ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.59
Committed: Tue Aug 14 13:16:50 2012 UTC (11 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.58: +172 -99 lines
Log Message:
Earlier early return; misc cleanup

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8     import jsr166e.LongAdder;
9 dl 1.52 import jsr166e.ForkJoinPool;
10     import jsr166e.ForkJoinTask;
11    
12     import java.util.Comparator;
13 dl 1.24 import java.util.Arrays;
14 dl 1.1 import java.util.Map;
15     import java.util.Set;
16     import java.util.Collection;
17     import java.util.AbstractMap;
18     import java.util.AbstractSet;
19     import java.util.AbstractCollection;
20     import java.util.Hashtable;
21     import java.util.HashMap;
22     import java.util.Iterator;
23     import java.util.Enumeration;
24     import java.util.ConcurrentModificationException;
25     import java.util.NoSuchElementException;
26     import java.util.concurrent.ConcurrentMap;
27 dl 1.37 import java.util.concurrent.ThreadLocalRandom;
28 dl 1.24 import java.util.concurrent.locks.LockSupport;
29 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
31    
32 dl 1.1 import java.io.Serializable;
33    
34     /**
35     * A hash table supporting full concurrency of retrievals and
36     * high expected concurrency for updates. This class obeys the
37     * same functional specification as {@link java.util.Hashtable}, and
38     * includes versions of methods corresponding to each method of
39     * {@code Hashtable}. However, even though all operations are
40     * thread-safe, retrieval operations do <em>not</em> entail locking,
41     * and there is <em>not</em> any support for locking the entire table
42     * in a way that prevents all access. This class is fully
43     * interoperable with {@code Hashtable} in programs that rely on its
44     * thread safety but not on its synchronization details.
45     *
46     * <p> Retrieval operations (including {@code get}) generally do not
47     * block, so may overlap with update operations (including {@code put}
48     * and {@code remove}). Retrievals reflect the results of the most
49     * recently <em>completed</em> update operations holding upon their
50 dl 1.59 * onset. (More formally, an update operation for a given key bears a
51     * <em>happens-before</em> relation with any (non-null) retrieval for
52     * that key reporting the updated value.) For aggregate operations
53     * such as {@code putAll} and {@code clear}, concurrent retrievals may
54     * reflect insertion or removal of only some entries. Similarly,
55     * Iterators and Enumerations return elements reflecting the state of
56     * the hash table at some point at or since the creation of the
57     * iterator/enumeration. They do <em>not</em> throw {@link
58     * ConcurrentModificationException}. However, iterators are designed
59     * to be used by only one thread at a time. Bear in mind that the
60     * results of aggregate status methods including {@code size}, {@code
61     * isEmpty}, and {@code containsValue} are typically useful only when
62     * a map is not undergoing concurrent updates in other threads.
63     * Otherwise the results of these methods reflect transient states
64     * that may be adequate for monitoring or estimation purposes, but not
65     * for program control.
66 dl 1.1 *
67 dl 1.16 * <p> The table is dynamically expanded when there are too many
68     * collisions (i.e., keys that have distinct hash codes but fall into
69     * the same slot modulo the table size), with the expected average
70 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
71     * to a 0.75 load factor threshold for resizing). There may be much
72     * variance around this average as mappings are added and removed, but
73     * overall, this maintains a commonly accepted time/space tradeoff for
74     * hash tables. However, resizing this or any other kind of hash
75     * table may be a relatively slow operation. When possible, it is a
76     * good idea to provide a size estimate as an optional {@code
77 dl 1.16 * initialCapacity} constructor argument. An additional optional
78     * {@code loadFactor} constructor argument provides a further means of
79     * customizing initial table capacity by specifying the table density
80     * to be used in calculating the amount of space to allocate for the
81     * given number of elements. Also, for compatibility with previous
82     * versions of this class, constructors may optionally specify an
83     * expected {@code concurrencyLevel} as an additional hint for
84     * internal sizing. Note that using many keys with exactly the same
85 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
86 dl 1.16 * hash table.
87 dl 1.1 *
88     * <p>This class and its views and iterators implement all of the
89     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
90     * interfaces.
91     *
92     * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
93     * does <em>not</em> allow {@code null} to be used as a key or value.
94     *
95     * <p>This class is a member of the
96     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
97     * Java Collections Framework</a>.
98     *
99     * <p><em>jsr166e note: This class is a candidate replacement for
100 dl 1.52 * java.util.concurrent.ConcurrentHashMap. During transition, this
101     * class declares and uses nested functional interfaces with different
102     * names but the same forms as those expected for JDK8.<em>
103 dl 1.1 *
104 jsr166 1.22 * @since 1.5
105 dl 1.1 * @author Doug Lea
106     * @param <K> the type of keys maintained by this map
107     * @param <V> the type of mapped values
108     */
109     public class ConcurrentHashMapV8<K, V>
110 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
111 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
112    
113     /**
114 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
115     * directly, but can also be partitioned (before traversal) by
116     * creating another Spliterator that covers a non-overlapping
117     * portion of the elements, and so may be amenable to parallel
118     * execution.
119     *
120     * <p> This interface exports a subset of expected JDK8
121     * functionality.
122     *
123     * <p>Sample usage: Here is one (of the several) ways to compute
124     * the sum of the values held in a map using the ForkJoin
125     * framework. As illustrated here, Spliterators are well suited to
126     * designs in which a task repeatedly splits off half its work
127     * into forked subtasks until small enough to process directly,
128 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
129     * be used in completion-based designs.
130 dl 1.41 *
131     * <pre>
132     * {@code ConcurrentHashMapV8<String, Long> m = ...
133 dl 1.52 * // split as if have 8 * parallelism, for load balance
134     * int n = m.size();
135     * int p = aForkJoinPool.getParallelism() * 8;
136     * int split = (n < p)? n : p;
137     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
138 dl 1.41 * // ...
139     * static class SumValues extends RecursiveTask<Long> {
140     * final Spliterator<Long> s;
141 dl 1.52 * final int split; // split while > 1
142 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
143     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
144     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
145     * }
146     * public Long compute() {
147     * long sum = 0;
148     * SumValues subtasks = null; // fork subtasks
149 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
150     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
151 dl 1.41 * while (s.hasNext()) // directly process remaining elements
152     * sum += s.next();
153     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
154     * sum += t.join(); // collect subtask results
155     * return sum;
156     * }
157     * }
158     * }</pre>
159     */
160     public static interface Spliterator<T> extends Iterator<T> {
161     /**
162     * Returns a Spliterator covering approximately half of the
163     * elements, guaranteed not to overlap with those subsequently
164     * returned by this Spliterator. After invoking this method,
165     * the current Spliterator will <em>not</em> produce any of
166     * the elements of the returned Spliterator, but the two
167     * Spliterators together will produce all of the elements that
168     * would have been produced by this Spliterator had this
169     * method not been called. The exact number of elements
170     * produced by the returned Spliterator is not guaranteed, and
171     * may be zero (i.e., with {@code hasNext()} reporting {@code
172     * false}) if this Spliterator cannot be further split.
173     *
174     * @return a Spliterator covering approximately half of the
175     * elements
176     * @throws IllegalStateException if this Spliterator has
177 jsr166 1.45 * already commenced traversing elements
178 dl 1.41 */
179     Spliterator<T> split();
180     }
181    
182 dl 1.1 /*
183     * Overview:
184     *
185     * The primary design goal of this hash table is to maintain
186     * concurrent readability (typically method get(), but also
187     * iterators and related methods) while minimizing update
188 dl 1.24 * contention. Secondary goals are to keep space consumption about
189     * the same or better than java.util.HashMap, and to support high
190     * initial insertion rates on an empty table by many threads.
191 dl 1.1 *
192     * Each key-value mapping is held in a Node. Because Node fields
193     * can contain special values, they are defined using plain Object
194     * types. Similarly in turn, all internal methods that use them
195 dl 1.14 * work off Object types. And similarly, so do the internal
196     * methods of auxiliary iterator and view classes. All public
197     * generic typed methods relay in/out of these internal methods,
198 dl 1.27 * supplying null-checks and casts as needed. This also allows
199     * many of the public methods to be factored into a smaller number
200     * of internal methods (although sadly not so for the five
201 dl 1.38 * variants of put-related operations). The validation-based
202     * approach explained below leads to a lot of code sprawl because
203     * retry-control precludes factoring into smaller methods.
204 dl 1.1 *
205     * The table is lazily initialized to a power-of-two size upon the
206 dl 1.38 * first insertion. Each bin in the table normally contains a
207     * list of Nodes (most often, the list has only zero or one Node).
208     * Table accesses require volatile/atomic reads, writes, and
209     * CASes. Because there is no other way to arrange this without
210     * adding further indirections, we use intrinsics
211     * (sun.misc.Unsafe) operations. The lists of nodes within bins
212     * are always accurately traversable under volatile reads, so long
213     * as lookups check hash code and non-nullness of value before
214     * checking key equality.
215 dl 1.24 *
216     * We use the top two bits of Node hash fields for control
217     * purposes -- they are available anyway because of addressing
218     * constraints. As explained further below, these top bits are
219 dl 1.27 * used as follows:
220 dl 1.24 * 00 - Normal
221     * 01 - Locked
222     * 11 - Locked and may have a thread waiting for lock
223     * 10 - Node is a forwarding node
224     *
225     * The lower 30 bits of each Node's hash field contain a
226 dl 1.38 * transformation of the key's hash code, except for forwarding
227     * nodes, for which the lower bits are zero (and so always have
228     * hash field == MOVED).
229 dl 1.14 *
230 dl 1.27 * Insertion (via put or its variants) of the first node in an
231 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
232 dl 1.38 * by far the most common case for put operations under most
233     * key/hash distributions. Other update operations (insert,
234     * delete, and replace) require locks. We do not want to waste
235     * the space required to associate a distinct lock object with
236     * each bin, so instead use the first node of a bin list itself as
237     * a lock. Blocking support for these locks relies on the builtin
238     * "synchronized" monitors. However, we also need a tryLock
239     * construction, so we overlay these by using bits of the Node
240     * hash field for lock control (see above), and so normally use
241     * builtin monitors only for blocking and signalling using
242     * wait/notifyAll constructions. See Node.tryAwaitLock.
243 dl 1.24 *
244     * Using the first node of a list as a lock does not by itself
245     * suffice though: When a node is locked, any update must first
246     * validate that it is still the first node after locking it, and
247     * retry if not. Because new nodes are always appended to lists,
248     * once a node is first in a bin, it remains first until deleted
249 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
250     * operations that only conditionally update may inspect nodes
251     * until the point of update. This is a converse of sorts to the
252     * lazy locking technique described by Herlihy & Shavit.
253 dl 1.14 *
254 dl 1.24 * The main disadvantage of per-bin locks is that other update
255 dl 1.14 * operations on other nodes in a bin list protected by the same
256     * lock can stall, for example when user equals() or mapping
257 dl 1.38 * functions take a long time. However, statistically, under
258     * random hash codes, this is not a common problem. Ideally, the
259     * frequency of nodes in bins follows a Poisson distribution
260 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
261 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
262     * of 0.75, although with a large variance because of resizing
263     * granularity. Ignoring variance, the expected occurrences of
264     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
265 dl 1.38 * first values are:
266 dl 1.16 *
267 dl 1.38 * 0: 0.60653066
268     * 1: 0.30326533
269     * 2: 0.07581633
270     * 3: 0.01263606
271     * 4: 0.00157952
272     * 5: 0.00015795
273     * 6: 0.00001316
274     * 7: 0.00000094
275     * 8: 0.00000006
276     * more: less than 1 in ten million
277 dl 1.16 *
278     * Lock contention probability for two threads accessing distinct
279 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
280     *
281     * Actual hash code distributions encountered in practice
282     * sometimes deviate significantly from uniform randomness. This
283     * includes the case when N > (1<<30), so some keys MUST collide.
284     * Similarly for dumb or hostile usages in which multiple keys are
285     * designed to have identical hash codes. Also, although we guard
286     * against the worst effects of this (see method spread), sets of
287     * hashes may differ only in bits that do not impact their bin
288     * index for a given power-of-two mask. So we use a secondary
289     * strategy that applies when the number of nodes in a bin exceeds
290     * a threshold, and at least one of the keys implements
291     * Comparable. These TreeBins use a balanced tree to hold nodes
292     * (a specialized form of red-black trees), bounding search time
293     * to O(log N). Each search step in a TreeBin is around twice as
294     * slow as in a regular list, but given that N cannot exceed
295     * (1<<64) (before running out of addresses) this bounds search
296     * steps, lock hold times, etc, to reasonable constants (roughly
297     * 100 nodes inspected per operation worst case) so long as keys
298     * are Comparable (which is very common -- String, Long, etc).
299     * TreeBin nodes (TreeNodes) also maintain the same "next"
300     * traversal pointers as regular nodes, so can be traversed in
301     * iterators in the same way.
302 dl 1.1 *
303 dl 1.38 * The table is resized when occupancy exceeds a percentage
304 dl 1.24 * threshold (nominally, 0.75, but see below). Only a single
305     * thread performs the resize (using field "sizeCtl", to arrange
306     * exclusion), but the table otherwise remains usable for reads
307     * and updates. Resizing proceeds by transferring bins, one by
308     * one, from the table to the next table. Because we are using
309     * power-of-two expansion, the elements from each bin must either
310     * stay at same index, or move with a power of two offset. We
311     * eliminate unnecessary node creation by catching cases where old
312     * nodes can be reused because their next fields won't change. On
313     * average, only about one-sixth of them need cloning when a table
314     * doubles. The nodes they replace will be garbage collectable as
315     * soon as they are no longer referenced by any reader thread that
316     * may be in the midst of concurrently traversing table. Upon
317     * transfer, the old table bin contains only a special forwarding
318     * node (with hash field "MOVED") that contains the next table as
319     * its key. On encountering a forwarding node, access and update
320     * operations restart, using the new table.
321     *
322     * Each bin transfer requires its bin lock. However, unlike other
323     * cases, a transfer can skip a bin if it fails to acquire its
324 dl 1.38 * lock, and revisit it later (unless it is a TreeBin). Method
325     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
326     * have been skipped because of failure to acquire a lock, and
327     * blocks only if none are available (i.e., only very rarely).
328     * The transfer operation must also ensure that all accessible
329     * bins in both the old and new table are usable by any traversal.
330     * When there are no lock acquisition failures, this is arranged
331     * simply by proceeding from the last bin (table.length - 1) up
332     * towards the first. Upon seeing a forwarding node, traversals
333 dl 1.52 * (see class Iter) arrange to move to the new table
334 dl 1.38 * without revisiting nodes. However, when any node is skipped
335     * during a transfer, all earlier table bins may have become
336     * visible, so are initialized with a reverse-forwarding node back
337     * to the old table until the new ones are established. (This
338     * sometimes requires transiently locking a forwarding node, which
339     * is possible under the above encoding.) These more expensive
340 dl 1.24 * mechanics trigger only when necessary.
341 dl 1.14 *
342 dl 1.24 * The traversal scheme also applies to partial traversals of
343 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
344 dl 1.41 * to support partitioned aggregate operations. Also, read-only
345     * operations give up if ever forwarded to a null table, which
346     * provides support for shutdown-style clearing, which is also not
347     * currently implemented.
348 dl 1.14 *
349     * Lazy table initialization minimizes footprint until first use,
350     * and also avoids resizings when the first operation is from a
351     * putAll, constructor with map argument, or deserialization.
352 dl 1.24 * These cases attempt to override the initial capacity settings,
353     * but harmlessly fail to take effect in cases of races.
354 dl 1.1 *
355     * The element count is maintained using a LongAdder, which avoids
356     * contention on updates but can encounter cache thrashing if read
357 dl 1.14 * too frequently during concurrent access. To avoid reading so
358 dl 1.27 * often, resizing is attempted either when a bin lock is
359     * contended, or upon adding to a bin already holding two or more
360     * nodes (checked before adding in the xIfAbsent methods, after
361     * adding in others). Under uniform hash distributions, the
362     * probability of this occurring at threshold is around 13%,
363     * meaning that only about 1 in 8 puts check threshold (and after
364     * resizing, many fewer do so). But this approximation has high
365     * variance for small table sizes, so we check on any collision
366     * for sizes <= 64. The bulk putAll operation further reduces
367     * contention by only committing count updates upon these size
368     * checks.
369 dl 1.14 *
370     * Maintaining API and serialization compatibility with previous
371     * versions of this class introduces several oddities. Mainly: We
372     * leave untouched but unused constructor arguments refering to
373 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
374     * but apply it only to initial table capacity (which is the only
375     * time that we can guarantee to honor it.) We also declare an
376     * unused "Segment" class that is instantiated in minimal form
377     * only when serializing.
378 dl 1.1 */
379    
380     /* ---------------- Constants -------------- */
381    
382     /**
383 dl 1.16 * The largest possible table capacity. This value must be
384     * exactly 1<<30 to stay within Java array allocation and indexing
385 dl 1.24 * bounds for power of two table sizes, and is further required
386     * because the top two bits of 32bit hash fields are used for
387     * control purposes.
388 dl 1.1 */
389 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
390 dl 1.1
391     /**
392 dl 1.14 * The default initial table capacity. Must be a power of 2
393     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
394 dl 1.1 */
395 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
396 dl 1.1
397     /**
398 dl 1.24 * The largest possible (non-power of two) array size.
399     * Needed by toArray and related methods.
400     */
401     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
402    
403     /**
404     * The default concurrency level for this table. Unused but
405     * defined for compatibility with previous versions of this class.
406     */
407     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
408    
409     /**
410 dl 1.16 * The load factor for this table. Overrides of this value in
411     * constructors affect only the initial table capacity. The
412 dl 1.24 * actual floating point value isn't normally used -- it is
413     * simpler to use expressions such as {@code n - (n >>> 2)} for
414     * the associated resizing threshold.
415 dl 1.1 */
416 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
417 dl 1.1
418     /**
419 dl 1.24 * The buffer size for skipped bins during transfers. The
420     * value is arbitrary but should be large enough to avoid
421     * most locking stalls during resizes.
422     */
423     private static final int TRANSFER_BUFFER_SIZE = 32;
424    
425 dl 1.38 /**
426     * The bin count threshold for using a tree rather than list for a
427     * bin. The value reflects the approximate break-even point for
428     * using tree-based operations.
429     */
430     private static final int TREE_THRESHOLD = 8;
431    
432 dl 1.24 /*
433     * Encodings for special uses of Node hash fields. See above for
434     * explanation.
435 dl 1.1 */
436 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
437 dl 1.24 static final int LOCKED = 0x40000000; // set/tested only as a bit
438     static final int WAITING = 0xc0000000; // both bits set/tested together
439     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
440    
441     /* ---------------- Fields -------------- */
442    
443     /**
444     * The array of bins. Lazily initialized upon first insertion.
445     * Size is always a power of two. Accessed directly by iterators.
446     */
447     transient volatile Node[] table;
448 dl 1.14
449 dl 1.16 /**
450 dl 1.24 * The counter maintaining number of elements.
451 dl 1.16 */
452 dl 1.24 private transient final LongAdder counter;
453    
454     /**
455     * Table initialization and resizing control. When negative, the
456     * table is being initialized or resized. Otherwise, when table is
457     * null, holds the initial table size to use upon creation, or 0
458     * for default. After initialization, holds the next element count
459     * value upon which to resize the table.
460     */
461     private transient volatile int sizeCtl;
462    
463     // views
464     private transient KeySet<K,V> keySet;
465     private transient Values<K,V> values;
466     private transient EntrySet<K,V> entrySet;
467    
468     /** For serialization compatibility. Null unless serialized; see below */
469     private Segment<K,V>[] segments;
470 dl 1.16
471 dl 1.38 /* ---------------- Table element access -------------- */
472    
473     /*
474     * Volatile access methods are used for table elements as well as
475     * elements of in-progress next table while resizing. Uses are
476     * null checked by callers, and implicitly bounds-checked, relying
477     * on the invariants that tab arrays have non-zero size, and all
478     * indices are masked with (tab.length - 1) which is never
479     * negative and always less than length. Note that, to be correct
480     * wrt arbitrary concurrency errors by users, bounds checks must
481     * operate on local variables, which accounts for some odd-looking
482     * inline assignments below.
483     */
484    
485 dl 1.52 static final Node tabAt(Node[] tab, int i) { // used by Iter
486 dl 1.38 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
487     }
488    
489     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
490     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
491     }
492    
493     private static final void setTabAt(Node[] tab, int i, Node v) {
494     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
495     }
496    
497 dl 1.14 /* ---------------- Nodes -------------- */
498 dl 1.1
499     /**
500 dl 1.14 * Key-value entry. Note that this is never exported out as a
501 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
502     * field of MOVED are special, and do not contain user keys or
503     * values. Otherwise, keys are never null, and null val fields
504     * indicate that a node is in the process of being deleted or
505     * created. For purposes of read-only access, a key may be read
506     * before a val, but can only be used after checking val to be
507     * non-null.
508 dl 1.1 */
509 dl 1.38 static class Node {
510 dl 1.24 volatile int hash;
511 dl 1.14 final Object key;
512     volatile Object val;
513     volatile Node next;
514    
515     Node(int hash, Object key, Object val, Node next) {
516     this.hash = hash;
517     this.key = key;
518     this.val = val;
519     this.next = next;
520     }
521    
522 dl 1.24 /** CompareAndSet the hash field */
523     final boolean casHash(int cmp, int val) {
524     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
525     }
526 dl 1.1
527 dl 1.24 /** The number of spins before blocking for a lock */
528     static final int MAX_SPINS =
529     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
530 dl 1.1
531 dl 1.24 /**
532     * Spins a while if LOCKED bit set and this node is the first
533     * of its bin, and then sets WAITING bits on hash field and
534     * blocks (once) if they are still set. It is OK for this
535     * method to return even if lock is not available upon exit,
536     * which enables these simple single-wait mechanics.
537     *
538     * The corresponding signalling operation is performed within
539     * callers: Upon detecting that WAITING has been set when
540     * unlocking lock (via a failed CAS from non-waiting LOCKED
541     * state), unlockers acquire the sync lock and perform a
542     * notifyAll.
543     */
544     final void tryAwaitLock(Node[] tab, int i) {
545     if (tab != null && i >= 0 && i < tab.length) { // bounds check
546 dl 1.37 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
547 dl 1.24 int spins = MAX_SPINS, h;
548     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
549     if (spins >= 0) {
550 dl 1.37 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
551     if (r >= 0 && --spins == 0)
552     Thread.yield(); // yield before block
553 dl 1.24 }
554     else if (casHash(h, h | WAITING)) {
555 jsr166 1.26 synchronized (this) {
556 dl 1.24 if (tabAt(tab, i) == this &&
557     (hash & WAITING) == WAITING) {
558     try {
559     wait();
560     } catch (InterruptedException ie) {
561     Thread.currentThread().interrupt();
562     }
563     }
564     else
565     notifyAll(); // possibly won race vs signaller
566     }
567     break;
568     }
569     }
570     }
571     }
572 dl 1.1
573 dl 1.24 // Unsafe mechanics for casHash
574     private static final sun.misc.Unsafe UNSAFE;
575     private static final long hashOffset;
576 dl 1.1
577 dl 1.24 static {
578     try {
579     UNSAFE = getUnsafe();
580     Class<?> k = Node.class;
581     hashOffset = UNSAFE.objectFieldOffset
582     (k.getDeclaredField("hash"));
583     } catch (Exception e) {
584     throw new Error(e);
585     }
586     }
587     }
588 dl 1.1
589 dl 1.38 /* ---------------- TreeBins -------------- */
590    
591     /**
592     * Nodes for use in TreeBins
593     */
594     static final class TreeNode extends Node {
595     TreeNode parent; // red-black tree links
596     TreeNode left;
597     TreeNode right;
598     TreeNode prev; // needed to unlink next upon deletion
599     boolean red;
600    
601     TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
602     super(hash, key, val, next);
603     this.parent = parent;
604     }
605     }
606 dl 1.1
607 dl 1.38 /**
608     * A specialized form of red-black tree for use in bins
609     * whose size exceeds a threshold.
610     *
611     * TreeBins use a special form of comparison for search and
612     * related operations (which is the main reason we cannot use
613     * existing collections such as TreeMaps). TreeBins contain
614     * Comparable elements, but may contain others, as well as
615     * elements that are Comparable but not necessarily Comparable<T>
616     * for the same T, so we cannot invoke compareTo among them. To
617     * handle this, the tree is ordered primarily by hash value, then
618     * by getClass().getName() order, and then by Comparator order
619     * among elements of the same class. On lookup at a node, if
620 dl 1.41 * elements are not comparable or compare as 0, both left and
621     * right children may need to be searched in the case of tied hash
622     * values. (This corresponds to the full list search that would be
623     * necessary if all elements were non-Comparable and had tied
624     * hashes.) The red-black balancing code is updated from
625     * pre-jdk-collections
626     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
627     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
628     * Algorithms" (CLR).
629 dl 1.38 *
630     * TreeBins also maintain a separate locking discipline than
631     * regular bins. Because they are forwarded via special MOVED
632     * nodes at bin heads (which can never change once established),
633 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
634 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
635     * read-write lock. For update operations and table validation,
636     * the exclusive form of lock behaves in the same way as bin-head
637     * locks. However, lookups use shared read-lock mechanics to allow
638     * multiple readers in the absence of writers. Additionally,
639     * these lookups do not ever block: While the lock is not
640     * available, they proceed along the slow traversal path (via
641     * next-pointers) until the lock becomes available or the list is
642     * exhausted, whichever comes first. (These cases are not fast,
643     * but maximize aggregate expected throughput.) The AQS mechanics
644     * for doing this are straightforward. The lock state is held as
645     * AQS getState(). Read counts are negative; the write count (1)
646     * is positive. There are no signalling preferences among readers
647     * and writers. Since we don't need to export full Lock API, we
648     * just override the minimal AQS methods and use them directly.
649 dl 1.1 */
650 dl 1.38 static final class TreeBin extends AbstractQueuedSynchronizer {
651     private static final long serialVersionUID = 2249069246763182397L;
652 dl 1.41 transient TreeNode root; // root of tree
653     transient TreeNode first; // head of next-pointer list
654 dl 1.1
655 dl 1.38 /* AQS overrides */
656     public final boolean isHeldExclusively() { return getState() > 0; }
657     public final boolean tryAcquire(int ignore) {
658     if (compareAndSetState(0, 1)) {
659     setExclusiveOwnerThread(Thread.currentThread());
660     return true;
661     }
662     return false;
663     }
664     public final boolean tryRelease(int ignore) {
665     setExclusiveOwnerThread(null);
666     setState(0);
667     return true;
668     }
669     public final int tryAcquireShared(int ignore) {
670     for (int c;;) {
671     if ((c = getState()) > 0)
672     return -1;
673     if (compareAndSetState(c, c -1))
674     return 1;
675     }
676     }
677     public final boolean tryReleaseShared(int ignore) {
678     int c;
679     do {} while (!compareAndSetState(c = getState(), c + 1));
680     return c == -1;
681     }
682    
683 dl 1.41 /** From CLR */
684     private void rotateLeft(TreeNode p) {
685     if (p != null) {
686     TreeNode r = p.right, pp, rl;
687     if ((rl = p.right = r.left) != null)
688     rl.parent = p;
689     if ((pp = r.parent = p.parent) == null)
690     root = r;
691     else if (pp.left == p)
692     pp.left = r;
693     else
694     pp.right = r;
695     r.left = p;
696     p.parent = r;
697     }
698     }
699    
700     /** From CLR */
701     private void rotateRight(TreeNode p) {
702     if (p != null) {
703     TreeNode l = p.left, pp, lr;
704     if ((lr = p.left = l.right) != null)
705     lr.parent = p;
706     if ((pp = l.parent = p.parent) == null)
707     root = l;
708     else if (pp.right == p)
709     pp.right = l;
710     else
711     pp.left = l;
712     l.right = p;
713     p.parent = l;
714     }
715     }
716    
717 dl 1.38 /**
718 jsr166 1.56 * Returns the TreeNode (or null if not found) for the given key
719 dl 1.38 * starting at given root.
720     */
721     @SuppressWarnings("unchecked") // suppress Comparable cast warning
722 dl 1.59 final TreeNode getTreeNode(int h, Object k, TreeNode p) {
723 dl 1.38 Class<?> c = k.getClass();
724     while (p != null) {
725 dl 1.41 int dir, ph; Object pk; Class<?> pc;
726     if ((ph = p.hash) == h) {
727     if ((pk = p.key) == k || k.equals(pk))
728     return p;
729     if (c != (pc = pk.getClass()) ||
730     !(k instanceof Comparable) ||
731     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
732 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
733 dl 1.41 TreeNode r = null, s = null, pl, pr;
734     if (dir >= 0) {
735     if ((pl = p.left) != null && h <= pl.hash)
736     s = pl;
737     }
738     else if ((pr = p.right) != null && h >= pr.hash)
739     s = pr;
740     if (s != null && (r = getTreeNode(h, k, s)) != null)
741     return r;
742     }
743     }
744 dl 1.38 else
745 dl 1.41 dir = (h < ph) ? -1 : 1;
746     p = (dir > 0) ? p.right : p.left;
747 dl 1.38 }
748     return null;
749     }
750    
751     /**
752     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
753     * read-lock to call getTreeNode, but during failure to get
754     * lock, searches along next links.
755     */
756     final Object getValue(int h, Object k) {
757     Node r = null;
758     int c = getState(); // Must read lock state first
759     for (Node e = first; e != null; e = e.next) {
760     if (c <= 0 && compareAndSetState(c, c - 1)) {
761     try {
762     r = getTreeNode(h, k, root);
763     } finally {
764     releaseShared(0);
765     }
766     break;
767     }
768     else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
769     r = e;
770     break;
771     }
772     else
773     c = getState();
774     }
775     return r == null ? null : r.val;
776     }
777    
778     /**
779 jsr166 1.45 * Finds or adds a node.
780 dl 1.38 * @return null if added
781     */
782     @SuppressWarnings("unchecked") // suppress Comparable cast warning
783 dl 1.59 final TreeNode putTreeNode(int h, Object k, Object v) {
784 dl 1.38 Class<?> c = k.getClass();
785 dl 1.41 TreeNode pp = root, p = null;
786 dl 1.38 int dir = 0;
787 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
788     int ph; Object pk; Class<?> pc;
789     p = pp;
790     if ((ph = p.hash) == h) {
791     if ((pk = p.key) == k || k.equals(pk))
792 dl 1.38 return p;
793 dl 1.41 if (c != (pc = pk.getClass()) ||
794     !(k instanceof Comparable) ||
795     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
796 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
797 dl 1.41 TreeNode r = null, s = null, pl, pr;
798     if (dir >= 0) {
799     if ((pl = p.left) != null && h <= pl.hash)
800     s = pl;
801     }
802     else if ((pr = p.right) != null && h >= pr.hash)
803     s = pr;
804     if (s != null && (r = getTreeNode(h, k, s)) != null)
805     return r;
806 dl 1.38 }
807     }
808 dl 1.41 else
809     dir = (h < ph) ? -1 : 1;
810     pp = (dir > 0) ? p.right : p.left;
811 dl 1.38 }
812 dl 1.41
813 dl 1.38 TreeNode f = first;
814 dl 1.41 TreeNode x = first = new TreeNode(h, k, v, f, p);
815 dl 1.38 if (p == null)
816 dl 1.41 root = x;
817     else { // attach and rebalance; adapted from CLR
818     TreeNode xp, xpp;
819     if (f != null)
820     f.prev = x;
821 dl 1.38 if (dir <= 0)
822 dl 1.41 p.left = x;
823 dl 1.38 else
824 dl 1.41 p.right = x;
825     x.red = true;
826     while (x != null && (xp = x.parent) != null && xp.red &&
827     (xpp = xp.parent) != null) {
828     TreeNode xppl = xpp.left;
829     if (xp == xppl) {
830     TreeNode y = xpp.right;
831     if (y != null && y.red) {
832     y.red = false;
833     xp.red = false;
834     xpp.red = true;
835     x = xpp;
836     }
837     else {
838     if (x == xp.right) {
839     rotateLeft(x = xp);
840     xpp = (xp = x.parent) == null ? null : xp.parent;
841     }
842     if (xp != null) {
843     xp.red = false;
844     if (xpp != null) {
845     xpp.red = true;
846     rotateRight(xpp);
847     }
848     }
849     }
850     }
851     else {
852     TreeNode y = xppl;
853     if (y != null && y.red) {
854     y.red = false;
855     xp.red = false;
856     xpp.red = true;
857     x = xpp;
858     }
859     else {
860     if (x == xp.left) {
861     rotateRight(x = xp);
862     xpp = (xp = x.parent) == null ? null : xp.parent;
863     }
864     if (xp != null) {
865     xp.red = false;
866     if (xpp != null) {
867     xpp.red = true;
868     rotateLeft(xpp);
869     }
870     }
871     }
872     }
873     }
874     TreeNode r = root;
875     if (r != null && r.red)
876     r.red = false;
877 dl 1.38 }
878     return null;
879     }
880 dl 1.1
881 dl 1.38 /**
882     * Removes the given node, that must be present before this
883     * call. This is messier than typical red-black deletion code
884     * because we cannot swap the contents of an interior node
885     * with a leaf successor that is pinned by "next" pointers
886     * that are accessible independently of lock. So instead we
887     * swap the tree linkages.
888     */
889     final void deleteTreeNode(TreeNode p) {
890     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
891     TreeNode pred = p.prev;
892     if (pred == null)
893     first = next;
894     else
895     pred.next = next;
896     if (next != null)
897     next.prev = pred;
898     TreeNode replacement;
899     TreeNode pl = p.left;
900     TreeNode pr = p.right;
901     if (pl != null && pr != null) {
902 dl 1.41 TreeNode s = pr, sl;
903     while ((sl = s.left) != null) // find successor
904     s = sl;
905 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
906     TreeNode sr = s.right;
907     TreeNode pp = p.parent;
908     if (s == pr) { // p was s's direct parent
909     p.parent = s;
910     s.right = p;
911     }
912     else {
913     TreeNode sp = s.parent;
914     if ((p.parent = sp) != null) {
915     if (s == sp.left)
916     sp.left = p;
917     else
918     sp.right = p;
919     }
920     if ((s.right = pr) != null)
921     pr.parent = s;
922     }
923     p.left = null;
924     if ((p.right = sr) != null)
925     sr.parent = p;
926     if ((s.left = pl) != null)
927     pl.parent = s;
928     if ((s.parent = pp) == null)
929     root = s;
930     else if (p == pp.left)
931     pp.left = s;
932     else
933     pp.right = s;
934     replacement = sr;
935     }
936     else
937     replacement = (pl != null) ? pl : pr;
938     TreeNode pp = p.parent;
939     if (replacement == null) {
940     if (pp == null) {
941     root = null;
942     return;
943     }
944     replacement = p;
945     }
946     else {
947     replacement.parent = pp;
948     if (pp == null)
949     root = replacement;
950     else if (p == pp.left)
951     pp.left = replacement;
952     else
953     pp.right = replacement;
954     p.left = p.right = p.parent = null;
955     }
956 dl 1.41 if (!p.red) { // rebalance, from CLR
957     TreeNode x = replacement;
958     while (x != null) {
959     TreeNode xp, xpl;
960     if (x.red || (xp = x.parent) == null) {
961     x.red = false;
962     break;
963 dl 1.38 }
964 dl 1.41 if (x == (xpl = xp.left)) {
965     TreeNode sib = xp.right;
966     if (sib != null && sib.red) {
967     sib.red = false;
968     xp.red = true;
969     rotateLeft(xp);
970     sib = (xp = x.parent) == null ? null : xp.right;
971 dl 1.38 }
972 dl 1.41 if (sib == null)
973 dl 1.38 x = xp;
974     else {
975 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
976     if ((sr == null || !sr.red) &&
977     (sl == null || !sl.red)) {
978 dl 1.38 sib.red = true;
979 dl 1.41 x = xp;
980 dl 1.38 }
981 dl 1.41 else {
982     if (sr == null || !sr.red) {
983     if (sl != null)
984     sl.red = false;
985     sib.red = true;
986     rotateRight(sib);
987     sib = (xp = x.parent) == null ? null : xp.right;
988     }
989     if (sib != null) {
990 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
991 dl 1.41 if ((sr = sib.right) != null)
992     sr.red = false;
993     }
994     if (xp != null) {
995     xp.red = false;
996     rotateLeft(xp);
997     }
998     x = root;
999 dl 1.38 }
1000     }
1001     }
1002 dl 1.41 else { // symmetric
1003     TreeNode sib = xpl;
1004     if (sib != null && sib.red) {
1005     sib.red = false;
1006     xp.red = true;
1007     rotateRight(xp);
1008     sib = (xp = x.parent) == null ? null : xp.left;
1009     }
1010     if (sib == null)
1011 dl 1.38 x = xp;
1012     else {
1013 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1014     if ((sl == null || !sl.red) &&
1015     (sr == null || !sr.red)) {
1016 dl 1.38 sib.red = true;
1017 dl 1.41 x = xp;
1018 dl 1.38 }
1019 dl 1.41 else {
1020     if (sl == null || !sl.red) {
1021     if (sr != null)
1022     sr.red = false;
1023     sib.red = true;
1024     rotateLeft(sib);
1025     sib = (xp = x.parent) == null ? null : xp.left;
1026     }
1027     if (sib != null) {
1028 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1029 dl 1.41 if ((sl = sib.left) != null)
1030     sl.red = false;
1031     }
1032     if (xp != null) {
1033     xp.red = false;
1034     rotateRight(xp);
1035     }
1036     x = root;
1037 dl 1.38 }
1038     }
1039     }
1040     }
1041     }
1042 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1043     if (p == pp.left) // detach pointers
1044     pp.left = null;
1045     else if (p == pp.right)
1046     pp.right = null;
1047     p.parent = null;
1048     }
1049 dl 1.38 }
1050 dl 1.1 }
1051    
1052 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1053 dl 1.14
1054     /**
1055 dl 1.38 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1056     * Because the table uses power-of-two masking, sets of hashes
1057     * that vary only in bits above the current mask will always
1058     * collide. (Among known examples are sets of Float keys holding
1059     * consecutive whole numbers in small tables.) To counter this,
1060     * we apply a transform that spreads the impact of higher bits
1061     * downward. There is a tradeoff between speed, utility, and
1062     * quality of bit-spreading. Because many common sets of hashes
1063 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1064 dl 1.38 * from spreading), and because we use trees to handle large sets
1065     * of collisions in bins, we don't need excessively high quality.
1066 dl 1.14 */
1067     private static final int spread(int h) {
1068 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1069     return (h ^ (h >>> 10)) & HASH_BITS;
1070     }
1071    
1072     /**
1073     * Replaces a list bin with a tree bin. Call only when locked.
1074     * Fails to replace if the given key is non-comparable or table
1075     * is, or needs, resizing.
1076     */
1077     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1078     if ((key instanceof Comparable) &&
1079     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1080     TreeBin t = new TreeBin();
1081     for (Node e = tabAt(tab, index); e != null; e = e.next)
1082     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1083     setTabAt(tab, index, new Node(MOVED, t, null, null));
1084     }
1085 dl 1.14 }
1086 dl 1.1
1087 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1088    
1089 dl 1.14 /** Implementation for get and containsKey */
1090 jsr166 1.4 private final Object internalGet(Object k) {
1091 dl 1.1 int h = spread(k.hashCode());
1092 dl 1.14 retry: for (Node[] tab = table; tab != null;) {
1093 dl 1.38 Node e, p; Object ek, ev; int eh; // locals to read fields once
1094 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1095 dl 1.24 if ((eh = e.hash) == MOVED) {
1096 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1097     return ((TreeBin)ek).getValue(h, k);
1098     else { // restart with new table
1099     tab = (Node[])ek;
1100     continue retry;
1101     }
1102 dl 1.1 }
1103 dl 1.38 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1104     ((ek = e.key) == k || k.equals(ek)))
1105 dl 1.24 return ev;
1106 dl 1.1 }
1107     break;
1108     }
1109     return null;
1110     }
1111    
1112 dl 1.27 /**
1113     * Implementation for the four public remove/replace methods:
1114     * Replaces node value with v, conditional upon match of cv if
1115     * non-null. If resulting value is null, delete.
1116     */
1117     private final Object internalReplace(Object k, Object v, Object cv) {
1118     int h = spread(k.hashCode());
1119     Object oldVal = null;
1120     for (Node[] tab = table;;) {
1121 dl 1.38 Node f; int i, fh; Object fk;
1122 dl 1.27 if (tab == null ||
1123     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1124     break;
1125 dl 1.38 else if ((fh = f.hash) == MOVED) {
1126     if ((fk = f.key) instanceof TreeBin) {
1127     TreeBin t = (TreeBin)fk;
1128     boolean validated = false;
1129     boolean deleted = false;
1130     t.acquire(0);
1131     try {
1132     if (tabAt(tab, i) == f) {
1133     validated = true;
1134     TreeNode p = t.getTreeNode(h, k, t.root);
1135     if (p != null) {
1136     Object pv = p.val;
1137     if (cv == null || cv == pv || cv.equals(pv)) {
1138     oldVal = pv;
1139     if ((p.val = v) == null) {
1140     deleted = true;
1141     t.deleteTreeNode(p);
1142     }
1143     }
1144     }
1145     }
1146     } finally {
1147     t.release(0);
1148     }
1149     if (validated) {
1150     if (deleted)
1151     counter.add(-1L);
1152     break;
1153     }
1154     }
1155     else
1156     tab = (Node[])fk;
1157     }
1158 dl 1.27 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1159     break; // rules out possible existence
1160     else if ((fh & LOCKED) != 0) {
1161     checkForResize(); // try resizing if can't get lock
1162     f.tryAwaitLock(tab, i);
1163     }
1164     else if (f.casHash(fh, fh | LOCKED)) {
1165     boolean validated = false;
1166     boolean deleted = false;
1167     try {
1168     if (tabAt(tab, i) == f) {
1169     validated = true;
1170     for (Node e = f, pred = null;;) {
1171     Object ek, ev;
1172     if ((e.hash & HASH_BITS) == h &&
1173     ((ev = e.val) != null) &&
1174     ((ek = e.key) == k || k.equals(ek))) {
1175     if (cv == null || cv == ev || cv.equals(ev)) {
1176     oldVal = ev;
1177     if ((e.val = v) == null) {
1178     deleted = true;
1179     Node en = e.next;
1180     if (pred != null)
1181     pred.next = en;
1182     else
1183     setTabAt(tab, i, en);
1184     }
1185     }
1186     break;
1187     }
1188     pred = e;
1189     if ((e = e.next) == null)
1190     break;
1191     }
1192     }
1193     } finally {
1194     if (!f.casHash(fh | LOCKED, fh)) {
1195     f.hash = fh;
1196 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1197 dl 1.27 }
1198     }
1199     if (validated) {
1200     if (deleted)
1201     counter.add(-1L);
1202     break;
1203     }
1204     }
1205     }
1206     return oldVal;
1207     }
1208    
1209     /*
1210 dl 1.59 * Internal versions of the six insertion methods, each a
1211 dl 1.27 * little more complicated than the last. All have
1212     * the same basic structure as the first (internalPut):
1213     * 1. If table uninitialized, create
1214     * 2. If bin empty, try to CAS new node
1215     * 3. If bin stale, use new table
1216 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1217     * 5. Lock and validate; if valid, scan and add or update
1218 dl 1.27 *
1219     * The others interweave other checks and/or alternative actions:
1220     * * Plain put checks for and performs resize after insertion.
1221     * * putIfAbsent prescans for mapping without lock (and fails to add
1222     * if present), which also makes pre-emptive resize checks worthwhile.
1223     * * computeIfAbsent extends form used in putIfAbsent with additional
1224     * mechanics to deal with, calls, potential exceptions and null
1225     * returns from function call.
1226     * * compute uses the same function-call mechanics, but without
1227     * the prescans
1228 dl 1.59 * * merge acts as putIfAbsent in the absent case, but invokes the
1229     * update function if present
1230 dl 1.27 * * putAll attempts to pre-allocate enough table space
1231     * and more lazily performs count updates and checks.
1232     *
1233     * Someday when details settle down a bit more, it might be worth
1234     * some factoring to reduce sprawl.
1235     */
1236    
1237     /** Implementation for put */
1238     private final Object internalPut(Object k, Object v) {
1239 dl 1.1 int h = spread(k.hashCode());
1240 dl 1.38 int count = 0;
1241 dl 1.14 for (Node[] tab = table;;) {
1242 dl 1.38 int i; Node f; int fh; Object fk;
1243 dl 1.1 if (tab == null)
1244 dl 1.24 tab = initTable();
1245     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1246 dl 1.2 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1247 dl 1.14 break; // no lock when adding to empty bin
1248     }
1249 dl 1.38 else if ((fh = f.hash) == MOVED) {
1250     if ((fk = f.key) instanceof TreeBin) {
1251     TreeBin t = (TreeBin)fk;
1252     Object oldVal = null;
1253     t.acquire(0);
1254     try {
1255     if (tabAt(tab, i) == f) {
1256     count = 2;
1257     TreeNode p = t.putTreeNode(h, k, v);
1258     if (p != null) {
1259     oldVal = p.val;
1260     p.val = v;
1261     }
1262     }
1263     } finally {
1264     t.release(0);
1265     }
1266     if (count != 0) {
1267     if (oldVal != null)
1268     return oldVal;
1269     break;
1270     }
1271     }
1272     else
1273     tab = (Node[])fk;
1274     }
1275 dl 1.27 else if ((fh & LOCKED) != 0) {
1276     checkForResize();
1277     f.tryAwaitLock(tab, i);
1278 dl 1.1 }
1279 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1280 dl 1.27 Object oldVal = null;
1281     try { // needed in case equals() throws
1282 dl 1.24 if (tabAt(tab, i) == f) {
1283 dl 1.38 count = 1;
1284     for (Node e = f;; ++count) {
1285 dl 1.24 Object ek, ev;
1286     if ((e.hash & HASH_BITS) == h &&
1287     (ev = e.val) != null &&
1288     ((ek = e.key) == k || k.equals(ek))) {
1289 dl 1.1 oldVal = ev;
1290 dl 1.27 e.val = v;
1291 dl 1.10 break;
1292 dl 1.1 }
1293 dl 1.10 Node last = e;
1294     if ((e = e.next) == null) {
1295 dl 1.2 last.next = new Node(h, k, v, null);
1296 dl 1.38 if (count >= TREE_THRESHOLD)
1297     replaceWithTreeBin(tab, i, k);
1298 dl 1.10 break;
1299 dl 1.1 }
1300     }
1301     }
1302 dl 1.24 } finally { // unlock and signal if needed
1303     if (!f.casHash(fh | LOCKED, fh)) {
1304     f.hash = fh;
1305 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1306 dl 1.24 }
1307 dl 1.1 }
1308 dl 1.38 if (count != 0) {
1309 dl 1.27 if (oldVal != null)
1310     return oldVal;
1311 dl 1.38 if (tab.length <= 64)
1312     count = 2;
1313 dl 1.1 break;
1314     }
1315     }
1316     }
1317 dl 1.27 counter.add(1L);
1318 dl 1.38 if (count > 1)
1319 dl 1.27 checkForResize();
1320     return null;
1321 dl 1.1 }
1322    
1323 dl 1.27 /** Implementation for putIfAbsent */
1324     private final Object internalPutIfAbsent(Object k, Object v) {
1325 dl 1.1 int h = spread(k.hashCode());
1326 dl 1.38 int count = 0;
1327 dl 1.14 for (Node[] tab = table;;) {
1328 dl 1.27 int i; Node f; int fh; Object fk, fv;
1329     if (tab == null)
1330     tab = initTable();
1331     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1332     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1333     break;
1334     }
1335 dl 1.38 else if ((fh = f.hash) == MOVED) {
1336     if ((fk = f.key) instanceof TreeBin) {
1337     TreeBin t = (TreeBin)fk;
1338     Object oldVal = null;
1339     t.acquire(0);
1340     try {
1341     if (tabAt(tab, i) == f) {
1342     count = 2;
1343     TreeNode p = t.putTreeNode(h, k, v);
1344     if (p != null)
1345     oldVal = p.val;
1346     }
1347     } finally {
1348     t.release(0);
1349     }
1350     if (count != 0) {
1351     if (oldVal != null)
1352     return oldVal;
1353     break;
1354     }
1355     }
1356     else
1357     tab = (Node[])fk;
1358     }
1359 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1360     ((fk = f.key) == k || k.equals(fk)))
1361     return fv;
1362     else {
1363     Node g = f.next;
1364     if (g != null) { // at least 2 nodes -- search and maybe resize
1365     for (Node e = g;;) {
1366     Object ek, ev;
1367     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1368     ((ek = e.key) == k || k.equals(ek)))
1369     return ev;
1370     if ((e = e.next) == null) {
1371     checkForResize();
1372     break;
1373     }
1374     }
1375     }
1376     if (((fh = f.hash) & LOCKED) != 0) {
1377     checkForResize();
1378     f.tryAwaitLock(tab, i);
1379     }
1380     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1381     Object oldVal = null;
1382     try {
1383     if (tabAt(tab, i) == f) {
1384 dl 1.38 count = 1;
1385     for (Node e = f;; ++count) {
1386 dl 1.27 Object ek, ev;
1387     if ((e.hash & HASH_BITS) == h &&
1388     (ev = e.val) != null &&
1389     ((ek = e.key) == k || k.equals(ek))) {
1390 dl 1.1 oldVal = ev;
1391 dl 1.27 break;
1392     }
1393     Node last = e;
1394     if ((e = e.next) == null) {
1395     last.next = new Node(h, k, v, null);
1396 dl 1.38 if (count >= TREE_THRESHOLD)
1397     replaceWithTreeBin(tab, i, k);
1398 dl 1.27 break;
1399 dl 1.1 }
1400     }
1401 dl 1.27 }
1402     } finally {
1403     if (!f.casHash(fh | LOCKED, fh)) {
1404     f.hash = fh;
1405 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1406 dl 1.24 }
1407     }
1408 dl 1.38 if (count != 0) {
1409 dl 1.27 if (oldVal != null)
1410     return oldVal;
1411 dl 1.38 if (tab.length <= 64)
1412     count = 2;
1413 dl 1.27 break;
1414     }
1415     }
1416     }
1417     }
1418     counter.add(1L);
1419 dl 1.38 if (count > 1)
1420     checkForResize();
1421 dl 1.27 return null;
1422     }
1423    
1424     /** Implementation for computeIfAbsent */
1425     private final Object internalComputeIfAbsent(K k,
1426 dl 1.52 Fun<? super K, ?> mf) {
1427 dl 1.27 int h = spread(k.hashCode());
1428     Object val = null;
1429 dl 1.38 int count = 0;
1430 dl 1.27 for (Node[] tab = table;;) {
1431     Node f; int i, fh; Object fk, fv;
1432     if (tab == null)
1433     tab = initTable();
1434     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1435     Node node = new Node(fh = h | LOCKED, k, null, null);
1436     if (casTabAt(tab, i, null, node)) {
1437 dl 1.38 count = 1;
1438 dl 1.27 try {
1439 dl 1.52 if ((val = mf.apply(k)) != null)
1440 dl 1.27 node.val = val;
1441     } finally {
1442     if (val == null)
1443     setTabAt(tab, i, null);
1444     if (!node.casHash(fh, h)) {
1445     node.hash = h;
1446 jsr166 1.30 synchronized (node) { node.notifyAll(); };
1447 dl 1.27 }
1448 dl 1.1 }
1449     }
1450 dl 1.38 if (count != 0)
1451 dl 1.24 break;
1452 dl 1.27 }
1453 dl 1.38 else if ((fh = f.hash) == MOVED) {
1454     if ((fk = f.key) instanceof TreeBin) {
1455     TreeBin t = (TreeBin)fk;
1456     boolean added = false;
1457     t.acquire(0);
1458     try {
1459     if (tabAt(tab, i) == f) {
1460     count = 1;
1461     TreeNode p = t.getTreeNode(h, k, t.root);
1462     if (p != null)
1463     val = p.val;
1464 dl 1.52 else if ((val = mf.apply(k)) != null) {
1465 dl 1.38 added = true;
1466     count = 2;
1467     t.putTreeNode(h, k, val);
1468     }
1469     }
1470     } finally {
1471     t.release(0);
1472     }
1473     if (count != 0) {
1474     if (!added)
1475     return val;
1476     break;
1477     }
1478     }
1479     else
1480     tab = (Node[])fk;
1481     }
1482 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1483     ((fk = f.key) == k || k.equals(fk)))
1484     return fv;
1485     else {
1486     Node g = f.next;
1487     if (g != null) {
1488     for (Node e = g;;) {
1489     Object ek, ev;
1490     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1491     ((ek = e.key) == k || k.equals(ek)))
1492     return ev;
1493     if ((e = e.next) == null) {
1494     checkForResize();
1495     break;
1496     }
1497     }
1498     }
1499     if (((fh = f.hash) & LOCKED) != 0) {
1500     checkForResize();
1501     f.tryAwaitLock(tab, i);
1502     }
1503     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1504 dl 1.38 boolean added = false;
1505 dl 1.27 try {
1506     if (tabAt(tab, i) == f) {
1507 dl 1.38 count = 1;
1508     for (Node e = f;; ++count) {
1509 dl 1.27 Object ek, ev;
1510     if ((e.hash & HASH_BITS) == h &&
1511     (ev = e.val) != null &&
1512     ((ek = e.key) == k || k.equals(ek))) {
1513     val = ev;
1514     break;
1515     }
1516     Node last = e;
1517     if ((e = e.next) == null) {
1518 dl 1.52 if ((val = mf.apply(k)) != null) {
1519 dl 1.38 added = true;
1520 dl 1.27 last.next = new Node(h, k, val, null);
1521 dl 1.38 if (count >= TREE_THRESHOLD)
1522     replaceWithTreeBin(tab, i, k);
1523     }
1524 dl 1.27 break;
1525     }
1526     }
1527     }
1528     } finally {
1529     if (!f.casHash(fh | LOCKED, fh)) {
1530     f.hash = fh;
1531 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1532 dl 1.27 }
1533     }
1534 dl 1.38 if (count != 0) {
1535     if (!added)
1536     return val;
1537     if (tab.length <= 64)
1538     count = 2;
1539 dl 1.27 break;
1540 dl 1.38 }
1541 dl 1.1 }
1542     }
1543     }
1544 dl 1.41 if (val != null) {
1545     counter.add(1L);
1546     if (count > 1)
1547     checkForResize();
1548     }
1549 dl 1.27 return val;
1550 dl 1.1 }
1551    
1552 dl 1.27 /** Implementation for compute */
1553 dl 1.1 @SuppressWarnings("unchecked")
1554 dl 1.59 private final Object internalCompute(K k, boolean onlyIfPresent,
1555 dl 1.52 BiFun<? super K, ? super V, ? extends V> mf) {
1556 dl 1.1 int h = spread(k.hashCode());
1557 dl 1.27 Object val = null;
1558 dl 1.41 int delta = 0;
1559 dl 1.38 int count = 0;
1560 dl 1.27 for (Node[] tab = table;;) {
1561 dl 1.38 Node f; int i, fh; Object fk;
1562 dl 1.1 if (tab == null)
1563 dl 1.24 tab = initTable();
1564     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1565 dl 1.52 if (onlyIfPresent)
1566     break;
1567 dl 1.24 Node node = new Node(fh = h | LOCKED, k, null, null);
1568     if (casTabAt(tab, i, null, node)) {
1569     try {
1570 dl 1.38 count = 1;
1571 dl 1.52 if ((val = mf.apply(k, null)) != null) {
1572 dl 1.24 node.val = val;
1573 dl 1.41 delta = 1;
1574 dl 1.24 }
1575     } finally {
1576 dl 1.41 if (delta == 0)
1577 dl 1.24 setTabAt(tab, i, null);
1578     if (!node.casHash(fh, h)) {
1579 dl 1.25 node.hash = h;
1580 jsr166 1.26 synchronized (node) { node.notifyAll(); };
1581 dl 1.1 }
1582     }
1583     }
1584 dl 1.38 if (count != 0)
1585 dl 1.10 break;
1586 dl 1.1 }
1587 dl 1.38 else if ((fh = f.hash) == MOVED) {
1588     if ((fk = f.key) instanceof TreeBin) {
1589     TreeBin t = (TreeBin)fk;
1590     t.acquire(0);
1591     try {
1592     if (tabAt(tab, i) == f) {
1593     count = 1;
1594     TreeNode p = t.getTreeNode(h, k, t.root);
1595 jsr166 1.39 Object pv = (p == null) ? null : p.val;
1596 dl 1.52 if ((val = mf.apply(k, (V)pv)) != null) {
1597 dl 1.38 if (p != null)
1598     p.val = val;
1599     else {
1600     count = 2;
1601 dl 1.41 delta = 1;
1602 dl 1.38 t.putTreeNode(h, k, val);
1603     }
1604     }
1605 dl 1.41 else if (p != null) {
1606     delta = -1;
1607     t.deleteTreeNode(p);
1608     }
1609 dl 1.38 }
1610     } finally {
1611     t.release(0);
1612     }
1613     if (count != 0)
1614     break;
1615     }
1616     else
1617     tab = (Node[])fk;
1618     }
1619 dl 1.27 else if ((fh & LOCKED) != 0) {
1620     checkForResize();
1621     f.tryAwaitLock(tab, i);
1622 dl 1.14 }
1623 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1624     try {
1625     if (tabAt(tab, i) == f) {
1626 dl 1.38 count = 1;
1627 dl 1.41 for (Node e = f, pred = null;; ++count) {
1628 dl 1.27 Object ek, ev;
1629 dl 1.24 if ((e.hash & HASH_BITS) == h &&
1630     (ev = e.val) != null &&
1631     ((ek = e.key) == k || k.equals(ek))) {
1632 dl 1.52 val = mf.apply(k, (V)ev);
1633 dl 1.27 if (val != null)
1634     e.val = val;
1635 dl 1.41 else {
1636     delta = -1;
1637     Node en = e.next;
1638     if (pred != null)
1639     pred.next = en;
1640     else
1641     setTabAt(tab, i, en);
1642     }
1643 dl 1.10 break;
1644 dl 1.1 }
1645 dl 1.41 pred = e;
1646 dl 1.10 if ((e = e.next) == null) {
1647 dl 1.52 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1648 dl 1.41 pred.next = new Node(h, k, val, null);
1649     delta = 1;
1650 dl 1.38 if (count >= TREE_THRESHOLD)
1651     replaceWithTreeBin(tab, i, k);
1652 dl 1.1 }
1653 dl 1.10 break;
1654 dl 1.1 }
1655     }
1656     }
1657 dl 1.24 } finally {
1658     if (!f.casHash(fh | LOCKED, fh)) {
1659     f.hash = fh;
1660 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1661 dl 1.24 }
1662 dl 1.1 }
1663 dl 1.38 if (count != 0) {
1664     if (tab.length <= 64)
1665     count = 2;
1666 dl 1.10 break;
1667 dl 1.38 }
1668 dl 1.1 }
1669 dl 1.10 }
1670 dl 1.41 if (delta != 0) {
1671     counter.add((long)delta);
1672 dl 1.38 if (count > 1)
1673 dl 1.27 checkForResize();
1674     }
1675 dl 1.1 return val;
1676     }
1677    
1678 dl 1.59 /** Implementation for merge */
1679     @SuppressWarnings("unchecked")
1680 dl 1.52 private final Object internalMerge(K k, V v,
1681     BiFun<? super V, ? super V, ? extends V> mf) {
1682     int h = spread(k.hashCode());
1683     Object val = null;
1684     int delta = 0;
1685     int count = 0;
1686     for (Node[] tab = table;;) {
1687     int i; Node f; int fh; Object fk, fv;
1688     if (tab == null)
1689     tab = initTable();
1690     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1691     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1692     delta = 1;
1693     val = v;
1694     break;
1695     }
1696     }
1697     else if ((fh = f.hash) == MOVED) {
1698     if ((fk = f.key) instanceof TreeBin) {
1699     TreeBin t = (TreeBin)fk;
1700     t.acquire(0);
1701     try {
1702     if (tabAt(tab, i) == f) {
1703     count = 1;
1704     TreeNode p = t.getTreeNode(h, k, t.root);
1705     val = (p == null) ? v : mf.apply((V)p.val, v);
1706     if (val != null) {
1707     if (p != null)
1708     p.val = val;
1709     else {
1710     count = 2;
1711     delta = 1;
1712     t.putTreeNode(h, k, val);
1713     }
1714     }
1715     else if (p != null) {
1716     delta = -1;
1717     t.deleteTreeNode(p);
1718     }
1719     }
1720     } finally {
1721     t.release(0);
1722     }
1723     if (count != 0)
1724     break;
1725     }
1726     else
1727     tab = (Node[])fk;
1728     }
1729     else if ((fh & LOCKED) != 0) {
1730     checkForResize();
1731     f.tryAwaitLock(tab, i);
1732     }
1733     else if (f.casHash(fh, fh | LOCKED)) {
1734     try {
1735     if (tabAt(tab, i) == f) {
1736     count = 1;
1737     for (Node e = f, pred = null;; ++count) {
1738     Object ek, ev;
1739     if ((e.hash & HASH_BITS) == h &&
1740     (ev = e.val) != null &&
1741     ((ek = e.key) == k || k.equals(ek))) {
1742     val = mf.apply(v, (V)ev);
1743     if (val != null)
1744     e.val = val;
1745     else {
1746     delta = -1;
1747     Node en = e.next;
1748     if (pred != null)
1749     pred.next = en;
1750     else
1751     setTabAt(tab, i, en);
1752     }
1753     break;
1754     }
1755     pred = e;
1756     if ((e = e.next) == null) {
1757     val = v;
1758     pred.next = new Node(h, k, val, null);
1759     delta = 1;
1760     if (count >= TREE_THRESHOLD)
1761     replaceWithTreeBin(tab, i, k);
1762     break;
1763     }
1764     }
1765     }
1766     } finally {
1767     if (!f.casHash(fh | LOCKED, fh)) {
1768     f.hash = fh;
1769     synchronized (f) { f.notifyAll(); };
1770     }
1771     }
1772     if (count != 0) {
1773     if (tab.length <= 64)
1774     count = 2;
1775     break;
1776     }
1777     }
1778     }
1779     if (delta != 0) {
1780     counter.add((long)delta);
1781     if (count > 1)
1782     checkForResize();
1783     }
1784     return val;
1785     }
1786    
1787 dl 1.27 /** Implementation for putAll */
1788     private final void internalPutAll(Map<?, ?> m) {
1789     tryPresize(m.size());
1790     long delta = 0L; // number of uncommitted additions
1791     boolean npe = false; // to throw exception on exit for nulls
1792     try { // to clean up counts on other exceptions
1793     for (Map.Entry<?, ?> entry : m.entrySet()) {
1794     Object k, v;
1795     if (entry == null || (k = entry.getKey()) == null ||
1796     (v = entry.getValue()) == null) {
1797     npe = true;
1798     break;
1799     }
1800     int h = spread(k.hashCode());
1801     for (Node[] tab = table;;) {
1802 dl 1.38 int i; Node f; int fh; Object fk;
1803 dl 1.27 if (tab == null)
1804     tab = initTable();
1805     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1806     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1807     ++delta;
1808     break;
1809     }
1810     }
1811 dl 1.38 else if ((fh = f.hash) == MOVED) {
1812     if ((fk = f.key) instanceof TreeBin) {
1813     TreeBin t = (TreeBin)fk;
1814     boolean validated = false;
1815     t.acquire(0);
1816     try {
1817     if (tabAt(tab, i) == f) {
1818     validated = true;
1819     TreeNode p = t.getTreeNode(h, k, t.root);
1820     if (p != null)
1821     p.val = v;
1822     else {
1823     t.putTreeNode(h, k, v);
1824     ++delta;
1825     }
1826     }
1827     } finally {
1828     t.release(0);
1829     }
1830     if (validated)
1831     break;
1832     }
1833     else
1834     tab = (Node[])fk;
1835     }
1836 dl 1.27 else if ((fh & LOCKED) != 0) {
1837     counter.add(delta);
1838     delta = 0L;
1839     checkForResize();
1840     f.tryAwaitLock(tab, i);
1841     }
1842     else if (f.casHash(fh, fh | LOCKED)) {
1843 dl 1.38 int count = 0;
1844 dl 1.27 try {
1845     if (tabAt(tab, i) == f) {
1846 dl 1.38 count = 1;
1847     for (Node e = f;; ++count) {
1848 dl 1.27 Object ek, ev;
1849     if ((e.hash & HASH_BITS) == h &&
1850     (ev = e.val) != null &&
1851     ((ek = e.key) == k || k.equals(ek))) {
1852     e.val = v;
1853     break;
1854     }
1855     Node last = e;
1856     if ((e = e.next) == null) {
1857     ++delta;
1858     last.next = new Node(h, k, v, null);
1859 dl 1.38 if (count >= TREE_THRESHOLD)
1860     replaceWithTreeBin(tab, i, k);
1861 dl 1.27 break;
1862     }
1863     }
1864     }
1865     } finally {
1866     if (!f.casHash(fh | LOCKED, fh)) {
1867     f.hash = fh;
1868 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1869 dl 1.27 }
1870     }
1871 dl 1.38 if (count != 0) {
1872     if (count > 1) {
1873 dl 1.27 counter.add(delta);
1874     delta = 0L;
1875     checkForResize();
1876 dl 1.1 }
1877 dl 1.27 break;
1878 dl 1.24 }
1879     }
1880 dl 1.1 }
1881     }
1882 dl 1.27 } finally {
1883     if (delta != 0)
1884     counter.add(delta);
1885 dl 1.1 }
1886 dl 1.27 if (npe)
1887     throw new NullPointerException();
1888 dl 1.1 }
1889    
1890 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
1891 dl 1.24
1892     /**
1893     * Returns a power of two table size for the given desired capacity.
1894     * See Hackers Delight, sec 3.2
1895     */
1896     private static final int tableSizeFor(int c) {
1897     int n = c - 1;
1898     n |= n >>> 1;
1899     n |= n >>> 2;
1900     n |= n >>> 4;
1901     n |= n >>> 8;
1902     n |= n >>> 16;
1903     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1904     }
1905    
1906     /**
1907     * Initializes table, using the size recorded in sizeCtl.
1908     */
1909     private final Node[] initTable() {
1910     Node[] tab; int sc;
1911     while ((tab = table) == null) {
1912     if ((sc = sizeCtl) < 0)
1913     Thread.yield(); // lost initialization race; just spin
1914     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1915     try {
1916     if ((tab = table) == null) {
1917     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1918     tab = table = new Node[n];
1919 dl 1.27 sc = n - (n >>> 2);
1920 dl 1.24 }
1921     } finally {
1922     sizeCtl = sc;
1923     }
1924     break;
1925     }
1926     }
1927     return tab;
1928     }
1929    
1930     /**
1931 dl 1.27 * If table is too small and not already resizing, creates next
1932     * table and transfers bins. Rechecks occupancy after a transfer
1933     * to see if another resize is already needed because resizings
1934     * are lagging additions.
1935     */
1936     private final void checkForResize() {
1937     Node[] tab; int n, sc;
1938     while ((tab = table) != null &&
1939     (n = tab.length) < MAXIMUM_CAPACITY &&
1940     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1941     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1942 dl 1.24 try {
1943 dl 1.27 if (tab == table) {
1944 dl 1.24 table = rebuild(tab);
1945 dl 1.27 sc = (n << 1) - (n >>> 1);
1946 dl 1.24 }
1947     } finally {
1948     sizeCtl = sc;
1949     }
1950     }
1951     }
1952    
1953 dl 1.27 /**
1954     * Tries to presize table to accommodate the given number of elements.
1955     *
1956     * @param size number of elements (doesn't need to be perfectly accurate)
1957     */
1958     private final void tryPresize(int size) {
1959     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1960     tableSizeFor(size + (size >>> 1) + 1);
1961     int sc;
1962     while ((sc = sizeCtl) >= 0) {
1963     Node[] tab = table; int n;
1964     if (tab == null || (n = tab.length) == 0) {
1965 jsr166 1.30 n = (sc > c) ? sc : c;
1966 dl 1.27 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1967     try {
1968     if (table == tab) {
1969     table = new Node[n];
1970     sc = n - (n >>> 2);
1971     }
1972     } finally {
1973     sizeCtl = sc;
1974     }
1975     }
1976     }
1977     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1978     break;
1979     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1980     try {
1981     if (table == tab) {
1982     table = rebuild(tab);
1983     sc = (n << 1) - (n >>> 1);
1984     }
1985     } finally {
1986     sizeCtl = sc;
1987     }
1988     }
1989     }
1990     }
1991    
1992 dl 1.24 /*
1993     * Moves and/or copies the nodes in each bin to new table. See
1994     * above for explanation.
1995     *
1996     * @return the new table
1997     */
1998     private static final Node[] rebuild(Node[] tab) {
1999     int n = tab.length;
2000     Node[] nextTab = new Node[n << 1];
2001     Node fwd = new Node(MOVED, nextTab, null, null);
2002     int[] buffer = null; // holds bins to revisit; null until needed
2003     Node rev = null; // reverse forwarder; null until needed
2004     int nbuffered = 0; // the number of bins in buffer list
2005     int bufferIndex = 0; // buffer index of current buffered bin
2006     int bin = n - 1; // current non-buffered bin or -1 if none
2007    
2008     for (int i = bin;;) { // start upwards sweep
2009     int fh; Node f;
2010     if ((f = tabAt(tab, i)) == null) {
2011     if (bin >= 0) { // no lock needed (or available)
2012     if (!casTabAt(tab, i, f, fwd))
2013     continue;
2014     }
2015     else { // transiently use a locked forwarding node
2016 jsr166 1.33 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2017 dl 1.24 if (!casTabAt(tab, i, f, g))
2018     continue;
2019     setTabAt(nextTab, i, null);
2020     setTabAt(nextTab, i + n, null);
2021     setTabAt(tab, i, fwd);
2022     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2023     g.hash = MOVED;
2024 jsr166 1.26 synchronized (g) { g.notifyAll(); }
2025 dl 1.24 }
2026     }
2027     }
2028 dl 1.38 else if ((fh = f.hash) == MOVED) {
2029     Object fk = f.key;
2030     if (fk instanceof TreeBin) {
2031     TreeBin t = (TreeBin)fk;
2032     boolean validated = false;
2033     t.acquire(0);
2034     try {
2035     if (tabAt(tab, i) == f) {
2036     validated = true;
2037     splitTreeBin(nextTab, i, t);
2038     setTabAt(tab, i, fwd);
2039     }
2040     } finally {
2041     t.release(0);
2042     }
2043     if (!validated)
2044     continue;
2045     }
2046     }
2047     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2048 dl 1.24 boolean validated = false;
2049     try { // split to lo and hi lists; copying as needed
2050     if (tabAt(tab, i) == f) {
2051     validated = true;
2052 dl 1.38 splitBin(nextTab, i, f);
2053 dl 1.24 setTabAt(tab, i, fwd);
2054     }
2055     } finally {
2056     if (!f.casHash(fh | LOCKED, fh)) {
2057     f.hash = fh;
2058 jsr166 1.26 synchronized (f) { f.notifyAll(); };
2059 dl 1.24 }
2060     }
2061     if (!validated)
2062     continue;
2063     }
2064     else {
2065     if (buffer == null) // initialize buffer for revisits
2066     buffer = new int[TRANSFER_BUFFER_SIZE];
2067     if (bin < 0 && bufferIndex > 0) {
2068     int j = buffer[--bufferIndex];
2069     buffer[bufferIndex] = i;
2070     i = j; // swap with another bin
2071     continue;
2072     }
2073     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2074     f.tryAwaitLock(tab, i);
2075     continue; // no other options -- block
2076     }
2077     if (rev == null) // initialize reverse-forwarder
2078     rev = new Node(MOVED, tab, null, null);
2079     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2080     continue; // recheck before adding to list
2081     buffer[nbuffered++] = i;
2082     setTabAt(nextTab, i, rev); // install place-holders
2083     setTabAt(nextTab, i + n, rev);
2084     }
2085    
2086     if (bin > 0)
2087     i = --bin;
2088     else if (buffer != null && nbuffered > 0) {
2089     bin = -1;
2090     i = buffer[bufferIndex = --nbuffered];
2091     }
2092     else
2093     return nextTab;
2094     }
2095     }
2096    
2097 dl 1.27 /**
2098 jsr166 1.45 * Splits a normal bin with list headed by e into lo and hi parts;
2099     * installs in given table.
2100 dl 1.38 */
2101     private static void splitBin(Node[] nextTab, int i, Node e) {
2102     int bit = nextTab.length >>> 1; // bit to split on
2103     int runBit = e.hash & bit;
2104     Node lastRun = e, lo = null, hi = null;
2105     for (Node p = e.next; p != null; p = p.next) {
2106     int b = p.hash & bit;
2107     if (b != runBit) {
2108     runBit = b;
2109     lastRun = p;
2110     }
2111     }
2112     if (runBit == 0)
2113     lo = lastRun;
2114     else
2115     hi = lastRun;
2116     for (Node p = e; p != lastRun; p = p.next) {
2117     int ph = p.hash & HASH_BITS;
2118     Object pk = p.key, pv = p.val;
2119     if ((ph & bit) == 0)
2120     lo = new Node(ph, pk, pv, lo);
2121     else
2122     hi = new Node(ph, pk, pv, hi);
2123     }
2124     setTabAt(nextTab, i, lo);
2125     setTabAt(nextTab, i + bit, hi);
2126     }
2127    
2128     /**
2129 jsr166 1.45 * Splits a tree bin into lo and hi parts; installs in given table.
2130 dl 1.38 */
2131     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2132     int bit = nextTab.length >>> 1;
2133     TreeBin lt = new TreeBin();
2134     TreeBin ht = new TreeBin();
2135     int lc = 0, hc = 0;
2136     for (Node e = t.first; e != null; e = e.next) {
2137     int h = e.hash & HASH_BITS;
2138     Object k = e.key, v = e.val;
2139     if ((h & bit) == 0) {
2140     ++lc;
2141     lt.putTreeNode(h, k, v);
2142     }
2143     else {
2144     ++hc;
2145     ht.putTreeNode(h, k, v);
2146     }
2147     }
2148     Node ln, hn; // throw away trees if too small
2149     if (lc <= (TREE_THRESHOLD >>> 1)) {
2150     ln = null;
2151     for (Node p = lt.first; p != null; p = p.next)
2152     ln = new Node(p.hash, p.key, p.val, ln);
2153     }
2154     else
2155     ln = new Node(MOVED, lt, null, null);
2156     setTabAt(nextTab, i, ln);
2157     if (hc <= (TREE_THRESHOLD >>> 1)) {
2158     hn = null;
2159     for (Node p = ht.first; p != null; p = p.next)
2160     hn = new Node(p.hash, p.key, p.val, hn);
2161     }
2162     else
2163     hn = new Node(MOVED, ht, null, null);
2164     setTabAt(nextTab, i + bit, hn);
2165     }
2166    
2167     /**
2168 dl 1.27 * Implementation for clear. Steps through each bin, removing all
2169     * nodes.
2170     */
2171     private final void internalClear() {
2172     long delta = 0L; // negative number of deletions
2173     int i = 0;
2174     Node[] tab = table;
2175     while (tab != null && i < tab.length) {
2176 dl 1.38 int fh; Object fk;
2177 dl 1.27 Node f = tabAt(tab, i);
2178     if (f == null)
2179     ++i;
2180 dl 1.38 else if ((fh = f.hash) == MOVED) {
2181     if ((fk = f.key) instanceof TreeBin) {
2182     TreeBin t = (TreeBin)fk;
2183     t.acquire(0);
2184     try {
2185     if (tabAt(tab, i) == f) {
2186     for (Node p = t.first; p != null; p = p.next) {
2187     p.val = null;
2188     --delta;
2189     }
2190     t.first = null;
2191     t.root = null;
2192     ++i;
2193     }
2194     } finally {
2195     t.release(0);
2196     }
2197     }
2198     else
2199     tab = (Node[])fk;
2200     }
2201 dl 1.27 else if ((fh & LOCKED) != 0) {
2202     counter.add(delta); // opportunistically update count
2203     delta = 0L;
2204     f.tryAwaitLock(tab, i);
2205     }
2206     else if (f.casHash(fh, fh | LOCKED)) {
2207     try {
2208     if (tabAt(tab, i) == f) {
2209     for (Node e = f; e != null; e = e.next) {
2210 dl 1.38 e.val = null;
2211     --delta;
2212 dl 1.27 }
2213     setTabAt(tab, i, null);
2214 dl 1.38 ++i;
2215 dl 1.27 }
2216     } finally {
2217     if (!f.casHash(fh | LOCKED, fh)) {
2218     f.hash = fh;
2219 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2220 dl 1.27 }
2221     }
2222     }
2223     }
2224     if (delta != 0)
2225     counter.add(delta);
2226     }
2227    
2228 dl 1.14 /* ----------------Table Traversal -------------- */
2229    
2230 dl 1.1 /**
2231 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2232 dl 1.59 * serves as a base class for other iterators and bulk tasks.
2233 dl 1.14 *
2234     * At each step, the iterator snapshots the key ("nextKey") and
2235     * value ("nextVal") of a valid node (i.e., one that, at point of
2236 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2237 dl 1.14 * change (including to null, indicating deletion), field nextVal
2238     * might not be accurate at point of use, but still maintains the
2239     * weak consistency property of holding a value that was once
2240     * valid.
2241     *
2242     * Internal traversals directly access these fields, as in:
2243 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2244 dl 1.14 *
2245 dl 1.41 * Exported iterators must track whether the iterator has advanced
2246     * (in hasNext vs next) (by setting/checking/nulling field
2247     * nextVal), and then extract key, value, or key-value pairs as
2248     * return values of next().
2249 dl 1.14 *
2250 dl 1.27 * The iterator visits once each still-valid node that was
2251     * reachable upon iterator construction. It might miss some that
2252     * were added to a bin after the bin was visited, which is OK wrt
2253     * consistency guarantees. Maintaining this property in the face
2254     * of possible ongoing resizes requires a fair amount of
2255     * bookkeeping state that is difficult to optimize away amidst
2256     * volatile accesses. Even so, traversal maintains reasonable
2257     * throughput.
2258 dl 1.14 *
2259     * Normally, iteration proceeds bin-by-bin traversing lists.
2260     * However, if the table has been resized, then all future steps
2261     * must traverse both the bin at the current index as well as at
2262     * (index + baseSize); and so on for further resizings. To
2263     * paranoically cope with potential sharing by users of iterators
2264     * across threads, iteration terminates if a bounds checks fails
2265     * for a table read.
2266 dl 1.52 *
2267     * This class extends ForkJoinTask to streamline parallel
2268     * iteration in bulk operations (see BulkTask). This adds only an
2269     * int of space overhead, which is close enough to negligible in
2270 dl 1.59 * cases where it is not needed to not worry about it. Because
2271     * ForkJoinTask is Serializable, but iterators need not be, we
2272     * need to add warning suppressions.
2273 dl 1.14 */
2274 dl 1.59 @SuppressWarnings("serial")
2275 dl 1.52 static class Traverser<K,V,R> extends ForkJoinTask<R> {
2276 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2277 dl 1.14 Node next; // the next entry to use
2278     Node last; // the last entry used
2279     Object nextKey; // cached key field of next
2280     Object nextVal; // cached val field of next
2281     Node[] tab; // current table; updated if resized
2282     int index; // index of bin to use next
2283     int baseIndex; // current index of initial table
2284 dl 1.41 int baseLimit; // index bound for initial table
2285 dl 1.14 final int baseSize; // initial table size
2286    
2287     /** Creates iterator for all entries in the table. */
2288 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2289 dl 1.41 this.tab = (this.map = map).table;
2290 dl 1.14 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2291     }
2292    
2293 dl 1.52 /** Creates iterator for split() methods */
2294     Traverser(Traverser<K,V,?> it, boolean split) {
2295 dl 1.41 this.map = it.map;
2296     this.tab = it.tab;
2297     this.baseSize = it.baseSize;
2298     int lo = it.baseIndex;
2299     int hi = this.baseLimit = it.baseLimit;
2300 dl 1.52 int i;
2301     if (split) // adjust parent
2302     i = it.baseLimit = (lo + hi + 1) >>> 1;
2303     else // clone parent
2304     i = lo;
2305     this.index = this.baseIndex = i;
2306 dl 1.41 }
2307    
2308     /**
2309 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2310 dl 1.41 * See above for explanation.
2311     */
2312     final Object advance() {
2313 dl 1.14 Node e = last = next;
2314 dl 1.41 Object ev = null;
2315 dl 1.14 outer: do {
2316 dl 1.24 if (e != null) // advance past used/skipped node
2317 dl 1.1 e = e.next;
2318 dl 1.24 while (e == null) { // get to next non-null bin
2319 dl 1.38 Node[] t; int b, i, n; Object ek; // checks must use locals
2320 dl 1.14 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2321     (t = tab) == null || i >= (n = t.length))
2322     break outer;
2323 dl 1.38 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2324     if ((ek = e.key) instanceof TreeBin)
2325     e = ((TreeBin)ek).first;
2326     else {
2327     tab = (Node[])ek;
2328     continue; // restarts due to null val
2329     }
2330     } // visit upper slots if present
2331     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2332 dl 1.1 }
2333 dl 1.14 nextKey = e.key;
2334 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2335 dl 1.14 next = e;
2336 dl 1.41 return nextVal = ev;
2337 dl 1.1 }
2338 dl 1.41
2339     public final void remove() {
2340 dl 1.57 if (nextVal == null && last == null)
2341 dl 1.41 advance();
2342     Node e = last;
2343     if (e == null)
2344     throw new IllegalStateException();
2345     last = null;
2346     map.remove(e.key);
2347     }
2348    
2349     public final boolean hasNext() {
2350     return nextVal != null || advance() != null;
2351     }
2352    
2353     public final boolean hasMoreElements() { return hasNext(); }
2354 dl 1.52 public final void setRawResult(Object x) { }
2355     public R getRawResult() { return null; }
2356     public boolean exec() { return true; }
2357 dl 1.1 }
2358    
2359     /* ---------------- Public operations -------------- */
2360    
2361     /**
2362 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2363 dl 1.1 */
2364 dl 1.16 public ConcurrentHashMapV8() {
2365 dl 1.14 this.counter = new LongAdder();
2366 dl 1.1 }
2367    
2368     /**
2369 dl 1.16 * Creates a new, empty map with an initial table size
2370     * accommodating the specified number of elements without the need
2371     * to dynamically resize.
2372 dl 1.1 *
2373     * @param initialCapacity The implementation performs internal
2374     * sizing to accommodate this many elements.
2375     * @throws IllegalArgumentException if the initial capacity of
2376 jsr166 1.18 * elements is negative
2377 dl 1.1 */
2378 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2379     if (initialCapacity < 0)
2380     throw new IllegalArgumentException();
2381     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2382     MAXIMUM_CAPACITY :
2383     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2384     this.counter = new LongAdder();
2385 dl 1.24 this.sizeCtl = cap;
2386 dl 1.1 }
2387    
2388     /**
2389 dl 1.16 * Creates a new map with the same mappings as the given map.
2390 dl 1.1 *
2391 dl 1.16 * @param m the map
2392 dl 1.1 */
2393 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2394     this.counter = new LongAdder();
2395 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2396 dl 1.27 internalPutAll(m);
2397 dl 1.1 }
2398    
2399     /**
2400 dl 1.16 * Creates a new, empty map with an initial table size based on
2401     * the given number of elements ({@code initialCapacity}) and
2402     * initial table density ({@code loadFactor}).
2403     *
2404     * @param initialCapacity the initial capacity. The implementation
2405     * performs internal sizing to accommodate this many elements,
2406     * given the specified load factor.
2407     * @param loadFactor the load factor (table density) for
2408 jsr166 1.18 * establishing the initial table size
2409 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2410     * elements is negative or the load factor is nonpositive
2411 jsr166 1.22 *
2412     * @since 1.6
2413 dl 1.1 */
2414 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2415     this(initialCapacity, loadFactor, 1);
2416 dl 1.1 }
2417    
2418     /**
2419 dl 1.16 * Creates a new, empty map with an initial table size based on
2420     * the given number of elements ({@code initialCapacity}), table
2421     * density ({@code loadFactor}), and number of concurrently
2422     * updating threads ({@code concurrencyLevel}).
2423 dl 1.1 *
2424 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2425     * performs internal sizing to accommodate this many elements,
2426     * given the specified load factor.
2427     * @param loadFactor the load factor (table density) for
2428 jsr166 1.18 * establishing the initial table size
2429 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2430     * updating threads. The implementation may use this value as
2431     * a sizing hint.
2432     * @throws IllegalArgumentException if the initial capacity is
2433     * negative or the load factor or concurrencyLevel are
2434 jsr166 1.18 * nonpositive
2435 dl 1.1 */
2436 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2437     float loadFactor, int concurrencyLevel) {
2438     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2439     throw new IllegalArgumentException();
2440     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2441     initialCapacity = concurrencyLevel; // as estimated threads
2442     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2443 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2444     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2445 dl 1.16 this.counter = new LongAdder();
2446 dl 1.24 this.sizeCtl = cap;
2447 dl 1.1 }
2448    
2449     /**
2450 dl 1.14 * {@inheritDoc}
2451 dl 1.1 */
2452     public boolean isEmpty() {
2453 dl 1.2 return counter.sum() <= 0L; // ignore transient negative values
2454 dl 1.1 }
2455    
2456     /**
2457 dl 1.14 * {@inheritDoc}
2458 dl 1.1 */
2459     public int size() {
2460     long n = counter.sum();
2461 jsr166 1.15 return ((n < 0L) ? 0 :
2462     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2463 dl 1.14 (int)n);
2464 dl 1.1 }
2465    
2466 dl 1.52 /**
2467     * Returns the number of mappings. This method should be used
2468     * instead of {@link #size} because a ConcurrentHashMap may
2469     * contain more mappings than can be represented as an int. The
2470     * value returned is a snapshot; the actual count may differ if
2471     * there are ongoing concurrent insertions of removals.
2472     *
2473     * @return the number of mappings
2474     */
2475     public long mappingCount() {
2476 dl 1.24 long n = counter.sum();
2477 dl 1.59 return (n < 0L) ? 0L : n; // ignore transient negative values
2478 dl 1.24 }
2479    
2480 dl 1.1 /**
2481     * Returns the value to which the specified key is mapped,
2482     * or {@code null} if this map contains no mapping for the key.
2483     *
2484     * <p>More formally, if this map contains a mapping from a key
2485     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2486     * then this method returns {@code v}; otherwise it returns
2487     * {@code null}. (There can be at most one such mapping.)
2488     *
2489     * @throws NullPointerException if the specified key is null
2490     */
2491     @SuppressWarnings("unchecked")
2492 dl 1.59 public V get(Object key) {
2493 dl 1.1 if (key == null)
2494     throw new NullPointerException();
2495     return (V)internalGet(key);
2496     }
2497    
2498     /**
2499     * Tests if the specified object is a key in this table.
2500     *
2501     * @param key possible key
2502     * @return {@code true} if and only if the specified object
2503     * is a key in this table, as determined by the
2504 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2505 dl 1.1 * @throws NullPointerException if the specified key is null
2506     */
2507     public boolean containsKey(Object key) {
2508     if (key == null)
2509     throw new NullPointerException();
2510     return internalGet(key) != null;
2511     }
2512    
2513     /**
2514     * Returns {@code true} if this map maps one or more keys to the
2515 dl 1.14 * specified value. Note: This method may require a full traversal
2516     * of the map, and is much slower than method {@code containsKey}.
2517 dl 1.1 *
2518     * @param value value whose presence in this map is to be tested
2519     * @return {@code true} if this map maps one or more keys to the
2520     * specified value
2521     * @throws NullPointerException if the specified value is null
2522     */
2523     public boolean containsValue(Object value) {
2524     if (value == null)
2525     throw new NullPointerException();
2526 dl 1.14 Object v;
2527 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2528 dl 1.41 while ((v = it.advance()) != null) {
2529     if (v == value || value.equals(v))
2530 dl 1.14 return true;
2531     }
2532     return false;
2533 dl 1.1 }
2534    
2535     /**
2536     * Legacy method testing if some key maps into the specified value
2537     * in this table. This method is identical in functionality to
2538     * {@link #containsValue}, and exists solely to ensure
2539     * full compatibility with class {@link java.util.Hashtable},
2540     * which supported this method prior to introduction of the
2541     * Java Collections framework.
2542     *
2543     * @param value a value to search for
2544     * @return {@code true} if and only if some key maps to the
2545     * {@code value} argument in this table as
2546     * determined by the {@code equals} method;
2547     * {@code false} otherwise
2548     * @throws NullPointerException if the specified value is null
2549     */
2550     public boolean contains(Object value) {
2551     return containsValue(value);
2552     }
2553    
2554     /**
2555     * Maps the specified key to the specified value in this table.
2556     * Neither the key nor the value can be null.
2557     *
2558     * <p> The value can be retrieved by calling the {@code get} method
2559     * with a key that is equal to the original key.
2560     *
2561     * @param key key with which the specified value is to be associated
2562     * @param value value to be associated with the specified key
2563     * @return the previous value associated with {@code key}, or
2564     * {@code null} if there was no mapping for {@code key}
2565     * @throws NullPointerException if the specified key or value is null
2566     */
2567     @SuppressWarnings("unchecked")
2568 dl 1.59 public V put(K key, V value) {
2569 dl 1.1 if (key == null || value == null)
2570     throw new NullPointerException();
2571 dl 1.27 return (V)internalPut(key, value);
2572 dl 1.1 }
2573    
2574     /**
2575     * {@inheritDoc}
2576     *
2577     * @return the previous value associated with the specified key,
2578     * or {@code null} if there was no mapping for the key
2579     * @throws NullPointerException if the specified key or value is null
2580     */
2581     @SuppressWarnings("unchecked")
2582 dl 1.59 public V putIfAbsent(K key, V value) {
2583 dl 1.1 if (key == null || value == null)
2584     throw new NullPointerException();
2585 dl 1.27 return (V)internalPutIfAbsent(key, value);
2586 dl 1.1 }
2587    
2588     /**
2589     * Copies all of the mappings from the specified map to this one.
2590     * These mappings replace any mappings that this map had for any of the
2591     * keys currently in the specified map.
2592     *
2593     * @param m mappings to be stored in this map
2594     */
2595     public void putAll(Map<? extends K, ? extends V> m) {
2596 dl 1.27 internalPutAll(m);
2597 dl 1.1 }
2598    
2599     /**
2600     * If the specified key is not already associated with a value,
2601 dl 1.41 * computes its value using the given mappingFunction and enters
2602     * it into the map unless null. This is equivalent to
2603 dl 1.27 * <pre> {@code
2604 jsr166 1.13 * if (map.containsKey(key))
2605     * return map.get(key);
2606 dl 1.52 * value = mappingFunction.apply(key);
2607 dl 1.41 * if (value != null)
2608     * map.put(key, value);
2609 jsr166 1.13 * return value;}</pre>
2610 dl 1.1 *
2611 dl 1.27 * except that the action is performed atomically. If the
2612 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2613     * function itself throws an (unchecked) exception, the exception
2614     * is rethrown to its caller, and no mapping is recorded. Some
2615     * attempted update operations on this map by other threads may be
2616     * blocked while computation is in progress, so the computation
2617     * should be short and simple, and must not attempt to update any
2618     * other mappings of this Map. The most appropriate usage is to
2619     * construct a new object serving as an initial mapped value, or
2620     * memoized result, as in:
2621 dl 1.27 *
2622 jsr166 1.13 * <pre> {@code
2623 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2624 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2625 dl 1.1 *
2626     * @param key key with which the specified value is to be associated
2627     * @param mappingFunction the function to compute a value
2628     * @return the current (existing or computed) value associated with
2629 dl 1.41 * the specified key, or null if the computed value is null.
2630     * @throws NullPointerException if the specified key or mappingFunction
2631     * is null
2632 dl 1.5 * @throws IllegalStateException if the computation detectably
2633     * attempts a recursive update to this map that would
2634 jsr166 1.18 * otherwise never complete
2635 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2636 jsr166 1.18 * in which case the mapping is left unestablished
2637 dl 1.1 */
2638 dl 1.27 @SuppressWarnings("unchecked")
2639 dl 1.59 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2640 dl 1.1 if (key == null || mappingFunction == null)
2641     throw new NullPointerException();
2642 dl 1.27 return (V)internalComputeIfAbsent(key, mappingFunction);
2643 dl 1.2 }
2644    
2645     /**
2646 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2647     * its current mapped value. This is equivalent to
2648     * <pre> {@code
2649     * if (map.containsKey(key)) {
2650     * value = remappingFunction.apply(key, map.get(key));
2651     * if (value != null)
2652     * map.put(key, value);
2653     * else
2654     * map.remove(key);
2655     * }
2656     * }</pre>
2657     *
2658     * except that the action is performed atomically. If the
2659     * function returns {@code null}, the mapping is removed. If the
2660     * function itself throws an (unchecked) exception, the exception
2661     * is rethrown to its caller, and the current mapping is left
2662     * unchanged. Some attempted update operations on this map by
2663     * other threads may be blocked while computation is in progress,
2664     * so the computation should be short and simple, and must not
2665     * attempt to update any other mappings of this Map. For example,
2666     * to either create or append new messages to a value mapping:
2667     *
2668     * @param key key with which the specified value is to be associated
2669     * @param remappingFunction the function to compute a value
2670 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2671 dl 1.52 * @throws NullPointerException if the specified key or remappingFunction
2672     * is null
2673     * @throws IllegalStateException if the computation detectably
2674     * attempts a recursive update to this map that would
2675     * otherwise never complete
2676     * @throws RuntimeException or Error if the remappingFunction does so,
2677     * in which case the mapping is unchanged
2678     */
2679 dl 1.59 @SuppressWarnings("unchecked")
2680 dl 1.52 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2681     if (key == null || remappingFunction == null)
2682     throw new NullPointerException();
2683     return (V)internalCompute(key, true, remappingFunction);
2684     }
2685    
2686     /**
2687 dl 1.41 * Computes a new mapping value given a key and
2688 dl 1.27 * its current mapped value (or {@code null} if there is no current
2689     * mapping). This is equivalent to
2690 jsr166 1.13 * <pre> {@code
2691 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2692 dl 1.41 * if (value != null)
2693     * map.put(key, value);
2694     * else
2695     * map.remove(key);
2696 dl 1.27 * }</pre>
2697 dl 1.2 *
2698 dl 1.27 * except that the action is performed atomically. If the
2699 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2700     * function itself throws an (unchecked) exception, the exception
2701     * is rethrown to its caller, and the current mapping is left
2702     * unchanged. Some attempted update operations on this map by
2703     * other threads may be blocked while computation is in progress,
2704     * so the computation should be short and simple, and must not
2705     * attempt to update any other mappings of this Map. For example,
2706     * to either create or append new messages to a value mapping:
2707 dl 1.27 *
2708     * <pre> {@code
2709     * Map<Key, String> map = ...;
2710     * final String msg = ...;
2711 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2712     * public String apply(Key k, String v) {
2713 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2714 dl 1.2 *
2715     * @param key key with which the specified value is to be associated
2716 dl 1.27 * @param remappingFunction the function to compute a value
2717 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2718 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2719 dl 1.41 * is null
2720 dl 1.5 * @throws IllegalStateException if the computation detectably
2721     * attempts a recursive update to this map that would
2722 jsr166 1.18 * otherwise never complete
2723 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2724 jsr166 1.18 * in which case the mapping is unchanged
2725 dl 1.2 */
2726 dl 1.59 @SuppressWarnings("unchecked")
2727 dl 1.52 public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2728 dl 1.27 if (key == null || remappingFunction == null)
2729 dl 1.2 throw new NullPointerException();
2730 dl 1.52 return (V)internalCompute(key, false, remappingFunction);
2731     }
2732    
2733     /**
2734     * If the specified key is not already associated
2735     * with a value, associate it with the given value.
2736     * Otherwise, replace the value with the results of
2737     * the given remapping function. This is equivalent to:
2738     * <pre> {@code
2739     * if (!map.containsKey(key))
2740     * map.put(value);
2741     * else {
2742     * newValue = remappingFunction.apply(map.get(key), value);
2743     * if (value != null)
2744     * map.put(key, value);
2745     * else
2746     * map.remove(key);
2747     * }
2748     * }</pre>
2749     * except that the action is performed atomically. If the
2750     * function returns {@code null}, the mapping is removed. If the
2751     * function itself throws an (unchecked) exception, the exception
2752     * is rethrown to its caller, and the current mapping is left
2753     * unchanged. Some attempted update operations on this map by
2754     * other threads may be blocked while computation is in progress,
2755     * so the computation should be short and simple, and must not
2756     * attempt to update any other mappings of this Map.
2757     */
2758 dl 1.59 @SuppressWarnings("unchecked")
2759 dl 1.52 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2760     if (key == null || value == null || remappingFunction == null)
2761     throw new NullPointerException();
2762     return (V)internalMerge(key, value, remappingFunction);
2763 dl 1.1 }
2764    
2765     /**
2766     * Removes the key (and its corresponding value) from this map.
2767     * This method does nothing if the key is not in the map.
2768     *
2769     * @param key the key that needs to be removed
2770     * @return the previous value associated with {@code key}, or
2771     * {@code null} if there was no mapping for {@code key}
2772     * @throws NullPointerException if the specified key is null
2773     */
2774     @SuppressWarnings("unchecked")
2775 dl 1.52 public V remove(Object key) {
2776 dl 1.1 if (key == null)
2777     throw new NullPointerException();
2778 jsr166 1.3 return (V)internalReplace(key, null, null);
2779 dl 1.1 }
2780    
2781     /**
2782     * {@inheritDoc}
2783     *
2784     * @throws NullPointerException if the specified key is null
2785     */
2786     public boolean remove(Object key, Object value) {
2787     if (key == null)
2788     throw new NullPointerException();
2789     if (value == null)
2790     return false;
2791     return internalReplace(key, null, value) != null;
2792     }
2793    
2794     /**
2795     * {@inheritDoc}
2796     *
2797     * @throws NullPointerException if any of the arguments are null
2798     */
2799     public boolean replace(K key, V oldValue, V newValue) {
2800     if (key == null || oldValue == null || newValue == null)
2801     throw new NullPointerException();
2802 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
2803 dl 1.1 }
2804    
2805     /**
2806     * {@inheritDoc}
2807     *
2808     * @return the previous value associated with the specified key,
2809     * or {@code null} if there was no mapping for the key
2810     * @throws NullPointerException if the specified key or value is null
2811     */
2812     @SuppressWarnings("unchecked")
2813 dl 1.52 public V replace(K key, V value) {
2814 dl 1.1 if (key == null || value == null)
2815     throw new NullPointerException();
2816 jsr166 1.3 return (V)internalReplace(key, value, null);
2817 dl 1.1 }
2818    
2819     /**
2820     * Removes all of the mappings from this map.
2821     */
2822     public void clear() {
2823     internalClear();
2824     }
2825    
2826     /**
2827     * Returns a {@link Set} view of the keys contained in this map.
2828     * The set is backed by the map, so changes to the map are
2829     * reflected in the set, and vice-versa. The set supports element
2830     * removal, which removes the corresponding mapping from this map,
2831     * via the {@code Iterator.remove}, {@code Set.remove},
2832     * {@code removeAll}, {@code retainAll}, and {@code clear}
2833     * operations. It does not support the {@code add} or
2834     * {@code addAll} operations.
2835     *
2836     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2837     * that will never throw {@link ConcurrentModificationException},
2838     * and guarantees to traverse elements as they existed upon
2839     * construction of the iterator, and may (but is not guaranteed to)
2840     * reflect any modifications subsequent to construction.
2841     */
2842     public Set<K> keySet() {
2843 dl 1.14 KeySet<K,V> ks = keySet;
2844     return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2845 dl 1.1 }
2846    
2847     /**
2848     * Returns a {@link Collection} view of the values contained in this map.
2849     * The collection is backed by the map, so changes to the map are
2850     * reflected in the collection, and vice-versa. The collection
2851     * supports element removal, which removes the corresponding
2852     * mapping from this map, via the {@code Iterator.remove},
2853     * {@code Collection.remove}, {@code removeAll},
2854     * {@code retainAll}, and {@code clear} operations. It does not
2855     * support the {@code add} or {@code addAll} operations.
2856     *
2857     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2858     * that will never throw {@link ConcurrentModificationException},
2859     * and guarantees to traverse elements as they existed upon
2860     * construction of the iterator, and may (but is not guaranteed to)
2861     * reflect any modifications subsequent to construction.
2862     */
2863     public Collection<V> values() {
2864 dl 1.14 Values<K,V> vs = values;
2865     return (vs != null) ? vs : (values = new Values<K,V>(this));
2866 dl 1.1 }
2867    
2868     /**
2869     * Returns a {@link Set} view of the mappings contained in this map.
2870     * The set is backed by the map, so changes to the map are
2871     * reflected in the set, and vice-versa. The set supports element
2872     * removal, which removes the corresponding mapping from the map,
2873     * via the {@code Iterator.remove}, {@code Set.remove},
2874     * {@code removeAll}, {@code retainAll}, and {@code clear}
2875     * operations. It does not support the {@code add} or
2876     * {@code addAll} operations.
2877     *
2878     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2879     * that will never throw {@link ConcurrentModificationException},
2880     * and guarantees to traverse elements as they existed upon
2881     * construction of the iterator, and may (but is not guaranteed to)
2882     * reflect any modifications subsequent to construction.
2883     */
2884     public Set<Map.Entry<K,V>> entrySet() {
2885 dl 1.14 EntrySet<K,V> es = entrySet;
2886     return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2887 dl 1.1 }
2888    
2889     /**
2890     * Returns an enumeration of the keys in this table.
2891     *
2892     * @return an enumeration of the keys in this table
2893     * @see #keySet()
2894     */
2895     public Enumeration<K> keys() {
2896 dl 1.14 return new KeyIterator<K,V>(this);
2897 dl 1.1 }
2898    
2899     /**
2900     * Returns an enumeration of the values in this table.
2901     *
2902     * @return an enumeration of the values in this table
2903     * @see #values()
2904     */
2905     public Enumeration<V> elements() {
2906 dl 1.14 return new ValueIterator<K,V>(this);
2907 dl 1.1 }
2908    
2909     /**
2910 jsr166 1.55 * Returns a partitionable iterator of the keys in this map.
2911 dl 1.41 *
2912 jsr166 1.55 * @return a partitionable iterator of the keys in this map
2913 dl 1.41 */
2914     public Spliterator<K> keySpliterator() {
2915     return new KeyIterator<K,V>(this);
2916     }
2917    
2918     /**
2919 jsr166 1.55 * Returns a partitionable iterator of the values in this map.
2920 dl 1.41 *
2921 jsr166 1.55 * @return a partitionable iterator of the values in this map
2922 dl 1.41 */
2923     public Spliterator<V> valueSpliterator() {
2924     return new ValueIterator<K,V>(this);
2925     }
2926    
2927     /**
2928 jsr166 1.55 * Returns a partitionable iterator of the entries in this map.
2929 dl 1.41 *
2930 jsr166 1.55 * @return a partitionable iterator of the entries in this map
2931 dl 1.41 */
2932     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2933     return new EntryIterator<K,V>(this);
2934     }
2935    
2936     /**
2937 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
2938     * the sum of, for each key-value pair in the map,
2939     * {@code key.hashCode() ^ value.hashCode()}.
2940     *
2941     * @return the hash code value for this map
2942 dl 1.1 */
2943     public int hashCode() {
2944 dl 1.14 int h = 0;
2945 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2946 dl 1.41 Object v;
2947     while ((v = it.advance()) != null) {
2948     h += it.nextKey.hashCode() ^ v.hashCode();
2949 dl 1.14 }
2950     return h;
2951 dl 1.1 }
2952    
2953     /**
2954 dl 1.2 * Returns a string representation of this map. The string
2955     * representation consists of a list of key-value mappings (in no
2956     * particular order) enclosed in braces ("{@code {}}"). Adjacent
2957     * mappings are separated by the characters {@code ", "} (comma
2958     * and space). Each key-value mapping is rendered as the key
2959     * followed by an equals sign ("{@code =}") followed by the
2960     * associated value.
2961     *
2962     * @return a string representation of this map
2963 dl 1.1 */
2964     public String toString() {
2965 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2966 dl 1.14 StringBuilder sb = new StringBuilder();
2967     sb.append('{');
2968 dl 1.41 Object v;
2969     if ((v = it.advance()) != null) {
2970 dl 1.14 for (;;) {
2971 dl 1.41 Object k = it.nextKey;
2972 dl 1.14 sb.append(k == this ? "(this Map)" : k);
2973     sb.append('=');
2974     sb.append(v == this ? "(this Map)" : v);
2975 dl 1.41 if ((v = it.advance()) == null)
2976 dl 1.14 break;
2977     sb.append(',').append(' ');
2978     }
2979     }
2980     return sb.append('}').toString();
2981 dl 1.1 }
2982    
2983     /**
2984 dl 1.2 * Compares the specified object with this map for equality.
2985     * Returns {@code true} if the given object is a map with the same
2986     * mappings as this map. This operation may return misleading
2987     * results if either map is concurrently modified during execution
2988     * of this method.
2989     *
2990     * @param o object to be compared for equality with this map
2991     * @return {@code true} if the specified object is equal to this map
2992 dl 1.1 */
2993     public boolean equals(Object o) {
2994 dl 1.14 if (o != this) {
2995     if (!(o instanceof Map))
2996     return false;
2997     Map<?,?> m = (Map<?,?>) o;
2998 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2999 dl 1.41 Object val;
3000     while ((val = it.advance()) != null) {
3001 dl 1.14 Object v = m.get(it.nextKey);
3002     if (v == null || (v != val && !v.equals(val)))
3003 dl 1.1 return false;
3004 dl 1.14 }
3005 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
3006 dl 1.14 Object mk, mv, v;
3007     if ((mk = e.getKey()) == null ||
3008     (mv = e.getValue()) == null ||
3009     (v = internalGet(mk)) == null ||
3010     (mv != v && !mv.equals(v)))
3011 dl 1.1 return false;
3012     }
3013 dl 1.14 }
3014     return true;
3015     }
3016    
3017     /* ----------------Iterators -------------- */
3018    
3019 dl 1.59 @SuppressWarnings("serial")
3020 dl 1.52 static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3021 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3022     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3023 dl 1.52 KeyIterator(Traverser<K,V,Object> it, boolean split) {
3024 dl 1.41 super(it, split);
3025     }
3026     public KeyIterator<K,V> split() {
3027     if (last != null || (next != null && nextVal == null))
3028     throw new IllegalStateException();
3029     return new KeyIterator<K,V>(this, true);
3030 dl 1.14 }
3031     @SuppressWarnings("unchecked")
3032 dl 1.52 public final K next() {
3033 dl 1.41 if (nextVal == null && advance() == null)
3034 dl 1.14 throw new NoSuchElementException();
3035     Object k = nextKey;
3036 dl 1.41 nextVal = null;
3037     return (K) k;
3038 dl 1.14 }
3039    
3040     public final K nextElement() { return next(); }
3041     }
3042    
3043 dl 1.59 @SuppressWarnings("serial")
3044 dl 1.52 static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3045 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3046 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3047 dl 1.52 ValueIterator(Traverser<K,V,Object> it, boolean split) {
3048 dl 1.41 super(it, split);
3049     }
3050     public ValueIterator<K,V> split() {
3051     if (last != null || (next != null && nextVal == null))
3052     throw new IllegalStateException();
3053     return new ValueIterator<K,V>(this, true);
3054     }
3055    
3056 dl 1.14 @SuppressWarnings("unchecked")
3057 dl 1.52 public final V next() {
3058 dl 1.41 Object v;
3059     if ((v = nextVal) == null && (v = advance()) == null)
3060 dl 1.14 throw new NoSuchElementException();
3061 dl 1.41 nextVal = null;
3062     return (V) v;
3063 dl 1.14 }
3064    
3065     public final V nextElement() { return next(); }
3066     }
3067    
3068 dl 1.59 @SuppressWarnings("serial")
3069 dl 1.52 static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3070 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3071 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3072 dl 1.52 EntryIterator(Traverser<K,V,Object> it, boolean split) {
3073 dl 1.41 super(it, split);
3074     }
3075     public EntryIterator<K,V> split() {
3076     if (last != null || (next != null && nextVal == null))
3077     throw new IllegalStateException();
3078     return new EntryIterator<K,V>(this, true);
3079     }
3080 dl 1.24
3081     @SuppressWarnings("unchecked")
3082 dl 1.52 public final Map.Entry<K,V> next() {
3083 dl 1.41 Object v;
3084     if ((v = nextVal) == null && (v = advance()) == null)
3085 dl 1.24 throw new NoSuchElementException();
3086     Object k = nextKey;
3087 dl 1.41 nextVal = null;
3088     return new MapEntry<K,V>((K)k, (V)v, map);
3089 dl 1.1 }
3090     }
3091    
3092     /**
3093 dl 1.41 * Exported Entry for iterators
3094 dl 1.1 */
3095 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3096 dl 1.14 final K key; // non-null
3097     V val; // non-null
3098 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3099     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3100     this.key = key;
3101     this.val = val;
3102     this.map = map;
3103     }
3104 dl 1.14 public final K getKey() { return key; }
3105     public final V getValue() { return val; }
3106     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3107     public final String toString(){ return key + "=" + val; }
3108    
3109     public final boolean equals(Object o) {
3110     Object k, v; Map.Entry<?,?> e;
3111     return ((o instanceof Map.Entry) &&
3112     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3113     (v = e.getValue()) != null &&
3114     (k == key || k.equals(key)) &&
3115     (v == val || v.equals(val)));
3116 dl 1.1 }
3117    
3118     /**
3119     * Sets our entry's value and writes through to the map. The
3120 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3121     * necessarily track asynchronous changes, the most recent
3122 dl 1.41 * "previous" value could be different from what we return (or
3123     * could even have been removed in which case the put will
3124     * re-establish). We do not and cannot guarantee more.
3125 dl 1.1 */
3126 dl 1.14 public final V setValue(V value) {
3127 dl 1.1 if (value == null) throw new NullPointerException();
3128 dl 1.14 V v = val;
3129     val = value;
3130     map.put(key, value);
3131 dl 1.1 return v;
3132     }
3133     }
3134    
3135 dl 1.14 /* ----------------Views -------------- */
3136 dl 1.1
3137 dl 1.24 /**
3138 dl 1.41 * Base class for views.
3139 dl 1.14 */
3140 dl 1.52 static abstract class CHMView<K, V> {
3141 dl 1.14 final ConcurrentHashMapV8<K, V> map;
3142 dl 1.52 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3143 dl 1.14 public final int size() { return map.size(); }
3144     public final boolean isEmpty() { return map.isEmpty(); }
3145     public final void clear() { map.clear(); }
3146 dl 1.24
3147     // implementations below rely on concrete classes supplying these
3148 dl 1.41 abstract public Iterator<?> iterator();
3149 dl 1.24 abstract public boolean contains(Object o);
3150     abstract public boolean remove(Object o);
3151    
3152     private static final String oomeMsg = "Required array size too large";
3153    
3154     public final Object[] toArray() {
3155 dl 1.52 long sz = map.mappingCount();
3156 dl 1.24 if (sz > (long)(MAX_ARRAY_SIZE))
3157     throw new OutOfMemoryError(oomeMsg);
3158     int n = (int)sz;
3159     Object[] r = new Object[n];
3160     int i = 0;
3161 dl 1.41 Iterator<?> it = iterator();
3162 dl 1.24 while (it.hasNext()) {
3163     if (i == n) {
3164     if (n >= MAX_ARRAY_SIZE)
3165     throw new OutOfMemoryError(oomeMsg);
3166     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3167     n = MAX_ARRAY_SIZE;
3168     else
3169     n += (n >>> 1) + 1;
3170     r = Arrays.copyOf(r, n);
3171     }
3172     r[i++] = it.next();
3173     }
3174     return (i == n) ? r : Arrays.copyOf(r, i);
3175     }
3176    
3177     @SuppressWarnings("unchecked")
3178 dl 1.52 public final <T> T[] toArray(T[] a) {
3179     long sz = map.mappingCount();
3180 dl 1.24 if (sz > (long)(MAX_ARRAY_SIZE))
3181     throw new OutOfMemoryError(oomeMsg);
3182     int m = (int)sz;
3183     T[] r = (a.length >= m) ? a :
3184     (T[])java.lang.reflect.Array
3185     .newInstance(a.getClass().getComponentType(), m);
3186     int n = r.length;
3187     int i = 0;
3188 dl 1.41 Iterator<?> it = iterator();
3189 dl 1.24 while (it.hasNext()) {
3190     if (i == n) {
3191     if (n >= MAX_ARRAY_SIZE)
3192     throw new OutOfMemoryError(oomeMsg);
3193     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3194     n = MAX_ARRAY_SIZE;
3195     else
3196     n += (n >>> 1) + 1;
3197     r = Arrays.copyOf(r, n);
3198     }
3199     r[i++] = (T)it.next();
3200     }
3201     if (a == r && i < n) {
3202     r[i] = null; // null-terminate
3203     return r;
3204     }
3205     return (i == n) ? r : Arrays.copyOf(r, i);
3206     }
3207    
3208     public final int hashCode() {
3209     int h = 0;
3210 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();)
3211 dl 1.24 h += it.next().hashCode();
3212     return h;
3213     }
3214    
3215     public final String toString() {
3216     StringBuilder sb = new StringBuilder();
3217     sb.append('[');
3218 dl 1.41 Iterator<?> it = iterator();
3219 dl 1.24 if (it.hasNext()) {
3220     for (;;) {
3221     Object e = it.next();
3222     sb.append(e == this ? "(this Collection)" : e);
3223     if (!it.hasNext())
3224     break;
3225     sb.append(',').append(' ');
3226     }
3227     }
3228     return sb.append(']').toString();
3229     }
3230    
3231     public final boolean containsAll(Collection<?> c) {
3232     if (c != this) {
3233     for (Iterator<?> it = c.iterator(); it.hasNext();) {
3234     Object e = it.next();
3235     if (e == null || !contains(e))
3236     return false;
3237     }
3238     }
3239     return true;
3240     }
3241    
3242 jsr166 1.32 public final boolean removeAll(Collection<?> c) {
3243 dl 1.24 boolean modified = false;
3244 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();) {
3245 dl 1.24 if (c.contains(it.next())) {
3246     it.remove();
3247     modified = true;
3248     }
3249     }
3250     return modified;
3251     }
3252    
3253     public final boolean retainAll(Collection<?> c) {
3254     boolean modified = false;
3255 dl 1.41 for (Iterator<?> it = iterator(); it.hasNext();) {
3256 dl 1.24 if (!c.contains(it.next())) {
3257     it.remove();
3258     modified = true;
3259     }
3260     }
3261     return modified;
3262     }
3263    
3264     }
3265    
3266 dl 1.52 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3267     KeySet(ConcurrentHashMapV8<K, V> map) {
3268     super(map);
3269     }
3270 dl 1.14 public final boolean contains(Object o) { return map.containsKey(o); }
3271     public final boolean remove(Object o) { return map.remove(o) != null; }
3272     public final Iterator<K> iterator() {
3273     return new KeyIterator<K,V>(map);
3274 dl 1.1 }
3275 dl 1.24 public final boolean add(K e) {
3276     throw new UnsupportedOperationException();
3277     }
3278     public final boolean addAll(Collection<? extends K> c) {
3279     throw new UnsupportedOperationException();
3280     }
3281     public boolean equals(Object o) {
3282     Set<?> c;
3283     return ((o instanceof Set) &&
3284     ((c = (Set<?>)o) == this ||
3285     (containsAll(c) && c.containsAll(this))));
3286     }
3287 dl 1.1 }
3288    
3289 dl 1.52
3290     static final class Values<K,V> extends CHMView<K,V>
3291 jsr166 1.34 implements Collection<V> {
3292 dl 1.24 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3293     public final boolean contains(Object o) { return map.containsValue(o); }
3294     public final boolean remove(Object o) {
3295     if (o != null) {
3296     Iterator<V> it = new ValueIterator<K,V>(map);
3297     while (it.hasNext()) {
3298     if (o.equals(it.next())) {
3299     it.remove();
3300     return true;
3301     }
3302     }
3303     }
3304     return false;
3305     }
3306 dl 1.14 public final Iterator<V> iterator() {
3307     return new ValueIterator<K,V>(map);
3308 dl 1.1 }
3309 dl 1.24 public final boolean add(V e) {
3310     throw new UnsupportedOperationException();
3311     }
3312     public final boolean addAll(Collection<? extends V> c) {
3313     throw new UnsupportedOperationException();
3314     }
3315 dl 1.52
3316 dl 1.1 }
3317    
3318 dl 1.52 static final class EntrySet<K,V> extends CHMView<K,V>
3319 dl 1.24 implements Set<Map.Entry<K,V>> {
3320     EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3321 dl 1.14 public final boolean contains(Object o) {
3322     Object k, v, r; Map.Entry<?,?> e;
3323     return ((o instanceof Map.Entry) &&
3324     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3325     (r = map.get(k)) != null &&
3326     (v = e.getValue()) != null &&
3327     (v == r || v.equals(r)));
3328 dl 1.1 }
3329 dl 1.14 public final boolean remove(Object o) {
3330     Object k, v; Map.Entry<?,?> e;
3331     return ((o instanceof Map.Entry) &&
3332     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3333     (v = e.getValue()) != null &&
3334     map.remove(k, v));
3335 dl 1.1 }
3336 dl 1.24 public final Iterator<Map.Entry<K,V>> iterator() {
3337     return new EntryIterator<K,V>(map);
3338     }
3339     public final boolean add(Entry<K,V> e) {
3340     throw new UnsupportedOperationException();
3341     }
3342     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3343     throw new UnsupportedOperationException();
3344     }
3345     public boolean equals(Object o) {
3346     Set<?> c;
3347     return ((o instanceof Set) &&
3348     ((c = (Set<?>)o) == this ||
3349     (containsAll(c) && c.containsAll(this))));
3350     }
3351 dl 1.1 }
3352    
3353     /* ---------------- Serialization Support -------------- */
3354    
3355     /**
3356 dl 1.14 * Stripped-down version of helper class used in previous version,
3357     * declared for the sake of serialization compatibility
3358 dl 1.1 */
3359 dl 1.14 static class Segment<K,V> implements Serializable {
3360 dl 1.1 private static final long serialVersionUID = 2249069246763182397L;
3361     final float loadFactor;
3362     Segment(float lf) { this.loadFactor = lf; }
3363     }
3364    
3365     /**
3366     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3367     * stream (i.e., serializes it).
3368     * @param s the stream
3369     * @serialData
3370     * the key (Object) and value (Object)
3371     * for each key-value mapping, followed by a null pair.
3372     * The key-value mappings are emitted in no particular order.
3373     */
3374     @SuppressWarnings("unchecked")
3375 dl 1.52 private void writeObject(java.io.ObjectOutputStream s)
3376     throws java.io.IOException {
3377 dl 1.1 if (segments == null) { // for serialization compatibility
3378     segments = (Segment<K,V>[])
3379     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3380     for (int i = 0; i < segments.length; ++i)
3381 dl 1.16 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3382 dl 1.1 }
3383     s.defaultWriteObject();
3384 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3385 dl 1.41 Object v;
3386     while ((v = it.advance()) != null) {
3387 dl 1.14 s.writeObject(it.nextKey);
3388 dl 1.41 s.writeObject(v);
3389 dl 1.14 }
3390 dl 1.1 s.writeObject(null);
3391     s.writeObject(null);
3392     segments = null; // throw away
3393     }
3394    
3395     /**
3396 jsr166 1.9 * Reconstitutes the instance from a stream (that is, deserializes it).
3397 dl 1.1 * @param s the stream
3398     */
3399     @SuppressWarnings("unchecked")
3400 dl 1.52 private void readObject(java.io.ObjectInputStream s)
3401     throws java.io.IOException, ClassNotFoundException {
3402 dl 1.1 s.defaultReadObject();
3403     this.segments = null; // unneeded
3404 jsr166 1.21 // initialize transient final field
3405 dl 1.14 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3406    
3407     // Create all nodes, then place in table once size is known
3408     long size = 0L;
3409     Node p = null;
3410 dl 1.1 for (;;) {
3411 dl 1.14 K k = (K) s.readObject();
3412     V v = (V) s.readObject();
3413     if (k != null && v != null) {
3414 dl 1.38 int h = spread(k.hashCode());
3415     p = new Node(h, k, v, p);
3416 dl 1.14 ++size;
3417     }
3418     else
3419 dl 1.1 break;
3420 dl 1.14 }
3421     if (p != null) {
3422     boolean init = false;
3423 dl 1.24 int n;
3424     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3425     n = MAXIMUM_CAPACITY;
3426     else {
3427     int sz = (int)size;
3428     n = tableSizeFor(sz + (sz >>> 1) + 1);
3429     }
3430     int sc = sizeCtl;
3431 dl 1.38 boolean collide = false;
3432 dl 1.24 if (n > sc &&
3433     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3434 dl 1.14 try {
3435     if (table == null) {
3436     init = true;
3437     Node[] tab = new Node[n];
3438     int mask = n - 1;
3439     while (p != null) {
3440     int j = p.hash & mask;
3441     Node next = p.next;
3442 dl 1.38 Node q = p.next = tabAt(tab, j);
3443 dl 1.14 setTabAt(tab, j, p);
3444 dl 1.38 if (!collide && q != null && q.hash == p.hash)
3445     collide = true;
3446 dl 1.14 p = next;
3447     }
3448     table = tab;
3449     counter.add(size);
3450 dl 1.29 sc = n - (n >>> 2);
3451 dl 1.14 }
3452     } finally {
3453 dl 1.24 sizeCtl = sc;
3454 dl 1.14 }
3455 dl 1.38 if (collide) { // rescan and convert to TreeBins
3456     Node[] tab = table;
3457     for (int i = 0; i < tab.length; ++i) {
3458     int c = 0;
3459     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3460     if (++c > TREE_THRESHOLD &&
3461     (e.key instanceof Comparable)) {
3462     replaceWithTreeBin(tab, i, e.key);
3463     break;
3464     }
3465     }
3466     }
3467     }
3468 dl 1.14 }
3469     if (!init) { // Can only happen if unsafely published.
3470     while (p != null) {
3471 dl 1.27 internalPut(p.key, p.val);
3472 dl 1.14 p = p.next;
3473     }
3474     }
3475 dl 1.1 }
3476     }
3477    
3478    
3479 dl 1.52 // -------------------------------------------------------
3480    
3481     // Sams
3482     /** Interface describing a void action of one argument */
3483     public interface Action<A> { void apply(A a); }
3484     /** Interface describing a void action of two arguments */
3485     public interface BiAction<A,B> { void apply(A a, B b); }
3486     /** Interface describing a function of one argument */
3487     public interface Fun<A,T> { T apply(A a); }
3488     /** Interface describing a function of two arguments */
3489     public interface BiFun<A,B,T> { T apply(A a, B b); }
3490     /** Interface describing a function of no arguments */
3491     public interface Generator<T> { T apply(); }
3492     /** Interface describing a function mapping its argument to a double */
3493     public interface ObjectToDouble<A> { double apply(A a); }
3494     /** Interface describing a function mapping its argument to a long */
3495     public interface ObjectToLong<A> { long apply(A a); }
3496     /** Interface describing a function mapping its argument to an int */
3497     public interface ObjectToInt<A> {int apply(A a); }
3498     /** Interface describing a function mapping two arguments to a double */
3499     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3500     /** Interface describing a function mapping two arguments to a long */
3501     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3502     /** Interface describing a function mapping two arguments to an int */
3503     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3504     /** Interface describing a function mapping a double to a double */
3505     public interface DoubleToDouble { double apply(double a); }
3506     /** Interface describing a function mapping a long to a long */
3507     public interface LongToLong { long apply(long a); }
3508     /** Interface describing a function mapping an int to an int */
3509     public interface IntToInt { int apply(int a); }
3510     /** Interface describing a function mapping two doubles to a double */
3511     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3512     /** Interface describing a function mapping two longs to a long */
3513     public interface LongByLongToLong { long apply(long a, long b); }
3514     /** Interface describing a function mapping two ints to an int */
3515     public interface IntByIntToInt { int apply(int a, int b); }
3516    
3517    
3518     // -------------------------------------------------------
3519    
3520     /**
3521     * Returns an extended {@link Parallel} view of this map using the
3522     * given executor for bulk parallel operations.
3523     *
3524     * @param executor the executor
3525     * @return a parallel view
3526     */
3527     public Parallel parallel(ForkJoinPool executor) {
3528     return new Parallel(executor);
3529     }
3530    
3531     /**
3532     * An extended view of a ConcurrentHashMap supporting bulk
3533 jsr166 1.54 * parallel operations. These operations are designed to be
3534 dl 1.52 * safely, and often sensibly, applied even with maps that are
3535     * being concurrently updated by other threads; for example, when
3536     * computing a snapshot summary of the values in a shared
3537     * registry. There are three kinds of operation, each with four
3538     * forms, accepting functions with Keys, Values, Entries, and
3539     * (Key, Value) arguments and/or return values. Because the
3540     * elements of a ConcurrentHashMap are not ordered in any
3541     * particular way, and may be processed in different orders in
3542     * different parallel executions, the correctness of supplied
3543     * functions should not depend on any ordering, or on any other
3544     * objects or values that may transiently change while computation
3545     * is in progress; and except for forEach actions, should ideally
3546     * be side-effect-free.
3547     *
3548     * <ul>
3549     * <li> forEach: Perform a given action on each element.
3550     * A variant form applies a given transformation on each element
3551     * before performing the action.</li>
3552     *
3553     * <li> search: Return the first available non-null result of
3554     * applying a given function on each element; skipping further
3555     * search when a result is found.</li>
3556     *
3557     * <li> reduce: Accumulate each element. The supplied reduction
3558     * function cannot rely on ordering (more formally, it should be
3559     * both associative and commutative). There are five variants:
3560     *
3561     * <ul>
3562     *
3563     * <li> Plain reductions. (There is not a form of this method for
3564     * (key, value) function arguments since there is no corresponding
3565     * return type.)</li>
3566     *
3567     * <li> Mapped reductions that accumulate the results of a given
3568     * function applied to each element.</li>
3569     *
3570     * <li> Reductions to scalar doubles, longs, and ints, using a
3571     * given basis value.</li>
3572     *
3573     * </li>
3574     * </ul>
3575     * </ul>
3576     *
3577     * <p>The concurrency properties of the bulk operations follow
3578     * from those of ConcurrentHashMap: Any non-null result returned
3579     * from {@code get(key)} and related access methods bears a
3580     * happens-before relation with the associated insertion or
3581     * update. The result of any bulk operation reflects the
3582     * composition of these per-element relations (but is not
3583     * necessarily atomic with respect to the map as a whole unless it
3584     * is somehow known to be quiescent). Conversely, because keys
3585     * and values in the map are never null, null serves as a reliable
3586     * atomic indicator of the current lack of any result. To
3587     * maintain this property, null serves as an implicit basis for
3588     * all non-scalar reduction operations. For the double, long, and
3589     * int versions, the basis should be one that, when combined with
3590     * any other value, returns that other value (more formally, it
3591     * should be the identity element for the reduction). Most common
3592     * reductions have these properties; for example, computing a sum
3593     * with basis 0 or a minimum with basis MAX_VALUE.
3594     *
3595     * <p>Search and transformation functions provided as arguments
3596     * should similarly return null to indicate the lack of any result
3597     * (in which case it is not used). In the case of mapped
3598     * reductions, this also enables transformations to serve as
3599     * filters, returning null (or, in the case of primitive
3600     * specializations, the identity basis) if the element should not
3601     * be combined. You can create compound transformations and
3602     * filterings by composing them yourself under this "null means
3603     * there is nothing there now" rule before using them in search or
3604     * reduce operations.
3605     *
3606     * <p>Methods accepting and/or returning Entry arguments maintain
3607     * key-value associations. They may be useful for example when
3608     * finding the key for the greatest value. Note that "plain" Entry
3609     * arguments can be supplied using {@code new
3610     * AbstractMap.SimpleEntry(k,v)}.
3611     *
3612     * <p> Bulk operations may complete abruptly, throwing an
3613     * exception encountered in the application of a supplied
3614     * function. Bear in mind when handling such exceptions that other
3615     * concurrently executing functions could also have thrown
3616     * exceptions, or would have done so if the first exception had
3617     * not occurred.
3618     *
3619     * <p>Parallel speedups compared to sequential processing are
3620     * common but not guaranteed. Operations involving brief
3621     * functions on small maps may execute more slowly than sequential
3622     * loops if the underlying work to parallelize the computation is
3623     * more expensive than the computation itself. Similarly,
3624     * parallelization may not lead to much actual parallelism if all
3625     * processors are busy performing unrelated tasks.
3626     *
3627     * <p> All arguments to all task methods must be non-null.
3628     *
3629     * <p><em>jsr166e note: During transition, this class
3630     * uses nested functional interfaces with different names but the
3631     * same forms as those expected for JDK8.<em>
3632     */
3633     public class Parallel {
3634     final ForkJoinPool fjp;
3635    
3636     /**
3637     * Returns an extended view of this map using the given
3638     * executor for bulk parallel operations.
3639     *
3640     * @param executor the executor
3641     */
3642     public Parallel(ForkJoinPool executor) {
3643     this.fjp = executor;
3644     }
3645    
3646     /**
3647     * Performs the given action for each (key, value).
3648     *
3649     * @param action the action
3650     */
3651 jsr166 1.53 public void forEach(BiAction<K,V> action) {
3652 dl 1.52 fjp.invoke(ForkJoinTasks.forEach
3653     (ConcurrentHashMapV8.this, action));
3654     }
3655    
3656     /**
3657     * Performs the given action for each non-null transformation
3658     * of each (key, value).
3659     *
3660     * @param transformer a function returning the transformation
3661     * for an element, or null of there is no transformation (in
3662     * which case the action is not applied).
3663     * @param action the action
3664     */
3665 jsr166 1.53 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3666 dl 1.52 Action<U> action) {
3667     fjp.invoke(ForkJoinTasks.forEach
3668     (ConcurrentHashMapV8.this, transformer, action));
3669     }
3670    
3671     /**
3672     * Returns a non-null result from applying the given search
3673 dl 1.59 * function on each (key, value), or null if none. Upon
3674     * success, further element processing is suppressed and the
3675     * results of any other parallel invocations of the search
3676     * function are ignored.
3677 dl 1.52 *
3678     * @param searchFunction a function returning a non-null
3679     * result on success, else null
3680     * @return a non-null result from applying the given search
3681     * function on each (key, value), or null if none
3682     */
3683     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3684     return fjp.invoke(ForkJoinTasks.search
3685     (ConcurrentHashMapV8.this, searchFunction));
3686 dl 1.1 }
3687    
3688 dl 1.52 /**
3689     * Returns the result of accumulating the given transformation
3690     * of all (key, value) pairs using the given reducer to
3691     * combine values, or null if none.
3692     *
3693     * @param transformer a function returning the transformation
3694     * for an element, or null of there is no transformation (in
3695     * which case it is not combined).
3696     * @param reducer a commutative associative combining function
3697     * @return the result of accumulating the given transformation
3698     * of all (key, value) pairs
3699     */
3700     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3701     BiFun<? super U, ? super U, ? extends U> reducer) {
3702     return fjp.invoke(ForkJoinTasks.reduce
3703     (ConcurrentHashMapV8.this, transformer, reducer));
3704 dl 1.1 }
3705    
3706 dl 1.52 /**
3707     * Returns the result of accumulating the given transformation
3708     * of all (key, value) pairs using the given reducer to
3709     * combine values, and the given basis as an identity value.
3710     *
3711     * @param transformer a function returning the transformation
3712     * for an element
3713     * @param basis the identity (initial default value) for the reduction
3714     * @param reducer a commutative associative combining function
3715     * @return the result of accumulating the given transformation
3716     * of all (key, value) pairs
3717     */
3718     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3719     double basis,
3720     DoubleByDoubleToDouble reducer) {
3721     return fjp.invoke(ForkJoinTasks.reduceToDouble
3722     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3723     }
3724    
3725     /**
3726     * Returns the result of accumulating the given transformation
3727     * of all (key, value) pairs using the given reducer to
3728     * combine values, and the given basis as an identity value.
3729     *
3730     * @param transformer a function returning the transformation
3731     * for an element
3732     * @param basis the identity (initial default value) for the reduction
3733     * @param reducer a commutative associative combining function
3734     * @return the result of accumulating the given transformation
3735 dl 1.59 * of all (key, value) pairs
3736 dl 1.52 */
3737     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3738     long basis,
3739     LongByLongToLong reducer) {
3740     return fjp.invoke(ForkJoinTasks.reduceToLong
3741     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3742     }
3743    
3744     /**
3745     * Returns the result of accumulating the given transformation
3746     * of all (key, value) pairs using the given reducer to
3747     * combine values, and the given basis as an identity value.
3748     *
3749     * @param transformer a function returning the transformation
3750     * for an element
3751     * @param basis the identity (initial default value) for the reduction
3752     * @param reducer a commutative associative combining function
3753     * @return the result of accumulating the given transformation
3754     * of all (key, value) pairs
3755     */
3756     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3757     int basis,
3758     IntByIntToInt reducer) {
3759     return fjp.invoke(ForkJoinTasks.reduceToInt
3760     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3761     }
3762    
3763     /**
3764 jsr166 1.56 * Performs the given action for each key.
3765 dl 1.52 *
3766     * @param action the action
3767     */
3768 jsr166 1.53 public void forEachKey(Action<K> action) {
3769 dl 1.52 fjp.invoke(ForkJoinTasks.forEachKey
3770     (ConcurrentHashMapV8.this, action));
3771     }
3772    
3773     /**
3774     * Performs the given action for each non-null transformation
3775 jsr166 1.56 * of each key.
3776 dl 1.52 *
3777     * @param transformer a function returning the transformation
3778     * for an element, or null of there is no transformation (in
3779     * which case the action is not applied).
3780     * @param action the action
3781     */
3782 jsr166 1.53 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3783 dl 1.52 Action<U> action) {
3784     fjp.invoke(ForkJoinTasks.forEachKey
3785     (ConcurrentHashMapV8.this, transformer, action));
3786     }
3787    
3788     /**
3789     * Returns a non-null result from applying the given search
3790 dl 1.59 * function on each key, or null if none. Upon success,
3791     * further element processing is suppressed and the results of
3792     * any other parallel invocations of the search function are
3793     * ignored.
3794 dl 1.52 *
3795     * @param searchFunction a function returning a non-null
3796     * result on success, else null
3797     * @return a non-null result from applying the given search
3798     * function on each key, or null if none
3799     */
3800     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3801     return fjp.invoke(ForkJoinTasks.searchKeys
3802     (ConcurrentHashMapV8.this, searchFunction));
3803     }
3804    
3805     /**
3806     * Returns the result of accumulating all keys using the given
3807     * reducer to combine values, or null if none.
3808     *
3809     * @param reducer a commutative associative combining function
3810     * @return the result of accumulating all keys using the given
3811     * reducer to combine values, or null if none
3812     */
3813     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3814     return fjp.invoke(ForkJoinTasks.reduceKeys
3815     (ConcurrentHashMapV8.this, reducer));
3816     }
3817    
3818     /**
3819     * Returns the result of accumulating the given transformation
3820     * of all keys using the given reducer to combine values, or
3821     * null if none.
3822     *
3823     * @param transformer a function returning the transformation
3824     * for an element, or null of there is no transformation (in
3825     * which case it is not combined).
3826     * @param reducer a commutative associative combining function
3827     * @return the result of accumulating the given transformation
3828     * of all keys
3829     */
3830     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3831     BiFun<? super U, ? super U, ? extends U> reducer) {
3832     return fjp.invoke(ForkJoinTasks.reduceKeys
3833     (ConcurrentHashMapV8.this, transformer, reducer));
3834     }
3835    
3836     /**
3837     * Returns the result of accumulating the given transformation
3838     * of all keys using the given reducer to combine values, and
3839     * the given basis as an identity value.
3840     *
3841     * @param transformer a function returning the transformation
3842     * for an element
3843     * @param basis the identity (initial default value) for the reduction
3844     * @param reducer a commutative associative combining function
3845     * @return the result of accumulating the given transformation
3846     * of all keys
3847     */
3848     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3849     double basis,
3850     DoubleByDoubleToDouble reducer) {
3851     return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3852     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3853     }
3854    
3855     /**
3856     * Returns the result of accumulating the given transformation
3857     * of all keys using the given reducer to combine values, and
3858     * the given basis as an identity value.
3859     *
3860     * @param transformer a function returning the transformation
3861     * for an element
3862     * @param basis the identity (initial default value) for the reduction
3863     * @param reducer a commutative associative combining function
3864     * @return the result of accumulating the given transformation
3865     * of all keys
3866     */
3867     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3868     long basis,
3869     LongByLongToLong reducer) {
3870     return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3871     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3872     }
3873    
3874     /**
3875     * Returns the result of accumulating the given transformation
3876     * of all keys using the given reducer to combine values, and
3877     * the given basis as an identity value.
3878     *
3879     * @param transformer a function returning the transformation
3880     * for an element
3881     * @param basis the identity (initial default value) for the reduction
3882     * @param reducer a commutative associative combining function
3883     * @return the result of accumulating the given transformation
3884     * of all keys
3885     */
3886     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3887     int basis,
3888     IntByIntToInt reducer) {
3889     return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3890     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3891     }
3892    
3893     /**
3894 jsr166 1.56 * Performs the given action for each value.
3895 dl 1.52 *
3896     * @param action the action
3897     */
3898 jsr166 1.53 public void forEachValue(Action<V> action) {
3899 dl 1.52 fjp.invoke(ForkJoinTasks.forEachValue
3900     (ConcurrentHashMapV8.this, action));
3901     }
3902    
3903     /**
3904     * Performs the given action for each non-null transformation
3905 jsr166 1.56 * of each value.
3906 dl 1.52 *
3907     * @param transformer a function returning the transformation
3908     * for an element, or null of there is no transformation (in
3909     * which case the action is not applied).
3910     */
3911 jsr166 1.53 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3912 dl 1.52 Action<U> action) {
3913     fjp.invoke(ForkJoinTasks.forEachValue
3914     (ConcurrentHashMapV8.this, transformer, action));
3915     }
3916    
3917     /**
3918     * Returns a non-null result from applying the given search
3919 dl 1.59 * function on each value, or null if none. Upon success,
3920     * further element processing is suppressed and the results of
3921     * any other parallel invocations of the search function are
3922     * ignored.
3923 dl 1.52 *
3924     * @param searchFunction a function returning a non-null
3925     * result on success, else null
3926     * @return a non-null result from applying the given search
3927     * function on each value, or null if none
3928     *
3929     */
3930     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3931     return fjp.invoke(ForkJoinTasks.searchValues
3932     (ConcurrentHashMapV8.this, searchFunction));
3933     }
3934    
3935     /**
3936     * Returns the result of accumulating all values using the
3937     * given reducer to combine values, or null if none.
3938     *
3939     * @param reducer a commutative associative combining function
3940     * @return the result of accumulating all values
3941     */
3942     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3943     return fjp.invoke(ForkJoinTasks.reduceValues
3944     (ConcurrentHashMapV8.this, reducer));
3945     }
3946    
3947     /**
3948     * Returns the result of accumulating the given transformation
3949     * of all values using the given reducer to combine values, or
3950     * null if none.
3951     *
3952     * @param transformer a function returning the transformation
3953     * for an element, or null of there is no transformation (in
3954     * which case it is not combined).
3955     * @param reducer a commutative associative combining function
3956     * @return the result of accumulating the given transformation
3957     * of all values
3958     */
3959     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3960     BiFun<? super U, ? super U, ? extends U> reducer) {
3961     return fjp.invoke(ForkJoinTasks.reduceValues
3962     (ConcurrentHashMapV8.this, transformer, reducer));
3963     }
3964    
3965     /**
3966     * Returns the result of accumulating the given transformation
3967     * of all values using the given reducer to combine values,
3968     * and the given basis as an identity value.
3969     *
3970     * @param transformer a function returning the transformation
3971     * for an element
3972     * @param basis the identity (initial default value) for the reduction
3973     * @param reducer a commutative associative combining function
3974     * @return the result of accumulating the given transformation
3975     * of all values
3976     */
3977     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3978     double basis,
3979     DoubleByDoubleToDouble reducer) {
3980     return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3981     (ConcurrentHashMapV8.this, transformer, basis, reducer));
3982     }
3983    
3984     /**
3985     * Returns the result of accumulating the given transformation
3986     * of all values using the given reducer to combine values,
3987     * and the given basis as an identity value.
3988     *
3989     * @param transformer a function returning the transformation
3990     * for an element
3991     * @param basis the identity (initial default value) for the reduction
3992     * @param reducer a commutative associative combining function
3993     * @return the result of accumulating the given transformation
3994     * of all values
3995     */
3996     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3997     long basis,
3998     LongByLongToLong reducer) {
3999     return fjp.invoke(ForkJoinTasks.reduceValuesToLong
4000     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4001     }
4002    
4003     /**
4004     * Returns the result of accumulating the given transformation
4005     * of all values using the given reducer to combine values,
4006     * and the given basis as an identity value.
4007     *
4008     * @param transformer a function returning the transformation
4009     * for an element
4010     * @param basis the identity (initial default value) for the reduction
4011     * @param reducer a commutative associative combining function
4012     * @return the result of accumulating the given transformation
4013     * of all values
4014     */
4015     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4016     int basis,
4017     IntByIntToInt reducer) {
4018     return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4019     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4020     }
4021    
4022     /**
4023 jsr166 1.56 * Performs the given action for each entry.
4024 dl 1.52 *
4025     * @param action the action
4026     */
4027 jsr166 1.53 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4028 dl 1.52 fjp.invoke(ForkJoinTasks.forEachEntry
4029     (ConcurrentHashMapV8.this, action));
4030     }
4031    
4032     /**
4033 jsr166 1.56 * Performs the given action for each non-null transformation
4034     * of each entry.
4035 dl 1.52 *
4036     * @param transformer a function returning the transformation
4037     * for an element, or null of there is no transformation (in
4038     * which case the action is not applied).
4039     * @param action the action
4040     */
4041 jsr166 1.53 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4042 dl 1.52 Action<U> action) {
4043     fjp.invoke(ForkJoinTasks.forEachEntry
4044     (ConcurrentHashMapV8.this, transformer, action));
4045     }
4046    
4047     /**
4048     * Returns a non-null result from applying the given search
4049 dl 1.59 * function on each entry, or null if none. Upon success,
4050     * further element processing is suppressed and the results of
4051     * any other parallel invocations of the search function are
4052     * ignored.
4053 dl 1.52 *
4054     * @param searchFunction a function returning a non-null
4055     * result on success, else null
4056     * @return a non-null result from applying the given search
4057     * function on each entry, or null if none
4058     */
4059     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4060     return fjp.invoke(ForkJoinTasks.searchEntries
4061     (ConcurrentHashMapV8.this, searchFunction));
4062     }
4063    
4064     /**
4065     * Returns the result of accumulating all entries using the
4066     * given reducer to combine values, or null if none.
4067     *
4068     * @param reducer a commutative associative combining function
4069     * @return the result of accumulating all entries
4070     */
4071     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4072     return fjp.invoke(ForkJoinTasks.reduceEntries
4073     (ConcurrentHashMapV8.this, reducer));
4074     }
4075    
4076     /**
4077     * Returns the result of accumulating the given transformation
4078     * of all entries using the given reducer to combine values,
4079     * or null if none.
4080     *
4081     * @param transformer a function returning the transformation
4082     * for an element, or null of there is no transformation (in
4083     * which case it is not combined).
4084     * @param reducer a commutative associative combining function
4085     * @return the result of accumulating the given transformation
4086     * of all entries
4087     */
4088     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4089     BiFun<? super U, ? super U, ? extends U> reducer) {
4090     return fjp.invoke(ForkJoinTasks.reduceEntries
4091     (ConcurrentHashMapV8.this, transformer, reducer));
4092     }
4093    
4094     /**
4095     * Returns the result of accumulating the given transformation
4096     * of all entries using the given reducer to combine values,
4097     * and the given basis as an identity value.
4098     *
4099     * @param transformer a function returning the transformation
4100     * for an element
4101     * @param basis the identity (initial default value) for the reduction
4102     * @param reducer a commutative associative combining function
4103     * @return the result of accumulating the given transformation
4104     * of all entries
4105     */
4106     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4107     double basis,
4108     DoubleByDoubleToDouble reducer) {
4109     return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4110     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4111     }
4112    
4113     /**
4114     * Returns the result of accumulating the given transformation
4115     * of all entries using the given reducer to combine values,
4116     * and the given basis as an identity value.
4117     *
4118     * @param transformer a function returning the transformation
4119     * for an element
4120     * @param basis the identity (initial default value) for the reduction
4121     * @param reducer a commutative associative combining function
4122     * @return the result of accumulating the given transformation
4123     * of all entries
4124     */
4125     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4126     long basis,
4127     LongByLongToLong reducer) {
4128     return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4129     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4130     }
4131    
4132     /**
4133     * Returns the result of accumulating the given transformation
4134     * of all entries using the given reducer to combine values,
4135     * and the given basis as an identity value.
4136     *
4137     * @param transformer a function returning the transformation
4138     * for an element
4139     * @param basis the identity (initial default value) for the reduction
4140     * @param reducer a commutative associative combining function
4141     * @return the result of accumulating the given transformation
4142     * of all entries
4143     */
4144     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4145     int basis,
4146     IntByIntToInt reducer) {
4147     return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4148     (ConcurrentHashMapV8.this, transformer, basis, reducer));
4149     }
4150     }
4151    
4152     // ---------------------------------------------------------------------
4153    
4154     /**
4155     * Predefined tasks for performing bulk parallel operations on
4156     * ConcurrentHashMaps. These tasks follow the forms and rules used
4157     * in class {@link Parallel}. Each method has the same name, but
4158     * returns a task rather than invoking it. These methods may be
4159     * useful in custom applications such as submitting a task without
4160     * waiting for completion, or combining with other tasks.
4161     */
4162     public static class ForkJoinTasks {
4163     private ForkJoinTasks() {}
4164    
4165     /**
4166     * Returns a task that when invoked, performs the given
4167     * action for each (key, value)
4168     *
4169     * @param map the map
4170     * @param action the action
4171     * @return the task
4172     */
4173 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4174 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4175     BiAction<K,V> action) {
4176     if (action == null) throw new NullPointerException();
4177     return new ForEachMappingTask<K,V>(map, action);
4178     }
4179    
4180     /**
4181     * Returns a task that when invoked, performs the given
4182     * action for each non-null transformation of each (key, value)
4183     *
4184     * @param map the map
4185     * @param transformer a function returning the transformation
4186     * for an element, or null of there is no transformation (in
4187     * which case the action is not applied).
4188     * @param action the action
4189     * @return the task
4190     */
4191 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4192 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4193     BiFun<? super K, ? super V, ? extends U> transformer,
4194     Action<U> action) {
4195     if (transformer == null || action == null)
4196     throw new NullPointerException();
4197     return new ForEachTransformedMappingTask<K,V,U>
4198     (map, transformer, action);
4199     }
4200    
4201     /**
4202 dl 1.59 * Returns a task that when invoked, returns a non-null result
4203     * from applying the given search function on each (key,
4204     * value), or null if none. Upon success, further element
4205     * processing is suppressed and the results of any other
4206     * parallel invocations of the search function are ignored.
4207 dl 1.52 *
4208     * @param map the map
4209     * @param searchFunction a function returning a non-null
4210     * result on success, else null
4211     * @return the task
4212     */
4213     public static <K,V,U> ForkJoinTask<U> search
4214     (ConcurrentHashMapV8<K,V> map,
4215     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4216     if (searchFunction == null) throw new NullPointerException();
4217     return new SearchMappingsTask<K,V,U>
4218     (map, searchFunction,
4219     new AtomicReference<U>());
4220     }
4221    
4222     /**
4223     * Returns a task that when invoked, returns the result of
4224     * accumulating the given transformation of all (key, value) pairs
4225     * using the given reducer to combine values, or null if none.
4226     *
4227     * @param map the map
4228     * @param transformer a function returning the transformation
4229     * for an element, or null of there is no transformation (in
4230     * which case it is not combined).
4231     * @param reducer a commutative associative combining function
4232     * @return the task
4233     */
4234     public static <K,V,U> ForkJoinTask<U> reduce
4235     (ConcurrentHashMapV8<K,V> map,
4236     BiFun<? super K, ? super V, ? extends U> transformer,
4237     BiFun<? super U, ? super U, ? extends U> reducer) {
4238     if (transformer == null || reducer == null)
4239     throw new NullPointerException();
4240     return new MapReduceMappingsTask<K,V,U>
4241     (map, transformer, reducer);
4242     }
4243    
4244     /**
4245     * Returns a task that when invoked, returns the result of
4246     * accumulating the given transformation of all (key, value) pairs
4247     * using the given reducer to combine values, and the given
4248     * basis as an identity value.
4249     *
4250     * @param map the map
4251     * @param transformer a function returning the transformation
4252     * for an element
4253     * @param basis the identity (initial default value) for the reduction
4254     * @param reducer a commutative associative combining function
4255     * @return the task
4256     */
4257     public static <K,V> ForkJoinTask<Double> reduceToDouble
4258     (ConcurrentHashMapV8<K,V> map,
4259     ObjectByObjectToDouble<? super K, ? super V> transformer,
4260     double basis,
4261     DoubleByDoubleToDouble reducer) {
4262     if (transformer == null || reducer == null)
4263     throw new NullPointerException();
4264     return new MapReduceMappingsToDoubleTask<K,V>
4265     (map, transformer, basis, reducer);
4266     }
4267    
4268     /**
4269     * Returns a task that when invoked, returns the result of
4270     * accumulating the given transformation of all (key, value) pairs
4271     * using the given reducer to combine values, and the given
4272     * basis as an identity value.
4273     *
4274     * @param map the map
4275     * @param transformer a function returning the transformation
4276     * for an element
4277     * @param basis the identity (initial default value) for the reduction
4278     * @param reducer a commutative associative combining function
4279     * @return the task
4280     */
4281     public static <K,V> ForkJoinTask<Long> reduceToLong
4282     (ConcurrentHashMapV8<K,V> map,
4283     ObjectByObjectToLong<? super K, ? super V> transformer,
4284     long basis,
4285     LongByLongToLong reducer) {
4286     if (transformer == null || reducer == null)
4287     throw new NullPointerException();
4288     return new MapReduceMappingsToLongTask<K,V>
4289     (map, transformer, basis, reducer);
4290     }
4291    
4292     /**
4293     * Returns a task that when invoked, returns the result of
4294     * accumulating the given transformation of all (key, value) pairs
4295     * using the given reducer to combine values, and the given
4296     * basis as an identity value.
4297     *
4298     * @param transformer a function returning the transformation
4299     * for an element
4300     * @param basis the identity (initial default value) for the reduction
4301     * @param reducer a commutative associative combining function
4302     * @return the task
4303     */
4304     public static <K,V> ForkJoinTask<Integer> reduceToInt
4305     (ConcurrentHashMapV8<K,V> map,
4306     ObjectByObjectToInt<? super K, ? super V> transformer,
4307     int basis,
4308     IntByIntToInt reducer) {
4309     if (transformer == null || reducer == null)
4310     throw new NullPointerException();
4311     return new MapReduceMappingsToIntTask<K,V>
4312     (map, transformer, basis, reducer);
4313     }
4314    
4315     /**
4316     * Returns a task that when invoked, performs the given action
4317 jsr166 1.56 * for each key.
4318 dl 1.52 *
4319     * @param map the map
4320     * @param action the action
4321     * @return the task
4322     */
4323 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
4324 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4325     Action<K> action) {
4326     if (action == null) throw new NullPointerException();
4327     return new ForEachKeyTask<K,V>(map, action);
4328     }
4329    
4330     /**
4331     * Returns a task that when invoked, performs the given action
4332 jsr166 1.56 * for each non-null transformation of each key.
4333 dl 1.52 *
4334     * @param map the map
4335     * @param transformer a function returning the transformation
4336     * for an element, or null of there is no transformation (in
4337     * which case the action is not applied).
4338     * @param action the action
4339     * @return the task
4340     */
4341 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
4342 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4343     Fun<? super K, ? extends U> transformer,
4344     Action<U> action) {
4345     if (transformer == null || action == null)
4346     throw new NullPointerException();
4347     return new ForEachTransformedKeyTask<K,V,U>
4348     (map, transformer, action);
4349     }
4350    
4351     /**
4352     * Returns a task that when invoked, returns a non-null result
4353     * from applying the given search function on each key, or
4354 dl 1.59 * null if none. Upon success, further element processing is
4355     * suppressed and the results of any other parallel
4356     * invocations of the search function are ignored.
4357 dl 1.52 *
4358     * @param map the map
4359     * @param searchFunction a function returning a non-null
4360     * result on success, else null
4361     * @return the task
4362     */
4363     public static <K,V,U> ForkJoinTask<U> searchKeys
4364     (ConcurrentHashMapV8<K,V> map,
4365     Fun<? super K, ? extends U> searchFunction) {
4366     if (searchFunction == null) throw new NullPointerException();
4367     return new SearchKeysTask<K,V,U>
4368     (map, searchFunction,
4369     new AtomicReference<U>());
4370     }
4371    
4372     /**
4373     * Returns a task that when invoked, returns the result of
4374     * accumulating all keys using the given reducer to combine
4375     * values, or null if none.
4376     *
4377     * @param map the map
4378     * @param reducer a commutative associative combining function
4379     * @return the task
4380     */
4381     public static <K,V> ForkJoinTask<K> reduceKeys
4382     (ConcurrentHashMapV8<K,V> map,
4383     BiFun<? super K, ? super K, ? extends K> reducer) {
4384     if (reducer == null) throw new NullPointerException();
4385     return new ReduceKeysTask<K,V>
4386     (map, reducer);
4387     }
4388 jsr166 1.58
4389 dl 1.52 /**
4390     * Returns a task that when invoked, returns the result of
4391     * accumulating the given transformation of all keys using the given
4392     * reducer to combine values, or null if none.
4393     *
4394     * @param map the map
4395     * @param transformer a function returning the transformation
4396     * for an element, or null of there is no transformation (in
4397     * which case it is not combined).
4398     * @param reducer a commutative associative combining function
4399     * @return the task
4400     */
4401     public static <K,V,U> ForkJoinTask<U> reduceKeys
4402     (ConcurrentHashMapV8<K,V> map,
4403     Fun<? super K, ? extends U> transformer,
4404     BiFun<? super U, ? super U, ? extends U> reducer) {
4405     if (transformer == null || reducer == null)
4406     throw new NullPointerException();
4407     return new MapReduceKeysTask<K,V,U>
4408     (map, transformer, reducer);
4409     }
4410    
4411     /**
4412     * Returns a task that when invoked, returns the result of
4413     * accumulating the given transformation of all keys using the given
4414     * reducer to combine values, and the given basis as an
4415     * identity value.
4416     *
4417     * @param map the map
4418     * @param transformer a function returning the transformation
4419     * for an element
4420     * @param basis the identity (initial default value) for the reduction
4421     * @param reducer a commutative associative combining function
4422     * @return the task
4423     */
4424     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4425     (ConcurrentHashMapV8<K,V> map,
4426     ObjectToDouble<? super K> transformer,
4427     double basis,
4428     DoubleByDoubleToDouble reducer) {
4429     if (transformer == null || reducer == null)
4430     throw new NullPointerException();
4431     return new MapReduceKeysToDoubleTask<K,V>
4432     (map, transformer, basis, reducer);
4433     }
4434    
4435     /**
4436     * Returns a task that when invoked, returns the result of
4437     * accumulating the given transformation of all keys using the given
4438     * reducer to combine values, and the given basis as an
4439     * identity value.
4440     *
4441     * @param map the map
4442     * @param transformer a function returning the transformation
4443     * for an element
4444     * @param basis the identity (initial default value) for the reduction
4445     * @param reducer a commutative associative combining function
4446     * @return the task
4447     */
4448     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4449     (ConcurrentHashMapV8<K,V> map,
4450     ObjectToLong<? super K> transformer,
4451     long basis,
4452     LongByLongToLong reducer) {
4453     if (transformer == null || reducer == null)
4454     throw new NullPointerException();
4455     return new MapReduceKeysToLongTask<K,V>
4456     (map, transformer, basis, reducer);
4457     }
4458    
4459     /**
4460     * Returns a task that when invoked, returns the result of
4461     * accumulating the given transformation of all keys using the given
4462     * reducer to combine values, and the given basis as an
4463     * identity value.
4464     *
4465     * @param map the map
4466     * @param transformer a function returning the transformation
4467     * for an element
4468     * @param basis the identity (initial default value) for the reduction
4469     * @param reducer a commutative associative combining function
4470     * @return the task
4471     */
4472     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4473     (ConcurrentHashMapV8<K,V> map,
4474     ObjectToInt<? super K> transformer,
4475     int basis,
4476     IntByIntToInt reducer) {
4477     if (transformer == null || reducer == null)
4478     throw new NullPointerException();
4479     return new MapReduceKeysToIntTask<K,V>
4480     (map, transformer, basis, reducer);
4481     }
4482    
4483     /**
4484     * Returns a task that when invoked, performs the given action
4485 jsr166 1.56 * for each value.
4486 dl 1.52 *
4487     * @param map the map
4488     * @param action the action
4489     */
4490 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
4491 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4492     Action<V> action) {
4493     if (action == null) throw new NullPointerException();
4494     return new ForEachValueTask<K,V>(map, action);
4495     }
4496    
4497     /**
4498     * Returns a task that when invoked, performs the given action
4499 jsr166 1.56 * for each non-null transformation of each value.
4500 dl 1.52 *
4501     * @param map the map
4502     * @param transformer a function returning the transformation
4503     * for an element, or null of there is no transformation (in
4504     * which case the action is not applied).
4505     * @param action the action
4506     */
4507 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
4508 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4509     Fun<? super V, ? extends U> transformer,
4510     Action<U> action) {
4511     if (transformer == null || action == null)
4512     throw new NullPointerException();
4513     return new ForEachTransformedValueTask<K,V,U>
4514     (map, transformer, action);
4515     }
4516    
4517     /**
4518     * Returns a task that when invoked, returns a non-null result
4519     * from applying the given search function on each value, or
4520 dl 1.59 * null if none. Upon success, further element processing is
4521     * suppressed and the results of any other parallel
4522     * invocations of the search function are ignored.
4523 dl 1.52 *
4524     * @param map the map
4525     * @param searchFunction a function returning a non-null
4526     * result on success, else null
4527     * @return the task
4528     *
4529     */
4530     public static <K,V,U> ForkJoinTask<U> searchValues
4531     (ConcurrentHashMapV8<K,V> map,
4532     Fun<? super V, ? extends U> searchFunction) {
4533     if (searchFunction == null) throw new NullPointerException();
4534     return new SearchValuesTask<K,V,U>
4535     (map, searchFunction,
4536     new AtomicReference<U>());
4537     }
4538    
4539     /**
4540     * Returns a task that when invoked, returns the result of
4541     * accumulating all values using the given reducer to combine
4542     * values, or null if none.
4543     *
4544     * @param map the map
4545     * @param reducer a commutative associative combining function
4546     * @return the task
4547     */
4548     public static <K,V> ForkJoinTask<V> reduceValues
4549     (ConcurrentHashMapV8<K,V> map,
4550     BiFun<? super V, ? super V, ? extends V> reducer) {
4551     if (reducer == null) throw new NullPointerException();
4552     return new ReduceValuesTask<K,V>
4553     (map, reducer);
4554     }
4555    
4556     /**
4557     * Returns a task that when invoked, returns the result of
4558     * accumulating the given transformation of all values using the
4559     * given reducer to combine values, or null if none.
4560     *
4561     * @param map the map
4562     * @param transformer a function returning the transformation
4563     * for an element, or null of there is no transformation (in
4564     * which case it is not combined).
4565     * @param reducer a commutative associative combining function
4566     * @return the task
4567     */
4568     public static <K,V,U> ForkJoinTask<U> reduceValues
4569     (ConcurrentHashMapV8<K,V> map,
4570     Fun<? super V, ? extends U> transformer,
4571     BiFun<? super U, ? super U, ? extends U> reducer) {
4572     if (transformer == null || reducer == null)
4573     throw new NullPointerException();
4574     return new MapReduceValuesTask<K,V,U>
4575     (map, transformer, reducer);
4576     }
4577    
4578     /**
4579     * Returns a task that when invoked, returns the result of
4580     * accumulating the given transformation of all values using the
4581     * given reducer to combine values, and the given basis as an
4582     * identity value.
4583     *
4584     * @param map the map
4585     * @param transformer a function returning the transformation
4586     * for an element
4587     * @param basis the identity (initial default value) for the reduction
4588     * @param reducer a commutative associative combining function
4589     * @return the task
4590     */
4591     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4592     (ConcurrentHashMapV8<K,V> map,
4593     ObjectToDouble<? super V> transformer,
4594     double basis,
4595     DoubleByDoubleToDouble reducer) {
4596     if (transformer == null || reducer == null)
4597     throw new NullPointerException();
4598     return new MapReduceValuesToDoubleTask<K,V>
4599     (map, transformer, basis, reducer);
4600     }
4601    
4602     /**
4603     * Returns a task that when invoked, returns the result of
4604     * accumulating the given transformation of all values using the
4605     * given reducer to combine values, and the given basis as an
4606     * identity value.
4607     *
4608     * @param map the map
4609     * @param transformer a function returning the transformation
4610     * for an element
4611     * @param basis the identity (initial default value) for the reduction
4612     * @param reducer a commutative associative combining function
4613     * @return the task
4614     */
4615     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4616     (ConcurrentHashMapV8<K,V> map,
4617     ObjectToLong<? super V> transformer,
4618     long basis,
4619     LongByLongToLong reducer) {
4620     if (transformer == null || reducer == null)
4621     throw new NullPointerException();
4622     return new MapReduceValuesToLongTask<K,V>
4623     (map, transformer, basis, reducer);
4624     }
4625    
4626     /**
4627     * Returns a task that when invoked, returns the result of
4628     * accumulating the given transformation of all values using the
4629     * given reducer to combine values, and the given basis as an
4630     * identity value.
4631     *
4632     * @param map the map
4633     * @param transformer a function returning the transformation
4634     * for an element
4635     * @param basis the identity (initial default value) for the reduction
4636     * @param reducer a commutative associative combining function
4637     * @return the task
4638     */
4639     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4640     (ConcurrentHashMapV8<K,V> map,
4641     ObjectToInt<? super V> transformer,
4642     int basis,
4643     IntByIntToInt reducer) {
4644     if (transformer == null || reducer == null)
4645     throw new NullPointerException();
4646     return new MapReduceValuesToIntTask<K,V>
4647     (map, transformer, basis, reducer);
4648     }
4649    
4650     /**
4651     * Returns a task that when invoked, perform the given action
4652 jsr166 1.56 * for each entry.
4653 dl 1.52 *
4654     * @param map the map
4655     * @param action the action
4656     */
4657 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
4658 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4659     Action<Map.Entry<K,V>> action) {
4660     if (action == null) throw new NullPointerException();
4661     return new ForEachEntryTask<K,V>(map, action);
4662     }
4663    
4664     /**
4665     * Returns a task that when invoked, perform the given action
4666 jsr166 1.56 * for each non-null transformation of each entry.
4667 dl 1.52 *
4668     * @param map the map
4669     * @param transformer a function returning the transformation
4670     * for an element, or null of there is no transformation (in
4671     * which case the action is not applied).
4672     * @param action the action
4673     */
4674 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4675 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4676     Fun<Map.Entry<K,V>, ? extends U> transformer,
4677     Action<U> action) {
4678     if (transformer == null || action == null)
4679     throw new NullPointerException();
4680     return new ForEachTransformedEntryTask<K,V,U>
4681     (map, transformer, action);
4682     }
4683    
4684     /**
4685     * Returns a task that when invoked, returns a non-null result
4686     * from applying the given search function on each entry, or
4687 dl 1.59 * null if none. Upon success, further element processing is
4688     * suppressed and the results of any other parallel
4689     * invocations of the search function are ignored.
4690 dl 1.52 *
4691     * @param map the map
4692     * @param searchFunction a function returning a non-null
4693     * result on success, else null
4694     * @return the task
4695     *
4696     */
4697     public static <K,V,U> ForkJoinTask<U> searchEntries
4698     (ConcurrentHashMapV8<K,V> map,
4699     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4700     if (searchFunction == null) throw new NullPointerException();
4701     return new SearchEntriesTask<K,V,U>
4702     (map, searchFunction,
4703     new AtomicReference<U>());
4704     }
4705    
4706     /**
4707     * Returns a task that when invoked, returns the result of
4708     * accumulating all entries using the given reducer to combine
4709     * values, or null if none.
4710     *
4711     * @param map the map
4712     * @param reducer a commutative associative combining function
4713     * @return the task
4714     */
4715     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4716     (ConcurrentHashMapV8<K,V> map,
4717     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4718     if (reducer == null) throw new NullPointerException();
4719     return new ReduceEntriesTask<K,V>
4720     (map, reducer);
4721     }
4722    
4723     /**
4724     * Returns a task that when invoked, returns the result of
4725     * accumulating the given transformation of all entries using the
4726     * given reducer to combine values, or null if none.
4727     *
4728     * @param map the map
4729     * @param transformer a function returning the transformation
4730     * for an element, or null of there is no transformation (in
4731     * which case it is not combined).
4732     * @param reducer a commutative associative combining function
4733     * @return the task
4734     */
4735     public static <K,V,U> ForkJoinTask<U> reduceEntries
4736     (ConcurrentHashMapV8<K,V> map,
4737     Fun<Map.Entry<K,V>, ? extends U> transformer,
4738     BiFun<? super U, ? super U, ? extends U> reducer) {
4739     if (transformer == null || reducer == null)
4740     throw new NullPointerException();
4741     return new MapReduceEntriesTask<K,V,U>
4742     (map, transformer, reducer);
4743     }
4744    
4745     /**
4746     * Returns a task that when invoked, returns the result of
4747     * accumulating the given transformation of all entries using the
4748     * given reducer to combine values, and the given basis as an
4749     * identity value.
4750     *
4751     * @param map the map
4752     * @param transformer a function returning the transformation
4753     * for an element
4754     * @param basis the identity (initial default value) for the reduction
4755     * @param reducer a commutative associative combining function
4756     * @return the task
4757     */
4758     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4759     (ConcurrentHashMapV8<K,V> map,
4760     ObjectToDouble<Map.Entry<K,V>> transformer,
4761     double basis,
4762     DoubleByDoubleToDouble reducer) {
4763     if (transformer == null || reducer == null)
4764     throw new NullPointerException();
4765     return new MapReduceEntriesToDoubleTask<K,V>
4766     (map, transformer, basis, reducer);
4767     }
4768    
4769     /**
4770     * Returns a task that when invoked, returns the result of
4771     * accumulating the given transformation of all entries using the
4772     * given reducer to combine values, and the given basis as an
4773     * identity value.
4774     *
4775     * @param map the map
4776     * @param transformer a function returning the transformation
4777     * for an element
4778     * @param basis the identity (initial default value) for the reduction
4779     * @param reducer a commutative associative combining function
4780     * @return the task
4781     */
4782     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4783     (ConcurrentHashMapV8<K,V> map,
4784     ObjectToLong<Map.Entry<K,V>> transformer,
4785     long basis,
4786     LongByLongToLong reducer) {
4787     if (transformer == null || reducer == null)
4788     throw new NullPointerException();
4789     return new MapReduceEntriesToLongTask<K,V>
4790     (map, transformer, basis, reducer);
4791     }
4792    
4793     /**
4794     * Returns a task that when invoked, returns the result of
4795     * accumulating the given transformation of all entries using the
4796     * given reducer to combine values, and the given basis as an
4797     * identity value.
4798     *
4799     * @param map the map
4800     * @param transformer a function returning the transformation
4801     * for an element
4802     * @param basis the identity (initial default value) for the reduction
4803     * @param reducer a commutative associative combining function
4804     * @return the task
4805     */
4806     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4807     (ConcurrentHashMapV8<K,V> map,
4808     ObjectToInt<Map.Entry<K,V>> transformer,
4809     int basis,
4810     IntByIntToInt reducer) {
4811     if (transformer == null || reducer == null)
4812     throw new NullPointerException();
4813     return new MapReduceEntriesToIntTask<K,V>
4814     (map, transformer, basis, reducer);
4815     }
4816     }
4817    
4818     // -------------------------------------------------------
4819    
4820     /**
4821     * Base for FJ tasks for bulk operations. This adds a variant of
4822 jsr166 1.55 * CountedCompleters and some split and merge bookkeeping to
4823 dl 1.52 * iterator functionality. The forEach and reduce methods are
4824     * similar to those illustrated in CountedCompleter documentation,
4825     * except that bottom-up reduction completions perform them within
4826     * their compute methods. The search methods are like forEach
4827     * except they continually poll for success and exit early. Also,
4828     * exceptions are handled in a simpler manner, by just trying to
4829     * complete root task exceptionally.
4830     */
4831 dl 1.59 @SuppressWarnings("serial")
4832 dl 1.52 static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4833     final BulkTask<K,V,?> parent; // completion target
4834     int batch; // split control
4835     int pending; // completion control
4836    
4837     /** Constructor for root tasks */
4838     BulkTask(ConcurrentHashMapV8<K,V> map) {
4839     super(map);
4840     this.parent = null;
4841     this.batch = -1; // force call to batch() on execution
4842     }
4843    
4844     /** Constructor for subtasks */
4845     BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4846     super(parent, split);
4847     this.parent = parent;
4848     this.batch = batch;
4849     }
4850    
4851     // FJ methods
4852    
4853     /**
4854 jsr166 1.56 * Propagates completion. Note that all reduce actions
4855 dl 1.52 * bypass this method to combine while completing.
4856     */
4857     final void tryComplete() {
4858     BulkTask<K,V,?> a = this, s = a;
4859     for (int c;;) {
4860     if ((c = a.pending) == 0) {
4861     if ((a = (s = a).parent) == null) {
4862     s.quietlyComplete();
4863     break;
4864     }
4865     }
4866     else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4867     break;
4868     }
4869     }
4870    
4871     /**
4872 jsr166 1.56 * Forces root task to throw exception unless already complete.
4873 dl 1.52 */
4874     final void tryAbortComputation(Throwable ex) {
4875     for (BulkTask<K,V,?> a = this;;) {
4876     BulkTask<K,V,?> p = a.parent;
4877     if (p == null) {
4878     a.completeExceptionally(ex);
4879     break;
4880     }
4881     a = p;
4882     }
4883     }
4884    
4885     public final boolean exec() {
4886     try {
4887     compute();
4888     }
4889 jsr166 1.53 catch (Throwable ex) {
4890 dl 1.52 tryAbortComputation(ex);
4891     }
4892     return false;
4893     }
4894    
4895     public abstract void compute();
4896    
4897     // utilities
4898    
4899     /** CompareAndSet pending count */
4900     final boolean casPending(int cmp, int val) {
4901     return U.compareAndSwapInt(this, PENDING, cmp, val);
4902     }
4903    
4904     /**
4905 jsr166 1.56 * Returns approx exp2 of the number of times (minus one) to
4906 dl 1.52 * split task by two before executing leaf action. This value
4907     * is faster to compute and more convenient to use as a guide
4908     * to splitting than is the depth, since it is used while
4909     * dividing by two anyway.
4910     */
4911     final int batch() {
4912     int b = batch;
4913     if (b < 0) {
4914     long n = map.counter.sum();
4915     int sp = getPool().getParallelism() << 3; // slack of 8
4916 jsr166 1.53 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4917 dl 1.52 }
4918     return b;
4919     }
4920    
4921     /**
4922     * Error message for hoisted null checks of functions
4923     */
4924     static final String NullFunctionMessage =
4925     "Unexpected null function";
4926    
4927     /**
4928 jsr166 1.56 * Returns exportable snapshot entry.
4929 dl 1.52 */
4930     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4931 dl 1.59 return new AbstractMap.SimpleEntry<K,V>(k, v);
4932 dl 1.52 }
4933    
4934     // Unsafe mechanics
4935     private static final sun.misc.Unsafe U;
4936     private static final long PENDING;
4937     static {
4938     try {
4939 dl 1.59 U = getUnsafe();
4940 dl 1.52 PENDING = U.objectFieldOffset
4941     (BulkTask.class.getDeclaredField("pending"));
4942     } catch (Exception e) {
4943     throw new Error(e);
4944     }
4945     }
4946     }
4947    
4948     /*
4949     * Task classes. Coded in a regular but ugly format/style to
4950     * simplify checks that each variant differs in the right way from
4951     * others.
4952     */
4953    
4954 dl 1.59 @SuppressWarnings("serial")
4955 dl 1.52 static final class ForEachKeyTask<K,V>
4956     extends BulkTask<K,V,Void> {
4957     final Action<K> action;
4958     ForEachKeyTask
4959     (ConcurrentHashMapV8<K,V> m,
4960     Action<K> action) {
4961     super(m);
4962     this.action = action;
4963     }
4964     ForEachKeyTask
4965     (BulkTask<K,V,?> p, int b, boolean split,
4966     Action<K> action) {
4967     super(p, b, split);
4968     this.action = action;
4969     }
4970 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
4971 dl 1.52 final Action<K> action = this.action;
4972     if (action == null)
4973     throw new Error(NullFunctionMessage);
4974     int b = batch(), c;
4975     while (b > 1 && baseIndex != baseLimit) {
4976     do {} while (!casPending(c = pending, c+1));
4977     new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4978     }
4979     while (advance() != null)
4980     action.apply((K)nextKey);
4981     tryComplete();
4982     }
4983     }
4984    
4985 dl 1.59 @SuppressWarnings("serial")
4986 dl 1.52 static final class ForEachValueTask<K,V>
4987     extends BulkTask<K,V,Void> {
4988     final Action<V> action;
4989     ForEachValueTask
4990     (ConcurrentHashMapV8<K,V> m,
4991     Action<V> action) {
4992     super(m);
4993     this.action = action;
4994     }
4995     ForEachValueTask
4996     (BulkTask<K,V,?> p, int b, boolean split,
4997     Action<V> action) {
4998     super(p, b, split);
4999     this.action = action;
5000     }
5001 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5002 dl 1.52 final Action<V> action = this.action;
5003     if (action == null)
5004     throw new Error(NullFunctionMessage);
5005     int b = batch(), c;
5006     while (b > 1 && baseIndex != baseLimit) {
5007     do {} while (!casPending(c = pending, c+1));
5008     new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
5009     }
5010     Object v;
5011     while ((v = advance()) != null)
5012     action.apply((V)v);
5013     tryComplete();
5014     }
5015     }
5016    
5017 dl 1.59 @SuppressWarnings("serial")
5018 dl 1.52 static final class ForEachEntryTask<K,V>
5019     extends BulkTask<K,V,Void> {
5020     final Action<Entry<K,V>> action;
5021     ForEachEntryTask
5022     (ConcurrentHashMapV8<K,V> m,
5023     Action<Entry<K,V>> action) {
5024     super(m);
5025     this.action = action;
5026     }
5027     ForEachEntryTask
5028     (BulkTask<K,V,?> p, int b, boolean split,
5029     Action<Entry<K,V>> action) {
5030     super(p, b, split);
5031     this.action = action;
5032     }
5033 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5034 dl 1.52 final Action<Entry<K,V>> action = this.action;
5035     if (action == null)
5036     throw new Error(NullFunctionMessage);
5037     int b = batch(), c;
5038     while (b > 1 && baseIndex != baseLimit) {
5039     do {} while (!casPending(c = pending, c+1));
5040     new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
5041     }
5042     Object v;
5043     while ((v = advance()) != null)
5044     action.apply(entryFor((K)nextKey, (V)v));
5045     tryComplete();
5046     }
5047     }
5048    
5049 dl 1.59 @SuppressWarnings("serial")
5050 dl 1.52 static final class ForEachMappingTask<K,V>
5051     extends BulkTask<K,V,Void> {
5052     final BiAction<K,V> action;
5053     ForEachMappingTask
5054     (ConcurrentHashMapV8<K,V> m,
5055     BiAction<K,V> action) {
5056     super(m);
5057     this.action = action;
5058     }
5059     ForEachMappingTask
5060     (BulkTask<K,V,?> p, int b, boolean split,
5061     BiAction<K,V> action) {
5062     super(p, b, split);
5063     this.action = action;
5064     }
5065    
5066 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5067 dl 1.52 final BiAction<K,V> action = this.action;
5068     if (action == null)
5069     throw new Error(NullFunctionMessage);
5070     int b = batch(), c;
5071     while (b > 1 && baseIndex != baseLimit) {
5072     do {} while (!casPending(c = pending, c+1));
5073     new ForEachMappingTask<K,V>(this, b >>>= 1, true,
5074     action).fork();
5075     }
5076     Object v;
5077     while ((v = advance()) != null)
5078     action.apply((K)nextKey, (V)v);
5079     tryComplete();
5080     }
5081     }
5082    
5083 dl 1.59 @SuppressWarnings("serial")
5084 dl 1.52 static final class ForEachTransformedKeyTask<K,V,U>
5085     extends BulkTask<K,V,Void> {
5086     final Fun<? super K, ? extends U> transformer;
5087     final Action<U> action;
5088     ForEachTransformedKeyTask
5089     (ConcurrentHashMapV8<K,V> m,
5090     Fun<? super K, ? extends U> transformer,
5091     Action<U> action) {
5092     super(m);
5093     this.transformer = transformer;
5094     this.action = action;
5095    
5096     }
5097     ForEachTransformedKeyTask
5098     (BulkTask<K,V,?> p, int b, boolean split,
5099     Fun<? super K, ? extends U> transformer,
5100     Action<U> action) {
5101     super(p, b, split);
5102     this.transformer = transformer;
5103     this.action = action;
5104     }
5105 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5106 dl 1.52 final Fun<? super K, ? extends U> transformer =
5107     this.transformer;
5108     final Action<U> action = this.action;
5109     if (transformer == null || action == null)
5110     throw new Error(NullFunctionMessage);
5111     int b = batch(), c;
5112     while (b > 1 && baseIndex != baseLimit) {
5113     do {} while (!casPending(c = pending, c+1));
5114     new ForEachTransformedKeyTask<K,V,U>
5115     (this, b >>>= 1, true, transformer, action).fork();
5116     }
5117     U u;
5118     while (advance() != null) {
5119     if ((u = transformer.apply((K)nextKey)) != null)
5120     action.apply(u);
5121     }
5122     tryComplete();
5123     }
5124     }
5125    
5126 dl 1.59 @SuppressWarnings("serial")
5127 dl 1.52 static final class ForEachTransformedValueTask<K,V,U>
5128     extends BulkTask<K,V,Void> {
5129     final Fun<? super V, ? extends U> transformer;
5130     final Action<U> action;
5131     ForEachTransformedValueTask
5132     (ConcurrentHashMapV8<K,V> m,
5133     Fun<? super V, ? extends U> transformer,
5134     Action<U> action) {
5135     super(m);
5136     this.transformer = transformer;
5137     this.action = action;
5138    
5139     }
5140     ForEachTransformedValueTask
5141     (BulkTask<K,V,?> p, int b, boolean split,
5142     Fun<? super V, ? extends U> transformer,
5143     Action<U> action) {
5144     super(p, b, split);
5145     this.transformer = transformer;
5146     this.action = action;
5147     }
5148 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5149 dl 1.52 final Fun<? super V, ? extends U> transformer =
5150     this.transformer;
5151     final Action<U> action = this.action;
5152     if (transformer == null || action == null)
5153     throw new Error(NullFunctionMessage);
5154     int b = batch(), c;
5155     while (b > 1 && baseIndex != baseLimit) {
5156     do {} while (!casPending(c = pending, c+1));
5157     new ForEachTransformedValueTask<K,V,U>
5158     (this, b >>>= 1, true, transformer, action).fork();
5159     }
5160     Object v; U u;
5161     while ((v = advance()) != null) {
5162     if ((u = transformer.apply((V)v)) != null)
5163     action.apply(u);
5164     }
5165     tryComplete();
5166     }
5167     }
5168    
5169 dl 1.59 @SuppressWarnings("serial")
5170 dl 1.52 static final class ForEachTransformedEntryTask<K,V,U>
5171     extends BulkTask<K,V,Void> {
5172     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5173     final Action<U> action;
5174     ForEachTransformedEntryTask
5175     (ConcurrentHashMapV8<K,V> m,
5176     Fun<Map.Entry<K,V>, ? extends U> transformer,
5177     Action<U> action) {
5178     super(m);
5179     this.transformer = transformer;
5180     this.action = action;
5181    
5182     }
5183     ForEachTransformedEntryTask
5184     (BulkTask<K,V,?> p, int b, boolean split,
5185     Fun<Map.Entry<K,V>, ? extends U> transformer,
5186     Action<U> action) {
5187     super(p, b, split);
5188     this.transformer = transformer;
5189     this.action = action;
5190     }
5191 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5192 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5193     this.transformer;
5194     final Action<U> action = this.action;
5195     if (transformer == null || action == null)
5196     throw new Error(NullFunctionMessage);
5197     int b = batch(), c;
5198     while (b > 1 && baseIndex != baseLimit) {
5199     do {} while (!casPending(c = pending, c+1));
5200     new ForEachTransformedEntryTask<K,V,U>
5201     (this, b >>>= 1, true, transformer, action).fork();
5202     }
5203     Object v; U u;
5204     while ((v = advance()) != null) {
5205     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5206     action.apply(u);
5207     }
5208     tryComplete();
5209     }
5210     }
5211    
5212 dl 1.59 @SuppressWarnings("serial")
5213 dl 1.52 static final class ForEachTransformedMappingTask<K,V,U>
5214     extends BulkTask<K,V,Void> {
5215     final BiFun<? super K, ? super V, ? extends U> transformer;
5216     final Action<U> action;
5217     ForEachTransformedMappingTask
5218     (ConcurrentHashMapV8<K,V> m,
5219     BiFun<? super K, ? super V, ? extends U> transformer,
5220     Action<U> action) {
5221     super(m);
5222     this.transformer = transformer;
5223     this.action = action;
5224    
5225     }
5226     ForEachTransformedMappingTask
5227     (BulkTask<K,V,?> p, int b, boolean split,
5228     BiFun<? super K, ? super V, ? extends U> transformer,
5229     Action<U> action) {
5230     super(p, b, split);
5231     this.transformer = transformer;
5232     this.action = action;
5233     }
5234 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5235 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer =
5236     this.transformer;
5237     final Action<U> action = this.action;
5238     if (transformer == null || action == null)
5239     throw new Error(NullFunctionMessage);
5240     int b = batch(), c;
5241     while (b > 1 && baseIndex != baseLimit) {
5242     do {} while (!casPending(c = pending, c+1));
5243     new ForEachTransformedMappingTask<K,V,U>
5244     (this, b >>>= 1, true, transformer, action).fork();
5245     }
5246     Object v; U u;
5247     while ((v = advance()) != null) {
5248     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5249     action.apply(u);
5250     }
5251     tryComplete();
5252     }
5253     }
5254    
5255 dl 1.59 @SuppressWarnings("serial")
5256 dl 1.52 static final class SearchKeysTask<K,V,U>
5257     extends BulkTask<K,V,U> {
5258     final Fun<? super K, ? extends U> searchFunction;
5259     final AtomicReference<U> result;
5260     SearchKeysTask
5261     (ConcurrentHashMapV8<K,V> m,
5262     Fun<? super K, ? extends U> searchFunction,
5263     AtomicReference<U> result) {
5264     super(m);
5265     this.searchFunction = searchFunction; this.result = result;
5266     }
5267     SearchKeysTask
5268     (BulkTask<K,V,?> p, int b, boolean split,
5269     Fun<? super K, ? extends U> searchFunction,
5270     AtomicReference<U> result) {
5271     super(p, b, split);
5272     this.searchFunction = searchFunction; this.result = result;
5273     }
5274 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5275 dl 1.52 AtomicReference<U> result = this.result;
5276     final Fun<? super K, ? extends U> searchFunction =
5277     this.searchFunction;
5278     if (searchFunction == null || result == null)
5279     throw new Error(NullFunctionMessage);
5280     int b = batch(), c;
5281     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5282     do {} while (!casPending(c = pending, c+1));
5283     new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5284     searchFunction, result).fork();
5285     }
5286     U u;
5287     while (result.get() == null && advance() != null) {
5288     if ((u = searchFunction.apply((K)nextKey)) != null) {
5289 dl 1.59 if (result.compareAndSet(null, u)) {
5290     for (BulkTask<K,V,?> a = this, p;;) {
5291     if ((p = a.parent) == null) {
5292     a.quietlyComplete();
5293     break;
5294     }
5295     a = p;
5296     }
5297     }
5298 dl 1.52 break;
5299     }
5300     }
5301     tryComplete();
5302     }
5303     public final U getRawResult() { return result.get(); }
5304     }
5305    
5306 dl 1.59 @SuppressWarnings("serial")
5307 dl 1.52 static final class SearchValuesTask<K,V,U>
5308     extends BulkTask<K,V,U> {
5309     final Fun<? super V, ? extends U> searchFunction;
5310     final AtomicReference<U> result;
5311     SearchValuesTask
5312     (ConcurrentHashMapV8<K,V> m,
5313     Fun<? super V, ? extends U> searchFunction,
5314     AtomicReference<U> result) {
5315     super(m);
5316     this.searchFunction = searchFunction; this.result = result;
5317     }
5318     SearchValuesTask
5319     (BulkTask<K,V,?> p, int b, boolean split,
5320     Fun<? super V, ? extends U> searchFunction,
5321     AtomicReference<U> result) {
5322     super(p, b, split);
5323     this.searchFunction = searchFunction; this.result = result;
5324     }
5325 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5326 dl 1.52 AtomicReference<U> result = this.result;
5327     final Fun<? super V, ? extends U> searchFunction =
5328     this.searchFunction;
5329     if (searchFunction == null || result == null)
5330     throw new Error(NullFunctionMessage);
5331     int b = batch(), c;
5332     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5333     do {} while (!casPending(c = pending, c+1));
5334     new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5335     searchFunction, result).fork();
5336     }
5337     Object v; U u;
5338     while (result.get() == null && (v = advance()) != null) {
5339     if ((u = searchFunction.apply((V)v)) != null) {
5340 dl 1.59 if (result.compareAndSet(null, u)) {
5341     for (BulkTask<K,V,?> a = this, p;;) {
5342     if ((p = a.parent) == null) {
5343     a.quietlyComplete();
5344     break;
5345     }
5346     a = p;
5347     }
5348     }
5349 dl 1.52 break;
5350     }
5351     }
5352     tryComplete();
5353     }
5354     public final U getRawResult() { return result.get(); }
5355     }
5356    
5357 dl 1.59 @SuppressWarnings("serial")
5358 dl 1.52 static final class SearchEntriesTask<K,V,U>
5359     extends BulkTask<K,V,U> {
5360     final Fun<Entry<K,V>, ? extends U> searchFunction;
5361     final AtomicReference<U> result;
5362     SearchEntriesTask
5363     (ConcurrentHashMapV8<K,V> m,
5364     Fun<Entry<K,V>, ? extends U> searchFunction,
5365     AtomicReference<U> result) {
5366     super(m);
5367     this.searchFunction = searchFunction; this.result = result;
5368     }
5369     SearchEntriesTask
5370     (BulkTask<K,V,?> p, int b, boolean split,
5371     Fun<Entry<K,V>, ? extends U> searchFunction,
5372     AtomicReference<U> result) {
5373     super(p, b, split);
5374     this.searchFunction = searchFunction; this.result = result;
5375     }
5376 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5377 dl 1.52 AtomicReference<U> result = this.result;
5378     final Fun<Entry<K,V>, ? extends U> searchFunction =
5379     this.searchFunction;
5380     if (searchFunction == null || result == null)
5381     throw new Error(NullFunctionMessage);
5382     int b = batch(), c;
5383     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5384     do {} while (!casPending(c = pending, c+1));
5385     new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5386     searchFunction, result).fork();
5387     }
5388     Object v; U u;
5389     while (result.get() == null && (v = advance()) != null) {
5390     if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5391 dl 1.59 if (result.compareAndSet(null, u)) {
5392     for (BulkTask<K,V,?> a = this, p;;) {
5393     if ((p = a.parent) == null) {
5394     a.quietlyComplete();
5395     break;
5396     }
5397     a = p;
5398     }
5399     }
5400 dl 1.52 break;
5401     }
5402     }
5403     tryComplete();
5404     }
5405     public final U getRawResult() { return result.get(); }
5406     }
5407    
5408 dl 1.59 @SuppressWarnings("serial")
5409 dl 1.52 static final class SearchMappingsTask<K,V,U>
5410     extends BulkTask<K,V,U> {
5411     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5412     final AtomicReference<U> result;
5413     SearchMappingsTask
5414     (ConcurrentHashMapV8<K,V> m,
5415     BiFun<? super K, ? super V, ? extends U> searchFunction,
5416     AtomicReference<U> result) {
5417     super(m);
5418     this.searchFunction = searchFunction; this.result = result;
5419     }
5420     SearchMappingsTask
5421     (BulkTask<K,V,?> p, int b, boolean split,
5422     BiFun<? super K, ? super V, ? extends U> searchFunction,
5423     AtomicReference<U> result) {
5424     super(p, b, split);
5425     this.searchFunction = searchFunction; this.result = result;
5426     }
5427 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5428 dl 1.52 AtomicReference<U> result = this.result;
5429     final BiFun<? super K, ? super V, ? extends U> searchFunction =
5430     this.searchFunction;
5431     if (searchFunction == null || result == null)
5432     throw new Error(NullFunctionMessage);
5433     int b = batch(), c;
5434     while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5435     do {} while (!casPending(c = pending, c+1));
5436     new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5437     searchFunction, result).fork();
5438     }
5439     Object v; U u;
5440     while (result.get() == null && (v = advance()) != null) {
5441     if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5442 dl 1.59 if (result.compareAndSet(null, u)) {
5443     for (BulkTask<K,V,?> a = this, p;;) {
5444     if ((p = a.parent) == null) {
5445     a.quietlyComplete();
5446     break;
5447     }
5448     a = p;
5449     }
5450     }
5451 dl 1.52 break;
5452     }
5453     }
5454     tryComplete();
5455     }
5456     public final U getRawResult() { return result.get(); }
5457     }
5458    
5459 dl 1.59 @SuppressWarnings("serial")
5460 dl 1.52 static final class ReduceKeysTask<K,V>
5461     extends BulkTask<K,V,K> {
5462     final BiFun<? super K, ? super K, ? extends K> reducer;
5463     K result;
5464     ReduceKeysTask<K,V> sibling;
5465     ReduceKeysTask
5466     (ConcurrentHashMapV8<K,V> m,
5467     BiFun<? super K, ? super K, ? extends K> reducer) {
5468     super(m);
5469     this.reducer = reducer;
5470     }
5471     ReduceKeysTask
5472     (BulkTask<K,V,?> p, int b, boolean split,
5473     BiFun<? super K, ? super K, ? extends K> reducer) {
5474     super(p, b, split);
5475     this.reducer = reducer;
5476     }
5477    
5478 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5479 dl 1.52 ReduceKeysTask<K,V> t = this;
5480     final BiFun<? super K, ? super K, ? extends K> reducer =
5481     this.reducer;
5482     if (reducer == null)
5483     throw new Error(NullFunctionMessage);
5484     int b = batch();
5485     while (b > 1 && t.baseIndex != t.baseLimit) {
5486     b >>>= 1;
5487     t.pending = 1;
5488     ReduceKeysTask<K,V> rt =
5489     new ReduceKeysTask<K,V>
5490     (t, b, true, reducer);
5491     t = new ReduceKeysTask<K,V>
5492     (t, b, false, reducer);
5493     t.sibling = rt;
5494     rt.sibling = t;
5495     rt.fork();
5496     }
5497     K r = null;
5498     while (t.advance() != null) {
5499     K u = (K)t.nextKey;
5500     r = (r == null) ? u : reducer.apply(r, u);
5501     }
5502     t.result = r;
5503     for (;;) {
5504     int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5505     if ((par = t.parent) == null ||
5506     !(par instanceof ReduceKeysTask)) {
5507     t.quietlyComplete();
5508     break;
5509     }
5510     else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5511     if ((s = t.sibling) != null && (u = s.result) != null)
5512     r = (r == null) ? u : reducer.apply(r, u);
5513     (t = p).result = r;
5514     }
5515     else if (p.casPending(c, 0))
5516     break;
5517     }
5518     }
5519     public final K getRawResult() { return result; }
5520     }
5521    
5522 dl 1.59 @SuppressWarnings("serial")
5523 dl 1.52 static final class ReduceValuesTask<K,V>
5524     extends BulkTask<K,V,V> {
5525     final BiFun<? super V, ? super V, ? extends V> reducer;
5526     V result;
5527     ReduceValuesTask<K,V> sibling;
5528     ReduceValuesTask
5529     (ConcurrentHashMapV8<K,V> m,
5530     BiFun<? super V, ? super V, ? extends V> reducer) {
5531     super(m);
5532     this.reducer = reducer;
5533     }
5534     ReduceValuesTask
5535     (BulkTask<K,V,?> p, int b, boolean split,
5536     BiFun<? super V, ? super V, ? extends V> reducer) {
5537     super(p, b, split);
5538     this.reducer = reducer;
5539     }
5540    
5541 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5542 dl 1.52 ReduceValuesTask<K,V> t = this;
5543     final BiFun<? super V, ? super V, ? extends V> reducer =
5544     this.reducer;
5545     if (reducer == null)
5546     throw new Error(NullFunctionMessage);
5547     int b = batch();
5548     while (b > 1 && t.baseIndex != t.baseLimit) {
5549     b >>>= 1;
5550     t.pending = 1;
5551     ReduceValuesTask<K,V> rt =
5552     new ReduceValuesTask<K,V>
5553     (t, b, true, reducer);
5554     t = new ReduceValuesTask<K,V>
5555     (t, b, false, reducer);
5556     t.sibling = rt;
5557     rt.sibling = t;
5558     rt.fork();
5559     }
5560     V r = null;
5561     Object v;
5562     while ((v = t.advance()) != null) {
5563     V u = (V)v;
5564     r = (r == null) ? u : reducer.apply(r, u);
5565     }
5566     t.result = r;
5567     for (;;) {
5568     int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5569     if ((par = t.parent) == null ||
5570     !(par instanceof ReduceValuesTask)) {
5571     t.quietlyComplete();
5572     break;
5573     }
5574     else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5575     if ((s = t.sibling) != null && (u = s.result) != null)
5576     r = (r == null) ? u : reducer.apply(r, u);
5577     (t = p).result = r;
5578     }
5579     else if (p.casPending(c, 0))
5580     break;
5581     }
5582     }
5583     public final V getRawResult() { return result; }
5584     }
5585    
5586 dl 1.59 @SuppressWarnings("serial")
5587 dl 1.52 static final class ReduceEntriesTask<K,V>
5588     extends BulkTask<K,V,Map.Entry<K,V>> {
5589     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5590     Map.Entry<K,V> result;
5591     ReduceEntriesTask<K,V> sibling;
5592     ReduceEntriesTask
5593     (ConcurrentHashMapV8<K,V> m,
5594     BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5595     super(m);
5596     this.reducer = reducer;
5597     }
5598     ReduceEntriesTask
5599     (BulkTask<K,V,?> p, int b, boolean split,
5600     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5601     super(p, b, split);
5602     this.reducer = reducer;
5603     }
5604    
5605 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5606 dl 1.52 ReduceEntriesTask<K,V> t = this;
5607     final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5608     this.reducer;
5609     if (reducer == null)
5610     throw new Error(NullFunctionMessage);
5611     int b = batch();
5612     while (b > 1 && t.baseIndex != t.baseLimit) {
5613     b >>>= 1;
5614     t.pending = 1;
5615     ReduceEntriesTask<K,V> rt =
5616     new ReduceEntriesTask<K,V>
5617     (t, b, true, reducer);
5618     t = new ReduceEntriesTask<K,V>
5619     (t, b, false, reducer);
5620     t.sibling = rt;
5621     rt.sibling = t;
5622     rt.fork();
5623     }
5624     Map.Entry<K,V> r = null;
5625     Object v;
5626     while ((v = t.advance()) != null) {
5627     Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5628     r = (r == null) ? u : reducer.apply(r, u);
5629     }
5630     t.result = r;
5631     for (;;) {
5632     int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5633     Map.Entry<K,V> u;
5634     if ((par = t.parent) == null ||
5635     !(par instanceof ReduceEntriesTask)) {
5636     t.quietlyComplete();
5637     break;
5638     }
5639     else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5640     if ((s = t.sibling) != null && (u = s.result) != null)
5641     r = (r == null) ? u : reducer.apply(r, u);
5642     (t = p).result = r;
5643     }
5644     else if (p.casPending(c, 0))
5645     break;
5646     }
5647     }
5648     public final Map.Entry<K,V> getRawResult() { return result; }
5649     }
5650    
5651 dl 1.59 @SuppressWarnings("serial")
5652 dl 1.52 static final class MapReduceKeysTask<K,V,U>
5653     extends BulkTask<K,V,U> {
5654     final Fun<? super K, ? extends U> transformer;
5655     final BiFun<? super U, ? super U, ? extends U> reducer;
5656     U result;
5657     MapReduceKeysTask<K,V,U> sibling;
5658     MapReduceKeysTask
5659     (ConcurrentHashMapV8<K,V> m,
5660     Fun<? super K, ? extends U> transformer,
5661     BiFun<? super U, ? super U, ? extends U> reducer) {
5662     super(m);
5663     this.transformer = transformer;
5664     this.reducer = reducer;
5665     }
5666     MapReduceKeysTask
5667     (BulkTask<K,V,?> p, int b, boolean split,
5668     Fun<? super K, ? extends U> transformer,
5669     BiFun<? super U, ? super U, ? extends U> reducer) {
5670     super(p, b, split);
5671     this.transformer = transformer;
5672     this.reducer = reducer;
5673     }
5674 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5675 dl 1.52 MapReduceKeysTask<K,V,U> t = this;
5676     final Fun<? super K, ? extends U> transformer =
5677     this.transformer;
5678     final BiFun<? super U, ? super U, ? extends U> reducer =
5679     this.reducer;
5680     if (transformer == null || reducer == null)
5681     throw new Error(NullFunctionMessage);
5682     int b = batch();
5683     while (b > 1 && t.baseIndex != t.baseLimit) {
5684     b >>>= 1;
5685     t.pending = 1;
5686     MapReduceKeysTask<K,V,U> rt =
5687     new MapReduceKeysTask<K,V,U>
5688     (t, b, true, transformer, reducer);
5689     t = new MapReduceKeysTask<K,V,U>
5690     (t, b, false, transformer, reducer);
5691     t.sibling = rt;
5692     rt.sibling = t;
5693     rt.fork();
5694     }
5695     U r = null, u;
5696     while (t.advance() != null) {
5697     if ((u = transformer.apply((K)t.nextKey)) != null)
5698     r = (r == null) ? u : reducer.apply(r, u);
5699     }
5700     t.result = r;
5701     for (;;) {
5702     int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5703     if ((par = t.parent) == null ||
5704     !(par instanceof MapReduceKeysTask)) {
5705     t.quietlyComplete();
5706     break;
5707     }
5708     else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5709     if ((s = t.sibling) != null && (u = s.result) != null)
5710     r = (r == null) ? u : reducer.apply(r, u);
5711     (t = p).result = r;
5712     }
5713     else if (p.casPending(c, 0))
5714     break;
5715     }
5716     }
5717     public final U getRawResult() { return result; }
5718     }
5719    
5720 dl 1.59 @SuppressWarnings("serial")
5721 dl 1.52 static final class MapReduceValuesTask<K,V,U>
5722     extends BulkTask<K,V,U> {
5723     final Fun<? super V, ? extends U> transformer;
5724     final BiFun<? super U, ? super U, ? extends U> reducer;
5725     U result;
5726     MapReduceValuesTask<K,V,U> sibling;
5727     MapReduceValuesTask
5728     (ConcurrentHashMapV8<K,V> m,
5729     Fun<? super V, ? extends U> transformer,
5730     BiFun<? super U, ? super U, ? extends U> reducer) {
5731     super(m);
5732     this.transformer = transformer;
5733     this.reducer = reducer;
5734     }
5735     MapReduceValuesTask
5736     (BulkTask<K,V,?> p, int b, boolean split,
5737     Fun<? super V, ? extends U> transformer,
5738     BiFun<? super U, ? super U, ? extends U> reducer) {
5739     super(p, b, split);
5740     this.transformer = transformer;
5741     this.reducer = reducer;
5742     }
5743 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5744 dl 1.52 MapReduceValuesTask<K,V,U> t = this;
5745     final Fun<? super V, ? extends U> transformer =
5746     this.transformer;
5747     final BiFun<? super U, ? super U, ? extends U> reducer =
5748     this.reducer;
5749     if (transformer == null || reducer == null)
5750     throw new Error(NullFunctionMessage);
5751     int b = batch();
5752     while (b > 1 && t.baseIndex != t.baseLimit) {
5753     b >>>= 1;
5754     t.pending = 1;
5755     MapReduceValuesTask<K,V,U> rt =
5756     new MapReduceValuesTask<K,V,U>
5757     (t, b, true, transformer, reducer);
5758     t = new MapReduceValuesTask<K,V,U>
5759     (t, b, false, transformer, reducer);
5760     t.sibling = rt;
5761     rt.sibling = t;
5762     rt.fork();
5763     }
5764     U r = null, u;
5765     Object v;
5766     while ((v = t.advance()) != null) {
5767     if ((u = transformer.apply((V)v)) != null)
5768     r = (r == null) ? u : reducer.apply(r, u);
5769     }
5770     t.result = r;
5771     for (;;) {
5772     int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5773     if ((par = t.parent) == null ||
5774     !(par instanceof MapReduceValuesTask)) {
5775     t.quietlyComplete();
5776     break;
5777     }
5778     else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5779     if ((s = t.sibling) != null && (u = s.result) != null)
5780     r = (r == null) ? u : reducer.apply(r, u);
5781     (t = p).result = r;
5782     }
5783     else if (p.casPending(c, 0))
5784     break;
5785     }
5786     }
5787     public final U getRawResult() { return result; }
5788     }
5789    
5790 dl 1.59 @SuppressWarnings("serial")
5791 dl 1.52 static final class MapReduceEntriesTask<K,V,U>
5792     extends BulkTask<K,V,U> {
5793     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5794     final BiFun<? super U, ? super U, ? extends U> reducer;
5795     U result;
5796     MapReduceEntriesTask<K,V,U> sibling;
5797     MapReduceEntriesTask
5798     (ConcurrentHashMapV8<K,V> m,
5799     Fun<Map.Entry<K,V>, ? extends U> transformer,
5800     BiFun<? super U, ? super U, ? extends U> reducer) {
5801     super(m);
5802     this.transformer = transformer;
5803     this.reducer = reducer;
5804     }
5805     MapReduceEntriesTask
5806     (BulkTask<K,V,?> p, int b, boolean split,
5807     Fun<Map.Entry<K,V>, ? extends U> transformer,
5808     BiFun<? super U, ? super U, ? extends U> reducer) {
5809     super(p, b, split);
5810     this.transformer = transformer;
5811     this.reducer = reducer;
5812     }
5813 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5814 dl 1.52 MapReduceEntriesTask<K,V,U> t = this;
5815     final Fun<Map.Entry<K,V>, ? extends U> transformer =
5816     this.transformer;
5817     final BiFun<? super U, ? super U, ? extends U> reducer =
5818     this.reducer;
5819     if (transformer == null || reducer == null)
5820     throw new Error(NullFunctionMessage);
5821     int b = batch();
5822     while (b > 1 && t.baseIndex != t.baseLimit) {
5823     b >>>= 1;
5824     t.pending = 1;
5825     MapReduceEntriesTask<K,V,U> rt =
5826     new MapReduceEntriesTask<K,V,U>
5827     (t, b, true, transformer, reducer);
5828     t = new MapReduceEntriesTask<K,V,U>
5829     (t, b, false, transformer, reducer);
5830     t.sibling = rt;
5831     rt.sibling = t;
5832     rt.fork();
5833     }
5834     U r = null, u;
5835     Object v;
5836     while ((v = t.advance()) != null) {
5837     if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5838     r = (r == null) ? u : reducer.apply(r, u);
5839     }
5840     t.result = r;
5841     for (;;) {
5842     int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5843     if ((par = t.parent) == null ||
5844     !(par instanceof MapReduceEntriesTask)) {
5845     t.quietlyComplete();
5846     break;
5847     }
5848     else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5849     if ((s = t.sibling) != null && (u = s.result) != null)
5850     r = (r == null) ? u : reducer.apply(r, u);
5851     (t = p).result = r;
5852     }
5853     else if (p.casPending(c, 0))
5854     break;
5855     }
5856     }
5857     public final U getRawResult() { return result; }
5858     }
5859    
5860 dl 1.59 @SuppressWarnings("serial")
5861 dl 1.52 static final class MapReduceMappingsTask<K,V,U>
5862     extends BulkTask<K,V,U> {
5863     final BiFun<? super K, ? super V, ? extends U> transformer;
5864     final BiFun<? super U, ? super U, ? extends U> reducer;
5865     U result;
5866     MapReduceMappingsTask<K,V,U> sibling;
5867     MapReduceMappingsTask
5868     (ConcurrentHashMapV8<K,V> m,
5869     BiFun<? super K, ? super V, ? extends U> transformer,
5870     BiFun<? super U, ? super U, ? extends U> reducer) {
5871     super(m);
5872     this.transformer = transformer;
5873     this.reducer = reducer;
5874     }
5875     MapReduceMappingsTask
5876     (BulkTask<K,V,?> p, int b, boolean split,
5877     BiFun<? super K, ? super V, ? extends U> transformer,
5878     BiFun<? super U, ? super U, ? extends U> reducer) {
5879     super(p, b, split);
5880     this.transformer = transformer;
5881     this.reducer = reducer;
5882     }
5883 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5884 dl 1.52 MapReduceMappingsTask<K,V,U> t = this;
5885     final BiFun<? super K, ? super V, ? extends U> transformer =
5886     this.transformer;
5887     final BiFun<? super U, ? super U, ? extends U> reducer =
5888     this.reducer;
5889     if (transformer == null || reducer == null)
5890     throw new Error(NullFunctionMessage);
5891     int b = batch();
5892     while (b > 1 && t.baseIndex != t.baseLimit) {
5893     b >>>= 1;
5894     t.pending = 1;
5895     MapReduceMappingsTask<K,V,U> rt =
5896     new MapReduceMappingsTask<K,V,U>
5897     (t, b, true, transformer, reducer);
5898     t = new MapReduceMappingsTask<K,V,U>
5899     (t, b, false, transformer, reducer);
5900     t.sibling = rt;
5901     rt.sibling = t;
5902     rt.fork();
5903     }
5904     U r = null, u;
5905     Object v;
5906     while ((v = t.advance()) != null) {
5907     if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5908     r = (r == null) ? u : reducer.apply(r, u);
5909     }
5910     for (;;) {
5911     int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5912     if ((par = t.parent) == null ||
5913     !(par instanceof MapReduceMappingsTask)) {
5914     t.quietlyComplete();
5915     break;
5916     }
5917     else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5918     if ((s = t.sibling) != null && (u = s.result) != null)
5919     r = (r == null) ? u : reducer.apply(r, u);
5920     (t = p).result = r;
5921     }
5922     else if (p.casPending(c, 0))
5923     break;
5924     }
5925     }
5926     public final U getRawResult() { return result; }
5927     }
5928    
5929 dl 1.59 @SuppressWarnings("serial")
5930 dl 1.52 static final class MapReduceKeysToDoubleTask<K,V>
5931     extends BulkTask<K,V,Double> {
5932     final ObjectToDouble<? super K> transformer;
5933     final DoubleByDoubleToDouble reducer;
5934     final double basis;
5935     double result;
5936     MapReduceKeysToDoubleTask<K,V> sibling;
5937     MapReduceKeysToDoubleTask
5938     (ConcurrentHashMapV8<K,V> m,
5939     ObjectToDouble<? super K> transformer,
5940     double basis,
5941     DoubleByDoubleToDouble reducer) {
5942     super(m);
5943     this.transformer = transformer;
5944     this.basis = basis; this.reducer = reducer;
5945     }
5946     MapReduceKeysToDoubleTask
5947     (BulkTask<K,V,?> p, int b, boolean split,
5948     ObjectToDouble<? super K> transformer,
5949     double basis,
5950     DoubleByDoubleToDouble reducer) {
5951     super(p, b, split);
5952     this.transformer = transformer;
5953     this.basis = basis; this.reducer = reducer;
5954     }
5955 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
5956 dl 1.52 MapReduceKeysToDoubleTask<K,V> t = this;
5957     final ObjectToDouble<? super K> transformer =
5958     this.transformer;
5959     final DoubleByDoubleToDouble reducer = this.reducer;
5960     if (transformer == null || reducer == null)
5961     throw new Error(NullFunctionMessage);
5962     final double id = this.basis;
5963     int b = batch();
5964     while (b > 1 && t.baseIndex != t.baseLimit) {
5965     b >>>= 1;
5966     t.pending = 1;
5967     MapReduceKeysToDoubleTask<K,V> rt =
5968     new MapReduceKeysToDoubleTask<K,V>
5969     (t, b, true, transformer, id, reducer);
5970     t = new MapReduceKeysToDoubleTask<K,V>
5971     (t, b, false, transformer, id, reducer);
5972     t.sibling = rt;
5973     rt.sibling = t;
5974     rt.fork();
5975     }
5976     double r = id;
5977     while (t.advance() != null)
5978     r = reducer.apply(r, transformer.apply((K)t.nextKey));
5979     t.result = r;
5980     for (;;) {
5981     int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5982     if ((par = t.parent) == null ||
5983     !(par instanceof MapReduceKeysToDoubleTask)) {
5984     t.quietlyComplete();
5985     break;
5986     }
5987     else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5988     if ((s = t.sibling) != null)
5989     r = reducer.apply(r, s.result);
5990     (t = p).result = r;
5991     }
5992     else if (p.casPending(c, 0))
5993     break;
5994     }
5995     }
5996     public final Double getRawResult() { return result; }
5997     }
5998    
5999 dl 1.59 @SuppressWarnings("serial")
6000 dl 1.52 static final class MapReduceValuesToDoubleTask<K,V>
6001     extends BulkTask<K,V,Double> {
6002     final ObjectToDouble<? super V> transformer;
6003     final DoubleByDoubleToDouble reducer;
6004     final double basis;
6005     double result;
6006     MapReduceValuesToDoubleTask<K,V> sibling;
6007     MapReduceValuesToDoubleTask
6008     (ConcurrentHashMapV8<K,V> m,
6009     ObjectToDouble<? super V> transformer,
6010     double basis,
6011     DoubleByDoubleToDouble reducer) {
6012     super(m);
6013     this.transformer = transformer;
6014     this.basis = basis; this.reducer = reducer;
6015     }
6016     MapReduceValuesToDoubleTask
6017     (BulkTask<K,V,?> p, int b, boolean split,
6018     ObjectToDouble<? super V> transformer,
6019     double basis,
6020     DoubleByDoubleToDouble reducer) {
6021     super(p, b, split);
6022     this.transformer = transformer;
6023     this.basis = basis; this.reducer = reducer;
6024     }
6025 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6026 dl 1.52 MapReduceValuesToDoubleTask<K,V> t = this;
6027     final ObjectToDouble<? super V> transformer =
6028     this.transformer;
6029     final DoubleByDoubleToDouble reducer = this.reducer;
6030     if (transformer == null || reducer == null)
6031     throw new Error(NullFunctionMessage);
6032     final double id = this.basis;
6033     int b = batch();
6034     while (b > 1 && t.baseIndex != t.baseLimit) {
6035     b >>>= 1;
6036     t.pending = 1;
6037     MapReduceValuesToDoubleTask<K,V> rt =
6038     new MapReduceValuesToDoubleTask<K,V>
6039     (t, b, true, transformer, id, reducer);
6040     t = new MapReduceValuesToDoubleTask<K,V>
6041     (t, b, false, transformer, id, reducer);
6042     t.sibling = rt;
6043     rt.sibling = t;
6044     rt.fork();
6045     }
6046     double r = id;
6047     Object v;
6048     while ((v = t.advance()) != null)
6049     r = reducer.apply(r, transformer.apply((V)v));
6050     t.result = r;
6051     for (;;) {
6052     int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
6053     if ((par = t.parent) == null ||
6054     !(par instanceof MapReduceValuesToDoubleTask)) {
6055     t.quietlyComplete();
6056     break;
6057     }
6058     else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
6059     if ((s = t.sibling) != null)
6060     r = reducer.apply(r, s.result);
6061     (t = p).result = r;
6062     }
6063     else if (p.casPending(c, 0))
6064     break;
6065     }
6066     }
6067     public final Double getRawResult() { return result; }
6068     }
6069    
6070 dl 1.59 @SuppressWarnings("serial")
6071 dl 1.52 static final class MapReduceEntriesToDoubleTask<K,V>
6072     extends BulkTask<K,V,Double> {
6073     final ObjectToDouble<Map.Entry<K,V>> transformer;
6074     final DoubleByDoubleToDouble reducer;
6075     final double basis;
6076     double result;
6077     MapReduceEntriesToDoubleTask<K,V> sibling;
6078     MapReduceEntriesToDoubleTask
6079     (ConcurrentHashMapV8<K,V> m,
6080     ObjectToDouble<Map.Entry<K,V>> transformer,
6081     double basis,
6082     DoubleByDoubleToDouble reducer) {
6083     super(m);
6084     this.transformer = transformer;
6085     this.basis = basis; this.reducer = reducer;
6086     }
6087     MapReduceEntriesToDoubleTask
6088     (BulkTask<K,V,?> p, int b, boolean split,
6089     ObjectToDouble<Map.Entry<K,V>> transformer,
6090     double basis,
6091     DoubleByDoubleToDouble reducer) {
6092     super(p, b, split);
6093     this.transformer = transformer;
6094     this.basis = basis; this.reducer = reducer;
6095     }
6096 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6097 dl 1.52 MapReduceEntriesToDoubleTask<K,V> t = this;
6098     final ObjectToDouble<Map.Entry<K,V>> transformer =
6099     this.transformer;
6100     final DoubleByDoubleToDouble reducer = this.reducer;
6101     if (transformer == null || reducer == null)
6102     throw new Error(NullFunctionMessage);
6103     final double id = this.basis;
6104     int b = batch();
6105     while (b > 1 && t.baseIndex != t.baseLimit) {
6106     b >>>= 1;
6107     t.pending = 1;
6108     MapReduceEntriesToDoubleTask<K,V> rt =
6109     new MapReduceEntriesToDoubleTask<K,V>
6110     (t, b, true, transformer, id, reducer);
6111     t = new MapReduceEntriesToDoubleTask<K,V>
6112     (t, b, false, transformer, id, reducer);
6113     t.sibling = rt;
6114     rt.sibling = t;
6115     rt.fork();
6116     }
6117     double r = id;
6118     Object v;
6119     while ((v = t.advance()) != null)
6120     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6121     t.result = r;
6122     for (;;) {
6123     int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6124     if ((par = t.parent) == null ||
6125     !(par instanceof MapReduceEntriesToDoubleTask)) {
6126     t.quietlyComplete();
6127     break;
6128     }
6129     else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6130     if ((s = t.sibling) != null)
6131     r = reducer.apply(r, s.result);
6132     (t = p).result = r;
6133     }
6134     else if (p.casPending(c, 0))
6135     break;
6136     }
6137     }
6138     public final Double getRawResult() { return result; }
6139     }
6140    
6141 dl 1.59 @SuppressWarnings("serial")
6142 dl 1.52 static final class MapReduceMappingsToDoubleTask<K,V>
6143     extends BulkTask<K,V,Double> {
6144     final ObjectByObjectToDouble<? super K, ? super V> transformer;
6145     final DoubleByDoubleToDouble reducer;
6146     final double basis;
6147     double result;
6148     MapReduceMappingsToDoubleTask<K,V> sibling;
6149     MapReduceMappingsToDoubleTask
6150     (ConcurrentHashMapV8<K,V> m,
6151     ObjectByObjectToDouble<? super K, ? super V> transformer,
6152     double basis,
6153     DoubleByDoubleToDouble reducer) {
6154     super(m);
6155     this.transformer = transformer;
6156     this.basis = basis; this.reducer = reducer;
6157     }
6158     MapReduceMappingsToDoubleTask
6159     (BulkTask<K,V,?> p, int b, boolean split,
6160     ObjectByObjectToDouble<? super K, ? super V> transformer,
6161     double basis,
6162     DoubleByDoubleToDouble reducer) {
6163     super(p, b, split);
6164     this.transformer = transformer;
6165     this.basis = basis; this.reducer = reducer;
6166     }
6167 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6168 dl 1.52 MapReduceMappingsToDoubleTask<K,V> t = this;
6169     final ObjectByObjectToDouble<? super K, ? super V> transformer =
6170     this.transformer;
6171     final DoubleByDoubleToDouble reducer = this.reducer;
6172     if (transformer == null || reducer == null)
6173     throw new Error(NullFunctionMessage);
6174     final double id = this.basis;
6175     int b = batch();
6176     while (b > 1 && t.baseIndex != t.baseLimit) {
6177     b >>>= 1;
6178     t.pending = 1;
6179     MapReduceMappingsToDoubleTask<K,V> rt =
6180     new MapReduceMappingsToDoubleTask<K,V>
6181     (t, b, true, transformer, id, reducer);
6182     t = new MapReduceMappingsToDoubleTask<K,V>
6183     (t, b, false, transformer, id, reducer);
6184     t.sibling = rt;
6185     rt.sibling = t;
6186     rt.fork();
6187     }
6188     double r = id;
6189     Object v;
6190     while ((v = t.advance()) != null)
6191     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6192     t.result = r;
6193     for (;;) {
6194     int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6195     if ((par = t.parent) == null ||
6196     !(par instanceof MapReduceMappingsToDoubleTask)) {
6197     t.quietlyComplete();
6198     break;
6199     }
6200     else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6201     if ((s = t.sibling) != null)
6202     r = reducer.apply(r, s.result);
6203     (t = p).result = r;
6204     }
6205     else if (p.casPending(c, 0))
6206     break;
6207     }
6208     }
6209     public final Double getRawResult() { return result; }
6210     }
6211    
6212 dl 1.59 @SuppressWarnings("serial")
6213 dl 1.52 static final class MapReduceKeysToLongTask<K,V>
6214     extends BulkTask<K,V,Long> {
6215     final ObjectToLong<? super K> transformer;
6216     final LongByLongToLong reducer;
6217     final long basis;
6218     long result;
6219     MapReduceKeysToLongTask<K,V> sibling;
6220     MapReduceKeysToLongTask
6221     (ConcurrentHashMapV8<K,V> m,
6222     ObjectToLong<? super K> transformer,
6223     long basis,
6224     LongByLongToLong reducer) {
6225     super(m);
6226     this.transformer = transformer;
6227     this.basis = basis; this.reducer = reducer;
6228     }
6229     MapReduceKeysToLongTask
6230     (BulkTask<K,V,?> p, int b, boolean split,
6231     ObjectToLong<? super K> transformer,
6232     long basis,
6233     LongByLongToLong reducer) {
6234     super(p, b, split);
6235     this.transformer = transformer;
6236     this.basis = basis; this.reducer = reducer;
6237     }
6238 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6239 dl 1.52 MapReduceKeysToLongTask<K,V> t = this;
6240     final ObjectToLong<? super K> transformer =
6241     this.transformer;
6242     final LongByLongToLong reducer = this.reducer;
6243     if (transformer == null || reducer == null)
6244     throw new Error(NullFunctionMessage);
6245     final long id = this.basis;
6246     int b = batch();
6247     while (b > 1 && t.baseIndex != t.baseLimit) {
6248     b >>>= 1;
6249     t.pending = 1;
6250     MapReduceKeysToLongTask<K,V> rt =
6251     new MapReduceKeysToLongTask<K,V>
6252     (t, b, true, transformer, id, reducer);
6253     t = new MapReduceKeysToLongTask<K,V>
6254     (t, b, false, transformer, id, reducer);
6255     t.sibling = rt;
6256     rt.sibling = t;
6257     rt.fork();
6258     }
6259     long r = id;
6260     while (t.advance() != null)
6261     r = reducer.apply(r, transformer.apply((K)t.nextKey));
6262     t.result = r;
6263     for (;;) {
6264     int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6265     if ((par = t.parent) == null ||
6266     !(par instanceof MapReduceKeysToLongTask)) {
6267     t.quietlyComplete();
6268     break;
6269     }
6270     else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6271     if ((s = t.sibling) != null)
6272     r = reducer.apply(r, s.result);
6273     (t = p).result = r;
6274     }
6275     else if (p.casPending(c, 0))
6276     break;
6277     }
6278     }
6279     public final Long getRawResult() { return result; }
6280     }
6281    
6282 dl 1.59 @SuppressWarnings("serial")
6283 dl 1.52 static final class MapReduceValuesToLongTask<K,V>
6284     extends BulkTask<K,V,Long> {
6285     final ObjectToLong<? super V> transformer;
6286     final LongByLongToLong reducer;
6287     final long basis;
6288     long result;
6289     MapReduceValuesToLongTask<K,V> sibling;
6290     MapReduceValuesToLongTask
6291     (ConcurrentHashMapV8<K,V> m,
6292     ObjectToLong<? super V> transformer,
6293     long basis,
6294     LongByLongToLong reducer) {
6295     super(m);
6296     this.transformer = transformer;
6297     this.basis = basis; this.reducer = reducer;
6298     }
6299     MapReduceValuesToLongTask
6300     (BulkTask<K,V,?> p, int b, boolean split,
6301     ObjectToLong<? super V> transformer,
6302     long basis,
6303     LongByLongToLong reducer) {
6304     super(p, b, split);
6305     this.transformer = transformer;
6306     this.basis = basis; this.reducer = reducer;
6307     }
6308 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6309 dl 1.52 MapReduceValuesToLongTask<K,V> t = this;
6310     final ObjectToLong<? super V> transformer =
6311     this.transformer;
6312     final LongByLongToLong reducer = this.reducer;
6313     if (transformer == null || reducer == null)
6314     throw new Error(NullFunctionMessage);
6315     final long id = this.basis;
6316     int b = batch();
6317     while (b > 1 && t.baseIndex != t.baseLimit) {
6318     b >>>= 1;
6319     t.pending = 1;
6320     MapReduceValuesToLongTask<K,V> rt =
6321     new MapReduceValuesToLongTask<K,V>
6322     (t, b, true, transformer, id, reducer);
6323     t = new MapReduceValuesToLongTask<K,V>
6324     (t, b, false, transformer, id, reducer);
6325     t.sibling = rt;
6326     rt.sibling = t;
6327     rt.fork();
6328     }
6329     long r = id;
6330     Object v;
6331     while ((v = t.advance()) != null)
6332     r = reducer.apply(r, transformer.apply((V)v));
6333     t.result = r;
6334     for (;;) {
6335     int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6336     if ((par = t.parent) == null ||
6337     !(par instanceof MapReduceValuesToLongTask)) {
6338     t.quietlyComplete();
6339     break;
6340     }
6341     else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6342     if ((s = t.sibling) != null)
6343     r = reducer.apply(r, s.result);
6344     (t = p).result = r;
6345     }
6346     else if (p.casPending(c, 0))
6347     break;
6348     }
6349     }
6350     public final Long getRawResult() { return result; }
6351     }
6352    
6353 dl 1.59 @SuppressWarnings("serial")
6354 dl 1.52 static final class MapReduceEntriesToLongTask<K,V>
6355     extends BulkTask<K,V,Long> {
6356     final ObjectToLong<Map.Entry<K,V>> transformer;
6357     final LongByLongToLong reducer;
6358     final long basis;
6359     long result;
6360     MapReduceEntriesToLongTask<K,V> sibling;
6361     MapReduceEntriesToLongTask
6362     (ConcurrentHashMapV8<K,V> m,
6363     ObjectToLong<Map.Entry<K,V>> transformer,
6364     long basis,
6365     LongByLongToLong reducer) {
6366     super(m);
6367     this.transformer = transformer;
6368     this.basis = basis; this.reducer = reducer;
6369     }
6370     MapReduceEntriesToLongTask
6371     (BulkTask<K,V,?> p, int b, boolean split,
6372     ObjectToLong<Map.Entry<K,V>> transformer,
6373     long basis,
6374     LongByLongToLong reducer) {
6375     super(p, b, split);
6376     this.transformer = transformer;
6377     this.basis = basis; this.reducer = reducer;
6378     }
6379 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6380 dl 1.52 MapReduceEntriesToLongTask<K,V> t = this;
6381     final ObjectToLong<Map.Entry<K,V>> transformer =
6382     this.transformer;
6383     final LongByLongToLong reducer = this.reducer;
6384     if (transformer == null || reducer == null)
6385     throw new Error(NullFunctionMessage);
6386     final long id = this.basis;
6387     int b = batch();
6388     while (b > 1 && t.baseIndex != t.baseLimit) {
6389     b >>>= 1;
6390     t.pending = 1;
6391     MapReduceEntriesToLongTask<K,V> rt =
6392     new MapReduceEntriesToLongTask<K,V>
6393     (t, b, true, transformer, id, reducer);
6394     t = new MapReduceEntriesToLongTask<K,V>
6395     (t, b, false, transformer, id, reducer);
6396     t.sibling = rt;
6397     rt.sibling = t;
6398     rt.fork();
6399     }
6400     long r = id;
6401     Object v;
6402     while ((v = t.advance()) != null)
6403     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6404     t.result = r;
6405     for (;;) {
6406     int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6407     if ((par = t.parent) == null ||
6408     !(par instanceof MapReduceEntriesToLongTask)) {
6409     t.quietlyComplete();
6410     break;
6411     }
6412     else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6413     if ((s = t.sibling) != null)
6414     r = reducer.apply(r, s.result);
6415     (t = p).result = r;
6416     }
6417     else if (p.casPending(c, 0))
6418     break;
6419     }
6420     }
6421     public final Long getRawResult() { return result; }
6422     }
6423    
6424 dl 1.59 @SuppressWarnings("serial")
6425 dl 1.52 static final class MapReduceMappingsToLongTask<K,V>
6426     extends BulkTask<K,V,Long> {
6427     final ObjectByObjectToLong<? super K, ? super V> transformer;
6428     final LongByLongToLong reducer;
6429     final long basis;
6430     long result;
6431     MapReduceMappingsToLongTask<K,V> sibling;
6432     MapReduceMappingsToLongTask
6433     (ConcurrentHashMapV8<K,V> m,
6434     ObjectByObjectToLong<? super K, ? super V> transformer,
6435     long basis,
6436     LongByLongToLong reducer) {
6437     super(m);
6438     this.transformer = transformer;
6439     this.basis = basis; this.reducer = reducer;
6440     }
6441     MapReduceMappingsToLongTask
6442     (BulkTask<K,V,?> p, int b, boolean split,
6443     ObjectByObjectToLong<? super K, ? super V> transformer,
6444     long basis,
6445     LongByLongToLong reducer) {
6446     super(p, b, split);
6447     this.transformer = transformer;
6448     this.basis = basis; this.reducer = reducer;
6449     }
6450 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6451 dl 1.52 MapReduceMappingsToLongTask<K,V> t = this;
6452     final ObjectByObjectToLong<? super K, ? super V> transformer =
6453     this.transformer;
6454     final LongByLongToLong reducer = this.reducer;
6455     if (transformer == null || reducer == null)
6456     throw new Error(NullFunctionMessage);
6457     final long id = this.basis;
6458     int b = batch();
6459     while (b > 1 && t.baseIndex != t.baseLimit) {
6460     b >>>= 1;
6461     t.pending = 1;
6462     MapReduceMappingsToLongTask<K,V> rt =
6463     new MapReduceMappingsToLongTask<K,V>
6464     (t, b, true, transformer, id, reducer);
6465     t = new MapReduceMappingsToLongTask<K,V>
6466     (t, b, false, transformer, id, reducer);
6467     t.sibling = rt;
6468     rt.sibling = t;
6469     rt.fork();
6470     }
6471     long r = id;
6472     Object v;
6473     while ((v = t.advance()) != null)
6474     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6475     t.result = r;
6476     for (;;) {
6477     int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6478     if ((par = t.parent) == null ||
6479     !(par instanceof MapReduceMappingsToLongTask)) {
6480     t.quietlyComplete();
6481     break;
6482     }
6483     else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6484     if ((s = t.sibling) != null)
6485     r = reducer.apply(r, s.result);
6486     (t = p).result = r;
6487     }
6488     else if (p.casPending(c, 0))
6489     break;
6490     }
6491     }
6492     public final Long getRawResult() { return result; }
6493     }
6494    
6495 dl 1.59 @SuppressWarnings("serial")
6496 dl 1.52 static final class MapReduceKeysToIntTask<K,V>
6497     extends BulkTask<K,V,Integer> {
6498     final ObjectToInt<? super K> transformer;
6499     final IntByIntToInt reducer;
6500     final int basis;
6501     int result;
6502     MapReduceKeysToIntTask<K,V> sibling;
6503     MapReduceKeysToIntTask
6504     (ConcurrentHashMapV8<K,V> m,
6505     ObjectToInt<? super K> transformer,
6506     int basis,
6507     IntByIntToInt reducer) {
6508     super(m);
6509     this.transformer = transformer;
6510     this.basis = basis; this.reducer = reducer;
6511     }
6512     MapReduceKeysToIntTask
6513     (BulkTask<K,V,?> p, int b, boolean split,
6514     ObjectToInt<? super K> transformer,
6515     int basis,
6516     IntByIntToInt reducer) {
6517     super(p, b, split);
6518     this.transformer = transformer;
6519     this.basis = basis; this.reducer = reducer;
6520     }
6521 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6522 dl 1.52 MapReduceKeysToIntTask<K,V> t = this;
6523     final ObjectToInt<? super K> transformer =
6524     this.transformer;
6525     final IntByIntToInt reducer = this.reducer;
6526     if (transformer == null || reducer == null)
6527     throw new Error(NullFunctionMessage);
6528     final int id = this.basis;
6529     int b = batch();
6530     while (b > 1 && t.baseIndex != t.baseLimit) {
6531     b >>>= 1;
6532     t.pending = 1;
6533     MapReduceKeysToIntTask<K,V> rt =
6534     new MapReduceKeysToIntTask<K,V>
6535     (t, b, true, transformer, id, reducer);
6536     t = new MapReduceKeysToIntTask<K,V>
6537     (t, b, false, transformer, id, reducer);
6538     t.sibling = rt;
6539     rt.sibling = t;
6540     rt.fork();
6541     }
6542     int r = id;
6543     while (t.advance() != null)
6544     r = reducer.apply(r, transformer.apply((K)t.nextKey));
6545     t.result = r;
6546     for (;;) {
6547     int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6548     if ((par = t.parent) == null ||
6549     !(par instanceof MapReduceKeysToIntTask)) {
6550     t.quietlyComplete();
6551     break;
6552     }
6553     else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6554     if ((s = t.sibling) != null)
6555     r = reducer.apply(r, s.result);
6556     (t = p).result = r;
6557     }
6558     else if (p.casPending(c, 0))
6559     break;
6560     }
6561     }
6562     public final Integer getRawResult() { return result; }
6563     }
6564    
6565 dl 1.59 @SuppressWarnings("serial")
6566 dl 1.52 static final class MapReduceValuesToIntTask<K,V>
6567     extends BulkTask<K,V,Integer> {
6568     final ObjectToInt<? super V> transformer;
6569     final IntByIntToInt reducer;
6570     final int basis;
6571     int result;
6572     MapReduceValuesToIntTask<K,V> sibling;
6573     MapReduceValuesToIntTask
6574     (ConcurrentHashMapV8<K,V> m,
6575     ObjectToInt<? super V> transformer,
6576     int basis,
6577     IntByIntToInt reducer) {
6578     super(m);
6579     this.transformer = transformer;
6580     this.basis = basis; this.reducer = reducer;
6581     }
6582     MapReduceValuesToIntTask
6583     (BulkTask<K,V,?> p, int b, boolean split,
6584     ObjectToInt<? super V> transformer,
6585     int basis,
6586     IntByIntToInt reducer) {
6587     super(p, b, split);
6588     this.transformer = transformer;
6589     this.basis = basis; this.reducer = reducer;
6590     }
6591 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6592 dl 1.52 MapReduceValuesToIntTask<K,V> t = this;
6593     final ObjectToInt<? super V> transformer =
6594     this.transformer;
6595     final IntByIntToInt reducer = this.reducer;
6596     if (transformer == null || reducer == null)
6597     throw new Error(NullFunctionMessage);
6598     final int id = this.basis;
6599     int b = batch();
6600     while (b > 1 && t.baseIndex != t.baseLimit) {
6601     b >>>= 1;
6602     t.pending = 1;
6603     MapReduceValuesToIntTask<K,V> rt =
6604     new MapReduceValuesToIntTask<K,V>
6605     (t, b, true, transformer, id, reducer);
6606     t = new MapReduceValuesToIntTask<K,V>
6607     (t, b, false, transformer, id, reducer);
6608     t.sibling = rt;
6609     rt.sibling = t;
6610     rt.fork();
6611     }
6612     int r = id;
6613     Object v;
6614     while ((v = t.advance()) != null)
6615     r = reducer.apply(r, transformer.apply((V)v));
6616     t.result = r;
6617     for (;;) {
6618     int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6619     if ((par = t.parent) == null ||
6620     !(par instanceof MapReduceValuesToIntTask)) {
6621     t.quietlyComplete();
6622     break;
6623     }
6624     else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6625     if ((s = t.sibling) != null)
6626     r = reducer.apply(r, s.result);
6627     (t = p).result = r;
6628     }
6629     else if (p.casPending(c, 0))
6630     break;
6631     }
6632     }
6633     public final Integer getRawResult() { return result; }
6634     }
6635    
6636 dl 1.59 @SuppressWarnings("serial")
6637 dl 1.52 static final class MapReduceEntriesToIntTask<K,V>
6638     extends BulkTask<K,V,Integer> {
6639     final ObjectToInt<Map.Entry<K,V>> transformer;
6640     final IntByIntToInt reducer;
6641     final int basis;
6642     int result;
6643     MapReduceEntriesToIntTask<K,V> sibling;
6644     MapReduceEntriesToIntTask
6645     (ConcurrentHashMapV8<K,V> m,
6646     ObjectToInt<Map.Entry<K,V>> transformer,
6647     int basis,
6648     IntByIntToInt reducer) {
6649     super(m);
6650     this.transformer = transformer;
6651     this.basis = basis; this.reducer = reducer;
6652     }
6653     MapReduceEntriesToIntTask
6654     (BulkTask<K,V,?> p, int b, boolean split,
6655     ObjectToInt<Map.Entry<K,V>> transformer,
6656     int basis,
6657     IntByIntToInt reducer) {
6658     super(p, b, split);
6659     this.transformer = transformer;
6660     this.basis = basis; this.reducer = reducer;
6661     }
6662 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6663 dl 1.52 MapReduceEntriesToIntTask<K,V> t = this;
6664     final ObjectToInt<Map.Entry<K,V>> transformer =
6665     this.transformer;
6666     final IntByIntToInt reducer = this.reducer;
6667     if (transformer == null || reducer == null)
6668     throw new Error(NullFunctionMessage);
6669     final int id = this.basis;
6670     int b = batch();
6671     while (b > 1 && t.baseIndex != t.baseLimit) {
6672     b >>>= 1;
6673     t.pending = 1;
6674     MapReduceEntriesToIntTask<K,V> rt =
6675     new MapReduceEntriesToIntTask<K,V>
6676     (t, b, true, transformer, id, reducer);
6677     t = new MapReduceEntriesToIntTask<K,V>
6678     (t, b, false, transformer, id, reducer);
6679     t.sibling = rt;
6680     rt.sibling = t;
6681     rt.fork();
6682     }
6683     int r = id;
6684     Object v;
6685     while ((v = t.advance()) != null)
6686     r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6687     t.result = r;
6688     for (;;) {
6689     int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6690     if ((par = t.parent) == null ||
6691     !(par instanceof MapReduceEntriesToIntTask)) {
6692     t.quietlyComplete();
6693     break;
6694     }
6695     else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6696     if ((s = t.sibling) != null)
6697     r = reducer.apply(r, s.result);
6698     (t = p).result = r;
6699     }
6700     else if (p.casPending(c, 0))
6701     break;
6702     }
6703     }
6704     public final Integer getRawResult() { return result; }
6705     }
6706    
6707 dl 1.59 @SuppressWarnings("serial")
6708 dl 1.52 static final class MapReduceMappingsToIntTask<K,V>
6709     extends BulkTask<K,V,Integer> {
6710     final ObjectByObjectToInt<? super K, ? super V> transformer;
6711     final IntByIntToInt reducer;
6712     final int basis;
6713     int result;
6714     MapReduceMappingsToIntTask<K,V> sibling;
6715     MapReduceMappingsToIntTask
6716     (ConcurrentHashMapV8<K,V> m,
6717     ObjectByObjectToInt<? super K, ? super V> transformer,
6718     int basis,
6719     IntByIntToInt reducer) {
6720     super(m);
6721     this.transformer = transformer;
6722     this.basis = basis; this.reducer = reducer;
6723     }
6724     MapReduceMappingsToIntTask
6725     (BulkTask<K,V,?> p, int b, boolean split,
6726     ObjectByObjectToInt<? super K, ? super V> transformer,
6727     int basis,
6728     IntByIntToInt reducer) {
6729     super(p, b, split);
6730     this.transformer = transformer;
6731     this.basis = basis; this.reducer = reducer;
6732     }
6733 dl 1.59 @SuppressWarnings("unchecked") public final void compute() {
6734 dl 1.52 MapReduceMappingsToIntTask<K,V> t = this;
6735     final ObjectByObjectToInt<? super K, ? super V> transformer =
6736     this.transformer;
6737     final IntByIntToInt reducer = this.reducer;
6738     if (transformer == null || reducer == null)
6739     throw new Error(NullFunctionMessage);
6740     final int id = this.basis;
6741     int b = batch();
6742     while (b > 1 && t.baseIndex != t.baseLimit) {
6743     b >>>= 1;
6744     t.pending = 1;
6745     MapReduceMappingsToIntTask<K,V> rt =
6746     new MapReduceMappingsToIntTask<K,V>
6747     (t, b, true, transformer, id, reducer);
6748     t = new MapReduceMappingsToIntTask<K,V>
6749     (t, b, false, transformer, id, reducer);
6750     t.sibling = rt;
6751     rt.sibling = t;
6752     rt.fork();
6753     }
6754     int r = id;
6755     Object v;
6756     while ((v = t.advance()) != null)
6757     r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6758     t.result = r;
6759     for (;;) {
6760     int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6761     if ((par = t.parent) == null ||
6762     !(par instanceof MapReduceMappingsToIntTask)) {
6763     t.quietlyComplete();
6764     break;
6765     }
6766     else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6767     if ((s = t.sibling) != null)
6768     r = reducer.apply(r, s.result);
6769     (t = p).result = r;
6770     }
6771     else if (p.casPending(c, 0))
6772     break;
6773     }
6774     }
6775     public final Integer getRawResult() { return result; }
6776     }
6777    
6778    
6779     // Unsafe mechanics
6780     private static final sun.misc.Unsafe UNSAFE;
6781     private static final long counterOffset;
6782     private static final long sizeCtlOffset;
6783     private static final long ABASE;
6784     private static final int ASHIFT;
6785    
6786     static {
6787     int ss;
6788     try {
6789     UNSAFE = getUnsafe();
6790     Class<?> k = ConcurrentHashMapV8.class;
6791     counterOffset = UNSAFE.objectFieldOffset
6792     (k.getDeclaredField("counter"));
6793     sizeCtlOffset = UNSAFE.objectFieldOffset
6794     (k.getDeclaredField("sizeCtl"));
6795     Class<?> sc = Node[].class;
6796     ABASE = UNSAFE.arrayBaseOffset(sc);
6797     ss = UNSAFE.arrayIndexScale(sc);
6798     } catch (Exception e) {
6799     throw new Error(e);
6800     }
6801     if ((ss & (ss-1)) != 0)
6802     throw new Error("data type scale not a power of two");
6803     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6804     }
6805    
6806     /**
6807     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6808     * Replace with a simple call to Unsafe.getUnsafe when integrating
6809     * into a jdk.
6810     *
6811     * @return a sun.misc.Unsafe
6812     */
6813     private static sun.misc.Unsafe getUnsafe() {
6814     try {
6815     return sun.misc.Unsafe.getUnsafe();
6816     } catch (SecurityException se) {
6817     try {
6818     return java.security.AccessController.doPrivileged
6819     (new java.security
6820     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6821     public sun.misc.Unsafe run() throws Exception {
6822     java.lang.reflect.Field f = sun.misc
6823     .Unsafe.class.getDeclaredField("theUnsafe");
6824     f.setAccessible(true);
6825     return (sun.misc.Unsafe) f.get(null);
6826     }});
6827     } catch (java.security.PrivilegedActionException e) {
6828     throw new RuntimeException("Could not initialize intrinsics",
6829     e.getCause());
6830     }
6831     }
6832     }
6833 dl 1.1 }