
6219     final ObjectToLong<? super V> transformer;
6220     final LongByLongToLong reducer;
6221     final long basis;
6222     long result;
6223     MapReduceValuesToLongTask<K,V> sibling;
6224     MapReduceValuesToLongTask
6225     (ConcurrentHashMapV8<K,V> m,
6226     ObjectToLong<? super V> transformer,
6227     long basis,
6228     LongByLongToLong reducer) {
6229     super(m);
6230     this.transformer = transformer;
6231     this.basis = basis; this.reducer = reducer;
6232     }
6233     MapReduceValuesToLongTask
6234     (BulkTask<K,V,?> p, int b, boolean split,
6235     ObjectToLong<? super V> transformer,
6236     long basis,
6237     LongByLongToLong reducer) {
6238     super(p, b, split);
6239     this.transformer = transformer;
6240     this.basis = basis; this.reducer = reducer;
6241     }
6242     public final void compute() {
6243     MapReduceValuesToLongTask<K,V> t = this;
6244     final ObjectToLong<? super V> transformer =
6245     this.transformer;
6246     final LongByLongToLong reducer = this.reducer;
6247     if (transformer == null || reducer == null)
6248     throw new Error(NullFunctionMessage);
6249     final long id = this.basis;
6250     int b = batch();
6251     while (b > 1 && t.baseIndex != t.baseLimit) {
6252     b >>>= 1;
6253     t.pending = 1;
6254     MapReduceValuesToLongTask<K,V> rt =
6255     new MapReduceValuesToLongTask<K,V>
6256     (t, b, true, transformer, id, reducer);
6257     t = new MapReduceValuesToLongTask<K,V>
6258     (t, b, false, transformer, id, reducer);
6259     t.sibling = rt;
6260     rt.sibling = t;
6261     rt.fork();
6262     }
6263     long r = id;
6264     Object v;
6265     while ((v = t.advance()) != null)
6266     r = reducer.apply(r, transformer.apply((V)v));
6267     t.result = r;
6268     for (;;) {
6269     int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6270     if ((par = t.parent) == null ||
6271     !(par instanceof MapReduceValuesToLongTask)) {
6272     t.quietlyComplete();
6273     break;
6274     }
6275     else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6276     if ((s = t.sibling) != null)
6277     r = reducer.apply(r, s.result);
6278     (t = p).result = r;
6279     }
6280     else if (p.casPending(c, 0))
6281     break;
6282     }
6283     }
6284     public final Long getRawResult() { return result; }
6285     }
6286    
6287     static final class MapReduceEntriesToLongTask<K,V>
6288     extends BulkTask<K,V,Long> {
6289     final ObjectToLong<Map.Entry<K,V>> transformer;
6290     final LongByLongToLong reducer;
6291     final long basis;
6292     long result;
6293     MapReduceEntriesToLongTask<K,V> sibling;
6294     MapReduceEntriesToLongTask
6295     (ConcurrentHashMapV8<K,V> m,
6296     ObjectToLong<Map.Entry<K,V>> transformer,
6297     long basis,
6298     LongByLongToLong reducer) {
6299     super(m);
6300     this.transformer = transformer;
6301     this.basis = basis; this.reducer = reducer;
6302     }
6303     MapReduceEntriesToLongTask
6304     (BulkTask<K,V,?> p, int b, boolean split,
6305     ObjectToLong<Map.Entry<K,V>> transformer,
6306     long basis,
6307     LongByLongToLong reducer) {
6308     super(p, b, split);
6309     this.transformer = transformer;
6310     this.basis = basis; this.reducer = reducer;
6311     }
6312     public final void compute() {
6313     MapReduceEntriesToLongTask<K,V> t = this;
6314     final ObjectToLong<Map.Entry<K,V>> transformer =
6315     this.transformer;
6316     final LongByLongToLong reducer = this.reducer;
6317     if (transformer == null || reducer == null)
6318     throw new Error(NullFunctionMessage);
6319     final long id = this.basis;
6320     int b = batch();
6321     while (b > 1 && t.baseIndex != t.baseLimit) {
6322     b >>>= 1;
6323     t.pending = 1;
6324     MapReduceEntriesToLongTask<K,V> rt =
6325     new MapReduceEntriesToLongTask<K,V>
6326     (t, b, true, transformer, id, reducer);
6327     t = new MapReduceEntriesToLongTask<K,V>
6328     (t, b, false, transformer, id, reducer);
6329     t.sibling = rt;
6330     rt.sibling = t;
6331     rt.fork();
6332     }
6333     long r = id;
6334     Object v;
6335     while ((v = t.advance()) != null)
6336     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6337     t.result = r;
6338     for (;;) {
6339     int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6340     if ((par = t.parent) == null ||
6341     !(par instanceof MapReduceEntriesToLongTask)) {
6342     t.quietlyComplete();
6343     break;
6344     }
6345     else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6346     if ((s = t.sibling) != null)
6347     r = reducer.apply(r, s.result);
6348     (t = p).result = r;
6349     }
6350     else if (p.casPending(c, 0))
6351     break;
6352     }
6353     }
6354     public final Long getRawResult() { return result; }
6355     }
6356    
6357     static final class MapReduceMappingsToLongTask<K,V>
6358     extends BulkTask<K,V,Long> {
6359     final ObjectByObjectToLong<? super K, ? super V> transformer;
6360     final LongByLongToLong reducer;
6361     final long basis;
6362     long result;
6363     MapReduceMappingsToLongTask<K,V> sibling;
6364     MapReduceMappingsToLongTask
6365     (ConcurrentHashMapV8<K,V> m,
6366     ObjectByObjectToLong<? super K, ? super V> transformer,
6367     long basis,
6368     LongByLongToLong reducer) {
6369     super(m);
6370     this.transformer = transformer;
6371     this.basis = basis; this.reducer = reducer;
6372     }
6373     MapReduceMappingsToLongTask
6374     (BulkTask<K,V,?> p, int b, boolean split,
6375     ObjectByObjectToLong<? super K, ? super V> transformer,
6376     long basis,
6377     LongByLongToLong reducer) {
6378     super(p, b, split);
6379     this.transformer = transformer;
6380     this.basis = basis; this.reducer = reducer;
6381     }
6382     public final void compute() {
6383     MapReduceMappingsToLongTask<K,V> t = this;
6384     final ObjectByObjectToLong<? super K, ? super V> transformer =
6385     this.transformer;
6386     final LongByLongToLong reducer = this.reducer;
6387     if (transformer == null || reducer == null)
6388     throw new Error(NullFunctionMessage);
6389     final long id = this.basis;
6390     int b = batch();
6391     while (b > 1 && t.baseIndex != t.baseLimit) {
6392     b >>>= 1;
6393     t.pending = 1;
6394     MapReduceMappingsToLongTask<K,V> rt =
6395     new MapReduceMappingsToLongTask<K,V>
6396     (t, b, true, transformer, id, reducer);
6397     t = new MapReduceMappingsToLongTask<K,V>
6398     (t, b, false, transformer, id, reducer);
6399     t.sibling = rt;
6400     rt.sibling = t;
6401     rt.fork();
6402     }
6403     long r = id;
6404     Object v;
6405     while ((v = t.advance()) != null)
6406     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6407     t.result = r;
6408     for (;;) {
6409     int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6410     if ((par = t.parent) == null ||
6411     !(par instanceof MapReduceMappingsToLongTask)) {
6412     t.quietlyComplete();
6413     break;
6414     }
6415     else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6416     if ((s = t.sibling) != null)
6417     r = reducer.apply(r, s.result);
6418     (t = p).result = r;
6419     }
6420     else if (p.casPending(c, 0))
6421     break;
6422     }
6423     }
6424     public final Long getRawResult() { return result; }
6425     }
6426    
6427     static final class MapReduceKeysToIntTask<K,V>
6428     extends BulkTask<K,V,Integer> {
6429     final ObjectToInt<? super K> transformer;
6430     final IntByIntToInt reducer;
6431     final int basis;
6432     int result;
6433     MapReduceKeysToIntTask<K,V> sibling;
6434     MapReduceKeysToIntTask
6435     (ConcurrentHashMapV8<K,V> m,
6436     ObjectToInt<? super K> transformer,
6437     int basis,
6438     IntByIntToInt reducer) {
6439     super(m);
6440     this.transformer = transformer;
6441     this.basis = basis; this.reducer = reducer;
6442     }
6443     MapReduceKeysToIntTask
6444     (BulkTask<K,V,?> p, int b, boolean split,
6445     ObjectToInt<? super K> transformer,
6446     int basis,
6447     IntByIntToInt reducer) {
6448     super(p, b, split);
6449     this.transformer = transformer;
6450     this.basis = basis; this.reducer = reducer;
6451     }
6452     public final void compute() {
6453     MapReduceKeysToIntTask<K,V> t = this;
6454     final ObjectToInt<? super K> transformer =
6455     this.transformer;
6456     final IntByIntToInt reducer = this.reducer;
6457     if (transformer == null || reducer == null)
6458     throw new Error(NullFunctionMessage);
6459     final int id = this.basis;
6460     int b = batch();
6461     while (b > 1 && t.baseIndex != t.baseLimit) {
6462     b >>>= 1;
6463     t.pending = 1;
6464     MapReduceKeysToIntTask<K,V> rt =
6465     new MapReduceKeysToIntTask<K,V>
6466     (t, b, true, transformer, id, reducer);
6467     t = new MapReduceKeysToIntTask<K,V>
6468     (t, b, false, transformer, id, reducer);
6469     t.sibling = rt;
6470     rt.sibling = t;
6471     rt.fork();
6472     }
6473     int r = id;
6474     while (t.advance() != null)
6475     r = reducer.apply(r, transformer.apply((K)t.nextKey));
6476     t.result = r;
6477     for (;;) {
6478     int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6479     if ((par = t.parent) == null ||
6480     !(par instanceof MapReduceKeysToIntTask)) {
6481     t.quietlyComplete();
6482     break;
6483     }
6484     else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6485     if ((s = t.sibling) != null)
6486     r = reducer.apply(r, s.result);
6487     (t = p).result = r;
6488     }
6489     else if (p.casPending(c, 0))
6490     break;
6491     }
6492     }
6493     public final Integer getRawResult() { return result; }
6494     }
6495    
6496     static final class MapReduceValuesToIntTask<K,V>
6497     extends BulkTask<K,V,Integer> {
6498     final ObjectToInt<? super V> transformer;
6499     final IntByIntToInt reducer;
6500     final int basis;
6501     int result;
6502     MapReduceValuesToIntTask<K,V> sibling;
6503     MapReduceValuesToIntTask
6504     (ConcurrentHashMapV8<K,V> m,
6505     ObjectToInt<? super V> transformer,
6506     int basis,
6507     IntByIntToInt reducer) {
6508     super(m);
6509     this.transformer = transformer;
6510     this.basis = basis; this.reducer = reducer;
6511     }
6512     MapReduceValuesToIntTask
6513     (BulkTask<K,V,?> p, int b, boolean split,
6514     ObjectToInt<? super V> transformer,
6515     int basis,
6516     IntByIntToInt reducer) {
6517     super(p, b, split);
6518     this.transformer = transformer;
6519     this.basis = basis; this.reducer = reducer;
6520     }
6521     public final void compute() {
6522     MapReduceValuesToIntTask<K,V> t = this;
6523     final ObjectToInt<? super V> transformer =
6524     this.transformer;
6525     final IntByIntToInt reducer = this.reducer;
6526     if (transformer == null || reducer == null)
6527     throw new Error(NullFunctionMessage);
6528     final int id = this.basis;
6529     int b = batch();
6530     while (b > 1 && t.baseIndex != t.baseLimit) {
6531     b >>>= 1;
6532     t.pending = 1;
6533     MapReduceValuesToIntTask<K,V> rt =
6534     new MapReduceValuesToIntTask<K,V>
6535     (t, b, true, transformer, id, reducer);
6536     t = new MapReduceValuesToIntTask<K,V>
6537     (t, b, false, transformer, id, reducer);
6538     t.sibling = rt;
6539     rt.sibling = t;
6540     rt.fork();
6541     }
6542     int r = id;
6543     Object v;
6544     while ((v = t.advance()) != null)
6545     r = reducer.apply(r, transformer.apply((V)v));
6546     t.result = r;
6547     for (;;) {
6548     int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6549     if ((par = t.parent) == null ||
6550     !(par instanceof MapReduceValuesToIntTask)) {
6551     t.quietlyComplete();
6552     break;
6553     }
6554     else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6555     if ((s = t.sibling) != null)
6556     r = reducer.apply(r, s.result);
6557     (t = p).result = r;
6558     }
6559     else if (p.casPending(c, 0))
6560     break;
6561     }
6562     }
6563     public final Integer getRawResult() { return result; }
6564     }
6565    
6566     static final class MapReduceEntriesToIntTask<K,V>
6567     extends BulkTask<K,V,Integer> {
6568     final ObjectToInt<Map.Entry<K,V>> transformer;
6569     final IntByIntToInt reducer;
6570     final int basis;
6571     int result;
6572     MapReduceEntriesToIntTask<K,V> sibling;
6573     MapReduceEntriesToIntTask
6574     (ConcurrentHashMapV8<K,V> m,
6575     ObjectToInt<Map.Entry<K,V>> transformer,
6576     int basis,
6577     IntByIntToInt reducer) {
6578     super(m);
6579     this.transformer = transformer;
6580     this.basis = basis; this.reducer = reducer;
6581     }
6582     MapReduceEntriesToIntTask
6583     (BulkTask<K,V,?> p, int b, boolean split,
6584     ObjectToInt<Map.Entry<K,V>> transformer,
6585     int basis,
6586     IntByIntToInt reducer) {
6587     super(p, b, split);
6588     this.transformer = transformer;
6589     this.basis = basis; this.reducer = reducer;
6590     }
6591     public final void compute() {
6592     MapReduceEntriesToIntTask<K,V> t = this;
6593     final ObjectToInt<Map.Entry<K,V>> transformer =
6594     this.transformer;
6595     final IntByIntToInt reducer = this.reducer;
6596     if (transformer == null || reducer == null)
6597     throw new Error(NullFunctionMessage);
6598     final int id = this.basis;
6599     int b = batch();
6600     while (b > 1 && t.baseIndex != t.baseLimit) {
6601     b >>>= 1;
6602     t.pending = 1;
6603     MapReduceEntriesToIntTask<K,V> rt =
6604     new MapReduceEntriesToIntTask<K,V>
6605     (t, b, true, transformer, id, reducer);
6606     t = new MapReduceEntriesToIntTask<K,V>
6607     (t, b, false, transformer, id, reducer);
6608     t.sibling = rt;
6609     rt.sibling = t;
6610     rt.fork();
6611     }
6612     int r = id;
6613     Object v;
6614     while ((v = t.advance()) != null)
6615     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6616     t.result = r;
6617     for (;;) {
6618     int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6619     if ((par = t.parent) == null ||
6620     !(par instanceof MapReduceEntriesToIntTask)) {
6621     t.quietlyComplete();
6622     break;
6623     }
6624     else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6625     if ((s = t.sibling) != null)
6626     r = reducer.apply(r, s.result);
6627     (t = p).result = r;
6628     }
6629     else if (p.casPending(c, 0))
6630     break;
6631     }
6632     }
6633     public final Integer getRawResult() { return result; }
6634     }
6635    
6636     static final class MapReduceMappingsToIntTask<K,V>
6637     extends BulkTask<K,V,Integer> {
6638     final ObjectByObjectToInt<? super K, ? super V> transformer;
6639     final IntByIntToInt reducer;
6640     final int basis;
6641     int result;
6642     MapReduceMappingsToIntTask<K,V> sibling;
6643     MapReduceMappingsToIntTask
6644     (ConcurrentHashMapV8<K,V> m,
6645     ObjectByObjectToInt<? super K, ? super V> transformer,
6646     int basis,
6647     IntByIntToInt reducer) {
6648     super(m);
6649     this.transformer = transformer;
6650     this.basis = basis; this.reducer = reducer;
6651     }
6652     MapReduceMappingsToIntTask
6653     (BulkTask<K,V,?> p, int b, boolean split,
6654     ObjectByObjectToInt<? super K, ? super V> transformer,
6655     int basis,
6656     IntByIntToInt reducer) {
6657     super(p, b, split);
6658     this.transformer = transformer;
6659     this.basis = basis; this.reducer = reducer;
6660     }
6661     public final void compute() {
6662     MapReduceMappingsToIntTask<K,V> t = this;
6663     final ObjectByObjectToInt<? super K, ? super V> transformer =
6664     this.transformer;
6665     final IntByIntToInt reducer = this.reducer;
6666     if (transformer == null || reducer == null)
6667     throw new Error(NullFunctionMessage);
6668     final int id = this.basis;
6669     int b = batch();
6670     while (b > 1 && t.baseIndex != t.baseLimit) {
6671     b >>>= 1;
6672     t.pending = 1;
6673     MapReduceMappingsToIntTask<K,V> rt =
6674     new MapReduceMappingsToIntTask<K,V>
6675     (t, b, true, transformer, id, reducer);
6676     t = new MapReduceMappingsToIntTask<K,V>
6677     (t, b, false, transformer, id, reducer);
6678     t.sibling = rt;
6679     rt.sibling = t;
6680     rt.fork();
6681     }
6682     int r = id;
6683     Object v;
6684     while ((v = t.advance()) != null)
6685     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6686     t.result = r;
6687     for (;;) {
6688     int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6689     if ((par = t.parent) == null ||
6690     !(par instanceof MapReduceMappingsToIntTask)) {
6691     t.quietlyComplete();
6692     break;
6693     }
6694     else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6695     if ((s = t.sibling) != null)
6696     r = reducer.apply(r, s.result);
6697     (t = p).result = r;
6698     }
6699     else if (p.casPending(c, 0))
6700     break;
6701     }
6702     }
6703     public final Integer getRawResult() { return result; }
6704     }
6705    
6706    
6707     // Unsafe mechanics
6708     private static final sun.misc.Unsafe UNSAFE;
6709     private static final long counterOffset;
6710     private static final long sizeCtlOffset;
6711     private static final long ABASE;
6712     private static final int ASHIFT;
6713    
6714     static {
6715     int ss;
6716     try {
6717     UNSAFE = getUnsafe();
6718     Class<?> k = ConcurrentHashMapV8.class;
6719     counterOffset = UNSAFE.objectFieldOffset
6720     (k.getDeclaredField("counter"));
6721     sizeCtlOffset = UNSAFE.objectFieldOffset
6722     (k.getDeclaredField("sizeCtl"));
6723     Class<?> sc = Node[].class;
6724     ABASE = UNSAFE.arrayBaseOffset(sc);
6725     ss = UNSAFE.arrayIndexScale(sc);
6726     } catch (Exception e) {
6727     throw new Error(e);
6728     }
6729     if ((ss & (ss-1)) != 0)
6730     throw new Error("data type scale not a power of two");
6731     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6732     }
6733    
6734     /**
6735     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6736     * Replace with a simple call to Unsafe.getUnsafe when integrating
6737     * into a jdk.
6738     *
6739     * @return a sun.misc.Unsafe
6740     */
6741     private static sun.misc.Unsafe getUnsafe() {
6742     try {
6743     return sun.misc.Unsafe.getUnsafe();
6744     } catch (SecurityException se) {
6745     try {
6746     return java.security.AccessController.doPrivileged
6747     (new java.security
6748     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6749     public sun.misc.Unsafe run() throws Exception {
6750     java.lang.reflect.Field f = sun.misc
6751     .Unsafe.class.getDeclaredField("theUnsafe");
6752     f.setAccessible(true);
6753     return (sun.misc.Unsafe) f.get(null);
6754     }});
6755     } catch (java.security.PrivilegedActionException e) {
6756     throw new RuntimeException("Could not initialize intrinsics",
6757     e.getCause());
6758     }
6759     }
6760     }
6761 dl 1.1 }