ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.56
Committed: Mon Aug 13 18:49:36 2012 UTC (11 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.55: +20 -22 lines
Log Message:
javadoc style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8     import jsr166e.LongAdder;
9 dl 1.52 import jsr166e.ForkJoinPool;
10     import jsr166e.ForkJoinTask;
11    
12     import java.util.Comparator;
13 dl 1.24 import java.util.Arrays;
14 dl 1.1 import java.util.Map;
15     import java.util.Set;
16     import java.util.Collection;
17     import java.util.AbstractMap;
18     import java.util.AbstractSet;
19     import java.util.AbstractCollection;
20     import java.util.Hashtable;
21     import java.util.HashMap;
22     import java.util.Iterator;
23     import java.util.Enumeration;
24     import java.util.ConcurrentModificationException;
25     import java.util.NoSuchElementException;
26     import java.util.concurrent.ConcurrentMap;
27 dl 1.37 import java.util.concurrent.ThreadLocalRandom;
28 dl 1.24 import java.util.concurrent.locks.LockSupport;
29 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
31    
32 dl 1.1 import java.io.Serializable;
33    
34     /**
35     * A hash table supporting full concurrency of retrievals and
36     * high expected concurrency for updates. This class obeys the
37     * same functional specification as {@link java.util.Hashtable}, and
38     * includes versions of methods corresponding to each method of
39     * {@code Hashtable}. However, even though all operations are
40     * thread-safe, retrieval operations do <em>not</em> entail locking,
41     * and there is <em>not</em> any support for locking the entire table
42     * in a way that prevents all access. This class is fully
43     * interoperable with {@code Hashtable} in programs that rely on its
44     * thread safety but not on its synchronization details.
45     *
46     * <p> Retrieval operations (including {@code get}) generally do not
47     * block, so may overlap with update operations (including {@code put}
48     * and {@code remove}). Retrievals reflect the results of the most
49     * recently <em>completed</em> update operations holding upon their
50     * onset. For aggregate operations such as {@code putAll} and {@code
51     * clear}, concurrent retrievals may reflect insertion or removal of
52     * only some entries. Similarly, Iterators and Enumerations return
53     * elements reflecting the state of the hash table at some point at or
54     * since the creation of the iterator/enumeration. They do
55     * <em>not</em> throw {@link ConcurrentModificationException}.
56     * However, iterators are designed to be used by only one thread at a
57     * time. Bear in mind that the results of aggregate status methods
58     * including {@code size}, {@code isEmpty}, and {@code containsValue}
59     * are typically useful only when a map is not undergoing concurrent
60     * updates in other threads. Otherwise the results of these methods
61     * reflect transient states that may be adequate for monitoring
62 dl 1.16 * or estimation purposes, but not for program control.
63 dl 1.1 *
64 dl 1.16 * <p> The table is dynamically expanded when there are too many
65     * collisions (i.e., keys that have distinct hash codes but fall into
66     * the same slot modulo the table size), with the expected average
67 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
68     * to a 0.75 load factor threshold for resizing). There may be much
69     * variance around this average as mappings are added and removed, but
70     * overall, this maintains a commonly accepted time/space tradeoff for
71     * hash tables. However, resizing this or any other kind of hash
72     * table may be a relatively slow operation. When possible, it is a
73     * good idea to provide a size estimate as an optional {@code
74 dl 1.16 * initialCapacity} constructor argument. An additional optional
75     * {@code loadFactor} constructor argument provides a further means of
76     * customizing initial table capacity by specifying the table density
77     * to be used in calculating the amount of space to allocate for the
78     * given number of elements. Also, for compatibility with previous
79     * versions of this class, constructors may optionally specify an
80     * expected {@code concurrencyLevel} as an additional hint for
81     * internal sizing. Note that using many keys with exactly the same
82 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
83 dl 1.16 * hash table.
84 dl 1.1 *
85     * <p>This class and its views and iterators implement all of the
86     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
87     * interfaces.
88     *
89     * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
90     * does <em>not</em> allow {@code null} to be used as a key or value.
91     *
92     * <p>This class is a member of the
93     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
94     * Java Collections Framework</a>.
95     *
96     * <p><em>jsr166e note: This class is a candidate replacement for
97 dl 1.52 * java.util.concurrent.ConcurrentHashMap. During transition, this
98     * class declares and uses nested functional interfaces with different
99     * names but the same forms as those expected for JDK8.<em>
100 dl 1.1 *
101 jsr166 1.22 * @since 1.5
102 dl 1.1 * @author Doug Lea
103     * @param <K> the type of keys maintained by this map
104     * @param <V> the type of mapped values
105     */
106     public class ConcurrentHashMapV8<K, V>
107 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
108 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
109    
110     /**
111 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
112     * directly, but can also be partitioned (before traversal) by
113     * creating another Spliterator that covers a non-overlapping
114     * portion of the elements, and so may be amenable to parallel
115     * execution.
116     *
117     * <p> This interface exports a subset of expected JDK8
118     * functionality.
119     *
120     * <p>Sample usage: Here is one (of the several) ways to compute
121     * the sum of the values held in a map using the ForkJoin
122     * framework. As illustrated here, Spliterators are well suited to
123     * designs in which a task repeatedly splits off half its work
124     * into forked subtasks until small enough to process directly,
125 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
126     * be used in completion-based designs.
127 dl 1.41 *
128     * <pre>
129     * {@code ConcurrentHashMapV8<String, Long> m = ...
130 dl 1.52 * // split as if have 8 * parallelism, for load balance
131     * int n = m.size();
132     * int p = aForkJoinPool.getParallelism() * 8;
133     * int split = (n < p)? n : p;
134     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
135 dl 1.41 * // ...
136     * static class SumValues extends RecursiveTask<Long> {
137     * final Spliterator<Long> s;
138 dl 1.52 * final int split; // split while > 1
139 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
140     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
141     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
142     * }
143     * public Long compute() {
144     * long sum = 0;
145     * SumValues subtasks = null; // fork subtasks
146 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
147     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
148 dl 1.41 * while (s.hasNext()) // directly process remaining elements
149     * sum += s.next();
150     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
151     * sum += t.join(); // collect subtask results
152     * return sum;
153     * }
154     * }
155     * }</pre>
156     */
157     public static interface Spliterator<T> extends Iterator<T> {
158     /**
159     * Returns a Spliterator covering approximately half of the
160     * elements, guaranteed not to overlap with those subsequently
161     * returned by this Spliterator. After invoking this method,
162     * the current Spliterator will <em>not</em> produce any of
163     * the elements of the returned Spliterator, but the two
164     * Spliterators together will produce all of the elements that
165     * would have been produced by this Spliterator had this
166     * method not been called. The exact number of elements
167     * produced by the returned Spliterator is not guaranteed, and
168     * may be zero (i.e., with {@code hasNext()} reporting {@code
169     * false}) if this Spliterator cannot be further split.
170     *
171     * @return a Spliterator covering approximately half of the
172     * elements
173     * @throws IllegalStateException if this Spliterator has
174 jsr166 1.45 * already commenced traversing elements
175 dl 1.41 */
176     Spliterator<T> split();
177     }
178    
179 dl 1.1 /*
180     * Overview:
181     *
182     * The primary design goal of this hash table is to maintain
183     * concurrent readability (typically method get(), but also
184     * iterators and related methods) while minimizing update
185 dl 1.24 * contention. Secondary goals are to keep space consumption about
186     * the same or better than java.util.HashMap, and to support high
187     * initial insertion rates on an empty table by many threads.
188 dl 1.1 *
189     * Each key-value mapping is held in a Node. Because Node fields
190     * can contain special values, they are defined using plain Object
191     * types. Similarly in turn, all internal methods that use them
192 dl 1.14 * work off Object types. And similarly, so do the internal
193     * methods of auxiliary iterator and view classes. All public
194     * generic typed methods relay in/out of these internal methods,
195 dl 1.27 * supplying null-checks and casts as needed. This also allows
196     * many of the public methods to be factored into a smaller number
197     * of internal methods (although sadly not so for the five
198 dl 1.38 * variants of put-related operations). The validation-based
199     * approach explained below leads to a lot of code sprawl because
200     * retry-control precludes factoring into smaller methods.
201 dl 1.1 *
202     * The table is lazily initialized to a power-of-two size upon the
203 dl 1.38 * first insertion. Each bin in the table normally contains a
204     * list of Nodes (most often, the list has only zero or one Node).
205     * Table accesses require volatile/atomic reads, writes, and
206     * CASes. Because there is no other way to arrange this without
207     * adding further indirections, we use intrinsics
208     * (sun.misc.Unsafe) operations. The lists of nodes within bins
209     * are always accurately traversable under volatile reads, so long
210     * as lookups check hash code and non-nullness of value before
211     * checking key equality.
212 dl 1.24 *
213     * We use the top two bits of Node hash fields for control
214     * purposes -- they are available anyway because of addressing
215     * constraints. As explained further below, these top bits are
216 dl 1.27 * used as follows:
217 dl 1.24 * 00 - Normal
218     * 01 - Locked
219     * 11 - Locked and may have a thread waiting for lock
220     * 10 - Node is a forwarding node
221     *
222     * The lower 30 bits of each Node's hash field contain a
223 dl 1.38 * transformation of the key's hash code, except for forwarding
224     * nodes, for which the lower bits are zero (and so always have
225     * hash field == MOVED).
226 dl 1.14 *
227 dl 1.27 * Insertion (via put or its variants) of the first node in an
228 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
229 dl 1.38 * by far the most common case for put operations under most
230     * key/hash distributions. Other update operations (insert,
231     * delete, and replace) require locks. We do not want to waste
232     * the space required to associate a distinct lock object with
233     * each bin, so instead use the first node of a bin list itself as
234     * a lock. Blocking support for these locks relies on the builtin
235     * "synchronized" monitors. However, we also need a tryLock
236     * construction, so we overlay these by using bits of the Node
237     * hash field for lock control (see above), and so normally use
238     * builtin monitors only for blocking and signalling using
239     * wait/notifyAll constructions. See Node.tryAwaitLock.
240 dl 1.24 *
241     * Using the first node of a list as a lock does not by itself
242     * suffice though: When a node is locked, any update must first
243     * validate that it is still the first node after locking it, and
244     * retry if not. Because new nodes are always appended to lists,
245     * once a node is first in a bin, it remains first until deleted
246 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
247     * operations that only conditionally update may inspect nodes
248     * until the point of update. This is a converse of sorts to the
249     * lazy locking technique described by Herlihy & Shavit.
250 dl 1.14 *
251 dl 1.24 * The main disadvantage of per-bin locks is that other update
252 dl 1.14 * operations on other nodes in a bin list protected by the same
253     * lock can stall, for example when user equals() or mapping
254 dl 1.38 * functions take a long time. However, statistically, under
255     * random hash codes, this is not a common problem. Ideally, the
256     * frequency of nodes in bins follows a Poisson distribution
257 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
258 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
259     * of 0.75, although with a large variance because of resizing
260     * granularity. Ignoring variance, the expected occurrences of
261     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
262 dl 1.38 * first values are:
263 dl 1.16 *
264 dl 1.38 * 0: 0.60653066
265     * 1: 0.30326533
266     * 2: 0.07581633
267     * 3: 0.01263606
268     * 4: 0.00157952
269     * 5: 0.00015795
270     * 6: 0.00001316
271     * 7: 0.00000094
272     * 8: 0.00000006
273     * more: less than 1 in ten million
274 dl 1.16 *
275     * Lock contention probability for two threads accessing distinct
276 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
277     *
278     * Actual hash code distributions encountered in practice
279     * sometimes deviate significantly from uniform randomness. This
280     * includes the case when N > (1<<30), so some keys MUST collide.
281     * Similarly for dumb or hostile usages in which multiple keys are
282     * designed to have identical hash codes. Also, although we guard
283     * against the worst effects of this (see method spread), sets of
284     * hashes may differ only in bits that do not impact their bin
285     * index for a given power-of-two mask. So we use a secondary
286     * strategy that applies when the number of nodes in a bin exceeds
287     * a threshold, and at least one of the keys implements
288     * Comparable. These TreeBins use a balanced tree to hold nodes
289     * (a specialized form of red-black trees), bounding search time
290     * to O(log N). Each search step in a TreeBin is around twice as
291     * slow as in a regular list, but given that N cannot exceed
292     * (1<<64) (before running out of addresses) this bounds search
293     * steps, lock hold times, etc, to reasonable constants (roughly
294     * 100 nodes inspected per operation worst case) so long as keys
295     * are Comparable (which is very common -- String, Long, etc).
296     * TreeBin nodes (TreeNodes) also maintain the same "next"
297     * traversal pointers as regular nodes, so can be traversed in
298     * iterators in the same way.
299 dl 1.1 *
300 dl 1.38 * The table is resized when occupancy exceeds a percentage
301 dl 1.24 * threshold (nominally, 0.75, but see below). Only a single
302     * thread performs the resize (using field "sizeCtl", to arrange
303     * exclusion), but the table otherwise remains usable for reads
304     * and updates. Resizing proceeds by transferring bins, one by
305     * one, from the table to the next table. Because we are using
306     * power-of-two expansion, the elements from each bin must either
307     * stay at same index, or move with a power of two offset. We
308     * eliminate unnecessary node creation by catching cases where old
309     * nodes can be reused because their next fields won't change. On
310     * average, only about one-sixth of them need cloning when a table
311     * doubles. The nodes they replace will be garbage collectable as
312     * soon as they are no longer referenced by any reader thread that
313     * may be in the midst of concurrently traversing table. Upon
314     * transfer, the old table bin contains only a special forwarding
315     * node (with hash field "MOVED") that contains the next table as
316     * its key. On encountering a forwarding node, access and update
317     * operations restart, using the new table.
318     *
319     * Each bin transfer requires its bin lock. However, unlike other
320     * cases, a transfer can skip a bin if it fails to acquire its
321 dl 1.38 * lock, and revisit it later (unless it is a TreeBin). Method
322     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
323     * have been skipped because of failure to acquire a lock, and
324     * blocks only if none are available (i.e., only very rarely).
325     * The transfer operation must also ensure that all accessible
326     * bins in both the old and new table are usable by any traversal.
327     * When there are no lock acquisition failures, this is arranged
328     * simply by proceeding from the last bin (table.length - 1) up
329     * towards the first. Upon seeing a forwarding node, traversals
330 dl 1.52 * (see class Iter) arrange to move to the new table
331 dl 1.38 * without revisiting nodes. However, when any node is skipped
332     * during a transfer, all earlier table bins may have become
333     * visible, so are initialized with a reverse-forwarding node back
334     * to the old table until the new ones are established. (This
335     * sometimes requires transiently locking a forwarding node, which
336     * is possible under the above encoding.) These more expensive
337 dl 1.24 * mechanics trigger only when necessary.
338 dl 1.14 *
339 dl 1.24 * The traversal scheme also applies to partial traversals of
340 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
341 dl 1.41 * to support partitioned aggregate operations. Also, read-only
342     * operations give up if ever forwarded to a null table, which
343     * provides support for shutdown-style clearing, which is also not
344     * currently implemented.
345 dl 1.14 *
346     * Lazy table initialization minimizes footprint until first use,
347     * and also avoids resizings when the first operation is from a
348     * putAll, constructor with map argument, or deserialization.
349 dl 1.24 * These cases attempt to override the initial capacity settings,
350     * but harmlessly fail to take effect in cases of races.
351 dl 1.1 *
352     * The element count is maintained using a LongAdder, which avoids
353     * contention on updates but can encounter cache thrashing if read
354 dl 1.14 * too frequently during concurrent access. To avoid reading so
355 dl 1.27 * often, resizing is attempted either when a bin lock is
356     * contended, or upon adding to a bin already holding two or more
357     * nodes (checked before adding in the xIfAbsent methods, after
358     * adding in others). Under uniform hash distributions, the
359     * probability of this occurring at threshold is around 13%,
360     * meaning that only about 1 in 8 puts check threshold (and after
361     * resizing, many fewer do so). But this approximation has high
362     * variance for small table sizes, so we check on any collision
363     * for sizes <= 64. The bulk putAll operation further reduces
364     * contention by only committing count updates upon these size
365     * checks.
366 dl 1.14 *
367     * Maintaining API and serialization compatibility with previous
368     * versions of this class introduces several oddities. Mainly: We
369     * leave untouched but unused constructor arguments refering to
370 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
371     * but apply it only to initial table capacity (which is the only
372     * time that we can guarantee to honor it.) We also declare an
373     * unused "Segment" class that is instantiated in minimal form
374     * only when serializing.
375 dl 1.1 */
376    
377     /* ---------------- Constants -------------- */
378    
379     /**
380 dl 1.16 * The largest possible table capacity. This value must be
381     * exactly 1<<30 to stay within Java array allocation and indexing
382 dl 1.24 * bounds for power of two table sizes, and is further required
383     * because the top two bits of 32bit hash fields are used for
384     * control purposes.
385 dl 1.1 */
386 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
387 dl 1.1
388     /**
389 dl 1.14 * The default initial table capacity. Must be a power of 2
390     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
391 dl 1.1 */
392 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
393 dl 1.1
394     /**
395 dl 1.24 * The largest possible (non-power of two) array size.
396     * Needed by toArray and related methods.
397     */
398     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
399    
400     /**
401     * The default concurrency level for this table. Unused but
402     * defined for compatibility with previous versions of this class.
403     */
404     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
405    
406     /**
407 dl 1.16 * The load factor for this table. Overrides of this value in
408     * constructors affect only the initial table capacity. The
409 dl 1.24 * actual floating point value isn't normally used -- it is
410     * simpler to use expressions such as {@code n - (n >>> 2)} for
411     * the associated resizing threshold.
412 dl 1.1 */
413 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
414 dl 1.1
415     /**
416 dl 1.24 * The buffer size for skipped bins during transfers. The
417     * value is arbitrary but should be large enough to avoid
418     * most locking stalls during resizes.
419     */
420     private static final int TRANSFER_BUFFER_SIZE = 32;
421    
422 dl 1.38 /**
423     * The bin count threshold for using a tree rather than list for a
424     * bin. The value reflects the approximate break-even point for
425     * using tree-based operations.
426     */
427     private static final int TREE_THRESHOLD = 8;
428    
429 dl 1.24 /*
430     * Encodings for special uses of Node hash fields. See above for
431     * explanation.
432 dl 1.1 */
433 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
434 dl 1.24 static final int LOCKED = 0x40000000; // set/tested only as a bit
435     static final int WAITING = 0xc0000000; // both bits set/tested together
436     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
437    
438     /* ---------------- Fields -------------- */
439    
440     /**
441     * The array of bins. Lazily initialized upon first insertion.
442     * Size is always a power of two. Accessed directly by iterators.
443     */
444     transient volatile Node[] table;
445 dl 1.14
446 dl 1.16 /**
447 dl 1.24 * The counter maintaining number of elements.
448 dl 1.16 */
449 dl 1.24 private transient final LongAdder counter;
450    
451     /**
452     * Table initialization and resizing control. When negative, the
453     * table is being initialized or resized. Otherwise, when table is
454     * null, holds the initial table size to use upon creation, or 0
455     * for default. After initialization, holds the next element count
456     * value upon which to resize the table.
457     */
458     private transient volatile int sizeCtl;
459    
460     // views
461     private transient KeySet<K,V> keySet;
462     private transient Values<K,V> values;
463     private transient EntrySet<K,V> entrySet;
464    
465     /** For serialization compatibility. Null unless serialized; see below */
466     private Segment<K,V>[] segments;
467 dl 1.16
468 dl 1.38 /* ---------------- Table element access -------------- */
469    
470     /*
471     * Volatile access methods are used for table elements as well as
472     * elements of in-progress next table while resizing. Uses are
473     * null checked by callers, and implicitly bounds-checked, relying
474     * on the invariants that tab arrays have non-zero size, and all
475     * indices are masked with (tab.length - 1) which is never
476     * negative and always less than length. Note that, to be correct
477     * wrt arbitrary concurrency errors by users, bounds checks must
478     * operate on local variables, which accounts for some odd-looking
479     * inline assignments below.
480     */
481    
482 dl 1.52 static final Node tabAt(Node[] tab, int i) { // used by Iter
483 dl 1.38 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
484     }
485    
486     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
487     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
488     }
489    
490     private static final void setTabAt(Node[] tab, int i, Node v) {
491     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
492     }
493    
494 dl 1.14 /* ---------------- Nodes -------------- */
495 dl 1.1
496     /**
497 dl 1.14 * Key-value entry. Note that this is never exported out as a
498 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
499     * field of MOVED are special, and do not contain user keys or
500     * values. Otherwise, keys are never null, and null val fields
501     * indicate that a node is in the process of being deleted or
502     * created. For purposes of read-only access, a key may be read
503     * before a val, but can only be used after checking val to be
504     * non-null.
505 dl 1.1 */
506 dl 1.38 static class Node {
507 dl 1.24 volatile int hash;
508 dl 1.14 final Object key;
509     volatile Object val;
510     volatile Node next;
511    
512     Node(int hash, Object key, Object val, Node next) {
513     this.hash = hash;
514     this.key = key;
515     this.val = val;
516     this.next = next;
517     }
518    
519 dl 1.24 /** CompareAndSet the hash field */
520     final boolean casHash(int cmp, int val) {
521     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
522     }
523 dl 1.1
524 dl 1.24 /** The number of spins before blocking for a lock */
525     static final int MAX_SPINS =
526     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
527 dl 1.1
528 dl 1.24 /**
529     * Spins a while if LOCKED bit set and this node is the first
530     * of its bin, and then sets WAITING bits on hash field and
531     * blocks (once) if they are still set. It is OK for this
532     * method to return even if lock is not available upon exit,
533     * which enables these simple single-wait mechanics.
534     *
535     * The corresponding signalling operation is performed within
536     * callers: Upon detecting that WAITING has been set when
537     * unlocking lock (via a failed CAS from non-waiting LOCKED
538     * state), unlockers acquire the sync lock and perform a
539     * notifyAll.
540     */
541     final void tryAwaitLock(Node[] tab, int i) {
542     if (tab != null && i >= 0 && i < tab.length) { // bounds check
543 dl 1.37 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
544 dl 1.24 int spins = MAX_SPINS, h;
545     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
546     if (spins >= 0) {
547 dl 1.37 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
548     if (r >= 0 && --spins == 0)
549     Thread.yield(); // yield before block
550 dl 1.24 }
551     else if (casHash(h, h | WAITING)) {
552 jsr166 1.26 synchronized (this) {
553 dl 1.24 if (tabAt(tab, i) == this &&
554     (hash & WAITING) == WAITING) {
555     try {
556     wait();
557     } catch (InterruptedException ie) {
558     Thread.currentThread().interrupt();
559     }
560     }
561     else
562     notifyAll(); // possibly won race vs signaller
563     }
564     break;
565     }
566     }
567     }
568     }
569 dl 1.1
570 dl 1.24 // Unsafe mechanics for casHash
571     private static final sun.misc.Unsafe UNSAFE;
572     private static final long hashOffset;
573 dl 1.1
574 dl 1.24 static {
575     try {
576     UNSAFE = getUnsafe();
577     Class<?> k = Node.class;
578     hashOffset = UNSAFE.objectFieldOffset
579     (k.getDeclaredField("hash"));
580     } catch (Exception e) {
581     throw new Error(e);
582     }
583     }
584     }
585 dl 1.1
586 dl 1.38 /* ---------------- TreeBins -------------- */
587    
588     /**
589     * Nodes for use in TreeBins
590     */
591     static final class TreeNode extends Node {
592     TreeNode parent; // red-black tree links
593     TreeNode left;
594     TreeNode right;
595     TreeNode prev; // needed to unlink next upon deletion
596     boolean red;
597    
598     TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
599     super(hash, key, val, next);
600     this.parent = parent;
601     }
602     }
603 dl 1.1
604 dl 1.38 /**
605     * A specialized form of red-black tree for use in bins
606     * whose size exceeds a threshold.
607     *
608     * TreeBins use a special form of comparison for search and
609     * related operations (which is the main reason we cannot use
610     * existing collections such as TreeMaps). TreeBins contain
611     * Comparable elements, but may contain others, as well as
612     * elements that are Comparable but not necessarily Comparable<T>
613     * for the same T, so we cannot invoke compareTo among them. To
614     * handle this, the tree is ordered primarily by hash value, then
615     * by getClass().getName() order, and then by Comparator order
616     * among elements of the same class. On lookup at a node, if
617 dl 1.41 * elements are not comparable or compare as 0, both left and
618     * right children may need to be searched in the case of tied hash
619     * values. (This corresponds to the full list search that would be
620     * necessary if all elements were non-Comparable and had tied
621     * hashes.) The red-black balancing code is updated from
622     * pre-jdk-collections
623     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
624     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
625     * Algorithms" (CLR).
626 dl 1.38 *
627     * TreeBins also maintain a separate locking discipline than
628     * regular bins. Because they are forwarded via special MOVED
629     * nodes at bin heads (which can never change once established),
630 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
631 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
632     * read-write lock. For update operations and table validation,
633     * the exclusive form of lock behaves in the same way as bin-head
634     * locks. However, lookups use shared read-lock mechanics to allow
635     * multiple readers in the absence of writers. Additionally,
636     * these lookups do not ever block: While the lock is not
637     * available, they proceed along the slow traversal path (via
638     * next-pointers) until the lock becomes available or the list is
639     * exhausted, whichever comes first. (These cases are not fast,
640     * but maximize aggregate expected throughput.) The AQS mechanics
641     * for doing this are straightforward. The lock state is held as
642     * AQS getState(). Read counts are negative; the write count (1)
643     * is positive. There are no signalling preferences among readers
644     * and writers. Since we don't need to export full Lock API, we
645     * just override the minimal AQS methods and use them directly.
646 dl 1.1 */
647 dl 1.38 static final class TreeBin extends AbstractQueuedSynchronizer {
648     private static final long serialVersionUID = 2249069246763182397L;
649 dl 1.41 transient TreeNode root; // root of tree
650     transient TreeNode first; // head of next-pointer list
651 dl 1.1
652 dl 1.38 /* AQS overrides */
653     public final boolean isHeldExclusively() { return getState() > 0; }
654     public final boolean tryAcquire(int ignore) {
655     if (compareAndSetState(0, 1)) {
656     setExclusiveOwnerThread(Thread.currentThread());
657     return true;
658     }
659     return false;
660     }
661     public final boolean tryRelease(int ignore) {
662     setExclusiveOwnerThread(null);
663     setState(0);
664     return true;
665     }
666     public final int tryAcquireShared(int ignore) {
667     for (int c;;) {
668     if ((c = getState()) > 0)
669     return -1;
670     if (compareAndSetState(c, c -1))
671     return 1;
672     }
673     }
674     public final boolean tryReleaseShared(int ignore) {
675     int c;
676     do {} while (!compareAndSetState(c = getState(), c + 1));
677     return c == -1;
678     }
679    
680 dl 1.41 /** From CLR */
681     private void rotateLeft(TreeNode p) {
682     if (p != null) {
683     TreeNode r = p.right, pp, rl;
684     if ((rl = p.right = r.left) != null)
685     rl.parent = p;
686     if ((pp = r.parent = p.parent) == null)
687     root = r;
688     else if (pp.left == p)
689     pp.left = r;
690     else
691     pp.right = r;
692     r.left = p;
693     p.parent = r;
694     }
695     }
696    
697     /** From CLR */
698     private void rotateRight(TreeNode p) {
699     if (p != null) {
700     TreeNode l = p.left, pp, lr;
701     if ((lr = p.left = l.right) != null)
702     lr.parent = p;
703     if ((pp = l.parent = p.parent) == null)
704     root = l;
705     else if (pp.right == p)
706     pp.right = l;
707     else
708     pp.left = l;
709     l.right = p;
710     p.parent = l;
711     }
712     }
713    
714 dl 1.38 /**
715 jsr166 1.56 * Returns the TreeNode (or null if not found) for the given key
716 dl 1.38 * starting at given root.
717     */
718     @SuppressWarnings("unchecked") // suppress Comparable cast warning
719 dl 1.52 final TreeNode getTreeNode(int h, Object k, TreeNode p) {
720 dl 1.38 Class<?> c = k.getClass();
721     while (p != null) {
722 dl 1.41 int dir, ph; Object pk; Class<?> pc;
723     if ((ph = p.hash) == h) {
724     if ((pk = p.key) == k || k.equals(pk))
725     return p;
726     if (c != (pc = pk.getClass()) ||
727     !(k instanceof Comparable) ||
728     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
729 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
730 dl 1.41 TreeNode r = null, s = null, pl, pr;
731     if (dir >= 0) {
732     if ((pl = p.left) != null && h <= pl.hash)
733     s = pl;
734     }
735     else if ((pr = p.right) != null && h >= pr.hash)
736     s = pr;
737     if (s != null && (r = getTreeNode(h, k, s)) != null)
738     return r;
739     }
740     }
741 dl 1.38 else
742 dl 1.41 dir = (h < ph) ? -1 : 1;
743     p = (dir > 0) ? p.right : p.left;
744 dl 1.38 }
745     return null;
746     }
747    
748     /**
749     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
750     * read-lock to call getTreeNode, but during failure to get
751     * lock, searches along next links.
752     */
753     final Object getValue(int h, Object k) {
754     Node r = null;
755     int c = getState(); // Must read lock state first
756     for (Node e = first; e != null; e = e.next) {
757     if (c <= 0 && compareAndSetState(c, c - 1)) {
758     try {
759     r = getTreeNode(h, k, root);
760     } finally {
761     releaseShared(0);
762     }
763     break;
764     }
765     else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
766     r = e;
767     break;
768     }
769     else
770     c = getState();
771     }
772     return r == null ? null : r.val;
773     }
774    
775     /**
776 jsr166 1.45 * Finds or adds a node.
777 dl 1.38 * @return null if added
778     */
779     @SuppressWarnings("unchecked") // suppress Comparable cast warning
780 dl 1.52 final TreeNode putTreeNode(int h, Object k, Object v) {
781 dl 1.38 Class<?> c = k.getClass();
782 dl 1.41 TreeNode pp = root, p = null;
783 dl 1.38 int dir = 0;
784 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
785     int ph; Object pk; Class<?> pc;
786     p = pp;
787     if ((ph = p.hash) == h) {
788     if ((pk = p.key) == k || k.equals(pk))
789 dl 1.38 return p;
790 dl 1.41 if (c != (pc = pk.getClass()) ||
791     !(k instanceof Comparable) ||
792     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
793 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
794 dl 1.41 TreeNode r = null, s = null, pl, pr;
795     if (dir >= 0) {
796     if ((pl = p.left) != null && h <= pl.hash)
797     s = pl;
798     }
799     else if ((pr = p.right) != null && h >= pr.hash)
800     s = pr;
801     if (s != null && (r = getTreeNode(h, k, s)) != null)
802     return r;
803 dl 1.38 }
804     }
805 dl 1.41 else
806     dir = (h < ph) ? -1 : 1;
807     pp = (dir > 0) ? p.right : p.left;
808 dl 1.38 }
809 dl 1.41
810 dl 1.38 TreeNode f = first;
811 dl 1.41 TreeNode x = first = new TreeNode(h, k, v, f, p);
812 dl 1.38 if (p == null)
813 dl 1.41 root = x;
814     else { // attach and rebalance; adapted from CLR
815     TreeNode xp, xpp;
816     if (f != null)
817     f.prev = x;
818 dl 1.38 if (dir <= 0)
819 dl 1.41 p.left = x;
820 dl 1.38 else
821 dl 1.41 p.right = x;
822     x.red = true;
823     while (x != null && (xp = x.parent) != null && xp.red &&
824     (xpp = xp.parent) != null) {
825     TreeNode xppl = xpp.left;
826     if (xp == xppl) {
827     TreeNode y = xpp.right;
828     if (y != null && y.red) {
829     y.red = false;
830     xp.red = false;
831     xpp.red = true;
832     x = xpp;
833     }
834     else {
835     if (x == xp.right) {
836     rotateLeft(x = xp);
837     xpp = (xp = x.parent) == null ? null : xp.parent;
838     }
839     if (xp != null) {
840     xp.red = false;
841     if (xpp != null) {
842     xpp.red = true;
843     rotateRight(xpp);
844     }
845     }
846     }
847     }
848     else {
849     TreeNode y = xppl;
850     if (y != null && y.red) {
851     y.red = false;
852     xp.red = false;
853     xpp.red = true;
854     x = xpp;
855     }
856     else {
857     if (x == xp.left) {
858     rotateRight(x = xp);
859     xpp = (xp = x.parent) == null ? null : xp.parent;
860     }
861     if (xp != null) {
862     xp.red = false;
863     if (xpp != null) {
864     xpp.red = true;
865     rotateLeft(xpp);
866     }
867     }
868     }
869     }
870     }
871     TreeNode r = root;
872     if (r != null && r.red)
873     r.red = false;
874 dl 1.38 }
875     return null;
876     }
877 dl 1.1
878 dl 1.38 /**
879     * Removes the given node, that must be present before this
880     * call. This is messier than typical red-black deletion code
881     * because we cannot swap the contents of an interior node
882     * with a leaf successor that is pinned by "next" pointers
883     * that are accessible independently of lock. So instead we
884     * swap the tree linkages.
885     */
886     final void deleteTreeNode(TreeNode p) {
887     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
888     TreeNode pred = p.prev;
889     if (pred == null)
890     first = next;
891     else
892     pred.next = next;
893     if (next != null)
894     next.prev = pred;
895     TreeNode replacement;
896     TreeNode pl = p.left;
897     TreeNode pr = p.right;
898     if (pl != null && pr != null) {
899 dl 1.41 TreeNode s = pr, sl;
900     while ((sl = s.left) != null) // find successor
901     s = sl;
902 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
903     TreeNode sr = s.right;
904     TreeNode pp = p.parent;
905     if (s == pr) { // p was s's direct parent
906     p.parent = s;
907     s.right = p;
908     }
909     else {
910     TreeNode sp = s.parent;
911     if ((p.parent = sp) != null) {
912     if (s == sp.left)
913     sp.left = p;
914     else
915     sp.right = p;
916     }
917     if ((s.right = pr) != null)
918     pr.parent = s;
919     }
920     p.left = null;
921     if ((p.right = sr) != null)
922     sr.parent = p;
923     if ((s.left = pl) != null)
924     pl.parent = s;
925     if ((s.parent = pp) == null)
926     root = s;
927     else if (p == pp.left)
928     pp.left = s;
929     else
930     pp.right = s;
931     replacement = sr;
932     }
933     else
934     replacement = (pl != null) ? pl : pr;
935     TreeNode pp = p.parent;
936     if (replacement == null) {
937     if (pp == null) {
938     root = null;
939     return;
940     }
941     replacement = p;
942     }
943     else {
944     replacement.parent = pp;
945     if (pp == null)
946     root = replacement;
947     else if (p == pp.left)
948     pp.left = replacement;
949     else
950     pp.right = replacement;
951     p.left = p.right = p.parent = null;
952     }
953 dl 1.41 if (!p.red) { // rebalance, from CLR
954     TreeNode x = replacement;
955     while (x != null) {
956     TreeNode xp, xpl;
957     if (x.red || (xp = x.parent) == null) {
958     x.red = false;
959     break;
960 dl 1.38 }
961 dl 1.41 if (x == (xpl = xp.left)) {
962     TreeNode sib = xp.right;
963     if (sib != null && sib.red) {
964     sib.red = false;
965     xp.red = true;
966     rotateLeft(xp);
967     sib = (xp = x.parent) == null ? null : xp.right;
968 dl 1.38 }
969 dl 1.41 if (sib == null)
970 dl 1.38 x = xp;
971     else {
972 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
973     if ((sr == null || !sr.red) &&
974     (sl == null || !sl.red)) {
975 dl 1.38 sib.red = true;
976 dl 1.41 x = xp;
977 dl 1.38 }
978 dl 1.41 else {
979     if (sr == null || !sr.red) {
980     if (sl != null)
981     sl.red = false;
982     sib.red = true;
983     rotateRight(sib);
984     sib = (xp = x.parent) == null ? null : xp.right;
985     }
986     if (sib != null) {
987 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
988 dl 1.41 if ((sr = sib.right) != null)
989     sr.red = false;
990     }
991     if (xp != null) {
992     xp.red = false;
993     rotateLeft(xp);
994     }
995     x = root;
996 dl 1.38 }
997     }
998     }
999 dl 1.41 else { // symmetric
1000     TreeNode sib = xpl;
1001     if (sib != null && sib.red) {
1002     sib.red = false;
1003     xp.red = true;
1004     rotateRight(xp);
1005     sib = (xp = x.parent) == null ? null : xp.left;
1006     }
1007     if (sib == null)
1008 dl 1.38 x = xp;
1009     else {
1010 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1011     if ((sl == null || !sl.red) &&
1012     (sr == null || !sr.red)) {
1013 dl 1.38 sib.red = true;
1014 dl 1.41 x = xp;
1015 dl 1.38 }
1016 dl 1.41 else {
1017     if (sl == null || !sl.red) {
1018     if (sr != null)
1019     sr.red = false;
1020     sib.red = true;
1021     rotateLeft(sib);
1022     sib = (xp = x.parent) == null ? null : xp.left;
1023     }
1024     if (sib != null) {
1025 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1026 dl 1.41 if ((sl = sib.left) != null)
1027     sl.red = false;
1028     }
1029     if (xp != null) {
1030     xp.red = false;
1031     rotateRight(xp);
1032     }
1033     x = root;
1034 dl 1.38 }
1035     }
1036     }
1037     }
1038     }
1039 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1040     if (p == pp.left) // detach pointers
1041     pp.left = null;
1042     else if (p == pp.right)
1043     pp.right = null;
1044     p.parent = null;
1045     }
1046 dl 1.38 }
1047 dl 1.1 }
1048    
1049 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1050 dl 1.14
1051     /**
1052 dl 1.38 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1053     * Because the table uses power-of-two masking, sets of hashes
1054     * that vary only in bits above the current mask will always
1055     * collide. (Among known examples are sets of Float keys holding
1056     * consecutive whole numbers in small tables.) To counter this,
1057     * we apply a transform that spreads the impact of higher bits
1058     * downward. There is a tradeoff between speed, utility, and
1059     * quality of bit-spreading. Because many common sets of hashes
1060 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1061 dl 1.38 * from spreading), and because we use trees to handle large sets
1062     * of collisions in bins, we don't need excessively high quality.
1063 dl 1.14 */
1064     private static final int spread(int h) {
1065 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1066     return (h ^ (h >>> 10)) & HASH_BITS;
1067     }
1068    
1069     /**
1070     * Replaces a list bin with a tree bin. Call only when locked.
1071     * Fails to replace if the given key is non-comparable or table
1072     * is, or needs, resizing.
1073     */
1074     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1075     if ((key instanceof Comparable) &&
1076     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1077     TreeBin t = new TreeBin();
1078     for (Node e = tabAt(tab, index); e != null; e = e.next)
1079     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1080     setTabAt(tab, index, new Node(MOVED, t, null, null));
1081     }
1082 dl 1.14 }
1083 dl 1.1
1084 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1085    
1086 dl 1.14 /** Implementation for get and containsKey */
1087 jsr166 1.4 private final Object internalGet(Object k) {
1088 dl 1.1 int h = spread(k.hashCode());
1089 dl 1.14 retry: for (Node[] tab = table; tab != null;) {
1090 dl 1.38 Node e, p; Object ek, ev; int eh; // locals to read fields once
1091 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1092 dl 1.24 if ((eh = e.hash) == MOVED) {
1093 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1094     return ((TreeBin)ek).getValue(h, k);
1095     else { // restart with new table
1096     tab = (Node[])ek;
1097     continue retry;
1098     }
1099 dl 1.1 }
1100 dl 1.38 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1101     ((ek = e.key) == k || k.equals(ek)))
1102 dl 1.24 return ev;
1103 dl 1.1 }
1104     break;
1105     }
1106     return null;
1107     }
1108    
1109 dl 1.27 /**
1110     * Implementation for the four public remove/replace methods:
1111     * Replaces node value with v, conditional upon match of cv if
1112     * non-null. If resulting value is null, delete.
1113     */
1114     private final Object internalReplace(Object k, Object v, Object cv) {
1115     int h = spread(k.hashCode());
1116     Object oldVal = null;
1117     for (Node[] tab = table;;) {
1118 dl 1.38 Node f; int i, fh; Object fk;
1119 dl 1.27 if (tab == null ||
1120     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1121     break;
1122 dl 1.38 else if ((fh = f.hash) == MOVED) {
1123     if ((fk = f.key) instanceof TreeBin) {
1124     TreeBin t = (TreeBin)fk;
1125     boolean validated = false;
1126     boolean deleted = false;
1127     t.acquire(0);
1128     try {
1129     if (tabAt(tab, i) == f) {
1130     validated = true;
1131     TreeNode p = t.getTreeNode(h, k, t.root);
1132     if (p != null) {
1133     Object pv = p.val;
1134     if (cv == null || cv == pv || cv.equals(pv)) {
1135     oldVal = pv;
1136     if ((p.val = v) == null) {
1137     deleted = true;
1138     t.deleteTreeNode(p);
1139     }
1140     }
1141     }
1142     }
1143     } finally {
1144     t.release(0);
1145     }
1146     if (validated) {
1147     if (deleted)
1148     counter.add(-1L);
1149     break;
1150     }
1151     }
1152     else
1153     tab = (Node[])fk;
1154     }
1155 dl 1.27 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1156     break; // rules out possible existence
1157     else if ((fh & LOCKED) != 0) {
1158     checkForResize(); // try resizing if can't get lock
1159     f.tryAwaitLock(tab, i);
1160     }
1161     else if (f.casHash(fh, fh | LOCKED)) {
1162     boolean validated = false;
1163     boolean deleted = false;
1164     try {
1165     if (tabAt(tab, i) == f) {
1166     validated = true;
1167     for (Node e = f, pred = null;;) {
1168     Object ek, ev;
1169     if ((e.hash & HASH_BITS) == h &&
1170     ((ev = e.val) != null) &&
1171     ((ek = e.key) == k || k.equals(ek))) {
1172     if (cv == null || cv == ev || cv.equals(ev)) {
1173     oldVal = ev;
1174     if ((e.val = v) == null) {
1175     deleted = true;
1176     Node en = e.next;
1177     if (pred != null)
1178     pred.next = en;
1179     else
1180     setTabAt(tab, i, en);
1181     }
1182     }
1183     break;
1184     }
1185     pred = e;
1186     if ((e = e.next) == null)
1187     break;
1188     }
1189     }
1190     } finally {
1191     if (!f.casHash(fh | LOCKED, fh)) {
1192     f.hash = fh;
1193 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1194 dl 1.27 }
1195     }
1196     if (validated) {
1197     if (deleted)
1198     counter.add(-1L);
1199     break;
1200     }
1201     }
1202     }
1203     return oldVal;
1204     }
1205    
1206     /*
1207     * Internal versions of the five insertion methods, each a
1208     * little more complicated than the last. All have
1209     * the same basic structure as the first (internalPut):
1210     * 1. If table uninitialized, create
1211     * 2. If bin empty, try to CAS new node
1212     * 3. If bin stale, use new table
1213 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1214     * 5. Lock and validate; if valid, scan and add or update
1215 dl 1.27 *
1216     * The others interweave other checks and/or alternative actions:
1217     * * Plain put checks for and performs resize after insertion.
1218     * * putIfAbsent prescans for mapping without lock (and fails to add
1219     * if present), which also makes pre-emptive resize checks worthwhile.
1220     * * computeIfAbsent extends form used in putIfAbsent with additional
1221     * mechanics to deal with, calls, potential exceptions and null
1222     * returns from function call.
1223     * * compute uses the same function-call mechanics, but without
1224     * the prescans
1225     * * putAll attempts to pre-allocate enough table space
1226     * and more lazily performs count updates and checks.
1227     *
1228     * Someday when details settle down a bit more, it might be worth
1229     * some factoring to reduce sprawl.
1230     */
1231    
1232     /** Implementation for put */
1233     private final Object internalPut(Object k, Object v) {
1234 dl 1.1 int h = spread(k.hashCode());
1235 dl 1.38 int count = 0;
1236 dl 1.14 for (Node[] tab = table;;) {
1237 dl 1.38 int i; Node f; int fh; Object fk;
1238 dl 1.1 if (tab == null)
1239 dl 1.24 tab = initTable();
1240     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1241 dl 1.2 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1242 dl 1.14 break; // no lock when adding to empty bin
1243     }
1244 dl 1.38 else if ((fh = f.hash) == MOVED) {
1245     if ((fk = f.key) instanceof TreeBin) {
1246     TreeBin t = (TreeBin)fk;
1247     Object oldVal = null;
1248     t.acquire(0);
1249     try {
1250     if (tabAt(tab, i) == f) {
1251     count = 2;
1252     TreeNode p = t.putTreeNode(h, k, v);
1253     if (p != null) {
1254     oldVal = p.val;
1255     p.val = v;
1256     }
1257     }
1258     } finally {
1259     t.release(0);
1260     }
1261     if (count != 0) {
1262     if (oldVal != null)
1263     return oldVal;
1264     break;
1265     }
1266     }
1267     else
1268     tab = (Node[])fk;
1269     }
1270 dl 1.27 else if ((fh & LOCKED) != 0) {
1271     checkForResize();
1272     f.tryAwaitLock(tab, i);
1273 dl 1.1 }
1274 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1275 dl 1.27 Object oldVal = null;
1276     try { // needed in case equals() throws
1277 dl 1.24 if (tabAt(tab, i) == f) {
1278 dl 1.38 count = 1;
1279     for (Node e = f;; ++count) {
1280 dl 1.24 Object ek, ev;
1281     if ((e.hash & HASH_BITS) == h &&
1282     (ev = e.val) != null &&
1283     ((ek = e.key) == k || k.equals(ek))) {
1284 dl 1.1 oldVal = ev;
1285 dl 1.27 e.val = v;
1286 dl 1.10 break;
1287 dl 1.1 }
1288 dl 1.10 Node last = e;
1289     if ((e = e.next) == null) {
1290 dl 1.2 last.next = new Node(h, k, v, null);
1291 dl 1.38 if (count >= TREE_THRESHOLD)
1292     replaceWithTreeBin(tab, i, k);
1293 dl 1.10 break;
1294 dl 1.1 }
1295     }
1296     }
1297 dl 1.24 } finally { // unlock and signal if needed
1298     if (!f.casHash(fh | LOCKED, fh)) {
1299     f.hash = fh;
1300 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1301 dl 1.24 }
1302 dl 1.1 }
1303 dl 1.38 if (count != 0) {
1304 dl 1.27 if (oldVal != null)
1305     return oldVal;
1306 dl 1.38 if (tab.length <= 64)
1307     count = 2;
1308 dl 1.1 break;
1309     }
1310     }
1311     }
1312 dl 1.27 counter.add(1L);
1313 dl 1.38 if (count > 1)
1314 dl 1.27 checkForResize();
1315     return null;
1316 dl 1.1 }
1317    
1318 dl 1.27 /** Implementation for putIfAbsent */
1319     private final Object internalPutIfAbsent(Object k, Object v) {
1320 dl 1.1 int h = spread(k.hashCode());
1321 dl 1.38 int count = 0;
1322 dl 1.14 for (Node[] tab = table;;) {
1323 dl 1.27 int i; Node f; int fh; Object fk, fv;
1324     if (tab == null)
1325     tab = initTable();
1326     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1327     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1328     break;
1329     }
1330 dl 1.38 else if ((fh = f.hash) == MOVED) {
1331     if ((fk = f.key) instanceof TreeBin) {
1332     TreeBin t = (TreeBin)fk;
1333     Object oldVal = null;
1334     t.acquire(0);
1335     try {
1336     if (tabAt(tab, i) == f) {
1337     count = 2;
1338     TreeNode p = t.putTreeNode(h, k, v);
1339     if (p != null)
1340     oldVal = p.val;
1341     }
1342     } finally {
1343     t.release(0);
1344     }
1345     if (count != 0) {
1346     if (oldVal != null)
1347     return oldVal;
1348     break;
1349     }
1350     }
1351     else
1352     tab = (Node[])fk;
1353     }
1354 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1355     ((fk = f.key) == k || k.equals(fk)))
1356     return fv;
1357     else {
1358     Node g = f.next;
1359     if (g != null) { // at least 2 nodes -- search and maybe resize
1360     for (Node e = g;;) {
1361     Object ek, ev;
1362     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1363     ((ek = e.key) == k || k.equals(ek)))
1364     return ev;
1365     if ((e = e.next) == null) {
1366     checkForResize();
1367     break;
1368     }
1369     }
1370     }
1371     if (((fh = f.hash) & LOCKED) != 0) {
1372     checkForResize();
1373     f.tryAwaitLock(tab, i);
1374     }
1375     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1376     Object oldVal = null;
1377     try {
1378     if (tabAt(tab, i) == f) {
1379 dl 1.38 count = 1;
1380     for (Node e = f;; ++count) {
1381 dl 1.27 Object ek, ev;
1382     if ((e.hash & HASH_BITS) == h &&
1383     (ev = e.val) != null &&
1384     ((ek = e.key) == k || k.equals(ek))) {
1385 dl 1.1 oldVal = ev;
1386 dl 1.27 break;
1387     }
1388     Node last = e;
1389     if ((e = e.next) == null) {
1390     last.next = new Node(h, k, v, null);
1391 dl 1.38 if (count >= TREE_THRESHOLD)
1392     replaceWithTreeBin(tab, i, k);
1393 dl 1.27 break;
1394 dl 1.1 }
1395     }
1396 dl 1.27 }
1397     } finally {
1398     if (!f.casHash(fh | LOCKED, fh)) {
1399     f.hash = fh;
1400 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1401 dl 1.24 }
1402     }
1403 dl 1.38 if (count != 0) {
1404 dl 1.27 if (oldVal != null)
1405     return oldVal;
1406 dl 1.38 if (tab.length <= 64)
1407     count = 2;
1408 dl 1.27 break;
1409     }
1410     }
1411     }
1412     }
1413     counter.add(1L);
1414 dl 1.38 if (count > 1)
1415     checkForResize();
1416 dl 1.27 return null;
1417     }
1418    
1419     /** Implementation for computeIfAbsent */
1420     private final Object internalComputeIfAbsent(K k,
1421 dl 1.52 Fun<? super K, ?> mf) {
1422 dl 1.27 int h = spread(k.hashCode());
1423     Object val = null;
1424 dl 1.38 int count = 0;
1425 dl 1.27 for (Node[] tab = table;;) {
1426     Node f; int i, fh; Object fk, fv;
1427     if (tab == null)
1428     tab = initTable();
1429     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1430     Node node = new Node(fh = h | LOCKED, k, null, null);
1431     if (casTabAt(tab, i, null, node)) {
1432 dl 1.38 count = 1;
1433 dl 1.27 try {
1434 dl 1.52 if ((val = mf.apply(k)) != null)
1435 dl 1.27 node.val = val;
1436     } finally {
1437     if (val == null)
1438     setTabAt(tab, i, null);
1439     if (!node.casHash(fh, h)) {
1440     node.hash = h;
1441 jsr166 1.30 synchronized (node) { node.notifyAll(); };
1442 dl 1.27 }
1443 dl 1.1 }
1444     }
1445 dl 1.38 if (count != 0)
1446 dl 1.24 break;
1447 dl 1.27 }
1448 dl 1.38 else if ((fh = f.hash) == MOVED) {
1449     if ((fk = f.key) instanceof TreeBin) {
1450     TreeBin t = (TreeBin)fk;
1451     boolean added = false;
1452     t.acquire(0);
1453     try {
1454     if (tabAt(tab, i) == f) {
1455     count = 1;
1456     TreeNode p = t.getTreeNode(h, k, t.root);
1457     if (p != null)
1458     val = p.val;
1459 dl 1.52 else if ((val = mf.apply(k)) != null) {
1460 dl 1.38 added = true;
1461     count = 2;
1462     t.putTreeNode(h, k, val);
1463     }
1464     }
1465     } finally {
1466     t.release(0);
1467     }
1468     if (count != 0) {
1469     if (!added)
1470     return val;
1471     break;
1472     }
1473     }
1474     else
1475     tab = (Node[])fk;
1476     }
1477 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1478     ((fk = f.key) == k || k.equals(fk)))
1479     return fv;
1480     else {
1481     Node g = f.next;
1482     if (g != null) {
1483     for (Node e = g;;) {
1484     Object ek, ev;
1485     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1486     ((ek = e.key) == k || k.equals(ek)))
1487     return ev;
1488     if ((e = e.next) == null) {
1489     checkForResize();
1490     break;
1491     }
1492     }
1493     }
1494     if (((fh = f.hash) & LOCKED) != 0) {
1495     checkForResize();
1496     f.tryAwaitLock(tab, i);
1497     }
1498     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1499 dl 1.38 boolean added = false;
1500 dl 1.27 try {
1501     if (tabAt(tab, i) == f) {
1502 dl 1.38 count = 1;
1503     for (Node e = f;; ++count) {
1504 dl 1.27 Object ek, ev;
1505     if ((e.hash & HASH_BITS) == h &&
1506     (ev = e.val) != null &&
1507     ((ek = e.key) == k || k.equals(ek))) {
1508     val = ev;
1509     break;
1510     }
1511     Node last = e;
1512     if ((e = e.next) == null) {
1513 dl 1.52 if ((val = mf.apply(k)) != null) {
1514 dl 1.38 added = true;
1515 dl 1.27 last.next = new Node(h, k, val, null);
1516 dl 1.38 if (count >= TREE_THRESHOLD)
1517     replaceWithTreeBin(tab, i, k);
1518     }
1519 dl 1.27 break;
1520     }
1521     }
1522     }
1523     } finally {
1524     if (!f.casHash(fh | LOCKED, fh)) {
1525     f.hash = fh;
1526 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1527 dl 1.27 }
1528     }
1529 dl 1.38 if (count != 0) {
1530     if (!added)
1531     return val;
1532     if (tab.length <= 64)
1533     count = 2;
1534 dl 1.27 break;
1535 dl 1.38 }
1536 dl 1.1 }
1537     }
1538     }
1539 dl 1.41 if (val != null) {
1540     counter.add(1L);
1541     if (count > 1)
1542     checkForResize();
1543     }
1544 dl 1.27 return val;
1545 dl 1.1 }
1546    
1547 dl 1.27 /** Implementation for compute */
1548 dl 1.1 @SuppressWarnings("unchecked")
1549 dl 1.52 private final Object internalCompute(K k, boolean onlyIfPresent,
1550     BiFun<? super K, ? super V, ? extends V> mf) {
1551 dl 1.1 int h = spread(k.hashCode());
1552 dl 1.27 Object val = null;
1553 dl 1.41 int delta = 0;
1554 dl 1.38 int count = 0;
1555 dl 1.27 for (Node[] tab = table;;) {
1556 dl 1.38 Node f; int i, fh; Object fk;
1557 dl 1.1 if (tab == null)
1558 dl 1.24 tab = initTable();
1559     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1560 dl 1.52 if (onlyIfPresent)
1561     break;
1562 dl 1.24 Node node = new Node(fh = h | LOCKED, k, null, null);
1563     if (casTabAt(tab, i, null, node)) {
1564     try {
1565 dl 1.38 count = 1;
1566 dl 1.52 if ((val = mf.apply(k, null)) != null) {
1567 dl 1.24 node.val = val;
1568 dl 1.41 delta = 1;
1569 dl 1.24 }
1570     } finally {
1571 dl 1.41 if (delta == 0)
1572 dl 1.24 setTabAt(tab, i, null);
1573     if (!node.casHash(fh, h)) {
1574 dl 1.25 node.hash = h;
1575 jsr166 1.26 synchronized (node) { node.notifyAll(); };
1576 dl 1.1 }
1577     }
1578     }
1579 dl 1.38 if (count != 0)
1580 dl 1.10 break;
1581 dl 1.1 }
1582 dl 1.38 else if ((fh = f.hash) == MOVED) {
1583     if ((fk = f.key) instanceof TreeBin) {
1584     TreeBin t = (TreeBin)fk;
1585     t.acquire(0);
1586     try {
1587     if (tabAt(tab, i) == f) {
1588     count = 1;
1589     TreeNode p = t.getTreeNode(h, k, t.root);
1590 jsr166 1.39 Object pv = (p == null) ? null : p.val;
1591 dl 1.52 if ((val = mf.apply(k, (V)pv)) != null) {
1592 dl 1.38 if (p != null)
1593     p.val = val;
1594     else {
1595     count = 2;
1596 dl 1.41 delta = 1;
1597 dl 1.38 t.putTreeNode(h, k, val);
1598     }
1599     }
1600 dl 1.41 else if (p != null) {
1601     delta = -1;
1602     t.deleteTreeNode(p);
1603     }
1604 dl 1.38 }
1605     } finally {
1606     t.release(0);
1607     }
1608     if (count != 0)
1609     break;
1610     }
1611     else
1612     tab = (Node[])fk;
1613     }
1614 dl 1.27 else if ((fh & LOCKED) != 0) {
1615     checkForResize();
1616     f.tryAwaitLock(tab, i);
1617 dl 1.14 }
1618 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1619     try {
1620     if (tabAt(tab, i) == f) {
1621 dl 1.38 count = 1;
1622 dl 1.41 for (Node e = f, pred = null;; ++count) {
1623 dl 1.27 Object ek, ev;
1624 dl 1.24 if ((e.hash & HASH_BITS) == h &&
1625     (ev = e.val) != null &&
1626     ((ek = e.key) == k || k.equals(ek))) {
1627 dl 1.52 val = mf.apply(k, (V)ev);
1628 dl 1.27 if (val != null)
1629     e.val = val;
1630 dl 1.41 else {
1631     delta = -1;
1632     Node en = e.next;
1633     if (pred != null)
1634     pred.next = en;
1635     else
1636     setTabAt(tab, i, en);
1637     }
1638 dl 1.10 break;
1639 dl 1.1 }
1640 dl 1.41 pred = e;
1641 dl 1.10 if ((e = e.next) == null) {
1642 dl 1.52 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1643 dl 1.41 pred.next = new Node(h, k, val, null);
1644     delta = 1;
1645 dl 1.38 if (count >= TREE_THRESHOLD)
1646     replaceWithTreeBin(tab, i, k);
1647 dl 1.1 }
1648 dl 1.10 break;
1649 dl 1.1 }
1650     }
1651     }
1652 dl 1.24 } finally {
1653     if (!f.casHash(fh | LOCKED, fh)) {
1654     f.hash = fh;
1655 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1656 dl 1.24 }
1657 dl 1.1 }
1658 dl 1.38 if (count != 0) {
1659     if (tab.length <= 64)
1660     count = 2;
1661 dl 1.10 break;
1662 dl 1.38 }
1663 dl 1.1 }
1664 dl 1.10 }
1665 dl 1.41 if (delta != 0) {
1666     counter.add((long)delta);
1667 dl 1.38 if (count > 1)
1668 dl 1.27 checkForResize();
1669     }
1670 dl 1.1 return val;
1671     }
1672    
1673 dl 1.52 private final Object internalMerge(K k, V v,
1674     BiFun<? super V, ? super V, ? extends V> mf) {
1675     int h = spread(k.hashCode());
1676     Object val = null;
1677     int delta = 0;
1678     int count = 0;
1679     for (Node[] tab = table;;) {
1680     int i; Node f; int fh; Object fk, fv;
1681     if (tab == null)
1682     tab = initTable();
1683     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1684     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1685     delta = 1;
1686     val = v;
1687     break;
1688     }
1689     }
1690     else if ((fh = f.hash) == MOVED) {
1691     if ((fk = f.key) instanceof TreeBin) {
1692     TreeBin t = (TreeBin)fk;
1693     t.acquire(0);
1694     try {
1695     if (tabAt(tab, i) == f) {
1696     count = 1;
1697     TreeNode p = t.getTreeNode(h, k, t.root);
1698     val = (p == null) ? v : mf.apply((V)p.val, v);
1699     if (val != null) {
1700     if (p != null)
1701     p.val = val;
1702     else {
1703     count = 2;
1704     delta = 1;
1705     t.putTreeNode(h, k, val);
1706     }
1707     }
1708     else if (p != null) {
1709     delta = -1;
1710     t.deleteTreeNode(p);
1711     }
1712     }
1713     } finally {
1714     t.release(0);
1715     }
1716     if (count != 0)
1717     break;
1718     }
1719     else
1720     tab = (Node[])fk;
1721     }
1722     else if ((fh & LOCKED) != 0) {
1723     checkForResize();
1724     f.tryAwaitLock(tab, i);
1725     }
1726     else if (f.casHash(fh, fh | LOCKED)) {
1727     try {
1728     if (tabAt(tab, i) == f) {
1729     count = 1;
1730     for (Node e = f, pred = null;; ++count) {
1731     Object ek, ev;
1732     if ((e.hash & HASH_BITS) == h &&
1733     (ev = e.val) != null &&
1734     ((ek = e.key) == k || k.equals(ek))) {
1735     val = mf.apply(v, (V)ev);
1736     if (val != null)
1737     e.val = val;
1738     else {
1739     delta = -1;
1740     Node en = e.next;
1741     if (pred != null)
1742     pred.next = en;
1743     else
1744     setTabAt(tab, i, en);
1745     }
1746     break;
1747     }
1748     pred = e;
1749     if ((e = e.next) == null) {
1750     val = v;
1751     pred.next = new Node(h, k, val, null);
1752     delta = 1;
1753     if (count >= TREE_THRESHOLD)
1754     replaceWithTreeBin(tab, i, k);
1755     break;
1756     }
1757     }
1758     }
1759     } finally {
1760     if (!f.casHash(fh | LOCKED, fh)) {
1761     f.hash = fh;
1762     synchronized (f) { f.notifyAll(); };
1763     }
1764     }
1765     if (count != 0) {
1766     if (tab.length <= 64)
1767     count = 2;
1768     break;
1769     }
1770     }
1771     }
1772     if (delta != 0) {
1773     counter.add((long)delta);
1774     if (count > 1)
1775     checkForResize();
1776     }
1777     return val;
1778     }
1779    
1780 dl 1.27 /** Implementation for putAll */
1781     private final void internalPutAll(Map<?, ?> m) {
1782     tryPresize(m.size());
1783     long delta = 0L; // number of uncommitted additions
1784     boolean npe = false; // to throw exception on exit for nulls
1785     try { // to clean up counts on other exceptions
1786     for (Map.Entry<?, ?> entry : m.entrySet()) {
1787     Object k, v;
1788     if (entry == null || (k = entry.getKey()) == null ||
1789     (v = entry.getValue()) == null) {
1790     npe = true;
1791     break;
1792     }
1793     int h = spread(k.hashCode());
1794     for (Node[] tab = table;;) {
1795 dl 1.38 int i; Node f; int fh; Object fk;
1796 dl 1.27 if (tab == null)
1797     tab = initTable();
1798     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1799     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1800     ++delta;
1801     break;
1802     }
1803     }
1804 dl 1.38 else if ((fh = f.hash) == MOVED) {
1805     if ((fk = f.key) instanceof TreeBin) {
1806     TreeBin t = (TreeBin)fk;
1807     boolean validated = false;
1808     t.acquire(0);
1809     try {
1810     if (tabAt(tab, i) == f) {
1811     validated = true;
1812     TreeNode p = t.getTreeNode(h, k, t.root);
1813     if (p != null)
1814     p.val = v;
1815     else {
1816     t.putTreeNode(h, k, v);
1817     ++delta;
1818     }
1819     }
1820     } finally {
1821     t.release(0);
1822     }
1823     if (validated)
1824     break;
1825     }
1826     else
1827     tab = (Node[])fk;
1828     }
1829 dl 1.27 else if ((fh & LOCKED) != 0) {
1830     counter.add(delta);
1831     delta = 0L;
1832     checkForResize();
1833     f.tryAwaitLock(tab, i);
1834     }
1835     else if (f.casHash(fh, fh | LOCKED)) {
1836 dl 1.38 int count = 0;
1837 dl 1.27 try {
1838     if (tabAt(tab, i) == f) {
1839 dl 1.38 count = 1;
1840     for (Node e = f;; ++count) {
1841 dl 1.27 Object ek, ev;
1842     if ((e.hash & HASH_BITS) == h &&
1843     (ev = e.val) != null &&
1844     ((ek = e.key) == k || k.equals(ek))) {
1845     e.val = v;
1846     break;
1847     }
1848     Node last = e;
1849     if ((e = e.next) == null) {
1850     ++delta;
1851     last.next = new Node(h, k, v, null);
1852 dl 1.38 if (count >= TREE_THRESHOLD)
1853     replaceWithTreeBin(tab, i, k);
1854 dl 1.27 break;
1855     }
1856     }
1857     }
1858     } finally {
1859     if (!f.casHash(fh | LOCKED, fh)) {
1860     f.hash = fh;
1861 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1862 dl 1.27 }
1863     }
1864 dl 1.38 if (count != 0) {
1865     if (count > 1) {
1866 dl 1.27 counter.add(delta);
1867     delta = 0L;
1868     checkForResize();
1869 dl 1.1 }
1870 dl 1.27 break;
1871 dl 1.24 }
1872     }
1873 dl 1.1 }
1874     }
1875 dl 1.27 } finally {
1876     if (delta != 0)
1877     counter.add(delta);
1878 dl 1.1 }
1879 dl 1.27 if (npe)
1880     throw new NullPointerException();
1881 dl 1.1 }
1882    
1883 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
1884 dl 1.24
1885     /**
1886     * Returns a power of two table size for the given desired capacity.
1887     * See Hackers Delight, sec 3.2
1888     */
1889     private static final int tableSizeFor(int c) {
1890     int n = c - 1;
1891     n |= n >>> 1;
1892     n |= n >>> 2;
1893     n |= n >>> 4;
1894     n |= n >>> 8;
1895     n |= n >>> 16;
1896     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1897     }
1898    
1899     /**
1900     * Initializes table, using the size recorded in sizeCtl.
1901     */
1902     private final Node[] initTable() {
1903     Node[] tab; int sc;
1904     while ((tab = table) == null) {
1905     if ((sc = sizeCtl) < 0)
1906     Thread.yield(); // lost initialization race; just spin
1907     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1908     try {
1909     if ((tab = table) == null) {
1910     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1911     tab = table = new Node[n];
1912 dl 1.27 sc = n - (n >>> 2);
1913 dl 1.24 }
1914     } finally {
1915     sizeCtl = sc;
1916     }
1917     break;
1918     }
1919     }
1920     return tab;
1921     }
1922    
1923     /**
1924 dl 1.27 * If table is too small and not already resizing, creates next
1925     * table and transfers bins. Rechecks occupancy after a transfer
1926     * to see if another resize is already needed because resizings
1927     * are lagging additions.
1928     */
1929     private final void checkForResize() {
1930     Node[] tab; int n, sc;
1931     while ((tab = table) != null &&
1932     (n = tab.length) < MAXIMUM_CAPACITY &&
1933     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1934     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1935 dl 1.24 try {
1936 dl 1.27 if (tab == table) {
1937 dl 1.24 table = rebuild(tab);
1938 dl 1.27 sc = (n << 1) - (n >>> 1);
1939 dl 1.24 }
1940     } finally {
1941     sizeCtl = sc;
1942     }
1943     }
1944     }
1945    
1946 dl 1.27 /**
1947     * Tries to presize table to accommodate the given number of elements.
1948     *
1949     * @param size number of elements (doesn't need to be perfectly accurate)
1950     */
1951     private final void tryPresize(int size) {
1952     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1953     tableSizeFor(size + (size >>> 1) + 1);
1954     int sc;
1955     while ((sc = sizeCtl) >= 0) {
1956     Node[] tab = table; int n;
1957     if (tab == null || (n = tab.length) == 0) {
1958 jsr166 1.30 n = (sc > c) ? sc : c;
1959 dl 1.27 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1960     try {
1961     if (table == tab) {
1962     table = new Node[n];
1963     sc = n - (n >>> 2);
1964     }
1965     } finally {
1966     sizeCtl = sc;
1967     }
1968     }
1969     }
1970     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971     break;
1972     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1973     try {
1974     if (table == tab) {
1975     table = rebuild(tab);
1976     sc = (n << 1) - (n >>> 1);
1977     }
1978     } finally {
1979     sizeCtl = sc;
1980     }
1981     }
1982     }
1983     }
1984    
1985 dl 1.24 /*
1986     * Moves and/or copies the nodes in each bin to new table. See
1987     * above for explanation.
1988     *
1989     * @return the new table
1990     */
1991     private static final Node[] rebuild(Node[] tab) {
1992     int n = tab.length;
1993     Node[] nextTab = new Node[n << 1];
1994     Node fwd = new Node(MOVED, nextTab, null, null);
1995     int[] buffer = null; // holds bins to revisit; null until needed
1996     Node rev = null; // reverse forwarder; null until needed
1997     int nbuffered = 0; // the number of bins in buffer list
1998     int bufferIndex = 0; // buffer index of current buffered bin
1999     int bin = n - 1; // current non-buffered bin or -1 if none
2000    
2001     for (int i = bin;;) { // start upwards sweep
2002     int fh; Node f;
2003     if ((f = tabAt(tab, i)) == null) {
2004     if (bin >= 0) { // no lock needed (or available)
2005     if (!casTabAt(tab, i, f, fwd))
2006     continue;
2007     }
2008     else { // transiently use a locked forwarding node
2009 jsr166 1.33 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2010 dl 1.24 if (!casTabAt(tab, i, f, g))
2011     continue;
2012     setTabAt(nextTab, i, null);
2013     setTabAt(nextTab, i + n, null);
2014     setTabAt(tab, i, fwd);
2015     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2016     g.hash = MOVED;
2017 jsr166 1.26 synchronized (g) { g.notifyAll(); }
2018 dl 1.24 }
2019     }
2020     }
2021 dl 1.38 else if ((fh = f.hash) == MOVED) {
2022     Object fk = f.key;
2023     if (fk instanceof TreeBin) {
2024     TreeBin t = (TreeBin)fk;
2025     boolean validated = false;
2026     t.acquire(0);
2027     try {
2028     if (tabAt(tab, i) == f) {
2029     validated = true;
2030     splitTreeBin(nextTab, i, t);
2031     setTabAt(tab, i, fwd);
2032     }
2033     } finally {
2034     t.release(0);
2035     }
2036     if (!validated)
2037     continue;
2038     }
2039     }
2040     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2041 dl 1.24 boolean validated = false;
2042     try { // split to lo and hi lists; copying as needed
2043     if (tabAt(tab, i) == f) {
2044     validated = true;
2045 dl 1.38 splitBin(nextTab, i, f);
2046 dl 1.24 setTabAt(tab, i, fwd);
2047     }
2048     } finally {
2049     if (!f.casHash(fh | LOCKED, fh)) {
2050     f.hash = fh;
2051 jsr166 1.26 synchronized (f) { f.notifyAll(); };
2052 dl 1.24 }
2053     }
2054     if (!validated)
2055     continue;
2056     }
2057     else {
2058     if (buffer == null) // initialize buffer for revisits
2059     buffer = new int[TRANSFER_BUFFER_SIZE];
2060     if (bin < 0 && bufferIndex > 0) {
2061     int j = buffer[--bufferIndex];
2062     buffer[bufferIndex] = i;
2063     i = j; // swap with another bin
2064     continue;
2065     }
2066     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2067     f.tryAwaitLock(tab, i);
2068     continue; // no other options -- block
2069     }
2070     if (rev == null) // initialize reverse-forwarder
2071     rev = new Node(MOVED, tab, null, null);
2072     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2073     continue; // recheck before adding to list
2074     buffer[nbuffered++] = i;
2075     setTabAt(nextTab, i, rev); // install place-holders
2076     setTabAt(nextTab, i + n, rev);
2077     }
2078    
2079     if (bin > 0)
2080     i = --bin;
2081     else if (buffer != null && nbuffered > 0) {
2082     bin = -1;
2083     i = buffer[bufferIndex = --nbuffered];
2084     }
2085     else
2086     return nextTab;
2087     }
2088     }
2089    
2090 dl 1.27 /**
2091 jsr166 1.45 * Splits a normal bin with list headed by e into lo and hi parts;
2092     * installs in given table.
2093 dl 1.38 */
2094     private static void splitBin(Node[] nextTab, int i, Node e) {
2095     int bit = nextTab.length >>> 1; // bit to split on
2096     int runBit = e.hash & bit;
2097     Node lastRun = e, lo = null, hi = null;
2098     for (Node p = e.next; p != null; p = p.next) {
2099     int b = p.hash & bit;
2100     if (b != runBit) {
2101     runBit = b;
2102     lastRun = p;
2103     }
2104     }
2105     if (runBit == 0)
2106     lo = lastRun;
2107     else
2108     hi = lastRun;
2109     for (Node p = e; p != lastRun; p = p.next) {
2110     int ph = p.hash & HASH_BITS;
2111     Object pk = p.key, pv = p.val;
2112     if ((ph & bit) == 0)
2113     lo = new Node(ph, pk, pv, lo);
2114     else
2115     hi = new Node(ph, pk, pv, hi);
2116     }
2117     setTabAt(nextTab, i, lo);
2118     setTabAt(nextTab, i + bit, hi);
2119     }
2120    
2121     /**
2122 jsr166 1.45 * Splits a tree bin into lo and hi parts; installs in given table.
2123 dl 1.38 */
2124     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2125     int bit = nextTab.length >>> 1;
2126     TreeBin lt = new TreeBin();
2127     TreeBin ht = new TreeBin();
2128     int lc = 0, hc = 0;
2129     for (Node e = t.first; e != null; e = e.next) {
2130     int h = e.hash & HASH_BITS;
2131     Object k = e.key, v = e.val;
2132     if ((h & bit) == 0) {
2133     ++lc;
2134     lt.putTreeNode(h, k, v);
2135     }
2136     else {
2137     ++hc;
2138     ht.putTreeNode(h, k, v);
2139     }
2140     }
2141     Node ln, hn; // throw away trees if too small
2142     if (lc <= (TREE_THRESHOLD >>> 1)) {
2143     ln = null;
2144     for (Node p = lt.first; p != null; p = p.next)
2145     ln = new Node(p.hash, p.key, p.val, ln);
2146     }
2147     else
2148     ln = new Node(MOVED, lt, null, null);
2149     setTabAt(nextTab, i, ln);
2150     if (hc <= (TREE_THRESHOLD >>> 1)) {
2151     hn = null;
2152     for (Node p = ht.first; p != null; p = p.next)
2153     hn = new Node(p.hash, p.key, p.val, hn);
2154     }
2155     else
2156     hn = new Node(MOVED, ht, null, null);
2157     setTabAt(nextTab, i + bit, hn);
2158     }
2159    
2160     /**
2161 dl 1.27 * Implementation for clear. Steps through each bin, removing all
2162     * nodes.
2163     */
2164     private final void internalClear() {
2165     long delta = 0L; // negative number of deletions
2166     int i = 0;
2167     Node[] tab = table;
2168     while (tab != null && i < tab.length) {
2169 dl 1.38 int fh; Object fk;
2170 dl 1.27 Node f = tabAt(tab, i);
2171     if (f == null)
2172     ++i;
2173 dl 1.38 else if ((fh = f.hash) == MOVED) {
2174     if ((fk = f.key) instanceof TreeBin) {
2175     TreeBin t = (TreeBin)fk;
2176     t.acquire(0);
2177     try {
2178     if (tabAt(tab, i) == f) {
2179     for (Node p = t.first; p != null; p = p.next) {
2180     p.val = null;
2181     --delta;
2182     }
2183     t.first = null;
2184     t.root = null;
2185     ++i;
2186     }
2187     } finally {
2188     t.release(0);
2189     }
2190     }
2191     else
2192     tab = (Node[])fk;
2193     }
2194 dl 1.27 else if ((fh & LOCKED) != 0) {
2195     counter.add(delta); // opportunistically update count
2196     delta = 0L;
2197     f.tryAwaitLock(tab, i);
2198     }
2199     else if (f.casHash(fh, fh | LOCKED)) {
2200     try {
2201     if (tabAt(tab, i) == f) {
2202     for (Node e = f; e != null; e = e.next) {
2203 dl 1.38 e.val = null;
2204     --delta;
2205 dl 1.27 }
2206     setTabAt(tab, i, null);
2207 dl 1.38 ++i;
2208 dl 1.27 }
2209     } finally {
2210     if (!f.casHash(fh | LOCKED, fh)) {
2211     f.hash = fh;
2212 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2213 dl 1.27 }
2214     }
2215     }
2216     }
2217     if (delta != 0)
2218     counter.add(delta);
2219     }
2220    
2221 dl 1.14 /* ----------------Table Traversal -------------- */
2222    
2223 dl 1.1 /**
2224 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2225     * serves as a base class for other iterators.
2226     *
2227     * At each step, the iterator snapshots the key ("nextKey") and
2228     * value ("nextVal") of a valid node (i.e., one that, at point of
2229 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2230 dl 1.14 * change (including to null, indicating deletion), field nextVal
2231     * might not be accurate at point of use, but still maintains the
2232     * weak consistency property of holding a value that was once
2233     * valid.
2234     *
2235     * Internal traversals directly access these fields, as in:
2236 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2237 dl 1.14 *
2238 dl 1.41 * Exported iterators must track whether the iterator has advanced
2239     * (in hasNext vs next) (by setting/checking/nulling field
2240     * nextVal), and then extract key, value, or key-value pairs as
2241     * return values of next().
2242 dl 1.14 *
2243 dl 1.27 * The iterator visits once each still-valid node that was
2244     * reachable upon iterator construction. It might miss some that
2245     * were added to a bin after the bin was visited, which is OK wrt
2246     * consistency guarantees. Maintaining this property in the face
2247     * of possible ongoing resizes requires a fair amount of
2248     * bookkeeping state that is difficult to optimize away amidst
2249     * volatile accesses. Even so, traversal maintains reasonable
2250     * throughput.
2251 dl 1.14 *
2252     * Normally, iteration proceeds bin-by-bin traversing lists.
2253     * However, if the table has been resized, then all future steps
2254     * must traverse both the bin at the current index as well as at
2255     * (index + baseSize); and so on for further resizings. To
2256     * paranoically cope with potential sharing by users of iterators
2257     * across threads, iteration terminates if a bounds checks fails
2258     * for a table read.
2259 dl 1.52 *
2260     * This class extends ForkJoinTask to streamline parallel
2261     * iteration in bulk operations (see BulkTask). This adds only an
2262     * int of space overhead, which is close enough to negligible in
2263     * cases where it is not needed to not worry about it.
2264 dl 1.14 */
2265 dl 1.52 static class Traverser<K,V,R> extends ForkJoinTask<R> {
2266 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2267 dl 1.14 Node next; // the next entry to use
2268     Node last; // the last entry used
2269     Object nextKey; // cached key field of next
2270     Object nextVal; // cached val field of next
2271     Node[] tab; // current table; updated if resized
2272     int index; // index of bin to use next
2273     int baseIndex; // current index of initial table
2274 dl 1.41 int baseLimit; // index bound for initial table
2275 dl 1.14 final int baseSize; // initial table size
2276    
2277     /** Creates iterator for all entries in the table. */
2278 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2279 dl 1.41 this.tab = (this.map = map).table;
2280 dl 1.14 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2281     }
2282    
2283 dl 1.52 /** Creates iterator for split() methods */
2284     Traverser(Traverser<K,V,?> it, boolean split) {
2285 dl 1.41 this.map = it.map;
2286     this.tab = it.tab;
2287     this.baseSize = it.baseSize;
2288     int lo = it.baseIndex;
2289     int hi = this.baseLimit = it.baseLimit;
2290 dl 1.52 int i;
2291     if (split) // adjust parent
2292     i = it.baseLimit = (lo + hi + 1) >>> 1;
2293     else // clone parent
2294     i = lo;
2295     this.index = this.baseIndex = i;
2296 dl 1.41 }
2297    
2298     /**
2299 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2300 dl 1.41 * See above for explanation.
2301     */
2302     final Object advance() {
2303 dl 1.14 Node e = last = next;
2304 dl 1.41 Object ev = null;
2305 dl 1.14 outer: do {
2306 dl 1.24 if (e != null) // advance past used/skipped node
2307 dl 1.1 e = e.next;
2308 dl 1.24 while (e == null) { // get to next non-null bin
2309 dl 1.38 Node[] t; int b, i, n; Object ek; // checks must use locals
2310 dl 1.14 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2311     (t = tab) == null || i >= (n = t.length))
2312     break outer;
2313 dl 1.38 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2314     if ((ek = e.key) instanceof TreeBin)
2315     e = ((TreeBin)ek).first;
2316     else {
2317     tab = (Node[])ek;
2318     continue; // restarts due to null val
2319     }
2320     } // visit upper slots if present
2321     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2322 dl 1.1 }
2323 dl 1.14 nextKey = e.key;
2324 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2325 dl 1.14 next = e;
2326 dl 1.41 return nextVal = ev;
2327 dl 1.1 }
2328 dl 1.41
2329     public final void remove() {
2330     if (nextVal == null)
2331     advance();
2332     Node e = last;
2333     if (e == null)
2334     throw new IllegalStateException();
2335     last = null;
2336     map.remove(e.key);
2337     }
2338    
2339     public final boolean hasNext() {
2340     return nextVal != null || advance() != null;
2341     }
2342    
2343     public final boolean hasMoreElements() { return hasNext(); }
2344 dl 1.52 public final void setRawResult(Object x) { }
2345     public R getRawResult() { return null; }
2346     public boolean exec() { return true; }
2347 dl 1.1 }
2348    
2349     /* ---------------- Public operations -------------- */
2350    
2351     /**
2352 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2353 dl 1.1 */
2354 dl 1.16 public ConcurrentHashMapV8() {
2355 dl 1.14 this.counter = new LongAdder();
2356 dl 1.1 }
2357    
2358     /**
2359 dl 1.16 * Creates a new, empty map with an initial table size
2360     * accommodating the specified number of elements without the need
2361     * to dynamically resize.
2362 dl 1.1 *
2363     * @param initialCapacity The implementation performs internal
2364     * sizing to accommodate this many elements.
2365     * @throws IllegalArgumentException if the initial capacity of
2366 jsr166 1.18 * elements is negative
2367 dl 1.1 */
2368 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2369     if (initialCapacity < 0)
2370     throw new IllegalArgumentException();
2371     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2372     MAXIMUM_CAPACITY :
2373     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2374     this.counter = new LongAdder();
2375 dl 1.24 this.sizeCtl = cap;
2376 dl 1.1 }
2377    
2378     /**
2379 dl 1.16 * Creates a new map with the same mappings as the given map.
2380 dl 1.1 *
2381 dl 1.16 * @param m the map
2382 dl 1.1 */
2383 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2384     this.counter = new LongAdder();
2385 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2386 dl 1.27 internalPutAll(m);
2387 dl 1.1 }
2388    
2389     /**
2390 dl 1.16 * Creates a new, empty map with an initial table size based on
2391     * the given number of elements ({@code initialCapacity}) and
2392     * initial table density ({@code loadFactor}).
2393     *
2394     * @param initialCapacity the initial capacity. The implementation
2395     * performs internal sizing to accommodate this many elements,
2396     * given the specified load factor.
2397     * @param loadFactor the load factor (table density) for
2398 jsr166 1.18 * establishing the initial table size
2399 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2400     * elements is negative or the load factor is nonpositive
2401 jsr166 1.22 *
2402     * @since 1.6
2403 dl 1.1 */
2404 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2405     this(initialCapacity, loadFactor, 1);
2406 dl 1.1 }
2407    
2408     /**
2409 dl 1.16 * Creates a new, empty map with an initial table size based on
2410     * the given number of elements ({@code initialCapacity}), table
2411     * density ({@code loadFactor}), and number of concurrently
2412     * updating threads ({@code concurrencyLevel}).
2413 dl 1.1 *
2414 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2415     * performs internal sizing to accommodate this many elements,
2416     * given the specified load factor.
2417     * @param loadFactor the load factor (table density) for
2418 jsr166 1.18 * establishing the initial table size
2419 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2420     * updating threads. The implementation may use this value as
2421     * a sizing hint.
2422     * @throws IllegalArgumentException if the initial capacity is
2423     * negative or the load factor or concurrencyLevel are
2424 jsr166 1.18 * nonpositive
2425 dl 1.1 */
2426 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2427     float loadFactor, int concurrencyLevel) {
2428     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2429     throw new IllegalArgumentException();
2430     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2431     initialCapacity = concurrencyLevel; // as estimated threads
2432     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2433 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2434     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2435 dl 1.16 this.counter = new LongAdder();
2436 dl 1.24 this.sizeCtl = cap;
2437 dl 1.1 }
2438    
2439     /**
2440 dl 1.14 * {@inheritDoc}
2441 dl 1.1 */
2442     public boolean isEmpty() {
2443 dl 1.2 return counter.sum() <= 0L; // ignore transient negative values
2444 dl 1.1 }
2445    
2446     /**
2447 dl 1.14 * {@inheritDoc}
2448 dl 1.1 */
2449     public int size() {
2450     long n = counter.sum();
2451 jsr166 1.15 return ((n < 0L) ? 0 :
2452     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2453 dl 1.14 (int)n);
2454 dl 1.1 }
2455    
2456 dl 1.52 /**
2457     * Returns the number of mappings. This method should be used
2458     * instead of {@link #size} because a ConcurrentHashMap may
2459     * contain more mappings than can be represented as an int. The
2460     * value returned is a snapshot; the actual count may differ if
2461     * there are ongoing concurrent insertions of removals.
2462     *
2463     * @return the number of mappings
2464     */
2465     public long mappingCount() {
2466 dl 1.24 long n = counter.sum();
2467     return (n < 0L) ? 0L : n;
2468     }
2469    
2470 dl 1.1 /**
2471     * Returns the value to which the specified key is mapped,
2472     * or {@code null} if this map contains no mapping for the key.
2473     *
2474     * <p>More formally, if this map contains a mapping from a key
2475     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2476     * then this method returns {@code v}; otherwise it returns
2477     * {@code null}. (There can be at most one such mapping.)
2478     *
2479     * @throws NullPointerException if the specified key is null
2480     */
2481     @SuppressWarnings("unchecked")
2482 dl 1.52 public V get(Object key) {
2483 dl 1.1 if (key == null)
2484     throw new NullPointerException();
2485     return (V)internalGet(key);
2486     }
2487    
2488     /**
2489     * Tests if the specified object is a key in this table.
2490     *
2491     * @param key possible key
2492     * @return {@code true} if and only if the specified object
2493     * is a key in this table, as determined by the
2494 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2495 dl 1.1 * @throws NullPointerException if the specified key is null
2496     */
2497     public boolean containsKey(Object key) {
2498     if (key == null)
2499     throw new NullPointerException();
2500     return internalGet(key) != null;
2501     }
2502    
2503     /**
2504     * Returns {@code true} if this map maps one or more keys to the
2505 dl 1.14 * specified value. Note: This method may require a full traversal
2506     * of the map, and is much slower than method {@code containsKey}.
2507 dl 1.1 *
2508     * @param value value whose presence in this map is to be tested
2509     * @return {@code true} if this map maps one or more keys to the
2510     * specified value
2511     * @throws NullPointerException if the specified value is null
2512     */
2513     public boolean containsValue(Object value) {
2514     if (value == null)
2515     throw new NullPointerException();
2516 dl 1.14 Object v;
2517 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2518 dl 1.41 while ((v = it.advance()) != null) {
2519     if (v == value || value.equals(v))
2520 dl 1.14 return true;
2521     }
2522     return false;
2523 dl 1.1 }
2524    
2525     /**
2526     * Legacy method testing if some key maps into the specified value
2527     * in this table. This method is identical in functionality to
2528     * {@link #containsValue}, and exists solely to ensure
2529     * full compatibility with class {@link java.util.Hashtable},
2530     * which supported this method prior to introduction of the
2531     * Java Collections framework.
2532     *
2533     * @param value a value to search for
2534     * @return {@code true} if and only if some key maps to the
2535     * {@code value} argument in this table as
2536     * determined by the {@code equals} method;
2537     * {@code false} otherwise
2538     * @throws NullPointerException if the specified value is null
2539     */
2540     public boolean contains(Object value) {
2541     return containsValue(value);
2542     }
2543    
2544     /**
2545     * Maps the specified key to the specified value in this table.
2546     * Neither the key nor the value can be null.
2547     *
2548     * <p> The value can be retrieved by calling the {@code get} method
2549     * with a key that is equal to the original key.
2550     *
2551     * @param key key with which the specified value is to be associated
2552     * @param value value to be associated with the specified key
2553     * @return the previous value associated with {@code key}, or
2554     * {@code null} if there was no mapping for {@code key}
2555     * @throws NullPointerException if the specified key or value is null
2556     */
2557     @SuppressWarnings("unchecked")
2558 dl 1.52 public V put(K key, V value) {
2559 dl 1.1 if (key == null || value == null)
2560     throw new NullPointerException();
2561 dl 1.27 return (V)internalPut(key, value);
2562 dl 1.1 }
2563    
2564     /**
2565     * {@inheritDoc}
2566     *
2567     * @return the previous value associated with the specified key,
2568     * or {@code null} if there was no mapping for the key
2569     * @throws NullPointerException if the specified key or value is null
2570     */
2571     @SuppressWarnings("unchecked")
2572 dl 1.52 public V putIfAbsent(K key, V value) {
2573 dl 1.1 if (key == null || value == null)
2574     throw new NullPointerException();
2575 dl 1.27 return (V)internalPutIfAbsent(key, value);
2576 dl 1.1 }
2577    
2578     /**
2579     * Copies all of the mappings from the specified map to this one.
2580     * These mappings replace any mappings that this map had for any of the
2581     * keys currently in the specified map.
2582     *
2583     * @param m mappings to be stored in this map
2584     */
2585     public void putAll(Map<? extends K, ? extends V> m) {
2586 dl 1.27 internalPutAll(m);
2587 dl 1.1 }
2588    
2589     /**
2590     * If the specified key is not already associated with a value,
2591 dl 1.41 * computes its value using the given mappingFunction and enters
2592     * it into the map unless null. This is equivalent to
2593 dl 1.27 * <pre> {@code
2594 jsr166 1.13 * if (map.containsKey(key))
2595     * return map.get(key);
2596 dl 1.52 * value = mappingFunction.apply(key);
2597 dl 1.41 * if (value != null)
2598     * map.put(key, value);
2599 jsr166 1.13 * return value;}</pre>
2600 dl 1.1 *
2601 dl 1.27 * except that the action is performed atomically. If the
2602 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2603     * function itself throws an (unchecked) exception, the exception
2604     * is rethrown to its caller, and no mapping is recorded. Some
2605     * attempted update operations on this map by other threads may be
2606     * blocked while computation is in progress, so the computation
2607     * should be short and simple, and must not attempt to update any
2608     * other mappings of this Map. The most appropriate usage is to
2609     * construct a new object serving as an initial mapped value, or
2610     * memoized result, as in:
2611 dl 1.27 *
2612 jsr166 1.13 * <pre> {@code
2613 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2614 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2615 dl 1.1 *
2616     * @param key key with which the specified value is to be associated
2617     * @param mappingFunction the function to compute a value
2618     * @return the current (existing or computed) value associated with
2619 dl 1.41 * the specified key, or null if the computed value is null.
2620     * @throws NullPointerException if the specified key or mappingFunction
2621     * is null
2622 dl 1.5 * @throws IllegalStateException if the computation detectably
2623     * attempts a recursive update to this map that would
2624 jsr166 1.18 * otherwise never complete
2625 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2626 jsr166 1.18 * in which case the mapping is left unestablished
2627 dl 1.1 */
2628 dl 1.27 @SuppressWarnings("unchecked")
2629 dl 1.52 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2630 dl 1.1 if (key == null || mappingFunction == null)
2631     throw new NullPointerException();
2632 dl 1.27 return (V)internalComputeIfAbsent(key, mappingFunction);
2633 dl 1.2 }
2634    
2635     /**
2636 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2637     * its current mapped value. This is equivalent to
2638     * <pre> {@code
2639     * if (map.containsKey(key)) {
2640     * value = remappingFunction.apply(key, map.get(key));
2641     * if (value != null)
2642     * map.put(key, value);
2643     * else
2644     * map.remove(key);
2645     * }
2646     * }</pre>
2647     *
2648     * except that the action is performed atomically. If the
2649     * function returns {@code null}, the mapping is removed. If the
2650     * function itself throws an (unchecked) exception, the exception
2651     * is rethrown to its caller, and the current mapping is left
2652     * unchanged. Some attempted update operations on this map by
2653     * other threads may be blocked while computation is in progress,
2654     * so the computation should be short and simple, and must not
2655     * attempt to update any other mappings of this Map. For example,
2656     * to either create or append new messages to a value mapping:
2657     *
2658     * @param key key with which the specified value is to be associated
2659     * @param remappingFunction the function to compute a value
2660 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2661 dl 1.52 * @throws NullPointerException if the specified key or remappingFunction
2662     * is null
2663     * @throws IllegalStateException if the computation detectably
2664     * attempts a recursive update to this map that would
2665     * otherwise never complete
2666     * @throws RuntimeException or Error if the remappingFunction does so,
2667     * in which case the mapping is unchanged
2668     */
2669     public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2670     if (key == null || remappingFunction == null)
2671     throw new NullPointerException();
2672     return (V)internalCompute(key, true, remappingFunction);
2673     }
2674    
2675     /**
2676 dl 1.41 * Computes a new mapping value given a key and
2677 dl 1.27 * its current mapped value (or {@code null} if there is no current
2678     * mapping). This is equivalent to
2679 jsr166 1.13 * <pre> {@code
2680 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2681 dl 1.41 * if (value != null)
2682     * map.put(key, value);
2683     * else
2684     * map.remove(key);
2685 dl 1.27 * }</pre>
2686 dl 1.2 *
2687 dl 1.27 * except that the action is performed atomically. If the
2688 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2689     * function itself throws an (unchecked) exception, the exception
2690     * is rethrown to its caller, and the current mapping is left
2691     * unchanged. Some attempted update operations on this map by
2692     * other threads may be blocked while computation is in progress,
2693     * so the computation should be short and simple, and must not
2694     * attempt to update any other mappings of this Map. For example,
2695     * to either create or append new messages to a value mapping:
2696 dl 1.27 *
2697     * <pre> {@code
2698     * Map<Key, String> map = ...;
2699     * final String msg = ...;
2700 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2701     * public String apply(Key k, String v) {
2702 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2703 dl 1.2 *
2704     * @param key key with which the specified value is to be associated
2705 dl 1.27 * @param remappingFunction the function to compute a value
2706 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2707 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2708 dl 1.41 * is null
2709 dl 1.5 * @throws IllegalStateException if the computation detectably
2710     * attempts a recursive update to this map that would
2711 jsr166 1.18 * otherwise never complete
2712 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2713 jsr166 1.18 * in which case the mapping is unchanged
2714 dl 1.2 */
2715 dl 1.52 // @SuppressWarnings("unchecked")
2716     public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2717 dl 1.27 if (key == null || remappingFunction == null)
2718 dl 1.2 throw new NullPointerException();
2719 dl 1.52 return (V)internalCompute(key, false, remappingFunction);
2720     }
2721    
2722     /**
2723     * If the specified key is not already associated
2724     * with a value, associate it with the given value.
2725     * Otherwise, replace the value with the results of
2726     * the given remapping function. This is equivalent to:
2727     * <pre> {@code
2728     * if (!map.containsKey(key))
2729     * map.put(value);
2730     * else {
2731     * newValue = remappingFunction.apply(map.get(key), value);
2732     * if (value != null)
2733     * map.put(key, value);
2734     * else
2735     * map.remove(key);
2736     * }
2737     * }</pre>
2738     * except that the action is performed atomically. If the
2739     * function returns {@code null}, the mapping is removed. If the
2740     * function itself throws an (unchecked) exception, the exception
2741     * is rethrown to its caller, and the current mapping is left
2742     * unchanged. Some attempted update operations on this map by
2743     * other threads may be blocked while computation is in progress,
2744     * so the computation should be short and simple, and must not
2745     * attempt to update any other mappings of this Map.
2746     */
2747     // @SuppressWarnings("unchecked")
2748     public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2749     if (key == null || value == null || remappingFunction == null)
2750     throw new NullPointerException();
2751     return (V)internalMerge(key, value, remappingFunction);
2752 dl 1.1 }
2753    
2754     /**
2755     * Removes the key (and its corresponding value) from this map.
2756     * This method does nothing if the key is not in the map.
2757     *
2758     * @param key the key that needs to be removed
2759     * @return the previous value associated with {@code key}, or
2760     * {@code null} if there was no mapping for {@code key}
2761     * @throws NullPointerException if the specified key is null
2762     */
2763     @SuppressWarnings("unchecked")
2764 dl 1.52 public V remove(Object key) {
2765 dl 1.1 if (key == null)
2766     throw new NullPointerException();
2767 jsr166 1.3 return (V)internalReplace(key, null, null);
2768 dl 1.1 }
2769    
2770     /**
2771     * {@inheritDoc}
2772     *
2773     * @throws NullPointerException if the specified key is null
2774     */
2775     public boolean remove(Object key, Object value) {
2776     if (key == null)
2777     throw new NullPointerException();
2778     if (value == null)
2779     return false;
2780     return internalReplace(key, null, value) != null;
2781     }
2782    
2783     /**
2784     * {@inheritDoc}
2785     *
2786     * @throws NullPointerException if any of the arguments are null
2787     */
2788     public boolean replace(K key, V oldValue, V newValue) {
2789     if (key == null || oldValue == null || newValue == null)
2790     throw new NullPointerException();
2791 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
2792 dl 1.1 }
2793    
2794     /**
2795     * {@inheritDoc}
2796     *
2797     * @return the previous value associated with the specified key,
2798     * or {@code null} if there was no mapping for the key
2799     * @throws NullPointerException if the specified key or value is null
2800     */
2801     @SuppressWarnings("unchecked")
2802 dl 1.52 public V replace(K key, V value) {
2803 dl 1.1 if (key == null || value == null)
2804     throw new NullPointerException();
2805 jsr166 1.3 return (V)internalReplace(key, value, null);
2806 dl 1.1 }
2807    
2808     /**
2809     * Removes all of the mappings from this map.
2810     */
2811     public void clear() {
2812     internalClear();
2813     }
2814    
2815     /**
2816     * Returns a {@link Set} view of the keys contained in this map.
2817     * The set is backed by the map, so changes to the map are
2818     * reflected in the set, and vice-versa. The set supports element
2819     * removal, which removes the corresponding mapping from this map,
2820     * via the {@code Iterator.remove}, {@code Set.remove},
2821     * {@code removeAll}, {@code retainAll}, and {@code clear}
2822     * operations. It does not support the {@code add} or
2823     * {@code addAll} operations.
2824     *
2825     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2826     * that will never throw {@link ConcurrentModificationException},
2827     * and guarantees to traverse elements as they existed upon
2828     * construction of the iterator, and may (but is not guaranteed to)
2829     * reflect any modifications subsequent to construction.
2830     */
2831     public Set<K> keySet() {
2832 dl 1.14 KeySet<K,V> ks = keySet;
2833     return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2834 dl 1.1 }
2835    
2836     /**
2837     * Returns a {@link Collection} view of the values contained in this map.
2838     * The collection is backed by the map, so changes to the map are
2839     * reflected in the collection, and vice-versa. The collection
2840     * supports element removal, which removes the corresponding
2841     * mapping from this map, via the {@code Iterator.remove},
2842     * {@code Collection.remove}, {@code removeAll},
2843     * {@code retainAll}, and {@code clear} operations. It does not
2844     * support the {@code add} or {@code addAll} operations.
2845     *
2846     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2847     * that will never throw {@link ConcurrentModificationException},
2848     * and guarantees to traverse elements as they existed upon
2849     * construction of the iterator, and may (but is not guaranteed to)
2850     * reflect any modifications subsequent to construction.
2851     */
2852     public Collection<V> values() {
2853 dl 1.14 Values<K,V> vs = values;
2854     return (vs != null) ? vs : (values = new Values<K,V>(this));
2855 dl 1.1 }
2856    
2857     /**
2858     * Returns a {@link Set} view of the mappings contained in this map.
2859     * The set is backed by the map, so changes to the map are
2860     * reflected in the set, and vice-versa. The set supports element
2861     * removal, which removes the corresponding mapping from the map,
2862     * via the {@code Iterator.remove}, {@code Set.remove},
2863     * {@code removeAll}, {@code retainAll}, and {@code clear}
2864     * operations. It does not support the {@code add} or
2865     * {@code addAll} operations.
2866     *
2867     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2868     * that will never throw {@link ConcurrentModificationException},
2869     * and guarantees to traverse elements as they existed upon
2870     * construction of the iterator, and may (but is not guaranteed to)
2871     * reflect any modifications subsequent to construction.
2872     */
2873     public Set<Map.Entry<K,V>> entrySet() {
2874 dl 1.14 EntrySet<K,V> es = entrySet;
2875     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2876 dl 1.1 }
2877    
2878     /**
2879     * Returns an enumeration of the keys in this table.
2880     *
2881     * @return an enumeration of the keys in this table
2882     * @see #keySet()
2883     */
2884     public Enumeration<K> keys() {
2885 dl 1.14 return new KeyIterator<K,V>(this);
2886 dl 1.1 }
2887    
2888     /**
2889     * Returns an enumeration of the values in this table.
2890     *
2891     * @return an enumeration of the values in this table
2892     * @see #values()
2893     */
2894     public Enumeration<V> elements() {
2895 dl 1.14 return new ValueIterator<K,V>(this);
2896 dl 1.1 }
2897    
2898     /**
2899 jsr166 1.55 * Returns a partitionable iterator of the keys in this map.
2900 dl 1.41 *
2901 jsr166 1.55 * @return a partitionable iterator of the keys in this map
2902 dl 1.41 */
2903     public Spliterator<K> keySpliterator() {
2904     return new KeyIterator<K,V>(this);
2905     }
2906    
2907     /**
2908 jsr166 1.55 * Returns a partitionable iterator of the values in this map.
2909 dl 1.41 *
2910 jsr166 1.55 * @return a partitionable iterator of the values in this map
2911 dl 1.41 */
2912     public Spliterator<V> valueSpliterator() {
2913     return new ValueIterator<K,V>(this);
2914     }
2915    
2916     /**
2917 jsr166 1.55 * Returns a partitionable iterator of the entries in this map.
2918 dl 1.41 *
2919 jsr166 1.55 * @return a partitionable iterator of the entries in this map
2920 dl 1.41 */
2921     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2922     return new EntryIterator<K,V>(this);
2923     }
2924    
2925     /**
2926 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
2927     * the sum of, for each key-value pair in the map,
2928     * {@code key.hashCode() ^ value.hashCode()}.
2929     *
2930     * @return the hash code value for this map
2931 dl 1.1 */
2932     public int hashCode() {
2933 dl 1.14 int h = 0;
2934 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2935 dl 1.41 Object v;
2936     while ((v = it.advance()) != null) {
2937     h += it.nextKey.hashCode() ^ v.hashCode();
2938 dl 1.14 }
2939     return h;
2940 dl 1.1 }
2941    
2942     /**
2943 dl 1.2 * Returns a string representation of this map. The string
2944     * representation consists of a list of key-value mappings (in no
2945     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2946     * mappings are separated by the characters {@code ", "} (comma
2947     * and space). Each key-value mapping is rendered as the key
2948     * followed by an equals sign ("{@code =}") followed by the
2949     * associated value.
2950     *
2951     * @return a string representation of this map
2952 dl 1.1 */
2953     public String toString() {
2954 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2955 dl 1.14 StringBuilder sb = new StringBuilder();
2956     sb.append('{');
2957 dl 1.41 Object v;
2958     if ((v = it.advance()) != null) {
2959 dl 1.14 for (;;) {
2960 dl 1.41 Object k = it.nextKey;
2961 dl 1.14 sb.append(k == this ? "(this Map)" : k);
2962     sb.append('=');
2963     sb.append(v == this ? "(this Map)" : v);
2964 dl 1.41 if ((v = it.advance()) == null)
2965 dl 1.14 break;
2966     sb.append(',').append(' ');
2967     }
2968     }
2969     return sb.append('}').toString();
2970 dl 1.1 }
2971    
2972     /**
2973 dl 1.2 * Compares the specified object with this map for equality.
2974     * Returns {@code true} if the given object is a map with the same
2975     * mappings as this map. This operation may return misleading
2976     * results if either map is concurrently modified during execution
2977     * of this method.
2978     *
2979     * @param o object to be compared for equality with this map
2980     * @return {@code true} if the specified object is equal to this map
2981 dl 1.1 */
2982     public boolean equals(Object o) {
2983 dl 1.14 if (o != this) {
2984     if (!(o instanceof Map))
2985     return false;
2986     Map<?,?> m = (Map<?,?>) o;
2987 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2988 dl 1.41 Object val;
2989     while ((val = it.advance()) != null) {
2990 dl 1.14 Object v = m.get(it.nextKey);
2991     if (v == null || (v != val && !v.equals(val)))
2992 dl 1.1 return false;
2993 dl 1.14 }
2994 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
2995 dl 1.14 Object mk, mv, v;
2996     if ((mk = e.getKey()) == null ||
2997     (mv = e.getValue()) == null ||
2998     (v = internalGet(mk)) == null ||
2999     (mv != v && !mv.equals(v)))
3000 dl 1.1 return false;
3001     }
3002 dl 1.14 }
3003     return true;
3004     }
3005    
3006     /* ----------------Iterators -------------- */
3007    
3008 dl 1.52 static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3009 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3010     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3011 dl 1.52 KeyIterator(Traverser<K,V,Object> it, boolean split) {
3012 dl 1.41 super(it, split);
3013     }
3014     public KeyIterator<K,V> split() {
3015     if (last != null || (next != null && nextVal == null))
3016     throw new IllegalStateException();
3017     return new KeyIterator<K,V>(this, true);
3018 dl 1.14 }
3019     @SuppressWarnings("unchecked")
3020 dl 1.52 public final K next() {
3021 dl 1.41 if (nextVal == null && advance() == null)
3022 dl 1.14 throw new NoSuchElementException();
3023     Object k = nextKey;
3024 dl 1.41 nextVal = null;
3025     return (K) k;
3026 dl 1.14 }
3027    
3028     public final K nextElement() { return next(); }
3029     }
3030    
3031 dl 1.52 static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3032 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3033 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3034 dl 1.52 ValueIterator(Traverser<K,V,Object> it, boolean split) {
3035 dl 1.41 super(it, split);
3036     }
3037     public ValueIterator<K,V> split() {
3038     if (last != null || (next != null && nextVal == null))
3039     throw new IllegalStateException();
3040     return new ValueIterator<K,V>(this, true);
3041     }
3042    
3043 dl 1.14 @SuppressWarnings("unchecked")
3044 dl 1.52 public final V next() {
3045 dl 1.41 Object v;
3046     if ((v = nextVal) == null && (v = advance()) == null)
3047 dl 1.14 throw new NoSuchElementException();
3048 dl 1.41 nextVal = null;
3049     return (V) v;
3050 dl 1.14 }
3051    
3052     public final V nextElement() { return next(); }
3053     }
3054    
3055 dl 1.52 static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3056 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3057 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3058 dl 1.52 EntryIterator(Traverser<K,V,Object> it, boolean split) {
3059 dl 1.41 super(it, split);
3060     }
3061     public EntryIterator<K,V> split() {
3062     if (last != null || (next != null && nextVal == null))
3063     throw new IllegalStateException();
3064     return new EntryIterator<K,V>(this, true);
3065     }
3066 dl 1.24
3067     @SuppressWarnings("unchecked")
3068 dl 1.52 public final Map.Entry<K,V> next() {
3069 dl 1.41 Object v;
3070     if ((v = nextVal) == null && (v = advance()) == null)
3071 dl 1.24 throw new NoSuchElementException();
3072     Object k = nextKey;
3073 dl 1.41 nextVal = null;
3074     return new MapEntry<K,V>((K)k, (V)v, map);
3075 dl 1.1 }
3076     }
3077    
3078     /**
3079 dl 1.41 * Exported Entry for iterators
3080 dl 1.1 */
3081 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3082 dl 1.14 final K key; // non-null
3083     V val; // non-null
3084 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3085     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3086     this.key = key;
3087     this.val = val;
3088     this.map = map;
3089     }
3090 dl 1.14 public final K getKey() { return key; }
3091     public final V getValue() { return val; }
3092     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3093     public final String toString(){ return key + "=" + val; }
3094    
3095     public final boolean equals(Object o) {
3096     Object k, v; Map.Entry<?,?> e;
3097     return ((o instanceof Map.Entry) &&
3098     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3099     (v = e.getValue()) != null &&
3100     (k == key || k.equals(key)) &&
3101     (v == val || v.equals(val)));
3102 dl 1.1 }
3103    
3104     /**
3105     * Sets our entry's value and writes through to the map. The
3106 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3107     * necessarily track asynchronous changes, the most recent
3108 dl 1.41 * "previous" value could be different from what we return (or
3109     * could even have been removed in which case the put will
3110     * re-establish). We do not and cannot guarantee more.
3111 dl 1.1 */
3112 dl 1.14 public final V setValue(V value) {
3113 dl 1.1 if (value == null) throw new NullPointerException();
3114 dl 1.14 V v = val;
3115     val = value;
3116     map.put(key, value);
3117 dl 1.1 return v;
3118     }
3119     }
3120    
3121 dl 1.14 /* ----------------Views -------------- */
3122 dl 1.1
3123 dl 1.24 /**
3124 dl 1.41 * Base class for views.
3125 dl 1.14 */
3126 dl 1.52 static abstract class CHMView<K, V> {
3127 dl 1.14 final ConcurrentHashMapV8<K, V> map;
3128 dl 1.52 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3129 dl 1.14 public final int size() { return map.size(); }
3130     public final boolean isEmpty() { return map.isEmpty(); }
3131     public final void clear() { map.clear(); }
3132 dl 1.24
3133     // implementations below rely on concrete classes supplying these
3134 dl 1.41 abstract public Iterator<?> iterator();
3135 dl 1.24 abstract public boolean contains(Object o);
3136     abstract public boolean remove(Object o);
3137    
3138     private static final String oomeMsg = "Required array size too large";
3139    
3140     public final Object[] toArray() {
3141 dl 1.52 long sz = map.mappingCount();
3142 dl 1.24 if (sz > (long)(MAX_ARRAY_SIZE))
3143     throw new OutOfMemoryError(oomeMsg);
3144     int n = (int)sz;
3145     Object[] r = new Object[n];
3146     int i = 0;
3147 dl 1.41 Iterator<?> it = iterator();
3148 dl 1.24 while (it.hasNext()) {
3149     if (i == n) {
3150     if (n >= MAX_ARRAY_SIZE)
3151     throw new OutOfMemoryError(oomeMsg);
3152     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3153     n = MAX_ARRAY_SIZE;
3154     else
3155     n += (n >>> 1) + 1;
3156     r = Arrays.copyOf(r, n);
3157     }
3158     r[i++] = it.next();
3159     }
3160     return (i == n) ? r : Arrays.copyOf(r, i);
3161     }
3162    
3163     @SuppressWarnings("unchecked")
3164 dl 1.52 public final <T> T[] toArray(T[] a) {
3165     long sz = map.mappingCount();
3166 dl 1.24 if (sz > (long)(MAX_ARRAY_SIZE))
3167     throw new OutOfMemoryError(oomeMsg);
3168     int m = (int)sz;
3169     T[] r = (a.length >= m) ? a :
3170     (T[])java.lang.reflect.Array
3171     .newInstance(a.getClass().getComponentType(), m);
3172     int n = r.length;
3173     int i = 0;
3174 dl 1.41 Iterator<?> it = iterator();
3175 dl 1.24 while (it.hasNext()) {
3176     if (i == n) {
3177     if (n >= MAX_ARRAY_SIZE)
3178     throw new OutOfMemoryError(oomeMsg);
3179     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3180     n = MAX_ARRAY_SIZE;
3181     else
3182     n += (n >>> 1) + 1;
3183     r = Arrays.copyOf(r, n);
3184     }
3185     r[i++] = (T)it.next();
3186     }
3187     if (a == r && i < n) {
3188     r[i] = null; // null-terminate
3189     return r;
3190     }
3191     return (i == n) ? r : Arrays.copyOf(r, i);
3192     }
3193    
3194     public final int hashCode() {
3195     int h = 0;
3196 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();)
3197 dl 1.24 h += it.next().hashCode();
3198     return h;
3199     }
3200    
3201     public final String toString() {
3202     StringBuilder sb = new StringBuilder();
3203     sb.append('[');
3204 dl 1.41 Iterator<?> it = iterator();
3205 dl 1.24 if (it.hasNext()) {
3206     for (;;) {
3207     Object e = it.next();
3208     sb.append(e == this ? "(this Collection)" : e);
3209     if (!it.hasNext())
3210     break;
3211     sb.append(',').append(' ');
3212     }
3213     }
3214     return sb.append(']').toString();
3215     }
3216    
3217     public final boolean containsAll(Collection<?> c) {
3218     if (c != this) {
3219     for (Iterator<?> it = c.iterator(); it.hasNext();) {
3220     Object e = it.next();
3221     if (e == null || !contains(e))
3222     return false;
3223     }
3224     }
3225     return true;
3226     }
3227    
3228 jsr166 1.32 public final boolean removeAll(Collection<?> c) {
3229 dl 1.24 boolean modified = false;
3230 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();) {
3231 dl 1.24 if (c.contains(it.next())) {
3232     it.remove();
3233     modified = true;
3234     }
3235     }
3236     return modified;
3237     }
3238    
3239     public final boolean retainAll(Collection<?> c) {
3240     boolean modified = false;
3241 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();) {
3242 dl 1.24 if (!c.contains(it.next())) {
3243     it.remove();
3244     modified = true;
3245     }
3246     }
3247     return modified;
3248     }
3249    
3250     }
3251    
3252 dl 1.52 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3253     KeySet(ConcurrentHashMapV8<K, V> map) {
3254     super(map);
3255     }
3256 dl 1.14 public final boolean contains(Object o) { return map.containsKey(o); }
3257     public final boolean remove(Object o) { return map.remove(o) != null; }
3258     public final Iterator<K> iterator() {
3259     return new KeyIterator<K,V>(map);
3260 dl 1.1 }
3261 dl 1.24 public final boolean add(K e) {
3262     throw new UnsupportedOperationException();
3263     }
3264     public final boolean addAll(Collection<? extends K> c) {
3265     throw new UnsupportedOperationException();
3266     }
3267     public boolean equals(Object o) {
3268     Set<?> c;
3269     return ((o instanceof Set) &&
3270     ((c = (Set<?>)o) == this ||
3271     (containsAll(c) && c.containsAll(this))));
3272     }
3273 dl 1.1 }
3274    
3275 dl 1.52
3276     static final class Values<K,V> extends CHMView<K,V>
3277 jsr166 1.34 implements Collection<V> {
3278 dl 1.24 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3279     public final boolean contains(Object o) { return map.containsValue(o); }
3280     public final boolean remove(Object o) {
3281     if (o != null) {
3282     Iterator<V> it = new ValueIterator<K,V>(map);
3283     while (it.hasNext()) {
3284     if (o.equals(it.next())) {
3285     it.remove();
3286     return true;
3287     }
3288     }
3289     }
3290     return false;
3291     }
3292 dl 1.14 public final Iterator<V> iterator() {
3293     return new ValueIterator<K,V>(map);
3294 dl 1.1 }
3295 dl 1.24 public final boolean add(V e) {
3296     throw new UnsupportedOperationException();
3297     }
3298     public final boolean addAll(Collection<? extends V> c) {
3299     throw new UnsupportedOperationException();
3300     }
3301 dl 1.52
3302 dl 1.1 }
3303    
3304 dl 1.52 static final class EntrySet<K,V> extends CHMView<K,V>
3305 dl 1.24 implements Set<Map.Entry<K,V>> {
3306     EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3307 dl 1.14 public final boolean contains(Object o) {
3308     Object k, v, r; Map.Entry<?,?> e;
3309     return ((o instanceof Map.Entry) &&
3310     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3311     (r = map.get(k)) != null &&
3312     (v = e.getValue()) != null &&
3313     (v == r || v.equals(r)));
3314 dl 1.1 }
3315 dl 1.14 public final boolean remove(Object o) {
3316     Object k, v; Map.Entry<?,?> e;
3317     return ((o instanceof Map.Entry) &&
3318     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3319     (v = e.getValue()) != null &&
3320     map.remove(k, v));
3321 dl 1.1 }
3322 dl 1.24 public final Iterator<Map.Entry<K,V>> iterator() {
3323     return new EntryIterator<K,V>(map);
3324     }
3325     public final boolean add(Entry<K,V> e) {
3326     throw new UnsupportedOperationException();
3327     }
3328     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3329     throw new UnsupportedOperationException();
3330     }
3331     public boolean equals(Object o) {
3332     Set<?> c;
3333     return ((o instanceof Set) &&
3334     ((c = (Set<?>)o) == this ||
3335     (containsAll(c) && c.containsAll(this))));
3336     }
3337 dl 1.1 }
3338    
3339     /* ---------------- Serialization Support -------------- */
3340    
3341     /**
3342 dl 1.14 * Stripped-down version of helper class used in previous version,
3343     * declared for the sake of serialization compatibility
3344 dl 1.1 */
3345 dl 1.14 static class Segment<K,V> implements Serializable {
3346 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
3347     final float loadFactor;
3348     Segment(float lf) { this.loadFactor = lf; }
3349     }
3350    
3351     /**
3352     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3353     * stream (i.e., serializes it).
3354     * @param s the stream
3355     * @serialData
3356     * the key (Object) and value (Object)
3357     * for each key-value mapping, followed by a null pair.
3358     * The key-value mappings are emitted in no particular order.
3359     */
3360     @SuppressWarnings("unchecked")
3361 dl 1.52 private void writeObject(java.io.ObjectOutputStream s)
3362     throws java.io.IOException {
3363 dl 1.1 if (segments == null) { // for serialization compatibility
3364     segments = (Segment<K,V>[])
3365     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3366     for (int i = 0; i < segments.length; ++i)
3367 dl 1.16 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3368 dl 1.1 }
3369     s.defaultWriteObject();
3370 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3371 dl 1.41 Object v;
3372     while ((v = it.advance()) != null) {
3373 dl 1.14 s.writeObject(it.nextKey);
3374 dl 1.41 s.writeObject(v);
3375 dl 1.14 }
3376 dl 1.1 s.writeObject(null);
3377     s.writeObject(null);
3378     segments = null; // throw away
3379     }
3380    
3381     /**
3382 jsr166 1.9 * Reconstitutes the instance from a stream (that is, deserializes it).
3383 dl 1.1 * @param s the stream
3384     */
3385     @SuppressWarnings("unchecked")
3386 dl 1.52 private void readObject(java.io.ObjectInputStream s)
3387     throws java.io.IOException, ClassNotFoundException {
3388 dl 1.1 s.defaultReadObject();
3389     this.segments = null; // unneeded
3390 jsr166 1.21 // initialize transient final field
3391 dl 1.14 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3392    
3393     // Create all nodes, then place in table once size is known
3394     long size = 0L;
3395     Node p = null;
3396 dl 1.1 for (;;) {
3397 dl 1.14 K k = (K) s.readObject();
3398     V v = (V) s.readObject();
3399     if (k != null && v != null) {
3400 dl 1.38 int h = spread(k.hashCode());
3401     p = new Node(h, k, v, p);
3402 dl 1.14 ++size;
3403     }
3404     else
3405 dl 1.1 break;
3406 dl 1.14 }
3407     if (p != null) {
3408     boolean init = false;
3409 dl 1.24 int n;
3410     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3411     n = MAXIMUM_CAPACITY;
3412     else {
3413     int sz = (int)size;
3414     n = tableSizeFor(sz + (sz >>> 1) + 1);
3415     }
3416     int sc = sizeCtl;
3417 dl 1.38 boolean collide = false;
3418 dl 1.24 if (n > sc &&
3419     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3420 dl 1.14 try {
3421     if (table == null) {
3422     init = true;
3423     Node[] tab = new Node[n];
3424     int mask = n - 1;
3425     while (p != null) {
3426     int j = p.hash & mask;
3427     Node next = p.next;
3428 dl 1.38 Node q = p.next = tabAt(tab, j);
3429 dl 1.14 setTabAt(tab, j, p);
3430 dl 1.38 if (!collide && q != null && q.hash == p.hash)
3431     collide = true;
3432 dl 1.14 p = next;
3433     }
3434     table = tab;
3435     counter.add(size);
3436 dl 1.29 sc = n - (n >>> 2);
3437 dl 1.14 }
3438     } finally {
3439 dl 1.24 sizeCtl = sc;
3440 dl 1.14 }
3441 dl 1.38 if (collide) { // rescan and convert to TreeBins
3442     Node[] tab = table;
3443     for (int i = 0; i < tab.length; ++i) {
3444     int c = 0;
3445     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3446     if (++c > TREE_THRESHOLD &&
3447     (e.key instanceof Comparable)) {
3448     replaceWithTreeBin(tab, i, e.key);
3449     break;
3450     }
3451     }
3452     }
3453     }
3454 dl 1.14 }
3455     if (!init) { // Can only happen if unsafely published.
3456     while (p != null) {
3457 dl 1.27 internalPut(p.key, p.val);
3458 dl 1.14 p = p.next;
3459     }
3460     }
3461 dl 1.1 }
3462     }
3463    
3464    
3465 dl 1.52 // -------------------------------------------------------
3466    
3467     // Sams
3468     /** Interface describing a void action of one argument */
3469     public interface Action<A> { void apply(A a); }
3470     /** Interface describing a void action of two arguments */
3471     public interface BiAction<A,B> { void apply(A a, B b); }
3472     /** Interface describing a function of one argument */
3473     public interface Fun<A,T> { T apply(A a); }
3474     /** Interface describing a function of two arguments */
3475     public interface BiFun<A,B,T> { T apply(A a, B b); }
3476     /** Interface describing a function of no arguments */
3477     public interface Generator<T> { T apply(); }
3478     /** Interface describing a function mapping its argument to a double */
3479     public interface ObjectToDouble<A> { double apply(A a); }
3480     /** Interface describing a function mapping its argument to a long */
3481     public interface ObjectToLong<A> { long apply(A a); }
3482     /** Interface describing a function mapping its argument to an int */
3483     public interface ObjectToInt<A> {int apply(A a); }
3484     /** Interface describing a function mapping two arguments to a double */
3485     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3486     /** Interface describing a function mapping two arguments to a long */
3487     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3488     /** Interface describing a function mapping two arguments to an int */
3489     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3490     /** Interface describing a function mapping a double to a double */
3491     public interface DoubleToDouble { double apply(double a); }
3492     /** Interface describing a function mapping a long to a long */
3493     public interface LongToLong { long apply(long a); }
3494     /** Interface describing a function mapping an int to an int */
3495     public interface IntToInt { int apply(int a); }
3496     /** Interface describing a function mapping two doubles to a double */
3497     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3498     /** Interface describing a function mapping two longs to a long */
3499     public interface LongByLongToLong { long apply(long a, long b); }
3500     /** Interface describing a function mapping two ints to an int */
3501     public interface IntByIntToInt { int apply(int a, int b); }
3502    
3503    
3504     // -------------------------------------------------------
3505    
3506     /**
3507     * Returns an extended {@link Parallel} view of this map using the
3508     * given executor for bulk parallel operations.
3509     *
3510     * @param executor the executor
3511     * @return a parallel view
3512     */
3513     public Parallel parallel(ForkJoinPool executor) {
3514     return new Parallel(executor);
3515     }
3516    
3517     /**
3518     * An extended view of a ConcurrentHashMap supporting bulk
3519 jsr166 1.54 * parallel operations. These operations are designed to be
3520 dl 1.52 * safely, and often sensibly, applied even with maps that are
3521     * being concurrently updated by other threads; for example, when
3522     * computing a snapshot summary of the values in a shared
3523     * registry. There are three kinds of operation, each with four
3524     * forms, accepting functions with Keys, Values, Entries, and
3525     * (Key, Value) arguments and/or return values. Because the
3526     * elements of a ConcurrentHashMap are not ordered in any
3527     * particular way, and may be processed in different orders in
3528     * different parallel executions, the correctness of supplied
3529     * functions should not depend on any ordering, or on any other
3530     * objects or values that may transiently change while computation
3531     * is in progress; and except for forEach actions, should ideally
3532     * be side-effect-free.
3533     *
3534     * <ul>
3535     * <li> forEach: Perform a given action on each element.
3536     * A variant form applies a given transformation on each element
3537     * before performing the action.</li>
3538     *
3539     * <li> search: Return the first available non-null result of
3540     * applying a given function on each element; skipping further
3541     * search when a result is found.</li>
3542     *
3543     * <li> reduce: Accumulate each element. The supplied reduction
3544     * function cannot rely on ordering (more formally, it should be
3545     * both associative and commutative). There are five variants:
3546     *
3547     * <ul>
3548     *
3549     * <li> Plain reductions. (There is not a form of this method for
3550     * (key, value) function arguments since there is no corresponding
3551     * return type.)</li>
3552     *
3553     * <li> Mapped reductions that accumulate the results of a given
3554     * function applied to each element.</li>
3555     *
3556     * <li> Reductions to scalar doubles, longs, and ints, using a
3557     * given basis value.</li>
3558     *
3559     * </li>
3560     * </ul>
3561     * </ul>
3562     *
3563     * <p>The concurrency properties of the bulk operations follow
3564     * from those of ConcurrentHashMap: Any non-null result returned
3565     * from {@code get(key)} and related access methods bears a
3566     * happens-before relation with the associated insertion or
3567     * update. The result of any bulk operation reflects the
3568     * composition of these per-element relations (but is not
3569     * necessarily atomic with respect to the map as a whole unless it
3570     * is somehow known to be quiescent). Conversely, because keys
3571     * and values in the map are never null, null serves as a reliable
3572     * atomic indicator of the current lack of any result. To
3573     * maintain this property, null serves as an implicit basis for
3574     * all non-scalar reduction operations. For the double, long, and
3575     * int versions, the basis should be one that, when combined with
3576     * any other value, returns that other value (more formally, it
3577     * should be the identity element for the reduction). Most common
3578     * reductions have these properties; for example, computing a sum
3579     * with basis 0 or a minimum with basis MAX_VALUE.
3580     *
3581     * <p>Search and transformation functions provided as arguments
3582     * should similarly return null to indicate the lack of any result
3583     * (in which case it is not used). In the case of mapped
3584     * reductions, this also enables transformations to serve as
3585     * filters, returning null (or, in the case of primitive
3586     * specializations, the identity basis) if the element should not
3587     * be combined. You can create compound transformations and
3588     * filterings by composing them yourself under this "null means
3589     * there is nothing there now" rule before using them in search or
3590     * reduce operations.
3591     *
3592     * <p>Methods accepting and/or returning Entry arguments maintain
3593     * key-value associations. They may be useful for example when
3594     * finding the key for the greatest value. Note that "plain" Entry
3595     * arguments can be supplied using {@code new
3596     * AbstractMap.SimpleEntry(k,v)}.
3597     *
3598     * <p> Bulk operations may complete abruptly, throwing an
3599     * exception encountered in the application of a supplied
3600     * function. Bear in mind when handling such exceptions that other
3601     * concurrently executing functions could also have thrown
3602     * exceptions, or would have done so if the first exception had
3603     * not occurred.
3604     *
3605     * <p>Parallel speedups compared to sequential processing are
3606     * common but not guaranteed. Operations involving brief
3607     * functions on small maps may execute more slowly than sequential
3608     * loops if the underlying work to parallelize the computation is
3609     * more expensive than the computation itself. Similarly,
3610     * parallelization may not lead to much actual parallelism if all
3611     * processors are busy performing unrelated tasks.
3612     *
3613     * <p> All arguments to all task methods must be non-null.
3614     *
3615     * <p><em>jsr166e note: During transition, this class
3616     * uses nested functional interfaces with different names but the
3617     * same forms as those expected for JDK8.<em>
3618     */
3619     public class Parallel {
3620     final ForkJoinPool fjp;
3621    
3622     /**
3623     * Returns an extended view of this map using the given
3624     * executor for bulk parallel operations.
3625     *
3626     * @param executor the executor
3627     */
3628     public Parallel(ForkJoinPool executor) {
3629     this.fjp = executor;
3630     }
3631    
3632     /**
3633     * Performs the given action for each (key, value).
3634     *
3635     * @param action the action
3636     */
3637 jsr166 1.53 public void forEach(BiAction<K,V> action) {
3638 dl 1.52 fjp.invoke(ForkJoinTasks.forEach
3639     (ConcurrentHashMapV8.this, action));
3640     }
3641    
3642     /**
3643     * Performs the given action for each non-null transformation
3644     * of each (key, value).
3645     *
3646     * @param transformer a function returning the transformation
3647     * for an element, or null of there is no transformation (in
3648     * which case the action is not applied).
3649     * @param action the action
3650     */
3651 jsr166 1.53 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3652 dl 1.52 Action<U> action) {
3653     fjp.invoke(ForkJoinTasks.forEach
3654     (ConcurrentHashMapV8.this, transformer, action));
3655     }
3656    
3657     /**
3658     * Returns a non-null result from applying the given search
3659     * function on each (key, value), or null if none. Further
3660     * element processing is suppressed upon success. However,
3661     * this method does not return until other in-progress
3662     * parallel invocations of the search function also complete.
3663     *
3664     * @param searchFunction a function returning a non-null
3665     * result on success, else null
3666     * @return a non-null result from applying the given search
3667     * function on each (key, value), or null if none
3668     */
3669     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3670     return fjp.invoke(ForkJoinTasks.search
3671     (ConcurrentHashMapV8.this, searchFunction));
3672 dl 1.1 }
3673    
3674 dl 1.52 /**
3675     * Returns the result of accumulating the given transformation
3676     * of all (key, value) pairs using the given reducer to
3677     * combine values, or null if none.
3678     *
3679     * @param transformer a function returning the transformation
3680     * for an element, or null of there is no transformation (in
3681     * which case it is not combined).
3682     * @param reducer a commutative associative combining function
3683     * @return the result of accumulating the given transformation
3684     * of all (key, value) pairs
3685     */
3686     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3687     BiFun<? super U, ? super U, ? extends U> reducer) {
3688     return fjp.invoke(ForkJoinTasks.reduce
3689     (ConcurrentHashMapV8.this, transformer, reducer));
3690 dl 1.1 }
3691    
3692 dl 1.52 /**
3693     * Returns the result of accumulating the given transformation
3694     * of all (key, value) pairs using the given reducer to
3695     * combine values, and the given basis as an identity value.
3696     *
3697     * @param transformer a function returning the transformation
3698     * for an element
3699     * @param basis the identity (initial default value) for the reduction
3700     * @param reducer a commutative associative combining function
3701     * @return the result of accumulating the given transformation
3702     * of all (key, value) pairs
3703     */
3704     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3705     double basis,
3706     DoubleByDoubleToDouble reducer) {
3707     return fjp.invoke(ForkJoinTasks.reduceToDouble
3708     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3709     }
3710    
3711     /**
3712     * Returns the result of accumulating the given transformation
3713     * of all (key, value) pairs using the given reducer to
3714     * combine values, and the given basis as an identity value.
3715     *
3716     * @param transformer a function returning the transformation
3717     * for an element
3718     * @param basis the identity (initial default value) for the reduction
3719     * @param reducer a commutative associative combining function
3720     * @return the result of accumulating the given transformation
3721     * of all (key, value) pairs using the given reducer to
3722     * combine values, and the given basis as an identity value.
3723     */
3724     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3725     long basis,
3726     LongByLongToLong reducer) {
3727     return fjp.invoke(ForkJoinTasks.reduceToLong
3728     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3729     }
3730    
3731     /**
3732     * Returns the result of accumulating the given transformation
3733     * of all (key, value) pairs using the given reducer to
3734     * combine values, and the given basis as an identity value.
3735     *
3736     * @param transformer a function returning the transformation
3737     * for an element
3738     * @param basis the identity (initial default value) for the reduction
3739     * @param reducer a commutative associative combining function
3740     * @return the result of accumulating the given transformation
3741     * of all (key, value) pairs
3742     */
3743     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3744     int basis,
3745     IntByIntToInt reducer) {
3746     return fjp.invoke(ForkJoinTasks.reduceToInt
3747     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3748     }
3749    
3750     /**
3751 jsr166 1.56 * Performs the given action for each key.
3752 dl 1.52 *
3753     * @param action the action
3754     */
3755 jsr166 1.53 public void forEachKey(Action<K> action) {
3756 dl 1.52 fjp.invoke(ForkJoinTasks.forEachKey
3757     (ConcurrentHashMapV8.this, action));
3758     }
3759    
3760     /**
3761     * Performs the given action for each non-null transformation
3762 jsr166 1.56 * of each key.
3763 dl 1.52 *
3764     * @param transformer a function returning the transformation
3765     * for an element, or null of there is no transformation (in
3766     * which case the action is not applied).
3767     * @param action the action
3768     */
3769 jsr166 1.53 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3770 dl 1.52 Action<U> action) {
3771     fjp.invoke(ForkJoinTasks.forEachKey
3772     (ConcurrentHashMapV8.this, transformer, action));
3773     }
3774    
3775     /**
3776     * Returns a non-null result from applying the given search
3777     * function on each key, or null if none. Further element
3778     * processing is suppressed upon success. However, this method
3779     * does not return until other in-progress parallel
3780     * invocations of the search function also complete.
3781     *
3782     * @param searchFunction a function returning a non-null
3783     * result on success, else null
3784     * @return a non-null result from applying the given search
3785     * function on each key, or null if none
3786     */
3787     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3788     return fjp.invoke(ForkJoinTasks.searchKeys
3789     (ConcurrentHashMapV8.this, searchFunction));
3790     }
3791    
3792     /**
3793     * Returns the result of accumulating all keys using the given
3794     * reducer to combine values, or null if none.
3795     *
3796     * @param reducer a commutative associative combining function
3797     * @return the result of accumulating all keys using the given
3798     * reducer to combine values, or null if none
3799     */
3800     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3801     return fjp.invoke(ForkJoinTasks.reduceKeys
3802     (ConcurrentHashMapV8.this, reducer));
3803     }
3804    
3805     /**
3806     * Returns the result of accumulating the given transformation
3807     * of all keys using the given reducer to combine values, or
3808     * null if none.
3809     *
3810     * @param transformer a function returning the transformation
3811     * for an element, or null of there is no transformation (in
3812     * which case it is not combined).
3813     * @param reducer a commutative associative combining function
3814     * @return the result of accumulating the given transformation
3815     * of all keys
3816     */
3817     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3818     BiFun<? super U, ? super U, ? extends U> reducer) {
3819     return fjp.invoke(ForkJoinTasks.reduceKeys
3820     (ConcurrentHashMapV8.this, transformer, reducer));
3821     }
3822    
3823     /**
3824     * Returns the result of accumulating the given transformation
3825     * of all keys using the given reducer to combine values, and
3826     * the given basis as an identity value.
3827     *
3828     * @param transformer a function returning the transformation
3829     * for an element
3830     * @param basis the identity (initial default value) for the reduction
3831     * @param reducer a commutative associative combining function
3832     * @return the result of accumulating the given transformation
3833     * of all keys
3834     */
3835     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3836     double basis,
3837     DoubleByDoubleToDouble reducer) {
3838     return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3839     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3840     }
3841    
3842     /**
3843     * Returns the result of accumulating the given transformation
3844     * of all keys using the given reducer to combine values, and
3845     * the given basis as an identity value.
3846     *
3847     * @param transformer a function returning the transformation
3848     * for an element
3849     * @param basis the identity (initial default value) for the reduction
3850     * @param reducer a commutative associative combining function
3851     * @return the result of accumulating the given transformation
3852     * of all keys
3853     */
3854     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3855     long basis,
3856     LongByLongToLong reducer) {
3857     return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3858     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3859     }
3860    
3861     /**
3862     * Returns the result of accumulating the given transformation
3863     * of all keys using the given reducer to combine values, and
3864     * the given basis as an identity value.
3865     *
3866     * @param transformer a function returning the transformation
3867     * for an element
3868     * @param basis the identity (initial default value) for the reduction
3869     * @param reducer a commutative associative combining function
3870     * @return the result of accumulating the given transformation
3871     * of all keys
3872     */
3873     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3874     int basis,
3875     IntByIntToInt reducer) {
3876     return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3877     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3878     }
3879    
3880     /**
3881 jsr166 1.56 * Performs the given action for each value.
3882 dl 1.52 *
3883     * @param action the action
3884     */
3885 jsr166 1.53 public void forEachValue(Action<V> action) {
3886 dl 1.52 fjp.invoke(ForkJoinTasks.forEachValue
3887     (ConcurrentHashMapV8.this, action));
3888     }
3889    
3890     /**
3891     * Performs the given action for each non-null transformation
3892 jsr166 1.56 * of each value.
3893 dl 1.52 *
3894     * @param transformer a function returning the transformation
3895     * for an element, or null of there is no transformation (in
3896     * which case the action is not applied).
3897     */
3898 jsr166 1.53 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3899 dl 1.52 Action<U> action) {
3900     fjp.invoke(ForkJoinTasks.forEachValue
3901     (ConcurrentHashMapV8.this, transformer, action));
3902     }
3903    
3904     /**
3905     * Returns a non-null result from applying the given search
3906     * function on each value, or null if none. Further element
3907     * processing is suppressed upon success. However, this method
3908     * does not return until other in-progress parallel
3909     * invocations of the search function also complete.
3910     *
3911     * @param searchFunction a function returning a non-null
3912     * result on success, else null
3913     * @return a non-null result from applying the given search
3914     * function on each value, or null if none
3915     *
3916     */
3917     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3918     return fjp.invoke(ForkJoinTasks.searchValues
3919     (ConcurrentHashMapV8.this, searchFunction));
3920     }
3921    
3922     /**
3923     * Returns the result of accumulating all values using the
3924     * given reducer to combine values, or null if none.
3925     *
3926     * @param reducer a commutative associative combining function
3927     * @return the result of accumulating all values
3928     */
3929     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3930     return fjp.invoke(ForkJoinTasks.reduceValues
3931     (ConcurrentHashMapV8.this, reducer));
3932     }
3933    
3934     /**
3935     * Returns the result of accumulating the given transformation
3936     * of all values using the given reducer to combine values, or
3937     * null if none.
3938     *
3939     * @param transformer a function returning the transformation
3940     * for an element, or null of there is no transformation (in
3941     * which case it is not combined).
3942     * @param reducer a commutative associative combining function
3943     * @return the result of accumulating the given transformation
3944     * of all values
3945     */
3946     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3947     BiFun<? super U, ? super U, ? extends U> reducer) {
3948     return fjp.invoke(ForkJoinTasks.reduceValues
3949     (ConcurrentHashMapV8.this, transformer, reducer));
3950     }
3951    
3952     /**
3953     * Returns the result of accumulating the given transformation
3954     * of all values using the given reducer to combine values,
3955     * and the given basis as an identity value.
3956     *
3957     * @param transformer a function returning the transformation
3958     * for an element
3959     * @param basis the identity (initial default value) for the reduction
3960     * @param reducer a commutative associative combining function
3961     * @return the result of accumulating the given transformation
3962     * of all values
3963     */
3964     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3965     double basis,
3966     DoubleByDoubleToDouble reducer) {
3967     return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3968     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3969     }
3970    
3971     /**
3972     * Returns the result of accumulating the given transformation
3973     * of all values using the given reducer to combine values,
3974     * and the given basis as an identity value.
3975     *
3976     * @param transformer a function returning the transformation
3977     * for an element
3978     * @param basis the identity (initial default value) for the reduction
3979     * @param reducer a commutative associative combining function
3980     * @return the result of accumulating the given transformation
3981     * of all values
3982     */
3983     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3984     long basis,
3985     LongByLongToLong reducer) {
3986     return fjp.invoke(ForkJoinTasks.reduceValuesToLong
3987     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3988     }
3989    
3990     /**
3991     * Returns the result of accumulating the given transformation
3992     * of all values using the given reducer to combine values,
3993     * and the given basis as an identity value.
3994     *
3995     * @param transformer a function returning the transformation
3996     * for an element
3997     * @param basis the identity (initial default value) for the reduction
3998     * @param reducer a commutative associative combining function
3999     * @return the result of accumulating the given transformation
4000     * of all values
4001     */
4002     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4003     int basis,
4004     IntByIntToInt reducer) {
4005     return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4006     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4007     }
4008    
4009     /**
4010 jsr166 1.56 * Performs the given action for each entry.
4011 dl 1.52 *
4012     * @param action the action
4013     */
4014 jsr166 1.53 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4015 dl 1.52 fjp.invoke(ForkJoinTasks.forEachEntry
4016     (ConcurrentHashMapV8.this, action));
4017     }
4018    
4019     /**
4020 jsr166 1.56 * Performs the given action for each non-null transformation
4021     * of each entry.
4022 dl 1.52 *
4023     * @param transformer a function returning the transformation
4024     * for an element, or null of there is no transformation (in
4025     * which case the action is not applied).
4026     * @param action the action
4027     */
4028 jsr166 1.53 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4029 dl 1.52 Action<U> action) {
4030     fjp.invoke(ForkJoinTasks.forEachEntry
4031     (ConcurrentHashMapV8.this, transformer, action));
4032     }
4033    
4034     /**
4035     * Returns a non-null result from applying the given search
4036     * function on each entry, or null if none. Further element
4037     * processing is suppressed upon success. However, this method
4038     * does not return until other in-progress parallel
4039     * invocations of the search function also complete.
4040     *
4041     * @param searchFunction a function returning a non-null
4042     * result on success, else null
4043     * @return a non-null result from applying the given search
4044     * function on each entry, or null if none
4045     */
4046     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4047     return fjp.invoke(ForkJoinTasks.searchEntries
4048     (ConcurrentHashMapV8.this, searchFunction));
4049     }
4050    
4051     /**
4052     * Returns the result of accumulating all entries using the
4053     * given reducer to combine values, or null if none.
4054     *
4055     * @param reducer a commutative associative combining function
4056     * @return the result of accumulating all entries
4057     */
4058     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4059     return fjp.invoke(ForkJoinTasks.reduceEntries
4060     (ConcurrentHashMapV8.this, reducer));
4061     }
4062    
4063     /**
4064     * Returns the result of accumulating the given transformation
4065     * of all entries using the given reducer to combine values,
4066     * or null if none.
4067     *
4068     * @param transformer a function returning the transformation
4069     * for an element, or null of there is no transformation (in
4070     * which case it is not combined).
4071     * @param reducer a commutative associative combining function
4072     * @return the result of accumulating the given transformation
4073     * of all entries
4074     */
4075     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4076     BiFun<? super U, ? super U, ? extends U> reducer) {
4077     return fjp.invoke(ForkJoinTasks.reduceEntries
4078     (ConcurrentHashMapV8.this, transformer, reducer));
4079     }
4080    
4081     /**
4082     * Returns the result of accumulating the given transformation
4083     * of all entries using the given reducer to combine values,
4084     * and the given basis as an identity value.
4085     *
4086     * @param transformer a function returning the transformation
4087     * for an element
4088     * @param basis the identity (initial default value) for the reduction
4089     * @param reducer a commutative associative combining function
4090     * @return the result of accumulating the given transformation
4091     * of all entries
4092     */
4093     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4094     double basis,
4095     DoubleByDoubleToDouble reducer) {
4096     return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4097     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4098     }
4099    
4100     /**
4101     * Returns the result of accumulating the given transformation
4102     * of all entries using the given reducer to combine values,
4103     * and the given basis as an identity value.
4104     *
4105     * @param transformer a function returning the transformation
4106     * for an element
4107     * @param basis the identity (initial default value) for the reduction
4108     * @param reducer a commutative associative combining function
4109     * @return the result of accumulating the given transformation
4110     * of all entries
4111     */
4112     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4113     long basis,
4114     LongByLongToLong reducer) {
4115     return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4116     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4117     }
4118    
4119     /**
4120     * Returns the result of accumulating the given transformation
4121     * of all entries using the given reducer to combine values,
4122     * and the given basis as an identity value.
4123     *
4124     * @param transformer a function returning the transformation
4125     * for an element
4126     * @param basis the identity (initial default value) for the reduction
4127     * @param reducer a commutative associative combining function
4128     * @return the result of accumulating the given transformation
4129     * of all entries
4130     */
4131     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4132     int basis,
4133     IntByIntToInt reducer) {
4134     return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4135     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4136     }
4137     }
4138    
4139     // ---------------------------------------------------------------------
4140    
4141     /**
4142     * Predefined tasks for performing bulk parallel operations on
4143     * ConcurrentHashMaps. These tasks follow the forms and rules used
4144     * in class {@link Parallel}. Each method has the same name, but
4145     * returns a task rather than invoking it. These methods may be
4146     * useful in custom applications such as submitting a task without
4147     * waiting for completion, or combining with other tasks.
4148     */
4149     public static class ForkJoinTasks {
4150     private ForkJoinTasks() {}
4151    
4152     /**
4153     * Returns a task that when invoked, performs the given
4154     * action for each (key, value)
4155     *
4156     * @param map the map
4157     * @param action the action
4158     * @return the task
4159     */
4160 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4161 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4162     BiAction<K,V> action) {
4163     if (action == null) throw new NullPointerException();
4164     return new ForEachMappingTask<K,V>(map, action);
4165     }
4166    
4167     /**
4168     * Returns a task that when invoked, performs the given
4169     * action for each non-null transformation of each (key, value)
4170     *
4171     * @param map the map
4172     * @param transformer a function returning the transformation
4173     * for an element, or null of there is no transformation (in
4174     * which case the action is not applied).
4175     * @param action the action
4176     * @return the task
4177     */
4178 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4179 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4180     BiFun<? super K, ? super V, ? extends U> transformer,
4181     Action<U> action) {
4182     if (transformer == null || action == null)
4183     throw new NullPointerException();
4184     return new ForEachTransformedMappingTask<K,V,U>
4185     (map, transformer, action);
4186     }
4187    
4188     /**
4189     * Returns a task that when invoked, returns a non-null
4190     * result from applying the given search function on each
4191     * (key, value), or null if none. Further element processing
4192     * is suppressed upon success. However, this method does not
4193     * return until other in-progress parallel invocations of the
4194     * search function also complete.
4195     *
4196     * @param map the map
4197     * @param searchFunction a function returning a non-null
4198     * result on success, else null
4199     * @return the task
4200     */
4201     public static <K,V,U> ForkJoinTask<U> search
4202     (ConcurrentHashMapV8<K,V> map,
4203     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4204     if (searchFunction == null) throw new NullPointerException();
4205     return new SearchMappingsTask<K,V,U>
4206     (map, searchFunction,
4207     new AtomicReference<U>());
4208     }
4209    
4210     /**
4211     * Returns a task that when invoked, returns the result of
4212     * accumulating the given transformation of all (key, value) pairs
4213     * using the given reducer to combine values, or null if none.
4214     *
4215     * @param map the map
4216     * @param transformer a function returning the transformation
4217     * for an element, or null of there is no transformation (in
4218     * which case it is not combined).
4219     * @param reducer a commutative associative combining function
4220     * @return the task
4221     */
4222     public static <K,V,U> ForkJoinTask<U> reduce
4223     (ConcurrentHashMapV8<K,V> map,
4224     BiFun<? super K, ? super V, ? extends U> transformer,
4225     BiFun<? super U, ? super U, ? extends U> reducer) {
4226     if (transformer == null || reducer == null)
4227     throw new NullPointerException();
4228     return new MapReduceMappingsTask<K,V,U>
4229     (map, transformer, reducer);
4230     }
4231    
4232     /**
4233     * Returns a task that when invoked, returns the result of
4234     * accumulating the given transformation of all (key, value) pairs
4235     * using the given reducer to combine values, and the given
4236     * basis as an identity value.
4237     *
4238     * @param map the map
4239     * @param transformer a function returning the transformation
4240     * for an element
4241     * @param basis the identity (initial default value) for the reduction
4242     * @param reducer a commutative associative combining function
4243     * @return the task
4244     */
4245     public static <K,V> ForkJoinTask<Double> reduceToDouble
4246     (ConcurrentHashMapV8<K,V> map,
4247     ObjectByObjectToDouble<? super K, ? super V> transformer,
4248     double basis,
4249     DoubleByDoubleToDouble reducer) {
4250     if (transformer == null || reducer == null)
4251     throw new NullPointerException();
4252     return new MapReduceMappingsToDoubleTask<K,V>
4253     (map, transformer, basis, reducer);
4254     }
4255    
4256     /**
4257     * Returns a task that when invoked, returns the result of
4258     * accumulating the given transformation of all (key, value) pairs
4259     * using the given reducer to combine values, and the given
4260     * basis as an identity value.
4261     *
4262     * @param map the map
4263     * @param transformer a function returning the transformation
4264     * for an element
4265     * @param basis the identity (initial default value) for the reduction
4266     * @param reducer a commutative associative combining function
4267     * @return the task
4268     */
4269     public static <K,V> ForkJoinTask<Long> reduceToLong
4270     (ConcurrentHashMapV8<K,V> map,
4271     ObjectByObjectToLong<? super K, ? super V> transformer,
4272     long basis,
4273     LongByLongToLong reducer) {
4274     if (transformer == null || reducer == null)
4275     throw new NullPointerException();
4276     return new MapReduceMappingsToLongTask<K,V>
4277     (map, transformer, basis, reducer);
4278     }
4279    
4280     /**
4281     * Returns a task that when invoked, returns the result of
4282     * accumulating the given transformation of all (key, value) pairs
4283     * using the given reducer to combine values, and the given
4284     * basis as an identity value.
4285     *
4286     * @param transformer a function returning the transformation
4287     * for an element
4288     * @param basis the identity (initial default value) for the reduction
4289     * @param reducer a commutative associative combining function
4290     * @return the task
4291     */
4292     public static <K,V> ForkJoinTask<Integer> reduceToInt
4293     (ConcurrentHashMapV8<K,V> map,
4294     ObjectByObjectToInt<? super K, ? super V> transformer,
4295     int basis,
4296     IntByIntToInt reducer) {
4297     if (transformer == null || reducer == null)
4298     throw new NullPointerException();
4299     return new MapReduceMappingsToIntTask<K,V>
4300     (map, transformer, basis, reducer);
4301     }
4302    
4303     /**
4304     * Returns a task that when invoked, performs the given action
4305 jsr166 1.56 * for each key.
4306 dl 1.52 *
4307     * @param map the map
4308     * @param action the action
4309     * @return the task
4310     */
4311 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
4312 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4313     Action<K> action) {
4314     if (action == null) throw new NullPointerException();
4315     return new ForEachKeyTask<K,V>(map, action);
4316     }
4317    
4318     /**
4319     * Returns a task that when invoked, performs the given action
4320 jsr166 1.56 * for each non-null transformation of each key.
4321 dl 1.52 *
4322     * @param map the map
4323     * @param transformer a function returning the transformation
4324     * for an element, or null of there is no transformation (in
4325     * which case the action is not applied).
4326     * @param action the action
4327     * @return the task
4328     */
4329 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
4330 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4331     Fun<? super K, ? extends U> transformer,
4332     Action<U> action) {
4333     if (transformer == null || action == null)
4334     throw new NullPointerException();
4335     return new ForEachTransformedKeyTask<K,V,U>
4336     (map, transformer, action);
4337     }
4338    
4339     /**
4340     * Returns a task that when invoked, returns a non-null result
4341     * from applying the given search function on each key, or
4342     * null if none. Further element processing is suppressed
4343     * upon success. However, this method does not return until
4344     * other in-progress parallel invocations of the search
4345     * function also complete.
4346     *
4347     * @param map the map
4348     * @param searchFunction a function returning a non-null
4349     * result on success, else null
4350     * @return the task
4351     */
4352     public static <K,V,U> ForkJoinTask<U> searchKeys
4353     (ConcurrentHashMapV8<K,V> map,
4354     Fun<? super K, ? extends U> searchFunction) {
4355     if (searchFunction == null) throw new NullPointerException();
4356     return new SearchKeysTask<K,V,U>
4357     (map, searchFunction,
4358     new AtomicReference<U>());
4359     }
4360    
4361     /**
4362     * Returns a task that when invoked, returns the result of
4363     * accumulating all keys using the given reducer to combine
4364     * values, or null if none.
4365     *
4366     * @param map the map
4367     * @param reducer a commutative associative combining function
4368     * @return the task
4369     */
4370     public static <K,V> ForkJoinTask<K> reduceKeys
4371     (ConcurrentHashMapV8<K,V> map,
4372     BiFun<? super K, ? super K, ? extends K> reducer) {
4373     if (reducer == null) throw new NullPointerException();
4374     return new ReduceKeysTask<K,V>
4375     (map, reducer);
4376     }
4377     /**
4378     * Returns a task that when invoked, returns the result of
4379     * accumulating the given transformation of all keys using the given
4380     * reducer to combine values, or null if none.
4381     *
4382     * @param map the map
4383     * @param transformer a function returning the transformation
4384     * for an element, or null of there is no transformation (in
4385     * which case it is not combined).
4386     * @param reducer a commutative associative combining function
4387     * @return the task
4388     */
4389     public static <K,V,U> ForkJoinTask<U> reduceKeys
4390     (ConcurrentHashMapV8<K,V> map,
4391     Fun<? super K, ? extends U> transformer,
4392     BiFun<? super U, ? super U, ? extends U> reducer) {
4393     if (transformer == null || reducer == null)
4394     throw new NullPointerException();
4395     return new MapReduceKeysTask<K,V,U>
4396     (map, transformer, reducer);
4397     }
4398    
4399     /**
4400     * Returns a task that when invoked, returns the result of
4401     * accumulating the given transformation of all keys using the given
4402     * reducer to combine values, and the given basis as an
4403     * identity value.
4404     *
4405     * @param map the map
4406     * @param transformer a function returning the transformation
4407     * for an element
4408     * @param basis the identity (initial default value) for the reduction
4409     * @param reducer a commutative associative combining function
4410     * @return the task
4411     */
4412     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4413     (ConcurrentHashMapV8<K,V> map,
4414     ObjectToDouble<? super K> transformer,
4415     double basis,
4416     DoubleByDoubleToDouble reducer) {
4417     if (transformer == null || reducer == null)
4418     throw new NullPointerException();
4419     return new MapReduceKeysToDoubleTask<K,V>
4420     (map, transformer, basis, reducer);
4421     }
4422    
4423     /**
4424     * Returns a task that when invoked, returns the result of
4425     * accumulating the given transformation of all keys using the given
4426     * reducer to combine values, and the given basis as an
4427     * identity value.
4428     *
4429     * @param map the map
4430     * @param transformer a function returning the transformation
4431     * for an element
4432     * @param basis the identity (initial default value) for the reduction
4433     * @param reducer a commutative associative combining function
4434     * @return the task
4435     */
4436     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4437     (ConcurrentHashMapV8<K,V> map,
4438     ObjectToLong<? super K> transformer,
4439     long basis,
4440     LongByLongToLong reducer) {
4441     if (transformer == null || reducer == null)
4442     throw new NullPointerException();
4443     return new MapReduceKeysToLongTask<K,V>
4444     (map, transformer, basis, reducer);
4445     }
4446    
4447     /**
4448     * Returns a task that when invoked, returns the result of
4449     * accumulating the given transformation of all keys using the given
4450     * reducer to combine values, and the given basis as an
4451     * identity value.
4452     *
4453     * @param map the map
4454     * @param transformer a function returning the transformation
4455     * for an element
4456     * @param basis the identity (initial default value) for the reduction
4457     * @param reducer a commutative associative combining function
4458     * @return the task
4459     */
4460     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4461     (ConcurrentHashMapV8<K,V> map,
4462     ObjectToInt<? super K> transformer,
4463     int basis,
4464     IntByIntToInt reducer) {
4465     if (transformer == null || reducer == null)
4466     throw new NullPointerException();
4467     return new MapReduceKeysToIntTask<K,V>
4468     (map, transformer, basis, reducer);
4469     }
4470    
4471     /**
4472     * Returns a task that when invoked, performs the given action
4473 jsr166 1.56 * for each value.
4474 dl 1.52 *
4475     * @param map the map
4476     * @param action the action
4477     */
4478 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
4479 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4480     Action<V> action) {
4481     if (action == null) throw new NullPointerException();
4482     return new ForEachValueTask<K,V>(map, action);
4483     }
4484    
4485     /**
4486     * Returns a task that when invoked, performs the given action
4487 jsr166 1.56 * for each non-null transformation of each value.
4488 dl 1.52 *
4489     * @param map the map
4490     * @param transformer a function returning the transformation
4491     * for an element, or null of there is no transformation (in
4492     * which case the action is not applied).
4493     * @param action the action
4494     */
4495 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
4496 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4497     Fun<? super V, ? extends U> transformer,
4498     Action<U> action) {
4499     if (transformer == null || action == null)
4500     throw new NullPointerException();
4501     return new ForEachTransformedValueTask<K,V,U>
4502     (map, transformer, action);
4503     }
4504    
4505     /**
4506     * Returns a task that when invoked, returns a non-null result
4507     * from applying the given search function on each value, or
4508     * null if none. Further element processing is suppressed
4509     * upon success. However, this method does not return until
4510     * other in-progress parallel invocations of the search
4511     * function also complete.
4512     *
4513     * @param map the map
4514     * @param searchFunction a function returning a non-null
4515     * result on success, else null
4516     * @return the task
4517     *
4518     */
4519     public static <K,V,U> ForkJoinTask<U> searchValues
4520     (ConcurrentHashMapV8<K,V> map,
4521     Fun<? super V, ? extends U> searchFunction) {
4522     if (searchFunction == null) throw new NullPointerException();
4523     return new SearchValuesTask<K,V,U>
4524     (map, searchFunction,
4525     new AtomicReference<U>());
4526     }
4527    
4528     /**
4529     * Returns a task that when invoked, returns the result of
4530     * accumulating all values using the given reducer to combine
4531     * values, or null if none.
4532     *
4533     * @param map the map
4534     * @param reducer a commutative associative combining function
4535     * @return the task
4536     */
4537     public static <K,V> ForkJoinTask<V> reduceValues
4538     (ConcurrentHashMapV8<K,V> map,
4539     BiFun<? super V, ? super V, ? extends V> reducer) {
4540     if (reducer == null) throw new NullPointerException();
4541     return new ReduceValuesTask<K,V>
4542     (map, reducer);
4543     }
4544    
4545     /**
4546     * Returns a task that when invoked, returns the result of
4547     * accumulating the given transformation of all values using the
4548     * given reducer to combine values, or null if none.
4549     *
4550     * @param map the map
4551     * @param transformer a function returning the transformation
4552     * for an element, or null of there is no transformation (in
4553     * which case it is not combined).
4554     * @param reducer a commutative associative combining function
4555     * @return the task
4556     */
4557     public static <K,V,U> ForkJoinTask<U> reduceValues
4558     (ConcurrentHashMapV8<K,V> map,
4559     Fun<? super V, ? extends U> transformer,
4560     BiFun<? super U, ? super U, ? extends U> reducer) {
4561     if (transformer == null || reducer == null)
4562     throw new NullPointerException();
4563     return new MapReduceValuesTask<K,V,U>
4564     (map, transformer, reducer);
4565     }
4566    
4567     /**
4568     * Returns a task that when invoked, returns the result of
4569     * accumulating the given transformation of all values using the
4570     * given reducer to combine values, and the given basis as an
4571     * identity value.
4572     *
4573     * @param map the map
4574     * @param transformer a function returning the transformation
4575     * for an element
4576     * @param basis the identity (initial default value) for the reduction
4577     * @param reducer a commutative associative combining function
4578     * @return the task
4579     */
4580     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4581     (ConcurrentHashMapV8<K,V> map,
4582     ObjectToDouble<? super V> transformer,
4583     double basis,
4584     DoubleByDoubleToDouble reducer) {
4585     if (transformer == null || reducer == null)
4586     throw new NullPointerException();
4587     return new MapReduceValuesToDoubleTask<K,V>
4588     (map, transformer, basis, reducer);
4589     }
4590    
4591     /**
4592     * Returns a task that when invoked, returns the result of
4593     * accumulating the given transformation of all values using the
4594     * given reducer to combine values, and the given basis as an
4595     * identity value.
4596     *
4597     * @param map the map
4598     * @param transformer a function returning the transformation
4599     * for an element
4600     * @param basis the identity (initial default value) for the reduction
4601     * @param reducer a commutative associative combining function
4602     * @return the task
4603     */
4604     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4605     (ConcurrentHashMapV8<K,V> map,
4606     ObjectToLong<? super V> transformer,
4607     long basis,
4608     LongByLongToLong reducer) {
4609     if (transformer == null || reducer == null)
4610     throw new NullPointerException();
4611     return new MapReduceValuesToLongTask<K,V>
4612     (map, transformer, basis, reducer);
4613     }
4614    
4615     /**
4616     * Returns a task that when invoked, returns the result of
4617     * accumulating the given transformation of all values using the
4618     * given reducer to combine values, and the given basis as an
4619     * identity value.
4620     *
4621     * @param map the map
4622     * @param transformer a function returning the transformation
4623     * for an element
4624     * @param basis the identity (initial default value) for the reduction
4625     * @param reducer a commutative associative combining function
4626     * @return the task
4627     */
4628     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4629     (ConcurrentHashMapV8<K,V> map,
4630     ObjectToInt<? super V> transformer,
4631     int basis,
4632     IntByIntToInt reducer) {
4633     if (transformer == null || reducer == null)
4634     throw new NullPointerException();
4635     return new MapReduceValuesToIntTask<K,V>
4636     (map, transformer, basis, reducer);
4637     }
4638    
4639     /**
4640     * Returns a task that when invoked, perform the given action
4641 jsr166 1.56 * for each entry.
4642 dl 1.52 *
4643     * @param map the map
4644     * @param action the action
4645     */
4646 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
4647 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4648     Action<Map.Entry<K,V>> action) {
4649     if (action == null) throw new NullPointerException();
4650     return new ForEachEntryTask<K,V>(map, action);
4651     }
4652    
4653     /**
4654     * Returns a task that when invoked, perform the given action
4655 jsr166 1.56 * for each non-null transformation of each entry.
4656 dl 1.52 *
4657     * @param map the map
4658     * @param transformer a function returning the transformation
4659     * for an element, or null of there is no transformation (in
4660     * which case the action is not applied).
4661     * @param action the action
4662     */
4663 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4664 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4665     Fun<Map.Entry<K,V>, ? extends U> transformer,
4666     Action<U> action) {
4667     if (transformer == null || action == null)
4668     throw new NullPointerException();
4669     return new ForEachTransformedEntryTask<K,V,U>
4670     (map, transformer, action);
4671     }
4672    
4673     /**
4674     * Returns a task that when invoked, returns a non-null result
4675     * from applying the given search function on each entry, or
4676     * null if none. Further element processing is suppressed
4677     * upon success. However, this method does not return until
4678     * other in-progress parallel invocations of the search
4679     * function also complete.
4680     *
4681     * @param map the map
4682     * @param searchFunction a function returning a non-null
4683     * result on success, else null
4684     * @return the task
4685     *
4686     */
4687     public static <K,V,U> ForkJoinTask<U> searchEntries
4688     (ConcurrentHashMapV8<K,V> map,
4689     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4690     if (searchFunction == null) throw new NullPointerException();
4691     return new SearchEntriesTask<K,V,U>
4692     (map, searchFunction,
4693     new AtomicReference<U>());
4694     }
4695    
4696     /**
4697     * Returns a task that when invoked, returns the result of
4698     * accumulating all entries using the given reducer to combine
4699     * values, or null if none.
4700     *
4701     * @param map the map
4702     * @param reducer a commutative associative combining function
4703     * @return the task
4704     */
4705     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4706     (ConcurrentHashMapV8<K,V> map,
4707     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4708     if (reducer == null) throw new NullPointerException();
4709     return new ReduceEntriesTask<K,V>
4710     (map, reducer);
4711     }
4712    
4713     /**
4714     * Returns a task that when invoked, returns the result of
4715     * accumulating the given transformation of all entries using the
4716     * given reducer to combine values, or null if none.
4717     *
4718     * @param map the map
4719     * @param transformer a function returning the transformation
4720     * for an element, or null of there is no transformation (in
4721     * which case it is not combined).
4722     * @param reducer a commutative associative combining function
4723     * @return the task
4724     */
4725     public static <K,V,U> ForkJoinTask<U> reduceEntries
4726     (ConcurrentHashMapV8<K,V> map,
4727     Fun<Map.Entry<K,V>, ? extends U> transformer,
4728     BiFun<? super U, ? super U, ? extends U> reducer) {
4729     if (transformer == null || reducer == null)
4730     throw new NullPointerException();
4731     return new MapReduceEntriesTask<K,V,U>
4732     (map, transformer, reducer);
4733     }
4734    
4735     /**
4736     * Returns a task that when invoked, returns the result of
4737     * accumulating the given transformation of all entries using the
4738     * given reducer to combine values, and the given basis as an
4739     * identity value.
4740     *
4741     * @param map the map
4742     * @param transformer a function returning the transformation
4743     * for an element
4744     * @param basis the identity (initial default value) for the reduction
4745     * @param reducer a commutative associative combining function
4746     * @return the task
4747     */
4748     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4749     (ConcurrentHashMapV8<K,V> map,
4750     ObjectToDouble<Map.Entry<K,V>> transformer,
4751     double basis,
4752     DoubleByDoubleToDouble reducer) {
4753     if (transformer == null || reducer == null)
4754     throw new NullPointerException();
4755     return new MapReduceEntriesToDoubleTask<K,V>
4756     (map, transformer, basis, reducer);
4757     }
4758    
4759     /**
4760     * Returns a task that when invoked, returns the result of
4761     * accumulating the given transformation of all entries using the
4762     * given reducer to combine values, and the given basis as an
4763     * identity value.
4764     *
4765     * @param map the map
4766     * @param transformer a function returning the transformation
4767     * for an element
4768     * @param basis the identity (initial default value) for the reduction
4769     * @param reducer a commutative associative combining function
4770     * @return the task
4771     */
4772     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4773     (ConcurrentHashMapV8<K,V> map,
4774     ObjectToLong<Map.Entry<K,V>> transformer,
4775     long basis,
4776     LongByLongToLong reducer) {
4777     if (transformer == null || reducer == null)
4778     throw new NullPointerException();
4779     return new MapReduceEntriesToLongTask<K,V>
4780     (map, transformer, basis, reducer);
4781     }
4782    
4783     /**
4784     * Returns a task that when invoked, returns the result of
4785     * accumulating the given transformation of all entries using the
4786     * given reducer to combine values, and the given basis as an
4787     * identity value.
4788     *
4789     * @param map the map
4790     * @param transformer a function returning the transformation
4791     * for an element
4792     * @param basis the identity (initial default value) for the reduction
4793     * @param reducer a commutative associative combining function
4794     * @return the task
4795     */
4796     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4797     (ConcurrentHashMapV8<K,V> map,
4798     ObjectToInt<Map.Entry<K,V>> transformer,
4799     int basis,
4800     IntByIntToInt reducer) {
4801     if (transformer == null || reducer == null)
4802     throw new NullPointerException();
4803     return new MapReduceEntriesToIntTask<K,V>
4804     (map, transformer, basis, reducer);
4805     }
4806     }
4807    
4808     // -------------------------------------------------------
4809    
4810     /**
4811     * Base for FJ tasks for bulk operations. This adds a variant of
4812 jsr166 1.55 * CountedCompleters and some split and merge bookkeeping to
4813 dl 1.52 * iterator functionality. The forEach and reduce methods are
4814     * similar to those illustrated in CountedCompleter documentation,
4815     * except that bottom-up reduction completions perform them within
4816     * their compute methods. The search methods are like forEach
4817     * except they continually poll for success and exit early. Also,
4818     * exceptions are handled in a simpler manner, by just trying to
4819     * complete root task exceptionally.
4820     */
4821     static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4822     final BulkTask<K,V,?> parent; // completion target
4823     int batch; // split control
4824     int pending; // completion control
4825    
4826     /** Constructor for root tasks */
4827     BulkTask(ConcurrentHashMapV8<K,V> map) {
4828     super(map);
4829     this.parent = null;
4830     this.batch = -1; // force call to batch() on execution
4831     }
4832    
4833     /** Constructor for subtasks */
4834     BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4835     super(parent, split);
4836     this.parent = parent;
4837     this.batch = batch;
4838     }
4839    
4840     // FJ methods
4841    
4842     /**
4843 jsr166 1.56 * Propagates completion. Note that all reduce actions
4844 dl 1.52 * bypass this method to combine while completing.
4845     */
4846     final void tryComplete() {
4847     BulkTask<K,V,?> a = this, s = a;
4848     for (int c;;) {
4849     if ((c = a.pending) == 0) {
4850     if ((a = (s = a).parent) == null) {
4851     s.quietlyComplete();
4852     break;
4853     }
4854     }
4855     else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4856     break;
4857     }
4858     }
4859    
4860     /**
4861 jsr166 1.56 * Forces root task to throw exception unless already complete.
4862 dl 1.52 */
4863     final void tryAbortComputation(Throwable ex) {
4864     for (BulkTask<K,V,?> a = this;;) {
4865     BulkTask<K,V,?> p = a.parent;
4866     if (p == null) {
4867     a.completeExceptionally(ex);
4868     break;
4869     }
4870     a = p;
4871     }
4872     }
4873    
4874     public final boolean exec() {
4875     try {
4876     compute();
4877     }
4878 jsr166 1.53 catch (Throwable ex) {
4879 dl 1.52 tryAbortComputation(ex);
4880     }
4881     return false;
4882     }
4883    
4884     public abstract void compute();
4885    
4886     // utilities
4887    
4888     /** CompareAndSet pending count */
4889     final boolean casPending(int cmp, int val) {
4890     return U.compareAndSwapInt(this, PENDING, cmp, val);
4891     }
4892    
4893     /**
4894 jsr166 1.56 * Returns approx exp2 of the number of times (minus one) to
4895 dl 1.52 * split task by two before executing leaf action. This value
4896     * is faster to compute and more convenient to use as a guide
4897     * to splitting than is the depth, since it is used while
4898     * dividing by two anyway.
4899     */
4900     final int batch() {
4901     int b = batch;
4902     if (b < 0) {
4903     long n = map.counter.sum();
4904     int sp = getPool().getParallelism() << 3; // slack of 8
4905 jsr166 1.53 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4906 dl 1.52 }
4907     return b;
4908     }
4909    
4910     /**
4911     * Error message for hoisted null checks of functions
4912     */
4913     static final String NullFunctionMessage =
4914     "Unexpected null function";
4915    
4916     /**
4917 jsr166 1.56 * Returns exportable snapshot entry.
4918 dl 1.52 */
4919     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4920     return new AbstractMap.SimpleEntry(k, v);
4921     }
4922    
4923     // Unsafe mechanics
4924     private static final sun.misc.Unsafe U;
4925     private static final long PENDING;
4926     static {
4927     try {
4928     U = sun.misc.Unsafe.getUnsafe();
4929     PENDING = U.objectFieldOffset
4930     (BulkTask.class.getDeclaredField("pending"));
4931     } catch (Exception e) {
4932     throw new Error(e);
4933     }
4934     }
4935     }
4936    
4937     /*
4938     * Task classes. Coded in a regular but ugly format/style to
4939     * simplify checks that each variant differs in the right way from
4940     * others.
4941     */
4942    
4943     static final class ForEachKeyTask<K,V>
4944     extends BulkTask<K,V,Void> {
4945     final Action<K> action;
4946     ForEachKeyTask
4947     (ConcurrentHashMapV8<K,V> m,
4948     Action<K> action) {
4949     super(m);
4950     this.action = action;
4951     }
4952     ForEachKeyTask
4953     (BulkTask<K,V,?> p, int b, boolean split,
4954     Action<K> action) {
4955     super(p, b, split);
4956     this.action = action;
4957     }
4958     public final void compute() {
4959     final Action<K> action = this.action;
4960     if (action == null)
4961     throw new Error(NullFunctionMessage);
4962     int b = batch(), c;
4963     while (b > 1 && baseIndex != baseLimit) {
4964     do {} while (!casPending(c = pending, c+1));
4965     new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4966     }
4967     while (advance() != null)
4968     action.apply((K)nextKey);
4969     tryComplete();
4970     }
4971     }
4972    
4973     static final class ForEachValueTask<K,V>
4974     extends BulkTask<K,V,Void> {
4975     final Action<V> action;
4976     ForEachValueTask
4977     (ConcurrentHashMapV8<K,V> m,
4978     Action<V> action) {
4979     super(m);
4980     this.action = action;
4981     }
4982     ForEachValueTask
4983     (BulkTask<K,V,?> p, int b, boolean split,
4984     Action<V> action) {
4985     super(p, b, split);
4986     this.action = action;
4987     }
4988     public final void compute() {
4989     final Action<V> action = this.action;
4990     if (action == null)
4991     throw new Error(NullFunctionMessage);
4992     int b = batch(), c;
4993     while (b > 1 && baseIndex != baseLimit) {
4994     do {} while (!casPending(c = pending, c+1));
4995     new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
4996     }
4997     Object v;
4998     while ((v = advance()) != null)
4999     action.apply((V)v);
5000     tryComplete();
5001     }
5002     }
5003    
5004     static final class ForEachEntryTask<K,V>
5005     extends BulkTask<K,V,Void> {
5006     final Action<Entry<K,V>> action;
5007     ForEachEntryTask
5008     (ConcurrentHashMapV8<K,V> m,
5009     Action<Entry<K,V>> action) {
5010     super(m);
5011     this.action = action;
5012     }
5013     ForEachEntryTask
5014     (BulkTask<K,V,?> p, int b, boolean split,
5015     Action<Entry<K,V>> action) {
5016     super(p, b, split);
5017     this.action = action;
5018     }
5019     public final void compute() {
5020     final Action<Entry<K,V>> action = this.action;
5021     if (action == null)
5022     throw new Error(NullFunctionMessage);
5023     int b = batch(), c;
5024     while (b > 1 && baseIndex != baseLimit) {
5025     do {} while (!casPending(c = pending, c+1));
5026     new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
5027     }
5028     Object v;
5029     while ((v = advance()) != null)
5030     action.apply(entryFor((K)nextKey, (V)v));
5031     tryComplete();
5032     }
5033     }
5034    
5035     static final class ForEachMappingTask<K,V>
5036     extends BulkTask<K,V,Void> {
5037     final BiAction<K,V> action;
5038     ForEachMappingTask
5039     (ConcurrentHashMapV8<K,V> m,
5040     BiAction<K,V> action) {
5041     super(m);
5042     this.action = action;
5043     }
5044     ForEachMappingTask
5045     (BulkTask<K,V,?> p, int b, boolean split,
5046     BiAction<K,V> action) {
5047     super(p, b, split);
5048     this.action = action;
5049     }
5050    
5051     public final void compute() {
5052     final BiAction<K,V> action = this.action;
5053     if (action == null)
5054     throw new Error(NullFunctionMessage);
5055     int b = batch(), c;
5056     while (b > 1 && baseIndex != baseLimit) {
5057     do {} while (!casPending(c = pending, c+1));
5058     new ForEachMappingTask<K,V>(this, b >>>= 1, true,
5059     action).fork();
5060     }
5061     Object v;
5062     while ((v = advance()) != null)
5063     action.apply((K)nextKey, (V)v);
5064     tryComplete();
5065     }
5066     }
5067    
5068     static final class ForEachTransformedKeyTask<K,V,U>
5069     extends BulkTask<K,V,Void> {
5070     final Fun<? super K, ? extends U> transformer;
5071     final Action<U> action;
5072     ForEachTransformedKeyTask
5073     (ConcurrentHashMapV8<K,V> m,
5074     Fun<? super K, ? extends U> transformer,
5075     Action<U> action) {
5076     super(m);
5077     this.transformer = transformer;
5078     this.action = action;
5079    
5080     }
5081     ForEachTransformedKeyTask
5082     (BulkTask<K,V,?> p, int b, boolean split,
5083     Fun<? super K, ? extends U> transformer,
5084     Action<U> action) {
5085     super(p, b, split);
5086     this.transformer = transformer;
5087     this.action = action;
5088     }
5089     public final void compute() {
5090     final Fun<? super K, ? extends U> transformer =
5091     this.transformer;
5092     final Action<U> action = this.action;
5093     if (transformer == null || action == null)
5094     throw new Error(NullFunctionMessage);
5095     int b = batch(), c;
5096     while (b > 1 && baseIndex != baseLimit) {
5097     do {} while (!casPending(c = pending, c+1));
5098     new ForEachTransformedKeyTask<K,V,U>
5099     (this, b >>>= 1, true, transformer, action).fork();
5100     }
5101     U u;
5102     while (advance() != null) {
5103     if ((u = transformer.apply((K)nextKey)) != null)
5104     action.apply(u);
5105     }
5106     tryComplete();
5107     }
5108     }
5109    
5110     static final class ForEachTransformedValueTask<K,V,U>
5111     extends BulkTask<K,V,Void> {
5112     final Fun<? super V, ? extends U> transformer;
5113     final Action<U> action;
5114     ForEachTransformedValueTask
5115     (ConcurrentHashMapV8<K,V> m,
5116     Fun<? super V, ? extends U> transformer,
5117     Action<U> action) {
5118     super(m);
5119     this.transformer = transformer;
5120     this.action = action;
5121    
5122     }
5123     ForEachTransformedValueTask
5124     (BulkTask<K,V,?> p, int b, boolean split,
5125     Fun<? super V, ? extends U> transformer,
5126     Action<U> action) {
5127     super(p, b, split);
5128     this.transformer = transformer;
5129     this.action = action;
5130     }
5131     public final void compute() {
5132     final Fun<? super V, ? extends U> transformer =
5133     this.transformer;
5134     final Action<U> action = this.action;
5135     if (transformer == null || action == null)
5136     throw new Error(NullFunctionMessage);
5137     int b = batch(), c;
5138     while (b > 1 && baseIndex != baseLimit) {
5139     do {} while (!casPending(c = pending, c+1));
5140     new ForEachTransformedValueTask<K,V,U>
5141     (this, b >>>= 1, true, transformer, action).fork();
5142     }
5143     Object v; U u;
5144     while ((v = advance()) != null) {
5145     if ((u = transformer.apply((V)v)) != null)
5146     action.apply(u);
5147     }
5148     tryComplete();
5149     }
5150     }
5151    
5152     static final class ForEachTransformedEntryTask<K,V,U>
5153     extends BulkTask<K,V,Void> {
5154     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5155     final Action<U> action;
5156     ForEachTransformedEntryTask
5157     (ConcurrentHashMapV8<K,V> m,
5158     Fun<Map.Entry<K,V>, ? extends U> transformer,
5159     Action<U> action) {
5160     super(m);
5161     this.transformer = transformer;
5162     this.action = action;
5163    
5164     }
5165     ForEachTransformedEntryTask
5166     (BulkTask<K,V,?> p, int b, boolean split,
5167     Fun<Map.Entry<K,V>, ? extends U> transformer,
5168     Action<U> action) {
5169     super(p, b, split);
5170     this.transformer = transformer;
5171     this.action = action;
5172     }
5173     public final void compute() {
5174     final Fun<Map.Entry<K,V>, ? extends U> transformer =
5175     this.transformer;
5176     final Action<U> action = this.action;
5177     if (transformer == null || action == null)
5178     throw new Error(NullFunctionMessage);
5179     int b = batch(), c;
5180     while (b > 1 && baseIndex != baseLimit) {
5181     do {} while (!casPending(c = pending, c+1));
5182     new ForEachTransformedEntryTask<K,V,U>
5183     (this, b >>>= 1, true, transformer, action).fork();
5184     }
5185     Object v; U u;
5186     while ((v = advance()) != null) {
5187     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5188     action.apply(u);
5189     }
5190     tryComplete();
5191     }
5192     }
5193    
5194     static final class ForEachTransformedMappingTask<K,V,U>
5195     extends BulkTask<K,V,Void> {
5196     final BiFun<? super K, ? super V, ? extends U> transformer;
5197     final Action<U> action;
5198     ForEachTransformedMappingTask
5199     (ConcurrentHashMapV8<K,V> m,
5200     BiFun<? super K, ? super V, ? extends U> transformer,
5201     Action<U> action) {
5202     super(m);
5203     this.transformer = transformer;
5204     this.action = action;
5205    
5206     }
5207     ForEachTransformedMappingTask
5208     (BulkTask<K,V,?> p, int b, boolean split,
5209     BiFun<? super K, ? super V, ? extends U> transformer,
5210     Action<U> action) {
5211     super(p, b, split);
5212     this.transformer = transformer;
5213     this.action = action;
5214     }
5215     public final void compute() {
5216     final BiFun<? super K, ? super V, ? extends U> transformer =
5217     this.transformer;
5218     final Action<U> action = this.action;
5219     if (transformer == null || action == null)
5220     throw new Error(NullFunctionMessage);
5221     int b = batch(), c;
5222     while (b > 1 && baseIndex != baseLimit) {
5223     do {} while (!casPending(c = pending, c+1));
5224     new ForEachTransformedMappingTask<K,V,U>
5225     (this, b >>>= 1, true, transformer, action).fork();
5226     }
5227     Object v; U u;
5228     while ((v = advance()) != null) {
5229     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5230     action.apply(u);
5231     }
5232     tryComplete();
5233     }
5234     }
5235    
5236     static final class SearchKeysTask<K,V,U>
5237     extends BulkTask<K,V,U> {
5238     final Fun<? super K, ? extends U> searchFunction;
5239     final AtomicReference<U> result;
5240     SearchKeysTask
5241     (ConcurrentHashMapV8<K,V> m,
5242     Fun<? super K, ? extends U> searchFunction,
5243     AtomicReference<U> result) {
5244     super(m);
5245     this.searchFunction = searchFunction; this.result = result;
5246     }
5247     SearchKeysTask
5248     (BulkTask<K,V,?> p, int b, boolean split,
5249     Fun<? super K, ? extends U> searchFunction,
5250     AtomicReference<U> result) {
5251     super(p, b, split);
5252     this.searchFunction = searchFunction; this.result = result;
5253     }
5254     public final void compute() {
5255     AtomicReference<U> result = this.result;
5256     final Fun<? super K, ? extends U> searchFunction =
5257     this.searchFunction;
5258     if (searchFunction == null || result == null)
5259     throw new Error(NullFunctionMessage);
5260     int b = batch(), c;
5261     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5262     do {} while (!casPending(c = pending, c+1));
5263     new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5264     searchFunction, result).fork();
5265     }
5266     U u;
5267     while (result.get() == null && advance() != null) {
5268     if ((u = searchFunction.apply((K)nextKey)) != null) {
5269     result.compareAndSet(null, u);
5270     break;
5271     }
5272     }
5273     tryComplete();
5274     }
5275     public final U getRawResult() { return result.get(); }
5276     }
5277    
5278     static final class SearchValuesTask<K,V,U>
5279     extends BulkTask<K,V,U> {
5280     final Fun<? super V, ? extends U> searchFunction;
5281     final AtomicReference<U> result;
5282     SearchValuesTask
5283     (ConcurrentHashMapV8<K,V> m,
5284     Fun<? super V, ? extends U> searchFunction,
5285     AtomicReference<U> result) {
5286     super(m);
5287     this.searchFunction = searchFunction; this.result = result;
5288     }
5289     SearchValuesTask
5290     (BulkTask<K,V,?> p, int b, boolean split,
5291     Fun<? super V, ? extends U> searchFunction,
5292     AtomicReference<U> result) {
5293     super(p, b, split);
5294     this.searchFunction = searchFunction; this.result = result;
5295     }
5296     public final void compute() {
5297     AtomicReference<U> result = this.result;
5298     final Fun<? super V, ? extends U> searchFunction =
5299     this.searchFunction;
5300     if (searchFunction == null || result == null)
5301     throw new Error(NullFunctionMessage);
5302     int b = batch(), c;
5303     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5304     do {} while (!casPending(c = pending, c+1));
5305     new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5306     searchFunction, result).fork();
5307     }
5308     Object v; U u;
5309     while (result.get() == null && (v = advance()) != null) {
5310     if ((u = searchFunction.apply((V)v)) != null) {
5311     result.compareAndSet(null, u);
5312     break;
5313     }
5314     }
5315     tryComplete();
5316     }
5317     public final U getRawResult() { return result.get(); }
5318     }
5319    
5320     static final class SearchEntriesTask<K,V,U>
5321     extends BulkTask<K,V,U> {
5322     final Fun<Entry<K,V>, ? extends U> searchFunction;
5323     final AtomicReference<U> result;
5324     SearchEntriesTask
5325     (ConcurrentHashMapV8<K,V> m,
5326     Fun<Entry<K,V>, ? extends U> searchFunction,
5327     AtomicReference<U> result) {
5328     super(m);
5329     this.searchFunction = searchFunction; this.result = result;
5330     }
5331     SearchEntriesTask
5332     (BulkTask<K,V,?> p, int b, boolean split,
5333     Fun<Entry<K,V>, ? extends U> searchFunction,
5334     AtomicReference<U> result) {
5335     super(p, b, split);
5336     this.searchFunction = searchFunction; this.result = result;
5337     }
5338     public final void compute() {
5339     AtomicReference<U> result = this.result;
5340     final Fun<Entry<K,V>, ? extends U> searchFunction =
5341     this.searchFunction;
5342     if (searchFunction == null || result == null)
5343     throw new Error(NullFunctionMessage);
5344     int b = batch(), c;
5345     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5346     do {} while (!casPending(c = pending, c+1));
5347     new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5348     searchFunction, result).fork();
5349     }
5350     Object v; U u;
5351     while (result.get() == null && (v = advance()) != null) {
5352     if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5353     result.compareAndSet(null, u);
5354     break;
5355     }
5356     }
5357     tryComplete();
5358     }
5359     public final U getRawResult() { return result.get(); }
5360     }
5361    
5362     static final class SearchMappingsTask<K,V,U>
5363     extends BulkTask<K,V,U> {
5364     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5365     final AtomicReference<U> result;
5366     SearchMappingsTask
5367     (ConcurrentHashMapV8<K,V> m,
5368     BiFun<? super K, ? super V, ? extends U> searchFunction,
5369     AtomicReference<U> result) {
5370     super(m);
5371     this.searchFunction = searchFunction; this.result = result;
5372     }
5373     SearchMappingsTask
5374     (BulkTask<K,V,?> p, int b, boolean split,
5375     BiFun<? super K, ? super V, ? extends U> searchFunction,
5376     AtomicReference<U> result) {
5377     super(p, b, split);
5378     this.searchFunction = searchFunction; this.result = result;
5379     }
5380     public final void compute() {
5381     AtomicReference<U> result = this.result;
5382     final BiFun<? super K, ? super V, ? extends U> searchFunction =
5383     this.searchFunction;
5384     if (searchFunction == null || result == null)
5385     throw new Error(NullFunctionMessage);
5386     int b = batch(), c;
5387     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5388     do {} while (!casPending(c = pending, c+1));
5389     new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5390     searchFunction, result).fork();
5391     }
5392     Object v; U u;
5393     while (result.get() == null && (v = advance()) != null) {
5394     if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5395     result.compareAndSet(null, u);
5396     break;
5397     }
5398     }
5399     tryComplete();
5400     }
5401     public final U getRawResult() { return result.get(); }
5402     }
5403    
5404     static final class ReduceKeysTask<K,V>
5405     extends BulkTask<K,V,K> {
5406     final BiFun<? super K, ? super K, ? extends K> reducer;
5407     K result;
5408     ReduceKeysTask<K,V> sibling;
5409     ReduceKeysTask
5410     (ConcurrentHashMapV8<K,V> m,
5411     BiFun<? super K, ? super K, ? extends K> reducer) {
5412     super(m);
5413     this.reducer = reducer;
5414     }
5415     ReduceKeysTask
5416     (BulkTask<K,V,?> p, int b, boolean split,
5417     BiFun<? super K, ? super K, ? extends K> reducer) {
5418     super(p, b, split);
5419     this.reducer = reducer;
5420     }
5421    
5422     public final void compute() {
5423     ReduceKeysTask<K,V> t = this;
5424     final BiFun<? super K, ? super K, ? extends K> reducer =
5425     this.reducer;
5426     if (reducer == null)
5427     throw new Error(NullFunctionMessage);
5428     int b = batch();
5429     while (b > 1 && t.baseIndex != t.baseLimit) {
5430     b >>>= 1;
5431     t.pending = 1;
5432     ReduceKeysTask<K,V> rt =
5433     new ReduceKeysTask<K,V>
5434     (t, b, true, reducer);
5435     t = new ReduceKeysTask<K,V>
5436     (t, b, false, reducer);
5437     t.sibling = rt;
5438     rt.sibling = t;
5439     rt.fork();
5440     }
5441     K r = null;
5442     while (t.advance() != null) {
5443     K u = (K)t.nextKey;
5444     r = (r == null) ? u : reducer.apply(r, u);
5445     }
5446     t.result = r;
5447     for (;;) {
5448     int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5449     if ((par = t.parent) == null ||
5450     !(par instanceof ReduceKeysTask)) {
5451     t.quietlyComplete();
5452     break;
5453     }
5454     else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5455     if ((s = t.sibling) != null && (u = s.result) != null)
5456     r = (r == null) ? u : reducer.apply(r, u);
5457     (t = p).result = r;
5458     }
5459     else if (p.casPending(c, 0))
5460     break;
5461     }
5462     }
5463     public final K getRawResult() { return result; }
5464     }
5465    
5466     static final class ReduceValuesTask<K,V>
5467     extends BulkTask<K,V,V> {
5468     final BiFun<? super V, ? super V, ? extends V> reducer;
5469     V result;
5470     ReduceValuesTask<K,V> sibling;
5471     ReduceValuesTask
5472     (ConcurrentHashMapV8<K,V> m,
5473     BiFun<? super V, ? super V, ? extends V> reducer) {
5474     super(m);
5475     this.reducer = reducer;
5476     }
5477     ReduceValuesTask
5478     (BulkTask<K,V,?> p, int b, boolean split,
5479     BiFun<? super V, ? super V, ? extends V> reducer) {
5480     super(p, b, split);
5481     this.reducer = reducer;
5482     }
5483    
5484     public final void compute() {
5485     ReduceValuesTask<K,V> t = this;
5486     final BiFun<? super V, ? super V, ? extends V> reducer =
5487     this.reducer;
5488     if (reducer == null)
5489     throw new Error(NullFunctionMessage);
5490     int b = batch();
5491     while (b > 1 && t.baseIndex != t.baseLimit) {
5492     b >>>= 1;
5493     t.pending = 1;
5494     ReduceValuesTask<K,V> rt =
5495     new ReduceValuesTask<K,V>
5496     (t, b, true, reducer);
5497     t = new ReduceValuesTask<K,V>
5498     (t, b, false, reducer);
5499     t.sibling = rt;
5500     rt.sibling = t;
5501     rt.fork();
5502     }
5503     V r = null;
5504     Object v;
5505     while ((v = t.advance()) != null) {
5506     V u = (V)v;
5507     r = (r == null) ? u : reducer.apply(r, u);
5508     }
5509     t.result = r;
5510     for (;;) {
5511     int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5512     if ((par = t.parent) == null ||
5513     !(par instanceof ReduceValuesTask)) {
5514     t.quietlyComplete();
5515     break;
5516     }
5517     else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5518     if ((s = t.sibling) != null && (u = s.result) != null)
5519     r = (r == null) ? u : reducer.apply(r, u);
5520     (t = p).result = r;
5521     }
5522     else if (p.casPending(c, 0))
5523     break;
5524     }
5525     }
5526     public final V getRawResult() { return result; }
5527     }
5528    
5529     static final class ReduceEntriesTask<K,V>
5530     extends BulkTask<K,V,Map.Entry<K,V>> {
5531     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5532     Map.Entry<K,V> result;
5533     ReduceEntriesTask<K,V> sibling;
5534     ReduceEntriesTask
5535     (ConcurrentHashMapV8<K,V> m,
5536     BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5537     super(m);
5538     this.reducer = reducer;
5539     }
5540     ReduceEntriesTask
5541     (BulkTask<K,V,?> p, int b, boolean split,
5542     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5543     super(p, b, split);
5544     this.reducer = reducer;
5545     }
5546    
5547     public final void compute() {
5548     ReduceEntriesTask<K,V> t = this;
5549     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5550     this.reducer;
5551     if (reducer == null)
5552     throw new Error(NullFunctionMessage);
5553     int b = batch();
5554     while (b > 1 && t.baseIndex != t.baseLimit) {
5555     b >>>= 1;
5556     t.pending = 1;
5557     ReduceEntriesTask<K,V> rt =
5558     new ReduceEntriesTask<K,V>
5559     (t, b, true, reducer);
5560     t = new ReduceEntriesTask<K,V>
5561     (t, b, false, reducer);
5562     t.sibling = rt;
5563     rt.sibling = t;
5564     rt.fork();
5565     }
5566     Map.Entry<K,V> r = null;
5567     Object v;
5568     while ((v = t.advance()) != null) {
5569     Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5570     r = (r == null) ? u : reducer.apply(r, u);
5571     }
5572     t.result = r;
5573     for (;;) {
5574     int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5575     Map.Entry<K,V> u;
5576     if ((par = t.parent) == null ||
5577     !(par instanceof ReduceEntriesTask)) {
5578     t.quietlyComplete();
5579     break;
5580     }
5581     else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5582     if ((s = t.sibling) != null && (u = s.result) != null)
5583     r = (r == null) ? u : reducer.apply(r, u);
5584     (t = p).result = r;
5585     }
5586     else if (p.casPending(c, 0))
5587     break;
5588     }
5589     }
5590     public final Map.Entry<K,V> getRawResult() { return result; }
5591     }
5592    
5593     static final class MapReduceKeysTask<K,V,U>
5594     extends BulkTask<K,V,U> {
5595     final Fun<? super K, ? extends U> transformer;
5596     final BiFun<? super U, ? super U, ? extends U> reducer;
5597     U result;
5598     MapReduceKeysTask<K,V,U> sibling;
5599     MapReduceKeysTask
5600     (ConcurrentHashMapV8<K,V> m,
5601     Fun<? super K, ? extends U> transformer,
5602     BiFun<? super U, ? super U, ? extends U> reducer) {
5603     super(m);
5604     this.transformer = transformer;
5605     this.reducer = reducer;
5606     }
5607     MapReduceKeysTask
5608     (BulkTask<K,V,?> p, int b, boolean split,
5609     Fun<? super K, ? extends U> transformer,
5610     BiFun<? super U, ? super U, ? extends U> reducer) {
5611     super(p, b, split);
5612     this.transformer = transformer;
5613     this.reducer = reducer;
5614     }
5615     public final void compute() {
5616     MapReduceKeysTask<K,V,U> t = this;
5617     final Fun<? super K, ? extends U> transformer =
5618     this.transformer;
5619     final BiFun<? super U, ? super U, ? extends U> reducer =
5620     this.reducer;
5621     if (transformer == null || reducer == null)
5622     throw new Error(NullFunctionMessage);
5623     int b = batch();
5624     while (b > 1 && t.baseIndex != t.baseLimit) {
5625     b >>>= 1;
5626     t.pending = 1;
5627     MapReduceKeysTask<K,V,U> rt =
5628     new MapReduceKeysTask<K,V,U>
5629     (t, b, true, transformer, reducer);
5630     t = new MapReduceKeysTask<K,V,U>
5631     (t, b, false, transformer, reducer);
5632     t.sibling = rt;
5633     rt.sibling = t;
5634     rt.fork();
5635     }
5636     U r = null, u;
5637     while (t.advance() != null) {
5638     if ((u = transformer.apply((K)t.nextKey)) != null)
5639     r = (r == null) ? u : reducer.apply(r, u);
5640     }
5641     t.result = r;
5642     for (;;) {
5643     int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5644     if ((par = t.parent) == null ||
5645     !(par instanceof MapReduceKeysTask)) {
5646     t.quietlyComplete();
5647     break;
5648     }
5649     else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5650     if ((s = t.sibling) != null && (u = s.result) != null)
5651     r = (r == null) ? u : reducer.apply(r, u);
5652     (t = p).result = r;
5653     }
5654     else if (p.casPending(c, 0))
5655     break;
5656     }
5657     }
5658     public final U getRawResult() { return result; }
5659     }
5660    
5661     static final class MapReduceValuesTask<K,V,U>
5662     extends BulkTask<K,V,U> {
5663     final Fun<? super V, ? extends U> transformer;
5664     final BiFun<? super U, ? super U, ? extends U> reducer;
5665     U result;
5666     MapReduceValuesTask<K,V,U> sibling;
5667     MapReduceValuesTask
5668     (ConcurrentHashMapV8<K,V> m,
5669     Fun<? super V, ? extends U> transformer,
5670     BiFun<? super U, ? super U, ? extends U> reducer) {
5671     super(m);
5672     this.transformer = transformer;
5673     this.reducer = reducer;
5674     }
5675     MapReduceValuesTask
5676     (BulkTask<K,V,?> p, int b, boolean split,
5677     Fun<? super V, ? extends U> transformer,
5678     BiFun<? super U, ? super U, ? extends U> reducer) {
5679     super(p, b, split);
5680     this.transformer = transformer;
5681     this.reducer = reducer;
5682     }
5683     public final void compute() {
5684     MapReduceValuesTask<K,V,U> t = this;
5685     final Fun<? super V, ? extends U> transformer =
5686     this.transformer;
5687     final BiFun<? super U, ? super U, ? extends U> reducer =
5688     this.reducer;
5689     if (transformer == null || reducer == null)
5690     throw new Error(NullFunctionMessage);
5691     int b = batch();
5692     while (b > 1 && t.baseIndex != t.baseLimit) {
5693     b >>>= 1;
5694     t.pending = 1;
5695     MapReduceValuesTask<K,V,U> rt =
5696     new MapReduceValuesTask<K,V,U>
5697     (t, b, true, transformer, reducer);
5698     t = new MapReduceValuesTask<K,V,U>
5699     (t, b, false, transformer, reducer);
5700     t.sibling = rt;
5701     rt.sibling = t;
5702     rt.fork();
5703     }
5704     U r = null, u;
5705     Object v;
5706     while ((v = t.advance()) != null) {
5707     if ((u = transformer.apply((V)v)) != null)
5708     r = (r == null) ? u : reducer.apply(r, u);
5709     }
5710     t.result = r;
5711     for (;;) {
5712     int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5713     if ((par = t.parent) == null ||
5714     !(par instanceof MapReduceValuesTask)) {
5715     t.quietlyComplete();
5716     break;
5717     }
5718     else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5719     if ((s = t.sibling) != null && (u = s.result) != null)
5720     r = (r == null) ? u : reducer.apply(r, u);
5721     (t = p).result = r;
5722     }
5723     else if (p.casPending(c, 0))
5724     break;
5725     }
5726     }
5727     public final U getRawResult() { return result; }
5728     }
5729    
5730     static final class MapReduceEntriesTask<K,V,U>
5731     extends BulkTask<K,V,U> {
5732     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5733     final BiFun<? super U, ? super U, ? extends U> reducer;
5734     U result;
5735     MapReduceEntriesTask<K,V,U> sibling;
5736     MapReduceEntriesTask
5737     (ConcurrentHashMapV8<K,V> m,
5738     Fun<Map.Entry<K,V>, ? extends U> transformer,
5739     BiFun<? super U, ? super U, ? extends U> reducer) {
5740     super(m);
5741     this.transformer = transformer;
5742     this.reducer = reducer;
5743     }
5744     MapReduceEntriesTask
5745     (BulkTask<K,V,?> p, int b, boolean split,
5746     Fun<Map.Entry<K,V>, ? extends U> transformer,
5747     BiFun<? super U, ? super U, ? extends U> reducer) {
5748     super(p, b, split);
5749     this.transformer = transformer;
5750     this.reducer = reducer;
5751     }
5752     public final void compute() {
5753     MapReduceEntriesTask<K,V,U> t = this;
5754     final Fun<Map.Entry<K,V>, ? extends U> transformer =
5755     this.transformer;
5756     final BiFun<? super U, ? super U, ? extends U> reducer =
5757     this.reducer;
5758     if (transformer == null || reducer == null)
5759     throw new Error(NullFunctionMessage);
5760     int b = batch();
5761     while (b > 1 && t.baseIndex != t.baseLimit) {
5762     b >>>= 1;
5763     t.pending = 1;
5764     MapReduceEntriesTask<K,V,U> rt =
5765     new MapReduceEntriesTask<K,V,U>
5766     (t, b, true, transformer, reducer);
5767     t = new MapReduceEntriesTask<K,V,U>
5768     (t, b, false, transformer, reducer);
5769     t.sibling = rt;
5770     rt.sibling = t;
5771     rt.fork();
5772     }
5773     U r = null, u;
5774     Object v;
5775     while ((v = t.advance()) != null) {
5776     if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5777     r = (r == null) ? u : reducer.apply(r, u);
5778     }
5779     t.result = r;
5780     for (;;) {
5781     int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5782     if ((par = t.parent) == null ||
5783     !(par instanceof MapReduceEntriesTask)) {
5784     t.quietlyComplete();
5785     break;
5786     }
5787     else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5788     if ((s = t.sibling) != null && (u = s.result) != null)
5789     r = (r == null) ? u : reducer.apply(r, u);
5790     (t = p).result = r;
5791     }
5792     else if (p.casPending(c, 0))
5793     break;
5794     }
5795     }
5796     public final U getRawResult() { return result; }
5797     }
5798    
5799     static final class MapReduceMappingsTask<K,V,U>
5800     extends BulkTask<K,V,U> {
5801     final BiFun<? super K, ? super V, ? extends U> transformer;
5802     final BiFun<? super U, ? super U, ? extends U> reducer;
5803     U result;
5804     MapReduceMappingsTask<K,V,U> sibling;
5805     MapReduceMappingsTask
5806     (ConcurrentHashMapV8<K,V> m,
5807     BiFun<? super K, ? super V, ? extends U> transformer,
5808     BiFun<? super U, ? super U, ? extends U> reducer) {
5809     super(m);
5810     this.transformer = transformer;
5811     this.reducer = reducer;
5812     }
5813     MapReduceMappingsTask
5814     (BulkTask<K,V,?> p, int b, boolean split,
5815     BiFun<? super K, ? super V, ? extends U> transformer,
5816     BiFun<? super U, ? super U, ? extends U> reducer) {
5817     super(p, b, split);
5818     this.transformer = transformer;
5819     this.reducer = reducer;
5820     }
5821     public final void compute() {
5822     MapReduceMappingsTask<K,V,U> t = this;
5823     final BiFun<? super K, ? super V, ? extends U> transformer =
5824     this.transformer;
5825     final BiFun<? super U, ? super U, ? extends U> reducer =
5826     this.reducer;
5827     if (transformer == null || reducer == null)
5828     throw new Error(NullFunctionMessage);
5829     int b = batch();
5830     while (b > 1 && t.baseIndex != t.baseLimit) {
5831     b >>>= 1;
5832     t.pending = 1;
5833     MapReduceMappingsTask<K,V,U> rt =
5834     new MapReduceMappingsTask<K,V,U>
5835     (t, b, true, transformer, reducer);
5836     t = new MapReduceMappingsTask<K,V,U>
5837     (t, b, false, transformer, reducer);
5838     t.sibling = rt;
5839     rt.sibling = t;
5840     rt.fork();
5841     }
5842     U r = null, u;
5843     Object v;
5844     while ((v = t.advance()) != null) {
5845     if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5846     r = (r == null) ? u : reducer.apply(r, u);
5847     }
5848     for (;;) {
5849     int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5850     if ((par = t.parent) == null ||
5851     !(par instanceof MapReduceMappingsTask)) {
5852     t.quietlyComplete();
5853     break;
5854     }
5855     else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5856     if ((s = t.sibling) != null && (u = s.result) != null)
5857     r = (r == null) ? u : reducer.apply(r, u);
5858     (t = p).result = r;
5859     }
5860     else if (p.casPending(c, 0))
5861     break;
5862     }
5863     }
5864     public final U getRawResult() { return result; }
5865     }
5866    
5867     static final class MapReduceKeysToDoubleTask<K,V>
5868     extends BulkTask<K,V,Double> {
5869     final ObjectToDouble<? super K> transformer;
5870     final DoubleByDoubleToDouble reducer;
5871     final double basis;
5872     double result;
5873     MapReduceKeysToDoubleTask<K,V> sibling;
5874     MapReduceKeysToDoubleTask
5875     (ConcurrentHashMapV8<K,V> m,
5876     ObjectToDouble<? super K> transformer,
5877     double basis,
5878     DoubleByDoubleToDouble reducer) {
5879     super(m);
5880     this.transformer = transformer;
5881     this.basis = basis; this.reducer = reducer;
5882     }
5883     MapReduceKeysToDoubleTask
5884     (BulkTask<K,V,?> p, int b, boolean split,
5885     ObjectToDouble<? super K> transformer,
5886     double basis,
5887     DoubleByDoubleToDouble reducer) {
5888     super(p, b, split);
5889     this.transformer = transformer;
5890     this.basis = basis; this.reducer = reducer;
5891     }
5892     public final void compute() {
5893     MapReduceKeysToDoubleTask<K,V> t = this;
5894     final ObjectToDouble<? super K> transformer =
5895     this.transformer;
5896     final DoubleByDoubleToDouble reducer = this.reducer;
5897     if (transformer == null || reducer == null)
5898     throw new Error(NullFunctionMessage);
5899     final double id = this.basis;
5900     int b = batch();
5901     while (b > 1 && t.baseIndex != t.baseLimit) {
5902     b >>>= 1;
5903     t.pending = 1;
5904     MapReduceKeysToDoubleTask<K,V> rt =
5905     new MapReduceKeysToDoubleTask<K,V>
5906     (t, b, true, transformer, id, reducer);
5907     t = new MapReduceKeysToDoubleTask<K,V>
5908     (t, b, false, transformer, id, reducer);
5909     t.sibling = rt;
5910     rt.sibling = t;
5911     rt.fork();
5912     }
5913     double r = id;
5914     while (t.advance() != null)
5915     r = reducer.apply(r, transformer.apply((K)t.nextKey));
5916     t.result = r;
5917     for (;;) {
5918     int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5919     if ((par = t.parent) == null ||
5920     !(par instanceof MapReduceKeysToDoubleTask)) {
5921     t.quietlyComplete();
5922     break;
5923     }
5924     else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5925     if ((s = t.sibling) != null)
5926     r = reducer.apply(r, s.result);
5927     (t = p).result = r;
5928     }
5929     else if (p.casPending(c, 0))
5930     break;
5931     }
5932     }
5933     public final Double getRawResult() { return result; }
5934     }
5935    
5936     static final class MapReduceValuesToDoubleTask<K,V>
5937     extends BulkTask<K,V,Double> {
5938     final ObjectToDouble<? super V> transformer;
5939     final DoubleByDoubleToDouble reducer;
5940     final double basis;
5941     double result;
5942     MapReduceValuesToDoubleTask<K,V> sibling;
5943     MapReduceValuesToDoubleTask
5944     (ConcurrentHashMapV8<K,V> m,
5945     ObjectToDouble<? super V> transformer,
5946     double basis,
5947     DoubleByDoubleToDouble reducer) {
5948     super(m);
5949     this.transformer = transformer;
5950     this.basis = basis; this.reducer = reducer;
5951     }
5952     MapReduceValuesToDoubleTask
5953     (BulkTask<K,V,?> p, int b, boolean split,
5954     ObjectToDouble<? super V> transformer,
5955     double basis,
5956     DoubleByDoubleToDouble reducer) {
5957     super(p, b, split);
5958     this.transformer = transformer;
5959     this.basis = basis; this.reducer = reducer;
5960     }
5961     public final void compute() {
5962     MapReduceValuesToDoubleTask<K,V> t = this;
5963     final ObjectToDouble<? super V> transformer =
5964     this.transformer;
5965     final DoubleByDoubleToDouble reducer = this.reducer;
5966     if (transformer == null || reducer == null)
5967     throw new Error(NullFunctionMessage);
5968     final double id = this.basis;
5969     int b = batch();
5970     while (b > 1 && t.baseIndex != t.baseLimit) {
5971     b >>>= 1;
5972     t.pending = 1;
5973     MapReduceValuesToDoubleTask<K,V> rt =
5974     new MapReduceValuesToDoubleTask<K,V>
5975     (t, b, true, transformer, id, reducer);
5976     t = new MapReduceValuesToDoubleTask<K,V>
5977     (t, b, false, transformer, id, reducer);
5978     t.sibling = rt;
5979     rt.sibling = t;
5980     rt.fork();
5981     }
5982     double r = id;
5983     Object v;
5984     while ((v = t.advance()) != null)
5985     r = reducer.apply(r, transformer.apply((V)v));
5986     t.result = r;
5987     for (;;) {
5988     int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
5989     if ((par = t.parent) == null ||
5990     !(par instanceof MapReduceValuesToDoubleTask)) {
5991     t.quietlyComplete();
5992     break;
5993     }
5994     else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
5995     if ((s = t.sibling) != null)
5996     r = reducer.apply(r, s.result);
5997     (t = p).result = r;
5998     }
5999     else if (p.casPending(c, 0))
6000     break;
6001     }
6002     }
6003     public final Double getRawResult() { return result; }
6004     }
6005    
6006     static final class MapReduceEntriesToDoubleTask<K,V>
6007     extends BulkTask<K,V,Double> {
6008     final ObjectToDouble<Map.Entry<K,V>> transformer;
6009     final DoubleByDoubleToDouble reducer;
6010     final double basis;
6011     double result;
6012     MapReduceEntriesToDoubleTask<K,V> sibling;
6013     MapReduceEntriesToDoubleTask
6014     (ConcurrentHashMapV8<K,V> m,
6015     ObjectToDouble<Map.Entry<K,V>> transformer,
6016     double basis,
6017     DoubleByDoubleToDouble reducer) {
6018     super(m);
6019     this.transformer = transformer;
6020     this.basis = basis; this.reducer = reducer;
6021     }
6022     MapReduceEntriesToDoubleTask
6023     (BulkTask<K,V,?> p, int b, boolean split,
6024     ObjectToDouble<Map.Entry<K,V>> transformer,
6025     double basis,
6026     DoubleByDoubleToDouble reducer) {
6027     super(p, b, split);
6028     this.transformer = transformer;
6029     this.basis = basis; this.reducer = reducer;
6030     }
6031     public final void compute() {
6032     MapReduceEntriesToDoubleTask<K,V> t = this;
6033     final ObjectToDouble<Map.Entry<K,V>> transformer =
6034     this.transformer;
6035     final DoubleByDoubleToDouble reducer = this.reducer;
6036     if (transformer == null || reducer == null)
6037     throw new Error(NullFunctionMessage);
6038     final double id = this.basis;
6039     int b = batch();
6040     while (b > 1 && t.baseIndex != t.baseLimit) {
6041     b >>>= 1;
6042     t.pending = 1;
6043     MapReduceEntriesToDoubleTask<K,V> rt =
6044     new MapReduceEntriesToDoubleTask<K,V>
6045     (t, b, true, transformer, id, reducer);
6046     t = new MapReduceEntriesToDoubleTask<K,V>
6047     (t, b, false, transformer, id, reducer);
6048     t.sibling = rt;
6049     rt.sibling = t;
6050     rt.fork();
6051     }
6052     double r = id;
6053     Object v;
6054     while ((v = t.advance()) != null)
6055     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6056     t.result = r;
6057     for (;;) {
6058     int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6059     if ((par = t.parent) == null ||
6060     !(par instanceof MapReduceEntriesToDoubleTask)) {
6061     t.quietlyComplete();
6062     break;
6063     }
6064     else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6065     if ((s = t.sibling) != null)
6066     r = reducer.apply(r, s.result);
6067     (t = p).result = r;
6068     }
6069     else if (p.casPending(c, 0))
6070     break;
6071     }
6072     }
6073     public final Double getRawResult() { return result; }
6074     }
6075    
6076     static final class MapReduceMappingsToDoubleTask<K,V>
6077     extends BulkTask<K,V,Double> {
6078     final ObjectByObjectToDouble<? super K, ? super V> transformer;
6079     final DoubleByDoubleToDouble reducer;
6080     final double basis;
6081     double result;
6082     MapReduceMappingsToDoubleTask<K,V> sibling;
6083     MapReduceMappingsToDoubleTask
6084     (ConcurrentHashMapV8<K,V> m,
6085     ObjectByObjectToDouble<? super K, ? super V> transformer,
6086     double basis,
6087     DoubleByDoubleToDouble reducer) {
6088     super(m);
6089     this.transformer = transformer;
6090     this.basis = basis; this.reducer = reducer;
6091     }
6092     MapReduceMappingsToDoubleTask
6093     (BulkTask<K,V,?> p, int b, boolean split,
6094     ObjectByObjectToDouble<? super K, ? super V> transformer,
6095     double basis,
6096     DoubleByDoubleToDouble reducer) {
6097     super(p, b, split);
6098     this.transformer = transformer;
6099     this.basis = basis; this.reducer = reducer;
6100     }
6101     public final void compute() {
6102     MapReduceMappingsToDoubleTask<K,V> t = this;
6103     final ObjectByObjectToDouble<? super K, ? super V> transformer =
6104     this.transformer;
6105     final DoubleByDoubleToDouble reducer = this.reducer;
6106     if (transformer == null || reducer == null)
6107     throw new Error(NullFunctionMessage);
6108     final double id = this.basis;
6109     int b = batch();
6110     while (b > 1 && t.baseIndex != t.baseLimit) {
6111     b >>>= 1;
6112     t.pending = 1;
6113     MapReduceMappingsToDoubleTask<K,V> rt =
6114     new MapReduceMappingsToDoubleTask<K,V>
6115     (t, b, true, transformer, id, reducer);
6116     t = new MapReduceMappingsToDoubleTask<K,V>
6117     (t, b, false, transformer, id, reducer);
6118     t.sibling = rt;
6119     rt.sibling = t;
6120     rt.fork();
6121     }
6122     double r = id;
6123     Object v;
6124     while ((v = t.advance()) != null)
6125     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6126     t.result = r;
6127     for (;;) {
6128     int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6129     if ((par = t.parent) == null ||
6130     !(par instanceof MapReduceMappingsToDoubleTask)) {
6131     t.quietlyComplete();
6132     break;
6133     }
6134     else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6135     if ((s = t.sibling) != null)
6136     r = reducer.apply(r, s.result);
6137     (t = p).result = r;
6138     }
6139     else if (p.casPending(c, 0))
6140     break;
6141     }
6142     }
6143     public final Double getRawResult() { return result; }
6144     }
6145    
6146     static final class MapReduceKeysToLongTask<K,V>
6147     extends BulkTask<K,V,Long> {
6148     final ObjectToLong<? super K> transformer;
6149     final LongByLongToLong reducer;
6150     final long basis;
6151     long result;
6152     MapReduceKeysToLongTask<K,V> sibling;
6153     MapReduceKeysToLongTask
6154     (ConcurrentHashMapV8<K,V> m,
6155     ObjectToLong<? super K> transformer,
6156     long basis,
6157     LongByLongToLong reducer) {
6158     super(m);
6159     this.transformer = transformer;
6160     this.basis = basis; this.reducer = reducer;
6161     }
6162     MapReduceKeysToLongTask
6163     (BulkTask<K,V,?> p, int b, boolean split,
6164     ObjectToLong<? super K> transformer,
6165     long basis,
6166     LongByLongToLong reducer) {
6167     super(p, b, split);
6168     this.transformer = transformer;
6169     this.basis = basis; this.reducer = reducer;
6170     }
6171     public final void compute() {
6172     MapReduceKeysToLongTask<K,V> t = this;
6173     final ObjectToLong<? super K> transformer =
6174     this.transformer;
6175     final LongByLongToLong reducer = this.reducer;
6176     if (transformer == null || reducer == null)
6177     throw new Error(NullFunctionMessage);
6178     final long id = this.basis;
6179     int b = batch();
6180     while (b > 1 && t.baseIndex != t.baseLimit) {
6181     b >>>= 1;
6182     t.pending = 1;
6183     MapReduceKeysToLongTask<K,V> rt =
6184     new MapReduceKeysToLongTask<K,V>
6185     (t, b, true, transformer, id, reducer);
6186     t = new MapReduceKeysToLongTask<K,V>
6187     (t, b, false, transformer, id, reducer);
6188     t.sibling = rt;
6189     rt.sibling = t;
6190     rt.fork();
6191     }
6192     long r = id;
6193     while (t.advance() != null)
6194     r = reducer.apply(r, transformer.apply((K)t.nextKey));
6195     t.result = r;
6196     for (;;) {
6197     int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6198     if ((par = t.parent) == null ||
6199     !(par instanceof MapReduceKeysToLongTask)) {
6200     t.quietlyComplete();
6201     break;
6202     }
6203     else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6204     if ((s = t.sibling) != null)
6205     r = reducer.apply(r, s.result);
6206     (t = p).result = r;
6207     }
6208     else if (p.casPending(c, 0))
6209     break;
6210     }
6211     }
6212     public final Long getRawResult() { return result; }
6213     }
6214    
6215     static final class MapReduceValuesToLongTask<K,V>
6216     extends BulkTask<K,V,Long> {
6217     final ObjectToLong<? super V> transformer;
6218     final LongByLongToLong reducer;
6219     final long basis;
6220     long result;
6221     MapReduceValuesToLongTask<K,V> sibling;
6222     MapReduceValuesToLongTask
6223     (ConcurrentHashMapV8<K,V> m,
6224     ObjectToLong<? super V> transformer,
6225     long basis,
6226     LongByLongToLong reducer) {
6227     super(m);
6228     this.transformer = transformer;
6229     this.basis = basis; this.reducer = reducer;
6230     }
6231     MapReduceValuesToLongTask
6232     (BulkTask<K,V,?> p, int b, boolean split,
6233     ObjectToLong<? super V> transformer,
6234     long basis,
6235     LongByLongToLong reducer) {
6236     super(p, b, split);
6237     this.transformer = transformer;
6238     this.basis = basis; this.reducer = reducer;
6239     }
6240     public final void compute() {
6241     MapReduceValuesToLongTask<K,V> t = this;
6242     final ObjectToLong<? super V> transformer =
6243     this.transformer;
6244     final LongByLongToLong reducer = this.reducer;
6245     if (transformer == null || reducer == null)
6246     throw new Error(NullFunctionMessage);
6247     final long id = this.basis;
6248     int b = batch();
6249     while (b > 1 && t.baseIndex != t.baseLimit) {
6250     b >>>= 1;
6251     t.pending = 1;
6252     MapReduceValuesToLongTask<K,V> rt =
6253     new MapReduceValuesToLongTask<K,V>
6254     (t, b, true, transformer, id, reducer);
6255     t = new MapReduceValuesToLongTask<K,V>
6256     (t, b, false, transformer, id, reducer);
6257     t.sibling = rt;
6258     rt.sibling = t;
6259     rt.fork();
6260     }
6261     long r = id;
6262     Object v;
6263     while ((v = t.advance()) != null)
6264     r = reducer.apply(r, transformer.apply((V)v));
6265     t.result = r;
6266     for (;;) {
6267     int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6268     if ((par = t.parent) == null ||
6269     !(par instanceof MapReduceValuesToLongTask)) {
6270     t.quietlyComplete();
6271     break;
6272     }
6273     else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6274     if ((s = t.sibling) != null)
6275     r = reducer.apply(r, s.result);
6276     (t = p).result = r;
6277     }
6278     else if (p.casPending(c, 0))
6279     break;
6280     }
6281     }
6282     public final Long getRawResult() { return result; }
6283     }
6284    
6285     static final class MapReduceEntriesToLongTask<K,V>
6286     extends BulkTask<K,V,Long> {
6287     final ObjectToLong<Map.Entry<K,V>> transformer;
6288     final LongByLongToLong reducer;
6289     final long basis;
6290     long result;
6291     MapReduceEntriesToLongTask<K,V> sibling;
6292     MapReduceEntriesToLongTask
6293     (ConcurrentHashMapV8<K,V> m,
6294     ObjectToLong<Map.Entry<K,V>> transformer,
6295     long basis,
6296     LongByLongToLong reducer) {
6297     super(m);
6298     this.transformer = transformer;
6299     this.basis = basis; this.reducer = reducer;
6300     }
6301     MapReduceEntriesToLongTask
6302     (BulkTask<K,V,?> p, int b, boolean split,
6303     ObjectToLong<Map.Entry<K,V>> transformer,
6304     long basis,
6305     LongByLongToLong reducer) {
6306     super(p, b, split);
6307     this.transformer = transformer;
6308     this.basis = basis; this.reducer = reducer;
6309     }
6310     public final void compute() {
6311     MapReduceEntriesToLongTask<K,V> t = this;
6312     final ObjectToLong<Map.Entry<K,V>> transformer =
6313     this.transformer;
6314     final LongByLongToLong reducer = this.reducer;
6315     if (transformer == null || reducer == null)
6316     throw new Error(NullFunctionMessage);
6317     final long id = this.basis;
6318     int b = batch();
6319     while (b > 1 && t.baseIndex != t.baseLimit) {
6320     b >>>= 1;
6321     t.pending = 1;
6322     MapReduceEntriesToLongTask<K,V> rt =
6323     new MapReduceEntriesToLongTask<K,V>
6324     (t, b, true, transformer, id, reducer);
6325     t = new MapReduceEntriesToLongTask<K,V>
6326     (t, b, false, transformer, id, reducer);
6327     t.sibling = rt;
6328     rt.sibling = t;
6329     rt.fork();
6330     }
6331     long r = id;
6332     Object v;
6333     while ((v = t.advance()) != null)
6334     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6335     t.result = r;
6336     for (;;) {
6337     int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6338     if ((par = t.parent) == null ||
6339     !(par instanceof MapReduceEntriesToLongTask)) {
6340     t.quietlyComplete();
6341     break;
6342     }
6343     else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6344     if ((s = t.sibling) != null)
6345     r = reducer.apply(r, s.result);
6346     (t = p).result = r;
6347     }
6348     else if (p.casPending(c, 0))
6349     break;
6350     }
6351     }
6352     public final Long getRawResult() { return result; }
6353     }
6354    
6355     static final class MapReduceMappingsToLongTask<K,V>
6356     extends BulkTask<K,V,Long> {
6357     final ObjectByObjectToLong<? super K, ? super V> transformer;
6358     final LongByLongToLong reducer;
6359     final long basis;
6360     long result;
6361     MapReduceMappingsToLongTask<K,V> sibling;
6362     MapReduceMappingsToLongTask
6363     (ConcurrentHashMapV8<K,V> m,
6364     ObjectByObjectToLong<? super K, ? super V> transformer,
6365     long basis,
6366     LongByLongToLong reducer) {
6367     super(m);
6368     this.transformer = transformer;
6369     this.basis = basis; this.reducer = reducer;
6370     }
6371     MapReduceMappingsToLongTask
6372     (BulkTask<K,V,?> p, int b, boolean split,
6373     ObjectByObjectToLong<? super K, ? super V> transformer,
6374     long basis,
6375     LongByLongToLong reducer) {
6376     super(p, b, split);
6377     this.transformer = transformer;
6378     this.basis = basis; this.reducer = reducer;
6379     }
6380     public final void compute() {
6381     MapReduceMappingsToLongTask<K,V> t = this;
6382     final ObjectByObjectToLong<? super K, ? super V> transformer =
6383     this.transformer;
6384     final LongByLongToLong reducer = this.reducer;
6385     if (transformer == null || reducer == null)
6386     throw new Error(NullFunctionMessage);
6387     final long id = this.basis;
6388     int b = batch();
6389     while (b > 1 && t.baseIndex != t.baseLimit) {
6390     b >>>= 1;
6391     t.pending = 1;
6392     MapReduceMappingsToLongTask<K,V> rt =
6393     new MapReduceMappingsToLongTask<K,V>
6394     (t, b, true, transformer, id, reducer);
6395     t = new MapReduceMappingsToLongTask<K,V>
6396     (t, b, false, transformer, id, reducer);
6397     t.sibling = rt;
6398     rt.sibling = t;
6399     rt.fork();
6400     }
6401     long r = id;
6402     Object v;
6403     while ((v = t.advance()) != null)
6404     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6405     t.result = r;
6406     for (;;) {
6407     int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6408     if ((par = t.parent) == null ||
6409     !(par instanceof MapReduceMappingsToLongTask)) {
6410     t.quietlyComplete();
6411     break;
6412     }
6413     else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6414     if ((s = t.sibling) != null)
6415     r = reducer.apply(r, s.result);
6416     (t = p).result = r;
6417     }
6418     else if (p.casPending(c, 0))
6419     break;
6420     }
6421     }
6422     public final Long getRawResult() { return result; }
6423     }
6424    
6425     static final class MapReduceKeysToIntTask<K,V>
6426     extends BulkTask<K,V,Integer> {
6427     final ObjectToInt<? super K> transformer;
6428     final IntByIntToInt reducer;
6429     final int basis;
6430     int result;
6431     MapReduceKeysToIntTask<K,V> sibling;
6432     MapReduceKeysToIntTask
6433     (ConcurrentHashMapV8<K,V> m,
6434     ObjectToInt<? super K> transformer,
6435     int basis,
6436     IntByIntToInt reducer) {
6437     super(m);
6438     this.transformer = transformer;
6439     this.basis = basis; this.reducer = reducer;
6440     }
6441     MapReduceKeysToIntTask
6442     (BulkTask<K,V,?> p, int b, boolean split,
6443     ObjectToInt<? super K> transformer,
6444     int basis,
6445     IntByIntToInt reducer) {
6446     super(p, b, split);
6447     this.transformer = transformer;
6448     this.basis = basis; this.reducer = reducer;
6449     }
6450     public final void compute() {
6451     MapReduceKeysToIntTask<K,V> t = this;
6452     final ObjectToInt<? super K> transformer =
6453     this.transformer;
6454     final IntByIntToInt reducer = this.reducer;
6455     if (transformer == null || reducer == null)
6456     throw new Error(NullFunctionMessage);
6457     final int id = this.basis;
6458     int b = batch();
6459     while (b > 1 && t.baseIndex != t.baseLimit) {
6460     b >>>= 1;
6461     t.pending = 1;
6462     MapReduceKeysToIntTask<K,V> rt =
6463     new MapReduceKeysToIntTask<K,V>
6464     (t, b, true, transformer, id, reducer);
6465     t = new MapReduceKeysToIntTask<K,V>
6466     (t, b, false, transformer, id, reducer);
6467     t.sibling = rt;
6468     rt.sibling = t;
6469     rt.fork();
6470     }
6471     int r = id;
6472     while (t.advance() != null)
6473     r = reducer.apply(r, transformer.apply((K)t.nextKey));
6474     t.result = r;
6475     for (;;) {
6476     int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6477     if ((par = t.parent) == null ||
6478     !(par instanceof MapReduceKeysToIntTask)) {
6479     t.quietlyComplete();
6480     break;
6481     }
6482     else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6483     if ((s = t.sibling) != null)
6484     r = reducer.apply(r, s.result);
6485     (t = p).result = r;
6486     }
6487     else if (p.casPending(c, 0))
6488     break;
6489     }
6490     }
6491     public final Integer getRawResult() { return result; }
6492     }
6493    
6494     static final class MapReduceValuesToIntTask<K,V>
6495     extends BulkTask<K,V,Integer> {
6496     final ObjectToInt<? super V> transformer;
6497     final IntByIntToInt reducer;
6498     final int basis;
6499     int result;
6500     MapReduceValuesToIntTask<K,V> sibling;
6501     MapReduceValuesToIntTask
6502     (ConcurrentHashMapV8<K,V> m,
6503     ObjectToInt<? super V> transformer,
6504     int basis,
6505     IntByIntToInt reducer) {
6506     super(m);
6507     this.transformer = transformer;
6508     this.basis = basis; this.reducer = reducer;
6509     }
6510     MapReduceValuesToIntTask
6511     (BulkTask<K,V,?> p, int b, boolean split,
6512     ObjectToInt<? super V> transformer,
6513     int basis,
6514     IntByIntToInt reducer) {
6515     super(p, b, split);
6516     this.transformer = transformer;
6517     this.basis = basis; this.reducer = reducer;
6518     }
6519     public final void compute() {
6520     MapReduceValuesToIntTask<K,V> t = this;
6521     final ObjectToInt<? super V> transformer =
6522     this.transformer;
6523     final IntByIntToInt reducer = this.reducer;
6524     if (transformer == null || reducer == null)
6525     throw new Error(NullFunctionMessage);
6526     final int id = this.basis;
6527     int b = batch();
6528     while (b > 1 && t.baseIndex != t.baseLimit) {
6529     b >>>= 1;
6530     t.pending = 1;
6531     MapReduceValuesToIntTask<K,V> rt =
6532     new MapReduceValuesToIntTask<K,V>
6533     (t, b, true, transformer, id, reducer);
6534     t = new MapReduceValuesToIntTask<K,V>
6535     (t, b, false, transformer, id, reducer);
6536     t.sibling = rt;
6537     rt.sibling = t;
6538     rt.fork();
6539     }
6540     int r = id;
6541     Object v;
6542     while ((v = t.advance()) != null)
6543     r = reducer.apply(r, transformer.apply((V)v));
6544     t.result = r;
6545     for (;;) {
6546     int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6547     if ((par = t.parent) == null ||
6548     !(par instanceof MapReduceValuesToIntTask)) {
6549     t.quietlyComplete();
6550     break;
6551     }
6552     else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6553     if ((s = t.sibling) != null)
6554     r = reducer.apply(r, s.result);
6555     (t = p).result = r;
6556     }
6557     else if (p.casPending(c, 0))
6558     break;
6559     }
6560     }
6561     public final Integer getRawResult() { return result; }
6562     }
6563    
6564     static final class MapReduceEntriesToIntTask<K,V>
6565     extends BulkTask<K,V,Integer> {
6566     final ObjectToInt<Map.Entry<K,V>> transformer;
6567     final IntByIntToInt reducer;
6568     final int basis;
6569     int result;
6570     MapReduceEntriesToIntTask<K,V> sibling;
6571     MapReduceEntriesToIntTask
6572     (ConcurrentHashMapV8<K,V> m,
6573     ObjectToInt<Map.Entry<K,V>> transformer,
6574     int basis,
6575     IntByIntToInt reducer) {
6576     super(m);
6577     this.transformer = transformer;
6578     this.basis = basis; this.reducer = reducer;
6579     }
6580     MapReduceEntriesToIntTask
6581     (BulkTask<K,V,?> p, int b, boolean split,
6582     ObjectToInt<Map.Entry<K,V>> transformer,
6583     int basis,
6584     IntByIntToInt reducer) {
6585     super(p, b, split);
6586     this.transformer = transformer;
6587     this.basis = basis; this.reducer = reducer;
6588     }
6589     public final void compute() {
6590     MapReduceEntriesToIntTask<K,V> t = this;
6591     final ObjectToInt<Map.Entry<K,V>> transformer =
6592     this.transformer;
6593     final IntByIntToInt reducer = this.reducer;
6594     if (transformer == null || reducer == null)
6595     throw new Error(NullFunctionMessage);
6596     final int id = this.basis;
6597     int b = batch();
6598     while (b > 1 && t.baseIndex != t.baseLimit) {
6599     b >>>= 1;
6600     t.pending = 1;
6601     MapReduceEntriesToIntTask<K,V> rt =
6602     new MapReduceEntriesToIntTask<K,V>
6603     (t, b, true, transformer, id, reducer);
6604     t = new MapReduceEntriesToIntTask<K,V>
6605     (t, b, false, transformer, id, reducer);
6606     t.sibling = rt;
6607     rt.sibling = t;
6608     rt.fork();
6609     }
6610     int r = id;
6611     Object v;
6612     while ((v = t.advance()) != null)
6613     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6614     t.result = r;
6615     for (;;) {
6616     int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6617     if ((par = t.parent) == null ||
6618     !(par instanceof MapReduceEntriesToIntTask)) {
6619     t.quietlyComplete();
6620     break;
6621     }
6622     else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6623     if ((s = t.sibling) != null)
6624     r = reducer.apply(r, s.result);
6625     (t = p).result = r;
6626     }
6627     else if (p.casPending(c, 0))
6628     break;
6629     }
6630     }
6631     public final Integer getRawResult() { return result; }
6632     }
6633    
6634     static final class MapReduceMappingsToIntTask<K,V>
6635     extends BulkTask<K,V,Integer> {
6636     final ObjectByObjectToInt<? super K, ? super V> transformer;
6637     final IntByIntToInt reducer;
6638     final int basis;
6639     int result;
6640     MapReduceMappingsToIntTask<K,V> sibling;
6641     MapReduceMappingsToIntTask
6642     (ConcurrentHashMapV8<K,V> m,
6643     ObjectByObjectToInt<? super K, ? super V> transformer,
6644     int basis,
6645     IntByIntToInt reducer) {
6646     super(m);
6647     this.transformer = transformer;
6648     this.basis = basis; this.reducer = reducer;
6649     }
6650     MapReduceMappingsToIntTask
6651     (BulkTask<K,V,?> p, int b, boolean split,
6652     ObjectByObjectToInt<? super K, ? super V> transformer,
6653     int basis,
6654     IntByIntToInt reducer) {
6655     super(p, b, split);
6656     this.transformer = transformer;
6657     this.basis = basis; this.reducer = reducer;
6658     }
6659     public final void compute() {
6660     MapReduceMappingsToIntTask<K,V> t = this;
6661     final ObjectByObjectToInt<? super K, ? super V> transformer =
6662     this.transformer;
6663     final IntByIntToInt reducer = this.reducer;
6664     if (transformer == null || reducer == null)
6665     throw new Error(NullFunctionMessage);
6666     final int id = this.basis;
6667     int b = batch();
6668     while (b > 1 && t.baseIndex != t.baseLimit) {
6669     b >>>= 1;
6670     t.pending = 1;
6671     MapReduceMappingsToIntTask<K,V> rt =
6672     new MapReduceMappingsToIntTask<K,V>
6673     (t, b, true, transformer, id, reducer);
6674     t = new MapReduceMappingsToIntTask<K,V>
6675     (t, b, false, transformer, id, reducer);
6676     t.sibling = rt;
6677     rt.sibling = t;
6678     rt.fork();
6679     }
6680     int r = id;
6681     Object v;
6682     while ((v = t.advance()) != null)
6683     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6684     t.result = r;
6685     for (;;) {
6686     int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6687     if ((par = t.parent) == null ||
6688     !(par instanceof MapReduceMappingsToIntTask)) {
6689     t.quietlyComplete();
6690     break;
6691     }
6692     else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6693     if ((s = t.sibling) != null)
6694     r = reducer.apply(r, s.result);
6695     (t = p).result = r;
6696     }
6697     else if (p.casPending(c, 0))
6698     break;
6699     }
6700     }
6701     public final Integer getRawResult() { return result; }
6702     }
6703    
6704    
6705     // Unsafe mechanics
6706     private static final sun.misc.Unsafe UNSAFE;
6707     private static final long counterOffset;
6708     private static final long sizeCtlOffset;
6709     private static final long ABASE;
6710     private static final int ASHIFT;
6711    
6712     static {
6713     int ss;
6714     try {
6715     UNSAFE = getUnsafe();
6716     Class<?> k = ConcurrentHashMapV8.class;
6717     counterOffset = UNSAFE.objectFieldOffset
6718     (k.getDeclaredField("counter"));
6719     sizeCtlOffset = UNSAFE.objectFieldOffset
6720     (k.getDeclaredField("sizeCtl"));
6721     Class<?> sc = Node[].class;
6722     ABASE = UNSAFE.arrayBaseOffset(sc);
6723     ss = UNSAFE.arrayIndexScale(sc);
6724     } catch (Exception e) {
6725     throw new Error(e);
6726     }
6727     if ((ss & (ss-1)) != 0)
6728     throw new Error("data type scale not a power of two");
6729     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6730     }
6731    
6732     /**
6733     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6734     * Replace with a simple call to Unsafe.getUnsafe when integrating
6735     * into a jdk.
6736     *
6737     * @return a sun.misc.Unsafe
6738     */
6739     private static sun.misc.Unsafe getUnsafe() {
6740     try {
6741     return sun.misc.Unsafe.getUnsafe();
6742     } catch (SecurityException se) {
6743     try {
6744     return java.security.AccessController.doPrivileged
6745     (new java.security
6746     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6747     public sun.misc.Unsafe run() throws Exception {
6748     java.lang.reflect.Field f = sun.misc
6749     .Unsafe.class.getDeclaredField("theUnsafe");
6750     f.setAccessible(true);
6751     return (sun.misc.Unsafe) f.get(null);
6752     }});
6753     } catch (java.security.PrivilegedActionException e) {
6754     throw new RuntimeException("Could not initialize intrinsics",
6755     e.getCause());
6756     }
6757     }
6758     }
6759 dl 1.1 }