ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.79
Committed: Fri Nov 23 17:50:51 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.78: +780 -1350 lines
Log Message:
Add CountedCompleter utilities; now use them in ConcurrentHashMap

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.52 import java.util.Comparator;
10 dl 1.24 import java.util.Arrays;
11 dl 1.1 import java.util.Map;
12     import java.util.Set;
13     import java.util.Collection;
14     import java.util.AbstractMap;
15     import java.util.AbstractSet;
16     import java.util.AbstractCollection;
17     import java.util.Hashtable;
18     import java.util.HashMap;
19     import java.util.Iterator;
20     import java.util.Enumeration;
21     import java.util.ConcurrentModificationException;
22     import java.util.NoSuchElementException;
23     import java.util.concurrent.ConcurrentMap;
24 dl 1.37 import java.util.concurrent.ThreadLocalRandom;
25 dl 1.24 import java.util.concurrent.locks.LockSupport;
26 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
28    
29 dl 1.1 import java.io.Serializable;
30    
31 dl 1.79 import java.util.Comparator;
32     import java.util.Arrays;
33     import java.util.Map;
34     import java.util.Set;
35     import java.util.Collection;
36     import java.util.AbstractMap;
37     import java.util.AbstractSet;
38     import java.util.AbstractCollection;
39     import java.util.Hashtable;
40     import java.util.HashMap;
41     import java.util.Iterator;
42     import java.util.Enumeration;
43     import java.util.ConcurrentModificationException;
44     import java.util.NoSuchElementException;
45     import java.util.concurrent.ConcurrentMap;
46     import java.util.concurrent.ThreadLocalRandom;
47     import java.util.concurrent.locks.LockSupport;
48     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
49     import java.util.concurrent.atomic.AtomicReference;
50    
51     import java.io.Serializable;
52    
53 dl 1.1 /**
54     * A hash table supporting full concurrency of retrievals and
55     * high expected concurrency for updates. This class obeys the
56     * same functional specification as {@link java.util.Hashtable}, and
57     * includes versions of methods corresponding to each method of
58     * {@code Hashtable}. However, even though all operations are
59     * thread-safe, retrieval operations do <em>not</em> entail locking,
60     * and there is <em>not</em> any support for locking the entire table
61     * in a way that prevents all access. This class is fully
62     * interoperable with {@code Hashtable} in programs that rely on its
63     * thread safety but not on its synchronization details.
64     *
65 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
66 dl 1.1 * block, so may overlap with update operations (including {@code put}
67     * and {@code remove}). Retrievals reflect the results of the most
68     * recently <em>completed</em> update operations holding upon their
69 dl 1.59 * onset. (More formally, an update operation for a given key bears a
70     * <em>happens-before</em> relation with any (non-null) retrieval for
71     * that key reporting the updated value.) For aggregate operations
72     * such as {@code putAll} and {@code clear}, concurrent retrievals may
73     * reflect insertion or removal of only some entries. Similarly,
74     * Iterators and Enumerations return elements reflecting the state of
75     * the hash table at some point at or since the creation of the
76     * iterator/enumeration. They do <em>not</em> throw {@link
77     * ConcurrentModificationException}. However, iterators are designed
78     * to be used by only one thread at a time. Bear in mind that the
79     * results of aggregate status methods including {@code size}, {@code
80     * isEmpty}, and {@code containsValue} are typically useful only when
81     * a map is not undergoing concurrent updates in other threads.
82     * Otherwise the results of these methods reflect transient states
83     * that may be adequate for monitoring or estimation purposes, but not
84     * for program control.
85 dl 1.1 *
86 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
87 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
88     * the same slot modulo the table size), with the expected average
89 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
90     * to a 0.75 load factor threshold for resizing). There may be much
91     * variance around this average as mappings are added and removed, but
92     * overall, this maintains a commonly accepted time/space tradeoff for
93     * hash tables. However, resizing this or any other kind of hash
94     * table may be a relatively slow operation. When possible, it is a
95     * good idea to provide a size estimate as an optional {@code
96 dl 1.16 * initialCapacity} constructor argument. An additional optional
97     * {@code loadFactor} constructor argument provides a further means of
98     * customizing initial table capacity by specifying the table density
99     * to be used in calculating the amount of space to allocate for the
100     * given number of elements. Also, for compatibility with previous
101     * versions of this class, constructors may optionally specify an
102     * expected {@code concurrencyLevel} as an additional hint for
103     * internal sizing. Note that using many keys with exactly the same
104 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
105 dl 1.16 * hash table.
106 dl 1.1 *
107 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
108 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
109     * (using {@link #keySet(Object)} when only keys are of interest, and the
110     * mapped values are (perhaps transiently) not used or all take the
111     * same mapping value.
112     *
113 jsr166 1.78 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 dl 1.70 * form of histogram or multiset) by using {@link LongAdder} values
115     * and initializing via {@link #computeIfAbsent}. For example, to add
116     * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117     * can use {@code freqs.computeIfAbsent(k -> new
118     * LongAdder()).increment();}
119     *
120 dl 1.1 * <p>This class and its views and iterators implement all of the
121     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
122     * interfaces.
123     *
124 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
125 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
126     *
127 dl 1.70 * <p>ConcurrentHashMapV8s support parallel operations using the {@link
128 jsr166 1.73 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
129 dl 1.70 * are available in class {@link ForkJoinTasks}). These operations are
130     * designed to be safely, and often sensibly, applied even with maps
131     * that are being concurrently updated by other threads; for example,
132     * when computing a snapshot summary of the values in a shared
133     * registry. There are three kinds of operation, each with four
134     * forms, accepting functions with Keys, Values, Entries, and (Key,
135 dl 1.75 * Value) arguments and/or return values. (The first three forms are
136     * also available via the {@link #keySet()}, {@link #values()} and
137     * {@link #entrySet()} views). Because the elements of a
138 dl 1.70 * ConcurrentHashMapV8 are not ordered in any particular way, and may be
139     * processed in different orders in different parallel executions, the
140     * correctness of supplied functions should not depend on any
141     * ordering, or on any other objects or values that may transiently
142     * change while computation is in progress; and except for forEach
143     * actions, should ideally be side-effect-free.
144     *
145     * <ul>
146     * <li> forEach: Perform a given action on each element.
147     * A variant form applies a given transformation on each element
148     * before performing the action.</li>
149     *
150     * <li> search: Return the first available non-null result of
151     * applying a given function on each element; skipping further
152     * search when a result is found.</li>
153     *
154     * <li> reduce: Accumulate each element. The supplied reduction
155     * function cannot rely on ordering (more formally, it should be
156     * both associative and commutative). There are five variants:
157     *
158     * <ul>
159     *
160     * <li> Plain reductions. (There is not a form of this method for
161     * (key, value) function arguments since there is no corresponding
162     * return type.)</li>
163     *
164     * <li> Mapped reductions that accumulate the results of a given
165     * function applied to each element.</li>
166     *
167     * <li> Reductions to scalar doubles, longs, and ints, using a
168     * given basis value.</li>
169     *
170     * </li>
171     * </ul>
172     * </ul>
173     *
174     * <p>The concurrency properties of bulk operations follow
175     * from those of ConcurrentHashMapV8: Any non-null result returned
176     * from {@code get(key)} and related access methods bears a
177     * happens-before relation with the associated insertion or
178     * update. The result of any bulk operation reflects the
179     * composition of these per-element relations (but is not
180     * necessarily atomic with respect to the map as a whole unless it
181     * is somehow known to be quiescent). Conversely, because keys
182     * and values in the map are never null, null serves as a reliable
183     * atomic indicator of the current lack of any result. To
184     * maintain this property, null serves as an implicit basis for
185     * all non-scalar reduction operations. For the double, long, and
186     * int versions, the basis should be one that, when combined with
187     * any other value, returns that other value (more formally, it
188     * should be the identity element for the reduction). Most common
189     * reductions have these properties; for example, computing a sum
190     * with basis 0 or a minimum with basis MAX_VALUE.
191     *
192     * <p>Search and transformation functions provided as arguments
193     * should similarly return null to indicate the lack of any result
194     * (in which case it is not used). In the case of mapped
195     * reductions, this also enables transformations to serve as
196     * filters, returning null (or, in the case of primitive
197     * specializations, the identity basis) if the element should not
198     * be combined. You can create compound transformations and
199     * filterings by composing them yourself under this "null means
200     * there is nothing there now" rule before using them in search or
201     * reduce operations.
202     *
203     * <p>Methods accepting and/or returning Entry arguments maintain
204     * key-value associations. They may be useful for example when
205     * finding the key for the greatest value. Note that "plain" Entry
206     * arguments can be supplied using {@code new
207     * AbstractMap.SimpleEntry(k,v)}.
208     *
209 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
210 dl 1.70 * exception encountered in the application of a supplied
211     * function. Bear in mind when handling such exceptions that other
212     * concurrently executing functions could also have thrown
213     * exceptions, or would have done so if the first exception had
214     * not occurred.
215     *
216     * <p>Parallel speedups for bulk operations compared to sequential
217     * processing are common but not guaranteed. Operations involving
218     * brief functions on small maps may execute more slowly than
219     * sequential loops if the underlying work to parallelize the
220 jsr166 1.74 * computation is more expensive than the computation itself.
221     * Similarly, parallelization may not lead to much actual parallelism
222     * if all processors are busy performing unrelated tasks.
223 dl 1.70 *
224 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
225 dl 1.70 *
226     * <p><em>jsr166e note: During transition, this class
227     * uses nested functional interfaces with different names but the
228 jsr166 1.77 * same forms as those expected for JDK8.</em>
229 dl 1.70 *
230 dl 1.1 * <p>This class is a member of the
231     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232     * Java Collections Framework</a>.
233     *
234 jsr166 1.22 * @since 1.5
235 dl 1.1 * @author Doug Lea
236     * @param <K> the type of keys maintained by this map
237     * @param <V> the type of mapped values
238     */
239     public class ConcurrentHashMapV8<K, V>
240 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
241 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
242    
243     /**
244 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
245     * directly, but can also be partitioned (before traversal) by
246     * creating another Spliterator that covers a non-overlapping
247     * portion of the elements, and so may be amenable to parallel
248     * execution.
249     *
250 jsr166 1.78 * <p>This interface exports a subset of expected JDK8
251 dl 1.41 * functionality.
252     *
253     * <p>Sample usage: Here is one (of the several) ways to compute
254     * the sum of the values held in a map using the ForkJoin
255     * framework. As illustrated here, Spliterators are well suited to
256     * designs in which a task repeatedly splits off half its work
257     * into forked subtasks until small enough to process directly,
258 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
259     * be used in completion-based designs.
260 dl 1.41 *
261     * <pre>
262     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 dl 1.52 * // split as if have 8 * parallelism, for load balance
264     * int n = m.size();
265     * int p = aForkJoinPool.getParallelism() * 8;
266     * int split = (n < p)? n : p;
267     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 dl 1.41 * // ...
269     * static class SumValues extends RecursiveTask<Long> {
270     * final Spliterator<Long> s;
271 dl 1.52 * final int split; // split while > 1
272 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
273     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275     * }
276     * public Long compute() {
277     * long sum = 0;
278     * SumValues subtasks = null; // fork subtasks
279 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
280     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 dl 1.41 * while (s.hasNext()) // directly process remaining elements
282     * sum += s.next();
283     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
284     * sum += t.join(); // collect subtask results
285     * return sum;
286     * }
287     * }
288     * }</pre>
289     */
290     public static interface Spliterator<T> extends Iterator<T> {
291     /**
292     * Returns a Spliterator covering approximately half of the
293     * elements, guaranteed not to overlap with those subsequently
294     * returned by this Spliterator. After invoking this method,
295     * the current Spliterator will <em>not</em> produce any of
296     * the elements of the returned Spliterator, but the two
297     * Spliterators together will produce all of the elements that
298     * would have been produced by this Spliterator had this
299     * method not been called. The exact number of elements
300     * produced by the returned Spliterator is not guaranteed, and
301     * may be zero (i.e., with {@code hasNext()} reporting {@code
302     * false}) if this Spliterator cannot be further split.
303     *
304     * @return a Spliterator covering approximately half of the
305     * elements
306     * @throws IllegalStateException if this Spliterator has
307 jsr166 1.45 * already commenced traversing elements
308 dl 1.41 */
309     Spliterator<T> split();
310     }
311    
312 dl 1.70
313 dl 1.1 /*
314     * Overview:
315     *
316     * The primary design goal of this hash table is to maintain
317     * concurrent readability (typically method get(), but also
318     * iterators and related methods) while minimizing update
319 dl 1.24 * contention. Secondary goals are to keep space consumption about
320     * the same or better than java.util.HashMap, and to support high
321     * initial insertion rates on an empty table by many threads.
322 dl 1.1 *
323     * Each key-value mapping is held in a Node. Because Node fields
324     * can contain special values, they are defined using plain Object
325     * types. Similarly in turn, all internal methods that use them
326 dl 1.14 * work off Object types. And similarly, so do the internal
327     * methods of auxiliary iterator and view classes. All public
328     * generic typed methods relay in/out of these internal methods,
329 dl 1.27 * supplying null-checks and casts as needed. This also allows
330     * many of the public methods to be factored into a smaller number
331     * of internal methods (although sadly not so for the five
332 dl 1.38 * variants of put-related operations). The validation-based
333     * approach explained below leads to a lot of code sprawl because
334     * retry-control precludes factoring into smaller methods.
335 dl 1.1 *
336     * The table is lazily initialized to a power-of-two size upon the
337 dl 1.38 * first insertion. Each bin in the table normally contains a
338     * list of Nodes (most often, the list has only zero or one Node).
339     * Table accesses require volatile/atomic reads, writes, and
340     * CASes. Because there is no other way to arrange this without
341     * adding further indirections, we use intrinsics
342     * (sun.misc.Unsafe) operations. The lists of nodes within bins
343     * are always accurately traversable under volatile reads, so long
344     * as lookups check hash code and non-nullness of value before
345     * checking key equality.
346 dl 1.24 *
347     * We use the top two bits of Node hash fields for control
348     * purposes -- they are available anyway because of addressing
349     * constraints. As explained further below, these top bits are
350 dl 1.27 * used as follows:
351 dl 1.24 * 00 - Normal
352     * 01 - Locked
353     * 11 - Locked and may have a thread waiting for lock
354     * 10 - Node is a forwarding node
355     *
356     * The lower 30 bits of each Node's hash field contain a
357 dl 1.38 * transformation of the key's hash code, except for forwarding
358     * nodes, for which the lower bits are zero (and so always have
359     * hash field == MOVED).
360 dl 1.14 *
361 dl 1.27 * Insertion (via put or its variants) of the first node in an
362 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
363 dl 1.38 * by far the most common case for put operations under most
364     * key/hash distributions. Other update operations (insert,
365     * delete, and replace) require locks. We do not want to waste
366     * the space required to associate a distinct lock object with
367     * each bin, so instead use the first node of a bin list itself as
368     * a lock. Blocking support for these locks relies on the builtin
369     * "synchronized" monitors. However, we also need a tryLock
370     * construction, so we overlay these by using bits of the Node
371     * hash field for lock control (see above), and so normally use
372     * builtin monitors only for blocking and signalling using
373     * wait/notifyAll constructions. See Node.tryAwaitLock.
374 dl 1.24 *
375     * Using the first node of a list as a lock does not by itself
376     * suffice though: When a node is locked, any update must first
377     * validate that it is still the first node after locking it, and
378     * retry if not. Because new nodes are always appended to lists,
379     * once a node is first in a bin, it remains first until deleted
380 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
381     * operations that only conditionally update may inspect nodes
382     * until the point of update. This is a converse of sorts to the
383     * lazy locking technique described by Herlihy & Shavit.
384 dl 1.14 *
385 dl 1.24 * The main disadvantage of per-bin locks is that other update
386 dl 1.14 * operations on other nodes in a bin list protected by the same
387     * lock can stall, for example when user equals() or mapping
388 dl 1.38 * functions take a long time. However, statistically, under
389     * random hash codes, this is not a common problem. Ideally, the
390     * frequency of nodes in bins follows a Poisson distribution
391 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
392 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
393     * of 0.75, although with a large variance because of resizing
394     * granularity. Ignoring variance, the expected occurrences of
395     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
396 dl 1.38 * first values are:
397 dl 1.16 *
398 dl 1.38 * 0: 0.60653066
399     * 1: 0.30326533
400     * 2: 0.07581633
401     * 3: 0.01263606
402     * 4: 0.00157952
403     * 5: 0.00015795
404     * 6: 0.00001316
405     * 7: 0.00000094
406     * 8: 0.00000006
407     * more: less than 1 in ten million
408 dl 1.16 *
409     * Lock contention probability for two threads accessing distinct
410 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
411     *
412     * Actual hash code distributions encountered in practice
413     * sometimes deviate significantly from uniform randomness. This
414     * includes the case when N > (1<<30), so some keys MUST collide.
415     * Similarly for dumb or hostile usages in which multiple keys are
416     * designed to have identical hash codes. Also, although we guard
417     * against the worst effects of this (see method spread), sets of
418     * hashes may differ only in bits that do not impact their bin
419     * index for a given power-of-two mask. So we use a secondary
420     * strategy that applies when the number of nodes in a bin exceeds
421     * a threshold, and at least one of the keys implements
422     * Comparable. These TreeBins use a balanced tree to hold nodes
423     * (a specialized form of red-black trees), bounding search time
424     * to O(log N). Each search step in a TreeBin is around twice as
425     * slow as in a regular list, but given that N cannot exceed
426     * (1<<64) (before running out of addresses) this bounds search
427     * steps, lock hold times, etc, to reasonable constants (roughly
428     * 100 nodes inspected per operation worst case) so long as keys
429     * are Comparable (which is very common -- String, Long, etc).
430     * TreeBin nodes (TreeNodes) also maintain the same "next"
431     * traversal pointers as regular nodes, so can be traversed in
432     * iterators in the same way.
433 dl 1.1 *
434 dl 1.38 * The table is resized when occupancy exceeds a percentage
435 dl 1.24 * threshold (nominally, 0.75, but see below). Only a single
436     * thread performs the resize (using field "sizeCtl", to arrange
437     * exclusion), but the table otherwise remains usable for reads
438     * and updates. Resizing proceeds by transferring bins, one by
439     * one, from the table to the next table. Because we are using
440     * power-of-two expansion, the elements from each bin must either
441     * stay at same index, or move with a power of two offset. We
442     * eliminate unnecessary node creation by catching cases where old
443     * nodes can be reused because their next fields won't change. On
444     * average, only about one-sixth of them need cloning when a table
445     * doubles. The nodes they replace will be garbage collectable as
446     * soon as they are no longer referenced by any reader thread that
447     * may be in the midst of concurrently traversing table. Upon
448     * transfer, the old table bin contains only a special forwarding
449     * node (with hash field "MOVED") that contains the next table as
450     * its key. On encountering a forwarding node, access and update
451     * operations restart, using the new table.
452     *
453     * Each bin transfer requires its bin lock. However, unlike other
454     * cases, a transfer can skip a bin if it fails to acquire its
455 dl 1.38 * lock, and revisit it later (unless it is a TreeBin). Method
456     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
457     * have been skipped because of failure to acquire a lock, and
458     * blocks only if none are available (i.e., only very rarely).
459     * The transfer operation must also ensure that all accessible
460     * bins in both the old and new table are usable by any traversal.
461     * When there are no lock acquisition failures, this is arranged
462     * simply by proceeding from the last bin (table.length - 1) up
463     * towards the first. Upon seeing a forwarding node, traversals
464 dl 1.52 * (see class Iter) arrange to move to the new table
465 dl 1.38 * without revisiting nodes. However, when any node is skipped
466     * during a transfer, all earlier table bins may have become
467     * visible, so are initialized with a reverse-forwarding node back
468     * to the old table until the new ones are established. (This
469     * sometimes requires transiently locking a forwarding node, which
470     * is possible under the above encoding.) These more expensive
471 dl 1.24 * mechanics trigger only when necessary.
472 dl 1.14 *
473 dl 1.24 * The traversal scheme also applies to partial traversals of
474 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
475 dl 1.41 * to support partitioned aggregate operations. Also, read-only
476     * operations give up if ever forwarded to a null table, which
477     * provides support for shutdown-style clearing, which is also not
478     * currently implemented.
479 dl 1.14 *
480     * Lazy table initialization minimizes footprint until first use,
481     * and also avoids resizings when the first operation is from a
482     * putAll, constructor with map argument, or deserialization.
483 dl 1.24 * These cases attempt to override the initial capacity settings,
484     * but harmlessly fail to take effect in cases of races.
485 dl 1.1 *
486     * The element count is maintained using a LongAdder, which avoids
487     * contention on updates but can encounter cache thrashing if read
488 dl 1.14 * too frequently during concurrent access. To avoid reading so
489 dl 1.27 * often, resizing is attempted either when a bin lock is
490     * contended, or upon adding to a bin already holding two or more
491     * nodes (checked before adding in the xIfAbsent methods, after
492     * adding in others). Under uniform hash distributions, the
493     * probability of this occurring at threshold is around 13%,
494     * meaning that only about 1 in 8 puts check threshold (and after
495     * resizing, many fewer do so). But this approximation has high
496     * variance for small table sizes, so we check on any collision
497     * for sizes <= 64. The bulk putAll operation further reduces
498     * contention by only committing count updates upon these size
499     * checks.
500 dl 1.14 *
501     * Maintaining API and serialization compatibility with previous
502     * versions of this class introduces several oddities. Mainly: We
503     * leave untouched but unused constructor arguments refering to
504 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
505     * but apply it only to initial table capacity (which is the only
506     * time that we can guarantee to honor it.) We also declare an
507     * unused "Segment" class that is instantiated in minimal form
508     * only when serializing.
509 dl 1.1 */
510    
511     /* ---------------- Constants -------------- */
512    
513     /**
514 dl 1.16 * The largest possible table capacity. This value must be
515     * exactly 1<<30 to stay within Java array allocation and indexing
516 dl 1.24 * bounds for power of two table sizes, and is further required
517     * because the top two bits of 32bit hash fields are used for
518     * control purposes.
519 dl 1.1 */
520 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
521 dl 1.1
522     /**
523 dl 1.14 * The default initial table capacity. Must be a power of 2
524     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
525 dl 1.1 */
526 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
527 dl 1.1
528     /**
529 dl 1.24 * The largest possible (non-power of two) array size.
530     * Needed by toArray and related methods.
531     */
532     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
533    
534     /**
535     * The default concurrency level for this table. Unused but
536     * defined for compatibility with previous versions of this class.
537     */
538     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
539    
540     /**
541 dl 1.16 * The load factor for this table. Overrides of this value in
542     * constructors affect only the initial table capacity. The
543 dl 1.24 * actual floating point value isn't normally used -- it is
544     * simpler to use expressions such as {@code n - (n >>> 2)} for
545     * the associated resizing threshold.
546 dl 1.1 */
547 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
548 dl 1.1
549     /**
550 dl 1.24 * The buffer size for skipped bins during transfers. The
551     * value is arbitrary but should be large enough to avoid
552     * most locking stalls during resizes.
553     */
554     private static final int TRANSFER_BUFFER_SIZE = 32;
555    
556 dl 1.38 /**
557     * The bin count threshold for using a tree rather than list for a
558     * bin. The value reflects the approximate break-even point for
559     * using tree-based operations.
560     */
561     private static final int TREE_THRESHOLD = 8;
562    
563 dl 1.24 /*
564     * Encodings for special uses of Node hash fields. See above for
565     * explanation.
566 dl 1.1 */
567 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
568 dl 1.24 static final int LOCKED = 0x40000000; // set/tested only as a bit
569     static final int WAITING = 0xc0000000; // both bits set/tested together
570     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
571    
572     /* ---------------- Fields -------------- */
573    
574     /**
575     * The array of bins. Lazily initialized upon first insertion.
576     * Size is always a power of two. Accessed directly by iterators.
577     */
578     transient volatile Node[] table;
579 dl 1.14
580 dl 1.16 /**
581 dl 1.24 * The counter maintaining number of elements.
582 dl 1.16 */
583 dl 1.24 private transient final LongAdder counter;
584    
585     /**
586     * Table initialization and resizing control. When negative, the
587     * table is being initialized or resized. Otherwise, when table is
588     * null, holds the initial table size to use upon creation, or 0
589     * for default. After initialization, holds the next element count
590     * value upon which to resize the table.
591     */
592     private transient volatile int sizeCtl;
593    
594     // views
595 dl 1.70 private transient KeySetView<K,V> keySet;
596 dl 1.75 private transient ValuesView<K,V> values;
597     private transient EntrySetView<K,V> entrySet;
598 dl 1.24
599     /** For serialization compatibility. Null unless serialized; see below */
600     private Segment<K,V>[] segments;
601 dl 1.16
602 dl 1.38 /* ---------------- Table element access -------------- */
603    
604     /*
605     * Volatile access methods are used for table elements as well as
606     * elements of in-progress next table while resizing. Uses are
607     * null checked by callers, and implicitly bounds-checked, relying
608     * on the invariants that tab arrays have non-zero size, and all
609     * indices are masked with (tab.length - 1) which is never
610     * negative and always less than length. Note that, to be correct
611     * wrt arbitrary concurrency errors by users, bounds checks must
612     * operate on local variables, which accounts for some odd-looking
613     * inline assignments below.
614     */
615    
616 dl 1.52 static final Node tabAt(Node[] tab, int i) { // used by Iter
617 dl 1.38 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
618     }
619    
620     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
621     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
622     }
623    
624     private static final void setTabAt(Node[] tab, int i, Node v) {
625     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
626     }
627    
628 dl 1.14 /* ---------------- Nodes -------------- */
629 dl 1.1
630     /**
631 dl 1.14 * Key-value entry. Note that this is never exported out as a
632 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
633     * field of MOVED are special, and do not contain user keys or
634     * values. Otherwise, keys are never null, and null val fields
635     * indicate that a node is in the process of being deleted or
636     * created. For purposes of read-only access, a key may be read
637     * before a val, but can only be used after checking val to be
638     * non-null.
639 dl 1.1 */
640 dl 1.38 static class Node {
641 dl 1.24 volatile int hash;
642 dl 1.14 final Object key;
643     volatile Object val;
644     volatile Node next;
645    
646     Node(int hash, Object key, Object val, Node next) {
647     this.hash = hash;
648     this.key = key;
649     this.val = val;
650     this.next = next;
651     }
652    
653 dl 1.24 /** CompareAndSet the hash field */
654     final boolean casHash(int cmp, int val) {
655     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
656     }
657 dl 1.1
658 dl 1.24 /** The number of spins before blocking for a lock */
659     static final int MAX_SPINS =
660     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 dl 1.1
662 dl 1.24 /**
663     * Spins a while if LOCKED bit set and this node is the first
664     * of its bin, and then sets WAITING bits on hash field and
665     * blocks (once) if they are still set. It is OK for this
666     * method to return even if lock is not available upon exit,
667     * which enables these simple single-wait mechanics.
668     *
669     * The corresponding signalling operation is performed within
670     * callers: Upon detecting that WAITING has been set when
671     * unlocking lock (via a failed CAS from non-waiting LOCKED
672     * state), unlockers acquire the sync lock and perform a
673     * notifyAll.
674 dl 1.61 *
675     * The initial sanity check on tab and bounds is not currently
676     * necessary in the only usages of this method, but enables
677     * use in other future contexts.
678 dl 1.24 */
679     final void tryAwaitLock(Node[] tab, int i) {
680 dl 1.61 if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 dl 1.37 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682 dl 1.24 int spins = MAX_SPINS, h;
683     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684     if (spins >= 0) {
685 dl 1.37 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686     if (r >= 0 && --spins == 0)
687     Thread.yield(); // yield before block
688 dl 1.24 }
689     else if (casHash(h, h | WAITING)) {
690 jsr166 1.26 synchronized (this) {
691 dl 1.24 if (tabAt(tab, i) == this &&
692     (hash & WAITING) == WAITING) {
693     try {
694     wait();
695     } catch (InterruptedException ie) {
696 dl 1.79 try {
697     Thread.currentThread().interrupt();
698     } catch (SecurityException ignore) {
699     }
700 dl 1.24 }
701     }
702     else
703     notifyAll(); // possibly won race vs signaller
704     }
705     break;
706     }
707     }
708     }
709     }
710 dl 1.1
711 dl 1.24 // Unsafe mechanics for casHash
712     private static final sun.misc.Unsafe UNSAFE;
713     private static final long hashOffset;
714 dl 1.1
715 dl 1.24 static {
716     try {
717     UNSAFE = getUnsafe();
718     Class<?> k = Node.class;
719     hashOffset = UNSAFE.objectFieldOffset
720     (k.getDeclaredField("hash"));
721     } catch (Exception e) {
722     throw new Error(e);
723     }
724     }
725     }
726 dl 1.1
727 dl 1.38 /* ---------------- TreeBins -------------- */
728    
729     /**
730     * Nodes for use in TreeBins
731     */
732     static final class TreeNode extends Node {
733     TreeNode parent; // red-black tree links
734     TreeNode left;
735     TreeNode right;
736     TreeNode prev; // needed to unlink next upon deletion
737     boolean red;
738    
739     TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740     super(hash, key, val, next);
741     this.parent = parent;
742     }
743     }
744 dl 1.1
745 dl 1.38 /**
746     * A specialized form of red-black tree for use in bins
747     * whose size exceeds a threshold.
748     *
749     * TreeBins use a special form of comparison for search and
750     * related operations (which is the main reason we cannot use
751     * existing collections such as TreeMaps). TreeBins contain
752     * Comparable elements, but may contain others, as well as
753     * elements that are Comparable but not necessarily Comparable<T>
754     * for the same T, so we cannot invoke compareTo among them. To
755     * handle this, the tree is ordered primarily by hash value, then
756     * by getClass().getName() order, and then by Comparator order
757     * among elements of the same class. On lookup at a node, if
758 dl 1.41 * elements are not comparable or compare as 0, both left and
759     * right children may need to be searched in the case of tied hash
760     * values. (This corresponds to the full list search that would be
761     * necessary if all elements were non-Comparable and had tied
762     * hashes.) The red-black balancing code is updated from
763     * pre-jdk-collections
764     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766     * Algorithms" (CLR).
767 dl 1.38 *
768     * TreeBins also maintain a separate locking discipline than
769     * regular bins. Because they are forwarded via special MOVED
770     * nodes at bin heads (which can never change once established),
771 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
772 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
773     * read-write lock. For update operations and table validation,
774     * the exclusive form of lock behaves in the same way as bin-head
775     * locks. However, lookups use shared read-lock mechanics to allow
776     * multiple readers in the absence of writers. Additionally,
777     * these lookups do not ever block: While the lock is not
778     * available, they proceed along the slow traversal path (via
779     * next-pointers) until the lock becomes available or the list is
780     * exhausted, whichever comes first. (These cases are not fast,
781     * but maximize aggregate expected throughput.) The AQS mechanics
782     * for doing this are straightforward. The lock state is held as
783     * AQS getState(). Read counts are negative; the write count (1)
784     * is positive. There are no signalling preferences among readers
785     * and writers. Since we don't need to export full Lock API, we
786     * just override the minimal AQS methods and use them directly.
787 dl 1.1 */
788 dl 1.38 static final class TreeBin extends AbstractQueuedSynchronizer {
789     private static final long serialVersionUID = 2249069246763182397L;
790 dl 1.41 transient TreeNode root; // root of tree
791     transient TreeNode first; // head of next-pointer list
792 dl 1.1
793 dl 1.38 /* AQS overrides */
794     public final boolean isHeldExclusively() { return getState() > 0; }
795     public final boolean tryAcquire(int ignore) {
796     if (compareAndSetState(0, 1)) {
797     setExclusiveOwnerThread(Thread.currentThread());
798     return true;
799     }
800     return false;
801     }
802     public final boolean tryRelease(int ignore) {
803     setExclusiveOwnerThread(null);
804     setState(0);
805     return true;
806     }
807     public final int tryAcquireShared(int ignore) {
808     for (int c;;) {
809     if ((c = getState()) > 0)
810     return -1;
811     if (compareAndSetState(c, c -1))
812     return 1;
813     }
814     }
815     public final boolean tryReleaseShared(int ignore) {
816     int c;
817     do {} while (!compareAndSetState(c = getState(), c + 1));
818     return c == -1;
819     }
820    
821 dl 1.41 /** From CLR */
822     private void rotateLeft(TreeNode p) {
823     if (p != null) {
824     TreeNode r = p.right, pp, rl;
825     if ((rl = p.right = r.left) != null)
826     rl.parent = p;
827     if ((pp = r.parent = p.parent) == null)
828     root = r;
829     else if (pp.left == p)
830     pp.left = r;
831     else
832     pp.right = r;
833     r.left = p;
834     p.parent = r;
835     }
836     }
837    
838     /** From CLR */
839     private void rotateRight(TreeNode p) {
840     if (p != null) {
841     TreeNode l = p.left, pp, lr;
842     if ((lr = p.left = l.right) != null)
843     lr.parent = p;
844     if ((pp = l.parent = p.parent) == null)
845     root = l;
846     else if (pp.right == p)
847     pp.right = l;
848     else
849     pp.left = l;
850     l.right = p;
851     p.parent = l;
852     }
853     }
854    
855 dl 1.38 /**
856 jsr166 1.56 * Returns the TreeNode (or null if not found) for the given key
857 dl 1.38 * starting at given root.
858     */
859 dl 1.61 @SuppressWarnings("unchecked") final TreeNode getTreeNode
860     (int h, Object k, TreeNode p) {
861 dl 1.38 Class<?> c = k.getClass();
862     while (p != null) {
863 dl 1.41 int dir, ph; Object pk; Class<?> pc;
864     if ((ph = p.hash) == h) {
865     if ((pk = p.key) == k || k.equals(pk))
866     return p;
867     if (c != (pc = pk.getClass()) ||
868     !(k instanceof Comparable) ||
869     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
871 dl 1.41 TreeNode r = null, s = null, pl, pr;
872     if (dir >= 0) {
873     if ((pl = p.left) != null && h <= pl.hash)
874     s = pl;
875     }
876     else if ((pr = p.right) != null && h >= pr.hash)
877     s = pr;
878     if (s != null && (r = getTreeNode(h, k, s)) != null)
879     return r;
880     }
881     }
882 dl 1.38 else
883 dl 1.41 dir = (h < ph) ? -1 : 1;
884     p = (dir > 0) ? p.right : p.left;
885 dl 1.38 }
886     return null;
887     }
888    
889     /**
890     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
891     * read-lock to call getTreeNode, but during failure to get
892     * lock, searches along next links.
893     */
894     final Object getValue(int h, Object k) {
895     Node r = null;
896     int c = getState(); // Must read lock state first
897     for (Node e = first; e != null; e = e.next) {
898     if (c <= 0 && compareAndSetState(c, c - 1)) {
899     try {
900     r = getTreeNode(h, k, root);
901     } finally {
902     releaseShared(0);
903     }
904     break;
905     }
906     else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
907     r = e;
908     break;
909     }
910     else
911     c = getState();
912     }
913     return r == null ? null : r.val;
914     }
915    
916     /**
917 jsr166 1.45 * Finds or adds a node.
918 dl 1.38 * @return null if added
919     */
920 dl 1.61 @SuppressWarnings("unchecked") final TreeNode putTreeNode
921     (int h, Object k, Object v) {
922 dl 1.38 Class<?> c = k.getClass();
923 dl 1.41 TreeNode pp = root, p = null;
924 dl 1.38 int dir = 0;
925 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
926     int ph; Object pk; Class<?> pc;
927     p = pp;
928     if ((ph = p.hash) == h) {
929     if ((pk = p.key) == k || k.equals(pk))
930 dl 1.38 return p;
931 dl 1.41 if (c != (pc = pk.getClass()) ||
932     !(k instanceof Comparable) ||
933     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
934 jsr166 1.42 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
935 dl 1.41 TreeNode r = null, s = null, pl, pr;
936     if (dir >= 0) {
937     if ((pl = p.left) != null && h <= pl.hash)
938     s = pl;
939     }
940     else if ((pr = p.right) != null && h >= pr.hash)
941     s = pr;
942     if (s != null && (r = getTreeNode(h, k, s)) != null)
943     return r;
944 dl 1.38 }
945     }
946 dl 1.41 else
947     dir = (h < ph) ? -1 : 1;
948     pp = (dir > 0) ? p.right : p.left;
949 dl 1.38 }
950 dl 1.41
951 dl 1.38 TreeNode f = first;
952 dl 1.41 TreeNode x = first = new TreeNode(h, k, v, f, p);
953 dl 1.38 if (p == null)
954 dl 1.41 root = x;
955     else { // attach and rebalance; adapted from CLR
956     TreeNode xp, xpp;
957     if (f != null)
958     f.prev = x;
959 dl 1.38 if (dir <= 0)
960 dl 1.41 p.left = x;
961 dl 1.38 else
962 dl 1.41 p.right = x;
963     x.red = true;
964     while (x != null && (xp = x.parent) != null && xp.red &&
965     (xpp = xp.parent) != null) {
966     TreeNode xppl = xpp.left;
967     if (xp == xppl) {
968     TreeNode y = xpp.right;
969     if (y != null && y.red) {
970     y.red = false;
971     xp.red = false;
972     xpp.red = true;
973     x = xpp;
974     }
975     else {
976     if (x == xp.right) {
977     rotateLeft(x = xp);
978     xpp = (xp = x.parent) == null ? null : xp.parent;
979     }
980     if (xp != null) {
981     xp.red = false;
982     if (xpp != null) {
983     xpp.red = true;
984     rotateRight(xpp);
985     }
986     }
987     }
988     }
989     else {
990     TreeNode y = xppl;
991     if (y != null && y.red) {
992     y.red = false;
993     xp.red = false;
994     xpp.red = true;
995     x = xpp;
996     }
997     else {
998     if (x == xp.left) {
999     rotateRight(x = xp);
1000     xpp = (xp = x.parent) == null ? null : xp.parent;
1001     }
1002     if (xp != null) {
1003     xp.red = false;
1004     if (xpp != null) {
1005     xpp.red = true;
1006     rotateLeft(xpp);
1007     }
1008     }
1009     }
1010     }
1011     }
1012     TreeNode r = root;
1013     if (r != null && r.red)
1014     r.red = false;
1015 dl 1.38 }
1016     return null;
1017     }
1018 dl 1.1
1019 dl 1.38 /**
1020     * Removes the given node, that must be present before this
1021     * call. This is messier than typical red-black deletion code
1022     * because we cannot swap the contents of an interior node
1023     * with a leaf successor that is pinned by "next" pointers
1024     * that are accessible independently of lock. So instead we
1025     * swap the tree linkages.
1026     */
1027     final void deleteTreeNode(TreeNode p) {
1028     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1029     TreeNode pred = p.prev;
1030     if (pred == null)
1031     first = next;
1032     else
1033     pred.next = next;
1034     if (next != null)
1035     next.prev = pred;
1036     TreeNode replacement;
1037     TreeNode pl = p.left;
1038     TreeNode pr = p.right;
1039     if (pl != null && pr != null) {
1040 dl 1.41 TreeNode s = pr, sl;
1041     while ((sl = s.left) != null) // find successor
1042     s = sl;
1043 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1044     TreeNode sr = s.right;
1045     TreeNode pp = p.parent;
1046     if (s == pr) { // p was s's direct parent
1047     p.parent = s;
1048     s.right = p;
1049     }
1050     else {
1051     TreeNode sp = s.parent;
1052     if ((p.parent = sp) != null) {
1053     if (s == sp.left)
1054     sp.left = p;
1055     else
1056     sp.right = p;
1057     }
1058     if ((s.right = pr) != null)
1059     pr.parent = s;
1060     }
1061     p.left = null;
1062     if ((p.right = sr) != null)
1063     sr.parent = p;
1064     if ((s.left = pl) != null)
1065     pl.parent = s;
1066     if ((s.parent = pp) == null)
1067     root = s;
1068     else if (p == pp.left)
1069     pp.left = s;
1070     else
1071     pp.right = s;
1072     replacement = sr;
1073     }
1074     else
1075     replacement = (pl != null) ? pl : pr;
1076     TreeNode pp = p.parent;
1077     if (replacement == null) {
1078     if (pp == null) {
1079     root = null;
1080     return;
1081     }
1082     replacement = p;
1083     }
1084     else {
1085     replacement.parent = pp;
1086     if (pp == null)
1087     root = replacement;
1088     else if (p == pp.left)
1089     pp.left = replacement;
1090     else
1091     pp.right = replacement;
1092     p.left = p.right = p.parent = null;
1093     }
1094 dl 1.41 if (!p.red) { // rebalance, from CLR
1095     TreeNode x = replacement;
1096     while (x != null) {
1097     TreeNode xp, xpl;
1098     if (x.red || (xp = x.parent) == null) {
1099     x.red = false;
1100     break;
1101 dl 1.38 }
1102 dl 1.41 if (x == (xpl = xp.left)) {
1103     TreeNode sib = xp.right;
1104     if (sib != null && sib.red) {
1105     sib.red = false;
1106     xp.red = true;
1107     rotateLeft(xp);
1108     sib = (xp = x.parent) == null ? null : xp.right;
1109 dl 1.38 }
1110 dl 1.41 if (sib == null)
1111 dl 1.38 x = xp;
1112     else {
1113 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1114     if ((sr == null || !sr.red) &&
1115     (sl == null || !sl.red)) {
1116 dl 1.38 sib.red = true;
1117 dl 1.41 x = xp;
1118 dl 1.38 }
1119 dl 1.41 else {
1120     if (sr == null || !sr.red) {
1121     if (sl != null)
1122     sl.red = false;
1123     sib.red = true;
1124     rotateRight(sib);
1125     sib = (xp = x.parent) == null ? null : xp.right;
1126     }
1127     if (sib != null) {
1128 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1129 dl 1.41 if ((sr = sib.right) != null)
1130     sr.red = false;
1131     }
1132     if (xp != null) {
1133     xp.red = false;
1134     rotateLeft(xp);
1135     }
1136     x = root;
1137 dl 1.38 }
1138     }
1139     }
1140 dl 1.41 else { // symmetric
1141     TreeNode sib = xpl;
1142     if (sib != null && sib.red) {
1143     sib.red = false;
1144     xp.red = true;
1145     rotateRight(xp);
1146     sib = (xp = x.parent) == null ? null : xp.left;
1147     }
1148     if (sib == null)
1149 dl 1.38 x = xp;
1150     else {
1151 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1152     if ((sl == null || !sl.red) &&
1153     (sr == null || !sr.red)) {
1154 dl 1.38 sib.red = true;
1155 dl 1.41 x = xp;
1156 dl 1.38 }
1157 dl 1.41 else {
1158     if (sl == null || !sl.red) {
1159     if (sr != null)
1160     sr.red = false;
1161     sib.red = true;
1162     rotateLeft(sib);
1163     sib = (xp = x.parent) == null ? null : xp.left;
1164     }
1165     if (sib != null) {
1166 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1167 dl 1.41 if ((sl = sib.left) != null)
1168     sl.red = false;
1169     }
1170     if (xp != null) {
1171     xp.red = false;
1172     rotateRight(xp);
1173     }
1174     x = root;
1175 dl 1.38 }
1176     }
1177     }
1178     }
1179     }
1180 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1181     if (p == pp.left) // detach pointers
1182     pp.left = null;
1183     else if (p == pp.right)
1184     pp.right = null;
1185     p.parent = null;
1186     }
1187 dl 1.38 }
1188 dl 1.1 }
1189    
1190 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1191 dl 1.14
1192     /**
1193 dl 1.38 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1194     * Because the table uses power-of-two masking, sets of hashes
1195     * that vary only in bits above the current mask will always
1196     * collide. (Among known examples are sets of Float keys holding
1197     * consecutive whole numbers in small tables.) To counter this,
1198     * we apply a transform that spreads the impact of higher bits
1199     * downward. There is a tradeoff between speed, utility, and
1200     * quality of bit-spreading. Because many common sets of hashes
1201 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1202 dl 1.38 * from spreading), and because we use trees to handle large sets
1203     * of collisions in bins, we don't need excessively high quality.
1204 dl 1.14 */
1205     private static final int spread(int h) {
1206 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1207     return (h ^ (h >>> 10)) & HASH_BITS;
1208     }
1209    
1210     /**
1211     * Replaces a list bin with a tree bin. Call only when locked.
1212     * Fails to replace if the given key is non-comparable or table
1213     * is, or needs, resizing.
1214     */
1215     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1216     if ((key instanceof Comparable) &&
1217     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1218     TreeBin t = new TreeBin();
1219     for (Node e = tabAt(tab, index); e != null; e = e.next)
1220     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1221     setTabAt(tab, index, new Node(MOVED, t, null, null));
1222     }
1223 dl 1.14 }
1224 dl 1.1
1225 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1226    
1227 dl 1.14 /** Implementation for get and containsKey */
1228 jsr166 1.4 private final Object internalGet(Object k) {
1229 dl 1.1 int h = spread(k.hashCode());
1230 dl 1.14 retry: for (Node[] tab = table; tab != null;) {
1231 dl 1.38 Node e, p; Object ek, ev; int eh; // locals to read fields once
1232 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1233 dl 1.24 if ((eh = e.hash) == MOVED) {
1234 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1235     return ((TreeBin)ek).getValue(h, k);
1236     else { // restart with new table
1237     tab = (Node[])ek;
1238     continue retry;
1239     }
1240 dl 1.1 }
1241 dl 1.38 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1242     ((ek = e.key) == k || k.equals(ek)))
1243 dl 1.24 return ev;
1244 dl 1.1 }
1245     break;
1246     }
1247     return null;
1248     }
1249    
1250 dl 1.27 /**
1251     * Implementation for the four public remove/replace methods:
1252     * Replaces node value with v, conditional upon match of cv if
1253     * non-null. If resulting value is null, delete.
1254     */
1255     private final Object internalReplace(Object k, Object v, Object cv) {
1256     int h = spread(k.hashCode());
1257     Object oldVal = null;
1258     for (Node[] tab = table;;) {
1259 dl 1.38 Node f; int i, fh; Object fk;
1260 dl 1.27 if (tab == null ||
1261     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1262     break;
1263 dl 1.38 else if ((fh = f.hash) == MOVED) {
1264     if ((fk = f.key) instanceof TreeBin) {
1265     TreeBin t = (TreeBin)fk;
1266     boolean validated = false;
1267     boolean deleted = false;
1268     t.acquire(0);
1269     try {
1270     if (tabAt(tab, i) == f) {
1271     validated = true;
1272     TreeNode p = t.getTreeNode(h, k, t.root);
1273     if (p != null) {
1274     Object pv = p.val;
1275     if (cv == null || cv == pv || cv.equals(pv)) {
1276     oldVal = pv;
1277     if ((p.val = v) == null) {
1278     deleted = true;
1279     t.deleteTreeNode(p);
1280     }
1281     }
1282     }
1283     }
1284     } finally {
1285     t.release(0);
1286     }
1287     if (validated) {
1288     if (deleted)
1289     counter.add(-1L);
1290     break;
1291     }
1292     }
1293     else
1294     tab = (Node[])fk;
1295     }
1296 dl 1.27 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1297     break; // rules out possible existence
1298     else if ((fh & LOCKED) != 0) {
1299     checkForResize(); // try resizing if can't get lock
1300     f.tryAwaitLock(tab, i);
1301     }
1302     else if (f.casHash(fh, fh | LOCKED)) {
1303     boolean validated = false;
1304     boolean deleted = false;
1305     try {
1306     if (tabAt(tab, i) == f) {
1307     validated = true;
1308     for (Node e = f, pred = null;;) {
1309     Object ek, ev;
1310     if ((e.hash & HASH_BITS) == h &&
1311     ((ev = e.val) != null) &&
1312     ((ek = e.key) == k || k.equals(ek))) {
1313     if (cv == null || cv == ev || cv.equals(ev)) {
1314     oldVal = ev;
1315     if ((e.val = v) == null) {
1316     deleted = true;
1317     Node en = e.next;
1318     if (pred != null)
1319     pred.next = en;
1320     else
1321     setTabAt(tab, i, en);
1322     }
1323     }
1324     break;
1325     }
1326     pred = e;
1327     if ((e = e.next) == null)
1328     break;
1329     }
1330     }
1331     } finally {
1332     if (!f.casHash(fh | LOCKED, fh)) {
1333     f.hash = fh;
1334 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1335 dl 1.27 }
1336     }
1337     if (validated) {
1338     if (deleted)
1339     counter.add(-1L);
1340     break;
1341     }
1342     }
1343     }
1344     return oldVal;
1345     }
1346    
1347     /*
1348 dl 1.59 * Internal versions of the six insertion methods, each a
1349 dl 1.27 * little more complicated than the last. All have
1350     * the same basic structure as the first (internalPut):
1351     * 1. If table uninitialized, create
1352     * 2. If bin empty, try to CAS new node
1353     * 3. If bin stale, use new table
1354 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1355     * 5. Lock and validate; if valid, scan and add or update
1356 dl 1.27 *
1357     * The others interweave other checks and/or alternative actions:
1358     * * Plain put checks for and performs resize after insertion.
1359     * * putIfAbsent prescans for mapping without lock (and fails to add
1360     * if present), which also makes pre-emptive resize checks worthwhile.
1361     * * computeIfAbsent extends form used in putIfAbsent with additional
1362     * mechanics to deal with, calls, potential exceptions and null
1363     * returns from function call.
1364     * * compute uses the same function-call mechanics, but without
1365     * the prescans
1366 dl 1.59 * * merge acts as putIfAbsent in the absent case, but invokes the
1367     * update function if present
1368 dl 1.27 * * putAll attempts to pre-allocate enough table space
1369     * and more lazily performs count updates and checks.
1370     *
1371     * Someday when details settle down a bit more, it might be worth
1372     * some factoring to reduce sprawl.
1373     */
1374    
1375     /** Implementation for put */
1376     private final Object internalPut(Object k, Object v) {
1377 dl 1.1 int h = spread(k.hashCode());
1378 dl 1.38 int count = 0;
1379 dl 1.14 for (Node[] tab = table;;) {
1380 dl 1.38 int i; Node f; int fh; Object fk;
1381 dl 1.1 if (tab == null)
1382 dl 1.24 tab = initTable();
1383     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1384 dl 1.2 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1385 dl 1.14 break; // no lock when adding to empty bin
1386     }
1387 dl 1.38 else if ((fh = f.hash) == MOVED) {
1388     if ((fk = f.key) instanceof TreeBin) {
1389     TreeBin t = (TreeBin)fk;
1390     Object oldVal = null;
1391     t.acquire(0);
1392     try {
1393     if (tabAt(tab, i) == f) {
1394     count = 2;
1395     TreeNode p = t.putTreeNode(h, k, v);
1396     if (p != null) {
1397     oldVal = p.val;
1398     p.val = v;
1399     }
1400     }
1401     } finally {
1402     t.release(0);
1403     }
1404     if (count != 0) {
1405     if (oldVal != null)
1406     return oldVal;
1407     break;
1408     }
1409     }
1410     else
1411     tab = (Node[])fk;
1412     }
1413 dl 1.27 else if ((fh & LOCKED) != 0) {
1414     checkForResize();
1415     f.tryAwaitLock(tab, i);
1416 dl 1.1 }
1417 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1418 dl 1.27 Object oldVal = null;
1419     try { // needed in case equals() throws
1420 dl 1.24 if (tabAt(tab, i) == f) {
1421 dl 1.38 count = 1;
1422     for (Node e = f;; ++count) {
1423 dl 1.24 Object ek, ev;
1424     if ((e.hash & HASH_BITS) == h &&
1425     (ev = e.val) != null &&
1426     ((ek = e.key) == k || k.equals(ek))) {
1427 dl 1.1 oldVal = ev;
1428 dl 1.27 e.val = v;
1429 dl 1.10 break;
1430 dl 1.1 }
1431 dl 1.10 Node last = e;
1432     if ((e = e.next) == null) {
1433 dl 1.2 last.next = new Node(h, k, v, null);
1434 dl 1.38 if (count >= TREE_THRESHOLD)
1435     replaceWithTreeBin(tab, i, k);
1436 dl 1.10 break;
1437 dl 1.1 }
1438     }
1439     }
1440 dl 1.24 } finally { // unlock and signal if needed
1441     if (!f.casHash(fh | LOCKED, fh)) {
1442     f.hash = fh;
1443 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1444 dl 1.24 }
1445 dl 1.1 }
1446 dl 1.38 if (count != 0) {
1447 dl 1.27 if (oldVal != null)
1448     return oldVal;
1449 dl 1.38 if (tab.length <= 64)
1450     count = 2;
1451 dl 1.1 break;
1452     }
1453     }
1454     }
1455 dl 1.27 counter.add(1L);
1456 dl 1.38 if (count > 1)
1457 dl 1.27 checkForResize();
1458     return null;
1459 dl 1.1 }
1460    
1461 dl 1.27 /** Implementation for putIfAbsent */
1462     private final Object internalPutIfAbsent(Object k, Object v) {
1463 dl 1.1 int h = spread(k.hashCode());
1464 dl 1.38 int count = 0;
1465 dl 1.14 for (Node[] tab = table;;) {
1466 dl 1.27 int i; Node f; int fh; Object fk, fv;
1467     if (tab == null)
1468     tab = initTable();
1469     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1470     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1471     break;
1472     }
1473 dl 1.38 else if ((fh = f.hash) == MOVED) {
1474     if ((fk = f.key) instanceof TreeBin) {
1475     TreeBin t = (TreeBin)fk;
1476     Object oldVal = null;
1477     t.acquire(0);
1478     try {
1479     if (tabAt(tab, i) == f) {
1480     count = 2;
1481     TreeNode p = t.putTreeNode(h, k, v);
1482     if (p != null)
1483     oldVal = p.val;
1484     }
1485     } finally {
1486     t.release(0);
1487     }
1488     if (count != 0) {
1489     if (oldVal != null)
1490     return oldVal;
1491     break;
1492     }
1493     }
1494     else
1495     tab = (Node[])fk;
1496     }
1497 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1498     ((fk = f.key) == k || k.equals(fk)))
1499     return fv;
1500     else {
1501     Node g = f.next;
1502     if (g != null) { // at least 2 nodes -- search and maybe resize
1503     for (Node e = g;;) {
1504     Object ek, ev;
1505     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1506     ((ek = e.key) == k || k.equals(ek)))
1507     return ev;
1508     if ((e = e.next) == null) {
1509     checkForResize();
1510     break;
1511     }
1512     }
1513     }
1514     if (((fh = f.hash) & LOCKED) != 0) {
1515     checkForResize();
1516     f.tryAwaitLock(tab, i);
1517     }
1518     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1519     Object oldVal = null;
1520     try {
1521     if (tabAt(tab, i) == f) {
1522 dl 1.38 count = 1;
1523     for (Node e = f;; ++count) {
1524 dl 1.27 Object ek, ev;
1525     if ((e.hash & HASH_BITS) == h &&
1526     (ev = e.val) != null &&
1527     ((ek = e.key) == k || k.equals(ek))) {
1528 dl 1.1 oldVal = ev;
1529 dl 1.27 break;
1530     }
1531     Node last = e;
1532     if ((e = e.next) == null) {
1533     last.next = new Node(h, k, v, null);
1534 dl 1.38 if (count >= TREE_THRESHOLD)
1535     replaceWithTreeBin(tab, i, k);
1536 dl 1.27 break;
1537 dl 1.1 }
1538     }
1539 dl 1.27 }
1540     } finally {
1541     if (!f.casHash(fh | LOCKED, fh)) {
1542     f.hash = fh;
1543 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1544 dl 1.24 }
1545     }
1546 dl 1.38 if (count != 0) {
1547 dl 1.27 if (oldVal != null)
1548     return oldVal;
1549 dl 1.38 if (tab.length <= 64)
1550     count = 2;
1551 dl 1.27 break;
1552     }
1553     }
1554     }
1555     }
1556     counter.add(1L);
1557 dl 1.38 if (count > 1)
1558     checkForResize();
1559 dl 1.27 return null;
1560     }
1561    
1562     /** Implementation for computeIfAbsent */
1563     private final Object internalComputeIfAbsent(K k,
1564 dl 1.52 Fun<? super K, ?> mf) {
1565 dl 1.27 int h = spread(k.hashCode());
1566     Object val = null;
1567 dl 1.38 int count = 0;
1568 dl 1.27 for (Node[] tab = table;;) {
1569     Node f; int i, fh; Object fk, fv;
1570     if (tab == null)
1571     tab = initTable();
1572     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1573     Node node = new Node(fh = h | LOCKED, k, null, null);
1574     if (casTabAt(tab, i, null, node)) {
1575 dl 1.38 count = 1;
1576 dl 1.27 try {
1577 dl 1.52 if ((val = mf.apply(k)) != null)
1578 dl 1.27 node.val = val;
1579     } finally {
1580     if (val == null)
1581     setTabAt(tab, i, null);
1582     if (!node.casHash(fh, h)) {
1583     node.hash = h;
1584 jsr166 1.30 synchronized (node) { node.notifyAll(); };
1585 dl 1.27 }
1586 dl 1.1 }
1587     }
1588 dl 1.38 if (count != 0)
1589 dl 1.24 break;
1590 dl 1.27 }
1591 dl 1.38 else if ((fh = f.hash) == MOVED) {
1592     if ((fk = f.key) instanceof TreeBin) {
1593     TreeBin t = (TreeBin)fk;
1594     boolean added = false;
1595     t.acquire(0);
1596     try {
1597     if (tabAt(tab, i) == f) {
1598     count = 1;
1599     TreeNode p = t.getTreeNode(h, k, t.root);
1600     if (p != null)
1601     val = p.val;
1602 dl 1.52 else if ((val = mf.apply(k)) != null) {
1603 dl 1.38 added = true;
1604     count = 2;
1605     t.putTreeNode(h, k, val);
1606     }
1607     }
1608     } finally {
1609     t.release(0);
1610     }
1611     if (count != 0) {
1612     if (!added)
1613     return val;
1614     break;
1615     }
1616     }
1617     else
1618     tab = (Node[])fk;
1619     }
1620 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1621     ((fk = f.key) == k || k.equals(fk)))
1622     return fv;
1623     else {
1624     Node g = f.next;
1625     if (g != null) {
1626     for (Node e = g;;) {
1627     Object ek, ev;
1628     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1629     ((ek = e.key) == k || k.equals(ek)))
1630     return ev;
1631     if ((e = e.next) == null) {
1632     checkForResize();
1633     break;
1634     }
1635     }
1636     }
1637     if (((fh = f.hash) & LOCKED) != 0) {
1638     checkForResize();
1639     f.tryAwaitLock(tab, i);
1640     }
1641     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1642 dl 1.38 boolean added = false;
1643 dl 1.27 try {
1644     if (tabAt(tab, i) == f) {
1645 dl 1.38 count = 1;
1646     for (Node e = f;; ++count) {
1647 dl 1.27 Object ek, ev;
1648     if ((e.hash & HASH_BITS) == h &&
1649     (ev = e.val) != null &&
1650     ((ek = e.key) == k || k.equals(ek))) {
1651     val = ev;
1652     break;
1653     }
1654     Node last = e;
1655     if ((e = e.next) == null) {
1656 dl 1.52 if ((val = mf.apply(k)) != null) {
1657 dl 1.38 added = true;
1658 dl 1.27 last.next = new Node(h, k, val, null);
1659 dl 1.38 if (count >= TREE_THRESHOLD)
1660     replaceWithTreeBin(tab, i, k);
1661     }
1662 dl 1.27 break;
1663     }
1664     }
1665     }
1666     } finally {
1667     if (!f.casHash(fh | LOCKED, fh)) {
1668     f.hash = fh;
1669 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1670 dl 1.27 }
1671     }
1672 dl 1.38 if (count != 0) {
1673     if (!added)
1674     return val;
1675     if (tab.length <= 64)
1676     count = 2;
1677 dl 1.27 break;
1678 dl 1.38 }
1679 dl 1.1 }
1680     }
1681     }
1682 dl 1.41 if (val != null) {
1683     counter.add(1L);
1684     if (count > 1)
1685     checkForResize();
1686     }
1687 dl 1.27 return val;
1688 dl 1.1 }
1689    
1690 dl 1.27 /** Implementation for compute */
1691 dl 1.61 @SuppressWarnings("unchecked") private final Object internalCompute
1692     (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1693 dl 1.1 int h = spread(k.hashCode());
1694 dl 1.27 Object val = null;
1695 dl 1.41 int delta = 0;
1696 dl 1.38 int count = 0;
1697 dl 1.27 for (Node[] tab = table;;) {
1698 dl 1.38 Node f; int i, fh; Object fk;
1699 dl 1.1 if (tab == null)
1700 dl 1.24 tab = initTable();
1701     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1702 dl 1.52 if (onlyIfPresent)
1703     break;
1704 dl 1.24 Node node = new Node(fh = h | LOCKED, k, null, null);
1705     if (casTabAt(tab, i, null, node)) {
1706     try {
1707 dl 1.38 count = 1;
1708 dl 1.52 if ((val = mf.apply(k, null)) != null) {
1709 dl 1.24 node.val = val;
1710 dl 1.41 delta = 1;
1711 dl 1.24 }
1712     } finally {
1713 dl 1.41 if (delta == 0)
1714 dl 1.24 setTabAt(tab, i, null);
1715     if (!node.casHash(fh, h)) {
1716 dl 1.25 node.hash = h;
1717 jsr166 1.26 synchronized (node) { node.notifyAll(); };
1718 dl 1.1 }
1719     }
1720     }
1721 dl 1.38 if (count != 0)
1722 dl 1.10 break;
1723 dl 1.1 }
1724 dl 1.38 else if ((fh = f.hash) == MOVED) {
1725     if ((fk = f.key) instanceof TreeBin) {
1726     TreeBin t = (TreeBin)fk;
1727     t.acquire(0);
1728     try {
1729     if (tabAt(tab, i) == f) {
1730     count = 1;
1731     TreeNode p = t.getTreeNode(h, k, t.root);
1732 jsr166 1.39 Object pv = (p == null) ? null : p.val;
1733 dl 1.52 if ((val = mf.apply(k, (V)pv)) != null) {
1734 dl 1.38 if (p != null)
1735     p.val = val;
1736     else {
1737     count = 2;
1738 dl 1.41 delta = 1;
1739 dl 1.38 t.putTreeNode(h, k, val);
1740     }
1741     }
1742 dl 1.41 else if (p != null) {
1743     delta = -1;
1744     t.deleteTreeNode(p);
1745     }
1746 dl 1.38 }
1747     } finally {
1748     t.release(0);
1749     }
1750     if (count != 0)
1751     break;
1752     }
1753     else
1754     tab = (Node[])fk;
1755     }
1756 dl 1.27 else if ((fh & LOCKED) != 0) {
1757     checkForResize();
1758     f.tryAwaitLock(tab, i);
1759 dl 1.14 }
1760 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1761     try {
1762     if (tabAt(tab, i) == f) {
1763 dl 1.38 count = 1;
1764 dl 1.41 for (Node e = f, pred = null;; ++count) {
1765 dl 1.27 Object ek, ev;
1766 dl 1.24 if ((e.hash & HASH_BITS) == h &&
1767     (ev = e.val) != null &&
1768     ((ek = e.key) == k || k.equals(ek))) {
1769 dl 1.52 val = mf.apply(k, (V)ev);
1770 dl 1.27 if (val != null)
1771     e.val = val;
1772 dl 1.41 else {
1773     delta = -1;
1774     Node en = e.next;
1775     if (pred != null)
1776     pred.next = en;
1777     else
1778     setTabAt(tab, i, en);
1779     }
1780 dl 1.10 break;
1781 dl 1.1 }
1782 dl 1.41 pred = e;
1783 dl 1.10 if ((e = e.next) == null) {
1784 dl 1.52 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1785 dl 1.41 pred.next = new Node(h, k, val, null);
1786     delta = 1;
1787 dl 1.38 if (count >= TREE_THRESHOLD)
1788     replaceWithTreeBin(tab, i, k);
1789 dl 1.1 }
1790 dl 1.10 break;
1791 dl 1.1 }
1792     }
1793     }
1794 dl 1.24 } finally {
1795     if (!f.casHash(fh | LOCKED, fh)) {
1796     f.hash = fh;
1797 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1798 dl 1.24 }
1799 dl 1.1 }
1800 dl 1.38 if (count != 0) {
1801     if (tab.length <= 64)
1802     count = 2;
1803 dl 1.10 break;
1804 dl 1.38 }
1805 dl 1.1 }
1806 dl 1.10 }
1807 dl 1.41 if (delta != 0) {
1808     counter.add((long)delta);
1809 dl 1.38 if (count > 1)
1810 dl 1.27 checkForResize();
1811     }
1812 dl 1.1 return val;
1813     }
1814    
1815 dl 1.59 /** Implementation for merge */
1816 dl 1.61 @SuppressWarnings("unchecked") private final Object internalMerge
1817     (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1818 dl 1.52 int h = spread(k.hashCode());
1819     Object val = null;
1820     int delta = 0;
1821     int count = 0;
1822     for (Node[] tab = table;;) {
1823     int i; Node f; int fh; Object fk, fv;
1824     if (tab == null)
1825     tab = initTable();
1826     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1827     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1828     delta = 1;
1829     val = v;
1830     break;
1831     }
1832     }
1833     else if ((fh = f.hash) == MOVED) {
1834     if ((fk = f.key) instanceof TreeBin) {
1835     TreeBin t = (TreeBin)fk;
1836     t.acquire(0);
1837     try {
1838     if (tabAt(tab, i) == f) {
1839     count = 1;
1840     TreeNode p = t.getTreeNode(h, k, t.root);
1841     val = (p == null) ? v : mf.apply((V)p.val, v);
1842     if (val != null) {
1843     if (p != null)
1844     p.val = val;
1845     else {
1846     count = 2;
1847     delta = 1;
1848     t.putTreeNode(h, k, val);
1849     }
1850     }
1851     else if (p != null) {
1852     delta = -1;
1853     t.deleteTreeNode(p);
1854     }
1855     }
1856     } finally {
1857     t.release(0);
1858     }
1859     if (count != 0)
1860     break;
1861     }
1862     else
1863     tab = (Node[])fk;
1864     }
1865     else if ((fh & LOCKED) != 0) {
1866     checkForResize();
1867     f.tryAwaitLock(tab, i);
1868     }
1869     else if (f.casHash(fh, fh | LOCKED)) {
1870     try {
1871     if (tabAt(tab, i) == f) {
1872     count = 1;
1873     for (Node e = f, pred = null;; ++count) {
1874     Object ek, ev;
1875     if ((e.hash & HASH_BITS) == h &&
1876     (ev = e.val) != null &&
1877     ((ek = e.key) == k || k.equals(ek))) {
1878     val = mf.apply(v, (V)ev);
1879     if (val != null)
1880     e.val = val;
1881     else {
1882     delta = -1;
1883     Node en = e.next;
1884     if (pred != null)
1885     pred.next = en;
1886     else
1887     setTabAt(tab, i, en);
1888     }
1889     break;
1890     }
1891     pred = e;
1892     if ((e = e.next) == null) {
1893     val = v;
1894     pred.next = new Node(h, k, val, null);
1895     delta = 1;
1896     if (count >= TREE_THRESHOLD)
1897     replaceWithTreeBin(tab, i, k);
1898     break;
1899     }
1900     }
1901     }
1902     } finally {
1903     if (!f.casHash(fh | LOCKED, fh)) {
1904     f.hash = fh;
1905     synchronized (f) { f.notifyAll(); };
1906     }
1907     }
1908     if (count != 0) {
1909     if (tab.length <= 64)
1910     count = 2;
1911     break;
1912     }
1913     }
1914     }
1915     if (delta != 0) {
1916     counter.add((long)delta);
1917     if (count > 1)
1918     checkForResize();
1919     }
1920     return val;
1921     }
1922    
1923 dl 1.27 /** Implementation for putAll */
1924     private final void internalPutAll(Map<?, ?> m) {
1925     tryPresize(m.size());
1926     long delta = 0L; // number of uncommitted additions
1927     boolean npe = false; // to throw exception on exit for nulls
1928     try { // to clean up counts on other exceptions
1929     for (Map.Entry<?, ?> entry : m.entrySet()) {
1930     Object k, v;
1931     if (entry == null || (k = entry.getKey()) == null ||
1932     (v = entry.getValue()) == null) {
1933     npe = true;
1934     break;
1935     }
1936     int h = spread(k.hashCode());
1937     for (Node[] tab = table;;) {
1938 dl 1.38 int i; Node f; int fh; Object fk;
1939 dl 1.27 if (tab == null)
1940     tab = initTable();
1941     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1942     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1943     ++delta;
1944     break;
1945     }
1946     }
1947 dl 1.38 else if ((fh = f.hash) == MOVED) {
1948     if ((fk = f.key) instanceof TreeBin) {
1949     TreeBin t = (TreeBin)fk;
1950     boolean validated = false;
1951     t.acquire(0);
1952     try {
1953     if (tabAt(tab, i) == f) {
1954     validated = true;
1955     TreeNode p = t.getTreeNode(h, k, t.root);
1956     if (p != null)
1957     p.val = v;
1958     else {
1959     t.putTreeNode(h, k, v);
1960     ++delta;
1961     }
1962     }
1963     } finally {
1964     t.release(0);
1965     }
1966     if (validated)
1967     break;
1968     }
1969     else
1970     tab = (Node[])fk;
1971     }
1972 dl 1.27 else if ((fh & LOCKED) != 0) {
1973     counter.add(delta);
1974     delta = 0L;
1975     checkForResize();
1976     f.tryAwaitLock(tab, i);
1977     }
1978     else if (f.casHash(fh, fh | LOCKED)) {
1979 dl 1.38 int count = 0;
1980 dl 1.27 try {
1981     if (tabAt(tab, i) == f) {
1982 dl 1.38 count = 1;
1983     for (Node e = f;; ++count) {
1984 dl 1.27 Object ek, ev;
1985     if ((e.hash & HASH_BITS) == h &&
1986     (ev = e.val) != null &&
1987     ((ek = e.key) == k || k.equals(ek))) {
1988     e.val = v;
1989     break;
1990     }
1991     Node last = e;
1992     if ((e = e.next) == null) {
1993     ++delta;
1994     last.next = new Node(h, k, v, null);
1995 dl 1.38 if (count >= TREE_THRESHOLD)
1996     replaceWithTreeBin(tab, i, k);
1997 dl 1.27 break;
1998     }
1999     }
2000     }
2001     } finally {
2002     if (!f.casHash(fh | LOCKED, fh)) {
2003     f.hash = fh;
2004 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2005 dl 1.27 }
2006     }
2007 dl 1.38 if (count != 0) {
2008     if (count > 1) {
2009 dl 1.27 counter.add(delta);
2010     delta = 0L;
2011     checkForResize();
2012 dl 1.1 }
2013 dl 1.27 break;
2014 dl 1.24 }
2015     }
2016 dl 1.1 }
2017     }
2018 dl 1.27 } finally {
2019     if (delta != 0)
2020     counter.add(delta);
2021 dl 1.1 }
2022 dl 1.27 if (npe)
2023     throw new NullPointerException();
2024 dl 1.1 }
2025    
2026 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
2027 dl 1.24
2028     /**
2029     * Returns a power of two table size for the given desired capacity.
2030     * See Hackers Delight, sec 3.2
2031     */
2032     private static final int tableSizeFor(int c) {
2033     int n = c - 1;
2034     n |= n >>> 1;
2035     n |= n >>> 2;
2036     n |= n >>> 4;
2037     n |= n >>> 8;
2038     n |= n >>> 16;
2039     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2040     }
2041    
2042     /**
2043     * Initializes table, using the size recorded in sizeCtl.
2044     */
2045     private final Node[] initTable() {
2046     Node[] tab; int sc;
2047     while ((tab = table) == null) {
2048     if ((sc = sizeCtl) < 0)
2049     Thread.yield(); // lost initialization race; just spin
2050     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2051     try {
2052     if ((tab = table) == null) {
2053     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2054     tab = table = new Node[n];
2055 dl 1.27 sc = n - (n >>> 2);
2056 dl 1.24 }
2057     } finally {
2058     sizeCtl = sc;
2059     }
2060     break;
2061     }
2062     }
2063     return tab;
2064     }
2065    
2066     /**
2067 dl 1.27 * If table is too small and not already resizing, creates next
2068     * table and transfers bins. Rechecks occupancy after a transfer
2069     * to see if another resize is already needed because resizings
2070     * are lagging additions.
2071     */
2072     private final void checkForResize() {
2073     Node[] tab; int n, sc;
2074     while ((tab = table) != null &&
2075     (n = tab.length) < MAXIMUM_CAPACITY &&
2076     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2077     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 dl 1.24 try {
2079 dl 1.27 if (tab == table) {
2080 dl 1.24 table = rebuild(tab);
2081 dl 1.27 sc = (n << 1) - (n >>> 1);
2082 dl 1.24 }
2083     } finally {
2084     sizeCtl = sc;
2085     }
2086     }
2087     }
2088    
2089 dl 1.27 /**
2090     * Tries to presize table to accommodate the given number of elements.
2091     *
2092     * @param size number of elements (doesn't need to be perfectly accurate)
2093     */
2094     private final void tryPresize(int size) {
2095     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2096     tableSizeFor(size + (size >>> 1) + 1);
2097     int sc;
2098     while ((sc = sizeCtl) >= 0) {
2099     Node[] tab = table; int n;
2100     if (tab == null || (n = tab.length) == 0) {
2101 jsr166 1.30 n = (sc > c) ? sc : c;
2102 dl 1.27 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2103     try {
2104     if (table == tab) {
2105     table = new Node[n];
2106     sc = n - (n >>> 2);
2107     }
2108     } finally {
2109     sizeCtl = sc;
2110     }
2111     }
2112     }
2113     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2114     break;
2115     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2116     try {
2117     if (table == tab) {
2118     table = rebuild(tab);
2119     sc = (n << 1) - (n >>> 1);
2120     }
2121     } finally {
2122     sizeCtl = sc;
2123     }
2124     }
2125     }
2126     }
2127    
2128 dl 1.24 /*
2129     * Moves and/or copies the nodes in each bin to new table. See
2130     * above for explanation.
2131     *
2132     * @return the new table
2133     */
2134     private static final Node[] rebuild(Node[] tab) {
2135     int n = tab.length;
2136     Node[] nextTab = new Node[n << 1];
2137     Node fwd = new Node(MOVED, nextTab, null, null);
2138     int[] buffer = null; // holds bins to revisit; null until needed
2139     Node rev = null; // reverse forwarder; null until needed
2140     int nbuffered = 0; // the number of bins in buffer list
2141     int bufferIndex = 0; // buffer index of current buffered bin
2142     int bin = n - 1; // current non-buffered bin or -1 if none
2143    
2144     for (int i = bin;;) { // start upwards sweep
2145     int fh; Node f;
2146     if ((f = tabAt(tab, i)) == null) {
2147 dl 1.61 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2148 dl 1.24 if (!casTabAt(tab, i, f, fwd))
2149     continue;
2150     }
2151     else { // transiently use a locked forwarding node
2152 jsr166 1.33 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2153 dl 1.24 if (!casTabAt(tab, i, f, g))
2154     continue;
2155     setTabAt(nextTab, i, null);
2156     setTabAt(nextTab, i + n, null);
2157     setTabAt(tab, i, fwd);
2158     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2159     g.hash = MOVED;
2160 jsr166 1.26 synchronized (g) { g.notifyAll(); }
2161 dl 1.24 }
2162     }
2163     }
2164 dl 1.38 else if ((fh = f.hash) == MOVED) {
2165     Object fk = f.key;
2166     if (fk instanceof TreeBin) {
2167     TreeBin t = (TreeBin)fk;
2168     boolean validated = false;
2169     t.acquire(0);
2170     try {
2171     if (tabAt(tab, i) == f) {
2172     validated = true;
2173     splitTreeBin(nextTab, i, t);
2174     setTabAt(tab, i, fwd);
2175     }
2176     } finally {
2177     t.release(0);
2178     }
2179     if (!validated)
2180     continue;
2181     }
2182     }
2183     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2184 dl 1.24 boolean validated = false;
2185     try { // split to lo and hi lists; copying as needed
2186     if (tabAt(tab, i) == f) {
2187     validated = true;
2188 dl 1.38 splitBin(nextTab, i, f);
2189 dl 1.24 setTabAt(tab, i, fwd);
2190     }
2191     } finally {
2192     if (!f.casHash(fh | LOCKED, fh)) {
2193     f.hash = fh;
2194 jsr166 1.26 synchronized (f) { f.notifyAll(); };
2195 dl 1.24 }
2196     }
2197     if (!validated)
2198     continue;
2199     }
2200     else {
2201     if (buffer == null) // initialize buffer for revisits
2202     buffer = new int[TRANSFER_BUFFER_SIZE];
2203     if (bin < 0 && bufferIndex > 0) {
2204     int j = buffer[--bufferIndex];
2205     buffer[bufferIndex] = i;
2206     i = j; // swap with another bin
2207     continue;
2208     }
2209     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2210     f.tryAwaitLock(tab, i);
2211     continue; // no other options -- block
2212     }
2213     if (rev == null) // initialize reverse-forwarder
2214     rev = new Node(MOVED, tab, null, null);
2215     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2216     continue; // recheck before adding to list
2217     buffer[nbuffered++] = i;
2218     setTabAt(nextTab, i, rev); // install place-holders
2219     setTabAt(nextTab, i + n, rev);
2220     }
2221    
2222     if (bin > 0)
2223     i = --bin;
2224     else if (buffer != null && nbuffered > 0) {
2225     bin = -1;
2226     i = buffer[bufferIndex = --nbuffered];
2227     }
2228     else
2229     return nextTab;
2230     }
2231     }
2232    
2233 dl 1.27 /**
2234 jsr166 1.45 * Splits a normal bin with list headed by e into lo and hi parts;
2235     * installs in given table.
2236 dl 1.38 */
2237     private static void splitBin(Node[] nextTab, int i, Node e) {
2238     int bit = nextTab.length >>> 1; // bit to split on
2239     int runBit = e.hash & bit;
2240     Node lastRun = e, lo = null, hi = null;
2241     for (Node p = e.next; p != null; p = p.next) {
2242     int b = p.hash & bit;
2243     if (b != runBit) {
2244     runBit = b;
2245     lastRun = p;
2246     }
2247     }
2248     if (runBit == 0)
2249     lo = lastRun;
2250     else
2251     hi = lastRun;
2252     for (Node p = e; p != lastRun; p = p.next) {
2253     int ph = p.hash & HASH_BITS;
2254     Object pk = p.key, pv = p.val;
2255     if ((ph & bit) == 0)
2256     lo = new Node(ph, pk, pv, lo);
2257     else
2258     hi = new Node(ph, pk, pv, hi);
2259     }
2260     setTabAt(nextTab, i, lo);
2261     setTabAt(nextTab, i + bit, hi);
2262     }
2263    
2264     /**
2265 jsr166 1.45 * Splits a tree bin into lo and hi parts; installs in given table.
2266 dl 1.38 */
2267     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2268     int bit = nextTab.length >>> 1;
2269     TreeBin lt = new TreeBin();
2270     TreeBin ht = new TreeBin();
2271     int lc = 0, hc = 0;
2272     for (Node e = t.first; e != null; e = e.next) {
2273     int h = e.hash & HASH_BITS;
2274     Object k = e.key, v = e.val;
2275     if ((h & bit) == 0) {
2276     ++lc;
2277     lt.putTreeNode(h, k, v);
2278     }
2279     else {
2280     ++hc;
2281     ht.putTreeNode(h, k, v);
2282     }
2283     }
2284     Node ln, hn; // throw away trees if too small
2285     if (lc <= (TREE_THRESHOLD >>> 1)) {
2286     ln = null;
2287     for (Node p = lt.first; p != null; p = p.next)
2288     ln = new Node(p.hash, p.key, p.val, ln);
2289     }
2290     else
2291     ln = new Node(MOVED, lt, null, null);
2292     setTabAt(nextTab, i, ln);
2293     if (hc <= (TREE_THRESHOLD >>> 1)) {
2294     hn = null;
2295     for (Node p = ht.first; p != null; p = p.next)
2296     hn = new Node(p.hash, p.key, p.val, hn);
2297     }
2298     else
2299     hn = new Node(MOVED, ht, null, null);
2300     setTabAt(nextTab, i + bit, hn);
2301     }
2302    
2303     /**
2304 dl 1.27 * Implementation for clear. Steps through each bin, removing all
2305     * nodes.
2306     */
2307     private final void internalClear() {
2308     long delta = 0L; // negative number of deletions
2309     int i = 0;
2310     Node[] tab = table;
2311     while (tab != null && i < tab.length) {
2312 dl 1.38 int fh; Object fk;
2313 dl 1.27 Node f = tabAt(tab, i);
2314     if (f == null)
2315     ++i;
2316 dl 1.38 else if ((fh = f.hash) == MOVED) {
2317     if ((fk = f.key) instanceof TreeBin) {
2318     TreeBin t = (TreeBin)fk;
2319     t.acquire(0);
2320     try {
2321     if (tabAt(tab, i) == f) {
2322     for (Node p = t.first; p != null; p = p.next) {
2323 dl 1.61 if (p.val != null) { // (currently always true)
2324     p.val = null;
2325     --delta;
2326     }
2327 dl 1.38 }
2328     t.first = null;
2329     t.root = null;
2330     ++i;
2331     }
2332     } finally {
2333     t.release(0);
2334     }
2335     }
2336     else
2337     tab = (Node[])fk;
2338     }
2339 dl 1.27 else if ((fh & LOCKED) != 0) {
2340     counter.add(delta); // opportunistically update count
2341     delta = 0L;
2342     f.tryAwaitLock(tab, i);
2343     }
2344     else if (f.casHash(fh, fh | LOCKED)) {
2345     try {
2346     if (tabAt(tab, i) == f) {
2347     for (Node e = f; e != null; e = e.next) {
2348 dl 1.61 if (e.val != null) { // (currently always true)
2349     e.val = null;
2350     --delta;
2351     }
2352 dl 1.27 }
2353     setTabAt(tab, i, null);
2354 dl 1.38 ++i;
2355 dl 1.27 }
2356     } finally {
2357     if (!f.casHash(fh | LOCKED, fh)) {
2358     f.hash = fh;
2359 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2360 dl 1.27 }
2361     }
2362     }
2363     }
2364     if (delta != 0)
2365     counter.add(delta);
2366     }
2367    
2368 dl 1.14 /* ----------------Table Traversal -------------- */
2369    
2370 dl 1.1 /**
2371 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2372 dl 1.59 * serves as a base class for other iterators and bulk tasks.
2373 dl 1.14 *
2374     * At each step, the iterator snapshots the key ("nextKey") and
2375     * value ("nextVal") of a valid node (i.e., one that, at point of
2376 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2377 dl 1.14 * change (including to null, indicating deletion), field nextVal
2378     * might not be accurate at point of use, but still maintains the
2379     * weak consistency property of holding a value that was once
2380 dl 1.70 * valid. To support iterator.remove, the nextKey field is not
2381     * updated (nulled out) when the iterator cannot advance.
2382 dl 1.14 *
2383     * Internal traversals directly access these fields, as in:
2384 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2385 dl 1.14 *
2386 dl 1.41 * Exported iterators must track whether the iterator has advanced
2387     * (in hasNext vs next) (by setting/checking/nulling field
2388     * nextVal), and then extract key, value, or key-value pairs as
2389     * return values of next().
2390 dl 1.14 *
2391 dl 1.27 * The iterator visits once each still-valid node that was
2392     * reachable upon iterator construction. It might miss some that
2393     * were added to a bin after the bin was visited, which is OK wrt
2394     * consistency guarantees. Maintaining this property in the face
2395     * of possible ongoing resizes requires a fair amount of
2396     * bookkeeping state that is difficult to optimize away amidst
2397     * volatile accesses. Even so, traversal maintains reasonable
2398     * throughput.
2399 dl 1.14 *
2400     * Normally, iteration proceeds bin-by-bin traversing lists.
2401     * However, if the table has been resized, then all future steps
2402     * must traverse both the bin at the current index as well as at
2403     * (index + baseSize); and so on for further resizings. To
2404     * paranoically cope with potential sharing by users of iterators
2405     * across threads, iteration terminates if a bounds checks fails
2406     * for a table read.
2407 dl 1.52 *
2408 dl 1.79 * This class extends CountedCompleter to streamline parallel
2409     * iteration in bulk operations. This adds only a few fields of
2410     * space overhead, which is small enough in cases where it is not
2411     * needed to not worry about it. Because CountedCompleter is
2412     * Serializable, but iterators need not be, we need to add warning
2413     * suppressions.
2414 dl 1.14 */
2415 dl 1.79 @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2416 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2417 dl 1.14 Node next; // the next entry to use
2418     Object nextKey; // cached key field of next
2419     Object nextVal; // cached val field of next
2420     Node[] tab; // current table; updated if resized
2421     int index; // index of bin to use next
2422     int baseIndex; // current index of initial table
2423 dl 1.41 int baseLimit; // index bound for initial table
2424 dl 1.63 int baseSize; // initial table size
2425 dl 1.79 int batch; // split control
2426 dl 1.14
2427     /** Creates iterator for all entries in the table. */
2428 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2429 dl 1.63 this.map = map;
2430 dl 1.14 }
2431    
2432 dl 1.79 /** Creates iterator for split() methods and task constructors */
2433     Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2434     super(it);
2435     this.batch = batch;
2436     if ((this.map = map) != null && it != null) { // split parent
2437     Node[] t;
2438     if ((t = it.tab) == null &&
2439     (t = it.tab = map.table) != null)
2440     it.baseLimit = it.baseSize = t.length;
2441     this.tab = t;
2442     this.baseSize = it.baseSize;
2443     int hi = this.baseLimit = it.baseLimit;
2444     it.baseLimit = this.index = this.baseIndex =
2445     (hi + it.baseIndex + 1) >>> 1;
2446     }
2447 dl 1.41 }
2448    
2449     /**
2450 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2451 dl 1.41 * See above for explanation.
2452     */
2453     final Object advance() {
2454 dl 1.70 Node e = next;
2455 dl 1.41 Object ev = null;
2456 dl 1.14 outer: do {
2457 dl 1.24 if (e != null) // advance past used/skipped node
2458 dl 1.1 e = e.next;
2459 dl 1.24 while (e == null) { // get to next non-null bin
2460 dl 1.63 ConcurrentHashMapV8<K, V> m;
2461 dl 1.38 Node[] t; int b, i, n; Object ek; // checks must use locals
2462 dl 1.63 if ((t = tab) != null)
2463     n = t.length;
2464     else if ((m = map) != null && (t = tab = m.table) != null)
2465     n = baseLimit = baseSize = t.length;
2466     else
2467 dl 1.14 break outer;
2468 dl 1.63 if ((b = baseIndex) >= baseLimit ||
2469     (i = index) < 0 || i >= n)
2470     break outer;
2471     if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2472 dl 1.38 if ((ek = e.key) instanceof TreeBin)
2473     e = ((TreeBin)ek).first;
2474     else {
2475     tab = (Node[])ek;
2476     continue; // restarts due to null val
2477     }
2478     } // visit upper slots if present
2479     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2480 dl 1.1 }
2481 dl 1.14 nextKey = e.key;
2482 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2483 dl 1.14 next = e;
2484 dl 1.41 return nextVal = ev;
2485 dl 1.1 }
2486 dl 1.41
2487     public final void remove() {
2488 dl 1.70 Object k = nextKey;
2489     if (k == null && (advance() == null || (k = nextKey) == null))
2490 dl 1.41 throw new IllegalStateException();
2491 dl 1.70 map.internalReplace(k, null, null);
2492 dl 1.41 }
2493    
2494     public final boolean hasNext() {
2495     return nextVal != null || advance() != null;
2496     }
2497    
2498     public final boolean hasMoreElements() { return hasNext(); }
2499 dl 1.79
2500     public void compute() { } // default no-op CountedCompleter body
2501    
2502     /**
2503     * Returns a batch value > 0 if this task should (and must) be
2504     * split, if so, adding to pending count, and in any case
2505     * updating batch value. The initial batch value is approx
2506     * exp2 of the number of times (minus one) to split task by
2507     * two before executing leaf action. This value is faster to
2508     * compute and more convenient to use as a guide to splitting
2509     * than is the depth, since it is used while dividing by two
2510     * anyway.
2511     */
2512     final int preSplit() {
2513     ConcurrentHashMapV8<K, V> m; int b; Node[] t; ForkJoinPool pool;
2514     if ((b = batch) < 0 && (m = map) != null) { // force initialization
2515     if ((t = tab) == null && (t = tab = m.table) != null)
2516     baseLimit = baseSize = t.length;
2517     if (t != null) {
2518     long n = m.counter.sum();
2519     int par = ((pool = getPool()) == null) ?
2520     ForkJoinPool.getCommonPoolParallelism() :
2521     pool.getParallelism();
2522     int sp = par << 3; // slack of 8
2523     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2524     }
2525     }
2526     b = (b <= 1 || baseIndex == baseLimit)? 0 : (b >>> 1);
2527     if ((batch = b) > 0)
2528     addToPendingCount(1);
2529     return b;
2530     }
2531    
2532 dl 1.1 }
2533    
2534     /* ---------------- Public operations -------------- */
2535    
2536     /**
2537 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2538 dl 1.1 */
2539 dl 1.16 public ConcurrentHashMapV8() {
2540 dl 1.14 this.counter = new LongAdder();
2541 dl 1.1 }
2542    
2543     /**
2544 dl 1.16 * Creates a new, empty map with an initial table size
2545     * accommodating the specified number of elements without the need
2546     * to dynamically resize.
2547 dl 1.1 *
2548     * @param initialCapacity The implementation performs internal
2549     * sizing to accommodate this many elements.
2550     * @throws IllegalArgumentException if the initial capacity of
2551 jsr166 1.18 * elements is negative
2552 dl 1.1 */
2553 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2554     if (initialCapacity < 0)
2555     throw new IllegalArgumentException();
2556     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2557     MAXIMUM_CAPACITY :
2558     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2559     this.counter = new LongAdder();
2560 dl 1.24 this.sizeCtl = cap;
2561 dl 1.1 }
2562    
2563     /**
2564 dl 1.16 * Creates a new map with the same mappings as the given map.
2565 dl 1.1 *
2566 dl 1.16 * @param m the map
2567 dl 1.1 */
2568 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2569     this.counter = new LongAdder();
2570 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2571 dl 1.27 internalPutAll(m);
2572 dl 1.1 }
2573    
2574     /**
2575 dl 1.16 * Creates a new, empty map with an initial table size based on
2576     * the given number of elements ({@code initialCapacity}) and
2577     * initial table density ({@code loadFactor}).
2578     *
2579     * @param initialCapacity the initial capacity. The implementation
2580     * performs internal sizing to accommodate this many elements,
2581     * given the specified load factor.
2582     * @param loadFactor the load factor (table density) for
2583 jsr166 1.18 * establishing the initial table size
2584 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2585     * elements is negative or the load factor is nonpositive
2586 jsr166 1.22 *
2587     * @since 1.6
2588 dl 1.1 */
2589 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2590     this(initialCapacity, loadFactor, 1);
2591 dl 1.1 }
2592    
2593     /**
2594 dl 1.16 * Creates a new, empty map with an initial table size based on
2595     * the given number of elements ({@code initialCapacity}), table
2596     * density ({@code loadFactor}), and number of concurrently
2597     * updating threads ({@code concurrencyLevel}).
2598 dl 1.1 *
2599 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2600     * performs internal sizing to accommodate this many elements,
2601     * given the specified load factor.
2602     * @param loadFactor the load factor (table density) for
2603 jsr166 1.18 * establishing the initial table size
2604 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2605     * updating threads. The implementation may use this value as
2606     * a sizing hint.
2607     * @throws IllegalArgumentException if the initial capacity is
2608     * negative or the load factor or concurrencyLevel are
2609 jsr166 1.18 * nonpositive
2610 dl 1.1 */
2611 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2612     float loadFactor, int concurrencyLevel) {
2613     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2614     throw new IllegalArgumentException();
2615     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2616     initialCapacity = concurrencyLevel; // as estimated threads
2617     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2618 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2619     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2620 dl 1.16 this.counter = new LongAdder();
2621 dl 1.24 this.sizeCtl = cap;
2622 dl 1.1 }
2623    
2624     /**
2625 dl 1.70 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2626     * from the given type to {@code Boolean.TRUE}.
2627     *
2628     * @return the new set
2629     */
2630     public static <K> KeySetView<K,Boolean> newKeySet() {
2631     return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2632     Boolean.TRUE);
2633     }
2634    
2635     /**
2636     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2637     * from the given type to {@code Boolean.TRUE}.
2638     *
2639     * @param initialCapacity The implementation performs internal
2640     * sizing to accommodate this many elements.
2641     * @throws IllegalArgumentException if the initial capacity of
2642     * elements is negative
2643     * @return the new set
2644     */
2645     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2646     return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2647     Boolean.TRUE);
2648     }
2649    
2650     /**
2651 dl 1.14 * {@inheritDoc}
2652 dl 1.1 */
2653     public boolean isEmpty() {
2654 dl 1.2 return counter.sum() <= 0L; // ignore transient negative values
2655 dl 1.1 }
2656    
2657     /**
2658 dl 1.14 * {@inheritDoc}
2659 dl 1.1 */
2660     public int size() {
2661     long n = counter.sum();
2662 jsr166 1.15 return ((n < 0L) ? 0 :
2663     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2664 dl 1.14 (int)n);
2665 dl 1.1 }
2666    
2667 dl 1.52 /**
2668     * Returns the number of mappings. This method should be used
2669 dl 1.70 * instead of {@link #size} because a ConcurrentHashMapV8 may
2670 dl 1.52 * contain more mappings than can be represented as an int. The
2671 dl 1.79 * value returned is an estimate; the actual count may differ if
2672     * there are concurrent insertions or removals.
2673 dl 1.52 *
2674     * @return the number of mappings
2675     */
2676     public long mappingCount() {
2677 dl 1.24 long n = counter.sum();
2678 dl 1.59 return (n < 0L) ? 0L : n; // ignore transient negative values
2679 dl 1.24 }
2680    
2681 dl 1.1 /**
2682     * Returns the value to which the specified key is mapped,
2683     * or {@code null} if this map contains no mapping for the key.
2684     *
2685     * <p>More formally, if this map contains a mapping from a key
2686     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2687     * then this method returns {@code v}; otherwise it returns
2688     * {@code null}. (There can be at most one such mapping.)
2689     *
2690     * @throws NullPointerException if the specified key is null
2691     */
2692 dl 1.61 @SuppressWarnings("unchecked") public V get(Object key) {
2693 dl 1.1 if (key == null)
2694     throw new NullPointerException();
2695     return (V)internalGet(key);
2696     }
2697    
2698     /**
2699 dl 1.62 * Returns the value to which the specified key is mapped,
2700 jsr166 1.66 * or the given defaultValue if this map contains no mapping for the key.
2701 dl 1.62 *
2702     * @param key the key
2703     * @param defaultValue the value to return if this map contains
2704 jsr166 1.67 * no mapping for the given key
2705 dl 1.62 * @return the mapping for the key, if present; else the defaultValue
2706     * @throws NullPointerException if the specified key is null
2707     */
2708     @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2709     if (key == null)
2710     throw new NullPointerException();
2711     V v = (V) internalGet(key);
2712     return v == null ? defaultValue : v;
2713     }
2714    
2715     /**
2716 dl 1.1 * Tests if the specified object is a key in this table.
2717     *
2718     * @param key possible key
2719     * @return {@code true} if and only if the specified object
2720     * is a key in this table, as determined by the
2721 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2722 dl 1.1 * @throws NullPointerException if the specified key is null
2723     */
2724     public boolean containsKey(Object key) {
2725     if (key == null)
2726     throw new NullPointerException();
2727     return internalGet(key) != null;
2728     }
2729    
2730     /**
2731     * Returns {@code true} if this map maps one or more keys to the
2732 dl 1.14 * specified value. Note: This method may require a full traversal
2733     * of the map, and is much slower than method {@code containsKey}.
2734 dl 1.1 *
2735     * @param value value whose presence in this map is to be tested
2736     * @return {@code true} if this map maps one or more keys to the
2737     * specified value
2738     * @throws NullPointerException if the specified value is null
2739     */
2740     public boolean containsValue(Object value) {
2741     if (value == null)
2742     throw new NullPointerException();
2743 dl 1.14 Object v;
2744 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2745 dl 1.41 while ((v = it.advance()) != null) {
2746     if (v == value || value.equals(v))
2747 dl 1.14 return true;
2748     }
2749     return false;
2750 dl 1.1 }
2751    
2752     /**
2753     * Legacy method testing if some key maps into the specified value
2754     * in this table. This method is identical in functionality to
2755     * {@link #containsValue}, and exists solely to ensure
2756     * full compatibility with class {@link java.util.Hashtable},
2757     * which supported this method prior to introduction of the
2758     * Java Collections framework.
2759     *
2760     * @param value a value to search for
2761     * @return {@code true} if and only if some key maps to the
2762     * {@code value} argument in this table as
2763     * determined by the {@code equals} method;
2764     * {@code false} otherwise
2765     * @throws NullPointerException if the specified value is null
2766     */
2767     public boolean contains(Object value) {
2768     return containsValue(value);
2769     }
2770    
2771     /**
2772     * Maps the specified key to the specified value in this table.
2773     * Neither the key nor the value can be null.
2774     *
2775 jsr166 1.78 * <p>The value can be retrieved by calling the {@code get} method
2776 dl 1.1 * with a key that is equal to the original key.
2777     *
2778     * @param key key with which the specified value is to be associated
2779     * @param value value to be associated with the specified key
2780     * @return the previous value associated with {@code key}, or
2781     * {@code null} if there was no mapping for {@code key}
2782     * @throws NullPointerException if the specified key or value is null
2783     */
2784 dl 1.61 @SuppressWarnings("unchecked") public V put(K key, V value) {
2785 dl 1.1 if (key == null || value == null)
2786     throw new NullPointerException();
2787 dl 1.27 return (V)internalPut(key, value);
2788 dl 1.1 }
2789    
2790     /**
2791     * {@inheritDoc}
2792     *
2793     * @return the previous value associated with the specified key,
2794     * or {@code null} if there was no mapping for the key
2795     * @throws NullPointerException if the specified key or value is null
2796     */
2797 dl 1.61 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2798 dl 1.1 if (key == null || value == null)
2799     throw new NullPointerException();
2800 dl 1.27 return (V)internalPutIfAbsent(key, value);
2801 dl 1.1 }
2802    
2803     /**
2804     * Copies all of the mappings from the specified map to this one.
2805     * These mappings replace any mappings that this map had for any of the
2806     * keys currently in the specified map.
2807     *
2808     * @param m mappings to be stored in this map
2809     */
2810     public void putAll(Map<? extends K, ? extends V> m) {
2811 dl 1.27 internalPutAll(m);
2812 dl 1.1 }
2813    
2814     /**
2815     * If the specified key is not already associated with a value,
2816 dl 1.41 * computes its value using the given mappingFunction and enters
2817     * it into the map unless null. This is equivalent to
2818 dl 1.27 * <pre> {@code
2819 jsr166 1.13 * if (map.containsKey(key))
2820     * return map.get(key);
2821 dl 1.52 * value = mappingFunction.apply(key);
2822 dl 1.41 * if (value != null)
2823     * map.put(key, value);
2824 jsr166 1.13 * return value;}</pre>
2825 dl 1.1 *
2826 dl 1.27 * except that the action is performed atomically. If the
2827 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2828     * function itself throws an (unchecked) exception, the exception
2829     * is rethrown to its caller, and no mapping is recorded. Some
2830     * attempted update operations on this map by other threads may be
2831     * blocked while computation is in progress, so the computation
2832     * should be short and simple, and must not attempt to update any
2833     * other mappings of this Map. The most appropriate usage is to
2834     * construct a new object serving as an initial mapped value, or
2835     * memoized result, as in:
2836 dl 1.27 *
2837 jsr166 1.13 * <pre> {@code
2838 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2839 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2840 dl 1.1 *
2841     * @param key key with which the specified value is to be associated
2842     * @param mappingFunction the function to compute a value
2843     * @return the current (existing or computed) value associated with
2844 jsr166 1.67 * the specified key, or null if the computed value is null
2845 dl 1.41 * @throws NullPointerException if the specified key or mappingFunction
2846     * is null
2847 dl 1.5 * @throws IllegalStateException if the computation detectably
2848     * attempts a recursive update to this map that would
2849 jsr166 1.18 * otherwise never complete
2850 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2851 jsr166 1.18 * in which case the mapping is left unestablished
2852 dl 1.1 */
2853 dl 1.61 @SuppressWarnings("unchecked") public V computeIfAbsent
2854     (K key, Fun<? super K, ? extends V> mappingFunction) {
2855 dl 1.1 if (key == null || mappingFunction == null)
2856     throw new NullPointerException();
2857 dl 1.27 return (V)internalComputeIfAbsent(key, mappingFunction);
2858 dl 1.2 }
2859    
2860     /**
2861 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2862     * its current mapped value. This is equivalent to
2863     * <pre> {@code
2864     * if (map.containsKey(key)) {
2865     * value = remappingFunction.apply(key, map.get(key));
2866     * if (value != null)
2867     * map.put(key, value);
2868     * else
2869     * map.remove(key);
2870     * }
2871     * }</pre>
2872     *
2873     * except that the action is performed atomically. If the
2874     * function returns {@code null}, the mapping is removed. If the
2875     * function itself throws an (unchecked) exception, the exception
2876     * is rethrown to its caller, and the current mapping is left
2877     * unchanged. Some attempted update operations on this map by
2878     * other threads may be blocked while computation is in progress,
2879     * so the computation should be short and simple, and must not
2880     * attempt to update any other mappings of this Map. For example,
2881     * to either create or append new messages to a value mapping:
2882     *
2883     * @param key key with which the specified value is to be associated
2884     * @param remappingFunction the function to compute a value
2885 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2886 dl 1.52 * @throws NullPointerException if the specified key or remappingFunction
2887     * is null
2888     * @throws IllegalStateException if the computation detectably
2889     * attempts a recursive update to this map that would
2890     * otherwise never complete
2891     * @throws RuntimeException or Error if the remappingFunction does so,
2892     * in which case the mapping is unchanged
2893     */
2894 dl 1.61 @SuppressWarnings("unchecked") public V computeIfPresent
2895     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2896 dl 1.52 if (key == null || remappingFunction == null)
2897     throw new NullPointerException();
2898     return (V)internalCompute(key, true, remappingFunction);
2899     }
2900    
2901     /**
2902 dl 1.41 * Computes a new mapping value given a key and
2903 dl 1.27 * its current mapped value (or {@code null} if there is no current
2904     * mapping). This is equivalent to
2905 jsr166 1.13 * <pre> {@code
2906 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2907 dl 1.41 * if (value != null)
2908     * map.put(key, value);
2909     * else
2910     * map.remove(key);
2911 dl 1.27 * }</pre>
2912 dl 1.2 *
2913 dl 1.27 * except that the action is performed atomically. If the
2914 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2915     * function itself throws an (unchecked) exception, the exception
2916     * is rethrown to its caller, and the current mapping is left
2917     * unchanged. Some attempted update operations on this map by
2918     * other threads may be blocked while computation is in progress,
2919     * so the computation should be short and simple, and must not
2920     * attempt to update any other mappings of this Map. For example,
2921     * to either create or append new messages to a value mapping:
2922 dl 1.27 *
2923     * <pre> {@code
2924     * Map<Key, String> map = ...;
2925     * final String msg = ...;
2926 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2927     * public String apply(Key k, String v) {
2928 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2929 dl 1.2 *
2930     * @param key key with which the specified value is to be associated
2931 dl 1.27 * @param remappingFunction the function to compute a value
2932 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2933 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2934 dl 1.41 * is null
2935 dl 1.5 * @throws IllegalStateException if the computation detectably
2936     * attempts a recursive update to this map that would
2937 jsr166 1.18 * otherwise never complete
2938 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2939 jsr166 1.18 * in which case the mapping is unchanged
2940 dl 1.2 */
2941 dl 1.61 @SuppressWarnings("unchecked") public V compute
2942     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2943 dl 1.27 if (key == null || remappingFunction == null)
2944 dl 1.2 throw new NullPointerException();
2945 dl 1.52 return (V)internalCompute(key, false, remappingFunction);
2946     }
2947    
2948     /**
2949     * If the specified key is not already associated
2950     * with a value, associate it with the given value.
2951     * Otherwise, replace the value with the results of
2952     * the given remapping function. This is equivalent to:
2953     * <pre> {@code
2954     * if (!map.containsKey(key))
2955     * map.put(value);
2956     * else {
2957     * newValue = remappingFunction.apply(map.get(key), value);
2958     * if (value != null)
2959     * map.put(key, value);
2960     * else
2961     * map.remove(key);
2962     * }
2963     * }</pre>
2964     * except that the action is performed atomically. If the
2965     * function returns {@code null}, the mapping is removed. If the
2966     * function itself throws an (unchecked) exception, the exception
2967     * is rethrown to its caller, and the current mapping is left
2968     * unchanged. Some attempted update operations on this map by
2969     * other threads may be blocked while computation is in progress,
2970     * so the computation should be short and simple, and must not
2971     * attempt to update any other mappings of this Map.
2972     */
2973 dl 1.61 @SuppressWarnings("unchecked") public V merge
2974     (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2975 dl 1.52 if (key == null || value == null || remappingFunction == null)
2976     throw new NullPointerException();
2977     return (V)internalMerge(key, value, remappingFunction);
2978 dl 1.1 }
2979    
2980     /**
2981     * Removes the key (and its corresponding value) from this map.
2982     * This method does nothing if the key is not in the map.
2983     *
2984     * @param key the key that needs to be removed
2985     * @return the previous value associated with {@code key}, or
2986     * {@code null} if there was no mapping for {@code key}
2987     * @throws NullPointerException if the specified key is null
2988     */
2989 dl 1.61 @SuppressWarnings("unchecked") public V remove(Object key) {
2990 dl 1.1 if (key == null)
2991     throw new NullPointerException();
2992 jsr166 1.3 return (V)internalReplace(key, null, null);
2993 dl 1.1 }
2994    
2995     /**
2996     * {@inheritDoc}
2997     *
2998     * @throws NullPointerException if the specified key is null
2999     */
3000     public boolean remove(Object key, Object value) {
3001     if (key == null)
3002     throw new NullPointerException();
3003     if (value == null)
3004     return false;
3005     return internalReplace(key, null, value) != null;
3006     }
3007    
3008     /**
3009     * {@inheritDoc}
3010     *
3011     * @throws NullPointerException if any of the arguments are null
3012     */
3013     public boolean replace(K key, V oldValue, V newValue) {
3014     if (key == null || oldValue == null || newValue == null)
3015     throw new NullPointerException();
3016 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
3017 dl 1.1 }
3018    
3019     /**
3020     * {@inheritDoc}
3021     *
3022     * @return the previous value associated with the specified key,
3023     * or {@code null} if there was no mapping for the key
3024     * @throws NullPointerException if the specified key or value is null
3025     */
3026 dl 1.61 @SuppressWarnings("unchecked") public V replace(K key, V value) {
3027 dl 1.1 if (key == null || value == null)
3028     throw new NullPointerException();
3029 jsr166 1.3 return (V)internalReplace(key, value, null);
3030 dl 1.1 }
3031    
3032     /**
3033     * Removes all of the mappings from this map.
3034     */
3035     public void clear() {
3036     internalClear();
3037     }
3038    
3039     /**
3040     * Returns a {@link Set} view of the keys contained in this map.
3041     * The set is backed by the map, so changes to the map are
3042 dl 1.70 * reflected in the set, and vice-versa.
3043     *
3044     * @return the set view
3045     */
3046     public KeySetView<K,V> keySet() {
3047     KeySetView<K,V> ks = keySet;
3048     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3049     }
3050    
3051     /**
3052     * Returns a {@link Set} view of the keys in this map, using the
3053     * given common mapped value for any additions (i.e., {@link
3054     * Collection#add} and {@link Collection#addAll}). This is of
3055     * course only appropriate if it is acceptable to use the same
3056     * value for all additions from this view.
3057 dl 1.1 *
3058 dl 1.70 * @param mappedValue the mapped value to use for any
3059     * additions.
3060     * @return the set view
3061     * @throws NullPointerException if the mappedValue is null
3062 dl 1.1 */
3063 dl 1.70 public KeySetView<K,V> keySet(V mappedValue) {
3064     if (mappedValue == null)
3065     throw new NullPointerException();
3066     return new KeySetView<K,V>(this, mappedValue);
3067 dl 1.1 }
3068    
3069     /**
3070     * Returns a {@link Collection} view of the values contained in this map.
3071     * The collection is backed by the map, so changes to the map are
3072 jsr166 1.76 * reflected in the collection, and vice-versa.
3073 dl 1.1 */
3074 dl 1.75 public ValuesView<K,V> values() {
3075     ValuesView<K,V> vs = values;
3076     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3077 dl 1.1 }
3078    
3079     /**
3080     * Returns a {@link Set} view of the mappings contained in this map.
3081     * The set is backed by the map, so changes to the map are
3082     * reflected in the set, and vice-versa. The set supports element
3083     * removal, which removes the corresponding mapping from the map,
3084     * via the {@code Iterator.remove}, {@code Set.remove},
3085     * {@code removeAll}, {@code retainAll}, and {@code clear}
3086     * operations. It does not support the {@code add} or
3087     * {@code addAll} operations.
3088     *
3089     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3090     * that will never throw {@link ConcurrentModificationException},
3091     * and guarantees to traverse elements as they existed upon
3092     * construction of the iterator, and may (but is not guaranteed to)
3093     * reflect any modifications subsequent to construction.
3094     */
3095     public Set<Map.Entry<K,V>> entrySet() {
3096 dl 1.75 EntrySetView<K,V> es = entrySet;
3097     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3098 dl 1.1 }
3099    
3100     /**
3101     * Returns an enumeration of the keys in this table.
3102     *
3103     * @return an enumeration of the keys in this table
3104     * @see #keySet()
3105     */
3106     public Enumeration<K> keys() {
3107 dl 1.14 return new KeyIterator<K,V>(this);
3108 dl 1.1 }
3109    
3110     /**
3111     * Returns an enumeration of the values in this table.
3112     *
3113     * @return an enumeration of the values in this table
3114     * @see #values()
3115     */
3116     public Enumeration<V> elements() {
3117 dl 1.14 return new ValueIterator<K,V>(this);
3118 dl 1.1 }
3119    
3120     /**
3121 jsr166 1.55 * Returns a partitionable iterator of the keys in this map.
3122 dl 1.41 *
3123 jsr166 1.55 * @return a partitionable iterator of the keys in this map
3124 dl 1.41 */
3125     public Spliterator<K> keySpliterator() {
3126     return new KeyIterator<K,V>(this);
3127     }
3128    
3129     /**
3130 jsr166 1.55 * Returns a partitionable iterator of the values in this map.
3131 dl 1.41 *
3132 jsr166 1.55 * @return a partitionable iterator of the values in this map
3133 dl 1.41 */
3134     public Spliterator<V> valueSpliterator() {
3135     return new ValueIterator<K,V>(this);
3136     }
3137    
3138     /**
3139 jsr166 1.55 * Returns a partitionable iterator of the entries in this map.
3140 dl 1.41 *
3141 jsr166 1.55 * @return a partitionable iterator of the entries in this map
3142 dl 1.41 */
3143     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3144     return new EntryIterator<K,V>(this);
3145     }
3146    
3147     /**
3148 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
3149     * the sum of, for each key-value pair in the map,
3150     * {@code key.hashCode() ^ value.hashCode()}.
3151     *
3152     * @return the hash code value for this map
3153 dl 1.1 */
3154     public int hashCode() {
3155 dl 1.14 int h = 0;
3156 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3157 dl 1.41 Object v;
3158     while ((v = it.advance()) != null) {
3159     h += it.nextKey.hashCode() ^ v.hashCode();
3160 dl 1.14 }
3161     return h;
3162 dl 1.1 }
3163    
3164     /**
3165 dl 1.2 * Returns a string representation of this map. The string
3166     * representation consists of a list of key-value mappings (in no
3167     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3168     * mappings are separated by the characters {@code ", "} (comma
3169     * and space). Each key-value mapping is rendered as the key
3170     * followed by an equals sign ("{@code =}") followed by the
3171     * associated value.
3172     *
3173     * @return a string representation of this map
3174 dl 1.1 */
3175     public String toString() {
3176 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3177 dl 1.14 StringBuilder sb = new StringBuilder();
3178     sb.append('{');
3179 dl 1.41 Object v;
3180     if ((v = it.advance()) != null) {
3181 dl 1.14 for (;;) {
3182 dl 1.41 Object k = it.nextKey;
3183 dl 1.14 sb.append(k == this ? "(this Map)" : k);
3184     sb.append('=');
3185     sb.append(v == this ? "(this Map)" : v);
3186 dl 1.41 if ((v = it.advance()) == null)
3187 dl 1.14 break;
3188     sb.append(',').append(' ');
3189     }
3190     }
3191     return sb.append('}').toString();
3192 dl 1.1 }
3193    
3194     /**
3195 dl 1.2 * Compares the specified object with this map for equality.
3196     * Returns {@code true} if the given object is a map with the same
3197     * mappings as this map. This operation may return misleading
3198     * results if either map is concurrently modified during execution
3199     * of this method.
3200     *
3201     * @param o object to be compared for equality with this map
3202     * @return {@code true} if the specified object is equal to this map
3203 dl 1.1 */
3204     public boolean equals(Object o) {
3205 dl 1.14 if (o != this) {
3206     if (!(o instanceof Map))
3207     return false;
3208     Map<?,?> m = (Map<?,?>) o;
3209 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3210 dl 1.41 Object val;
3211     while ((val = it.advance()) != null) {
3212 dl 1.14 Object v = m.get(it.nextKey);
3213     if (v == null || (v != val && !v.equals(val)))
3214 dl 1.1 return false;
3215 dl 1.14 }
3216 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
3217 dl 1.14 Object mk, mv, v;
3218     if ((mk = e.getKey()) == null ||
3219     (mv = e.getValue()) == null ||
3220     (v = internalGet(mk)) == null ||
3221     (mv != v && !mv.equals(v)))
3222 dl 1.1 return false;
3223     }
3224 dl 1.14 }
3225     return true;
3226     }
3227    
3228     /* ----------------Iterators -------------- */
3229    
3230 dl 1.61 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3231 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3232     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3233 dl 1.79 KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3234     super(map, it, -1);
3235 dl 1.41 }
3236     public KeyIterator<K,V> split() {
3237 dl 1.70 if (nextKey != null)
3238 dl 1.41 throw new IllegalStateException();
3239 dl 1.79 return new KeyIterator<K,V>(map, this);
3240 dl 1.14 }
3241 dl 1.61 @SuppressWarnings("unchecked") public final K next() {
3242 dl 1.41 if (nextVal == null && advance() == null)
3243 dl 1.14 throw new NoSuchElementException();
3244     Object k = nextKey;
3245 dl 1.41 nextVal = null;
3246     return (K) k;
3247 dl 1.14 }
3248    
3249     public final K nextElement() { return next(); }
3250     }
3251    
3252 dl 1.61 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3253 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3254 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3255 dl 1.79 ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3256     super(map, it, -1);
3257 dl 1.41 }
3258     public ValueIterator<K,V> split() {
3259 dl 1.70 if (nextKey != null)
3260 dl 1.41 throw new IllegalStateException();
3261 dl 1.79 return new ValueIterator<K,V>(map, this);
3262 dl 1.41 }
3263    
3264 dl 1.61 @SuppressWarnings("unchecked") public final V next() {
3265 dl 1.41 Object v;
3266     if ((v = nextVal) == null && (v = advance()) == null)
3267 dl 1.14 throw new NoSuchElementException();
3268 dl 1.41 nextVal = null;
3269     return (V) v;
3270 dl 1.14 }
3271    
3272     public final V nextElement() { return next(); }
3273     }
3274    
3275 dl 1.61 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3276 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3277 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3278 dl 1.79 EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3279     super(map, it, -1);
3280 dl 1.41 }
3281     public EntryIterator<K,V> split() {
3282 dl 1.70 if (nextKey != null)
3283 dl 1.41 throw new IllegalStateException();
3284 dl 1.79 return new EntryIterator<K,V>(map, this);
3285 dl 1.41 }
3286 dl 1.24
3287 dl 1.61 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3288 dl 1.41 Object v;
3289     if ((v = nextVal) == null && (v = advance()) == null)
3290 dl 1.24 throw new NoSuchElementException();
3291     Object k = nextKey;
3292 dl 1.41 nextVal = null;
3293     return new MapEntry<K,V>((K)k, (V)v, map);
3294 dl 1.1 }
3295     }
3296    
3297     /**
3298 dl 1.41 * Exported Entry for iterators
3299 dl 1.1 */
3300 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3301 dl 1.14 final K key; // non-null
3302     V val; // non-null
3303 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3304     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3305     this.key = key;
3306     this.val = val;
3307     this.map = map;
3308     }
3309 dl 1.14 public final K getKey() { return key; }
3310     public final V getValue() { return val; }
3311     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3312     public final String toString(){ return key + "=" + val; }
3313    
3314     public final boolean equals(Object o) {
3315     Object k, v; Map.Entry<?,?> e;
3316     return ((o instanceof Map.Entry) &&
3317     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3318     (v = e.getValue()) != null &&
3319     (k == key || k.equals(key)) &&
3320     (v == val || v.equals(val)));
3321 dl 1.1 }
3322    
3323     /**
3324     * Sets our entry's value and writes through to the map. The
3325 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3326     * necessarily track asynchronous changes, the most recent
3327 dl 1.41 * "previous" value could be different from what we return (or
3328     * could even have been removed in which case the put will
3329     * re-establish). We do not and cannot guarantee more.
3330 dl 1.1 */
3331 dl 1.14 public final V setValue(V value) {
3332 dl 1.1 if (value == null) throw new NullPointerException();
3333 dl 1.14 V v = val;
3334     val = value;
3335     map.put(key, value);
3336 dl 1.1 return v;
3337     }
3338     }
3339    
3340 dl 1.79 /**
3341     * Returns exportable snapshot entry for the given key and value
3342     * when write-through can't or shouldn't be used.
3343     */
3344     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3345     return new AbstractMap.SimpleEntry<K,V>(k, v);
3346     }
3347    
3348 dl 1.75 /* ---------------- Serialization Support -------------- */
3349 dl 1.1
3350 dl 1.24 /**
3351 dl 1.75 * Stripped-down version of helper class used in previous version,
3352     * declared for the sake of serialization compatibility
3353 dl 1.14 */
3354 dl 1.75 static class Segment<K,V> implements Serializable {
3355     private static final long serialVersionUID = 2249069246763182397L;
3356     final float loadFactor;
3357     Segment(float lf) { this.loadFactor = lf; }
3358     }
3359 dl 1.24
3360 dl 1.75 /**
3361     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3362     * stream (i.e., serializes it).
3363     * @param s the stream
3364     * @serialData
3365     * the key (Object) and value (Object)
3366     * for each key-value mapping, followed by a null pair.
3367     * The key-value mappings are emitted in no particular order.
3368     */
3369     @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3370     throws java.io.IOException {
3371     if (segments == null) { // for serialization compatibility
3372     segments = (Segment<K,V>[])
3373     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3374     for (int i = 0; i < segments.length; ++i)
3375     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3376     }
3377     s.defaultWriteObject();
3378     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3379     Object v;
3380     while ((v = it.advance()) != null) {
3381     s.writeObject(it.nextKey);
3382     s.writeObject(v);
3383     }
3384     s.writeObject(null);
3385     s.writeObject(null);
3386     segments = null; // throw away
3387     }
3388 dl 1.24
3389 dl 1.75 /**
3390     * Reconstitutes the instance from a stream (that is, deserializes it).
3391     * @param s the stream
3392     */
3393     @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3394     throws java.io.IOException, ClassNotFoundException {
3395     s.defaultReadObject();
3396     this.segments = null; // unneeded
3397     // initialize transient final field
3398     UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3399 dl 1.24
3400 dl 1.75 // Create all nodes, then place in table once size is known
3401     long size = 0L;
3402     Node p = null;
3403     for (;;) {
3404     K k = (K) s.readObject();
3405     V v = (V) s.readObject();
3406     if (k != null && v != null) {
3407     int h = spread(k.hashCode());
3408     p = new Node(h, k, v, p);
3409     ++size;
3410 dl 1.24 }
3411 dl 1.75 else
3412     break;
3413 dl 1.24 }
3414 dl 1.75 if (p != null) {
3415     boolean init = false;
3416     int n;
3417     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3418     n = MAXIMUM_CAPACITY;
3419     else {
3420     int sz = (int)size;
3421     n = tableSizeFor(sz + (sz >>> 1) + 1);
3422     }
3423     int sc = sizeCtl;
3424     boolean collide = false;
3425     if (n > sc &&
3426     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3427     try {
3428     if (table == null) {
3429     init = true;
3430     Node[] tab = new Node[n];
3431     int mask = n - 1;
3432     while (p != null) {
3433     int j = p.hash & mask;
3434     Node next = p.next;
3435     Node q = p.next = tabAt(tab, j);
3436     setTabAt(tab, j, p);
3437     if (!collide && q != null && q.hash == p.hash)
3438     collide = true;
3439     p = next;
3440     }
3441     table = tab;
3442     counter.add(size);
3443     sc = n - (n >>> 2);
3444     }
3445     } finally {
3446     sizeCtl = sc;
3447     }
3448     if (collide) { // rescan and convert to TreeBins
3449     Node[] tab = table;
3450     for (int i = 0; i < tab.length; ++i) {
3451     int c = 0;
3452     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3453     if (++c > TREE_THRESHOLD &&
3454     (e.key instanceof Comparable)) {
3455     replaceWithTreeBin(tab, i, e.key);
3456     break;
3457     }
3458     }
3459     }
3460 dl 1.24 }
3461     }
3462 dl 1.75 if (!init) { // Can only happen if unsafely published.
3463     while (p != null) {
3464     internalPut(p.key, p.val);
3465     p = p.next;
3466     }
3467 dl 1.24 }
3468     }
3469 dl 1.75 }
3470    
3471 dl 1.24
3472 dl 1.75 // -------------------------------------------------------
3473 dl 1.24
3474 dl 1.75 // Sams
3475     /** Interface describing a void action of one argument */
3476     public interface Action<A> { void apply(A a); }
3477 dl 1.52 /** Interface describing a void action of two arguments */
3478     public interface BiAction<A,B> { void apply(A a, B b); }
3479     /** Interface describing a function of one argument */
3480     public interface Fun<A,T> { T apply(A a); }
3481     /** Interface describing a function of two arguments */
3482     public interface BiFun<A,B,T> { T apply(A a, B b); }
3483     /** Interface describing a function of no arguments */
3484     public interface Generator<T> { T apply(); }
3485     /** Interface describing a function mapping its argument to a double */
3486     public interface ObjectToDouble<A> { double apply(A a); }
3487     /** Interface describing a function mapping its argument to a long */
3488     public interface ObjectToLong<A> { long apply(A a); }
3489     /** Interface describing a function mapping its argument to an int */
3490     public interface ObjectToInt<A> {int apply(A a); }
3491     /** Interface describing a function mapping two arguments to a double */
3492     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3493     /** Interface describing a function mapping two arguments to a long */
3494     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3495     /** Interface describing a function mapping two arguments to an int */
3496     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3497     /** Interface describing a function mapping a double to a double */
3498     public interface DoubleToDouble { double apply(double a); }
3499     /** Interface describing a function mapping a long to a long */
3500     public interface LongToLong { long apply(long a); }
3501     /** Interface describing a function mapping an int to an int */
3502     public interface IntToInt { int apply(int a); }
3503     /** Interface describing a function mapping two doubles to a double */
3504     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3505     /** Interface describing a function mapping two longs to a long */
3506     public interface LongByLongToLong { long apply(long a, long b); }
3507     /** Interface describing a function mapping two ints to an int */
3508     public interface IntByIntToInt { int apply(int a, int b); }
3509    
3510    
3511     // -------------------------------------------------------
3512    
3513     /**
3514 dl 1.70 * Performs the given action for each (key, value).
3515 dl 1.52 *
3516 dl 1.70 * @param action the action
3517 dl 1.52 */
3518 dl 1.70 public void forEach(BiAction<K,V> action) {
3519     ForkJoinTasks.forEach
3520     (this, action).invoke();
3521 dl 1.52 }
3522    
3523     /**
3524 dl 1.70 * Performs the given action for each non-null transformation
3525     * of each (key, value).
3526     *
3527     * @param transformer a function returning the transformation
3528     * for an element, or null of there is no transformation (in
3529     * which case the action is not applied).
3530     * @param action the action
3531 dl 1.52 */
3532 dl 1.70 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3533     Action<U> action) {
3534     ForkJoinTasks.forEach
3535     (this, transformer, action).invoke();
3536     }
3537    
3538     /**
3539     * Returns a non-null result from applying the given search
3540     * function on each (key, value), or null if none. Upon
3541     * success, further element processing is suppressed and the
3542     * results of any other parallel invocations of the search
3543     * function are ignored.
3544     *
3545     * @param searchFunction a function returning a non-null
3546     * result on success, else null
3547     * @return a non-null result from applying the given search
3548     * function on each (key, value), or null if none
3549     */
3550     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3551     return ForkJoinTasks.search
3552     (this, searchFunction).invoke();
3553     }
3554    
3555     /**
3556     * Returns the result of accumulating the given transformation
3557     * of all (key, value) pairs using the given reducer to
3558     * combine values, or null if none.
3559     *
3560     * @param transformer a function returning the transformation
3561     * for an element, or null of there is no transformation (in
3562     * which case it is not combined).
3563     * @param reducer a commutative associative combining function
3564     * @return the result of accumulating the given transformation
3565     * of all (key, value) pairs
3566     */
3567     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3568     BiFun<? super U, ? super U, ? extends U> reducer) {
3569     return ForkJoinTasks.reduce
3570     (this, transformer, reducer).invoke();
3571     }
3572 dl 1.52
3573 dl 1.70 /**
3574     * Returns the result of accumulating the given transformation
3575     * of all (key, value) pairs using the given reducer to
3576     * combine values, and the given basis as an identity value.
3577     *
3578     * @param transformer a function returning the transformation
3579     * for an element
3580     * @param basis the identity (initial default value) for the reduction
3581     * @param reducer a commutative associative combining function
3582     * @return the result of accumulating the given transformation
3583     * of all (key, value) pairs
3584     */
3585     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3586     double basis,
3587     DoubleByDoubleToDouble reducer) {
3588     return ForkJoinTasks.reduceToDouble
3589     (this, transformer, basis, reducer).invoke();
3590     }
3591    
3592     /**
3593     * Returns the result of accumulating the given transformation
3594     * of all (key, value) pairs using the given reducer to
3595     * combine values, and the given basis as an identity value.
3596     *
3597     * @param transformer a function returning the transformation
3598     * for an element
3599     * @param basis the identity (initial default value) for the reduction
3600     * @param reducer a commutative associative combining function
3601     * @return the result of accumulating the given transformation
3602     * of all (key, value) pairs
3603     */
3604     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3605     long basis,
3606     LongByLongToLong reducer) {
3607     return ForkJoinTasks.reduceToLong
3608     (this, transformer, basis, reducer).invoke();
3609     }
3610    
3611     /**
3612     * Returns the result of accumulating the given transformation
3613     * of all (key, value) pairs using the given reducer to
3614     * combine values, and the given basis as an identity value.
3615     *
3616     * @param transformer a function returning the transformation
3617     * for an element
3618     * @param basis the identity (initial default value) for the reduction
3619     * @param reducer a commutative associative combining function
3620     * @return the result of accumulating the given transformation
3621     * of all (key, value) pairs
3622     */
3623     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3624     int basis,
3625     IntByIntToInt reducer) {
3626     return ForkJoinTasks.reduceToInt
3627     (this, transformer, basis, reducer).invoke();
3628     }
3629 dl 1.52
3630 dl 1.70 /**
3631     * Performs the given action for each key.
3632     *
3633     * @param action the action
3634     */
3635     public void forEachKey(Action<K> action) {
3636     ForkJoinTasks.forEachKey
3637     (this, action).invoke();
3638     }
3639 dl 1.52
3640 dl 1.70 /**
3641     * Performs the given action for each non-null transformation
3642     * of each key.
3643     *
3644     * @param transformer a function returning the transformation
3645     * for an element, or null of there is no transformation (in
3646     * which case the action is not applied).
3647     * @param action the action
3648     */
3649     public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3650     Action<U> action) {
3651     ForkJoinTasks.forEachKey
3652     (this, transformer, action).invoke();
3653     }
3654 dl 1.52
3655 dl 1.70 /**
3656 dl 1.71 * Returns a non-null result from applying the given search
3657     * function on each key, or null if none. Upon success,
3658     * further element processing is suppressed and the results of
3659     * any other parallel invocations of the search function are
3660     * ignored.
3661     *
3662     * @param searchFunction a function returning a non-null
3663     * result on success, else null
3664     * @return a non-null result from applying the given search
3665     * function on each key, or null if none
3666     */
3667     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3668     return ForkJoinTasks.searchKeys
3669     (this, searchFunction).invoke();
3670     }
3671    
3672     /**
3673 dl 1.70 * Returns the result of accumulating all keys using the given
3674     * reducer to combine values, or null if none.
3675     *
3676     * @param reducer a commutative associative combining function
3677     * @return the result of accumulating all keys using the given
3678     * reducer to combine values, or null if none
3679     */
3680     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3681     return ForkJoinTasks.reduceKeys
3682     (this, reducer).invoke();
3683     }
3684 dl 1.1
3685 dl 1.70 /**
3686     * Returns the result of accumulating the given transformation
3687     * of all keys using the given reducer to combine values, or
3688     * null if none.
3689     *
3690     * @param transformer a function returning the transformation
3691     * for an element, or null of there is no transformation (in
3692     * which case it is not combined).
3693     * @param reducer a commutative associative combining function
3694     * @return the result of accumulating the given transformation
3695     * of all keys
3696     */
3697     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3698 dl 1.52 BiFun<? super U, ? super U, ? extends U> reducer) {
3699 dl 1.70 return ForkJoinTasks.reduceKeys
3700     (this, transformer, reducer).invoke();
3701     }
3702 dl 1.1
3703 dl 1.70 /**
3704     * Returns the result of accumulating the given transformation
3705     * of all keys using the given reducer to combine values, and
3706     * the given basis as an identity value.
3707     *
3708     * @param transformer a function returning the transformation
3709     * for an element
3710     * @param basis the identity (initial default value) for the reduction
3711     * @param reducer a commutative associative combining function
3712     * @return the result of accumulating the given transformation
3713     * of all keys
3714     */
3715     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3716 dl 1.52 double basis,
3717     DoubleByDoubleToDouble reducer) {
3718 dl 1.70 return ForkJoinTasks.reduceKeysToDouble
3719     (this, transformer, basis, reducer).invoke();
3720     }
3721 dl 1.52
3722 dl 1.70 /**
3723     * Returns the result of accumulating the given transformation
3724     * of all keys using the given reducer to combine values, and
3725     * the given basis as an identity value.
3726     *
3727     * @param transformer a function returning the transformation
3728     * for an element
3729     * @param basis the identity (initial default value) for the reduction
3730     * @param reducer a commutative associative combining function
3731     * @return the result of accumulating the given transformation
3732     * of all keys
3733     */
3734     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3735 dl 1.52 long basis,
3736     LongByLongToLong reducer) {
3737 dl 1.70 return ForkJoinTasks.reduceKeysToLong
3738     (this, transformer, basis, reducer).invoke();
3739     }
3740 dl 1.52
3741 dl 1.70 /**
3742     * Returns the result of accumulating the given transformation
3743     * of all keys using the given reducer to combine values, and
3744     * the given basis as an identity value.
3745     *
3746     * @param transformer a function returning the transformation
3747     * for an element
3748     * @param basis the identity (initial default value) for the reduction
3749     * @param reducer a commutative associative combining function
3750     * @return the result of accumulating the given transformation
3751     * of all keys
3752     */
3753     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3754 dl 1.52 int basis,
3755     IntByIntToInt reducer) {
3756 dl 1.70 return ForkJoinTasks.reduceKeysToInt
3757     (this, transformer, basis, reducer).invoke();
3758     }
3759 dl 1.52
3760 dl 1.70 /**
3761     * Performs the given action for each value.
3762     *
3763     * @param action the action
3764     */
3765     public void forEachValue(Action<V> action) {
3766     ForkJoinTasks.forEachValue
3767     (this, action).invoke();
3768     }
3769 dl 1.52
3770 dl 1.70 /**
3771     * Performs the given action for each non-null transformation
3772     * of each value.
3773     *
3774     * @param transformer a function returning the transformation
3775     * for an element, or null of there is no transformation (in
3776     * which case the action is not applied).
3777     */
3778     public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3779     Action<U> action) {
3780     ForkJoinTasks.forEachValue
3781     (this, transformer, action).invoke();
3782     }
3783 dl 1.52
3784 dl 1.70 /**
3785     * Returns a non-null result from applying the given search
3786     * function on each value, or null if none. Upon success,
3787     * further element processing is suppressed and the results of
3788     * any other parallel invocations of the search function are
3789     * ignored.
3790     *
3791     * @param searchFunction a function returning a non-null
3792     * result on success, else null
3793     * @return a non-null result from applying the given search
3794     * function on each value, or null if none
3795     *
3796     */
3797     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3798     return ForkJoinTasks.searchValues
3799     (this, searchFunction).invoke();
3800     }
3801 dl 1.52
3802 dl 1.70 /**
3803     * Returns the result of accumulating all values using the
3804     * given reducer to combine values, or null if none.
3805     *
3806     * @param reducer a commutative associative combining function
3807     * @return the result of accumulating all values
3808     */
3809     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3810     return ForkJoinTasks.reduceValues
3811     (this, reducer).invoke();
3812     }
3813 dl 1.52
3814 dl 1.70 /**
3815     * Returns the result of accumulating the given transformation
3816     * of all values using the given reducer to combine values, or
3817     * null if none.
3818     *
3819     * @param transformer a function returning the transformation
3820     * for an element, or null of there is no transformation (in
3821     * which case it is not combined).
3822     * @param reducer a commutative associative combining function
3823     * @return the result of accumulating the given transformation
3824     * of all values
3825     */
3826     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3827     BiFun<? super U, ? super U, ? extends U> reducer) {
3828     return ForkJoinTasks.reduceValues
3829     (this, transformer, reducer).invoke();
3830     }
3831 dl 1.52
3832 dl 1.70 /**
3833     * Returns the result of accumulating the given transformation
3834     * of all values using the given reducer to combine values,
3835     * and the given basis as an identity value.
3836     *
3837     * @param transformer a function returning the transformation
3838     * for an element
3839     * @param basis the identity (initial default value) for the reduction
3840     * @param reducer a commutative associative combining function
3841     * @return the result of accumulating the given transformation
3842     * of all values
3843     */
3844     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3845     double basis,
3846     DoubleByDoubleToDouble reducer) {
3847     return ForkJoinTasks.reduceValuesToDouble
3848 dl 1.75 (this, transformer, basis, reducer).invoke();
3849     }
3850    
3851     /**
3852     * Returns the result of accumulating the given transformation
3853     * of all values using the given reducer to combine values,
3854     * and the given basis as an identity value.
3855     *
3856     * @param transformer a function returning the transformation
3857     * for an element
3858     * @param basis the identity (initial default value) for the reduction
3859     * @param reducer a commutative associative combining function
3860     * @return the result of accumulating the given transformation
3861     * of all values
3862     */
3863     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3864     long basis,
3865     LongByLongToLong reducer) {
3866     return ForkJoinTasks.reduceValuesToLong
3867     (this, transformer, basis, reducer).invoke();
3868     }
3869    
3870     /**
3871     * Returns the result of accumulating the given transformation
3872     * of all values using the given reducer to combine values,
3873     * and the given basis as an identity value.
3874     *
3875     * @param transformer a function returning the transformation
3876     * for an element
3877     * @param basis the identity (initial default value) for the reduction
3878     * @param reducer a commutative associative combining function
3879     * @return the result of accumulating the given transformation
3880     * of all values
3881     */
3882     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3883     int basis,
3884     IntByIntToInt reducer) {
3885     return ForkJoinTasks.reduceValuesToInt
3886     (this, transformer, basis, reducer).invoke();
3887     }
3888    
3889     /**
3890     * Performs the given action for each entry.
3891     *
3892     * @param action the action
3893     */
3894     public void forEachEntry(Action<Map.Entry<K,V>> action) {
3895     ForkJoinTasks.forEachEntry
3896     (this, action).invoke();
3897     }
3898    
3899     /**
3900     * Performs the given action for each non-null transformation
3901     * of each entry.
3902     *
3903     * @param transformer a function returning the transformation
3904     * for an element, or null of there is no transformation (in
3905     * which case the action is not applied).
3906     * @param action the action
3907     */
3908     public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3909     Action<U> action) {
3910     ForkJoinTasks.forEachEntry
3911     (this, transformer, action).invoke();
3912     }
3913    
3914     /**
3915     * Returns a non-null result from applying the given search
3916     * function on each entry, or null if none. Upon success,
3917     * further element processing is suppressed and the results of
3918     * any other parallel invocations of the search function are
3919     * ignored.
3920     *
3921     * @param searchFunction a function returning a non-null
3922     * result on success, else null
3923     * @return a non-null result from applying the given search
3924     * function on each entry, or null if none
3925     */
3926     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3927     return ForkJoinTasks.searchEntries
3928     (this, searchFunction).invoke();
3929     }
3930    
3931     /**
3932     * Returns the result of accumulating all entries using the
3933     * given reducer to combine values, or null if none.
3934     *
3935     * @param reducer a commutative associative combining function
3936     * @return the result of accumulating all entries
3937     */
3938     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3939     return ForkJoinTasks.reduceEntries
3940     (this, reducer).invoke();
3941     }
3942    
3943     /**
3944     * Returns the result of accumulating the given transformation
3945     * of all entries using the given reducer to combine values,
3946     * or null if none.
3947     *
3948     * @param transformer a function returning the transformation
3949     * for an element, or null of there is no transformation (in
3950     * which case it is not combined).
3951     * @param reducer a commutative associative combining function
3952     * @return the result of accumulating the given transformation
3953     * of all entries
3954     */
3955     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3956     BiFun<? super U, ? super U, ? extends U> reducer) {
3957     return ForkJoinTasks.reduceEntries
3958     (this, transformer, reducer).invoke();
3959     }
3960    
3961     /**
3962     * Returns the result of accumulating the given transformation
3963     * of all entries using the given reducer to combine values,
3964     * and the given basis as an identity value.
3965     *
3966     * @param transformer a function returning the transformation
3967     * for an element
3968     * @param basis the identity (initial default value) for the reduction
3969     * @param reducer a commutative associative combining function
3970     * @return the result of accumulating the given transformation
3971     * of all entries
3972     */
3973     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3974     double basis,
3975     DoubleByDoubleToDouble reducer) {
3976     return ForkJoinTasks.reduceEntriesToDouble
3977     (this, transformer, basis, reducer).invoke();
3978     }
3979    
3980     /**
3981     * Returns the result of accumulating the given transformation
3982     * of all entries using the given reducer to combine values,
3983     * and the given basis as an identity value.
3984     *
3985     * @param transformer a function returning the transformation
3986     * for an element
3987     * @param basis the identity (initial default value) for the reduction
3988     * @param reducer a commutative associative combining function
3989     * @return the result of accumulating the given transformation
3990     * of all entries
3991     */
3992     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3993     long basis,
3994     LongByLongToLong reducer) {
3995     return ForkJoinTasks.reduceEntriesToLong
3996     (this, transformer, basis, reducer).invoke();
3997     }
3998    
3999     /**
4000     * Returns the result of accumulating the given transformation
4001     * of all entries using the given reducer to combine values,
4002     * and the given basis as an identity value.
4003     *
4004     * @param transformer a function returning the transformation
4005     * for an element
4006     * @param basis the identity (initial default value) for the reduction
4007     * @param reducer a commutative associative combining function
4008     * @return the result of accumulating the given transformation
4009     * of all entries
4010     */
4011     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4012     int basis,
4013     IntByIntToInt reducer) {
4014     return ForkJoinTasks.reduceEntriesToInt
4015     (this, transformer, basis, reducer).invoke();
4016     }
4017    
4018     /* ----------------Views -------------- */
4019    
4020     /**
4021     * Base class for views.
4022     */
4023     static abstract class CHMView<K, V> {
4024     final ConcurrentHashMapV8<K, V> map;
4025     CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4026    
4027     /**
4028     * Returns the map backing this view.
4029     *
4030     * @return the map backing this view
4031     */
4032     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4033    
4034     public final int size() { return map.size(); }
4035     public final boolean isEmpty() { return map.isEmpty(); }
4036     public final void clear() { map.clear(); }
4037    
4038     // implementations below rely on concrete classes supplying these
4039     abstract public Iterator<?> iterator();
4040     abstract public boolean contains(Object o);
4041     abstract public boolean remove(Object o);
4042    
4043     private static final String oomeMsg = "Required array size too large";
4044    
4045     public final Object[] toArray() {
4046     long sz = map.mappingCount();
4047     if (sz > (long)(MAX_ARRAY_SIZE))
4048     throw new OutOfMemoryError(oomeMsg);
4049     int n = (int)sz;
4050     Object[] r = new Object[n];
4051     int i = 0;
4052     Iterator<?> it = iterator();
4053     while (it.hasNext()) {
4054     if (i == n) {
4055     if (n >= MAX_ARRAY_SIZE)
4056     throw new OutOfMemoryError(oomeMsg);
4057     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4058     n = MAX_ARRAY_SIZE;
4059     else
4060     n += (n >>> 1) + 1;
4061     r = Arrays.copyOf(r, n);
4062     }
4063     r[i++] = it.next();
4064     }
4065     return (i == n) ? r : Arrays.copyOf(r, i);
4066     }
4067    
4068     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4069     long sz = map.mappingCount();
4070     if (sz > (long)(MAX_ARRAY_SIZE))
4071     throw new OutOfMemoryError(oomeMsg);
4072     int m = (int)sz;
4073     T[] r = (a.length >= m) ? a :
4074     (T[])java.lang.reflect.Array
4075     .newInstance(a.getClass().getComponentType(), m);
4076     int n = r.length;
4077     int i = 0;
4078     Iterator<?> it = iterator();
4079     while (it.hasNext()) {
4080     if (i == n) {
4081     if (n >= MAX_ARRAY_SIZE)
4082     throw new OutOfMemoryError(oomeMsg);
4083     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4084     n = MAX_ARRAY_SIZE;
4085     else
4086     n += (n >>> 1) + 1;
4087     r = Arrays.copyOf(r, n);
4088     }
4089     r[i++] = (T)it.next();
4090     }
4091     if (a == r && i < n) {
4092     r[i] = null; // null-terminate
4093     return r;
4094     }
4095     return (i == n) ? r : Arrays.copyOf(r, i);
4096     }
4097    
4098     public final int hashCode() {
4099     int h = 0;
4100     for (Iterator<?> it = iterator(); it.hasNext();)
4101     h += it.next().hashCode();
4102     return h;
4103     }
4104    
4105     public final String toString() {
4106     StringBuilder sb = new StringBuilder();
4107     sb.append('[');
4108     Iterator<?> it = iterator();
4109     if (it.hasNext()) {
4110     for (;;) {
4111     Object e = it.next();
4112     sb.append(e == this ? "(this Collection)" : e);
4113     if (!it.hasNext())
4114     break;
4115     sb.append(',').append(' ');
4116     }
4117     }
4118     return sb.append(']').toString();
4119     }
4120    
4121     public final boolean containsAll(Collection<?> c) {
4122     if (c != this) {
4123     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4124     Object e = it.next();
4125     if (e == null || !contains(e))
4126     return false;
4127     }
4128     }
4129     return true;
4130     }
4131    
4132     public final boolean removeAll(Collection<?> c) {
4133     boolean modified = false;
4134     for (Iterator<?> it = iterator(); it.hasNext();) {
4135     if (c.contains(it.next())) {
4136     it.remove();
4137     modified = true;
4138     }
4139     }
4140     return modified;
4141     }
4142    
4143     public final boolean retainAll(Collection<?> c) {
4144     boolean modified = false;
4145     for (Iterator<?> it = iterator(); it.hasNext();) {
4146     if (!c.contains(it.next())) {
4147     it.remove();
4148     modified = true;
4149     }
4150     }
4151     return modified;
4152     }
4153    
4154     }
4155    
4156     /**
4157     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4158     * which additions may optionally be enabled by mapping to a
4159     * common value. This class cannot be directly instantiated. See
4160     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4161     * {@link #newKeySet(int)}.
4162     */
4163     public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4164     private static final long serialVersionUID = 7249069246763182397L;
4165     private final V value;
4166     KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4167     super(map);
4168     this.value = value;
4169     }
4170    
4171     /**
4172     * Returns the default mapped value for additions,
4173     * or {@code null} if additions are not supported.
4174     *
4175     * @return the default mapped value for additions, or {@code null}
4176     * if not supported.
4177     */
4178     public V getMappedValue() { return value; }
4179    
4180     // implement Set API
4181    
4182     public boolean contains(Object o) { return map.containsKey(o); }
4183     public boolean remove(Object o) { return map.remove(o) != null; }
4184    
4185     /**
4186     * Returns a "weakly consistent" iterator that will never
4187     * throw {@link ConcurrentModificationException}, and
4188     * guarantees to traverse elements as they existed upon
4189     * construction of the iterator, and may (but is not
4190     * guaranteed to) reflect any modifications subsequent to
4191     * construction.
4192     *
4193     * @return an iterator over the keys of this map
4194     */
4195     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4196     public boolean add(K e) {
4197     V v;
4198     if ((v = value) == null)
4199     throw new UnsupportedOperationException();
4200     if (e == null)
4201     throw new NullPointerException();
4202     return map.internalPutIfAbsent(e, v) == null;
4203     }
4204     public boolean addAll(Collection<? extends K> c) {
4205     boolean added = false;
4206     V v;
4207     if ((v = value) == null)
4208     throw new UnsupportedOperationException();
4209     for (K e : c) {
4210     if (e == null)
4211     throw new NullPointerException();
4212     if (map.internalPutIfAbsent(e, v) == null)
4213     added = true;
4214     }
4215     return added;
4216     }
4217     public boolean equals(Object o) {
4218     Set<?> c;
4219     return ((o instanceof Set) &&
4220     ((c = (Set<?>)o) == this ||
4221     (containsAll(c) && c.containsAll(this))));
4222     }
4223    
4224     /**
4225     * Performs the given action for each key.
4226     *
4227     * @param action the action
4228     */
4229     public void forEach(Action<K> action) {
4230     ForkJoinTasks.forEachKey
4231     (map, action).invoke();
4232     }
4233    
4234     /**
4235     * Performs the given action for each non-null transformation
4236     * of each key.
4237     *
4238     * @param transformer a function returning the transformation
4239     * for an element, or null of there is no transformation (in
4240     * which case the action is not applied).
4241     * @param action the action
4242     */
4243     public <U> void forEach(Fun<? super K, ? extends U> transformer,
4244     Action<U> action) {
4245     ForkJoinTasks.forEachKey
4246     (map, transformer, action).invoke();
4247     }
4248    
4249     /**
4250     * Returns a non-null result from applying the given search
4251     * function on each key, or null if none. Upon success,
4252     * further element processing is suppressed and the results of
4253     * any other parallel invocations of the search function are
4254     * ignored.
4255     *
4256     * @param searchFunction a function returning a non-null
4257     * result on success, else null
4258     * @return a non-null result from applying the given search
4259     * function on each key, or null if none
4260     */
4261     public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4262     return ForkJoinTasks.searchKeys
4263     (map, searchFunction).invoke();
4264     }
4265    
4266     /**
4267     * Returns the result of accumulating all keys using the given
4268     * reducer to combine values, or null if none.
4269     *
4270     * @param reducer a commutative associative combining function
4271     * @return the result of accumulating all keys using the given
4272     * reducer to combine values, or null if none
4273     */
4274     public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4275     return ForkJoinTasks.reduceKeys
4276     (map, reducer).invoke();
4277     }
4278    
4279     /**
4280     * Returns the result of accumulating the given transformation
4281     * of all keys using the given reducer to combine values, and
4282     * the given basis as an identity value.
4283     *
4284     * @param transformer a function returning the transformation
4285     * for an element
4286     * @param basis the identity (initial default value) for the reduction
4287     * @param reducer a commutative associative combining function
4288     * @return the result of accumulating the given transformation
4289     * of all keys
4290     */
4291     public double reduceToDouble(ObjectToDouble<? super K> transformer,
4292     double basis,
4293     DoubleByDoubleToDouble reducer) {
4294     return ForkJoinTasks.reduceKeysToDouble
4295     (map, transformer, basis, reducer).invoke();
4296     }
4297    
4298    
4299     /**
4300     * Returns the result of accumulating the given transformation
4301     * of all keys using the given reducer to combine values, and
4302     * the given basis as an identity value.
4303     *
4304     * @param transformer a function returning the transformation
4305     * for an element
4306     * @param basis the identity (initial default value) for the reduction
4307     * @param reducer a commutative associative combining function
4308     * @return the result of accumulating the given transformation
4309     * of all keys
4310     */
4311     public long reduceToLong(ObjectToLong<? super K> transformer,
4312     long basis,
4313     LongByLongToLong reducer) {
4314     return ForkJoinTasks.reduceKeysToLong
4315     (map, transformer, basis, reducer).invoke();
4316     }
4317 jsr166 1.76
4318 dl 1.75 /**
4319     * Returns the result of accumulating the given transformation
4320     * of all keys using the given reducer to combine values, and
4321     * the given basis as an identity value.
4322     *
4323     * @param transformer a function returning the transformation
4324     * for an element
4325     * @param basis the identity (initial default value) for the reduction
4326     * @param reducer a commutative associative combining function
4327     * @return the result of accumulating the given transformation
4328     * of all keys
4329     */
4330     public int reduceToInt(ObjectToInt<? super K> transformer,
4331     int basis,
4332     IntByIntToInt reducer) {
4333     return ForkJoinTasks.reduceKeysToInt
4334     (map, transformer, basis, reducer).invoke();
4335     }
4336 jsr166 1.76
4337 dl 1.75 }
4338    
4339     /**
4340     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4341     * values, in which additions are disabled. This class cannot be
4342     * directly instantiated. See {@link #values},
4343     *
4344     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4345     * that will never throw {@link ConcurrentModificationException},
4346     * and guarantees to traverse elements as they existed upon
4347     * construction of the iterator, and may (but is not guaranteed to)
4348     * reflect any modifications subsequent to construction.
4349     */
4350     public static final class ValuesView<K,V> extends CHMView<K,V>
4351     implements Collection<V> {
4352     ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4353     public final boolean contains(Object o) { return map.containsValue(o); }
4354     public final boolean remove(Object o) {
4355     if (o != null) {
4356     Iterator<V> it = new ValueIterator<K,V>(map);
4357     while (it.hasNext()) {
4358     if (o.equals(it.next())) {
4359     it.remove();
4360     return true;
4361     }
4362     }
4363     }
4364     return false;
4365     }
4366    
4367     /**
4368     * Returns a "weakly consistent" iterator that will never
4369     * throw {@link ConcurrentModificationException}, and
4370     * guarantees to traverse elements as they existed upon
4371     * construction of the iterator, and may (but is not
4372     * guaranteed to) reflect any modifications subsequent to
4373     * construction.
4374     *
4375     * @return an iterator over the values of this map
4376     */
4377     public final Iterator<V> iterator() {
4378     return new ValueIterator<K,V>(map);
4379     }
4380     public final boolean add(V e) {
4381     throw new UnsupportedOperationException();
4382     }
4383     public final boolean addAll(Collection<? extends V> c) {
4384     throw new UnsupportedOperationException();
4385     }
4386    
4387     /**
4388     * Performs the given action for each value.
4389     *
4390     * @param action the action
4391     */
4392     public void forEach(Action<V> action) {
4393     ForkJoinTasks.forEachValue
4394     (map, action).invoke();
4395     }
4396    
4397     /**
4398     * Performs the given action for each non-null transformation
4399     * of each value.
4400     *
4401     * @param transformer a function returning the transformation
4402     * for an element, or null of there is no transformation (in
4403     * which case the action is not applied).
4404     */
4405     public <U> void forEach(Fun<? super V, ? extends U> transformer,
4406     Action<U> action) {
4407     ForkJoinTasks.forEachValue
4408     (map, transformer, action).invoke();
4409     }
4410    
4411     /**
4412     * Returns a non-null result from applying the given search
4413     * function on each value, or null if none. Upon success,
4414     * further element processing is suppressed and the results of
4415     * any other parallel invocations of the search function are
4416     * ignored.
4417     *
4418     * @param searchFunction a function returning a non-null
4419     * result on success, else null
4420     * @return a non-null result from applying the given search
4421     * function on each value, or null if none
4422     *
4423     */
4424     public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4425     return ForkJoinTasks.searchValues
4426     (map, searchFunction).invoke();
4427     }
4428    
4429     /**
4430     * Returns the result of accumulating all values using the
4431     * given reducer to combine values, or null if none.
4432     *
4433     * @param reducer a commutative associative combining function
4434     * @return the result of accumulating all values
4435     */
4436     public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4437     return ForkJoinTasks.reduceValues
4438     (map, reducer).invoke();
4439     }
4440    
4441     /**
4442     * Returns the result of accumulating the given transformation
4443     * of all values using the given reducer to combine values, or
4444     * null if none.
4445     *
4446     * @param transformer a function returning the transformation
4447     * for an element, or null of there is no transformation (in
4448     * which case it is not combined).
4449     * @param reducer a commutative associative combining function
4450     * @return the result of accumulating the given transformation
4451     * of all values
4452     */
4453     public <U> U reduce(Fun<? super V, ? extends U> transformer,
4454     BiFun<? super U, ? super U, ? extends U> reducer) {
4455     return ForkJoinTasks.reduceValues
4456     (map, transformer, reducer).invoke();
4457     }
4458 jsr166 1.76
4459 dl 1.75 /**
4460     * Returns the result of accumulating the given transformation
4461     * of all values using the given reducer to combine values,
4462     * and the given basis as an identity value.
4463     *
4464     * @param transformer a function returning the transformation
4465     * for an element
4466     * @param basis the identity (initial default value) for the reduction
4467     * @param reducer a commutative associative combining function
4468     * @return the result of accumulating the given transformation
4469     * of all values
4470     */
4471     public double reduceToDouble(ObjectToDouble<? super V> transformer,
4472     double basis,
4473     DoubleByDoubleToDouble reducer) {
4474     return ForkJoinTasks.reduceValuesToDouble
4475     (map, transformer, basis, reducer).invoke();
4476     }
4477    
4478     /**
4479     * Returns the result of accumulating the given transformation
4480     * of all values using the given reducer to combine values,
4481     * and the given basis as an identity value.
4482     *
4483     * @param transformer a function returning the transformation
4484     * for an element
4485     * @param basis the identity (initial default value) for the reduction
4486     * @param reducer a commutative associative combining function
4487     * @return the result of accumulating the given transformation
4488     * of all values
4489     */
4490     public long reduceToLong(ObjectToLong<? super V> transformer,
4491     long basis,
4492     LongByLongToLong reducer) {
4493     return ForkJoinTasks.reduceValuesToLong
4494     (map, transformer, basis, reducer).invoke();
4495     }
4496    
4497     /**
4498     * Returns the result of accumulating the given transformation
4499     * of all values using the given reducer to combine values,
4500     * and the given basis as an identity value.
4501     *
4502     * @param transformer a function returning the transformation
4503     * for an element
4504     * @param basis the identity (initial default value) for the reduction
4505     * @param reducer a commutative associative combining function
4506     * @return the result of accumulating the given transformation
4507     * of all values
4508     */
4509     public int reduceToInt(ObjectToInt<? super V> transformer,
4510     int basis,
4511     IntByIntToInt reducer) {
4512     return ForkJoinTasks.reduceValuesToInt
4513     (map, transformer, basis, reducer).invoke();
4514     }
4515    
4516 dl 1.70 }
4517 dl 1.52
4518 dl 1.70 /**
4519 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4520     * entries. This class cannot be directly instantiated. See
4521     * {@link #entrySet}.
4522 dl 1.70 */
4523 dl 1.75 public static final class EntrySetView<K,V> extends CHMView<K,V>
4524     implements Set<Map.Entry<K,V>> {
4525     EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4526     public final boolean contains(Object o) {
4527     Object k, v, r; Map.Entry<?,?> e;
4528     return ((o instanceof Map.Entry) &&
4529     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4530     (r = map.get(k)) != null &&
4531     (v = e.getValue()) != null &&
4532     (v == r || v.equals(r)));
4533     }
4534     public final boolean remove(Object o) {
4535     Object k, v; Map.Entry<?,?> e;
4536     return ((o instanceof Map.Entry) &&
4537     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4538     (v = e.getValue()) != null &&
4539     map.remove(k, v));
4540     }
4541    
4542     /**
4543     * Returns a "weakly consistent" iterator that will never
4544     * throw {@link ConcurrentModificationException}, and
4545     * guarantees to traverse elements as they existed upon
4546     * construction of the iterator, and may (but is not
4547     * guaranteed to) reflect any modifications subsequent to
4548     * construction.
4549     *
4550     * @return an iterator over the entries of this map
4551     */
4552     public final Iterator<Map.Entry<K,V>> iterator() {
4553     return new EntryIterator<K,V>(map);
4554     }
4555    
4556     public final boolean add(Entry<K,V> e) {
4557     K key = e.getKey();
4558     V value = e.getValue();
4559     if (key == null || value == null)
4560     throw new NullPointerException();
4561     return map.internalPut(key, value) == null;
4562     }
4563     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4564     boolean added = false;
4565     for (Entry<K,V> e : c) {
4566     if (add(e))
4567     added = true;
4568     }
4569     return added;
4570     }
4571     public boolean equals(Object o) {
4572     Set<?> c;
4573     return ((o instanceof Set) &&
4574     ((c = (Set<?>)o) == this ||
4575     (containsAll(c) && c.containsAll(this))));
4576     }
4577 dl 1.52
4578 dl 1.75 /**
4579     * Performs the given action for each entry.
4580     *
4581     * @param action the action
4582     */
4583     public void forEach(Action<Map.Entry<K,V>> action) {
4584     ForkJoinTasks.forEachEntry
4585     (map, action).invoke();
4586     }
4587 dl 1.52
4588 dl 1.75 /**
4589     * Performs the given action for each non-null transformation
4590     * of each entry.
4591     *
4592     * @param transformer a function returning the transformation
4593     * for an element, or null of there is no transformation (in
4594     * which case the action is not applied).
4595     * @param action the action
4596     */
4597     public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4598     Action<U> action) {
4599     ForkJoinTasks.forEachEntry
4600     (map, transformer, action).invoke();
4601     }
4602 dl 1.52
4603 dl 1.75 /**
4604     * Returns a non-null result from applying the given search
4605     * function on each entry, or null if none. Upon success,
4606     * further element processing is suppressed and the results of
4607     * any other parallel invocations of the search function are
4608     * ignored.
4609     *
4610     * @param searchFunction a function returning a non-null
4611     * result on success, else null
4612     * @return a non-null result from applying the given search
4613     * function on each entry, or null if none
4614     */
4615     public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4616     return ForkJoinTasks.searchEntries
4617     (map, searchFunction).invoke();
4618     }
4619 dl 1.52
4620 dl 1.75 /**
4621     * Returns the result of accumulating all entries using the
4622     * given reducer to combine values, or null if none.
4623     *
4624     * @param reducer a commutative associative combining function
4625     * @return the result of accumulating all entries
4626     */
4627     public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4628     return ForkJoinTasks.reduceEntries
4629     (map, reducer).invoke();
4630     }
4631 dl 1.52
4632 dl 1.75 /**
4633     * Returns the result of accumulating the given transformation
4634     * of all entries using the given reducer to combine values,
4635     * or null if none.
4636     *
4637     * @param transformer a function returning the transformation
4638     * for an element, or null of there is no transformation (in
4639     * which case it is not combined).
4640     * @param reducer a commutative associative combining function
4641     * @return the result of accumulating the given transformation
4642     * of all entries
4643     */
4644     public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4645     BiFun<? super U, ? super U, ? extends U> reducer) {
4646     return ForkJoinTasks.reduceEntries
4647     (map, transformer, reducer).invoke();
4648     }
4649 dl 1.52
4650 dl 1.75 /**
4651     * Returns the result of accumulating the given transformation
4652     * of all entries using the given reducer to combine values,
4653     * and the given basis as an identity value.
4654     *
4655     * @param transformer a function returning the transformation
4656     * for an element
4657     * @param basis the identity (initial default value) for the reduction
4658     * @param reducer a commutative associative combining function
4659     * @return the result of accumulating the given transformation
4660     * of all entries
4661     */
4662     public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4663     double basis,
4664     DoubleByDoubleToDouble reducer) {
4665     return ForkJoinTasks.reduceEntriesToDouble
4666     (map, transformer, basis, reducer).invoke();
4667     }
4668 dl 1.52
4669 dl 1.75 /**
4670     * Returns the result of accumulating the given transformation
4671     * of all entries using the given reducer to combine values,
4672     * and the given basis as an identity value.
4673     *
4674     * @param transformer a function returning the transformation
4675     * for an element
4676     * @param basis the identity (initial default value) for the reduction
4677     * @param reducer a commutative associative combining function
4678     * @return the result of accumulating the given transformation
4679     * of all entries
4680     */
4681     public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4682     long basis,
4683     LongByLongToLong reducer) {
4684     return ForkJoinTasks.reduceEntriesToLong
4685     (map, transformer, basis, reducer).invoke();
4686     }
4687 dl 1.52
4688 dl 1.75 /**
4689     * Returns the result of accumulating the given transformation
4690     * of all entries using the given reducer to combine values,
4691     * and the given basis as an identity value.
4692     *
4693     * @param transformer a function returning the transformation
4694     * for an element
4695     * @param basis the identity (initial default value) for the reduction
4696     * @param reducer a commutative associative combining function
4697     * @return the result of accumulating the given transformation
4698     * of all entries
4699     */
4700     public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4701     int basis,
4702     IntByIntToInt reducer) {
4703     return ForkJoinTasks.reduceEntriesToInt
4704     (map, transformer, basis, reducer).invoke();
4705     }
4706 dl 1.52
4707     }
4708    
4709     // ---------------------------------------------------------------------
4710    
4711     /**
4712     * Predefined tasks for performing bulk parallel operations on
4713 dl 1.70 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4714     * for bulk operations. Each method has the same name, but returns
4715     * a task rather than invoking it. These methods may be useful in
4716     * custom applications such as submitting a task without waiting
4717     * for completion, using a custom pool, or combining with other
4718     * tasks.
4719 dl 1.52 */
4720     public static class ForkJoinTasks {
4721     private ForkJoinTasks() {}
4722    
4723     /**
4724     * Returns a task that when invoked, performs the given
4725     * action for each (key, value)
4726     *
4727     * @param map the map
4728     * @param action the action
4729     * @return the task
4730     */
4731 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4732 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4733     BiAction<K,V> action) {
4734     if (action == null) throw new NullPointerException();
4735 dl 1.79 return new ForEachMappingTask<K,V>(map, null, -1, action);
4736 dl 1.52 }
4737    
4738     /**
4739     * Returns a task that when invoked, performs the given
4740     * action for each non-null transformation of each (key, value)
4741     *
4742     * @param map the map
4743     * @param transformer a function returning the transformation
4744 jsr166 1.68 * for an element, or null if there is no transformation (in
4745 jsr166 1.67 * which case the action is not applied)
4746 dl 1.52 * @param action the action
4747     * @return the task
4748     */
4749 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4750 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4751     BiFun<? super K, ? super V, ? extends U> transformer,
4752     Action<U> action) {
4753     if (transformer == null || action == null)
4754     throw new NullPointerException();
4755     return new ForEachTransformedMappingTask<K,V,U>
4756 dl 1.79 (map, null, -1, transformer, action);
4757 dl 1.52 }
4758    
4759     /**
4760 dl 1.59 * Returns a task that when invoked, returns a non-null result
4761     * from applying the given search function on each (key,
4762     * value), or null if none. Upon success, further element
4763     * processing is suppressed and the results of any other
4764     * parallel invocations of the search function are ignored.
4765 dl 1.52 *
4766     * @param map the map
4767     * @param searchFunction a function returning a non-null
4768     * result on success, else null
4769     * @return the task
4770     */
4771     public static <K,V,U> ForkJoinTask<U> search
4772     (ConcurrentHashMapV8<K,V> map,
4773     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4774     if (searchFunction == null) throw new NullPointerException();
4775     return new SearchMappingsTask<K,V,U>
4776 dl 1.79 (map, null, -1, searchFunction,
4777 dl 1.52 new AtomicReference<U>());
4778     }
4779    
4780     /**
4781     * Returns a task that when invoked, returns the result of
4782     * accumulating the given transformation of all (key, value) pairs
4783     * using the given reducer to combine values, or null if none.
4784     *
4785     * @param map the map
4786     * @param transformer a function returning the transformation
4787 jsr166 1.68 * for an element, or null if there is no transformation (in
4788 dl 1.52 * which case it is not combined).
4789     * @param reducer a commutative associative combining function
4790     * @return the task
4791     */
4792     public static <K,V,U> ForkJoinTask<U> reduce
4793     (ConcurrentHashMapV8<K,V> map,
4794     BiFun<? super K, ? super V, ? extends U> transformer,
4795     BiFun<? super U, ? super U, ? extends U> reducer) {
4796     if (transformer == null || reducer == null)
4797     throw new NullPointerException();
4798     return new MapReduceMappingsTask<K,V,U>
4799 dl 1.63 (map, null, -1, null, transformer, reducer);
4800 dl 1.52 }
4801    
4802     /**
4803     * Returns a task that when invoked, returns the result of
4804     * accumulating the given transformation of all (key, value) pairs
4805     * using the given reducer to combine values, and the given
4806     * basis as an identity value.
4807     *
4808     * @param map the map
4809     * @param transformer a function returning the transformation
4810     * for an element
4811     * @param basis the identity (initial default value) for the reduction
4812     * @param reducer a commutative associative combining function
4813     * @return the task
4814     */
4815     public static <K,V> ForkJoinTask<Double> reduceToDouble
4816     (ConcurrentHashMapV8<K,V> map,
4817     ObjectByObjectToDouble<? super K, ? super V> transformer,
4818     double basis,
4819     DoubleByDoubleToDouble reducer) {
4820     if (transformer == null || reducer == null)
4821     throw new NullPointerException();
4822     return new MapReduceMappingsToDoubleTask<K,V>
4823 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4824 dl 1.52 }
4825    
4826     /**
4827     * Returns a task that when invoked, returns the result of
4828     * accumulating the given transformation of all (key, value) pairs
4829     * using the given reducer to combine values, and the given
4830     * basis as an identity value.
4831     *
4832     * @param map the map
4833     * @param transformer a function returning the transformation
4834     * for an element
4835     * @param basis the identity (initial default value) for the reduction
4836     * @param reducer a commutative associative combining function
4837     * @return the task
4838     */
4839     public static <K,V> ForkJoinTask<Long> reduceToLong
4840     (ConcurrentHashMapV8<K,V> map,
4841     ObjectByObjectToLong<? super K, ? super V> transformer,
4842     long basis,
4843     LongByLongToLong reducer) {
4844     if (transformer == null || reducer == null)
4845     throw new NullPointerException();
4846     return new MapReduceMappingsToLongTask<K,V>
4847 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4848 dl 1.52 }
4849    
4850     /**
4851     * Returns a task that when invoked, returns the result of
4852     * accumulating the given transformation of all (key, value) pairs
4853     * using the given reducer to combine values, and the given
4854     * basis as an identity value.
4855     *
4856     * @param transformer a function returning the transformation
4857     * for an element
4858     * @param basis the identity (initial default value) for the reduction
4859     * @param reducer a commutative associative combining function
4860     * @return the task
4861     */
4862     public static <K,V> ForkJoinTask<Integer> reduceToInt
4863     (ConcurrentHashMapV8<K,V> map,
4864     ObjectByObjectToInt<? super K, ? super V> transformer,
4865     int basis,
4866     IntByIntToInt reducer) {
4867     if (transformer == null || reducer == null)
4868     throw new NullPointerException();
4869     return new MapReduceMappingsToIntTask<K,V>
4870 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4871 dl 1.52 }
4872    
4873     /**
4874     * Returns a task that when invoked, performs the given action
4875 jsr166 1.56 * for each key.
4876 dl 1.52 *
4877     * @param map the map
4878     * @param action the action
4879     * @return the task
4880     */
4881 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
4882 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4883     Action<K> action) {
4884     if (action == null) throw new NullPointerException();
4885 dl 1.79 return new ForEachKeyTask<K,V>(map, null, -1, action);
4886 dl 1.52 }
4887    
4888     /**
4889     * Returns a task that when invoked, performs the given action
4890 jsr166 1.56 * for each non-null transformation of each key.
4891 dl 1.52 *
4892     * @param map the map
4893     * @param transformer a function returning the transformation
4894 jsr166 1.68 * for an element, or null if there is no transformation (in
4895 jsr166 1.67 * which case the action is not applied)
4896 dl 1.52 * @param action the action
4897     * @return the task
4898     */
4899 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
4900 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4901     Fun<? super K, ? extends U> transformer,
4902     Action<U> action) {
4903     if (transformer == null || action == null)
4904     throw new NullPointerException();
4905     return new ForEachTransformedKeyTask<K,V,U>
4906 dl 1.79 (map, null, -1, transformer, action);
4907 dl 1.52 }
4908    
4909     /**
4910     * Returns a task that when invoked, returns a non-null result
4911     * from applying the given search function on each key, or
4912 dl 1.59 * null if none. Upon success, further element processing is
4913     * suppressed and the results of any other parallel
4914     * invocations of the search function are ignored.
4915 dl 1.52 *
4916     * @param map the map
4917     * @param searchFunction a function returning a non-null
4918     * result on success, else null
4919     * @return the task
4920     */
4921     public static <K,V,U> ForkJoinTask<U> searchKeys
4922     (ConcurrentHashMapV8<K,V> map,
4923     Fun<? super K, ? extends U> searchFunction) {
4924     if (searchFunction == null) throw new NullPointerException();
4925     return new SearchKeysTask<K,V,U>
4926 dl 1.79 (map, null, -1, searchFunction,
4927 dl 1.52 new AtomicReference<U>());
4928     }
4929    
4930     /**
4931     * Returns a task that when invoked, returns the result of
4932     * accumulating all keys using the given reducer to combine
4933     * values, or null if none.
4934     *
4935     * @param map the map
4936     * @param reducer a commutative associative combining function
4937     * @return the task
4938     */
4939     public static <K,V> ForkJoinTask<K> reduceKeys
4940     (ConcurrentHashMapV8<K,V> map,
4941     BiFun<? super K, ? super K, ? extends K> reducer) {
4942     if (reducer == null) throw new NullPointerException();
4943     return new ReduceKeysTask<K,V>
4944 dl 1.63 (map, null, -1, null, reducer);
4945 dl 1.52 }
4946 jsr166 1.58
4947 dl 1.52 /**
4948     * Returns a task that when invoked, returns the result of
4949     * accumulating the given transformation of all keys using the given
4950     * reducer to combine values, or null if none.
4951     *
4952     * @param map the map
4953     * @param transformer a function returning the transformation
4954 jsr166 1.68 * for an element, or null if there is no transformation (in
4955 dl 1.52 * which case it is not combined).
4956     * @param reducer a commutative associative combining function
4957     * @return the task
4958     */
4959     public static <K,V,U> ForkJoinTask<U> reduceKeys
4960     (ConcurrentHashMapV8<K,V> map,
4961     Fun<? super K, ? extends U> transformer,
4962     BiFun<? super U, ? super U, ? extends U> reducer) {
4963     if (transformer == null || reducer == null)
4964     throw new NullPointerException();
4965     return new MapReduceKeysTask<K,V,U>
4966 dl 1.63 (map, null, -1, null, transformer, reducer);
4967 dl 1.52 }
4968    
4969     /**
4970     * Returns a task that when invoked, returns the result of
4971     * accumulating the given transformation of all keys using the given
4972     * reducer to combine values, and the given basis as an
4973     * identity value.
4974     *
4975     * @param map the map
4976     * @param transformer a function returning the transformation
4977     * for an element
4978     * @param basis the identity (initial default value) for the reduction
4979     * @param reducer a commutative associative combining function
4980     * @return the task
4981     */
4982     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4983     (ConcurrentHashMapV8<K,V> map,
4984     ObjectToDouble<? super K> transformer,
4985     double basis,
4986     DoubleByDoubleToDouble reducer) {
4987     if (transformer == null || reducer == null)
4988     throw new NullPointerException();
4989     return new MapReduceKeysToDoubleTask<K,V>
4990 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4991 dl 1.52 }
4992    
4993     /**
4994     * Returns a task that when invoked, returns the result of
4995     * accumulating the given transformation of all keys using the given
4996     * reducer to combine values, and the given basis as an
4997     * identity value.
4998     *
4999     * @param map the map
5000     * @param transformer a function returning the transformation
5001     * for an element
5002     * @param basis the identity (initial default value) for the reduction
5003     * @param reducer a commutative associative combining function
5004     * @return the task
5005     */
5006     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5007     (ConcurrentHashMapV8<K,V> map,
5008     ObjectToLong<? super K> transformer,
5009     long basis,
5010     LongByLongToLong reducer) {
5011     if (transformer == null || reducer == null)
5012     throw new NullPointerException();
5013     return new MapReduceKeysToLongTask<K,V>
5014 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5015 dl 1.52 }
5016    
5017     /**
5018     * Returns a task that when invoked, returns the result of
5019     * accumulating the given transformation of all keys using the given
5020     * reducer to combine values, and the given basis as an
5021     * identity value.
5022     *
5023     * @param map the map
5024     * @param transformer a function returning the transformation
5025     * for an element
5026     * @param basis the identity (initial default value) for the reduction
5027     * @param reducer a commutative associative combining function
5028     * @return the task
5029     */
5030     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5031     (ConcurrentHashMapV8<K,V> map,
5032     ObjectToInt<? super K> transformer,
5033     int basis,
5034     IntByIntToInt reducer) {
5035     if (transformer == null || reducer == null)
5036     throw new NullPointerException();
5037     return new MapReduceKeysToIntTask<K,V>
5038 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5039 dl 1.52 }
5040    
5041     /**
5042     * Returns a task that when invoked, performs the given action
5043 jsr166 1.56 * for each value.
5044 dl 1.52 *
5045     * @param map the map
5046     * @param action the action
5047     */
5048 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
5049 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5050     Action<V> action) {
5051     if (action == null) throw new NullPointerException();
5052 dl 1.79 return new ForEachValueTask<K,V>(map, null, -1, action);
5053 dl 1.52 }
5054    
5055     /**
5056     * Returns a task that when invoked, performs the given action
5057 jsr166 1.56 * for each non-null transformation of each value.
5058 dl 1.52 *
5059     * @param map the map
5060     * @param transformer a function returning the transformation
5061 jsr166 1.68 * for an element, or null if there is no transformation (in
5062 jsr166 1.67 * which case the action is not applied)
5063 dl 1.52 * @param action the action
5064     */
5065 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
5066 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5067     Fun<? super V, ? extends U> transformer,
5068     Action<U> action) {
5069     if (transformer == null || action == null)
5070     throw new NullPointerException();
5071     return new ForEachTransformedValueTask<K,V,U>
5072 dl 1.79 (map, null, -1, transformer, action);
5073 dl 1.52 }
5074    
5075     /**
5076     * Returns a task that when invoked, returns a non-null result
5077     * from applying the given search function on each value, or
5078 dl 1.59 * null if none. Upon success, further element processing is
5079     * suppressed and the results of any other parallel
5080     * invocations of the search function are ignored.
5081 dl 1.52 *
5082     * @param map the map
5083     * @param searchFunction a function returning a non-null
5084     * result on success, else null
5085     * @return the task
5086     */
5087     public static <K,V,U> ForkJoinTask<U> searchValues
5088     (ConcurrentHashMapV8<K,V> map,
5089     Fun<? super V, ? extends U> searchFunction) {
5090     if (searchFunction == null) throw new NullPointerException();
5091     return new SearchValuesTask<K,V,U>
5092 dl 1.79 (map, null, -1, searchFunction,
5093 dl 1.52 new AtomicReference<U>());
5094     }
5095    
5096     /**
5097     * Returns a task that when invoked, returns the result of
5098     * accumulating all values using the given reducer to combine
5099     * values, or null if none.
5100     *
5101     * @param map the map
5102     * @param reducer a commutative associative combining function
5103     * @return the task
5104     */
5105     public static <K,V> ForkJoinTask<V> reduceValues
5106     (ConcurrentHashMapV8<K,V> map,
5107     BiFun<? super V, ? super V, ? extends V> reducer) {
5108     if (reducer == null) throw new NullPointerException();
5109     return new ReduceValuesTask<K,V>
5110 dl 1.63 (map, null, -1, null, reducer);
5111 dl 1.52 }
5112    
5113     /**
5114     * Returns a task that when invoked, returns the result of
5115     * accumulating the given transformation of all values using the
5116     * given reducer to combine values, or null if none.
5117     *
5118     * @param map the map
5119     * @param transformer a function returning the transformation
5120 jsr166 1.68 * for an element, or null if there is no transformation (in
5121 dl 1.52 * which case it is not combined).
5122     * @param reducer a commutative associative combining function
5123     * @return the task
5124     */
5125     public static <K,V,U> ForkJoinTask<U> reduceValues
5126     (ConcurrentHashMapV8<K,V> map,
5127     Fun<? super V, ? extends U> transformer,
5128     BiFun<? super U, ? super U, ? extends U> reducer) {
5129     if (transformer == null || reducer == null)
5130     throw new NullPointerException();
5131     return new MapReduceValuesTask<K,V,U>
5132 dl 1.63 (map, null, -1, null, transformer, reducer);
5133 dl 1.52 }
5134    
5135     /**
5136     * Returns a task that when invoked, returns the result of
5137     * accumulating the given transformation of all values using the
5138     * given reducer to combine values, and the given basis as an
5139     * identity value.
5140     *
5141     * @param map the map
5142     * @param transformer a function returning the transformation
5143     * for an element
5144     * @param basis the identity (initial default value) for the reduction
5145     * @param reducer a commutative associative combining function
5146     * @return the task
5147     */
5148     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5149     (ConcurrentHashMapV8<K,V> map,
5150     ObjectToDouble<? super V> transformer,
5151     double basis,
5152     DoubleByDoubleToDouble reducer) {
5153     if (transformer == null || reducer == null)
5154     throw new NullPointerException();
5155     return new MapReduceValuesToDoubleTask<K,V>
5156 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5157 dl 1.52 }
5158    
5159     /**
5160     * Returns a task that when invoked, returns the result of
5161     * accumulating the given transformation of all values using the
5162     * given reducer to combine values, and the given basis as an
5163     * identity value.
5164     *
5165     * @param map the map
5166     * @param transformer a function returning the transformation
5167     * for an element
5168     * @param basis the identity (initial default value) for the reduction
5169     * @param reducer a commutative associative combining function
5170     * @return the task
5171     */
5172     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5173     (ConcurrentHashMapV8<K,V> map,
5174     ObjectToLong<? super V> transformer,
5175     long basis,
5176     LongByLongToLong reducer) {
5177     if (transformer == null || reducer == null)
5178     throw new NullPointerException();
5179     return new MapReduceValuesToLongTask<K,V>
5180 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5181 dl 1.52 }
5182    
5183     /**
5184     * Returns a task that when invoked, returns the result of
5185     * accumulating the given transformation of all values using the
5186     * given reducer to combine values, and the given basis as an
5187     * identity value.
5188     *
5189     * @param map the map
5190     * @param transformer a function returning the transformation
5191     * for an element
5192     * @param basis the identity (initial default value) for the reduction
5193     * @param reducer a commutative associative combining function
5194     * @return the task
5195     */
5196     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5197     (ConcurrentHashMapV8<K,V> map,
5198     ObjectToInt<? super V> transformer,
5199     int basis,
5200     IntByIntToInt reducer) {
5201     if (transformer == null || reducer == null)
5202     throw new NullPointerException();
5203     return new MapReduceValuesToIntTask<K,V>
5204 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5205 dl 1.52 }
5206    
5207     /**
5208     * Returns a task that when invoked, perform the given action
5209 jsr166 1.56 * for each entry.
5210 dl 1.52 *
5211     * @param map the map
5212     * @param action the action
5213     */
5214 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
5215 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5216     Action<Map.Entry<K,V>> action) {
5217     if (action == null) throw new NullPointerException();
5218 dl 1.79 return new ForEachEntryTask<K,V>(map, null, -1, action);
5219 dl 1.52 }
5220    
5221     /**
5222     * Returns a task that when invoked, perform the given action
5223 jsr166 1.56 * for each non-null transformation of each entry.
5224 dl 1.52 *
5225     * @param map the map
5226     * @param transformer a function returning the transformation
5227 jsr166 1.68 * for an element, or null if there is no transformation (in
5228 jsr166 1.67 * which case the action is not applied)
5229 dl 1.52 * @param action the action
5230     */
5231 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5232 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5233     Fun<Map.Entry<K,V>, ? extends U> transformer,
5234     Action<U> action) {
5235     if (transformer == null || action == null)
5236     throw new NullPointerException();
5237     return new ForEachTransformedEntryTask<K,V,U>
5238 dl 1.79 (map, null, -1, transformer, action);
5239 dl 1.52 }
5240    
5241     /**
5242     * Returns a task that when invoked, returns a non-null result
5243     * from applying the given search function on each entry, or
5244 dl 1.59 * null if none. Upon success, further element processing is
5245     * suppressed and the results of any other parallel
5246     * invocations of the search function are ignored.
5247 dl 1.52 *
5248     * @param map the map
5249     * @param searchFunction a function returning a non-null
5250     * result on success, else null
5251     * @return the task
5252     */
5253     public static <K,V,U> ForkJoinTask<U> searchEntries
5254     (ConcurrentHashMapV8<K,V> map,
5255     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5256     if (searchFunction == null) throw new NullPointerException();
5257     return new SearchEntriesTask<K,V,U>
5258 dl 1.79 (map, null, -1, searchFunction,
5259 dl 1.52 new AtomicReference<U>());
5260     }
5261    
5262     /**
5263     * Returns a task that when invoked, returns the result of
5264     * accumulating all entries using the given reducer to combine
5265     * values, or null if none.
5266     *
5267     * @param map the map
5268     * @param reducer a commutative associative combining function
5269     * @return the task
5270     */
5271     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5272     (ConcurrentHashMapV8<K,V> map,
5273     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5274     if (reducer == null) throw new NullPointerException();
5275     return new ReduceEntriesTask<K,V>
5276 dl 1.63 (map, null, -1, null, reducer);
5277 dl 1.52 }
5278    
5279     /**
5280     * Returns a task that when invoked, returns the result of
5281     * accumulating the given transformation of all entries using the
5282     * given reducer to combine values, or null if none.
5283     *
5284     * @param map the map
5285     * @param transformer a function returning the transformation
5286 jsr166 1.68 * for an element, or null if there is no transformation (in
5287 dl 1.52 * which case it is not combined).
5288     * @param reducer a commutative associative combining function
5289     * @return the task
5290     */
5291     public static <K,V,U> ForkJoinTask<U> reduceEntries
5292     (ConcurrentHashMapV8<K,V> map,
5293     Fun<Map.Entry<K,V>, ? extends U> transformer,
5294     BiFun<? super U, ? super U, ? extends U> reducer) {
5295     if (transformer == null || reducer == null)
5296     throw new NullPointerException();
5297     return new MapReduceEntriesTask<K,V,U>
5298 dl 1.63 (map, null, -1, null, transformer, reducer);
5299 dl 1.52 }
5300    
5301     /**
5302     * Returns a task that when invoked, returns the result of
5303     * accumulating the given transformation of all entries using the
5304     * given reducer to combine values, and the given basis as an
5305     * identity value.
5306     *
5307     * @param map the map
5308     * @param transformer a function returning the transformation
5309     * for an element
5310     * @param basis the identity (initial default value) for the reduction
5311     * @param reducer a commutative associative combining function
5312     * @return the task
5313     */
5314     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5315     (ConcurrentHashMapV8<K,V> map,
5316     ObjectToDouble<Map.Entry<K,V>> transformer,
5317     double basis,
5318     DoubleByDoubleToDouble reducer) {
5319     if (transformer == null || reducer == null)
5320     throw new NullPointerException();
5321     return new MapReduceEntriesToDoubleTask<K,V>
5322 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5323 dl 1.52 }
5324    
5325     /**
5326     * Returns a task that when invoked, returns the result of
5327     * accumulating the given transformation of all entries using the
5328     * given reducer to combine values, and the given basis as an
5329     * identity value.
5330     *
5331     * @param map the map
5332     * @param transformer a function returning the transformation
5333     * for an element
5334     * @param basis the identity (initial default value) for the reduction
5335     * @param reducer a commutative associative combining function
5336     * @return the task
5337     */
5338     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5339     (ConcurrentHashMapV8<K,V> map,
5340     ObjectToLong<Map.Entry<K,V>> transformer,
5341     long basis,
5342     LongByLongToLong reducer) {
5343     if (transformer == null || reducer == null)
5344     throw new NullPointerException();
5345     return new MapReduceEntriesToLongTask<K,V>
5346 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5347 dl 1.52 }
5348    
5349     /**
5350     * Returns a task that when invoked, returns the result of
5351     * accumulating the given transformation of all entries using the
5352     * given reducer to combine values, and the given basis as an
5353     * identity value.
5354     *
5355     * @param map the map
5356     * @param transformer a function returning the transformation
5357     * for an element
5358     * @param basis the identity (initial default value) for the reduction
5359     * @param reducer a commutative associative combining function
5360     * @return the task
5361     */
5362     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5363     (ConcurrentHashMapV8<K,V> map,
5364     ObjectToInt<Map.Entry<K,V>> transformer,
5365     int basis,
5366     IntByIntToInt reducer) {
5367     if (transformer == null || reducer == null)
5368     throw new NullPointerException();
5369     return new MapReduceEntriesToIntTask<K,V>
5370 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5371 dl 1.52 }
5372     }
5373    
5374     // -------------------------------------------------------
5375    
5376     /*
5377     * Task classes. Coded in a regular but ugly format/style to
5378     * simplify checks that each variant differs in the right way from
5379     * others.
5380     */
5381    
5382 dl 1.61 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5383 dl 1.79 extends Traverser<K,V,Void> {
5384 dl 1.52 final Action<K> action;
5385     ForEachKeyTask
5386 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5387 dl 1.52 Action<K> action) {
5388 dl 1.79 super(m, p, b);
5389 dl 1.52 this.action = action;
5390     }
5391 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5392     final Action<K> action;
5393     if ((action = this.action) == null)
5394     throw new NullPointerException();
5395     for (int b; (b = preSplit()) > 0;)
5396     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5397     while (advance() != null)
5398     action.apply((K)nextKey);
5399     propagateCompletion();
5400 dl 1.52 }
5401     }
5402    
5403 dl 1.61 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5404 dl 1.79 extends Traverser<K,V,Void> {
5405 dl 1.52 final Action<V> action;
5406     ForEachValueTask
5407 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5408 dl 1.52 Action<V> action) {
5409 dl 1.79 super(m, p, b);
5410 dl 1.52 this.action = action;
5411     }
5412 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5413     final Action<V> action;
5414     if ((action = this.action) == null)
5415     throw new NullPointerException();
5416     for (int b; (b = preSplit()) > 0;)
5417     new ForEachValueTask<K,V>(map, this, b, action).fork();
5418     Object v;
5419     while ((v = advance()) != null)
5420     action.apply((V)v);
5421     propagateCompletion();
5422 dl 1.52 }
5423     }
5424    
5425 dl 1.61 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5426 dl 1.79 extends Traverser<K,V,Void> {
5427 dl 1.52 final Action<Entry<K,V>> action;
5428     ForEachEntryTask
5429 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5430 dl 1.52 Action<Entry<K,V>> action) {
5431 dl 1.79 super(m, p, b);
5432 dl 1.52 this.action = action;
5433     }
5434 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5435     final Action<Entry<K,V>> action;
5436     if ((action = this.action) == null)
5437     throw new NullPointerException();
5438     for (int b; (b = preSplit()) > 0;)
5439     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5440     Object v;
5441     while ((v = advance()) != null)
5442     action.apply(entryFor((K)nextKey, (V)v));
5443     propagateCompletion();
5444 dl 1.52 }
5445     }
5446    
5447 dl 1.61 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5448 dl 1.79 extends Traverser<K,V,Void> {
5449 dl 1.52 final BiAction<K,V> action;
5450     ForEachMappingTask
5451 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5452 dl 1.52 BiAction<K,V> action) {
5453 dl 1.79 super(m, p, b);
5454 dl 1.52 this.action = action;
5455     }
5456 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5457     final BiAction<K,V> action;
5458     if ((action = this.action) == null)
5459     throw new NullPointerException();
5460     for (int b; (b = preSplit()) > 0;)
5461     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5462     Object v;
5463     while ((v = advance()) != null)
5464     action.apply((K)nextKey, (V)v);
5465     propagateCompletion();
5466 dl 1.52 }
5467     }
5468    
5469 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5470 dl 1.79 extends Traverser<K,V,Void> {
5471 dl 1.52 final Fun<? super K, ? extends U> transformer;
5472     final Action<U> action;
5473     ForEachTransformedKeyTask
5474 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5475     Fun<? super K, ? extends U> transformer, Action<U> action) {
5476     super(m, p, b);
5477     this.transformer = transformer; this.action = action;
5478     }
5479     @SuppressWarnings("unchecked") public final void compute() {
5480     final Fun<? super K, ? extends U> transformer;
5481     final Action<U> action;
5482     if ((transformer = this.transformer) == null ||
5483     (action = this.action) == null)
5484     throw new NullPointerException();
5485     for (int b; (b = preSplit()) > 0;)
5486     new ForEachTransformedKeyTask<K,V,U>
5487     (map, this, b, transformer, action).fork();
5488     U u;
5489     while (advance() != null) {
5490     if ((u = transformer.apply((K)nextKey)) != null)
5491     action.apply(u);
5492 dl 1.52 }
5493 dl 1.79 propagateCompletion();
5494 dl 1.52 }
5495     }
5496    
5497 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5498 dl 1.79 extends Traverser<K,V,Void> {
5499 dl 1.52 final Fun<? super V, ? extends U> transformer;
5500     final Action<U> action;
5501     ForEachTransformedValueTask
5502 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5503     Fun<? super V, ? extends U> transformer, Action<U> action) {
5504     super(m, p, b);
5505     this.transformer = transformer; this.action = action;
5506     }
5507     @SuppressWarnings("unchecked") public final void compute() {
5508     final Fun<? super V, ? extends U> transformer;
5509     final Action<U> action;
5510     if ((transformer = this.transformer) == null ||
5511     (action = this.action) == null)
5512     throw new NullPointerException();
5513     for (int b; (b = preSplit()) > 0;)
5514     new ForEachTransformedValueTask<K,V,U>
5515     (map, this, b, transformer, action).fork();
5516     Object v; U u;
5517     while ((v = advance()) != null) {
5518     if ((u = transformer.apply((V)v)) != null)
5519     action.apply(u);
5520 dl 1.52 }
5521 dl 1.79 propagateCompletion();
5522 dl 1.52 }
5523     }
5524    
5525 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5526 dl 1.79 extends Traverser<K,V,Void> {
5527 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5528     final Action<U> action;
5529     ForEachTransformedEntryTask
5530 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5531     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5532     super(m, p, b);
5533     this.transformer = transformer; this.action = action;
5534     }
5535     @SuppressWarnings("unchecked") public final void compute() {
5536     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5537     final Action<U> action;
5538     if ((transformer = this.transformer) == null ||
5539     (action = this.action) == null)
5540     throw new NullPointerException();
5541     for (int b; (b = preSplit()) > 0;)
5542     new ForEachTransformedEntryTask<K,V,U>
5543     (map, this, b, transformer, action).fork();
5544     Object v; U u;
5545     while ((v = advance()) != null) {
5546     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5547     action.apply(u);
5548 dl 1.52 }
5549 dl 1.79 propagateCompletion();
5550 dl 1.52 }
5551     }
5552    
5553 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5554 dl 1.79 extends Traverser<K,V,Void> {
5555 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5556     final Action<U> action;
5557     ForEachTransformedMappingTask
5558 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5559 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5560     Action<U> action) {
5561 dl 1.79 super(m, p, b);
5562     this.transformer = transformer; this.action = action;
5563 dl 1.52 }
5564 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5565     final BiFun<? super K, ? super V, ? extends U> transformer;
5566     final Action<U> action;
5567     if ((transformer = this.transformer) == null ||
5568     (action = this.action) == null)
5569     throw new NullPointerException();
5570     for (int b; (b = preSplit()) > 0;)
5571     new ForEachTransformedMappingTask<K,V,U>
5572     (map, this, b, transformer, action).fork();
5573     Object v; U u;
5574     while ((v = advance()) != null) {
5575     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5576     action.apply(u);
5577 dl 1.52 }
5578 dl 1.79 propagateCompletion();
5579 dl 1.52 }
5580     }
5581    
5582 dl 1.61 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5583 dl 1.79 extends Traverser<K,V,U> {
5584 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
5585     final AtomicReference<U> result;
5586     SearchKeysTask
5587 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5588 dl 1.52 Fun<? super K, ? extends U> searchFunction,
5589     AtomicReference<U> result) {
5590 dl 1.79 super(m, p, b);
5591 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5592     }
5593 dl 1.79 public final U getRawResult() { return result.get(); }
5594     @SuppressWarnings("unchecked") public final void compute() {
5595     final Fun<? super K, ? extends U> searchFunction;
5596     final AtomicReference<U> result;
5597     if ((searchFunction = this.searchFunction) == null ||
5598     (result = this.result) == null)
5599     throw new NullPointerException();
5600     for (int b;;) {
5601     if (result.get() != null)
5602     return;
5603     if ((b = preSplit()) <= 0)
5604     break;
5605     new SearchKeysTask<K,V,U>
5606     (map, this, b, searchFunction, result).fork();
5607     }
5608     while (result.get() == null) {
5609     U u;
5610     if (advance() == null) {
5611     propagateCompletion();
5612     break;
5613 dl 1.61 }
5614 dl 1.79 if ((u = searchFunction.apply((K)nextKey)) != null) {
5615     if (result.compareAndSet(null, u))
5616     quietlyCompleteRoot();
5617     break;
5618 dl 1.52 }
5619     }
5620     }
5621     }
5622    
5623 dl 1.61 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5624 dl 1.79 extends Traverser<K,V,U> {
5625 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
5626     final AtomicReference<U> result;
5627     SearchValuesTask
5628 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5629 dl 1.52 Fun<? super V, ? extends U> searchFunction,
5630     AtomicReference<U> result) {
5631 dl 1.79 super(m, p, b);
5632 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5633     }
5634 dl 1.79 public final U getRawResult() { return result.get(); }
5635     @SuppressWarnings("unchecked") public final void compute() {
5636     final Fun<? super V, ? extends U> searchFunction;
5637     final AtomicReference<U> result;
5638     if ((searchFunction = this.searchFunction) == null ||
5639     (result = this.result) == null)
5640     throw new NullPointerException();
5641     for (int b;;) {
5642     if (result.get() != null)
5643     return;
5644     if ((b = preSplit()) <= 0)
5645     break;
5646     new SearchValuesTask<K,V,U>
5647     (map, this, b, searchFunction, result).fork();
5648     }
5649     while (result.get() == null) {
5650     Object v; U u;
5651     if ((v = advance()) == null) {
5652     propagateCompletion();
5653     break;
5654 dl 1.61 }
5655 dl 1.79 if ((u = searchFunction.apply((V)v)) != null) {
5656     if (result.compareAndSet(null, u))
5657     quietlyCompleteRoot();
5658     break;
5659 dl 1.52 }
5660     }
5661     }
5662     }
5663    
5664 dl 1.61 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5665 dl 1.79 extends Traverser<K,V,U> {
5666 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
5667     final AtomicReference<U> result;
5668     SearchEntriesTask
5669 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5670 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
5671     AtomicReference<U> result) {
5672 dl 1.79 super(m, p, b);
5673 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5674     }
5675 dl 1.79 public final U getRawResult() { return result.get(); }
5676     @SuppressWarnings("unchecked") public final void compute() {
5677     final Fun<Entry<K,V>, ? extends U> searchFunction;
5678     final AtomicReference<U> result;
5679     if ((searchFunction = this.searchFunction) == null ||
5680     (result = this.result) == null)
5681     throw new NullPointerException();
5682     for (int b;;) {
5683     if (result.get() != null)
5684     return;
5685     if ((b = preSplit()) <= 0)
5686     break;
5687     new SearchEntriesTask<K,V,U>
5688     (map, this, b, searchFunction, result).fork();
5689     }
5690     while (result.get() == null) {
5691     Object v; U u;
5692     if ((v = advance()) == null) {
5693     propagateCompletion();
5694     break;
5695 dl 1.61 }
5696 dl 1.79 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5697     if (result.compareAndSet(null, u))
5698     quietlyCompleteRoot();
5699     return;
5700 dl 1.52 }
5701     }
5702     }
5703     }
5704    
5705 dl 1.61 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5706 dl 1.79 extends Traverser<K,V,U> {
5707 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5708     final AtomicReference<U> result;
5709     SearchMappingsTask
5710 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5711 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5712     AtomicReference<U> result) {
5713 dl 1.79 super(m, p, b);
5714 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5715     }
5716 dl 1.79 public final U getRawResult() { return result.get(); }
5717     @SuppressWarnings("unchecked") public final void compute() {
5718     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5719     final AtomicReference<U> result;
5720     if ((searchFunction = this.searchFunction) == null ||
5721     (result = this.result) == null)
5722     throw new NullPointerException();
5723     for (int b;;) {
5724     if (result.get() != null)
5725     return;
5726     if ((b = preSplit()) <= 0)
5727     break;
5728     new SearchMappingsTask<K,V,U>
5729     (map, this, b, searchFunction, result).fork();
5730     }
5731     while (result.get() == null) {
5732     Object v; U u;
5733     if ((v = advance()) == null) {
5734     propagateCompletion();
5735     break;
5736 dl 1.61 }
5737 dl 1.79 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5738     if (result.compareAndSet(null, u))
5739     quietlyCompleteRoot();
5740     break;
5741 dl 1.52 }
5742     }
5743     }
5744     }
5745    
5746 dl 1.61 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5747 dl 1.79 extends Traverser<K,V,K> {
5748 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5749     K result;
5750 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5751 dl 1.52 ReduceKeysTask
5752 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5753 dl 1.61 ReduceKeysTask<K,V> nextRight,
5754 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5755 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5756 dl 1.52 this.reducer = reducer;
5757     }
5758 dl 1.79 public final K getRawResult() { return result; }
5759     @SuppressWarnings("unchecked") public final void compute() {
5760 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer =
5761     this.reducer;
5762     if (reducer == null)
5763 dl 1.79 throw new NullPointerException();
5764     for (int b; (b = preSplit()) > 0;)
5765     (rights = new ReduceKeysTask<K,V>
5766     (map, this, b, rights, reducer)).fork();
5767     K r = null;
5768     while (advance() != null) {
5769     K u = (K)nextKey;
5770     r = (r == null) ? u : reducer.apply(r, u);
5771     }
5772     result = r;
5773     CountedCompleter<?> c;
5774     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5775     ReduceKeysTask<K,V>
5776     t = (ReduceKeysTask<K,V>)c,
5777     s = t.rights;
5778     while (s != null) {
5779     K tr, sr;
5780     if ((sr = s.result) != null)
5781     t.result = (((tr = t.result) == null) ? sr :
5782     reducer.apply(tr, sr));
5783     s = t.rights = s.nextRight;
5784 dl 1.52 }
5785 dl 1.71 }
5786 dl 1.52 }
5787     }
5788    
5789 dl 1.61 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5790 dl 1.79 extends Traverser<K,V,V> {
5791 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5792     V result;
5793 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5794 dl 1.52 ReduceValuesTask
5795 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5796 dl 1.61 ReduceValuesTask<K,V> nextRight,
5797 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5798 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5799 dl 1.52 this.reducer = reducer;
5800     }
5801 dl 1.79 public final V getRawResult() { return result; }
5802     @SuppressWarnings("unchecked") public final void compute() {
5803 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer =
5804     this.reducer;
5805     if (reducer == null)
5806 dl 1.79 throw new NullPointerException();
5807     for (int b; (b = preSplit()) > 0;)
5808     (rights = new ReduceValuesTask<K,V>
5809     (map, this, b, rights, reducer)).fork();
5810     V r = null;
5811     Object v;
5812     while ((v = advance()) != null) {
5813     V u = (V)v;
5814     r = (r == null) ? u : reducer.apply(r, u);
5815     }
5816     result = r;
5817     CountedCompleter<?> c;
5818     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5819     ReduceValuesTask<K,V>
5820     t = (ReduceValuesTask<K,V>)c,
5821     s = t.rights;
5822     while (s != null) {
5823     V tr, sr;
5824     if ((sr = s.result) != null)
5825     t.result = (((tr = t.result) == null) ? sr :
5826     reducer.apply(tr, sr));
5827     s = t.rights = s.nextRight;
5828 dl 1.52 }
5829     }
5830     }
5831     }
5832    
5833 dl 1.61 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5834 dl 1.79 extends Traverser<K,V,Map.Entry<K,V>> {
5835 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5836     Map.Entry<K,V> result;
5837 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
5838 dl 1.52 ReduceEntriesTask
5839 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5840 dl 1.63 ReduceEntriesTask<K,V> nextRight,
5841 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5842 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5843 dl 1.52 this.reducer = reducer;
5844     }
5845 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
5846     @SuppressWarnings("unchecked") public final void compute() {
5847 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5848     this.reducer;
5849     if (reducer == null)
5850 dl 1.79 throw new NullPointerException();
5851     for (int b; (b = preSplit()) > 0;)
5852     (rights = new ReduceEntriesTask<K,V>
5853     (map, this, b, rights, reducer)).fork();
5854     Map.Entry<K,V> r = null;
5855     Object v;
5856     while ((v = advance()) != null) {
5857     Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5858     r = (r == null) ? u : reducer.apply(r, u);
5859     }
5860     result = r;
5861     CountedCompleter<?> c;
5862     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5863     ReduceEntriesTask<K,V>
5864     t = (ReduceEntriesTask<K,V>)c,
5865     s = t.rights;
5866     while (s != null) {
5867     Map.Entry<K,V> tr, sr;
5868     if ((sr = s.result) != null)
5869     t.result = (((tr = t.result) == null) ? sr :
5870     reducer.apply(tr, sr));
5871     s = t.rights = s.nextRight;
5872 dl 1.52 }
5873     }
5874     }
5875     }
5876    
5877 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5878 dl 1.79 extends Traverser<K,V,U> {
5879 dl 1.52 final Fun<? super K, ? extends U> transformer;
5880     final BiFun<? super U, ? super U, ? extends U> reducer;
5881     U result;
5882 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
5883 dl 1.52 MapReduceKeysTask
5884 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5885 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
5886 dl 1.52 Fun<? super K, ? extends U> transformer,
5887     BiFun<? super U, ? super U, ? extends U> reducer) {
5888 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5889 dl 1.52 this.transformer = transformer;
5890     this.reducer = reducer;
5891     }
5892 dl 1.79 public final U getRawResult() { return result; }
5893     @SuppressWarnings("unchecked") public final void compute() {
5894 dl 1.52 final Fun<? super K, ? extends U> transformer =
5895     this.transformer;
5896     final BiFun<? super U, ? super U, ? extends U> reducer =
5897     this.reducer;
5898     if (transformer == null || reducer == null)
5899 dl 1.79 throw new NullPointerException();
5900     for (int b; (b = preSplit()) > 0;)
5901     (rights = new MapReduceKeysTask<K,V,U>
5902     (map, this, b, rights, transformer, reducer)).fork();
5903     U r = null, u;
5904     while (advance() != null) {
5905     if ((u = transformer.apply((K)nextKey)) != null)
5906     r = (r == null) ? u : reducer.apply(r, u);
5907     }
5908     result = r;
5909     CountedCompleter<?> c;
5910     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911     MapReduceKeysTask<K,V,U>
5912     t = (MapReduceKeysTask<K,V,U>)c,
5913     s = t.rights;
5914     while (s != null) {
5915     U tr, sr;
5916     if ((sr = s.result) != null)
5917     t.result = (((tr = t.result) == null) ? sr :
5918     reducer.apply(tr, sr));
5919     s = t.rights = s.nextRight;
5920 dl 1.52 }
5921     }
5922     }
5923     }
5924    
5925 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5926 dl 1.79 extends Traverser<K,V,U> {
5927 dl 1.52 final Fun<? super V, ? extends U> transformer;
5928     final BiFun<? super U, ? super U, ? extends U> reducer;
5929     U result;
5930 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
5931 dl 1.52 MapReduceValuesTask
5932 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5933 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
5934 dl 1.52 Fun<? super V, ? extends U> transformer,
5935     BiFun<? super U, ? super U, ? extends U> reducer) {
5936 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5937 dl 1.52 this.transformer = transformer;
5938     this.reducer = reducer;
5939     }
5940 dl 1.79 public final U getRawResult() { return result; }
5941     @SuppressWarnings("unchecked") public final void compute() {
5942 dl 1.52 final Fun<? super V, ? extends U> transformer =
5943     this.transformer;
5944     final BiFun<? super U, ? super U, ? extends U> reducer =
5945     this.reducer;
5946     if (transformer == null || reducer == null)
5947 dl 1.79 throw new NullPointerException();
5948     for (int b; (b = preSplit()) > 0;)
5949     (rights = new MapReduceValuesTask<K,V,U>
5950     (map, this, b, rights, transformer, reducer)).fork();
5951     U r = null, u;
5952     Object v;
5953     while ((v = advance()) != null) {
5954     if ((u = transformer.apply((V)v)) != null)
5955     r = (r == null) ? u : reducer.apply(r, u);
5956     }
5957     result = r;
5958     CountedCompleter<?> c;
5959     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5960     MapReduceValuesTask<K,V,U>
5961     t = (MapReduceValuesTask<K,V,U>)c,
5962     s = t.rights;
5963     while (s != null) {
5964     U tr, sr;
5965     if ((sr = s.result) != null)
5966     t.result = (((tr = t.result) == null) ? sr :
5967     reducer.apply(tr, sr));
5968     s = t.rights = s.nextRight;
5969 dl 1.52 }
5970 dl 1.71 }
5971 dl 1.52 }
5972     }
5973    
5974 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5975 dl 1.79 extends Traverser<K,V,U> {
5976 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5977     final BiFun<? super U, ? super U, ? extends U> reducer;
5978     U result;
5979 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
5980 dl 1.52 MapReduceEntriesTask
5981 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5982 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
5983 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
5984     BiFun<? super U, ? super U, ? extends U> reducer) {
5985 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5986 dl 1.52 this.transformer = transformer;
5987     this.reducer = reducer;
5988     }
5989 dl 1.79 public final U getRawResult() { return result; }
5990     @SuppressWarnings("unchecked") public final void compute() {
5991 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5992     this.transformer;
5993     final BiFun<? super U, ? super U, ? extends U> reducer =
5994     this.reducer;
5995     if (transformer == null || reducer == null)
5996 dl 1.79 throw new NullPointerException();
5997     for (int b; (b = preSplit()) > 0;)
5998     (rights = new MapReduceEntriesTask<K,V,U>
5999     (map, this, b, rights, transformer, reducer)).fork();
6000     U r = null, u;
6001     Object v;
6002     while ((v = advance()) != null) {
6003     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6004     r = (r == null) ? u : reducer.apply(r, u);
6005     }
6006     result = r;
6007     CountedCompleter<?> c;
6008     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6009     MapReduceEntriesTask<K,V,U>
6010     t = (MapReduceEntriesTask<K,V,U>)c,
6011     s = t.rights;
6012     while (s != null) {
6013     U tr, sr;
6014     if ((sr = s.result) != null)
6015     t.result = (((tr = t.result) == null) ? sr :
6016     reducer.apply(tr, sr));
6017     s = t.rights = s.nextRight;
6018 dl 1.52 }
6019     }
6020     }
6021     }
6022    
6023 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6024 dl 1.79 extends Traverser<K,V,U> {
6025 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
6026     final BiFun<? super U, ? super U, ? extends U> reducer;
6027     U result;
6028 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
6029 dl 1.52 MapReduceMappingsTask
6030 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6031 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
6032 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
6033     BiFun<? super U, ? super U, ? extends U> reducer) {
6034 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6035 dl 1.52 this.transformer = transformer;
6036     this.reducer = reducer;
6037     }
6038 dl 1.79 public final U getRawResult() { return result; }
6039     @SuppressWarnings("unchecked") public final void compute() {
6040 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer =
6041     this.transformer;
6042     final BiFun<? super U, ? super U, ? extends U> reducer =
6043     this.reducer;
6044     if (transformer == null || reducer == null)
6045 dl 1.79 throw new NullPointerException();
6046     for (int b; (b = preSplit()) > 0;)
6047     (rights = new MapReduceMappingsTask<K,V,U>
6048     (map, this, b, rights, transformer, reducer)).fork();
6049     U r = null, u;
6050     Object v;
6051     while ((v = advance()) != null) {
6052     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6053     r = (r == null) ? u : reducer.apply(r, u);
6054     }
6055     result = r;
6056     CountedCompleter<?> c;
6057     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6058     MapReduceMappingsTask<K,V,U>
6059     t = (MapReduceMappingsTask<K,V,U>)c,
6060     s = t.rights;
6061     while (s != null) {
6062     U tr, sr;
6063     if ((sr = s.result) != null)
6064     t.result = (((tr = t.result) == null) ? sr :
6065     reducer.apply(tr, sr));
6066     s = t.rights = s.nextRight;
6067 dl 1.52 }
6068 dl 1.71 }
6069 dl 1.52 }
6070     }
6071    
6072 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6073 dl 1.79 extends Traverser<K,V,Double> {
6074 dl 1.52 final ObjectToDouble<? super K> transformer;
6075     final DoubleByDoubleToDouble reducer;
6076     final double basis;
6077     double result;
6078 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6079 dl 1.52 MapReduceKeysToDoubleTask
6080 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6081 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
6082 dl 1.52 ObjectToDouble<? super K> transformer,
6083     double basis,
6084     DoubleByDoubleToDouble reducer) {
6085 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6086 dl 1.52 this.transformer = transformer;
6087     this.basis = basis; this.reducer = reducer;
6088     }
6089 dl 1.79 public final Double getRawResult() { return result; }
6090     @SuppressWarnings("unchecked") public final void compute() {
6091 dl 1.52 final ObjectToDouble<? super K> transformer =
6092     this.transformer;
6093     final DoubleByDoubleToDouble reducer = this.reducer;
6094     if (transformer == null || reducer == null)
6095 dl 1.79 throw new NullPointerException();
6096     double r = this.basis;
6097     for (int b; (b = preSplit()) > 0;)
6098     (rights = new MapReduceKeysToDoubleTask<K,V>
6099     (map, this, b, rights, transformer, r, reducer)).fork();
6100     while (advance() != null)
6101     r = reducer.apply(r, transformer.apply((K)nextKey));
6102     result = r;
6103     CountedCompleter<?> c;
6104     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6105     MapReduceKeysToDoubleTask<K,V>
6106     t = (MapReduceKeysToDoubleTask<K,V>)c,
6107     s = t.rights;
6108     while (s != null) {
6109     t.result = reducer.apply(t.result, s.result);
6110     s = t.rights = s.nextRight;
6111 dl 1.52 }
6112 dl 1.71 }
6113 dl 1.52 }
6114     }
6115    
6116 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6117 dl 1.79 extends Traverser<K,V,Double> {
6118 dl 1.52 final ObjectToDouble<? super V> transformer;
6119     final DoubleByDoubleToDouble reducer;
6120     final double basis;
6121     double result;
6122 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6123 dl 1.52 MapReduceValuesToDoubleTask
6124 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6125 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
6126 dl 1.52 ObjectToDouble<? super V> transformer,
6127     double basis,
6128     DoubleByDoubleToDouble reducer) {
6129 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6130 dl 1.52 this.transformer = transformer;
6131     this.basis = basis; this.reducer = reducer;
6132     }
6133 dl 1.79 public final Double getRawResult() { return result; }
6134     @SuppressWarnings("unchecked") public final void compute() {
6135 dl 1.52 final ObjectToDouble<? super V> transformer =
6136     this.transformer;
6137     final DoubleByDoubleToDouble reducer = this.reducer;
6138     if (transformer == null || reducer == null)
6139 dl 1.79 throw new NullPointerException();
6140     double r = this.basis;
6141     for (int b; (b = preSplit()) > 0;)
6142     (rights = new MapReduceValuesToDoubleTask<K,V>
6143     (map, this, b, rights, transformer, r, reducer)).fork();
6144     Object v;
6145     while ((v = advance()) != null)
6146     r = reducer.apply(r, transformer.apply((V)v));
6147     result = r;
6148     CountedCompleter<?> c;
6149     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6150     MapReduceValuesToDoubleTask<K,V>
6151     t = (MapReduceValuesToDoubleTask<K,V>)c,
6152     s = t.rights;
6153     while (s != null) {
6154     t.result = reducer.apply(t.result, s.result);
6155     s = t.rights = s.nextRight;
6156 dl 1.52 }
6157 dl 1.71 }
6158 dl 1.52 }
6159     }
6160    
6161 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6162 dl 1.79 extends Traverser<K,V,Double> {
6163 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
6164     final DoubleByDoubleToDouble reducer;
6165     final double basis;
6166     double result;
6167 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6168 dl 1.52 MapReduceEntriesToDoubleTask
6169 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6170 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
6171 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
6172     double basis,
6173     DoubleByDoubleToDouble reducer) {
6174 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6175 dl 1.52 this.transformer = transformer;
6176     this.basis = basis; this.reducer = reducer;
6177     }
6178 dl 1.79 public final Double getRawResult() { return result; }
6179     @SuppressWarnings("unchecked") public final void compute() {
6180 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer =
6181     this.transformer;
6182     final DoubleByDoubleToDouble reducer = this.reducer;
6183     if (transformer == null || reducer == null)
6184 dl 1.79 throw new NullPointerException();
6185     double r = this.basis;
6186     for (int b; (b = preSplit()) > 0;)
6187     (rights = new MapReduceEntriesToDoubleTask<K,V>
6188     (map, this, b, rights, transformer, r, reducer)).fork();
6189     Object v;
6190     while ((v = advance()) != null)
6191     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6192     result = r;
6193     CountedCompleter<?> c;
6194     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6195     MapReduceEntriesToDoubleTask<K,V>
6196     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6197     s = t.rights;
6198     while (s != null) {
6199     t.result = reducer.apply(t.result, s.result);
6200     s = t.rights = s.nextRight;
6201 dl 1.52 }
6202 dl 1.71 }
6203 dl 1.52 }
6204     }
6205    
6206 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6207 dl 1.79 extends Traverser<K,V,Double> {
6208 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6209     final DoubleByDoubleToDouble reducer;
6210     final double basis;
6211     double result;
6212 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6213 dl 1.52 MapReduceMappingsToDoubleTask
6214 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6215 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
6216 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
6217     double basis,
6218     DoubleByDoubleToDouble reducer) {
6219 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6220 dl 1.52 this.transformer = transformer;
6221     this.basis = basis; this.reducer = reducer;
6222     }
6223 dl 1.79 public final Double getRawResult() { return result; }
6224     @SuppressWarnings("unchecked") public final void compute() {
6225 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6226     this.transformer;
6227     final DoubleByDoubleToDouble reducer = this.reducer;
6228     if (transformer == null || reducer == null)
6229 dl 1.79 throw new NullPointerException();
6230     double r = this.basis;
6231     for (int b; (b = preSplit()) > 0;)
6232     (rights = new MapReduceMappingsToDoubleTask<K,V>
6233     (map, this, b, rights, transformer, r, reducer)).fork();
6234     Object v;
6235     while ((v = advance()) != null)
6236     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6237     result = r;
6238     CountedCompleter<?> c;
6239     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240     MapReduceMappingsToDoubleTask<K,V>
6241     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6242     s = t.rights;
6243     while (s != null) {
6244     t.result = reducer.apply(t.result, s.result);
6245     s = t.rights = s.nextRight;
6246 dl 1.52 }
6247 dl 1.71 }
6248 dl 1.52 }
6249     }
6250    
6251 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6252 dl 1.79 extends Traverser<K,V,Long> {
6253 dl 1.52 final ObjectToLong<? super K> transformer;
6254     final LongByLongToLong reducer;
6255     final long basis;
6256     long result;
6257 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
6258 dl 1.52 MapReduceKeysToLongTask
6259 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6260 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
6261 dl 1.52 ObjectToLong<? super K> transformer,
6262     long basis,
6263     LongByLongToLong reducer) {
6264 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6265 dl 1.52 this.transformer = transformer;
6266     this.basis = basis; this.reducer = reducer;
6267     }
6268 dl 1.79 public final Long getRawResult() { return result; }
6269     @SuppressWarnings("unchecked") public final void compute() {
6270 dl 1.52 final ObjectToLong<? super K> transformer =
6271     this.transformer;
6272     final LongByLongToLong reducer = this.reducer;
6273     if (transformer == null || reducer == null)
6274 dl 1.79 throw new NullPointerException();
6275     long r = this.basis;
6276     for (int b; (b = preSplit()) > 0;)
6277     (rights = new MapReduceKeysToLongTask<K,V>
6278     (map, this, b, rights, transformer, r, reducer)).fork();
6279     while (advance() != null)
6280     r = reducer.apply(r, transformer.apply((K)nextKey));
6281     result = r;
6282     CountedCompleter<?> c;
6283     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6284     MapReduceKeysToLongTask<K,V>
6285     t = (MapReduceKeysToLongTask<K,V>)c,
6286     s = t.rights;
6287     while (s != null) {
6288     t.result = reducer.apply(t.result, s.result);
6289     s = t.rights = s.nextRight;
6290 dl 1.52 }
6291 dl 1.71 }
6292 dl 1.52 }
6293     }
6294    
6295 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6296 dl 1.79 extends Traverser<K,V,Long> {
6297 dl 1.52 final ObjectToLong<? super V> transformer;
6298     final LongByLongToLong reducer;
6299     final long basis;
6300     long result;
6301 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
6302 dl 1.52 MapReduceValuesToLongTask
6303 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6304 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
6305 dl 1.52 ObjectToLong<? super V> transformer,
6306     long basis,
6307     LongByLongToLong reducer) {
6308 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6309 dl 1.52 this.transformer = transformer;
6310     this.basis = basis; this.reducer = reducer;
6311     }
6312 dl 1.79 public final Long getRawResult() { return result; }
6313     @SuppressWarnings("unchecked") public final void compute() {
6314 dl 1.52 final ObjectToLong<? super V> transformer =
6315     this.transformer;
6316     final LongByLongToLong reducer = this.reducer;
6317     if (transformer == null || reducer == null)
6318 dl 1.79 throw new NullPointerException();
6319     long r = this.basis;
6320     for (int b; (b = preSplit()) > 0;)
6321     (rights = new MapReduceValuesToLongTask<K,V>
6322     (map, this, b, rights, transformer, r, reducer)).fork();
6323     Object v;
6324     while ((v = advance()) != null)
6325     r = reducer.apply(r, transformer.apply((V)v));
6326     result = r;
6327     CountedCompleter<?> c;
6328     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6329     MapReduceValuesToLongTask<K,V>
6330     t = (MapReduceValuesToLongTask<K,V>)c,
6331     s = t.rights;
6332     while (s != null) {
6333     t.result = reducer.apply(t.result, s.result);
6334     s = t.rights = s.nextRight;
6335 dl 1.52 }
6336 dl 1.71 }
6337 dl 1.52 }
6338     }
6339    
6340 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6341 dl 1.79 extends Traverser<K,V,Long> {
6342 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
6343     final LongByLongToLong reducer;
6344     final long basis;
6345     long result;
6346 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6347 dl 1.52 MapReduceEntriesToLongTask
6348 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6349 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
6350 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
6351     long basis,
6352     LongByLongToLong reducer) {
6353 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6354 dl 1.52 this.transformer = transformer;
6355     this.basis = basis; this.reducer = reducer;
6356     }
6357 dl 1.79 public final Long getRawResult() { return result; }
6358     @SuppressWarnings("unchecked") public final void compute() {
6359 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer =
6360     this.transformer;
6361     final LongByLongToLong reducer = this.reducer;
6362     if (transformer == null || reducer == null)
6363 dl 1.79 throw new NullPointerException();
6364     long r = this.basis;
6365     for (int b; (b = preSplit()) > 0;)
6366     (rights = new MapReduceEntriesToLongTask<K,V>
6367     (map, this, b, rights, transformer, r, reducer)).fork();
6368     Object v;
6369     while ((v = advance()) != null)
6370     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6371     result = r;
6372     CountedCompleter<?> c;
6373     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6374     MapReduceEntriesToLongTask<K,V>
6375     t = (MapReduceEntriesToLongTask<K,V>)c,
6376     s = t.rights;
6377     while (s != null) {
6378     t.result = reducer.apply(t.result, s.result);
6379     s = t.rights = s.nextRight;
6380 dl 1.52 }
6381     }
6382     }
6383     }
6384    
6385 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6386 dl 1.79 extends Traverser<K,V,Long> {
6387 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
6388     final LongByLongToLong reducer;
6389     final long basis;
6390     long result;
6391 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6392 dl 1.52 MapReduceMappingsToLongTask
6393 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6394 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
6395 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
6396     long basis,
6397     LongByLongToLong reducer) {
6398 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6399 dl 1.52 this.transformer = transformer;
6400     this.basis = basis; this.reducer = reducer;
6401     }
6402 dl 1.79 public final Long getRawResult() { return result; }
6403     @SuppressWarnings("unchecked") public final void compute() {
6404 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer =
6405     this.transformer;
6406     final LongByLongToLong reducer = this.reducer;
6407     if (transformer == null || reducer == null)
6408 dl 1.79 throw new NullPointerException();
6409     long r = this.basis;
6410     for (int b; (b = preSplit()) > 0;)
6411     (rights = new MapReduceMappingsToLongTask<K,V>
6412     (map, this, b, rights, transformer, r, reducer)).fork();
6413     Object v;
6414     while ((v = advance()) != null)
6415     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6416     result = r;
6417     CountedCompleter<?> c;
6418     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6419     MapReduceMappingsToLongTask<K,V>
6420     t = (MapReduceMappingsToLongTask<K,V>)c,
6421     s = t.rights;
6422     while (s != null) {
6423     t.result = reducer.apply(t.result, s.result);
6424     s = t.rights = s.nextRight;
6425 dl 1.52 }
6426 dl 1.71 }
6427 dl 1.52 }
6428     }
6429    
6430 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6431 dl 1.79 extends Traverser<K,V,Integer> {
6432 dl 1.52 final ObjectToInt<? super K> transformer;
6433     final IntByIntToInt reducer;
6434     final int basis;
6435     int result;
6436 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
6437 dl 1.52 MapReduceKeysToIntTask
6438 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6439 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
6440 dl 1.52 ObjectToInt<? super K> transformer,
6441     int basis,
6442     IntByIntToInt reducer) {
6443 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6444 dl 1.52 this.transformer = transformer;
6445     this.basis = basis; this.reducer = reducer;
6446     }
6447 dl 1.79 public final Integer getRawResult() { return result; }
6448     @SuppressWarnings("unchecked") public final void compute() {
6449 dl 1.52 final ObjectToInt<? super K> transformer =
6450     this.transformer;
6451     final IntByIntToInt reducer = this.reducer;
6452     if (transformer == null || reducer == null)
6453 dl 1.79 throw new NullPointerException();
6454     int r = this.basis;
6455     for (int b; (b = preSplit()) > 0;)
6456     (rights = new MapReduceKeysToIntTask<K,V>
6457     (map, this, b, rights, transformer, r, reducer)).fork();
6458     while (advance() != null)
6459     r = reducer.apply(r, transformer.apply((K)nextKey));
6460     result = r;
6461     CountedCompleter<?> c;
6462     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6463     MapReduceKeysToIntTask<K,V>
6464     t = (MapReduceKeysToIntTask<K,V>)c,
6465     s = t.rights;
6466     while (s != null) {
6467     t.result = reducer.apply(t.result, s.result);
6468     s = t.rights = s.nextRight;
6469 dl 1.52 }
6470 dl 1.71 }
6471 dl 1.52 }
6472     }
6473    
6474 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6475 dl 1.79 extends Traverser<K,V,Integer> {
6476 dl 1.52 final ObjectToInt<? super V> transformer;
6477     final IntByIntToInt reducer;
6478     final int basis;
6479     int result;
6480 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
6481 dl 1.52 MapReduceValuesToIntTask
6482 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6483 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
6484 dl 1.52 ObjectToInt<? super V> transformer,
6485     int basis,
6486     IntByIntToInt reducer) {
6487 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6488 dl 1.52 this.transformer = transformer;
6489     this.basis = basis; this.reducer = reducer;
6490     }
6491 dl 1.79 public final Integer getRawResult() { return result; }
6492     @SuppressWarnings("unchecked") public final void compute() {
6493 dl 1.52 final ObjectToInt<? super V> transformer =
6494     this.transformer;
6495     final IntByIntToInt reducer = this.reducer;
6496     if (transformer == null || reducer == null)
6497 dl 1.79 throw new NullPointerException();
6498     int r = this.basis;
6499     for (int b; (b = preSplit()) > 0;)
6500     (rights = new MapReduceValuesToIntTask<K,V>
6501     (map, this, b, rights, transformer, r, reducer)).fork();
6502     Object v;
6503     while ((v = advance()) != null)
6504     r = reducer.apply(r, transformer.apply((V)v));
6505     result = r;
6506     CountedCompleter<?> c;
6507     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6508     MapReduceValuesToIntTask<K,V>
6509     t = (MapReduceValuesToIntTask<K,V>)c,
6510     s = t.rights;
6511     while (s != null) {
6512     t.result = reducer.apply(t.result, s.result);
6513     s = t.rights = s.nextRight;
6514 dl 1.52 }
6515 dl 1.71 }
6516 dl 1.52 }
6517     }
6518    
6519 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6520 dl 1.79 extends Traverser<K,V,Integer> {
6521 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
6522     final IntByIntToInt reducer;
6523     final int basis;
6524     int result;
6525 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6526 dl 1.52 MapReduceEntriesToIntTask
6527 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6528 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
6529 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
6530     int basis,
6531     IntByIntToInt reducer) {
6532 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6533 dl 1.52 this.transformer = transformer;
6534     this.basis = basis; this.reducer = reducer;
6535     }
6536 dl 1.79 public final Integer getRawResult() { return result; }
6537     @SuppressWarnings("unchecked") public final void compute() {
6538 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer =
6539     this.transformer;
6540     final IntByIntToInt reducer = this.reducer;
6541     if (transformer == null || reducer == null)
6542 dl 1.79 throw new NullPointerException();
6543     int r = this.basis;
6544     for (int b; (b = preSplit()) > 0;)
6545     (rights = new MapReduceEntriesToIntTask<K,V>
6546     (map, this, b, rights, transformer, r, reducer)).fork();
6547     Object v;
6548     while ((v = advance()) != null)
6549     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6550     result = r;
6551     CountedCompleter<?> c;
6552     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6553     MapReduceEntriesToIntTask<K,V>
6554     t = (MapReduceEntriesToIntTask<K,V>)c,
6555     s = t.rights;
6556     while (s != null) {
6557     t.result = reducer.apply(t.result, s.result);
6558     s = t.rights = s.nextRight;
6559 dl 1.52 }
6560     }
6561     }
6562     }
6563    
6564 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6565 dl 1.79 extends Traverser<K,V,Integer> {
6566 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
6567     final IntByIntToInt reducer;
6568     final int basis;
6569     int result;
6570 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6571 dl 1.52 MapReduceMappingsToIntTask
6572 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6573     MapReduceMappingsToIntTask<K,V> nextRight,
6574 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
6575     int basis,
6576     IntByIntToInt reducer) {
6577 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6578 dl 1.52 this.transformer = transformer;
6579     this.basis = basis; this.reducer = reducer;
6580     }
6581 dl 1.79 public final Integer getRawResult() { return result; }
6582     @SuppressWarnings("unchecked") public final void compute() {
6583 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer =
6584     this.transformer;
6585     final IntByIntToInt reducer = this.reducer;
6586     if (transformer == null || reducer == null)
6587 dl 1.79 throw new NullPointerException();
6588     int r = this.basis;
6589     for (int b; (b = preSplit()) > 0;)
6590     (rights = new MapReduceMappingsToIntTask<K,V>
6591     (map, this, b, rights, transformer, r, reducer)).fork();
6592     Object v;
6593     while ((v = advance()) != null)
6594     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6595     result = r;
6596     CountedCompleter<?> c;
6597     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6598     MapReduceMappingsToIntTask<K,V>
6599     t = (MapReduceMappingsToIntTask<K,V>)c,
6600     s = t.rights;
6601     while (s != null) {
6602     t.result = reducer.apply(t.result, s.result);
6603     s = t.rights = s.nextRight;
6604 dl 1.52 }
6605     }
6606     }
6607     }
6608    
6609     // Unsafe mechanics
6610     private static final sun.misc.Unsafe UNSAFE;
6611     private static final long counterOffset;
6612     private static final long sizeCtlOffset;
6613     private static final long ABASE;
6614     private static final int ASHIFT;
6615    
6616     static {
6617     int ss;
6618     try {
6619     UNSAFE = getUnsafe();
6620     Class<?> k = ConcurrentHashMapV8.class;
6621     counterOffset = UNSAFE.objectFieldOffset
6622     (k.getDeclaredField("counter"));
6623     sizeCtlOffset = UNSAFE.objectFieldOffset
6624     (k.getDeclaredField("sizeCtl"));
6625     Class<?> sc = Node[].class;
6626     ABASE = UNSAFE.arrayBaseOffset(sc);
6627     ss = UNSAFE.arrayIndexScale(sc);
6628     } catch (Exception e) {
6629     throw new Error(e);
6630     }
6631     if ((ss & (ss-1)) != 0)
6632     throw new Error("data type scale not a power of two");
6633     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6634     }
6635    
6636     /**
6637     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6638     * Replace with a simple call to Unsafe.getUnsafe when integrating
6639     * into a jdk.
6640     *
6641     * @return a sun.misc.Unsafe
6642     */
6643     private static sun.misc.Unsafe getUnsafe() {
6644     try {
6645     return sun.misc.Unsafe.getUnsafe();
6646     } catch (SecurityException se) {
6647     try {
6648     return java.security.AccessController.doPrivileged
6649     (new java.security
6650     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6651     public sun.misc.Unsafe run() throws Exception {
6652     java.lang.reflect.Field f = sun.misc
6653     .Unsafe.class.getDeclaredField("theUnsafe");
6654     f.setAccessible(true);
6655     return (sun.misc.Unsafe) f.get(null);
6656     }});
6657     } catch (java.security.PrivilegedActionException e) {
6658     throw new RuntimeException("Could not initialize intrinsics",
6659     e.getCause());
6660     }
6661     }
6662     }
6663 dl 1.1 }