ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.81
Committed: Sat Dec 8 14:10:38 2012 UTC (11 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.80: +18 -14 lines
Log Message:
fix typo; improve tied-hash processing

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.52 import java.util.Comparator;
10 dl 1.24 import java.util.Arrays;
11 dl 1.1 import java.util.Map;
12     import java.util.Set;
13     import java.util.Collection;
14     import java.util.AbstractMap;
15     import java.util.AbstractSet;
16     import java.util.AbstractCollection;
17     import java.util.Hashtable;
18     import java.util.HashMap;
19     import java.util.Iterator;
20     import java.util.Enumeration;
21     import java.util.ConcurrentModificationException;
22     import java.util.NoSuchElementException;
23     import java.util.concurrent.ConcurrentMap;
24 dl 1.37 import java.util.concurrent.ThreadLocalRandom;
25 dl 1.24 import java.util.concurrent.locks.LockSupport;
26 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
28    
29 dl 1.1 import java.io.Serializable;
30    
31 dl 1.79 import java.util.Comparator;
32     import java.util.Arrays;
33     import java.util.Map;
34     import java.util.Set;
35     import java.util.Collection;
36     import java.util.AbstractMap;
37     import java.util.AbstractSet;
38     import java.util.AbstractCollection;
39     import java.util.Hashtable;
40     import java.util.HashMap;
41     import java.util.Iterator;
42     import java.util.Enumeration;
43     import java.util.ConcurrentModificationException;
44     import java.util.NoSuchElementException;
45     import java.util.concurrent.ConcurrentMap;
46     import java.util.concurrent.ThreadLocalRandom;
47     import java.util.concurrent.locks.LockSupport;
48     import java.util.concurrent.locks.AbstractQueuedSynchronizer;
49     import java.util.concurrent.atomic.AtomicReference;
50    
51     import java.io.Serializable;
52    
53 dl 1.1 /**
54     * A hash table supporting full concurrency of retrievals and
55     * high expected concurrency for updates. This class obeys the
56     * same functional specification as {@link java.util.Hashtable}, and
57     * includes versions of methods corresponding to each method of
58     * {@code Hashtable}. However, even though all operations are
59     * thread-safe, retrieval operations do <em>not</em> entail locking,
60     * and there is <em>not</em> any support for locking the entire table
61     * in a way that prevents all access. This class is fully
62     * interoperable with {@code Hashtable} in programs that rely on its
63     * thread safety but not on its synchronization details.
64     *
65 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
66 dl 1.1 * block, so may overlap with update operations (including {@code put}
67     * and {@code remove}). Retrievals reflect the results of the most
68     * recently <em>completed</em> update operations holding upon their
69 dl 1.59 * onset. (More formally, an update operation for a given key bears a
70     * <em>happens-before</em> relation with any (non-null) retrieval for
71     * that key reporting the updated value.) For aggregate operations
72     * such as {@code putAll} and {@code clear}, concurrent retrievals may
73     * reflect insertion or removal of only some entries. Similarly,
74     * Iterators and Enumerations return elements reflecting the state of
75     * the hash table at some point at or since the creation of the
76     * iterator/enumeration. They do <em>not</em> throw {@link
77     * ConcurrentModificationException}. However, iterators are designed
78     * to be used by only one thread at a time. Bear in mind that the
79     * results of aggregate status methods including {@code size}, {@code
80     * isEmpty}, and {@code containsValue} are typically useful only when
81     * a map is not undergoing concurrent updates in other threads.
82     * Otherwise the results of these methods reflect transient states
83     * that may be adequate for monitoring or estimation purposes, but not
84     * for program control.
85 dl 1.1 *
86 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
87 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
88     * the same slot modulo the table size), with the expected average
89 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
90     * to a 0.75 load factor threshold for resizing). There may be much
91     * variance around this average as mappings are added and removed, but
92     * overall, this maintains a commonly accepted time/space tradeoff for
93     * hash tables. However, resizing this or any other kind of hash
94     * table may be a relatively slow operation. When possible, it is a
95     * good idea to provide a size estimate as an optional {@code
96 dl 1.16 * initialCapacity} constructor argument. An additional optional
97     * {@code loadFactor} constructor argument provides a further means of
98     * customizing initial table capacity by specifying the table density
99     * to be used in calculating the amount of space to allocate for the
100     * given number of elements. Also, for compatibility with previous
101     * versions of this class, constructors may optionally specify an
102     * expected {@code concurrencyLevel} as an additional hint for
103     * internal sizing. Note that using many keys with exactly the same
104 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
105 dl 1.16 * hash table.
106 dl 1.1 *
107 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
108 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
109     * (using {@link #keySet(Object)} when only keys are of interest, and the
110     * mapped values are (perhaps transiently) not used or all take the
111     * same mapping value.
112     *
113 jsr166 1.78 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 dl 1.70 * form of histogram or multiset) by using {@link LongAdder} values
115     * and initializing via {@link #computeIfAbsent}. For example, to add
116     * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117     * can use {@code freqs.computeIfAbsent(k -> new
118     * LongAdder()).increment();}
119     *
120 dl 1.1 * <p>This class and its views and iterators implement all of the
121     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
122     * interfaces.
123     *
124 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
125 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
126     *
127 dl 1.70 * <p>ConcurrentHashMapV8s support parallel operations using the {@link
128 jsr166 1.73 * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
129 dl 1.70 * are available in class {@link ForkJoinTasks}). These operations are
130     * designed to be safely, and often sensibly, applied even with maps
131     * that are being concurrently updated by other threads; for example,
132     * when computing a snapshot summary of the values in a shared
133     * registry. There are three kinds of operation, each with four
134     * forms, accepting functions with Keys, Values, Entries, and (Key,
135 dl 1.75 * Value) arguments and/or return values. (The first three forms are
136     * also available via the {@link #keySet()}, {@link #values()} and
137     * {@link #entrySet()} views). Because the elements of a
138 dl 1.70 * ConcurrentHashMapV8 are not ordered in any particular way, and may be
139     * processed in different orders in different parallel executions, the
140     * correctness of supplied functions should not depend on any
141     * ordering, or on any other objects or values that may transiently
142     * change while computation is in progress; and except for forEach
143     * actions, should ideally be side-effect-free.
144     *
145     * <ul>
146     * <li> forEach: Perform a given action on each element.
147     * A variant form applies a given transformation on each element
148     * before performing the action.</li>
149     *
150     * <li> search: Return the first available non-null result of
151     * applying a given function on each element; skipping further
152     * search when a result is found.</li>
153     *
154     * <li> reduce: Accumulate each element. The supplied reduction
155     * function cannot rely on ordering (more formally, it should be
156     * both associative and commutative). There are five variants:
157     *
158     * <ul>
159     *
160     * <li> Plain reductions. (There is not a form of this method for
161     * (key, value) function arguments since there is no corresponding
162     * return type.)</li>
163     *
164     * <li> Mapped reductions that accumulate the results of a given
165     * function applied to each element.</li>
166     *
167     * <li> Reductions to scalar doubles, longs, and ints, using a
168     * given basis value.</li>
169     *
170     * </li>
171     * </ul>
172     * </ul>
173     *
174     * <p>The concurrency properties of bulk operations follow
175     * from those of ConcurrentHashMapV8: Any non-null result returned
176     * from {@code get(key)} and related access methods bears a
177     * happens-before relation with the associated insertion or
178     * update. The result of any bulk operation reflects the
179     * composition of these per-element relations (but is not
180     * necessarily atomic with respect to the map as a whole unless it
181     * is somehow known to be quiescent). Conversely, because keys
182     * and values in the map are never null, null serves as a reliable
183     * atomic indicator of the current lack of any result. To
184     * maintain this property, null serves as an implicit basis for
185     * all non-scalar reduction operations. For the double, long, and
186     * int versions, the basis should be one that, when combined with
187     * any other value, returns that other value (more formally, it
188     * should be the identity element for the reduction). Most common
189     * reductions have these properties; for example, computing a sum
190     * with basis 0 or a minimum with basis MAX_VALUE.
191     *
192     * <p>Search and transformation functions provided as arguments
193     * should similarly return null to indicate the lack of any result
194     * (in which case it is not used). In the case of mapped
195     * reductions, this also enables transformations to serve as
196     * filters, returning null (or, in the case of primitive
197     * specializations, the identity basis) if the element should not
198     * be combined. You can create compound transformations and
199     * filterings by composing them yourself under this "null means
200     * there is nothing there now" rule before using them in search or
201     * reduce operations.
202     *
203     * <p>Methods accepting and/or returning Entry arguments maintain
204     * key-value associations. They may be useful for example when
205     * finding the key for the greatest value. Note that "plain" Entry
206     * arguments can be supplied using {@code new
207     * AbstractMap.SimpleEntry(k,v)}.
208     *
209 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
210 dl 1.70 * exception encountered in the application of a supplied
211     * function. Bear in mind when handling such exceptions that other
212     * concurrently executing functions could also have thrown
213     * exceptions, or would have done so if the first exception had
214     * not occurred.
215     *
216     * <p>Parallel speedups for bulk operations compared to sequential
217     * processing are common but not guaranteed. Operations involving
218     * brief functions on small maps may execute more slowly than
219     * sequential loops if the underlying work to parallelize the
220 jsr166 1.74 * computation is more expensive than the computation itself.
221     * Similarly, parallelization may not lead to much actual parallelism
222     * if all processors are busy performing unrelated tasks.
223 dl 1.70 *
224 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
225 dl 1.70 *
226     * <p><em>jsr166e note: During transition, this class
227     * uses nested functional interfaces with different names but the
228 jsr166 1.77 * same forms as those expected for JDK8.</em>
229 dl 1.70 *
230 dl 1.1 * <p>This class is a member of the
231     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232     * Java Collections Framework</a>.
233     *
234 jsr166 1.22 * @since 1.5
235 dl 1.1 * @author Doug Lea
236     * @param <K> the type of keys maintained by this map
237     * @param <V> the type of mapped values
238     */
239     public class ConcurrentHashMapV8<K, V>
240 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
241 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
242    
243     /**
244 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
245     * directly, but can also be partitioned (before traversal) by
246     * creating another Spliterator that covers a non-overlapping
247     * portion of the elements, and so may be amenable to parallel
248     * execution.
249     *
250 jsr166 1.78 * <p>This interface exports a subset of expected JDK8
251 dl 1.41 * functionality.
252     *
253     * <p>Sample usage: Here is one (of the several) ways to compute
254     * the sum of the values held in a map using the ForkJoin
255     * framework. As illustrated here, Spliterators are well suited to
256     * designs in which a task repeatedly splits off half its work
257     * into forked subtasks until small enough to process directly,
258 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
259     * be used in completion-based designs.
260 dl 1.41 *
261     * <pre>
262     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 dl 1.52 * // split as if have 8 * parallelism, for load balance
264     * int n = m.size();
265     * int p = aForkJoinPool.getParallelism() * 8;
266     * int split = (n < p)? n : p;
267     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 dl 1.41 * // ...
269     * static class SumValues extends RecursiveTask<Long> {
270     * final Spliterator<Long> s;
271 dl 1.52 * final int split; // split while > 1
272 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
273     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275     * }
276     * public Long compute() {
277     * long sum = 0;
278     * SumValues subtasks = null; // fork subtasks
279 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
280     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 dl 1.41 * while (s.hasNext()) // directly process remaining elements
282     * sum += s.next();
283     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
284     * sum += t.join(); // collect subtask results
285     * return sum;
286     * }
287     * }
288     * }</pre>
289     */
290     public static interface Spliterator<T> extends Iterator<T> {
291     /**
292     * Returns a Spliterator covering approximately half of the
293     * elements, guaranteed not to overlap with those subsequently
294     * returned by this Spliterator. After invoking this method,
295     * the current Spliterator will <em>not</em> produce any of
296     * the elements of the returned Spliterator, but the two
297     * Spliterators together will produce all of the elements that
298     * would have been produced by this Spliterator had this
299     * method not been called. The exact number of elements
300     * produced by the returned Spliterator is not guaranteed, and
301     * may be zero (i.e., with {@code hasNext()} reporting {@code
302     * false}) if this Spliterator cannot be further split.
303     *
304     * @return a Spliterator covering approximately half of the
305     * elements
306     * @throws IllegalStateException if this Spliterator has
307 jsr166 1.45 * already commenced traversing elements
308 dl 1.41 */
309     Spliterator<T> split();
310     }
311    
312 dl 1.70
313 dl 1.1 /*
314     * Overview:
315     *
316     * The primary design goal of this hash table is to maintain
317     * concurrent readability (typically method get(), but also
318     * iterators and related methods) while minimizing update
319 dl 1.24 * contention. Secondary goals are to keep space consumption about
320     * the same or better than java.util.HashMap, and to support high
321     * initial insertion rates on an empty table by many threads.
322 dl 1.1 *
323     * Each key-value mapping is held in a Node. Because Node fields
324     * can contain special values, they are defined using plain Object
325     * types. Similarly in turn, all internal methods that use them
326 dl 1.14 * work off Object types. And similarly, so do the internal
327     * methods of auxiliary iterator and view classes. All public
328     * generic typed methods relay in/out of these internal methods,
329 dl 1.27 * supplying null-checks and casts as needed. This also allows
330     * many of the public methods to be factored into a smaller number
331     * of internal methods (although sadly not so for the five
332 dl 1.38 * variants of put-related operations). The validation-based
333     * approach explained below leads to a lot of code sprawl because
334     * retry-control precludes factoring into smaller methods.
335 dl 1.1 *
336     * The table is lazily initialized to a power-of-two size upon the
337 dl 1.38 * first insertion. Each bin in the table normally contains a
338     * list of Nodes (most often, the list has only zero or one Node).
339     * Table accesses require volatile/atomic reads, writes, and
340     * CASes. Because there is no other way to arrange this without
341     * adding further indirections, we use intrinsics
342     * (sun.misc.Unsafe) operations. The lists of nodes within bins
343     * are always accurately traversable under volatile reads, so long
344     * as lookups check hash code and non-nullness of value before
345     * checking key equality.
346 dl 1.24 *
347     * We use the top two bits of Node hash fields for control
348     * purposes -- they are available anyway because of addressing
349     * constraints. As explained further below, these top bits are
350 dl 1.27 * used as follows:
351 dl 1.24 * 00 - Normal
352     * 01 - Locked
353     * 11 - Locked and may have a thread waiting for lock
354     * 10 - Node is a forwarding node
355     *
356     * The lower 30 bits of each Node's hash field contain a
357 dl 1.38 * transformation of the key's hash code, except for forwarding
358     * nodes, for which the lower bits are zero (and so always have
359     * hash field == MOVED).
360 dl 1.14 *
361 dl 1.27 * Insertion (via put or its variants) of the first node in an
362 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
363 dl 1.38 * by far the most common case for put operations under most
364     * key/hash distributions. Other update operations (insert,
365     * delete, and replace) require locks. We do not want to waste
366     * the space required to associate a distinct lock object with
367     * each bin, so instead use the first node of a bin list itself as
368     * a lock. Blocking support for these locks relies on the builtin
369     * "synchronized" monitors. However, we also need a tryLock
370     * construction, so we overlay these by using bits of the Node
371     * hash field for lock control (see above), and so normally use
372     * builtin monitors only for blocking and signalling using
373     * wait/notifyAll constructions. See Node.tryAwaitLock.
374 dl 1.24 *
375     * Using the first node of a list as a lock does not by itself
376     * suffice though: When a node is locked, any update must first
377     * validate that it is still the first node after locking it, and
378     * retry if not. Because new nodes are always appended to lists,
379     * once a node is first in a bin, it remains first until deleted
380 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
381     * operations that only conditionally update may inspect nodes
382     * until the point of update. This is a converse of sorts to the
383     * lazy locking technique described by Herlihy & Shavit.
384 dl 1.14 *
385 dl 1.24 * The main disadvantage of per-bin locks is that other update
386 dl 1.14 * operations on other nodes in a bin list protected by the same
387     * lock can stall, for example when user equals() or mapping
388 dl 1.38 * functions take a long time. However, statistically, under
389     * random hash codes, this is not a common problem. Ideally, the
390     * frequency of nodes in bins follows a Poisson distribution
391 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
392 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
393     * of 0.75, although with a large variance because of resizing
394     * granularity. Ignoring variance, the expected occurrences of
395     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
396 dl 1.38 * first values are:
397 dl 1.16 *
398 dl 1.38 * 0: 0.60653066
399     * 1: 0.30326533
400     * 2: 0.07581633
401     * 3: 0.01263606
402     * 4: 0.00157952
403     * 5: 0.00015795
404     * 6: 0.00001316
405     * 7: 0.00000094
406     * 8: 0.00000006
407     * more: less than 1 in ten million
408 dl 1.16 *
409     * Lock contention probability for two threads accessing distinct
410 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
411     *
412     * Actual hash code distributions encountered in practice
413     * sometimes deviate significantly from uniform randomness. This
414     * includes the case when N > (1<<30), so some keys MUST collide.
415     * Similarly for dumb or hostile usages in which multiple keys are
416     * designed to have identical hash codes. Also, although we guard
417     * against the worst effects of this (see method spread), sets of
418     * hashes may differ only in bits that do not impact their bin
419     * index for a given power-of-two mask. So we use a secondary
420     * strategy that applies when the number of nodes in a bin exceeds
421     * a threshold, and at least one of the keys implements
422     * Comparable. These TreeBins use a balanced tree to hold nodes
423     * (a specialized form of red-black trees), bounding search time
424     * to O(log N). Each search step in a TreeBin is around twice as
425     * slow as in a regular list, but given that N cannot exceed
426     * (1<<64) (before running out of addresses) this bounds search
427     * steps, lock hold times, etc, to reasonable constants (roughly
428     * 100 nodes inspected per operation worst case) so long as keys
429     * are Comparable (which is very common -- String, Long, etc).
430     * TreeBin nodes (TreeNodes) also maintain the same "next"
431     * traversal pointers as regular nodes, so can be traversed in
432     * iterators in the same way.
433 dl 1.1 *
434 dl 1.38 * The table is resized when occupancy exceeds a percentage
435 dl 1.24 * threshold (nominally, 0.75, but see below). Only a single
436     * thread performs the resize (using field "sizeCtl", to arrange
437     * exclusion), but the table otherwise remains usable for reads
438     * and updates. Resizing proceeds by transferring bins, one by
439     * one, from the table to the next table. Because we are using
440     * power-of-two expansion, the elements from each bin must either
441     * stay at same index, or move with a power of two offset. We
442     * eliminate unnecessary node creation by catching cases where old
443     * nodes can be reused because their next fields won't change. On
444     * average, only about one-sixth of them need cloning when a table
445     * doubles. The nodes they replace will be garbage collectable as
446     * soon as they are no longer referenced by any reader thread that
447     * may be in the midst of concurrently traversing table. Upon
448     * transfer, the old table bin contains only a special forwarding
449     * node (with hash field "MOVED") that contains the next table as
450     * its key. On encountering a forwarding node, access and update
451     * operations restart, using the new table.
452     *
453     * Each bin transfer requires its bin lock. However, unlike other
454     * cases, a transfer can skip a bin if it fails to acquire its
455 dl 1.38 * lock, and revisit it later (unless it is a TreeBin). Method
456     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
457     * have been skipped because of failure to acquire a lock, and
458     * blocks only if none are available (i.e., only very rarely).
459     * The transfer operation must also ensure that all accessible
460     * bins in both the old and new table are usable by any traversal.
461     * When there are no lock acquisition failures, this is arranged
462     * simply by proceeding from the last bin (table.length - 1) up
463     * towards the first. Upon seeing a forwarding node, traversals
464 dl 1.52 * (see class Iter) arrange to move to the new table
465 dl 1.38 * without revisiting nodes. However, when any node is skipped
466     * during a transfer, all earlier table bins may have become
467     * visible, so are initialized with a reverse-forwarding node back
468     * to the old table until the new ones are established. (This
469     * sometimes requires transiently locking a forwarding node, which
470     * is possible under the above encoding.) These more expensive
471 dl 1.24 * mechanics trigger only when necessary.
472 dl 1.14 *
473 dl 1.24 * The traversal scheme also applies to partial traversals of
474 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
475 dl 1.41 * to support partitioned aggregate operations. Also, read-only
476     * operations give up if ever forwarded to a null table, which
477     * provides support for shutdown-style clearing, which is also not
478     * currently implemented.
479 dl 1.14 *
480     * Lazy table initialization minimizes footprint until first use,
481     * and also avoids resizings when the first operation is from a
482     * putAll, constructor with map argument, or deserialization.
483 dl 1.24 * These cases attempt to override the initial capacity settings,
484     * but harmlessly fail to take effect in cases of races.
485 dl 1.1 *
486     * The element count is maintained using a LongAdder, which avoids
487     * contention on updates but can encounter cache thrashing if read
488 dl 1.14 * too frequently during concurrent access. To avoid reading so
489 dl 1.27 * often, resizing is attempted either when a bin lock is
490     * contended, or upon adding to a bin already holding two or more
491     * nodes (checked before adding in the xIfAbsent methods, after
492     * adding in others). Under uniform hash distributions, the
493     * probability of this occurring at threshold is around 13%,
494     * meaning that only about 1 in 8 puts check threshold (and after
495     * resizing, many fewer do so). But this approximation has high
496     * variance for small table sizes, so we check on any collision
497     * for sizes <= 64. The bulk putAll operation further reduces
498     * contention by only committing count updates upon these size
499     * checks.
500 dl 1.14 *
501     * Maintaining API and serialization compatibility with previous
502     * versions of this class introduces several oddities. Mainly: We
503     * leave untouched but unused constructor arguments refering to
504 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
505     * but apply it only to initial table capacity (which is the only
506     * time that we can guarantee to honor it.) We also declare an
507     * unused "Segment" class that is instantiated in minimal form
508     * only when serializing.
509 dl 1.1 */
510    
511     /* ---------------- Constants -------------- */
512    
513     /**
514 dl 1.16 * The largest possible table capacity. This value must be
515     * exactly 1<<30 to stay within Java array allocation and indexing
516 dl 1.24 * bounds for power of two table sizes, and is further required
517     * because the top two bits of 32bit hash fields are used for
518     * control purposes.
519 dl 1.1 */
520 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
521 dl 1.1
522     /**
523 dl 1.14 * The default initial table capacity. Must be a power of 2
524     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
525 dl 1.1 */
526 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
527 dl 1.1
528     /**
529 dl 1.24 * The largest possible (non-power of two) array size.
530     * Needed by toArray and related methods.
531     */
532     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
533    
534     /**
535     * The default concurrency level for this table. Unused but
536     * defined for compatibility with previous versions of this class.
537     */
538     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
539    
540     /**
541 dl 1.16 * The load factor for this table. Overrides of this value in
542     * constructors affect only the initial table capacity. The
543 dl 1.24 * actual floating point value isn't normally used -- it is
544     * simpler to use expressions such as {@code n - (n >>> 2)} for
545     * the associated resizing threshold.
546 dl 1.1 */
547 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
548 dl 1.1
549     /**
550 dl 1.24 * The buffer size for skipped bins during transfers. The
551     * value is arbitrary but should be large enough to avoid
552     * most locking stalls during resizes.
553     */
554     private static final int TRANSFER_BUFFER_SIZE = 32;
555    
556 dl 1.38 /**
557     * The bin count threshold for using a tree rather than list for a
558     * bin. The value reflects the approximate break-even point for
559     * using tree-based operations.
560     */
561     private static final int TREE_THRESHOLD = 8;
562    
563 dl 1.24 /*
564     * Encodings for special uses of Node hash fields. See above for
565     * explanation.
566 dl 1.1 */
567 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
568 dl 1.24 static final int LOCKED = 0x40000000; // set/tested only as a bit
569     static final int WAITING = 0xc0000000; // both bits set/tested together
570     static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
571    
572     /* ---------------- Fields -------------- */
573    
574     /**
575     * The array of bins. Lazily initialized upon first insertion.
576     * Size is always a power of two. Accessed directly by iterators.
577     */
578     transient volatile Node[] table;
579 dl 1.14
580 dl 1.16 /**
581 dl 1.24 * The counter maintaining number of elements.
582 dl 1.16 */
583 dl 1.24 private transient final LongAdder counter;
584    
585     /**
586     * Table initialization and resizing control. When negative, the
587     * table is being initialized or resized. Otherwise, when table is
588     * null, holds the initial table size to use upon creation, or 0
589     * for default. After initialization, holds the next element count
590     * value upon which to resize the table.
591     */
592     private transient volatile int sizeCtl;
593    
594     // views
595 dl 1.70 private transient KeySetView<K,V> keySet;
596 dl 1.75 private transient ValuesView<K,V> values;
597     private transient EntrySetView<K,V> entrySet;
598 dl 1.24
599     /** For serialization compatibility. Null unless serialized; see below */
600     private Segment<K,V>[] segments;
601 dl 1.16
602 dl 1.38 /* ---------------- Table element access -------------- */
603    
604     /*
605     * Volatile access methods are used for table elements as well as
606     * elements of in-progress next table while resizing. Uses are
607     * null checked by callers, and implicitly bounds-checked, relying
608     * on the invariants that tab arrays have non-zero size, and all
609     * indices are masked with (tab.length - 1) which is never
610     * negative and always less than length. Note that, to be correct
611     * wrt arbitrary concurrency errors by users, bounds checks must
612     * operate on local variables, which accounts for some odd-looking
613     * inline assignments below.
614     */
615    
616 dl 1.52 static final Node tabAt(Node[] tab, int i) { // used by Iter
617 dl 1.38 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
618     }
619    
620     private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
621     return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
622     }
623    
624     private static final void setTabAt(Node[] tab, int i, Node v) {
625     UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
626     }
627    
628 dl 1.14 /* ---------------- Nodes -------------- */
629 dl 1.1
630     /**
631 dl 1.14 * Key-value entry. Note that this is never exported out as a
632 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
633     * field of MOVED are special, and do not contain user keys or
634     * values. Otherwise, keys are never null, and null val fields
635     * indicate that a node is in the process of being deleted or
636     * created. For purposes of read-only access, a key may be read
637     * before a val, but can only be used after checking val to be
638     * non-null.
639 dl 1.1 */
640 dl 1.38 static class Node {
641 dl 1.24 volatile int hash;
642 dl 1.14 final Object key;
643     volatile Object val;
644     volatile Node next;
645    
646     Node(int hash, Object key, Object val, Node next) {
647     this.hash = hash;
648     this.key = key;
649     this.val = val;
650     this.next = next;
651     }
652    
653 dl 1.24 /** CompareAndSet the hash field */
654     final boolean casHash(int cmp, int val) {
655     return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
656     }
657 dl 1.1
658 dl 1.24 /** The number of spins before blocking for a lock */
659     static final int MAX_SPINS =
660     Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 dl 1.1
662 dl 1.24 /**
663     * Spins a while if LOCKED bit set and this node is the first
664     * of its bin, and then sets WAITING bits on hash field and
665     * blocks (once) if they are still set. It is OK for this
666     * method to return even if lock is not available upon exit,
667     * which enables these simple single-wait mechanics.
668     *
669     * The corresponding signalling operation is performed within
670     * callers: Upon detecting that WAITING has been set when
671     * unlocking lock (via a failed CAS from non-waiting LOCKED
672     * state), unlockers acquire the sync lock and perform a
673     * notifyAll.
674 dl 1.61 *
675     * The initial sanity check on tab and bounds is not currently
676     * necessary in the only usages of this method, but enables
677     * use in other future contexts.
678 dl 1.24 */
679     final void tryAwaitLock(Node[] tab, int i) {
680 dl 1.61 if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 dl 1.37 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682 dl 1.24 int spins = MAX_SPINS, h;
683     while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684     if (spins >= 0) {
685 dl 1.37 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686     if (r >= 0 && --spins == 0)
687     Thread.yield(); // yield before block
688 dl 1.24 }
689     else if (casHash(h, h | WAITING)) {
690 jsr166 1.26 synchronized (this) {
691 dl 1.24 if (tabAt(tab, i) == this &&
692     (hash & WAITING) == WAITING) {
693     try {
694     wait();
695     } catch (InterruptedException ie) {
696 dl 1.79 try {
697     Thread.currentThread().interrupt();
698     } catch (SecurityException ignore) {
699     }
700 dl 1.24 }
701     }
702     else
703     notifyAll(); // possibly won race vs signaller
704     }
705     break;
706     }
707     }
708     }
709     }
710 dl 1.1
711 dl 1.24 // Unsafe mechanics for casHash
712     private static final sun.misc.Unsafe UNSAFE;
713     private static final long hashOffset;
714 dl 1.1
715 dl 1.24 static {
716     try {
717     UNSAFE = getUnsafe();
718     Class<?> k = Node.class;
719     hashOffset = UNSAFE.objectFieldOffset
720     (k.getDeclaredField("hash"));
721     } catch (Exception e) {
722     throw new Error(e);
723     }
724     }
725     }
726 dl 1.1
727 dl 1.38 /* ---------------- TreeBins -------------- */
728    
729     /**
730     * Nodes for use in TreeBins
731     */
732     static final class TreeNode extends Node {
733     TreeNode parent; // red-black tree links
734     TreeNode left;
735     TreeNode right;
736     TreeNode prev; // needed to unlink next upon deletion
737     boolean red;
738    
739     TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740     super(hash, key, val, next);
741     this.parent = parent;
742     }
743     }
744 dl 1.1
745 dl 1.38 /**
746     * A specialized form of red-black tree for use in bins
747     * whose size exceeds a threshold.
748     *
749     * TreeBins use a special form of comparison for search and
750     * related operations (which is the main reason we cannot use
751     * existing collections such as TreeMaps). TreeBins contain
752     * Comparable elements, but may contain others, as well as
753     * elements that are Comparable but not necessarily Comparable<T>
754     * for the same T, so we cannot invoke compareTo among them. To
755     * handle this, the tree is ordered primarily by hash value, then
756     * by getClass().getName() order, and then by Comparator order
757     * among elements of the same class. On lookup at a node, if
758 dl 1.41 * elements are not comparable or compare as 0, both left and
759     * right children may need to be searched in the case of tied hash
760     * values. (This corresponds to the full list search that would be
761     * necessary if all elements were non-Comparable and had tied
762     * hashes.) The red-black balancing code is updated from
763     * pre-jdk-collections
764     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766     * Algorithms" (CLR).
767 dl 1.38 *
768     * TreeBins also maintain a separate locking discipline than
769     * regular bins. Because they are forwarded via special MOVED
770     * nodes at bin heads (which can never change once established),
771 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
772 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
773     * read-write lock. For update operations and table validation,
774     * the exclusive form of lock behaves in the same way as bin-head
775     * locks. However, lookups use shared read-lock mechanics to allow
776     * multiple readers in the absence of writers. Additionally,
777     * these lookups do not ever block: While the lock is not
778     * available, they proceed along the slow traversal path (via
779     * next-pointers) until the lock becomes available or the list is
780     * exhausted, whichever comes first. (These cases are not fast,
781     * but maximize aggregate expected throughput.) The AQS mechanics
782     * for doing this are straightforward. The lock state is held as
783     * AQS getState(). Read counts are negative; the write count (1)
784     * is positive. There are no signalling preferences among readers
785     * and writers. Since we don't need to export full Lock API, we
786     * just override the minimal AQS methods and use them directly.
787 dl 1.1 */
788 dl 1.38 static final class TreeBin extends AbstractQueuedSynchronizer {
789     private static final long serialVersionUID = 2249069246763182397L;
790 dl 1.41 transient TreeNode root; // root of tree
791     transient TreeNode first; // head of next-pointer list
792 dl 1.1
793 dl 1.38 /* AQS overrides */
794     public final boolean isHeldExclusively() { return getState() > 0; }
795     public final boolean tryAcquire(int ignore) {
796     if (compareAndSetState(0, 1)) {
797     setExclusiveOwnerThread(Thread.currentThread());
798     return true;
799     }
800     return false;
801     }
802     public final boolean tryRelease(int ignore) {
803     setExclusiveOwnerThread(null);
804     setState(0);
805     return true;
806     }
807     public final int tryAcquireShared(int ignore) {
808     for (int c;;) {
809     if ((c = getState()) > 0)
810     return -1;
811     if (compareAndSetState(c, c -1))
812     return 1;
813     }
814     }
815     public final boolean tryReleaseShared(int ignore) {
816     int c;
817     do {} while (!compareAndSetState(c = getState(), c + 1));
818     return c == -1;
819     }
820    
821 dl 1.41 /** From CLR */
822     private void rotateLeft(TreeNode p) {
823     if (p != null) {
824     TreeNode r = p.right, pp, rl;
825     if ((rl = p.right = r.left) != null)
826     rl.parent = p;
827     if ((pp = r.parent = p.parent) == null)
828     root = r;
829     else if (pp.left == p)
830     pp.left = r;
831     else
832     pp.right = r;
833     r.left = p;
834     p.parent = r;
835     }
836     }
837    
838     /** From CLR */
839     private void rotateRight(TreeNode p) {
840     if (p != null) {
841     TreeNode l = p.left, pp, lr;
842     if ((lr = p.left = l.right) != null)
843     lr.parent = p;
844     if ((pp = l.parent = p.parent) == null)
845     root = l;
846     else if (pp.right == p)
847     pp.right = l;
848     else
849     pp.left = l;
850     l.right = p;
851     p.parent = l;
852     }
853     }
854    
855 dl 1.38 /**
856 jsr166 1.56 * Returns the TreeNode (or null if not found) for the given key
857 dl 1.38 * starting at given root.
858     */
859 dl 1.61 @SuppressWarnings("unchecked") final TreeNode getTreeNode
860     (int h, Object k, TreeNode p) {
861 dl 1.38 Class<?> c = k.getClass();
862     while (p != null) {
863 dl 1.41 int dir, ph; Object pk; Class<?> pc;
864     if ((ph = p.hash) == h) {
865     if ((pk = p.key) == k || k.equals(pk))
866     return p;
867     if (c != (pc = pk.getClass()) ||
868     !(k instanceof Comparable) ||
869     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 dl 1.81 if ((dir = (c == pc) ? 0 :
871     c.getName().compareTo(pc.getName())) == 0) {
872     TreeNode r = null, pl, pr; // check both sides
873     if ((pr = p.right) != null && h >= pr.hash &&
874     (r = getTreeNode(h, k, pr)) != null)
875     return r;
876     else if ((pl = p.left) != null && h <= pl.hash)
877     dir = -1;
878     else // nothing there
879     return null;
880 dl 1.41 }
881     }
882     }
883 dl 1.38 else
884 dl 1.41 dir = (h < ph) ? -1 : 1;
885     p = (dir > 0) ? p.right : p.left;
886 dl 1.38 }
887     return null;
888     }
889    
890     /**
891     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
892     * read-lock to call getTreeNode, but during failure to get
893     * lock, searches along next links.
894     */
895     final Object getValue(int h, Object k) {
896     Node r = null;
897     int c = getState(); // Must read lock state first
898     for (Node e = first; e != null; e = e.next) {
899     if (c <= 0 && compareAndSetState(c, c - 1)) {
900     try {
901     r = getTreeNode(h, k, root);
902     } finally {
903     releaseShared(0);
904     }
905     break;
906     }
907     else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
908     r = e;
909     break;
910     }
911     else
912     c = getState();
913     }
914     return r == null ? null : r.val;
915     }
916    
917     /**
918 jsr166 1.45 * Finds or adds a node.
919 dl 1.38 * @return null if added
920     */
921 dl 1.61 @SuppressWarnings("unchecked") final TreeNode putTreeNode
922     (int h, Object k, Object v) {
923 dl 1.38 Class<?> c = k.getClass();
924 dl 1.41 TreeNode pp = root, p = null;
925 dl 1.38 int dir = 0;
926 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
927     int ph; Object pk; Class<?> pc;
928     p = pp;
929     if ((ph = p.hash) == h) {
930     if ((pk = p.key) == k || k.equals(pk))
931 dl 1.38 return p;
932 dl 1.41 if (c != (pc = pk.getClass()) ||
933     !(k instanceof Comparable) ||
934     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
935 dl 1.81 TreeNode s = null, r = null, pr;
936     if ((dir = (c == pc) ? 0 :
937     c.getName().compareTo(pc.getName())) == 0) {
938     if ((pr = p.right) != null && h >= pr.hash &&
939     (r = getTreeNode(h, k, pr)) != null)
940     return r;
941     else // continue left
942     dir = -1;
943 dl 1.41 }
944     else if ((pr = p.right) != null && h >= pr.hash)
945     s = pr;
946     if (s != null && (r = getTreeNode(h, k, s)) != null)
947     return r;
948 dl 1.38 }
949     }
950 dl 1.41 else
951     dir = (h < ph) ? -1 : 1;
952     pp = (dir > 0) ? p.right : p.left;
953 dl 1.38 }
954 dl 1.41
955 dl 1.38 TreeNode f = first;
956 dl 1.41 TreeNode x = first = new TreeNode(h, k, v, f, p);
957 dl 1.38 if (p == null)
958 dl 1.41 root = x;
959     else { // attach and rebalance; adapted from CLR
960     TreeNode xp, xpp;
961     if (f != null)
962     f.prev = x;
963 dl 1.38 if (dir <= 0)
964 dl 1.41 p.left = x;
965 dl 1.38 else
966 dl 1.41 p.right = x;
967     x.red = true;
968     while (x != null && (xp = x.parent) != null && xp.red &&
969     (xpp = xp.parent) != null) {
970     TreeNode xppl = xpp.left;
971     if (xp == xppl) {
972     TreeNode y = xpp.right;
973     if (y != null && y.red) {
974     y.red = false;
975     xp.red = false;
976     xpp.red = true;
977     x = xpp;
978     }
979     else {
980     if (x == xp.right) {
981     rotateLeft(x = xp);
982     xpp = (xp = x.parent) == null ? null : xp.parent;
983     }
984     if (xp != null) {
985     xp.red = false;
986     if (xpp != null) {
987     xpp.red = true;
988     rotateRight(xpp);
989     }
990     }
991     }
992     }
993     else {
994     TreeNode y = xppl;
995     if (y != null && y.red) {
996     y.red = false;
997     xp.red = false;
998     xpp.red = true;
999     x = xpp;
1000     }
1001     else {
1002     if (x == xp.left) {
1003     rotateRight(x = xp);
1004     xpp = (xp = x.parent) == null ? null : xp.parent;
1005     }
1006     if (xp != null) {
1007     xp.red = false;
1008     if (xpp != null) {
1009     xpp.red = true;
1010     rotateLeft(xpp);
1011     }
1012     }
1013     }
1014     }
1015     }
1016     TreeNode r = root;
1017     if (r != null && r.red)
1018     r.red = false;
1019 dl 1.38 }
1020     return null;
1021     }
1022 dl 1.1
1023 dl 1.38 /**
1024     * Removes the given node, that must be present before this
1025     * call. This is messier than typical red-black deletion code
1026     * because we cannot swap the contents of an interior node
1027     * with a leaf successor that is pinned by "next" pointers
1028     * that are accessible independently of lock. So instead we
1029     * swap the tree linkages.
1030     */
1031     final void deleteTreeNode(TreeNode p) {
1032     TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1033     TreeNode pred = p.prev;
1034     if (pred == null)
1035     first = next;
1036     else
1037     pred.next = next;
1038     if (next != null)
1039     next.prev = pred;
1040     TreeNode replacement;
1041     TreeNode pl = p.left;
1042     TreeNode pr = p.right;
1043     if (pl != null && pr != null) {
1044 dl 1.41 TreeNode s = pr, sl;
1045     while ((sl = s.left) != null) // find successor
1046     s = sl;
1047 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1048     TreeNode sr = s.right;
1049     TreeNode pp = p.parent;
1050     if (s == pr) { // p was s's direct parent
1051     p.parent = s;
1052     s.right = p;
1053     }
1054     else {
1055     TreeNode sp = s.parent;
1056     if ((p.parent = sp) != null) {
1057     if (s == sp.left)
1058     sp.left = p;
1059     else
1060     sp.right = p;
1061     }
1062     if ((s.right = pr) != null)
1063     pr.parent = s;
1064     }
1065     p.left = null;
1066     if ((p.right = sr) != null)
1067     sr.parent = p;
1068     if ((s.left = pl) != null)
1069     pl.parent = s;
1070     if ((s.parent = pp) == null)
1071     root = s;
1072     else if (p == pp.left)
1073     pp.left = s;
1074     else
1075     pp.right = s;
1076     replacement = sr;
1077     }
1078     else
1079     replacement = (pl != null) ? pl : pr;
1080     TreeNode pp = p.parent;
1081     if (replacement == null) {
1082     if (pp == null) {
1083     root = null;
1084     return;
1085     }
1086     replacement = p;
1087     }
1088     else {
1089     replacement.parent = pp;
1090     if (pp == null)
1091     root = replacement;
1092     else if (p == pp.left)
1093     pp.left = replacement;
1094     else
1095     pp.right = replacement;
1096     p.left = p.right = p.parent = null;
1097     }
1098 dl 1.41 if (!p.red) { // rebalance, from CLR
1099     TreeNode x = replacement;
1100     while (x != null) {
1101     TreeNode xp, xpl;
1102     if (x.red || (xp = x.parent) == null) {
1103     x.red = false;
1104     break;
1105 dl 1.38 }
1106 dl 1.41 if (x == (xpl = xp.left)) {
1107     TreeNode sib = xp.right;
1108     if (sib != null && sib.red) {
1109     sib.red = false;
1110     xp.red = true;
1111     rotateLeft(xp);
1112     sib = (xp = x.parent) == null ? null : xp.right;
1113 dl 1.38 }
1114 dl 1.41 if (sib == null)
1115 dl 1.38 x = xp;
1116     else {
1117 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1118     if ((sr == null || !sr.red) &&
1119     (sl == null || !sl.red)) {
1120 dl 1.38 sib.red = true;
1121 dl 1.41 x = xp;
1122 dl 1.38 }
1123 dl 1.41 else {
1124     if (sr == null || !sr.red) {
1125     if (sl != null)
1126     sl.red = false;
1127     sib.red = true;
1128     rotateRight(sib);
1129     sib = (xp = x.parent) == null ? null : xp.right;
1130     }
1131     if (sib != null) {
1132 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1133 dl 1.41 if ((sr = sib.right) != null)
1134     sr.red = false;
1135     }
1136     if (xp != null) {
1137     xp.red = false;
1138     rotateLeft(xp);
1139     }
1140     x = root;
1141 dl 1.38 }
1142     }
1143     }
1144 dl 1.41 else { // symmetric
1145     TreeNode sib = xpl;
1146     if (sib != null && sib.red) {
1147     sib.red = false;
1148     xp.red = true;
1149     rotateRight(xp);
1150     sib = (xp = x.parent) == null ? null : xp.left;
1151     }
1152     if (sib == null)
1153 dl 1.38 x = xp;
1154     else {
1155 dl 1.41 TreeNode sl = sib.left, sr = sib.right;
1156     if ((sl == null || !sl.red) &&
1157     (sr == null || !sr.red)) {
1158 dl 1.38 sib.red = true;
1159 dl 1.41 x = xp;
1160 dl 1.38 }
1161 dl 1.41 else {
1162     if (sl == null || !sl.red) {
1163     if (sr != null)
1164     sr.red = false;
1165     sib.red = true;
1166     rotateLeft(sib);
1167     sib = (xp = x.parent) == null ? null : xp.left;
1168     }
1169     if (sib != null) {
1170 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1171 dl 1.41 if ((sl = sib.left) != null)
1172     sl.red = false;
1173     }
1174     if (xp != null) {
1175     xp.red = false;
1176     rotateRight(xp);
1177     }
1178     x = root;
1179 dl 1.38 }
1180     }
1181     }
1182     }
1183     }
1184 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1185     if (p == pp.left) // detach pointers
1186     pp.left = null;
1187     else if (p == pp.right)
1188     pp.right = null;
1189     p.parent = null;
1190     }
1191 dl 1.38 }
1192 dl 1.1 }
1193    
1194 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1195 dl 1.14
1196     /**
1197 dl 1.38 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1198     * Because the table uses power-of-two masking, sets of hashes
1199     * that vary only in bits above the current mask will always
1200     * collide. (Among known examples are sets of Float keys holding
1201     * consecutive whole numbers in small tables.) To counter this,
1202     * we apply a transform that spreads the impact of higher bits
1203     * downward. There is a tradeoff between speed, utility, and
1204     * quality of bit-spreading. Because many common sets of hashes
1205 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1206 dl 1.38 * from spreading), and because we use trees to handle large sets
1207     * of collisions in bins, we don't need excessively high quality.
1208 dl 1.14 */
1209     private static final int spread(int h) {
1210 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1211     return (h ^ (h >>> 10)) & HASH_BITS;
1212     }
1213    
1214     /**
1215     * Replaces a list bin with a tree bin. Call only when locked.
1216     * Fails to replace if the given key is non-comparable or table
1217     * is, or needs, resizing.
1218     */
1219     private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1220     if ((key instanceof Comparable) &&
1221     (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1222     TreeBin t = new TreeBin();
1223     for (Node e = tabAt(tab, index); e != null; e = e.next)
1224     t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1225     setTabAt(tab, index, new Node(MOVED, t, null, null));
1226     }
1227 dl 1.14 }
1228 dl 1.1
1229 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1230    
1231 dl 1.14 /** Implementation for get and containsKey */
1232 jsr166 1.4 private final Object internalGet(Object k) {
1233 dl 1.1 int h = spread(k.hashCode());
1234 dl 1.14 retry: for (Node[] tab = table; tab != null;) {
1235 dl 1.38 Node e, p; Object ek, ev; int eh; // locals to read fields once
1236 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1237 dl 1.24 if ((eh = e.hash) == MOVED) {
1238 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1239     return ((TreeBin)ek).getValue(h, k);
1240     else { // restart with new table
1241     tab = (Node[])ek;
1242     continue retry;
1243     }
1244 dl 1.1 }
1245 dl 1.38 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1246     ((ek = e.key) == k || k.equals(ek)))
1247 dl 1.24 return ev;
1248 dl 1.1 }
1249     break;
1250     }
1251     return null;
1252     }
1253    
1254 dl 1.27 /**
1255     * Implementation for the four public remove/replace methods:
1256     * Replaces node value with v, conditional upon match of cv if
1257     * non-null. If resulting value is null, delete.
1258     */
1259     private final Object internalReplace(Object k, Object v, Object cv) {
1260     int h = spread(k.hashCode());
1261     Object oldVal = null;
1262     for (Node[] tab = table;;) {
1263 dl 1.38 Node f; int i, fh; Object fk;
1264 dl 1.27 if (tab == null ||
1265     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1266     break;
1267 dl 1.38 else if ((fh = f.hash) == MOVED) {
1268     if ((fk = f.key) instanceof TreeBin) {
1269     TreeBin t = (TreeBin)fk;
1270     boolean validated = false;
1271     boolean deleted = false;
1272     t.acquire(0);
1273     try {
1274     if (tabAt(tab, i) == f) {
1275     validated = true;
1276     TreeNode p = t.getTreeNode(h, k, t.root);
1277     if (p != null) {
1278     Object pv = p.val;
1279     if (cv == null || cv == pv || cv.equals(pv)) {
1280     oldVal = pv;
1281     if ((p.val = v) == null) {
1282     deleted = true;
1283     t.deleteTreeNode(p);
1284     }
1285     }
1286     }
1287     }
1288     } finally {
1289     t.release(0);
1290     }
1291     if (validated) {
1292     if (deleted)
1293     counter.add(-1L);
1294     break;
1295     }
1296     }
1297     else
1298     tab = (Node[])fk;
1299     }
1300 dl 1.27 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1301     break; // rules out possible existence
1302     else if ((fh & LOCKED) != 0) {
1303     checkForResize(); // try resizing if can't get lock
1304     f.tryAwaitLock(tab, i);
1305     }
1306     else if (f.casHash(fh, fh | LOCKED)) {
1307     boolean validated = false;
1308     boolean deleted = false;
1309     try {
1310     if (tabAt(tab, i) == f) {
1311     validated = true;
1312     for (Node e = f, pred = null;;) {
1313     Object ek, ev;
1314     if ((e.hash & HASH_BITS) == h &&
1315     ((ev = e.val) != null) &&
1316     ((ek = e.key) == k || k.equals(ek))) {
1317     if (cv == null || cv == ev || cv.equals(ev)) {
1318     oldVal = ev;
1319     if ((e.val = v) == null) {
1320     deleted = true;
1321     Node en = e.next;
1322     if (pred != null)
1323     pred.next = en;
1324     else
1325     setTabAt(tab, i, en);
1326     }
1327     }
1328     break;
1329     }
1330     pred = e;
1331     if ((e = e.next) == null)
1332     break;
1333     }
1334     }
1335     } finally {
1336     if (!f.casHash(fh | LOCKED, fh)) {
1337     f.hash = fh;
1338 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1339 dl 1.27 }
1340     }
1341     if (validated) {
1342     if (deleted)
1343     counter.add(-1L);
1344     break;
1345     }
1346     }
1347     }
1348     return oldVal;
1349     }
1350    
1351     /*
1352 dl 1.59 * Internal versions of the six insertion methods, each a
1353 dl 1.27 * little more complicated than the last. All have
1354     * the same basic structure as the first (internalPut):
1355     * 1. If table uninitialized, create
1356     * 2. If bin empty, try to CAS new node
1357     * 3. If bin stale, use new table
1358 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1359     * 5. Lock and validate; if valid, scan and add or update
1360 dl 1.27 *
1361     * The others interweave other checks and/or alternative actions:
1362     * * Plain put checks for and performs resize after insertion.
1363     * * putIfAbsent prescans for mapping without lock (and fails to add
1364     * if present), which also makes pre-emptive resize checks worthwhile.
1365     * * computeIfAbsent extends form used in putIfAbsent with additional
1366     * mechanics to deal with, calls, potential exceptions and null
1367     * returns from function call.
1368     * * compute uses the same function-call mechanics, but without
1369     * the prescans
1370 dl 1.59 * * merge acts as putIfAbsent in the absent case, but invokes the
1371     * update function if present
1372 dl 1.27 * * putAll attempts to pre-allocate enough table space
1373     * and more lazily performs count updates and checks.
1374     *
1375     * Someday when details settle down a bit more, it might be worth
1376     * some factoring to reduce sprawl.
1377     */
1378    
1379     /** Implementation for put */
1380     private final Object internalPut(Object k, Object v) {
1381 dl 1.1 int h = spread(k.hashCode());
1382 dl 1.38 int count = 0;
1383 dl 1.14 for (Node[] tab = table;;) {
1384 dl 1.38 int i; Node f; int fh; Object fk;
1385 dl 1.1 if (tab == null)
1386 dl 1.24 tab = initTable();
1387     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1388 dl 1.2 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1389 dl 1.14 break; // no lock when adding to empty bin
1390     }
1391 dl 1.38 else if ((fh = f.hash) == MOVED) {
1392     if ((fk = f.key) instanceof TreeBin) {
1393     TreeBin t = (TreeBin)fk;
1394     Object oldVal = null;
1395     t.acquire(0);
1396     try {
1397     if (tabAt(tab, i) == f) {
1398     count = 2;
1399     TreeNode p = t.putTreeNode(h, k, v);
1400     if (p != null) {
1401     oldVal = p.val;
1402     p.val = v;
1403     }
1404     }
1405     } finally {
1406     t.release(0);
1407     }
1408     if (count != 0) {
1409     if (oldVal != null)
1410     return oldVal;
1411     break;
1412     }
1413     }
1414     else
1415     tab = (Node[])fk;
1416     }
1417 dl 1.27 else if ((fh & LOCKED) != 0) {
1418     checkForResize();
1419     f.tryAwaitLock(tab, i);
1420 dl 1.1 }
1421 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1422 dl 1.27 Object oldVal = null;
1423     try { // needed in case equals() throws
1424 dl 1.24 if (tabAt(tab, i) == f) {
1425 dl 1.38 count = 1;
1426     for (Node e = f;; ++count) {
1427 dl 1.24 Object ek, ev;
1428     if ((e.hash & HASH_BITS) == h &&
1429     (ev = e.val) != null &&
1430     ((ek = e.key) == k || k.equals(ek))) {
1431 dl 1.1 oldVal = ev;
1432 dl 1.27 e.val = v;
1433 dl 1.10 break;
1434 dl 1.1 }
1435 dl 1.10 Node last = e;
1436     if ((e = e.next) == null) {
1437 dl 1.2 last.next = new Node(h, k, v, null);
1438 dl 1.38 if (count >= TREE_THRESHOLD)
1439     replaceWithTreeBin(tab, i, k);
1440 dl 1.10 break;
1441 dl 1.1 }
1442     }
1443     }
1444 dl 1.24 } finally { // unlock and signal if needed
1445     if (!f.casHash(fh | LOCKED, fh)) {
1446     f.hash = fh;
1447 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1448 dl 1.24 }
1449 dl 1.1 }
1450 dl 1.38 if (count != 0) {
1451 dl 1.27 if (oldVal != null)
1452     return oldVal;
1453 dl 1.38 if (tab.length <= 64)
1454     count = 2;
1455 dl 1.1 break;
1456     }
1457     }
1458     }
1459 dl 1.27 counter.add(1L);
1460 dl 1.38 if (count > 1)
1461 dl 1.27 checkForResize();
1462     return null;
1463 dl 1.1 }
1464    
1465 dl 1.27 /** Implementation for putIfAbsent */
1466     private final Object internalPutIfAbsent(Object k, Object v) {
1467 dl 1.1 int h = spread(k.hashCode());
1468 dl 1.38 int count = 0;
1469 dl 1.14 for (Node[] tab = table;;) {
1470 dl 1.27 int i; Node f; int fh; Object fk, fv;
1471     if (tab == null)
1472     tab = initTable();
1473     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1474     if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1475     break;
1476     }
1477 dl 1.38 else if ((fh = f.hash) == MOVED) {
1478     if ((fk = f.key) instanceof TreeBin) {
1479     TreeBin t = (TreeBin)fk;
1480     Object oldVal = null;
1481     t.acquire(0);
1482     try {
1483     if (tabAt(tab, i) == f) {
1484     count = 2;
1485     TreeNode p = t.putTreeNode(h, k, v);
1486     if (p != null)
1487     oldVal = p.val;
1488     }
1489     } finally {
1490     t.release(0);
1491     }
1492     if (count != 0) {
1493     if (oldVal != null)
1494     return oldVal;
1495     break;
1496     }
1497     }
1498     else
1499     tab = (Node[])fk;
1500     }
1501 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1502     ((fk = f.key) == k || k.equals(fk)))
1503     return fv;
1504     else {
1505     Node g = f.next;
1506     if (g != null) { // at least 2 nodes -- search and maybe resize
1507     for (Node e = g;;) {
1508     Object ek, ev;
1509     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1510     ((ek = e.key) == k || k.equals(ek)))
1511     return ev;
1512     if ((e = e.next) == null) {
1513     checkForResize();
1514     break;
1515     }
1516     }
1517     }
1518     if (((fh = f.hash) & LOCKED) != 0) {
1519     checkForResize();
1520     f.tryAwaitLock(tab, i);
1521     }
1522     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1523     Object oldVal = null;
1524     try {
1525     if (tabAt(tab, i) == f) {
1526 dl 1.38 count = 1;
1527     for (Node e = f;; ++count) {
1528 dl 1.27 Object ek, ev;
1529     if ((e.hash & HASH_BITS) == h &&
1530     (ev = e.val) != null &&
1531     ((ek = e.key) == k || k.equals(ek))) {
1532 dl 1.1 oldVal = ev;
1533 dl 1.27 break;
1534     }
1535     Node last = e;
1536     if ((e = e.next) == null) {
1537     last.next = new Node(h, k, v, null);
1538 dl 1.38 if (count >= TREE_THRESHOLD)
1539     replaceWithTreeBin(tab, i, k);
1540 dl 1.27 break;
1541 dl 1.1 }
1542     }
1543 dl 1.27 }
1544     } finally {
1545     if (!f.casHash(fh | LOCKED, fh)) {
1546     f.hash = fh;
1547 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1548 dl 1.24 }
1549     }
1550 dl 1.38 if (count != 0) {
1551 dl 1.27 if (oldVal != null)
1552     return oldVal;
1553 dl 1.38 if (tab.length <= 64)
1554     count = 2;
1555 dl 1.27 break;
1556     }
1557     }
1558     }
1559     }
1560     counter.add(1L);
1561 dl 1.38 if (count > 1)
1562     checkForResize();
1563 dl 1.27 return null;
1564     }
1565    
1566     /** Implementation for computeIfAbsent */
1567     private final Object internalComputeIfAbsent(K k,
1568 dl 1.52 Fun<? super K, ?> mf) {
1569 dl 1.27 int h = spread(k.hashCode());
1570     Object val = null;
1571 dl 1.38 int count = 0;
1572 dl 1.27 for (Node[] tab = table;;) {
1573     Node f; int i, fh; Object fk, fv;
1574     if (tab == null)
1575     tab = initTable();
1576     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1577     Node node = new Node(fh = h | LOCKED, k, null, null);
1578     if (casTabAt(tab, i, null, node)) {
1579 dl 1.38 count = 1;
1580 dl 1.27 try {
1581 dl 1.52 if ((val = mf.apply(k)) != null)
1582 dl 1.27 node.val = val;
1583     } finally {
1584     if (val == null)
1585     setTabAt(tab, i, null);
1586     if (!node.casHash(fh, h)) {
1587     node.hash = h;
1588 jsr166 1.30 synchronized (node) { node.notifyAll(); };
1589 dl 1.27 }
1590 dl 1.1 }
1591     }
1592 dl 1.38 if (count != 0)
1593 dl 1.24 break;
1594 dl 1.27 }
1595 dl 1.38 else if ((fh = f.hash) == MOVED) {
1596     if ((fk = f.key) instanceof TreeBin) {
1597     TreeBin t = (TreeBin)fk;
1598     boolean added = false;
1599     t.acquire(0);
1600     try {
1601     if (tabAt(tab, i) == f) {
1602     count = 1;
1603     TreeNode p = t.getTreeNode(h, k, t.root);
1604     if (p != null)
1605     val = p.val;
1606 dl 1.52 else if ((val = mf.apply(k)) != null) {
1607 dl 1.38 added = true;
1608     count = 2;
1609     t.putTreeNode(h, k, val);
1610     }
1611     }
1612     } finally {
1613     t.release(0);
1614     }
1615     if (count != 0) {
1616     if (!added)
1617     return val;
1618     break;
1619     }
1620     }
1621     else
1622     tab = (Node[])fk;
1623     }
1624 dl 1.27 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1625     ((fk = f.key) == k || k.equals(fk)))
1626     return fv;
1627     else {
1628     Node g = f.next;
1629     if (g != null) {
1630     for (Node e = g;;) {
1631     Object ek, ev;
1632     if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1633     ((ek = e.key) == k || k.equals(ek)))
1634     return ev;
1635     if ((e = e.next) == null) {
1636     checkForResize();
1637     break;
1638     }
1639     }
1640     }
1641     if (((fh = f.hash) & LOCKED) != 0) {
1642     checkForResize();
1643     f.tryAwaitLock(tab, i);
1644     }
1645     else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1646 dl 1.38 boolean added = false;
1647 dl 1.27 try {
1648     if (tabAt(tab, i) == f) {
1649 dl 1.38 count = 1;
1650     for (Node e = f;; ++count) {
1651 dl 1.27 Object ek, ev;
1652     if ((e.hash & HASH_BITS) == h &&
1653     (ev = e.val) != null &&
1654     ((ek = e.key) == k || k.equals(ek))) {
1655     val = ev;
1656     break;
1657     }
1658     Node last = e;
1659     if ((e = e.next) == null) {
1660 dl 1.52 if ((val = mf.apply(k)) != null) {
1661 dl 1.38 added = true;
1662 dl 1.27 last.next = new Node(h, k, val, null);
1663 dl 1.38 if (count >= TREE_THRESHOLD)
1664     replaceWithTreeBin(tab, i, k);
1665     }
1666 dl 1.27 break;
1667     }
1668     }
1669     }
1670     } finally {
1671     if (!f.casHash(fh | LOCKED, fh)) {
1672     f.hash = fh;
1673 jsr166 1.30 synchronized (f) { f.notifyAll(); };
1674 dl 1.27 }
1675     }
1676 dl 1.38 if (count != 0) {
1677     if (!added)
1678     return val;
1679     if (tab.length <= 64)
1680     count = 2;
1681 dl 1.27 break;
1682 dl 1.38 }
1683 dl 1.1 }
1684     }
1685     }
1686 dl 1.41 if (val != null) {
1687     counter.add(1L);
1688     if (count > 1)
1689     checkForResize();
1690     }
1691 dl 1.27 return val;
1692 dl 1.1 }
1693    
1694 dl 1.27 /** Implementation for compute */
1695 dl 1.61 @SuppressWarnings("unchecked") private final Object internalCompute
1696     (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1697 dl 1.1 int h = spread(k.hashCode());
1698 dl 1.27 Object val = null;
1699 dl 1.41 int delta = 0;
1700 dl 1.38 int count = 0;
1701 dl 1.27 for (Node[] tab = table;;) {
1702 dl 1.38 Node f; int i, fh; Object fk;
1703 dl 1.1 if (tab == null)
1704 dl 1.24 tab = initTable();
1705     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1706 dl 1.52 if (onlyIfPresent)
1707     break;
1708 dl 1.24 Node node = new Node(fh = h | LOCKED, k, null, null);
1709     if (casTabAt(tab, i, null, node)) {
1710     try {
1711 dl 1.38 count = 1;
1712 dl 1.52 if ((val = mf.apply(k, null)) != null) {
1713 dl 1.24 node.val = val;
1714 dl 1.41 delta = 1;
1715 dl 1.24 }
1716     } finally {
1717 dl 1.41 if (delta == 0)
1718 dl 1.24 setTabAt(tab, i, null);
1719     if (!node.casHash(fh, h)) {
1720 dl 1.25 node.hash = h;
1721 jsr166 1.26 synchronized (node) { node.notifyAll(); };
1722 dl 1.1 }
1723     }
1724     }
1725 dl 1.38 if (count != 0)
1726 dl 1.10 break;
1727 dl 1.1 }
1728 dl 1.38 else if ((fh = f.hash) == MOVED) {
1729     if ((fk = f.key) instanceof TreeBin) {
1730     TreeBin t = (TreeBin)fk;
1731     t.acquire(0);
1732     try {
1733     if (tabAt(tab, i) == f) {
1734     count = 1;
1735     TreeNode p = t.getTreeNode(h, k, t.root);
1736 jsr166 1.39 Object pv = (p == null) ? null : p.val;
1737 dl 1.52 if ((val = mf.apply(k, (V)pv)) != null) {
1738 dl 1.38 if (p != null)
1739     p.val = val;
1740     else {
1741     count = 2;
1742 dl 1.41 delta = 1;
1743 dl 1.38 t.putTreeNode(h, k, val);
1744     }
1745     }
1746 dl 1.41 else if (p != null) {
1747     delta = -1;
1748     t.deleteTreeNode(p);
1749     }
1750 dl 1.38 }
1751     } finally {
1752     t.release(0);
1753     }
1754     if (count != 0)
1755     break;
1756     }
1757     else
1758     tab = (Node[])fk;
1759     }
1760 dl 1.27 else if ((fh & LOCKED) != 0) {
1761     checkForResize();
1762     f.tryAwaitLock(tab, i);
1763 dl 1.14 }
1764 dl 1.24 else if (f.casHash(fh, fh | LOCKED)) {
1765     try {
1766     if (tabAt(tab, i) == f) {
1767 dl 1.38 count = 1;
1768 dl 1.41 for (Node e = f, pred = null;; ++count) {
1769 dl 1.27 Object ek, ev;
1770 dl 1.24 if ((e.hash & HASH_BITS) == h &&
1771     (ev = e.val) != null &&
1772     ((ek = e.key) == k || k.equals(ek))) {
1773 dl 1.52 val = mf.apply(k, (V)ev);
1774 dl 1.27 if (val != null)
1775     e.val = val;
1776 dl 1.41 else {
1777     delta = -1;
1778     Node en = e.next;
1779     if (pred != null)
1780     pred.next = en;
1781     else
1782     setTabAt(tab, i, en);
1783     }
1784 dl 1.10 break;
1785 dl 1.1 }
1786 dl 1.41 pred = e;
1787 dl 1.10 if ((e = e.next) == null) {
1788 dl 1.52 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1789 dl 1.41 pred.next = new Node(h, k, val, null);
1790     delta = 1;
1791 dl 1.38 if (count >= TREE_THRESHOLD)
1792     replaceWithTreeBin(tab, i, k);
1793 dl 1.1 }
1794 dl 1.10 break;
1795 dl 1.1 }
1796     }
1797     }
1798 dl 1.24 } finally {
1799     if (!f.casHash(fh | LOCKED, fh)) {
1800     f.hash = fh;
1801 jsr166 1.26 synchronized (f) { f.notifyAll(); };
1802 dl 1.24 }
1803 dl 1.1 }
1804 dl 1.38 if (count != 0) {
1805     if (tab.length <= 64)
1806     count = 2;
1807 dl 1.10 break;
1808 dl 1.38 }
1809 dl 1.1 }
1810 dl 1.10 }
1811 dl 1.41 if (delta != 0) {
1812     counter.add((long)delta);
1813 dl 1.38 if (count > 1)
1814 dl 1.27 checkForResize();
1815     }
1816 dl 1.1 return val;
1817     }
1818    
1819 dl 1.59 /** Implementation for merge */
1820 dl 1.61 @SuppressWarnings("unchecked") private final Object internalMerge
1821     (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1822 dl 1.52 int h = spread(k.hashCode());
1823     Object val = null;
1824     int delta = 0;
1825     int count = 0;
1826     for (Node[] tab = table;;) {
1827     int i; Node f; int fh; Object fk, fv;
1828     if (tab == null)
1829     tab = initTable();
1830     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1831     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1832     delta = 1;
1833     val = v;
1834     break;
1835     }
1836     }
1837     else if ((fh = f.hash) == MOVED) {
1838     if ((fk = f.key) instanceof TreeBin) {
1839     TreeBin t = (TreeBin)fk;
1840     t.acquire(0);
1841     try {
1842     if (tabAt(tab, i) == f) {
1843     count = 1;
1844     TreeNode p = t.getTreeNode(h, k, t.root);
1845     val = (p == null) ? v : mf.apply((V)p.val, v);
1846     if (val != null) {
1847     if (p != null)
1848     p.val = val;
1849     else {
1850     count = 2;
1851     delta = 1;
1852     t.putTreeNode(h, k, val);
1853     }
1854     }
1855     else if (p != null) {
1856     delta = -1;
1857     t.deleteTreeNode(p);
1858     }
1859     }
1860     } finally {
1861     t.release(0);
1862     }
1863     if (count != 0)
1864     break;
1865     }
1866     else
1867     tab = (Node[])fk;
1868     }
1869     else if ((fh & LOCKED) != 0) {
1870     checkForResize();
1871     f.tryAwaitLock(tab, i);
1872     }
1873     else if (f.casHash(fh, fh | LOCKED)) {
1874     try {
1875     if (tabAt(tab, i) == f) {
1876     count = 1;
1877     for (Node e = f, pred = null;; ++count) {
1878     Object ek, ev;
1879     if ((e.hash & HASH_BITS) == h &&
1880     (ev = e.val) != null &&
1881     ((ek = e.key) == k || k.equals(ek))) {
1882     val = mf.apply(v, (V)ev);
1883     if (val != null)
1884     e.val = val;
1885     else {
1886     delta = -1;
1887     Node en = e.next;
1888     if (pred != null)
1889     pred.next = en;
1890     else
1891     setTabAt(tab, i, en);
1892     }
1893     break;
1894     }
1895     pred = e;
1896     if ((e = e.next) == null) {
1897     val = v;
1898     pred.next = new Node(h, k, val, null);
1899     delta = 1;
1900     if (count >= TREE_THRESHOLD)
1901     replaceWithTreeBin(tab, i, k);
1902     break;
1903     }
1904     }
1905     }
1906     } finally {
1907     if (!f.casHash(fh | LOCKED, fh)) {
1908     f.hash = fh;
1909     synchronized (f) { f.notifyAll(); };
1910     }
1911     }
1912     if (count != 0) {
1913     if (tab.length <= 64)
1914     count = 2;
1915     break;
1916     }
1917     }
1918     }
1919     if (delta != 0) {
1920     counter.add((long)delta);
1921     if (count > 1)
1922     checkForResize();
1923     }
1924     return val;
1925     }
1926    
1927 dl 1.27 /** Implementation for putAll */
1928     private final void internalPutAll(Map<?, ?> m) {
1929     tryPresize(m.size());
1930     long delta = 0L; // number of uncommitted additions
1931     boolean npe = false; // to throw exception on exit for nulls
1932     try { // to clean up counts on other exceptions
1933     for (Map.Entry<?, ?> entry : m.entrySet()) {
1934     Object k, v;
1935     if (entry == null || (k = entry.getKey()) == null ||
1936     (v = entry.getValue()) == null) {
1937     npe = true;
1938     break;
1939     }
1940     int h = spread(k.hashCode());
1941     for (Node[] tab = table;;) {
1942 dl 1.38 int i; Node f; int fh; Object fk;
1943 dl 1.27 if (tab == null)
1944     tab = initTable();
1945     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1946     if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1947     ++delta;
1948     break;
1949     }
1950     }
1951 dl 1.38 else if ((fh = f.hash) == MOVED) {
1952     if ((fk = f.key) instanceof TreeBin) {
1953     TreeBin t = (TreeBin)fk;
1954     boolean validated = false;
1955     t.acquire(0);
1956     try {
1957     if (tabAt(tab, i) == f) {
1958     validated = true;
1959     TreeNode p = t.getTreeNode(h, k, t.root);
1960     if (p != null)
1961     p.val = v;
1962     else {
1963     t.putTreeNode(h, k, v);
1964     ++delta;
1965     }
1966     }
1967     } finally {
1968     t.release(0);
1969     }
1970     if (validated)
1971     break;
1972     }
1973     else
1974     tab = (Node[])fk;
1975     }
1976 dl 1.27 else if ((fh & LOCKED) != 0) {
1977     counter.add(delta);
1978     delta = 0L;
1979     checkForResize();
1980     f.tryAwaitLock(tab, i);
1981     }
1982     else if (f.casHash(fh, fh | LOCKED)) {
1983 dl 1.38 int count = 0;
1984 dl 1.27 try {
1985     if (tabAt(tab, i) == f) {
1986 dl 1.38 count = 1;
1987     for (Node e = f;; ++count) {
1988 dl 1.27 Object ek, ev;
1989     if ((e.hash & HASH_BITS) == h &&
1990     (ev = e.val) != null &&
1991     ((ek = e.key) == k || k.equals(ek))) {
1992     e.val = v;
1993     break;
1994     }
1995     Node last = e;
1996     if ((e = e.next) == null) {
1997     ++delta;
1998     last.next = new Node(h, k, v, null);
1999 dl 1.38 if (count >= TREE_THRESHOLD)
2000     replaceWithTreeBin(tab, i, k);
2001 dl 1.27 break;
2002     }
2003     }
2004     }
2005     } finally {
2006     if (!f.casHash(fh | LOCKED, fh)) {
2007     f.hash = fh;
2008 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2009 dl 1.27 }
2010     }
2011 dl 1.38 if (count != 0) {
2012     if (count > 1) {
2013 dl 1.27 counter.add(delta);
2014     delta = 0L;
2015     checkForResize();
2016 dl 1.1 }
2017 dl 1.27 break;
2018 dl 1.24 }
2019     }
2020 dl 1.1 }
2021     }
2022 dl 1.27 } finally {
2023     if (delta != 0)
2024     counter.add(delta);
2025 dl 1.1 }
2026 dl 1.27 if (npe)
2027     throw new NullPointerException();
2028 dl 1.1 }
2029    
2030 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
2031 dl 1.24
2032     /**
2033     * Returns a power of two table size for the given desired capacity.
2034     * See Hackers Delight, sec 3.2
2035     */
2036     private static final int tableSizeFor(int c) {
2037     int n = c - 1;
2038     n |= n >>> 1;
2039     n |= n >>> 2;
2040     n |= n >>> 4;
2041     n |= n >>> 8;
2042     n |= n >>> 16;
2043     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2044     }
2045    
2046     /**
2047     * Initializes table, using the size recorded in sizeCtl.
2048     */
2049     private final Node[] initTable() {
2050     Node[] tab; int sc;
2051     while ((tab = table) == null) {
2052     if ((sc = sizeCtl) < 0)
2053     Thread.yield(); // lost initialization race; just spin
2054     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2055     try {
2056     if ((tab = table) == null) {
2057     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2058     tab = table = new Node[n];
2059 dl 1.27 sc = n - (n >>> 2);
2060 dl 1.24 }
2061     } finally {
2062     sizeCtl = sc;
2063     }
2064     break;
2065     }
2066     }
2067     return tab;
2068     }
2069    
2070     /**
2071 dl 1.27 * If table is too small and not already resizing, creates next
2072     * table and transfers bins. Rechecks occupancy after a transfer
2073     * to see if another resize is already needed because resizings
2074     * are lagging additions.
2075     */
2076     private final void checkForResize() {
2077     Node[] tab; int n, sc;
2078     while ((tab = table) != null &&
2079     (n = tab.length) < MAXIMUM_CAPACITY &&
2080     (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2081     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2082 dl 1.24 try {
2083 dl 1.27 if (tab == table) {
2084 dl 1.24 table = rebuild(tab);
2085 dl 1.27 sc = (n << 1) - (n >>> 1);
2086 dl 1.24 }
2087     } finally {
2088     sizeCtl = sc;
2089     }
2090     }
2091     }
2092    
2093 dl 1.27 /**
2094     * Tries to presize table to accommodate the given number of elements.
2095     *
2096     * @param size number of elements (doesn't need to be perfectly accurate)
2097     */
2098     private final void tryPresize(int size) {
2099     int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2100     tableSizeFor(size + (size >>> 1) + 1);
2101     int sc;
2102     while ((sc = sizeCtl) >= 0) {
2103     Node[] tab = table; int n;
2104     if (tab == null || (n = tab.length) == 0) {
2105 jsr166 1.30 n = (sc > c) ? sc : c;
2106 dl 1.27 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2107     try {
2108     if (table == tab) {
2109     table = new Node[n];
2110     sc = n - (n >>> 2);
2111     }
2112     } finally {
2113     sizeCtl = sc;
2114     }
2115     }
2116     }
2117     else if (c <= sc || n >= MAXIMUM_CAPACITY)
2118     break;
2119     else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2120     try {
2121     if (table == tab) {
2122     table = rebuild(tab);
2123     sc = (n << 1) - (n >>> 1);
2124     }
2125     } finally {
2126     sizeCtl = sc;
2127     }
2128     }
2129     }
2130     }
2131    
2132 dl 1.24 /*
2133     * Moves and/or copies the nodes in each bin to new table. See
2134     * above for explanation.
2135     *
2136     * @return the new table
2137     */
2138     private static final Node[] rebuild(Node[] tab) {
2139     int n = tab.length;
2140     Node[] nextTab = new Node[n << 1];
2141     Node fwd = new Node(MOVED, nextTab, null, null);
2142     int[] buffer = null; // holds bins to revisit; null until needed
2143     Node rev = null; // reverse forwarder; null until needed
2144     int nbuffered = 0; // the number of bins in buffer list
2145     int bufferIndex = 0; // buffer index of current buffered bin
2146     int bin = n - 1; // current non-buffered bin or -1 if none
2147    
2148     for (int i = bin;;) { // start upwards sweep
2149     int fh; Node f;
2150     if ((f = tabAt(tab, i)) == null) {
2151 dl 1.61 if (bin >= 0) { // Unbuffered; no lock needed (or available)
2152 dl 1.24 if (!casTabAt(tab, i, f, fwd))
2153     continue;
2154     }
2155     else { // transiently use a locked forwarding node
2156 jsr166 1.33 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2157 dl 1.24 if (!casTabAt(tab, i, f, g))
2158     continue;
2159     setTabAt(nextTab, i, null);
2160     setTabAt(nextTab, i + n, null);
2161     setTabAt(tab, i, fwd);
2162     if (!g.casHash(MOVED|LOCKED, MOVED)) {
2163     g.hash = MOVED;
2164 jsr166 1.26 synchronized (g) { g.notifyAll(); }
2165 dl 1.24 }
2166     }
2167     }
2168 dl 1.38 else if ((fh = f.hash) == MOVED) {
2169     Object fk = f.key;
2170     if (fk instanceof TreeBin) {
2171     TreeBin t = (TreeBin)fk;
2172     boolean validated = false;
2173     t.acquire(0);
2174     try {
2175     if (tabAt(tab, i) == f) {
2176     validated = true;
2177     splitTreeBin(nextTab, i, t);
2178     setTabAt(tab, i, fwd);
2179     }
2180     } finally {
2181     t.release(0);
2182     }
2183     if (!validated)
2184     continue;
2185     }
2186     }
2187     else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2188 dl 1.24 boolean validated = false;
2189     try { // split to lo and hi lists; copying as needed
2190     if (tabAt(tab, i) == f) {
2191     validated = true;
2192 dl 1.38 splitBin(nextTab, i, f);
2193 dl 1.24 setTabAt(tab, i, fwd);
2194     }
2195     } finally {
2196     if (!f.casHash(fh | LOCKED, fh)) {
2197     f.hash = fh;
2198 jsr166 1.26 synchronized (f) { f.notifyAll(); };
2199 dl 1.24 }
2200     }
2201     if (!validated)
2202     continue;
2203     }
2204     else {
2205     if (buffer == null) // initialize buffer for revisits
2206     buffer = new int[TRANSFER_BUFFER_SIZE];
2207     if (bin < 0 && bufferIndex > 0) {
2208     int j = buffer[--bufferIndex];
2209     buffer[bufferIndex] = i;
2210     i = j; // swap with another bin
2211     continue;
2212     }
2213     if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2214     f.tryAwaitLock(tab, i);
2215     continue; // no other options -- block
2216     }
2217     if (rev == null) // initialize reverse-forwarder
2218     rev = new Node(MOVED, tab, null, null);
2219     if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2220     continue; // recheck before adding to list
2221     buffer[nbuffered++] = i;
2222     setTabAt(nextTab, i, rev); // install place-holders
2223     setTabAt(nextTab, i + n, rev);
2224     }
2225    
2226     if (bin > 0)
2227     i = --bin;
2228     else if (buffer != null && nbuffered > 0) {
2229     bin = -1;
2230     i = buffer[bufferIndex = --nbuffered];
2231     }
2232     else
2233     return nextTab;
2234     }
2235     }
2236    
2237 dl 1.27 /**
2238 jsr166 1.45 * Splits a normal bin with list headed by e into lo and hi parts;
2239     * installs in given table.
2240 dl 1.38 */
2241     private static void splitBin(Node[] nextTab, int i, Node e) {
2242     int bit = nextTab.length >>> 1; // bit to split on
2243     int runBit = e.hash & bit;
2244     Node lastRun = e, lo = null, hi = null;
2245     for (Node p = e.next; p != null; p = p.next) {
2246     int b = p.hash & bit;
2247     if (b != runBit) {
2248     runBit = b;
2249     lastRun = p;
2250     }
2251     }
2252     if (runBit == 0)
2253     lo = lastRun;
2254     else
2255     hi = lastRun;
2256     for (Node p = e; p != lastRun; p = p.next) {
2257     int ph = p.hash & HASH_BITS;
2258     Object pk = p.key, pv = p.val;
2259     if ((ph & bit) == 0)
2260     lo = new Node(ph, pk, pv, lo);
2261     else
2262     hi = new Node(ph, pk, pv, hi);
2263     }
2264     setTabAt(nextTab, i, lo);
2265     setTabAt(nextTab, i + bit, hi);
2266     }
2267    
2268     /**
2269 jsr166 1.45 * Splits a tree bin into lo and hi parts; installs in given table.
2270 dl 1.38 */
2271     private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2272     int bit = nextTab.length >>> 1;
2273     TreeBin lt = new TreeBin();
2274     TreeBin ht = new TreeBin();
2275     int lc = 0, hc = 0;
2276     for (Node e = t.first; e != null; e = e.next) {
2277     int h = e.hash & HASH_BITS;
2278     Object k = e.key, v = e.val;
2279     if ((h & bit) == 0) {
2280     ++lc;
2281     lt.putTreeNode(h, k, v);
2282     }
2283     else {
2284     ++hc;
2285     ht.putTreeNode(h, k, v);
2286     }
2287     }
2288     Node ln, hn; // throw away trees if too small
2289     if (lc <= (TREE_THRESHOLD >>> 1)) {
2290     ln = null;
2291     for (Node p = lt.first; p != null; p = p.next)
2292     ln = new Node(p.hash, p.key, p.val, ln);
2293     }
2294     else
2295     ln = new Node(MOVED, lt, null, null);
2296     setTabAt(nextTab, i, ln);
2297     if (hc <= (TREE_THRESHOLD >>> 1)) {
2298     hn = null;
2299     for (Node p = ht.first; p != null; p = p.next)
2300     hn = new Node(p.hash, p.key, p.val, hn);
2301     }
2302     else
2303     hn = new Node(MOVED, ht, null, null);
2304     setTabAt(nextTab, i + bit, hn);
2305     }
2306    
2307     /**
2308 dl 1.27 * Implementation for clear. Steps through each bin, removing all
2309     * nodes.
2310     */
2311     private final void internalClear() {
2312     long delta = 0L; // negative number of deletions
2313     int i = 0;
2314     Node[] tab = table;
2315     while (tab != null && i < tab.length) {
2316 dl 1.38 int fh; Object fk;
2317 dl 1.27 Node f = tabAt(tab, i);
2318     if (f == null)
2319     ++i;
2320 dl 1.38 else if ((fh = f.hash) == MOVED) {
2321     if ((fk = f.key) instanceof TreeBin) {
2322     TreeBin t = (TreeBin)fk;
2323     t.acquire(0);
2324     try {
2325     if (tabAt(tab, i) == f) {
2326     for (Node p = t.first; p != null; p = p.next) {
2327 dl 1.61 if (p.val != null) { // (currently always true)
2328     p.val = null;
2329     --delta;
2330     }
2331 dl 1.38 }
2332     t.first = null;
2333     t.root = null;
2334     ++i;
2335     }
2336     } finally {
2337     t.release(0);
2338     }
2339     }
2340     else
2341     tab = (Node[])fk;
2342     }
2343 dl 1.27 else if ((fh & LOCKED) != 0) {
2344     counter.add(delta); // opportunistically update count
2345     delta = 0L;
2346     f.tryAwaitLock(tab, i);
2347     }
2348     else if (f.casHash(fh, fh | LOCKED)) {
2349     try {
2350     if (tabAt(tab, i) == f) {
2351     for (Node e = f; e != null; e = e.next) {
2352 dl 1.61 if (e.val != null) { // (currently always true)
2353     e.val = null;
2354     --delta;
2355     }
2356 dl 1.27 }
2357     setTabAt(tab, i, null);
2358 dl 1.38 ++i;
2359 dl 1.27 }
2360     } finally {
2361     if (!f.casHash(fh | LOCKED, fh)) {
2362     f.hash = fh;
2363 jsr166 1.30 synchronized (f) { f.notifyAll(); };
2364 dl 1.27 }
2365     }
2366     }
2367     }
2368     if (delta != 0)
2369     counter.add(delta);
2370     }
2371    
2372 dl 1.14 /* ----------------Table Traversal -------------- */
2373    
2374 dl 1.1 /**
2375 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2376 dl 1.59 * serves as a base class for other iterators and bulk tasks.
2377 dl 1.14 *
2378     * At each step, the iterator snapshots the key ("nextKey") and
2379     * value ("nextVal") of a valid node (i.e., one that, at point of
2380 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2381 dl 1.14 * change (including to null, indicating deletion), field nextVal
2382     * might not be accurate at point of use, but still maintains the
2383     * weak consistency property of holding a value that was once
2384 dl 1.70 * valid. To support iterator.remove, the nextKey field is not
2385     * updated (nulled out) when the iterator cannot advance.
2386 dl 1.14 *
2387     * Internal traversals directly access these fields, as in:
2388 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2389 dl 1.14 *
2390 dl 1.41 * Exported iterators must track whether the iterator has advanced
2391     * (in hasNext vs next) (by setting/checking/nulling field
2392     * nextVal), and then extract key, value, or key-value pairs as
2393     * return values of next().
2394 dl 1.14 *
2395 dl 1.27 * The iterator visits once each still-valid node that was
2396     * reachable upon iterator construction. It might miss some that
2397     * were added to a bin after the bin was visited, which is OK wrt
2398     * consistency guarantees. Maintaining this property in the face
2399     * of possible ongoing resizes requires a fair amount of
2400     * bookkeeping state that is difficult to optimize away amidst
2401     * volatile accesses. Even so, traversal maintains reasonable
2402     * throughput.
2403 dl 1.14 *
2404     * Normally, iteration proceeds bin-by-bin traversing lists.
2405     * However, if the table has been resized, then all future steps
2406     * must traverse both the bin at the current index as well as at
2407     * (index + baseSize); and so on for further resizings. To
2408     * paranoically cope with potential sharing by users of iterators
2409     * across threads, iteration terminates if a bounds checks fails
2410     * for a table read.
2411 dl 1.52 *
2412 dl 1.79 * This class extends CountedCompleter to streamline parallel
2413     * iteration in bulk operations. This adds only a few fields of
2414     * space overhead, which is small enough in cases where it is not
2415     * needed to not worry about it. Because CountedCompleter is
2416     * Serializable, but iterators need not be, we need to add warning
2417     * suppressions.
2418 dl 1.14 */
2419 dl 1.79 @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2420 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2421 dl 1.14 Node next; // the next entry to use
2422     Object nextKey; // cached key field of next
2423     Object nextVal; // cached val field of next
2424     Node[] tab; // current table; updated if resized
2425     int index; // index of bin to use next
2426     int baseIndex; // current index of initial table
2427 dl 1.41 int baseLimit; // index bound for initial table
2428 dl 1.63 int baseSize; // initial table size
2429 dl 1.79 int batch; // split control
2430 dl 1.14
2431     /** Creates iterator for all entries in the table. */
2432 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2433 dl 1.63 this.map = map;
2434 dl 1.14 }
2435    
2436 dl 1.79 /** Creates iterator for split() methods and task constructors */
2437     Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2438     super(it);
2439     this.batch = batch;
2440     if ((this.map = map) != null && it != null) { // split parent
2441     Node[] t;
2442     if ((t = it.tab) == null &&
2443     (t = it.tab = map.table) != null)
2444     it.baseLimit = it.baseSize = t.length;
2445     this.tab = t;
2446     this.baseSize = it.baseSize;
2447     int hi = this.baseLimit = it.baseLimit;
2448     it.baseLimit = this.index = this.baseIndex =
2449     (hi + it.baseIndex + 1) >>> 1;
2450     }
2451 dl 1.41 }
2452    
2453     /**
2454 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2455 dl 1.41 * See above for explanation.
2456     */
2457     final Object advance() {
2458 dl 1.70 Node e = next;
2459 dl 1.41 Object ev = null;
2460 dl 1.14 outer: do {
2461 dl 1.24 if (e != null) // advance past used/skipped node
2462 dl 1.1 e = e.next;
2463 dl 1.24 while (e == null) { // get to next non-null bin
2464 dl 1.63 ConcurrentHashMapV8<K, V> m;
2465 dl 1.38 Node[] t; int b, i, n; Object ek; // checks must use locals
2466 dl 1.63 if ((t = tab) != null)
2467     n = t.length;
2468     else if ((m = map) != null && (t = tab = m.table) != null)
2469     n = baseLimit = baseSize = t.length;
2470     else
2471 dl 1.14 break outer;
2472 dl 1.63 if ((b = baseIndex) >= baseLimit ||
2473     (i = index) < 0 || i >= n)
2474     break outer;
2475     if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2476 dl 1.38 if ((ek = e.key) instanceof TreeBin)
2477     e = ((TreeBin)ek).first;
2478     else {
2479     tab = (Node[])ek;
2480     continue; // restarts due to null val
2481     }
2482     } // visit upper slots if present
2483     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2484 dl 1.1 }
2485 dl 1.14 nextKey = e.key;
2486 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2487 dl 1.14 next = e;
2488 dl 1.41 return nextVal = ev;
2489 dl 1.1 }
2490 dl 1.41
2491     public final void remove() {
2492 dl 1.70 Object k = nextKey;
2493     if (k == null && (advance() == null || (k = nextKey) == null))
2494 dl 1.41 throw new IllegalStateException();
2495 dl 1.70 map.internalReplace(k, null, null);
2496 dl 1.41 }
2497    
2498     public final boolean hasNext() {
2499     return nextVal != null || advance() != null;
2500     }
2501    
2502     public final boolean hasMoreElements() { return hasNext(); }
2503 dl 1.79
2504     public void compute() { } // default no-op CountedCompleter body
2505    
2506     /**
2507     * Returns a batch value > 0 if this task should (and must) be
2508     * split, if so, adding to pending count, and in any case
2509     * updating batch value. The initial batch value is approx
2510     * exp2 of the number of times (minus one) to split task by
2511     * two before executing leaf action. This value is faster to
2512     * compute and more convenient to use as a guide to splitting
2513     * than is the depth, since it is used while dividing by two
2514     * anyway.
2515     */
2516     final int preSplit() {
2517     ConcurrentHashMapV8<K, V> m; int b; Node[] t; ForkJoinPool pool;
2518     if ((b = batch) < 0 && (m = map) != null) { // force initialization
2519     if ((t = tab) == null && (t = tab = m.table) != null)
2520     baseLimit = baseSize = t.length;
2521     if (t != null) {
2522     long n = m.counter.sum();
2523     int par = ((pool = getPool()) == null) ?
2524     ForkJoinPool.getCommonPoolParallelism() :
2525     pool.getParallelism();
2526     int sp = par << 3; // slack of 8
2527     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2528     }
2529     }
2530 jsr166 1.80 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2531 dl 1.79 if ((batch = b) > 0)
2532     addToPendingCount(1);
2533     return b;
2534     }
2535    
2536 dl 1.1 }
2537    
2538     /* ---------------- Public operations -------------- */
2539    
2540     /**
2541 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2542 dl 1.1 */
2543 dl 1.16 public ConcurrentHashMapV8() {
2544 dl 1.14 this.counter = new LongAdder();
2545 dl 1.1 }
2546    
2547     /**
2548 dl 1.16 * Creates a new, empty map with an initial table size
2549     * accommodating the specified number of elements without the need
2550     * to dynamically resize.
2551 dl 1.1 *
2552     * @param initialCapacity The implementation performs internal
2553     * sizing to accommodate this many elements.
2554     * @throws IllegalArgumentException if the initial capacity of
2555 jsr166 1.18 * elements is negative
2556 dl 1.1 */
2557 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2558     if (initialCapacity < 0)
2559     throw new IllegalArgumentException();
2560     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2561     MAXIMUM_CAPACITY :
2562     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2563     this.counter = new LongAdder();
2564 dl 1.24 this.sizeCtl = cap;
2565 dl 1.1 }
2566    
2567     /**
2568 dl 1.16 * Creates a new map with the same mappings as the given map.
2569 dl 1.1 *
2570 dl 1.16 * @param m the map
2571 dl 1.1 */
2572 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2573     this.counter = new LongAdder();
2574 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2575 dl 1.27 internalPutAll(m);
2576 dl 1.1 }
2577    
2578     /**
2579 dl 1.16 * Creates a new, empty map with an initial table size based on
2580     * the given number of elements ({@code initialCapacity}) and
2581     * initial table density ({@code loadFactor}).
2582     *
2583     * @param initialCapacity the initial capacity. The implementation
2584     * performs internal sizing to accommodate this many elements,
2585     * given the specified load factor.
2586     * @param loadFactor the load factor (table density) for
2587 jsr166 1.18 * establishing the initial table size
2588 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2589     * elements is negative or the load factor is nonpositive
2590 jsr166 1.22 *
2591     * @since 1.6
2592 dl 1.1 */
2593 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2594     this(initialCapacity, loadFactor, 1);
2595 dl 1.1 }
2596    
2597     /**
2598 dl 1.16 * Creates a new, empty map with an initial table size based on
2599     * the given number of elements ({@code initialCapacity}), table
2600     * density ({@code loadFactor}), and number of concurrently
2601     * updating threads ({@code concurrencyLevel}).
2602 dl 1.1 *
2603 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2604     * performs internal sizing to accommodate this many elements,
2605     * given the specified load factor.
2606     * @param loadFactor the load factor (table density) for
2607 jsr166 1.18 * establishing the initial table size
2608 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2609     * updating threads. The implementation may use this value as
2610     * a sizing hint.
2611     * @throws IllegalArgumentException if the initial capacity is
2612     * negative or the load factor or concurrencyLevel are
2613 jsr166 1.18 * nonpositive
2614 dl 1.1 */
2615 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2616     float loadFactor, int concurrencyLevel) {
2617     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2618     throw new IllegalArgumentException();
2619     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2620     initialCapacity = concurrencyLevel; // as estimated threads
2621     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2622 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2623     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2624 dl 1.16 this.counter = new LongAdder();
2625 dl 1.24 this.sizeCtl = cap;
2626 dl 1.1 }
2627    
2628     /**
2629 dl 1.70 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2630     * from the given type to {@code Boolean.TRUE}.
2631     *
2632     * @return the new set
2633     */
2634     public static <K> KeySetView<K,Boolean> newKeySet() {
2635     return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2636     Boolean.TRUE);
2637     }
2638    
2639     /**
2640     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2641     * from the given type to {@code Boolean.TRUE}.
2642     *
2643     * @param initialCapacity The implementation performs internal
2644     * sizing to accommodate this many elements.
2645     * @throws IllegalArgumentException if the initial capacity of
2646     * elements is negative
2647     * @return the new set
2648     */
2649     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2650     return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2651     Boolean.TRUE);
2652     }
2653    
2654     /**
2655 dl 1.14 * {@inheritDoc}
2656 dl 1.1 */
2657     public boolean isEmpty() {
2658 dl 1.2 return counter.sum() <= 0L; // ignore transient negative values
2659 dl 1.1 }
2660    
2661     /**
2662 dl 1.14 * {@inheritDoc}
2663 dl 1.1 */
2664     public int size() {
2665     long n = counter.sum();
2666 jsr166 1.15 return ((n < 0L) ? 0 :
2667     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2668 dl 1.14 (int)n);
2669 dl 1.1 }
2670    
2671 dl 1.52 /**
2672     * Returns the number of mappings. This method should be used
2673 dl 1.70 * instead of {@link #size} because a ConcurrentHashMapV8 may
2674 dl 1.52 * contain more mappings than can be represented as an int. The
2675 dl 1.79 * value returned is an estimate; the actual count may differ if
2676     * there are concurrent insertions or removals.
2677 dl 1.52 *
2678     * @return the number of mappings
2679     */
2680     public long mappingCount() {
2681 dl 1.24 long n = counter.sum();
2682 dl 1.59 return (n < 0L) ? 0L : n; // ignore transient negative values
2683 dl 1.24 }
2684    
2685 dl 1.1 /**
2686     * Returns the value to which the specified key is mapped,
2687     * or {@code null} if this map contains no mapping for the key.
2688     *
2689     * <p>More formally, if this map contains a mapping from a key
2690     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2691     * then this method returns {@code v}; otherwise it returns
2692     * {@code null}. (There can be at most one such mapping.)
2693     *
2694     * @throws NullPointerException if the specified key is null
2695     */
2696 dl 1.61 @SuppressWarnings("unchecked") public V get(Object key) {
2697 dl 1.1 if (key == null)
2698     throw new NullPointerException();
2699     return (V)internalGet(key);
2700     }
2701    
2702     /**
2703 dl 1.62 * Returns the value to which the specified key is mapped,
2704 jsr166 1.66 * or the given defaultValue if this map contains no mapping for the key.
2705 dl 1.62 *
2706     * @param key the key
2707     * @param defaultValue the value to return if this map contains
2708 jsr166 1.67 * no mapping for the given key
2709 dl 1.62 * @return the mapping for the key, if present; else the defaultValue
2710     * @throws NullPointerException if the specified key is null
2711     */
2712     @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2713     if (key == null)
2714     throw new NullPointerException();
2715     V v = (V) internalGet(key);
2716     return v == null ? defaultValue : v;
2717     }
2718    
2719     /**
2720 dl 1.1 * Tests if the specified object is a key in this table.
2721     *
2722     * @param key possible key
2723     * @return {@code true} if and only if the specified object
2724     * is a key in this table, as determined by the
2725 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2726 dl 1.1 * @throws NullPointerException if the specified key is null
2727     */
2728     public boolean containsKey(Object key) {
2729     if (key == null)
2730     throw new NullPointerException();
2731     return internalGet(key) != null;
2732     }
2733    
2734     /**
2735     * Returns {@code true} if this map maps one or more keys to the
2736 dl 1.14 * specified value. Note: This method may require a full traversal
2737     * of the map, and is much slower than method {@code containsKey}.
2738 dl 1.1 *
2739     * @param value value whose presence in this map is to be tested
2740     * @return {@code true} if this map maps one or more keys to the
2741     * specified value
2742     * @throws NullPointerException if the specified value is null
2743     */
2744     public boolean containsValue(Object value) {
2745     if (value == null)
2746     throw new NullPointerException();
2747 dl 1.14 Object v;
2748 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2749 dl 1.41 while ((v = it.advance()) != null) {
2750     if (v == value || value.equals(v))
2751 dl 1.14 return true;
2752     }
2753     return false;
2754 dl 1.1 }
2755    
2756     /**
2757     * Legacy method testing if some key maps into the specified value
2758     * in this table. This method is identical in functionality to
2759     * {@link #containsValue}, and exists solely to ensure
2760     * full compatibility with class {@link java.util.Hashtable},
2761     * which supported this method prior to introduction of the
2762     * Java Collections framework.
2763     *
2764     * @param value a value to search for
2765     * @return {@code true} if and only if some key maps to the
2766     * {@code value} argument in this table as
2767     * determined by the {@code equals} method;
2768     * {@code false} otherwise
2769     * @throws NullPointerException if the specified value is null
2770     */
2771     public boolean contains(Object value) {
2772     return containsValue(value);
2773     }
2774    
2775     /**
2776     * Maps the specified key to the specified value in this table.
2777     * Neither the key nor the value can be null.
2778     *
2779 jsr166 1.78 * <p>The value can be retrieved by calling the {@code get} method
2780 dl 1.1 * with a key that is equal to the original key.
2781     *
2782     * @param key key with which the specified value is to be associated
2783     * @param value value to be associated with the specified key
2784     * @return the previous value associated with {@code key}, or
2785     * {@code null} if there was no mapping for {@code key}
2786     * @throws NullPointerException if the specified key or value is null
2787     */
2788 dl 1.61 @SuppressWarnings("unchecked") public V put(K key, V value) {
2789 dl 1.1 if (key == null || value == null)
2790     throw new NullPointerException();
2791 dl 1.27 return (V)internalPut(key, value);
2792 dl 1.1 }
2793    
2794     /**
2795     * {@inheritDoc}
2796     *
2797     * @return the previous value associated with the specified key,
2798     * or {@code null} if there was no mapping for the key
2799     * @throws NullPointerException if the specified key or value is null
2800     */
2801 dl 1.61 @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2802 dl 1.1 if (key == null || value == null)
2803     throw new NullPointerException();
2804 dl 1.27 return (V)internalPutIfAbsent(key, value);
2805 dl 1.1 }
2806    
2807     /**
2808     * Copies all of the mappings from the specified map to this one.
2809     * These mappings replace any mappings that this map had for any of the
2810     * keys currently in the specified map.
2811     *
2812     * @param m mappings to be stored in this map
2813     */
2814     public void putAll(Map<? extends K, ? extends V> m) {
2815 dl 1.27 internalPutAll(m);
2816 dl 1.1 }
2817    
2818     /**
2819     * If the specified key is not already associated with a value,
2820 dl 1.41 * computes its value using the given mappingFunction and enters
2821     * it into the map unless null. This is equivalent to
2822 dl 1.27 * <pre> {@code
2823 jsr166 1.13 * if (map.containsKey(key))
2824     * return map.get(key);
2825 dl 1.52 * value = mappingFunction.apply(key);
2826 dl 1.41 * if (value != null)
2827     * map.put(key, value);
2828 jsr166 1.13 * return value;}</pre>
2829 dl 1.1 *
2830 dl 1.27 * except that the action is performed atomically. If the
2831 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2832     * function itself throws an (unchecked) exception, the exception
2833     * is rethrown to its caller, and no mapping is recorded. Some
2834     * attempted update operations on this map by other threads may be
2835     * blocked while computation is in progress, so the computation
2836     * should be short and simple, and must not attempt to update any
2837     * other mappings of this Map. The most appropriate usage is to
2838     * construct a new object serving as an initial mapped value, or
2839     * memoized result, as in:
2840 dl 1.27 *
2841 jsr166 1.13 * <pre> {@code
2842 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2843 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2844 dl 1.1 *
2845     * @param key key with which the specified value is to be associated
2846     * @param mappingFunction the function to compute a value
2847     * @return the current (existing or computed) value associated with
2848 jsr166 1.67 * the specified key, or null if the computed value is null
2849 dl 1.41 * @throws NullPointerException if the specified key or mappingFunction
2850     * is null
2851 dl 1.5 * @throws IllegalStateException if the computation detectably
2852     * attempts a recursive update to this map that would
2853 jsr166 1.18 * otherwise never complete
2854 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2855 jsr166 1.18 * in which case the mapping is left unestablished
2856 dl 1.1 */
2857 dl 1.61 @SuppressWarnings("unchecked") public V computeIfAbsent
2858     (K key, Fun<? super K, ? extends V> mappingFunction) {
2859 dl 1.1 if (key == null || mappingFunction == null)
2860     throw new NullPointerException();
2861 dl 1.27 return (V)internalComputeIfAbsent(key, mappingFunction);
2862 dl 1.2 }
2863    
2864     /**
2865 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2866     * its current mapped value. This is equivalent to
2867     * <pre> {@code
2868     * if (map.containsKey(key)) {
2869     * value = remappingFunction.apply(key, map.get(key));
2870     * if (value != null)
2871     * map.put(key, value);
2872     * else
2873     * map.remove(key);
2874     * }
2875     * }</pre>
2876     *
2877     * except that the action is performed atomically. If the
2878     * function returns {@code null}, the mapping is removed. If the
2879     * function itself throws an (unchecked) exception, the exception
2880     * is rethrown to its caller, and the current mapping is left
2881     * unchanged. Some attempted update operations on this map by
2882     * other threads may be blocked while computation is in progress,
2883     * so the computation should be short and simple, and must not
2884     * attempt to update any other mappings of this Map. For example,
2885     * to either create or append new messages to a value mapping:
2886     *
2887     * @param key key with which the specified value is to be associated
2888     * @param remappingFunction the function to compute a value
2889 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2890 dl 1.52 * @throws NullPointerException if the specified key or remappingFunction
2891     * is null
2892     * @throws IllegalStateException if the computation detectably
2893     * attempts a recursive update to this map that would
2894     * otherwise never complete
2895     * @throws RuntimeException or Error if the remappingFunction does so,
2896     * in which case the mapping is unchanged
2897     */
2898 dl 1.61 @SuppressWarnings("unchecked") public V computeIfPresent
2899     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2900 dl 1.52 if (key == null || remappingFunction == null)
2901     throw new NullPointerException();
2902     return (V)internalCompute(key, true, remappingFunction);
2903     }
2904    
2905     /**
2906 dl 1.41 * Computes a new mapping value given a key and
2907 dl 1.27 * its current mapped value (or {@code null} if there is no current
2908     * mapping). This is equivalent to
2909 jsr166 1.13 * <pre> {@code
2910 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2911 dl 1.41 * if (value != null)
2912     * map.put(key, value);
2913     * else
2914     * map.remove(key);
2915 dl 1.27 * }</pre>
2916 dl 1.2 *
2917 dl 1.27 * except that the action is performed atomically. If the
2918 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2919     * function itself throws an (unchecked) exception, the exception
2920     * is rethrown to its caller, and the current mapping is left
2921     * unchanged. Some attempted update operations on this map by
2922     * other threads may be blocked while computation is in progress,
2923     * so the computation should be short and simple, and must not
2924     * attempt to update any other mappings of this Map. For example,
2925     * to either create or append new messages to a value mapping:
2926 dl 1.27 *
2927     * <pre> {@code
2928     * Map<Key, String> map = ...;
2929     * final String msg = ...;
2930 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2931     * public String apply(Key k, String v) {
2932 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2933 dl 1.2 *
2934     * @param key key with which the specified value is to be associated
2935 dl 1.27 * @param remappingFunction the function to compute a value
2936 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2937 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2938 dl 1.41 * is null
2939 dl 1.5 * @throws IllegalStateException if the computation detectably
2940     * attempts a recursive update to this map that would
2941 jsr166 1.18 * otherwise never complete
2942 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2943 jsr166 1.18 * in which case the mapping is unchanged
2944 dl 1.2 */
2945 dl 1.61 @SuppressWarnings("unchecked") public V compute
2946     (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2947 dl 1.27 if (key == null || remappingFunction == null)
2948 dl 1.2 throw new NullPointerException();
2949 dl 1.52 return (V)internalCompute(key, false, remappingFunction);
2950     }
2951    
2952     /**
2953     * If the specified key is not already associated
2954     * with a value, associate it with the given value.
2955     * Otherwise, replace the value with the results of
2956     * the given remapping function. This is equivalent to:
2957     * <pre> {@code
2958     * if (!map.containsKey(key))
2959     * map.put(value);
2960     * else {
2961     * newValue = remappingFunction.apply(map.get(key), value);
2962     * if (value != null)
2963     * map.put(key, value);
2964     * else
2965     * map.remove(key);
2966     * }
2967     * }</pre>
2968     * except that the action is performed atomically. If the
2969     * function returns {@code null}, the mapping is removed. If the
2970     * function itself throws an (unchecked) exception, the exception
2971     * is rethrown to its caller, and the current mapping is left
2972     * unchanged. Some attempted update operations on this map by
2973     * other threads may be blocked while computation is in progress,
2974     * so the computation should be short and simple, and must not
2975     * attempt to update any other mappings of this Map.
2976     */
2977 dl 1.61 @SuppressWarnings("unchecked") public V merge
2978     (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2979 dl 1.52 if (key == null || value == null || remappingFunction == null)
2980     throw new NullPointerException();
2981     return (V)internalMerge(key, value, remappingFunction);
2982 dl 1.1 }
2983    
2984     /**
2985     * Removes the key (and its corresponding value) from this map.
2986     * This method does nothing if the key is not in the map.
2987     *
2988     * @param key the key that needs to be removed
2989     * @return the previous value associated with {@code key}, or
2990     * {@code null} if there was no mapping for {@code key}
2991     * @throws NullPointerException if the specified key is null
2992     */
2993 dl 1.61 @SuppressWarnings("unchecked") public V remove(Object key) {
2994 dl 1.1 if (key == null)
2995     throw new NullPointerException();
2996 jsr166 1.3 return (V)internalReplace(key, null, null);
2997 dl 1.1 }
2998    
2999     /**
3000     * {@inheritDoc}
3001     *
3002     * @throws NullPointerException if the specified key is null
3003     */
3004     public boolean remove(Object key, Object value) {
3005     if (key == null)
3006     throw new NullPointerException();
3007     if (value == null)
3008     return false;
3009     return internalReplace(key, null, value) != null;
3010     }
3011    
3012     /**
3013     * {@inheritDoc}
3014     *
3015     * @throws NullPointerException if any of the arguments are null
3016     */
3017     public boolean replace(K key, V oldValue, V newValue) {
3018     if (key == null || oldValue == null || newValue == null)
3019     throw new NullPointerException();
3020 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
3021 dl 1.1 }
3022    
3023     /**
3024     * {@inheritDoc}
3025     *
3026     * @return the previous value associated with the specified key,
3027     * or {@code null} if there was no mapping for the key
3028     * @throws NullPointerException if the specified key or value is null
3029     */
3030 dl 1.61 @SuppressWarnings("unchecked") public V replace(K key, V value) {
3031 dl 1.1 if (key == null || value == null)
3032     throw new NullPointerException();
3033 jsr166 1.3 return (V)internalReplace(key, value, null);
3034 dl 1.1 }
3035    
3036     /**
3037     * Removes all of the mappings from this map.
3038     */
3039     public void clear() {
3040     internalClear();
3041     }
3042    
3043     /**
3044     * Returns a {@link Set} view of the keys contained in this map.
3045     * The set is backed by the map, so changes to the map are
3046 dl 1.70 * reflected in the set, and vice-versa.
3047     *
3048     * @return the set view
3049     */
3050     public KeySetView<K,V> keySet() {
3051     KeySetView<K,V> ks = keySet;
3052     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3053     }
3054    
3055     /**
3056     * Returns a {@link Set} view of the keys in this map, using the
3057     * given common mapped value for any additions (i.e., {@link
3058     * Collection#add} and {@link Collection#addAll}). This is of
3059     * course only appropriate if it is acceptable to use the same
3060     * value for all additions from this view.
3061 dl 1.1 *
3062 dl 1.70 * @param mappedValue the mapped value to use for any
3063     * additions.
3064     * @return the set view
3065     * @throws NullPointerException if the mappedValue is null
3066 dl 1.1 */
3067 dl 1.70 public KeySetView<K,V> keySet(V mappedValue) {
3068     if (mappedValue == null)
3069     throw new NullPointerException();
3070     return new KeySetView<K,V>(this, mappedValue);
3071 dl 1.1 }
3072    
3073     /**
3074     * Returns a {@link Collection} view of the values contained in this map.
3075     * The collection is backed by the map, so changes to the map are
3076 jsr166 1.76 * reflected in the collection, and vice-versa.
3077 dl 1.1 */
3078 dl 1.75 public ValuesView<K,V> values() {
3079     ValuesView<K,V> vs = values;
3080     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3081 dl 1.1 }
3082    
3083     /**
3084     * Returns a {@link Set} view of the mappings contained in this map.
3085     * The set is backed by the map, so changes to the map are
3086     * reflected in the set, and vice-versa. The set supports element
3087     * removal, which removes the corresponding mapping from the map,
3088     * via the {@code Iterator.remove}, {@code Set.remove},
3089     * {@code removeAll}, {@code retainAll}, and {@code clear}
3090     * operations. It does not support the {@code add} or
3091     * {@code addAll} operations.
3092     *
3093     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3094     * that will never throw {@link ConcurrentModificationException},
3095     * and guarantees to traverse elements as they existed upon
3096     * construction of the iterator, and may (but is not guaranteed to)
3097     * reflect any modifications subsequent to construction.
3098     */
3099     public Set<Map.Entry<K,V>> entrySet() {
3100 dl 1.75 EntrySetView<K,V> es = entrySet;
3101     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3102 dl 1.1 }
3103    
3104     /**
3105     * Returns an enumeration of the keys in this table.
3106     *
3107     * @return an enumeration of the keys in this table
3108     * @see #keySet()
3109     */
3110     public Enumeration<K> keys() {
3111 dl 1.14 return new KeyIterator<K,V>(this);
3112 dl 1.1 }
3113    
3114     /**
3115     * Returns an enumeration of the values in this table.
3116     *
3117     * @return an enumeration of the values in this table
3118     * @see #values()
3119     */
3120     public Enumeration<V> elements() {
3121 dl 1.14 return new ValueIterator<K,V>(this);
3122 dl 1.1 }
3123    
3124     /**
3125 jsr166 1.55 * Returns a partitionable iterator of the keys in this map.
3126 dl 1.41 *
3127 jsr166 1.55 * @return a partitionable iterator of the keys in this map
3128 dl 1.41 */
3129     public Spliterator<K> keySpliterator() {
3130     return new KeyIterator<K,V>(this);
3131     }
3132    
3133     /**
3134 jsr166 1.55 * Returns a partitionable iterator of the values in this map.
3135 dl 1.41 *
3136 jsr166 1.55 * @return a partitionable iterator of the values in this map
3137 dl 1.41 */
3138     public Spliterator<V> valueSpliterator() {
3139     return new ValueIterator<K,V>(this);
3140     }
3141    
3142     /**
3143 jsr166 1.55 * Returns a partitionable iterator of the entries in this map.
3144 dl 1.41 *
3145 jsr166 1.55 * @return a partitionable iterator of the entries in this map
3146 dl 1.41 */
3147     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3148     return new EntryIterator<K,V>(this);
3149     }
3150    
3151     /**
3152 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
3153     * the sum of, for each key-value pair in the map,
3154     * {@code key.hashCode() ^ value.hashCode()}.
3155     *
3156     * @return the hash code value for this map
3157 dl 1.1 */
3158     public int hashCode() {
3159 dl 1.14 int h = 0;
3160 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3161 dl 1.41 Object v;
3162     while ((v = it.advance()) != null) {
3163     h += it.nextKey.hashCode() ^ v.hashCode();
3164 dl 1.14 }
3165     return h;
3166 dl 1.1 }
3167    
3168     /**
3169 dl 1.2 * Returns a string representation of this map. The string
3170     * representation consists of a list of key-value mappings (in no
3171     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3172     * mappings are separated by the characters {@code ", "} (comma
3173     * and space). Each key-value mapping is rendered as the key
3174     * followed by an equals sign ("{@code =}") followed by the
3175     * associated value.
3176     *
3177     * @return a string representation of this map
3178 dl 1.1 */
3179     public String toString() {
3180 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3181 dl 1.14 StringBuilder sb = new StringBuilder();
3182     sb.append('{');
3183 dl 1.41 Object v;
3184     if ((v = it.advance()) != null) {
3185 dl 1.14 for (;;) {
3186 dl 1.41 Object k = it.nextKey;
3187 dl 1.14 sb.append(k == this ? "(this Map)" : k);
3188     sb.append('=');
3189     sb.append(v == this ? "(this Map)" : v);
3190 dl 1.41 if ((v = it.advance()) == null)
3191 dl 1.14 break;
3192     sb.append(',').append(' ');
3193     }
3194     }
3195     return sb.append('}').toString();
3196 dl 1.1 }
3197    
3198     /**
3199 dl 1.2 * Compares the specified object with this map for equality.
3200     * Returns {@code true} if the given object is a map with the same
3201     * mappings as this map. This operation may return misleading
3202     * results if either map is concurrently modified during execution
3203     * of this method.
3204     *
3205     * @param o object to be compared for equality with this map
3206     * @return {@code true} if the specified object is equal to this map
3207 dl 1.1 */
3208     public boolean equals(Object o) {
3209 dl 1.14 if (o != this) {
3210     if (!(o instanceof Map))
3211     return false;
3212     Map<?,?> m = (Map<?,?>) o;
3213 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3214 dl 1.41 Object val;
3215     while ((val = it.advance()) != null) {
3216 dl 1.14 Object v = m.get(it.nextKey);
3217     if (v == null || (v != val && !v.equals(val)))
3218 dl 1.1 return false;
3219 dl 1.14 }
3220 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
3221 dl 1.14 Object mk, mv, v;
3222     if ((mk = e.getKey()) == null ||
3223     (mv = e.getValue()) == null ||
3224     (v = internalGet(mk)) == null ||
3225     (mv != v && !mv.equals(v)))
3226 dl 1.1 return false;
3227     }
3228 dl 1.14 }
3229     return true;
3230     }
3231    
3232     /* ----------------Iterators -------------- */
3233    
3234 dl 1.61 @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3235 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3236     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3237 dl 1.79 KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3238     super(map, it, -1);
3239 dl 1.41 }
3240     public KeyIterator<K,V> split() {
3241 dl 1.70 if (nextKey != null)
3242 dl 1.41 throw new IllegalStateException();
3243 dl 1.79 return new KeyIterator<K,V>(map, this);
3244 dl 1.14 }
3245 dl 1.61 @SuppressWarnings("unchecked") public final K next() {
3246 dl 1.41 if (nextVal == null && advance() == null)
3247 dl 1.14 throw new NoSuchElementException();
3248     Object k = nextKey;
3249 dl 1.41 nextVal = null;
3250     return (K) k;
3251 dl 1.14 }
3252    
3253     public final K nextElement() { return next(); }
3254     }
3255    
3256 dl 1.61 @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3257 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3258 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3259 dl 1.79 ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3260     super(map, it, -1);
3261 dl 1.41 }
3262     public ValueIterator<K,V> split() {
3263 dl 1.70 if (nextKey != null)
3264 dl 1.41 throw new IllegalStateException();
3265 dl 1.79 return new ValueIterator<K,V>(map, this);
3266 dl 1.41 }
3267    
3268 dl 1.61 @SuppressWarnings("unchecked") public final V next() {
3269 dl 1.41 Object v;
3270     if ((v = nextVal) == null && (v = advance()) == null)
3271 dl 1.14 throw new NoSuchElementException();
3272 dl 1.41 nextVal = null;
3273     return (V) v;
3274 dl 1.14 }
3275    
3276     public final V nextElement() { return next(); }
3277     }
3278    
3279 dl 1.61 @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3280 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3281 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3282 dl 1.79 EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3283     super(map, it, -1);
3284 dl 1.41 }
3285     public EntryIterator<K,V> split() {
3286 dl 1.70 if (nextKey != null)
3287 dl 1.41 throw new IllegalStateException();
3288 dl 1.79 return new EntryIterator<K,V>(map, this);
3289 dl 1.41 }
3290 dl 1.24
3291 dl 1.61 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3292 dl 1.41 Object v;
3293     if ((v = nextVal) == null && (v = advance()) == null)
3294 dl 1.24 throw new NoSuchElementException();
3295     Object k = nextKey;
3296 dl 1.41 nextVal = null;
3297     return new MapEntry<K,V>((K)k, (V)v, map);
3298 dl 1.1 }
3299     }
3300    
3301     /**
3302 dl 1.41 * Exported Entry for iterators
3303 dl 1.1 */
3304 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3305 dl 1.14 final K key; // non-null
3306     V val; // non-null
3307 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3308     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3309     this.key = key;
3310     this.val = val;
3311     this.map = map;
3312     }
3313 dl 1.14 public final K getKey() { return key; }
3314     public final V getValue() { return val; }
3315     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3316     public final String toString(){ return key + "=" + val; }
3317    
3318     public final boolean equals(Object o) {
3319     Object k, v; Map.Entry<?,?> e;
3320     return ((o instanceof Map.Entry) &&
3321     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3322     (v = e.getValue()) != null &&
3323     (k == key || k.equals(key)) &&
3324     (v == val || v.equals(val)));
3325 dl 1.1 }
3326    
3327     /**
3328     * Sets our entry's value and writes through to the map. The
3329 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3330     * necessarily track asynchronous changes, the most recent
3331 dl 1.41 * "previous" value could be different from what we return (or
3332     * could even have been removed in which case the put will
3333     * re-establish). We do not and cannot guarantee more.
3334 dl 1.1 */
3335 dl 1.14 public final V setValue(V value) {
3336 dl 1.1 if (value == null) throw new NullPointerException();
3337 dl 1.14 V v = val;
3338     val = value;
3339     map.put(key, value);
3340 dl 1.1 return v;
3341     }
3342     }
3343    
3344 dl 1.79 /**
3345     * Returns exportable snapshot entry for the given key and value
3346     * when write-through can't or shouldn't be used.
3347     */
3348     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3349     return new AbstractMap.SimpleEntry<K,V>(k, v);
3350     }
3351    
3352 dl 1.75 /* ---------------- Serialization Support -------------- */
3353 dl 1.1
3354 dl 1.24 /**
3355 dl 1.75 * Stripped-down version of helper class used in previous version,
3356     * declared for the sake of serialization compatibility
3357 dl 1.14 */
3358 dl 1.75 static class Segment<K,V> implements Serializable {
3359     private static final long serialVersionUID = 2249069246763182397L;
3360     final float loadFactor;
3361     Segment(float lf) { this.loadFactor = lf; }
3362     }
3363 dl 1.24
3364 dl 1.75 /**
3365     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3366     * stream (i.e., serializes it).
3367     * @param s the stream
3368     * @serialData
3369     * the key (Object) and value (Object)
3370     * for each key-value mapping, followed by a null pair.
3371     * The key-value mappings are emitted in no particular order.
3372     */
3373     @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3374     throws java.io.IOException {
3375     if (segments == null) { // for serialization compatibility
3376     segments = (Segment<K,V>[])
3377     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3378     for (int i = 0; i < segments.length; ++i)
3379     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3380     }
3381     s.defaultWriteObject();
3382     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3383     Object v;
3384     while ((v = it.advance()) != null) {
3385     s.writeObject(it.nextKey);
3386     s.writeObject(v);
3387     }
3388     s.writeObject(null);
3389     s.writeObject(null);
3390     segments = null; // throw away
3391     }
3392 dl 1.24
3393 dl 1.75 /**
3394     * Reconstitutes the instance from a stream (that is, deserializes it).
3395     * @param s the stream
3396     */
3397     @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3398     throws java.io.IOException, ClassNotFoundException {
3399     s.defaultReadObject();
3400     this.segments = null; // unneeded
3401     // initialize transient final field
3402     UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3403 dl 1.24
3404 dl 1.75 // Create all nodes, then place in table once size is known
3405     long size = 0L;
3406     Node p = null;
3407     for (;;) {
3408     K k = (K) s.readObject();
3409     V v = (V) s.readObject();
3410     if (k != null && v != null) {
3411     int h = spread(k.hashCode());
3412     p = new Node(h, k, v, p);
3413     ++size;
3414 dl 1.24 }
3415 dl 1.75 else
3416     break;
3417 dl 1.24 }
3418 dl 1.75 if (p != null) {
3419     boolean init = false;
3420     int n;
3421     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3422     n = MAXIMUM_CAPACITY;
3423     else {
3424     int sz = (int)size;
3425     n = tableSizeFor(sz + (sz >>> 1) + 1);
3426     }
3427     int sc = sizeCtl;
3428     boolean collide = false;
3429     if (n > sc &&
3430     UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3431     try {
3432     if (table == null) {
3433     init = true;
3434     Node[] tab = new Node[n];
3435     int mask = n - 1;
3436     while (p != null) {
3437     int j = p.hash & mask;
3438     Node next = p.next;
3439     Node q = p.next = tabAt(tab, j);
3440     setTabAt(tab, j, p);
3441     if (!collide && q != null && q.hash == p.hash)
3442     collide = true;
3443     p = next;
3444     }
3445     table = tab;
3446     counter.add(size);
3447     sc = n - (n >>> 2);
3448     }
3449     } finally {
3450     sizeCtl = sc;
3451     }
3452     if (collide) { // rescan and convert to TreeBins
3453     Node[] tab = table;
3454     for (int i = 0; i < tab.length; ++i) {
3455     int c = 0;
3456     for (Node e = tabAt(tab, i); e != null; e = e.next) {
3457     if (++c > TREE_THRESHOLD &&
3458     (e.key instanceof Comparable)) {
3459     replaceWithTreeBin(tab, i, e.key);
3460     break;
3461     }
3462     }
3463     }
3464 dl 1.24 }
3465     }
3466 dl 1.75 if (!init) { // Can only happen if unsafely published.
3467     while (p != null) {
3468     internalPut(p.key, p.val);
3469     p = p.next;
3470     }
3471 dl 1.24 }
3472     }
3473 dl 1.75 }
3474    
3475 dl 1.24
3476 dl 1.75 // -------------------------------------------------------
3477 dl 1.24
3478 dl 1.75 // Sams
3479     /** Interface describing a void action of one argument */
3480     public interface Action<A> { void apply(A a); }
3481 dl 1.52 /** Interface describing a void action of two arguments */
3482     public interface BiAction<A,B> { void apply(A a, B b); }
3483     /** Interface describing a function of one argument */
3484     public interface Fun<A,T> { T apply(A a); }
3485     /** Interface describing a function of two arguments */
3486     public interface BiFun<A,B,T> { T apply(A a, B b); }
3487     /** Interface describing a function of no arguments */
3488     public interface Generator<T> { T apply(); }
3489     /** Interface describing a function mapping its argument to a double */
3490     public interface ObjectToDouble<A> { double apply(A a); }
3491     /** Interface describing a function mapping its argument to a long */
3492     public interface ObjectToLong<A> { long apply(A a); }
3493     /** Interface describing a function mapping its argument to an int */
3494     public interface ObjectToInt<A> {int apply(A a); }
3495     /** Interface describing a function mapping two arguments to a double */
3496     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3497     /** Interface describing a function mapping two arguments to a long */
3498     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3499     /** Interface describing a function mapping two arguments to an int */
3500     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3501     /** Interface describing a function mapping a double to a double */
3502     public interface DoubleToDouble { double apply(double a); }
3503     /** Interface describing a function mapping a long to a long */
3504     public interface LongToLong { long apply(long a); }
3505     /** Interface describing a function mapping an int to an int */
3506     public interface IntToInt { int apply(int a); }
3507     /** Interface describing a function mapping two doubles to a double */
3508     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3509     /** Interface describing a function mapping two longs to a long */
3510     public interface LongByLongToLong { long apply(long a, long b); }
3511     /** Interface describing a function mapping two ints to an int */
3512     public interface IntByIntToInt { int apply(int a, int b); }
3513    
3514    
3515     // -------------------------------------------------------
3516    
3517     /**
3518 dl 1.70 * Performs the given action for each (key, value).
3519 dl 1.52 *
3520 dl 1.70 * @param action the action
3521 dl 1.52 */
3522 dl 1.70 public void forEach(BiAction<K,V> action) {
3523     ForkJoinTasks.forEach
3524     (this, action).invoke();
3525 dl 1.52 }
3526    
3527     /**
3528 dl 1.70 * Performs the given action for each non-null transformation
3529     * of each (key, value).
3530     *
3531     * @param transformer a function returning the transformation
3532     * for an element, or null of there is no transformation (in
3533     * which case the action is not applied).
3534     * @param action the action
3535 dl 1.52 */
3536 dl 1.70 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3537     Action<U> action) {
3538     ForkJoinTasks.forEach
3539     (this, transformer, action).invoke();
3540     }
3541    
3542     /**
3543     * Returns a non-null result from applying the given search
3544     * function on each (key, value), or null if none. Upon
3545     * success, further element processing is suppressed and the
3546     * results of any other parallel invocations of the search
3547     * function are ignored.
3548     *
3549     * @param searchFunction a function returning a non-null
3550     * result on success, else null
3551     * @return a non-null result from applying the given search
3552     * function on each (key, value), or null if none
3553     */
3554     public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3555     return ForkJoinTasks.search
3556     (this, searchFunction).invoke();
3557     }
3558    
3559     /**
3560     * Returns the result of accumulating the given transformation
3561     * of all (key, value) pairs using the given reducer to
3562     * combine values, or null if none.
3563     *
3564     * @param transformer a function returning the transformation
3565     * for an element, or null of there is no transformation (in
3566     * which case it is not combined).
3567     * @param reducer a commutative associative combining function
3568     * @return the result of accumulating the given transformation
3569     * of all (key, value) pairs
3570     */
3571     public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3572     BiFun<? super U, ? super U, ? extends U> reducer) {
3573     return ForkJoinTasks.reduce
3574     (this, transformer, reducer).invoke();
3575     }
3576 dl 1.52
3577 dl 1.70 /**
3578     * Returns the result of accumulating the given transformation
3579     * of all (key, value) pairs using the given reducer to
3580     * combine values, and the given basis as an identity value.
3581     *
3582     * @param transformer a function returning the transformation
3583     * for an element
3584     * @param basis the identity (initial default value) for the reduction
3585     * @param reducer a commutative associative combining function
3586     * @return the result of accumulating the given transformation
3587     * of all (key, value) pairs
3588     */
3589     public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3590     double basis,
3591     DoubleByDoubleToDouble reducer) {
3592     return ForkJoinTasks.reduceToDouble
3593     (this, transformer, basis, reducer).invoke();
3594     }
3595    
3596     /**
3597     * Returns the result of accumulating the given transformation
3598     * of all (key, value) pairs using the given reducer to
3599     * combine values, and the given basis as an identity value.
3600     *
3601     * @param transformer a function returning the transformation
3602     * for an element
3603     * @param basis the identity (initial default value) for the reduction
3604     * @param reducer a commutative associative combining function
3605     * @return the result of accumulating the given transformation
3606     * of all (key, value) pairs
3607     */
3608     public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3609     long basis,
3610     LongByLongToLong reducer) {
3611     return ForkJoinTasks.reduceToLong
3612     (this, transformer, basis, reducer).invoke();
3613     }
3614    
3615     /**
3616     * Returns the result of accumulating the given transformation
3617     * of all (key, value) pairs using the given reducer to
3618     * combine values, and the given basis as an identity value.
3619     *
3620     * @param transformer a function returning the transformation
3621     * for an element
3622     * @param basis the identity (initial default value) for the reduction
3623     * @param reducer a commutative associative combining function
3624     * @return the result of accumulating the given transformation
3625     * of all (key, value) pairs
3626     */
3627     public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3628     int basis,
3629     IntByIntToInt reducer) {
3630     return ForkJoinTasks.reduceToInt
3631     (this, transformer, basis, reducer).invoke();
3632     }
3633 dl 1.52
3634 dl 1.70 /**
3635     * Performs the given action for each key.
3636     *
3637     * @param action the action
3638     */
3639     public void forEachKey(Action<K> action) {
3640     ForkJoinTasks.forEachKey
3641     (this, action).invoke();
3642     }
3643 dl 1.52
3644 dl 1.70 /**
3645     * Performs the given action for each non-null transformation
3646     * of each key.
3647     *
3648     * @param transformer a function returning the transformation
3649     * for an element, or null of there is no transformation (in
3650     * which case the action is not applied).
3651     * @param action the action
3652     */
3653     public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3654     Action<U> action) {
3655     ForkJoinTasks.forEachKey
3656     (this, transformer, action).invoke();
3657     }
3658 dl 1.52
3659 dl 1.70 /**
3660 dl 1.71 * Returns a non-null result from applying the given search
3661     * function on each key, or null if none. Upon success,
3662     * further element processing is suppressed and the results of
3663     * any other parallel invocations of the search function are
3664     * ignored.
3665     *
3666     * @param searchFunction a function returning a non-null
3667     * result on success, else null
3668     * @return a non-null result from applying the given search
3669     * function on each key, or null if none
3670     */
3671     public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3672     return ForkJoinTasks.searchKeys
3673     (this, searchFunction).invoke();
3674     }
3675    
3676     /**
3677 dl 1.70 * Returns the result of accumulating all keys using the given
3678     * reducer to combine values, or null if none.
3679     *
3680     * @param reducer a commutative associative combining function
3681     * @return the result of accumulating all keys using the given
3682     * reducer to combine values, or null if none
3683     */
3684     public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3685     return ForkJoinTasks.reduceKeys
3686     (this, reducer).invoke();
3687     }
3688 dl 1.1
3689 dl 1.70 /**
3690     * Returns the result of accumulating the given transformation
3691     * of all keys using the given reducer to combine values, or
3692     * null if none.
3693     *
3694     * @param transformer a function returning the transformation
3695     * for an element, or null of there is no transformation (in
3696     * which case it is not combined).
3697     * @param reducer a commutative associative combining function
3698     * @return the result of accumulating the given transformation
3699     * of all keys
3700     */
3701     public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3702 dl 1.52 BiFun<? super U, ? super U, ? extends U> reducer) {
3703 dl 1.70 return ForkJoinTasks.reduceKeys
3704     (this, transformer, reducer).invoke();
3705     }
3706 dl 1.1
3707 dl 1.70 /**
3708     * Returns the result of accumulating the given transformation
3709     * of all keys using the given reducer to combine values, and
3710     * the given basis as an identity value.
3711     *
3712     * @param transformer a function returning the transformation
3713     * for an element
3714     * @param basis the identity (initial default value) for the reduction
3715     * @param reducer a commutative associative combining function
3716     * @return the result of accumulating the given transformation
3717     * of all keys
3718     */
3719     public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3720 dl 1.52 double basis,
3721     DoubleByDoubleToDouble reducer) {
3722 dl 1.70 return ForkJoinTasks.reduceKeysToDouble
3723     (this, transformer, basis, reducer).invoke();
3724     }
3725 dl 1.52
3726 dl 1.70 /**
3727     * Returns the result of accumulating the given transformation
3728     * of all keys using the given reducer to combine values, and
3729     * the given basis as an identity value.
3730     *
3731     * @param transformer a function returning the transformation
3732     * for an element
3733     * @param basis the identity (initial default value) for the reduction
3734     * @param reducer a commutative associative combining function
3735     * @return the result of accumulating the given transformation
3736     * of all keys
3737     */
3738     public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3739 dl 1.52 long basis,
3740     LongByLongToLong reducer) {
3741 dl 1.70 return ForkJoinTasks.reduceKeysToLong
3742     (this, transformer, basis, reducer).invoke();
3743     }
3744 dl 1.52
3745 dl 1.70 /**
3746     * Returns the result of accumulating the given transformation
3747     * of all keys using the given reducer to combine values, and
3748     * the given basis as an identity value.
3749     *
3750     * @param transformer a function returning the transformation
3751     * for an element
3752     * @param basis the identity (initial default value) for the reduction
3753     * @param reducer a commutative associative combining function
3754     * @return the result of accumulating the given transformation
3755     * of all keys
3756     */
3757     public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3758 dl 1.52 int basis,
3759     IntByIntToInt reducer) {
3760 dl 1.70 return ForkJoinTasks.reduceKeysToInt
3761     (this, transformer, basis, reducer).invoke();
3762     }
3763 dl 1.52
3764 dl 1.70 /**
3765     * Performs the given action for each value.
3766     *
3767     * @param action the action
3768     */
3769     public void forEachValue(Action<V> action) {
3770     ForkJoinTasks.forEachValue
3771     (this, action).invoke();
3772     }
3773 dl 1.52
3774 dl 1.70 /**
3775     * Performs the given action for each non-null transformation
3776     * of each value.
3777     *
3778     * @param transformer a function returning the transformation
3779     * for an element, or null of there is no transformation (in
3780     * which case the action is not applied).
3781     */
3782     public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3783     Action<U> action) {
3784     ForkJoinTasks.forEachValue
3785     (this, transformer, action).invoke();
3786     }
3787 dl 1.52
3788 dl 1.70 /**
3789     * Returns a non-null result from applying the given search
3790     * function on each value, or null if none. Upon success,
3791     * further element processing is suppressed and the results of
3792     * any other parallel invocations of the search function are
3793     * ignored.
3794     *
3795     * @param searchFunction a function returning a non-null
3796     * result on success, else null
3797     * @return a non-null result from applying the given search
3798     * function on each value, or null if none
3799     *
3800     */
3801     public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3802     return ForkJoinTasks.searchValues
3803     (this, searchFunction).invoke();
3804     }
3805 dl 1.52
3806 dl 1.70 /**
3807     * Returns the result of accumulating all values using the
3808     * given reducer to combine values, or null if none.
3809     *
3810     * @param reducer a commutative associative combining function
3811     * @return the result of accumulating all values
3812     */
3813     public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3814     return ForkJoinTasks.reduceValues
3815     (this, reducer).invoke();
3816     }
3817 dl 1.52
3818 dl 1.70 /**
3819     * Returns the result of accumulating the given transformation
3820     * of all values using the given reducer to combine values, or
3821     * null if none.
3822     *
3823     * @param transformer a function returning the transformation
3824     * for an element, or null of there is no transformation (in
3825     * which case it is not combined).
3826     * @param reducer a commutative associative combining function
3827     * @return the result of accumulating the given transformation
3828     * of all values
3829     */
3830     public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3831     BiFun<? super U, ? super U, ? extends U> reducer) {
3832     return ForkJoinTasks.reduceValues
3833     (this, transformer, reducer).invoke();
3834     }
3835 dl 1.52
3836 dl 1.70 /**
3837     * Returns the result of accumulating the given transformation
3838     * of all values using the given reducer to combine values,
3839     * and the given basis as an identity value.
3840     *
3841     * @param transformer a function returning the transformation
3842     * for an element
3843     * @param basis the identity (initial default value) for the reduction
3844     * @param reducer a commutative associative combining function
3845     * @return the result of accumulating the given transformation
3846     * of all values
3847     */
3848     public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3849     double basis,
3850     DoubleByDoubleToDouble reducer) {
3851     return ForkJoinTasks.reduceValuesToDouble
3852 dl 1.75 (this, transformer, basis, reducer).invoke();
3853     }
3854    
3855     /**
3856     * Returns the result of accumulating the given transformation
3857     * of all values using the given reducer to combine values,
3858     * and the given basis as an identity value.
3859     *
3860     * @param transformer a function returning the transformation
3861     * for an element
3862     * @param basis the identity (initial default value) for the reduction
3863     * @param reducer a commutative associative combining function
3864     * @return the result of accumulating the given transformation
3865     * of all values
3866     */
3867     public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3868     long basis,
3869     LongByLongToLong reducer) {
3870     return ForkJoinTasks.reduceValuesToLong
3871     (this, transformer, basis, reducer).invoke();
3872     }
3873    
3874     /**
3875     * Returns the result of accumulating the given transformation
3876     * of all values using the given reducer to combine values,
3877     * and the given basis as an identity value.
3878     *
3879     * @param transformer a function returning the transformation
3880     * for an element
3881     * @param basis the identity (initial default value) for the reduction
3882     * @param reducer a commutative associative combining function
3883     * @return the result of accumulating the given transformation
3884     * of all values
3885     */
3886     public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3887     int basis,
3888     IntByIntToInt reducer) {
3889     return ForkJoinTasks.reduceValuesToInt
3890     (this, transformer, basis, reducer).invoke();
3891     }
3892    
3893     /**
3894     * Performs the given action for each entry.
3895     *
3896     * @param action the action
3897     */
3898     public void forEachEntry(Action<Map.Entry<K,V>> action) {
3899     ForkJoinTasks.forEachEntry
3900     (this, action).invoke();
3901     }
3902    
3903     /**
3904     * Performs the given action for each non-null transformation
3905     * of each entry.
3906     *
3907     * @param transformer a function returning the transformation
3908     * for an element, or null of there is no transformation (in
3909     * which case the action is not applied).
3910     * @param action the action
3911     */
3912     public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3913     Action<U> action) {
3914     ForkJoinTasks.forEachEntry
3915     (this, transformer, action).invoke();
3916     }
3917    
3918     /**
3919     * Returns a non-null result from applying the given search
3920     * function on each entry, or null if none. Upon success,
3921     * further element processing is suppressed and the results of
3922     * any other parallel invocations of the search function are
3923     * ignored.
3924     *
3925     * @param searchFunction a function returning a non-null
3926     * result on success, else null
3927     * @return a non-null result from applying the given search
3928     * function on each entry, or null if none
3929     */
3930     public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3931     return ForkJoinTasks.searchEntries
3932     (this, searchFunction).invoke();
3933     }
3934    
3935     /**
3936     * Returns the result of accumulating all entries using the
3937     * given reducer to combine values, or null if none.
3938     *
3939     * @param reducer a commutative associative combining function
3940     * @return the result of accumulating all entries
3941     */
3942     public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3943     return ForkJoinTasks.reduceEntries
3944     (this, reducer).invoke();
3945     }
3946    
3947     /**
3948     * Returns the result of accumulating the given transformation
3949     * of all entries using the given reducer to combine values,
3950     * or null if none.
3951     *
3952     * @param transformer a function returning the transformation
3953     * for an element, or null of there is no transformation (in
3954     * which case it is not combined).
3955     * @param reducer a commutative associative combining function
3956     * @return the result of accumulating the given transformation
3957     * of all entries
3958     */
3959     public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3960     BiFun<? super U, ? super U, ? extends U> reducer) {
3961     return ForkJoinTasks.reduceEntries
3962     (this, transformer, reducer).invoke();
3963     }
3964    
3965     /**
3966     * Returns the result of accumulating the given transformation
3967     * of all entries using the given reducer to combine values,
3968     * and the given basis as an identity value.
3969     *
3970     * @param transformer a function returning the transformation
3971     * for an element
3972     * @param basis the identity (initial default value) for the reduction
3973     * @param reducer a commutative associative combining function
3974     * @return the result of accumulating the given transformation
3975     * of all entries
3976     */
3977     public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3978     double basis,
3979     DoubleByDoubleToDouble reducer) {
3980     return ForkJoinTasks.reduceEntriesToDouble
3981     (this, transformer, basis, reducer).invoke();
3982     }
3983    
3984     /**
3985     * Returns the result of accumulating the given transformation
3986     * of all entries using the given reducer to combine values,
3987     * and the given basis as an identity value.
3988     *
3989     * @param transformer a function returning the transformation
3990     * for an element
3991     * @param basis the identity (initial default value) for the reduction
3992     * @param reducer a commutative associative combining function
3993     * @return the result of accumulating the given transformation
3994     * of all entries
3995     */
3996     public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3997     long basis,
3998     LongByLongToLong reducer) {
3999     return ForkJoinTasks.reduceEntriesToLong
4000     (this, transformer, basis, reducer).invoke();
4001     }
4002    
4003     /**
4004     * Returns the result of accumulating the given transformation
4005     * of all entries using the given reducer to combine values,
4006     * and the given basis as an identity value.
4007     *
4008     * @param transformer a function returning the transformation
4009     * for an element
4010     * @param basis the identity (initial default value) for the reduction
4011     * @param reducer a commutative associative combining function
4012     * @return the result of accumulating the given transformation
4013     * of all entries
4014     */
4015     public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4016     int basis,
4017     IntByIntToInt reducer) {
4018     return ForkJoinTasks.reduceEntriesToInt
4019     (this, transformer, basis, reducer).invoke();
4020     }
4021    
4022     /* ----------------Views -------------- */
4023    
4024     /**
4025     * Base class for views.
4026     */
4027     static abstract class CHMView<K, V> {
4028     final ConcurrentHashMapV8<K, V> map;
4029     CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4030    
4031     /**
4032     * Returns the map backing this view.
4033     *
4034     * @return the map backing this view
4035     */
4036     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4037    
4038     public final int size() { return map.size(); }
4039     public final boolean isEmpty() { return map.isEmpty(); }
4040     public final void clear() { map.clear(); }
4041    
4042     // implementations below rely on concrete classes supplying these
4043     abstract public Iterator<?> iterator();
4044     abstract public boolean contains(Object o);
4045     abstract public boolean remove(Object o);
4046    
4047     private static final String oomeMsg = "Required array size too large";
4048    
4049     public final Object[] toArray() {
4050     long sz = map.mappingCount();
4051     if (sz > (long)(MAX_ARRAY_SIZE))
4052     throw new OutOfMemoryError(oomeMsg);
4053     int n = (int)sz;
4054     Object[] r = new Object[n];
4055     int i = 0;
4056     Iterator<?> it = iterator();
4057     while (it.hasNext()) {
4058     if (i == n) {
4059     if (n >= MAX_ARRAY_SIZE)
4060     throw new OutOfMemoryError(oomeMsg);
4061     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4062     n = MAX_ARRAY_SIZE;
4063     else
4064     n += (n >>> 1) + 1;
4065     r = Arrays.copyOf(r, n);
4066     }
4067     r[i++] = it.next();
4068     }
4069     return (i == n) ? r : Arrays.copyOf(r, i);
4070     }
4071    
4072     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4073     long sz = map.mappingCount();
4074     if (sz > (long)(MAX_ARRAY_SIZE))
4075     throw new OutOfMemoryError(oomeMsg);
4076     int m = (int)sz;
4077     T[] r = (a.length >= m) ? a :
4078     (T[])java.lang.reflect.Array
4079     .newInstance(a.getClass().getComponentType(), m);
4080     int n = r.length;
4081     int i = 0;
4082     Iterator<?> it = iterator();
4083     while (it.hasNext()) {
4084     if (i == n) {
4085     if (n >= MAX_ARRAY_SIZE)
4086     throw new OutOfMemoryError(oomeMsg);
4087     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4088     n = MAX_ARRAY_SIZE;
4089     else
4090     n += (n >>> 1) + 1;
4091     r = Arrays.copyOf(r, n);
4092     }
4093     r[i++] = (T)it.next();
4094     }
4095     if (a == r && i < n) {
4096     r[i] = null; // null-terminate
4097     return r;
4098     }
4099     return (i == n) ? r : Arrays.copyOf(r, i);
4100     }
4101    
4102     public final int hashCode() {
4103     int h = 0;
4104     for (Iterator<?> it = iterator(); it.hasNext();)
4105     h += it.next().hashCode();
4106     return h;
4107     }
4108    
4109     public final String toString() {
4110     StringBuilder sb = new StringBuilder();
4111     sb.append('[');
4112     Iterator<?> it = iterator();
4113     if (it.hasNext()) {
4114     for (;;) {
4115     Object e = it.next();
4116     sb.append(e == this ? "(this Collection)" : e);
4117     if (!it.hasNext())
4118     break;
4119     sb.append(',').append(' ');
4120     }
4121     }
4122     return sb.append(']').toString();
4123     }
4124    
4125     public final boolean containsAll(Collection<?> c) {
4126     if (c != this) {
4127     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4128     Object e = it.next();
4129     if (e == null || !contains(e))
4130     return false;
4131     }
4132     }
4133     return true;
4134     }
4135    
4136     public final boolean removeAll(Collection<?> c) {
4137     boolean modified = false;
4138     for (Iterator<?> it = iterator(); it.hasNext();) {
4139     if (c.contains(it.next())) {
4140     it.remove();
4141     modified = true;
4142     }
4143     }
4144     return modified;
4145     }
4146    
4147     public final boolean retainAll(Collection<?> c) {
4148     boolean modified = false;
4149     for (Iterator<?> it = iterator(); it.hasNext();) {
4150     if (!c.contains(it.next())) {
4151     it.remove();
4152     modified = true;
4153     }
4154     }
4155     return modified;
4156     }
4157    
4158     }
4159    
4160     /**
4161     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4162     * which additions may optionally be enabled by mapping to a
4163     * common value. This class cannot be directly instantiated. See
4164     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4165     * {@link #newKeySet(int)}.
4166     */
4167     public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4168     private static final long serialVersionUID = 7249069246763182397L;
4169     private final V value;
4170     KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4171     super(map);
4172     this.value = value;
4173     }
4174    
4175     /**
4176     * Returns the default mapped value for additions,
4177     * or {@code null} if additions are not supported.
4178     *
4179     * @return the default mapped value for additions, or {@code null}
4180     * if not supported.
4181     */
4182     public V getMappedValue() { return value; }
4183    
4184     // implement Set API
4185    
4186     public boolean contains(Object o) { return map.containsKey(o); }
4187     public boolean remove(Object o) { return map.remove(o) != null; }
4188    
4189     /**
4190     * Returns a "weakly consistent" iterator that will never
4191     * throw {@link ConcurrentModificationException}, and
4192     * guarantees to traverse elements as they existed upon
4193     * construction of the iterator, and may (but is not
4194     * guaranteed to) reflect any modifications subsequent to
4195     * construction.
4196     *
4197     * @return an iterator over the keys of this map
4198     */
4199     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4200     public boolean add(K e) {
4201     V v;
4202     if ((v = value) == null)
4203     throw new UnsupportedOperationException();
4204     if (e == null)
4205     throw new NullPointerException();
4206     return map.internalPutIfAbsent(e, v) == null;
4207     }
4208     public boolean addAll(Collection<? extends K> c) {
4209     boolean added = false;
4210     V v;
4211     if ((v = value) == null)
4212     throw new UnsupportedOperationException();
4213     for (K e : c) {
4214     if (e == null)
4215     throw new NullPointerException();
4216     if (map.internalPutIfAbsent(e, v) == null)
4217     added = true;
4218     }
4219     return added;
4220     }
4221     public boolean equals(Object o) {
4222     Set<?> c;
4223     return ((o instanceof Set) &&
4224     ((c = (Set<?>)o) == this ||
4225     (containsAll(c) && c.containsAll(this))));
4226     }
4227    
4228     /**
4229     * Performs the given action for each key.
4230     *
4231     * @param action the action
4232     */
4233     public void forEach(Action<K> action) {
4234     ForkJoinTasks.forEachKey
4235     (map, action).invoke();
4236     }
4237    
4238     /**
4239     * Performs the given action for each non-null transformation
4240     * of each key.
4241     *
4242     * @param transformer a function returning the transformation
4243     * for an element, or null of there is no transformation (in
4244     * which case the action is not applied).
4245     * @param action the action
4246     */
4247     public <U> void forEach(Fun<? super K, ? extends U> transformer,
4248     Action<U> action) {
4249     ForkJoinTasks.forEachKey
4250     (map, transformer, action).invoke();
4251     }
4252    
4253     /**
4254     * Returns a non-null result from applying the given search
4255     * function on each key, or null if none. Upon success,
4256     * further element processing is suppressed and the results of
4257     * any other parallel invocations of the search function are
4258     * ignored.
4259     *
4260     * @param searchFunction a function returning a non-null
4261     * result on success, else null
4262     * @return a non-null result from applying the given search
4263     * function on each key, or null if none
4264     */
4265     public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4266     return ForkJoinTasks.searchKeys
4267     (map, searchFunction).invoke();
4268     }
4269    
4270     /**
4271     * Returns the result of accumulating all keys using the given
4272     * reducer to combine values, or null if none.
4273     *
4274     * @param reducer a commutative associative combining function
4275     * @return the result of accumulating all keys using the given
4276     * reducer to combine values, or null if none
4277     */
4278     public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4279     return ForkJoinTasks.reduceKeys
4280     (map, reducer).invoke();
4281     }
4282    
4283     /**
4284     * Returns the result of accumulating the given transformation
4285     * of all keys using the given reducer to combine values, and
4286     * the given basis as an identity value.
4287     *
4288     * @param transformer a function returning the transformation
4289     * for an element
4290     * @param basis the identity (initial default value) for the reduction
4291     * @param reducer a commutative associative combining function
4292     * @return the result of accumulating the given transformation
4293     * of all keys
4294     */
4295     public double reduceToDouble(ObjectToDouble<? super K> transformer,
4296     double basis,
4297     DoubleByDoubleToDouble reducer) {
4298     return ForkJoinTasks.reduceKeysToDouble
4299     (map, transformer, basis, reducer).invoke();
4300     }
4301    
4302    
4303     /**
4304     * Returns the result of accumulating the given transformation
4305     * of all keys using the given reducer to combine values, and
4306     * the given basis as an identity value.
4307     *
4308     * @param transformer a function returning the transformation
4309     * for an element
4310     * @param basis the identity (initial default value) for the reduction
4311     * @param reducer a commutative associative combining function
4312     * @return the result of accumulating the given transformation
4313     * of all keys
4314     */
4315     public long reduceToLong(ObjectToLong<? super K> transformer,
4316     long basis,
4317     LongByLongToLong reducer) {
4318     return ForkJoinTasks.reduceKeysToLong
4319     (map, transformer, basis, reducer).invoke();
4320     }
4321 jsr166 1.76
4322 dl 1.75 /**
4323     * Returns the result of accumulating the given transformation
4324     * of all keys using the given reducer to combine values, and
4325     * the given basis as an identity value.
4326     *
4327     * @param transformer a function returning the transformation
4328     * for an element
4329     * @param basis the identity (initial default value) for the reduction
4330     * @param reducer a commutative associative combining function
4331     * @return the result of accumulating the given transformation
4332     * of all keys
4333     */
4334     public int reduceToInt(ObjectToInt<? super K> transformer,
4335     int basis,
4336     IntByIntToInt reducer) {
4337     return ForkJoinTasks.reduceKeysToInt
4338     (map, transformer, basis, reducer).invoke();
4339     }
4340 jsr166 1.76
4341 dl 1.75 }
4342    
4343     /**
4344     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4345     * values, in which additions are disabled. This class cannot be
4346     * directly instantiated. See {@link #values},
4347     *
4348     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4349     * that will never throw {@link ConcurrentModificationException},
4350     * and guarantees to traverse elements as they existed upon
4351     * construction of the iterator, and may (but is not guaranteed to)
4352     * reflect any modifications subsequent to construction.
4353     */
4354     public static final class ValuesView<K,V> extends CHMView<K,V>
4355     implements Collection<V> {
4356     ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4357     public final boolean contains(Object o) { return map.containsValue(o); }
4358     public final boolean remove(Object o) {
4359     if (o != null) {
4360     Iterator<V> it = new ValueIterator<K,V>(map);
4361     while (it.hasNext()) {
4362     if (o.equals(it.next())) {
4363     it.remove();
4364     return true;
4365     }
4366     }
4367     }
4368     return false;
4369     }
4370    
4371     /**
4372     * Returns a "weakly consistent" iterator that will never
4373     * throw {@link ConcurrentModificationException}, and
4374     * guarantees to traverse elements as they existed upon
4375     * construction of the iterator, and may (but is not
4376     * guaranteed to) reflect any modifications subsequent to
4377     * construction.
4378     *
4379     * @return an iterator over the values of this map
4380     */
4381     public final Iterator<V> iterator() {
4382     return new ValueIterator<K,V>(map);
4383     }
4384     public final boolean add(V e) {
4385     throw new UnsupportedOperationException();
4386     }
4387     public final boolean addAll(Collection<? extends V> c) {
4388     throw new UnsupportedOperationException();
4389     }
4390    
4391     /**
4392     * Performs the given action for each value.
4393     *
4394     * @param action the action
4395     */
4396     public void forEach(Action<V> action) {
4397     ForkJoinTasks.forEachValue
4398     (map, action).invoke();
4399     }
4400    
4401     /**
4402     * Performs the given action for each non-null transformation
4403     * of each value.
4404     *
4405     * @param transformer a function returning the transformation
4406     * for an element, or null of there is no transformation (in
4407     * which case the action is not applied).
4408     */
4409     public <U> void forEach(Fun<? super V, ? extends U> transformer,
4410     Action<U> action) {
4411     ForkJoinTasks.forEachValue
4412     (map, transformer, action).invoke();
4413     }
4414    
4415     /**
4416     * Returns a non-null result from applying the given search
4417     * function on each value, or null if none. Upon success,
4418     * further element processing is suppressed and the results of
4419     * any other parallel invocations of the search function are
4420     * ignored.
4421     *
4422     * @param searchFunction a function returning a non-null
4423     * result on success, else null
4424     * @return a non-null result from applying the given search
4425     * function on each value, or null if none
4426     *
4427     */
4428     public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4429     return ForkJoinTasks.searchValues
4430     (map, searchFunction).invoke();
4431     }
4432    
4433     /**
4434     * Returns the result of accumulating all values using the
4435     * given reducer to combine values, or null if none.
4436     *
4437     * @param reducer a commutative associative combining function
4438     * @return the result of accumulating all values
4439     */
4440     public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4441     return ForkJoinTasks.reduceValues
4442     (map, reducer).invoke();
4443     }
4444    
4445     /**
4446     * Returns the result of accumulating the given transformation
4447     * of all values using the given reducer to combine values, or
4448     * null if none.
4449     *
4450     * @param transformer a function returning the transformation
4451     * for an element, or null of there is no transformation (in
4452     * which case it is not combined).
4453     * @param reducer a commutative associative combining function
4454     * @return the result of accumulating the given transformation
4455     * of all values
4456     */
4457     public <U> U reduce(Fun<? super V, ? extends U> transformer,
4458     BiFun<? super U, ? super U, ? extends U> reducer) {
4459     return ForkJoinTasks.reduceValues
4460     (map, transformer, reducer).invoke();
4461     }
4462 jsr166 1.76
4463 dl 1.75 /**
4464     * Returns the result of accumulating the given transformation
4465     * of all values using the given reducer to combine values,
4466     * and the given basis as an identity value.
4467     *
4468     * @param transformer a function returning the transformation
4469     * for an element
4470     * @param basis the identity (initial default value) for the reduction
4471     * @param reducer a commutative associative combining function
4472     * @return the result of accumulating the given transformation
4473     * of all values
4474     */
4475     public double reduceToDouble(ObjectToDouble<? super V> transformer,
4476     double basis,
4477     DoubleByDoubleToDouble reducer) {
4478     return ForkJoinTasks.reduceValuesToDouble
4479     (map, transformer, basis, reducer).invoke();
4480     }
4481    
4482     /**
4483     * Returns the result of accumulating the given transformation
4484     * of all values using the given reducer to combine values,
4485     * and the given basis as an identity value.
4486     *
4487     * @param transformer a function returning the transformation
4488     * for an element
4489     * @param basis the identity (initial default value) for the reduction
4490     * @param reducer a commutative associative combining function
4491     * @return the result of accumulating the given transformation
4492     * of all values
4493     */
4494     public long reduceToLong(ObjectToLong<? super V> transformer,
4495     long basis,
4496     LongByLongToLong reducer) {
4497     return ForkJoinTasks.reduceValuesToLong
4498     (map, transformer, basis, reducer).invoke();
4499     }
4500    
4501     /**
4502     * Returns the result of accumulating the given transformation
4503     * of all values using the given reducer to combine values,
4504     * and the given basis as an identity value.
4505     *
4506     * @param transformer a function returning the transformation
4507     * for an element
4508     * @param basis the identity (initial default value) for the reduction
4509     * @param reducer a commutative associative combining function
4510     * @return the result of accumulating the given transformation
4511     * of all values
4512     */
4513     public int reduceToInt(ObjectToInt<? super V> transformer,
4514     int basis,
4515     IntByIntToInt reducer) {
4516     return ForkJoinTasks.reduceValuesToInt
4517     (map, transformer, basis, reducer).invoke();
4518     }
4519    
4520 dl 1.70 }
4521 dl 1.52
4522 dl 1.70 /**
4523 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4524     * entries. This class cannot be directly instantiated. See
4525     * {@link #entrySet}.
4526 dl 1.70 */
4527 dl 1.75 public static final class EntrySetView<K,V> extends CHMView<K,V>
4528     implements Set<Map.Entry<K,V>> {
4529     EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4530     public final boolean contains(Object o) {
4531     Object k, v, r; Map.Entry<?,?> e;
4532     return ((o instanceof Map.Entry) &&
4533     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4534     (r = map.get(k)) != null &&
4535     (v = e.getValue()) != null &&
4536     (v == r || v.equals(r)));
4537     }
4538     public final boolean remove(Object o) {
4539     Object k, v; Map.Entry<?,?> e;
4540     return ((o instanceof Map.Entry) &&
4541     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4542     (v = e.getValue()) != null &&
4543     map.remove(k, v));
4544     }
4545    
4546     /**
4547     * Returns a "weakly consistent" iterator that will never
4548     * throw {@link ConcurrentModificationException}, and
4549     * guarantees to traverse elements as they existed upon
4550     * construction of the iterator, and may (but is not
4551     * guaranteed to) reflect any modifications subsequent to
4552     * construction.
4553     *
4554     * @return an iterator over the entries of this map
4555     */
4556     public final Iterator<Map.Entry<K,V>> iterator() {
4557     return new EntryIterator<K,V>(map);
4558     }
4559    
4560     public final boolean add(Entry<K,V> e) {
4561     K key = e.getKey();
4562     V value = e.getValue();
4563     if (key == null || value == null)
4564     throw new NullPointerException();
4565     return map.internalPut(key, value) == null;
4566     }
4567     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4568     boolean added = false;
4569     for (Entry<K,V> e : c) {
4570     if (add(e))
4571     added = true;
4572     }
4573     return added;
4574     }
4575     public boolean equals(Object o) {
4576     Set<?> c;
4577     return ((o instanceof Set) &&
4578     ((c = (Set<?>)o) == this ||
4579     (containsAll(c) && c.containsAll(this))));
4580     }
4581 dl 1.52
4582 dl 1.75 /**
4583     * Performs the given action for each entry.
4584     *
4585     * @param action the action
4586     */
4587     public void forEach(Action<Map.Entry<K,V>> action) {
4588     ForkJoinTasks.forEachEntry
4589     (map, action).invoke();
4590     }
4591 dl 1.52
4592 dl 1.75 /**
4593     * Performs the given action for each non-null transformation
4594     * of each entry.
4595     *
4596     * @param transformer a function returning the transformation
4597     * for an element, or null of there is no transformation (in
4598     * which case the action is not applied).
4599     * @param action the action
4600     */
4601     public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4602     Action<U> action) {
4603     ForkJoinTasks.forEachEntry
4604     (map, transformer, action).invoke();
4605     }
4606 dl 1.52
4607 dl 1.75 /**
4608     * Returns a non-null result from applying the given search
4609     * function on each entry, or null if none. Upon success,
4610     * further element processing is suppressed and the results of
4611     * any other parallel invocations of the search function are
4612     * ignored.
4613     *
4614     * @param searchFunction a function returning a non-null
4615     * result on success, else null
4616     * @return a non-null result from applying the given search
4617     * function on each entry, or null if none
4618     */
4619     public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4620     return ForkJoinTasks.searchEntries
4621     (map, searchFunction).invoke();
4622     }
4623 dl 1.52
4624 dl 1.75 /**
4625     * Returns the result of accumulating all entries using the
4626     * given reducer to combine values, or null if none.
4627     *
4628     * @param reducer a commutative associative combining function
4629     * @return the result of accumulating all entries
4630     */
4631     public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4632     return ForkJoinTasks.reduceEntries
4633     (map, reducer).invoke();
4634     }
4635 dl 1.52
4636 dl 1.75 /**
4637     * Returns the result of accumulating the given transformation
4638     * of all entries using the given reducer to combine values,
4639     * or null if none.
4640     *
4641     * @param transformer a function returning the transformation
4642     * for an element, or null of there is no transformation (in
4643     * which case it is not combined).
4644     * @param reducer a commutative associative combining function
4645     * @return the result of accumulating the given transformation
4646     * of all entries
4647     */
4648     public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4649     BiFun<? super U, ? super U, ? extends U> reducer) {
4650     return ForkJoinTasks.reduceEntries
4651     (map, transformer, reducer).invoke();
4652     }
4653 dl 1.52
4654 dl 1.75 /**
4655     * Returns the result of accumulating the given transformation
4656     * of all entries using the given reducer to combine values,
4657     * and the given basis as an identity value.
4658     *
4659     * @param transformer a function returning the transformation
4660     * for an element
4661     * @param basis the identity (initial default value) for the reduction
4662     * @param reducer a commutative associative combining function
4663     * @return the result of accumulating the given transformation
4664     * of all entries
4665     */
4666     public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4667     double basis,
4668     DoubleByDoubleToDouble reducer) {
4669     return ForkJoinTasks.reduceEntriesToDouble
4670     (map, transformer, basis, reducer).invoke();
4671     }
4672 dl 1.52
4673 dl 1.75 /**
4674     * Returns the result of accumulating the given transformation
4675     * of all entries using the given reducer to combine values,
4676     * and the given basis as an identity value.
4677     *
4678     * @param transformer a function returning the transformation
4679     * for an element
4680     * @param basis the identity (initial default value) for the reduction
4681     * @param reducer a commutative associative combining function
4682     * @return the result of accumulating the given transformation
4683     * of all entries
4684     */
4685     public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4686     long basis,
4687     LongByLongToLong reducer) {
4688     return ForkJoinTasks.reduceEntriesToLong
4689     (map, transformer, basis, reducer).invoke();
4690     }
4691 dl 1.52
4692 dl 1.75 /**
4693     * Returns the result of accumulating the given transformation
4694     * of all entries using the given reducer to combine values,
4695     * and the given basis as an identity value.
4696     *
4697     * @param transformer a function returning the transformation
4698     * for an element
4699     * @param basis the identity (initial default value) for the reduction
4700     * @param reducer a commutative associative combining function
4701     * @return the result of accumulating the given transformation
4702     * of all entries
4703     */
4704     public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4705     int basis,
4706     IntByIntToInt reducer) {
4707     return ForkJoinTasks.reduceEntriesToInt
4708     (map, transformer, basis, reducer).invoke();
4709     }
4710 dl 1.52
4711     }
4712    
4713     // ---------------------------------------------------------------------
4714    
4715     /**
4716     * Predefined tasks for performing bulk parallel operations on
4717 dl 1.70 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4718     * for bulk operations. Each method has the same name, but returns
4719     * a task rather than invoking it. These methods may be useful in
4720     * custom applications such as submitting a task without waiting
4721     * for completion, using a custom pool, or combining with other
4722     * tasks.
4723 dl 1.52 */
4724     public static class ForkJoinTasks {
4725     private ForkJoinTasks() {}
4726    
4727     /**
4728     * Returns a task that when invoked, performs the given
4729     * action for each (key, value)
4730     *
4731     * @param map the map
4732     * @param action the action
4733     * @return the task
4734     */
4735 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4736 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4737     BiAction<K,V> action) {
4738     if (action == null) throw new NullPointerException();
4739 dl 1.79 return new ForEachMappingTask<K,V>(map, null, -1, action);
4740 dl 1.52 }
4741    
4742     /**
4743     * Returns a task that when invoked, performs the given
4744     * action for each non-null transformation of each (key, value)
4745     *
4746     * @param map the map
4747     * @param transformer a function returning the transformation
4748 jsr166 1.68 * for an element, or null if there is no transformation (in
4749 jsr166 1.67 * which case the action is not applied)
4750 dl 1.52 * @param action the action
4751     * @return the task
4752     */
4753 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4754 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4755     BiFun<? super K, ? super V, ? extends U> transformer,
4756     Action<U> action) {
4757     if (transformer == null || action == null)
4758     throw new NullPointerException();
4759     return new ForEachTransformedMappingTask<K,V,U>
4760 dl 1.79 (map, null, -1, transformer, action);
4761 dl 1.52 }
4762    
4763     /**
4764 dl 1.59 * Returns a task that when invoked, returns a non-null result
4765     * from applying the given search function on each (key,
4766     * value), or null if none. Upon success, further element
4767     * processing is suppressed and the results of any other
4768     * parallel invocations of the search function are ignored.
4769 dl 1.52 *
4770     * @param map the map
4771     * @param searchFunction a function returning a non-null
4772     * result on success, else null
4773     * @return the task
4774     */
4775     public static <K,V,U> ForkJoinTask<U> search
4776     (ConcurrentHashMapV8<K,V> map,
4777     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4778     if (searchFunction == null) throw new NullPointerException();
4779     return new SearchMappingsTask<K,V,U>
4780 dl 1.79 (map, null, -1, searchFunction,
4781 dl 1.52 new AtomicReference<U>());
4782     }
4783    
4784     /**
4785     * Returns a task that when invoked, returns the result of
4786     * accumulating the given transformation of all (key, value) pairs
4787     * using the given reducer to combine values, or null if none.
4788     *
4789     * @param map the map
4790     * @param transformer a function returning the transformation
4791 jsr166 1.68 * for an element, or null if there is no transformation (in
4792 dl 1.52 * which case it is not combined).
4793     * @param reducer a commutative associative combining function
4794     * @return the task
4795     */
4796     public static <K,V,U> ForkJoinTask<U> reduce
4797     (ConcurrentHashMapV8<K,V> map,
4798     BiFun<? super K, ? super V, ? extends U> transformer,
4799     BiFun<? super U, ? super U, ? extends U> reducer) {
4800     if (transformer == null || reducer == null)
4801     throw new NullPointerException();
4802     return new MapReduceMappingsTask<K,V,U>
4803 dl 1.63 (map, null, -1, null, transformer, reducer);
4804 dl 1.52 }
4805    
4806     /**
4807     * Returns a task that when invoked, returns the result of
4808     * accumulating the given transformation of all (key, value) pairs
4809     * using the given reducer to combine values, and the given
4810     * basis as an identity value.
4811     *
4812     * @param map the map
4813     * @param transformer a function returning the transformation
4814     * for an element
4815     * @param basis the identity (initial default value) for the reduction
4816     * @param reducer a commutative associative combining function
4817     * @return the task
4818     */
4819     public static <K,V> ForkJoinTask<Double> reduceToDouble
4820     (ConcurrentHashMapV8<K,V> map,
4821     ObjectByObjectToDouble<? super K, ? super V> transformer,
4822     double basis,
4823     DoubleByDoubleToDouble reducer) {
4824     if (transformer == null || reducer == null)
4825     throw new NullPointerException();
4826     return new MapReduceMappingsToDoubleTask<K,V>
4827 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4828 dl 1.52 }
4829    
4830     /**
4831     * Returns a task that when invoked, returns the result of
4832     * accumulating the given transformation of all (key, value) pairs
4833     * using the given reducer to combine values, and the given
4834     * basis as an identity value.
4835     *
4836     * @param map the map
4837     * @param transformer a function returning the transformation
4838     * for an element
4839     * @param basis the identity (initial default value) for the reduction
4840     * @param reducer a commutative associative combining function
4841     * @return the task
4842     */
4843     public static <K,V> ForkJoinTask<Long> reduceToLong
4844     (ConcurrentHashMapV8<K,V> map,
4845     ObjectByObjectToLong<? super K, ? super V> transformer,
4846     long basis,
4847     LongByLongToLong reducer) {
4848     if (transformer == null || reducer == null)
4849     throw new NullPointerException();
4850     return new MapReduceMappingsToLongTask<K,V>
4851 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4852 dl 1.52 }
4853    
4854     /**
4855     * Returns a task that when invoked, returns the result of
4856     * accumulating the given transformation of all (key, value) pairs
4857     * using the given reducer to combine values, and the given
4858     * basis as an identity value.
4859     *
4860     * @param transformer a function returning the transformation
4861     * for an element
4862     * @param basis the identity (initial default value) for the reduction
4863     * @param reducer a commutative associative combining function
4864     * @return the task
4865     */
4866     public static <K,V> ForkJoinTask<Integer> reduceToInt
4867     (ConcurrentHashMapV8<K,V> map,
4868     ObjectByObjectToInt<? super K, ? super V> transformer,
4869     int basis,
4870     IntByIntToInt reducer) {
4871     if (transformer == null || reducer == null)
4872     throw new NullPointerException();
4873     return new MapReduceMappingsToIntTask<K,V>
4874 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4875 dl 1.52 }
4876    
4877     /**
4878     * Returns a task that when invoked, performs the given action
4879 jsr166 1.56 * for each key.
4880 dl 1.52 *
4881     * @param map the map
4882     * @param action the action
4883     * @return the task
4884     */
4885 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
4886 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4887     Action<K> action) {
4888     if (action == null) throw new NullPointerException();
4889 dl 1.79 return new ForEachKeyTask<K,V>(map, null, -1, action);
4890 dl 1.52 }
4891    
4892     /**
4893     * Returns a task that when invoked, performs the given action
4894 jsr166 1.56 * for each non-null transformation of each key.
4895 dl 1.52 *
4896     * @param map the map
4897     * @param transformer a function returning the transformation
4898 jsr166 1.68 * for an element, or null if there is no transformation (in
4899 jsr166 1.67 * which case the action is not applied)
4900 dl 1.52 * @param action the action
4901     * @return the task
4902     */
4903 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
4904 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4905     Fun<? super K, ? extends U> transformer,
4906     Action<U> action) {
4907     if (transformer == null || action == null)
4908     throw new NullPointerException();
4909     return new ForEachTransformedKeyTask<K,V,U>
4910 dl 1.79 (map, null, -1, transformer, action);
4911 dl 1.52 }
4912    
4913     /**
4914     * Returns a task that when invoked, returns a non-null result
4915     * from applying the given search function on each key, or
4916 dl 1.59 * null if none. Upon success, further element processing is
4917     * suppressed and the results of any other parallel
4918     * invocations of the search function are ignored.
4919 dl 1.52 *
4920     * @param map the map
4921     * @param searchFunction a function returning a non-null
4922     * result on success, else null
4923     * @return the task
4924     */
4925     public static <K,V,U> ForkJoinTask<U> searchKeys
4926     (ConcurrentHashMapV8<K,V> map,
4927     Fun<? super K, ? extends U> searchFunction) {
4928     if (searchFunction == null) throw new NullPointerException();
4929     return new SearchKeysTask<K,V,U>
4930 dl 1.79 (map, null, -1, searchFunction,
4931 dl 1.52 new AtomicReference<U>());
4932     }
4933    
4934     /**
4935     * Returns a task that when invoked, returns the result of
4936     * accumulating all keys using the given reducer to combine
4937     * values, or null if none.
4938     *
4939     * @param map the map
4940     * @param reducer a commutative associative combining function
4941     * @return the task
4942     */
4943     public static <K,V> ForkJoinTask<K> reduceKeys
4944     (ConcurrentHashMapV8<K,V> map,
4945     BiFun<? super K, ? super K, ? extends K> reducer) {
4946     if (reducer == null) throw new NullPointerException();
4947     return new ReduceKeysTask<K,V>
4948 dl 1.63 (map, null, -1, null, reducer);
4949 dl 1.52 }
4950 jsr166 1.58
4951 dl 1.52 /**
4952     * Returns a task that when invoked, returns the result of
4953     * accumulating the given transformation of all keys using the given
4954     * reducer to combine values, or null if none.
4955     *
4956     * @param map the map
4957     * @param transformer a function returning the transformation
4958 jsr166 1.68 * for an element, or null if there is no transformation (in
4959 dl 1.52 * which case it is not combined).
4960     * @param reducer a commutative associative combining function
4961     * @return the task
4962     */
4963     public static <K,V,U> ForkJoinTask<U> reduceKeys
4964     (ConcurrentHashMapV8<K,V> map,
4965     Fun<? super K, ? extends U> transformer,
4966     BiFun<? super U, ? super U, ? extends U> reducer) {
4967     if (transformer == null || reducer == null)
4968     throw new NullPointerException();
4969     return new MapReduceKeysTask<K,V,U>
4970 dl 1.63 (map, null, -1, null, transformer, reducer);
4971 dl 1.52 }
4972    
4973     /**
4974     * Returns a task that when invoked, returns the result of
4975     * accumulating the given transformation of all keys using the given
4976     * reducer to combine values, and the given basis as an
4977     * identity value.
4978     *
4979     * @param map the map
4980     * @param transformer a function returning the transformation
4981     * for an element
4982     * @param basis the identity (initial default value) for the reduction
4983     * @param reducer a commutative associative combining function
4984     * @return the task
4985     */
4986     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4987     (ConcurrentHashMapV8<K,V> map,
4988     ObjectToDouble<? super K> transformer,
4989     double basis,
4990     DoubleByDoubleToDouble reducer) {
4991     if (transformer == null || reducer == null)
4992     throw new NullPointerException();
4993     return new MapReduceKeysToDoubleTask<K,V>
4994 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
4995 dl 1.52 }
4996    
4997     /**
4998     * Returns a task that when invoked, returns the result of
4999     * accumulating the given transformation of all keys using the given
5000     * reducer to combine values, and the given basis as an
5001     * identity value.
5002     *
5003     * @param map the map
5004     * @param transformer a function returning the transformation
5005     * for an element
5006     * @param basis the identity (initial default value) for the reduction
5007     * @param reducer a commutative associative combining function
5008     * @return the task
5009     */
5010     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5011     (ConcurrentHashMapV8<K,V> map,
5012     ObjectToLong<? super K> transformer,
5013     long basis,
5014     LongByLongToLong reducer) {
5015     if (transformer == null || reducer == null)
5016     throw new NullPointerException();
5017     return new MapReduceKeysToLongTask<K,V>
5018 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5019 dl 1.52 }
5020    
5021     /**
5022     * Returns a task that when invoked, returns the result of
5023     * accumulating the given transformation of all keys using the given
5024     * reducer to combine values, and the given basis as an
5025     * identity value.
5026     *
5027     * @param map the map
5028     * @param transformer a function returning the transformation
5029     * for an element
5030     * @param basis the identity (initial default value) for the reduction
5031     * @param reducer a commutative associative combining function
5032     * @return the task
5033     */
5034     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5035     (ConcurrentHashMapV8<K,V> map,
5036     ObjectToInt<? super K> transformer,
5037     int basis,
5038     IntByIntToInt reducer) {
5039     if (transformer == null || reducer == null)
5040     throw new NullPointerException();
5041     return new MapReduceKeysToIntTask<K,V>
5042 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5043 dl 1.52 }
5044    
5045     /**
5046     * Returns a task that when invoked, performs the given action
5047 jsr166 1.56 * for each value.
5048 dl 1.52 *
5049     * @param map the map
5050     * @param action the action
5051     */
5052 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
5053 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5054     Action<V> action) {
5055     if (action == null) throw new NullPointerException();
5056 dl 1.79 return new ForEachValueTask<K,V>(map, null, -1, action);
5057 dl 1.52 }
5058    
5059     /**
5060     * Returns a task that when invoked, performs the given action
5061 jsr166 1.56 * for each non-null transformation of each value.
5062 dl 1.52 *
5063     * @param map the map
5064     * @param transformer a function returning the transformation
5065 jsr166 1.68 * for an element, or null if there is no transformation (in
5066 jsr166 1.67 * which case the action is not applied)
5067 dl 1.52 * @param action the action
5068     */
5069 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
5070 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5071     Fun<? super V, ? extends U> transformer,
5072     Action<U> action) {
5073     if (transformer == null || action == null)
5074     throw new NullPointerException();
5075     return new ForEachTransformedValueTask<K,V,U>
5076 dl 1.79 (map, null, -1, transformer, action);
5077 dl 1.52 }
5078    
5079     /**
5080     * Returns a task that when invoked, returns a non-null result
5081     * from applying the given search function on each value, or
5082 dl 1.59 * null if none. Upon success, further element processing is
5083     * suppressed and the results of any other parallel
5084     * invocations of the search function are ignored.
5085 dl 1.52 *
5086     * @param map the map
5087     * @param searchFunction a function returning a non-null
5088     * result on success, else null
5089     * @return the task
5090     */
5091     public static <K,V,U> ForkJoinTask<U> searchValues
5092     (ConcurrentHashMapV8<K,V> map,
5093     Fun<? super V, ? extends U> searchFunction) {
5094     if (searchFunction == null) throw new NullPointerException();
5095     return new SearchValuesTask<K,V,U>
5096 dl 1.79 (map, null, -1, searchFunction,
5097 dl 1.52 new AtomicReference<U>());
5098     }
5099    
5100     /**
5101     * Returns a task that when invoked, returns the result of
5102     * accumulating all values using the given reducer to combine
5103     * values, or null if none.
5104     *
5105     * @param map the map
5106     * @param reducer a commutative associative combining function
5107     * @return the task
5108     */
5109     public static <K,V> ForkJoinTask<V> reduceValues
5110     (ConcurrentHashMapV8<K,V> map,
5111     BiFun<? super V, ? super V, ? extends V> reducer) {
5112     if (reducer == null) throw new NullPointerException();
5113     return new ReduceValuesTask<K,V>
5114 dl 1.63 (map, null, -1, null, reducer);
5115 dl 1.52 }
5116    
5117     /**
5118     * Returns a task that when invoked, returns the result of
5119     * accumulating the given transformation of all values using the
5120     * given reducer to combine values, or null if none.
5121     *
5122     * @param map the map
5123     * @param transformer a function returning the transformation
5124 jsr166 1.68 * for an element, or null if there is no transformation (in
5125 dl 1.52 * which case it is not combined).
5126     * @param reducer a commutative associative combining function
5127     * @return the task
5128     */
5129     public static <K,V,U> ForkJoinTask<U> reduceValues
5130     (ConcurrentHashMapV8<K,V> map,
5131     Fun<? super V, ? extends U> transformer,
5132     BiFun<? super U, ? super U, ? extends U> reducer) {
5133     if (transformer == null || reducer == null)
5134     throw new NullPointerException();
5135     return new MapReduceValuesTask<K,V,U>
5136 dl 1.63 (map, null, -1, null, transformer, reducer);
5137 dl 1.52 }
5138    
5139     /**
5140     * Returns a task that when invoked, returns the result of
5141     * accumulating the given transformation of all values using the
5142     * given reducer to combine values, and the given basis as an
5143     * identity value.
5144     *
5145     * @param map the map
5146     * @param transformer a function returning the transformation
5147     * for an element
5148     * @param basis the identity (initial default value) for the reduction
5149     * @param reducer a commutative associative combining function
5150     * @return the task
5151     */
5152     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5153     (ConcurrentHashMapV8<K,V> map,
5154     ObjectToDouble<? super V> transformer,
5155     double basis,
5156     DoubleByDoubleToDouble reducer) {
5157     if (transformer == null || reducer == null)
5158     throw new NullPointerException();
5159     return new MapReduceValuesToDoubleTask<K,V>
5160 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5161 dl 1.52 }
5162    
5163     /**
5164     * Returns a task that when invoked, returns the result of
5165     * accumulating the given transformation of all values using the
5166     * given reducer to combine values, and the given basis as an
5167     * identity value.
5168     *
5169     * @param map the map
5170     * @param transformer a function returning the transformation
5171     * for an element
5172     * @param basis the identity (initial default value) for the reduction
5173     * @param reducer a commutative associative combining function
5174     * @return the task
5175     */
5176     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5177     (ConcurrentHashMapV8<K,V> map,
5178     ObjectToLong<? super V> transformer,
5179     long basis,
5180     LongByLongToLong reducer) {
5181     if (transformer == null || reducer == null)
5182     throw new NullPointerException();
5183     return new MapReduceValuesToLongTask<K,V>
5184 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5185 dl 1.52 }
5186    
5187     /**
5188     * Returns a task that when invoked, returns the result of
5189     * accumulating the given transformation of all values using the
5190     * given reducer to combine values, and the given basis as an
5191     * identity value.
5192     *
5193     * @param map the map
5194     * @param transformer a function returning the transformation
5195     * for an element
5196     * @param basis the identity (initial default value) for the reduction
5197     * @param reducer a commutative associative combining function
5198     * @return the task
5199     */
5200     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5201     (ConcurrentHashMapV8<K,V> map,
5202     ObjectToInt<? super V> transformer,
5203     int basis,
5204     IntByIntToInt reducer) {
5205     if (transformer == null || reducer == null)
5206     throw new NullPointerException();
5207     return new MapReduceValuesToIntTask<K,V>
5208 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5209 dl 1.52 }
5210    
5211     /**
5212     * Returns a task that when invoked, perform the given action
5213 jsr166 1.56 * for each entry.
5214 dl 1.52 *
5215     * @param map the map
5216     * @param action the action
5217     */
5218 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
5219 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5220     Action<Map.Entry<K,V>> action) {
5221     if (action == null) throw new NullPointerException();
5222 dl 1.79 return new ForEachEntryTask<K,V>(map, null, -1, action);
5223 dl 1.52 }
5224    
5225     /**
5226     * Returns a task that when invoked, perform the given action
5227 jsr166 1.56 * for each non-null transformation of each entry.
5228 dl 1.52 *
5229     * @param map the map
5230     * @param transformer a function returning the transformation
5231 jsr166 1.68 * for an element, or null if there is no transformation (in
5232 jsr166 1.67 * which case the action is not applied)
5233 dl 1.52 * @param action the action
5234     */
5235 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5236 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5237     Fun<Map.Entry<K,V>, ? extends U> transformer,
5238     Action<U> action) {
5239     if (transformer == null || action == null)
5240     throw new NullPointerException();
5241     return new ForEachTransformedEntryTask<K,V,U>
5242 dl 1.79 (map, null, -1, transformer, action);
5243 dl 1.52 }
5244    
5245     /**
5246     * Returns a task that when invoked, returns a non-null result
5247     * from applying the given search function on each entry, or
5248 dl 1.59 * null if none. Upon success, further element processing is
5249     * suppressed and the results of any other parallel
5250     * invocations of the search function are ignored.
5251 dl 1.52 *
5252     * @param map the map
5253     * @param searchFunction a function returning a non-null
5254     * result on success, else null
5255     * @return the task
5256     */
5257     public static <K,V,U> ForkJoinTask<U> searchEntries
5258     (ConcurrentHashMapV8<K,V> map,
5259     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5260     if (searchFunction == null) throw new NullPointerException();
5261     return new SearchEntriesTask<K,V,U>
5262 dl 1.79 (map, null, -1, searchFunction,
5263 dl 1.52 new AtomicReference<U>());
5264     }
5265    
5266     /**
5267     * Returns a task that when invoked, returns the result of
5268     * accumulating all entries using the given reducer to combine
5269     * values, or null if none.
5270     *
5271     * @param map the map
5272     * @param reducer a commutative associative combining function
5273     * @return the task
5274     */
5275     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5276     (ConcurrentHashMapV8<K,V> map,
5277     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5278     if (reducer == null) throw new NullPointerException();
5279     return new ReduceEntriesTask<K,V>
5280 dl 1.63 (map, null, -1, null, reducer);
5281 dl 1.52 }
5282    
5283     /**
5284     * Returns a task that when invoked, returns the result of
5285     * accumulating the given transformation of all entries using the
5286     * given reducer to combine values, or null if none.
5287     *
5288     * @param map the map
5289     * @param transformer a function returning the transformation
5290 jsr166 1.68 * for an element, or null if there is no transformation (in
5291 dl 1.52 * which case it is not combined).
5292     * @param reducer a commutative associative combining function
5293     * @return the task
5294     */
5295     public static <K,V,U> ForkJoinTask<U> reduceEntries
5296     (ConcurrentHashMapV8<K,V> map,
5297     Fun<Map.Entry<K,V>, ? extends U> transformer,
5298     BiFun<? super U, ? super U, ? extends U> reducer) {
5299     if (transformer == null || reducer == null)
5300     throw new NullPointerException();
5301     return new MapReduceEntriesTask<K,V,U>
5302 dl 1.63 (map, null, -1, null, transformer, reducer);
5303 dl 1.52 }
5304    
5305     /**
5306     * Returns a task that when invoked, returns the result of
5307     * accumulating the given transformation of all entries using the
5308     * given reducer to combine values, and the given basis as an
5309     * identity value.
5310     *
5311     * @param map the map
5312     * @param transformer a function returning the transformation
5313     * for an element
5314     * @param basis the identity (initial default value) for the reduction
5315     * @param reducer a commutative associative combining function
5316     * @return the task
5317     */
5318     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5319     (ConcurrentHashMapV8<K,V> map,
5320     ObjectToDouble<Map.Entry<K,V>> transformer,
5321     double basis,
5322     DoubleByDoubleToDouble reducer) {
5323     if (transformer == null || reducer == null)
5324     throw new NullPointerException();
5325     return new MapReduceEntriesToDoubleTask<K,V>
5326 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5327 dl 1.52 }
5328    
5329     /**
5330     * Returns a task that when invoked, returns the result of
5331     * accumulating the given transformation of all entries using the
5332     * given reducer to combine values, and the given basis as an
5333     * identity value.
5334     *
5335     * @param map the map
5336     * @param transformer a function returning the transformation
5337     * for an element
5338     * @param basis the identity (initial default value) for the reduction
5339     * @param reducer a commutative associative combining function
5340     * @return the task
5341     */
5342     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5343     (ConcurrentHashMapV8<K,V> map,
5344     ObjectToLong<Map.Entry<K,V>> transformer,
5345     long basis,
5346     LongByLongToLong reducer) {
5347     if (transformer == null || reducer == null)
5348     throw new NullPointerException();
5349     return new MapReduceEntriesToLongTask<K,V>
5350 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5351 dl 1.52 }
5352    
5353     /**
5354     * Returns a task that when invoked, returns the result of
5355     * accumulating the given transformation of all entries using the
5356     * given reducer to combine values, and the given basis as an
5357     * identity value.
5358     *
5359     * @param map the map
5360     * @param transformer a function returning the transformation
5361     * for an element
5362     * @param basis the identity (initial default value) for the reduction
5363     * @param reducer a commutative associative combining function
5364     * @return the task
5365     */
5366     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5367     (ConcurrentHashMapV8<K,V> map,
5368     ObjectToInt<Map.Entry<K,V>> transformer,
5369     int basis,
5370     IntByIntToInt reducer) {
5371     if (transformer == null || reducer == null)
5372     throw new NullPointerException();
5373     return new MapReduceEntriesToIntTask<K,V>
5374 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5375 dl 1.52 }
5376     }
5377    
5378     // -------------------------------------------------------
5379    
5380     /*
5381     * Task classes. Coded in a regular but ugly format/style to
5382     * simplify checks that each variant differs in the right way from
5383     * others.
5384     */
5385    
5386 dl 1.61 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5387 dl 1.79 extends Traverser<K,V,Void> {
5388 dl 1.52 final Action<K> action;
5389     ForEachKeyTask
5390 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5391 dl 1.52 Action<K> action) {
5392 dl 1.79 super(m, p, b);
5393 dl 1.52 this.action = action;
5394     }
5395 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5396     final Action<K> action;
5397     if ((action = this.action) == null)
5398     throw new NullPointerException();
5399     for (int b; (b = preSplit()) > 0;)
5400     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5401     while (advance() != null)
5402     action.apply((K)nextKey);
5403     propagateCompletion();
5404 dl 1.52 }
5405     }
5406    
5407 dl 1.61 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5408 dl 1.79 extends Traverser<K,V,Void> {
5409 dl 1.52 final Action<V> action;
5410     ForEachValueTask
5411 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5412 dl 1.52 Action<V> action) {
5413 dl 1.79 super(m, p, b);
5414 dl 1.52 this.action = action;
5415     }
5416 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5417     final Action<V> action;
5418     if ((action = this.action) == null)
5419     throw new NullPointerException();
5420     for (int b; (b = preSplit()) > 0;)
5421     new ForEachValueTask<K,V>(map, this, b, action).fork();
5422     Object v;
5423     while ((v = advance()) != null)
5424     action.apply((V)v);
5425     propagateCompletion();
5426 dl 1.52 }
5427     }
5428    
5429 dl 1.61 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5430 dl 1.79 extends Traverser<K,V,Void> {
5431 dl 1.52 final Action<Entry<K,V>> action;
5432     ForEachEntryTask
5433 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5434 dl 1.52 Action<Entry<K,V>> action) {
5435 dl 1.79 super(m, p, b);
5436 dl 1.52 this.action = action;
5437     }
5438 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5439     final Action<Entry<K,V>> action;
5440     if ((action = this.action) == null)
5441     throw new NullPointerException();
5442     for (int b; (b = preSplit()) > 0;)
5443     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5444     Object v;
5445     while ((v = advance()) != null)
5446     action.apply(entryFor((K)nextKey, (V)v));
5447     propagateCompletion();
5448 dl 1.52 }
5449     }
5450    
5451 dl 1.61 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5452 dl 1.79 extends Traverser<K,V,Void> {
5453 dl 1.52 final BiAction<K,V> action;
5454     ForEachMappingTask
5455 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5456 dl 1.52 BiAction<K,V> action) {
5457 dl 1.79 super(m, p, b);
5458 dl 1.52 this.action = action;
5459     }
5460 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5461     final BiAction<K,V> action;
5462     if ((action = this.action) == null)
5463     throw new NullPointerException();
5464     for (int b; (b = preSplit()) > 0;)
5465     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5466     Object v;
5467     while ((v = advance()) != null)
5468     action.apply((K)nextKey, (V)v);
5469     propagateCompletion();
5470 dl 1.52 }
5471     }
5472    
5473 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5474 dl 1.79 extends Traverser<K,V,Void> {
5475 dl 1.52 final Fun<? super K, ? extends U> transformer;
5476     final Action<U> action;
5477     ForEachTransformedKeyTask
5478 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5479     Fun<? super K, ? extends U> transformer, Action<U> action) {
5480     super(m, p, b);
5481     this.transformer = transformer; this.action = action;
5482     }
5483     @SuppressWarnings("unchecked") public final void compute() {
5484     final Fun<? super K, ? extends U> transformer;
5485     final Action<U> action;
5486     if ((transformer = this.transformer) == null ||
5487     (action = this.action) == null)
5488     throw new NullPointerException();
5489     for (int b; (b = preSplit()) > 0;)
5490     new ForEachTransformedKeyTask<K,V,U>
5491     (map, this, b, transformer, action).fork();
5492     U u;
5493     while (advance() != null) {
5494     if ((u = transformer.apply((K)nextKey)) != null)
5495     action.apply(u);
5496 dl 1.52 }
5497 dl 1.79 propagateCompletion();
5498 dl 1.52 }
5499     }
5500    
5501 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5502 dl 1.79 extends Traverser<K,V,Void> {
5503 dl 1.52 final Fun<? super V, ? extends U> transformer;
5504     final Action<U> action;
5505     ForEachTransformedValueTask
5506 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5507     Fun<? super V, ? extends U> transformer, Action<U> action) {
5508     super(m, p, b);
5509     this.transformer = transformer; this.action = action;
5510     }
5511     @SuppressWarnings("unchecked") public final void compute() {
5512     final Fun<? super V, ? extends U> transformer;
5513     final Action<U> action;
5514     if ((transformer = this.transformer) == null ||
5515     (action = this.action) == null)
5516     throw new NullPointerException();
5517     for (int b; (b = preSplit()) > 0;)
5518     new ForEachTransformedValueTask<K,V,U>
5519     (map, this, b, transformer, action).fork();
5520     Object v; U u;
5521     while ((v = advance()) != null) {
5522     if ((u = transformer.apply((V)v)) != null)
5523     action.apply(u);
5524 dl 1.52 }
5525 dl 1.79 propagateCompletion();
5526 dl 1.52 }
5527     }
5528    
5529 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5530 dl 1.79 extends Traverser<K,V,Void> {
5531 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5532     final Action<U> action;
5533     ForEachTransformedEntryTask
5534 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5535     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5536     super(m, p, b);
5537     this.transformer = transformer; this.action = action;
5538     }
5539     @SuppressWarnings("unchecked") public final void compute() {
5540     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5541     final Action<U> action;
5542     if ((transformer = this.transformer) == null ||
5543     (action = this.action) == null)
5544     throw new NullPointerException();
5545     for (int b; (b = preSplit()) > 0;)
5546     new ForEachTransformedEntryTask<K,V,U>
5547     (map, this, b, transformer, action).fork();
5548     Object v; U u;
5549     while ((v = advance()) != null) {
5550     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5551     action.apply(u);
5552 dl 1.52 }
5553 dl 1.79 propagateCompletion();
5554 dl 1.52 }
5555     }
5556    
5557 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5558 dl 1.79 extends Traverser<K,V,Void> {
5559 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5560     final Action<U> action;
5561     ForEachTransformedMappingTask
5562 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5563 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5564     Action<U> action) {
5565 dl 1.79 super(m, p, b);
5566     this.transformer = transformer; this.action = action;
5567 dl 1.52 }
5568 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5569     final BiFun<? super K, ? super V, ? extends U> transformer;
5570     final Action<U> action;
5571     if ((transformer = this.transformer) == null ||
5572     (action = this.action) == null)
5573     throw new NullPointerException();
5574     for (int b; (b = preSplit()) > 0;)
5575     new ForEachTransformedMappingTask<K,V,U>
5576     (map, this, b, transformer, action).fork();
5577     Object v; U u;
5578     while ((v = advance()) != null) {
5579     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5580     action.apply(u);
5581 dl 1.52 }
5582 dl 1.79 propagateCompletion();
5583 dl 1.52 }
5584     }
5585    
5586 dl 1.61 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5587 dl 1.79 extends Traverser<K,V,U> {
5588 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
5589     final AtomicReference<U> result;
5590     SearchKeysTask
5591 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5592 dl 1.52 Fun<? super K, ? extends U> searchFunction,
5593     AtomicReference<U> result) {
5594 dl 1.79 super(m, p, b);
5595 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5596     }
5597 dl 1.79 public final U getRawResult() { return result.get(); }
5598     @SuppressWarnings("unchecked") public final void compute() {
5599     final Fun<? super K, ? extends U> searchFunction;
5600     final AtomicReference<U> result;
5601     if ((searchFunction = this.searchFunction) == null ||
5602     (result = this.result) == null)
5603     throw new NullPointerException();
5604     for (int b;;) {
5605     if (result.get() != null)
5606     return;
5607     if ((b = preSplit()) <= 0)
5608     break;
5609     new SearchKeysTask<K,V,U>
5610     (map, this, b, searchFunction, result).fork();
5611     }
5612     while (result.get() == null) {
5613     U u;
5614     if (advance() == null) {
5615     propagateCompletion();
5616     break;
5617 dl 1.61 }
5618 dl 1.79 if ((u = searchFunction.apply((K)nextKey)) != null) {
5619     if (result.compareAndSet(null, u))
5620     quietlyCompleteRoot();
5621     break;
5622 dl 1.52 }
5623     }
5624     }
5625     }
5626    
5627 dl 1.61 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5628 dl 1.79 extends Traverser<K,V,U> {
5629 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
5630     final AtomicReference<U> result;
5631     SearchValuesTask
5632 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5633 dl 1.52 Fun<? super V, ? extends U> searchFunction,
5634     AtomicReference<U> result) {
5635 dl 1.79 super(m, p, b);
5636 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5637     }
5638 dl 1.79 public final U getRawResult() { return result.get(); }
5639     @SuppressWarnings("unchecked") public final void compute() {
5640     final Fun<? super V, ? extends U> searchFunction;
5641     final AtomicReference<U> result;
5642     if ((searchFunction = this.searchFunction) == null ||
5643     (result = this.result) == null)
5644     throw new NullPointerException();
5645     for (int b;;) {
5646     if (result.get() != null)
5647     return;
5648     if ((b = preSplit()) <= 0)
5649     break;
5650     new SearchValuesTask<K,V,U>
5651     (map, this, b, searchFunction, result).fork();
5652     }
5653     while (result.get() == null) {
5654     Object v; U u;
5655     if ((v = advance()) == null) {
5656     propagateCompletion();
5657     break;
5658 dl 1.61 }
5659 dl 1.79 if ((u = searchFunction.apply((V)v)) != null) {
5660     if (result.compareAndSet(null, u))
5661     quietlyCompleteRoot();
5662     break;
5663 dl 1.52 }
5664     }
5665     }
5666     }
5667    
5668 dl 1.61 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5669 dl 1.79 extends Traverser<K,V,U> {
5670 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
5671     final AtomicReference<U> result;
5672     SearchEntriesTask
5673 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5674 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
5675     AtomicReference<U> result) {
5676 dl 1.79 super(m, p, b);
5677 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5678     }
5679 dl 1.79 public final U getRawResult() { return result.get(); }
5680     @SuppressWarnings("unchecked") public final void compute() {
5681     final Fun<Entry<K,V>, ? extends U> searchFunction;
5682     final AtomicReference<U> result;
5683     if ((searchFunction = this.searchFunction) == null ||
5684     (result = this.result) == null)
5685     throw new NullPointerException();
5686     for (int b;;) {
5687     if (result.get() != null)
5688     return;
5689     if ((b = preSplit()) <= 0)
5690     break;
5691     new SearchEntriesTask<K,V,U>
5692     (map, this, b, searchFunction, result).fork();
5693     }
5694     while (result.get() == null) {
5695     Object v; U u;
5696     if ((v = advance()) == null) {
5697     propagateCompletion();
5698     break;
5699 dl 1.61 }
5700 dl 1.79 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5701     if (result.compareAndSet(null, u))
5702     quietlyCompleteRoot();
5703     return;
5704 dl 1.52 }
5705     }
5706     }
5707     }
5708    
5709 dl 1.61 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5710 dl 1.79 extends Traverser<K,V,U> {
5711 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5712     final AtomicReference<U> result;
5713     SearchMappingsTask
5714 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5715 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5716     AtomicReference<U> result) {
5717 dl 1.79 super(m, p, b);
5718 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5719     }
5720 dl 1.79 public final U getRawResult() { return result.get(); }
5721     @SuppressWarnings("unchecked") public final void compute() {
5722     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5723     final AtomicReference<U> result;
5724     if ((searchFunction = this.searchFunction) == null ||
5725     (result = this.result) == null)
5726     throw new NullPointerException();
5727     for (int b;;) {
5728     if (result.get() != null)
5729     return;
5730     if ((b = preSplit()) <= 0)
5731     break;
5732     new SearchMappingsTask<K,V,U>
5733     (map, this, b, searchFunction, result).fork();
5734     }
5735     while (result.get() == null) {
5736     Object v; U u;
5737     if ((v = advance()) == null) {
5738     propagateCompletion();
5739     break;
5740 dl 1.61 }
5741 dl 1.79 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5742     if (result.compareAndSet(null, u))
5743     quietlyCompleteRoot();
5744     break;
5745 dl 1.52 }
5746     }
5747     }
5748     }
5749    
5750 dl 1.61 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5751 dl 1.79 extends Traverser<K,V,K> {
5752 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5753     K result;
5754 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5755 dl 1.52 ReduceKeysTask
5756 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5757 dl 1.61 ReduceKeysTask<K,V> nextRight,
5758 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5759 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5760 dl 1.52 this.reducer = reducer;
5761     }
5762 dl 1.79 public final K getRawResult() { return result; }
5763     @SuppressWarnings("unchecked") public final void compute() {
5764 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer =
5765     this.reducer;
5766     if (reducer == null)
5767 dl 1.79 throw new NullPointerException();
5768     for (int b; (b = preSplit()) > 0;)
5769     (rights = new ReduceKeysTask<K,V>
5770     (map, this, b, rights, reducer)).fork();
5771     K r = null;
5772     while (advance() != null) {
5773     K u = (K)nextKey;
5774     r = (r == null) ? u : reducer.apply(r, u);
5775     }
5776     result = r;
5777     CountedCompleter<?> c;
5778     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5779     ReduceKeysTask<K,V>
5780     t = (ReduceKeysTask<K,V>)c,
5781     s = t.rights;
5782     while (s != null) {
5783     K tr, sr;
5784     if ((sr = s.result) != null)
5785     t.result = (((tr = t.result) == null) ? sr :
5786     reducer.apply(tr, sr));
5787     s = t.rights = s.nextRight;
5788 dl 1.52 }
5789 dl 1.71 }
5790 dl 1.52 }
5791     }
5792    
5793 dl 1.61 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5794 dl 1.79 extends Traverser<K,V,V> {
5795 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5796     V result;
5797 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5798 dl 1.52 ReduceValuesTask
5799 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5800 dl 1.61 ReduceValuesTask<K,V> nextRight,
5801 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5802 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5803 dl 1.52 this.reducer = reducer;
5804     }
5805 dl 1.79 public final V getRawResult() { return result; }
5806     @SuppressWarnings("unchecked") public final void compute() {
5807 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer =
5808     this.reducer;
5809     if (reducer == null)
5810 dl 1.79 throw new NullPointerException();
5811     for (int b; (b = preSplit()) > 0;)
5812     (rights = new ReduceValuesTask<K,V>
5813     (map, this, b, rights, reducer)).fork();
5814     V r = null;
5815     Object v;
5816     while ((v = advance()) != null) {
5817     V u = (V)v;
5818     r = (r == null) ? u : reducer.apply(r, u);
5819     }
5820     result = r;
5821     CountedCompleter<?> c;
5822     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5823     ReduceValuesTask<K,V>
5824     t = (ReduceValuesTask<K,V>)c,
5825     s = t.rights;
5826     while (s != null) {
5827     V tr, sr;
5828     if ((sr = s.result) != null)
5829     t.result = (((tr = t.result) == null) ? sr :
5830     reducer.apply(tr, sr));
5831     s = t.rights = s.nextRight;
5832 dl 1.52 }
5833     }
5834     }
5835     }
5836    
5837 dl 1.61 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5838 dl 1.79 extends Traverser<K,V,Map.Entry<K,V>> {
5839 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5840     Map.Entry<K,V> result;
5841 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
5842 dl 1.52 ReduceEntriesTask
5843 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5844 dl 1.63 ReduceEntriesTask<K,V> nextRight,
5845 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5846 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5847 dl 1.52 this.reducer = reducer;
5848     }
5849 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
5850     @SuppressWarnings("unchecked") public final void compute() {
5851 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5852     this.reducer;
5853     if (reducer == null)
5854 dl 1.79 throw new NullPointerException();
5855     for (int b; (b = preSplit()) > 0;)
5856     (rights = new ReduceEntriesTask<K,V>
5857     (map, this, b, rights, reducer)).fork();
5858     Map.Entry<K,V> r = null;
5859     Object v;
5860     while ((v = advance()) != null) {
5861     Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5862     r = (r == null) ? u : reducer.apply(r, u);
5863     }
5864     result = r;
5865     CountedCompleter<?> c;
5866     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5867     ReduceEntriesTask<K,V>
5868     t = (ReduceEntriesTask<K,V>)c,
5869     s = t.rights;
5870     while (s != null) {
5871     Map.Entry<K,V> tr, sr;
5872     if ((sr = s.result) != null)
5873     t.result = (((tr = t.result) == null) ? sr :
5874     reducer.apply(tr, sr));
5875     s = t.rights = s.nextRight;
5876 dl 1.52 }
5877     }
5878     }
5879     }
5880    
5881 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5882 dl 1.79 extends Traverser<K,V,U> {
5883 dl 1.52 final Fun<? super K, ? extends U> transformer;
5884     final BiFun<? super U, ? super U, ? extends U> reducer;
5885     U result;
5886 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
5887 dl 1.52 MapReduceKeysTask
5888 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5889 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
5890 dl 1.52 Fun<? super K, ? extends U> transformer,
5891     BiFun<? super U, ? super U, ? extends U> reducer) {
5892 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5893 dl 1.52 this.transformer = transformer;
5894     this.reducer = reducer;
5895     }
5896 dl 1.79 public final U getRawResult() { return result; }
5897     @SuppressWarnings("unchecked") public final void compute() {
5898 dl 1.52 final Fun<? super K, ? extends U> transformer =
5899     this.transformer;
5900     final BiFun<? super U, ? super U, ? extends U> reducer =
5901     this.reducer;
5902     if (transformer == null || reducer == null)
5903 dl 1.79 throw new NullPointerException();
5904     for (int b; (b = preSplit()) > 0;)
5905     (rights = new MapReduceKeysTask<K,V,U>
5906     (map, this, b, rights, transformer, reducer)).fork();
5907     U r = null, u;
5908     while (advance() != null) {
5909     if ((u = transformer.apply((K)nextKey)) != null)
5910     r = (r == null) ? u : reducer.apply(r, u);
5911     }
5912     result = r;
5913     CountedCompleter<?> c;
5914     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5915     MapReduceKeysTask<K,V,U>
5916     t = (MapReduceKeysTask<K,V,U>)c,
5917     s = t.rights;
5918     while (s != null) {
5919     U tr, sr;
5920     if ((sr = s.result) != null)
5921     t.result = (((tr = t.result) == null) ? sr :
5922     reducer.apply(tr, sr));
5923     s = t.rights = s.nextRight;
5924 dl 1.52 }
5925     }
5926     }
5927     }
5928    
5929 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5930 dl 1.79 extends Traverser<K,V,U> {
5931 dl 1.52 final Fun<? super V, ? extends U> transformer;
5932     final BiFun<? super U, ? super U, ? extends U> reducer;
5933     U result;
5934 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
5935 dl 1.52 MapReduceValuesTask
5936 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5937 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
5938 dl 1.52 Fun<? super V, ? extends U> transformer,
5939     BiFun<? super U, ? super U, ? extends U> reducer) {
5940 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5941 dl 1.52 this.transformer = transformer;
5942     this.reducer = reducer;
5943     }
5944 dl 1.79 public final U getRawResult() { return result; }
5945     @SuppressWarnings("unchecked") public final void compute() {
5946 dl 1.52 final Fun<? super V, ? extends U> transformer =
5947     this.transformer;
5948     final BiFun<? super U, ? super U, ? extends U> reducer =
5949     this.reducer;
5950     if (transformer == null || reducer == null)
5951 dl 1.79 throw new NullPointerException();
5952     for (int b; (b = preSplit()) > 0;)
5953     (rights = new MapReduceValuesTask<K,V,U>
5954     (map, this, b, rights, transformer, reducer)).fork();
5955     U r = null, u;
5956     Object v;
5957     while ((v = advance()) != null) {
5958     if ((u = transformer.apply((V)v)) != null)
5959     r = (r == null) ? u : reducer.apply(r, u);
5960     }
5961     result = r;
5962     CountedCompleter<?> c;
5963     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964     MapReduceValuesTask<K,V,U>
5965     t = (MapReduceValuesTask<K,V,U>)c,
5966     s = t.rights;
5967     while (s != null) {
5968     U tr, sr;
5969     if ((sr = s.result) != null)
5970     t.result = (((tr = t.result) == null) ? sr :
5971     reducer.apply(tr, sr));
5972     s = t.rights = s.nextRight;
5973 dl 1.52 }
5974 dl 1.71 }
5975 dl 1.52 }
5976     }
5977    
5978 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5979 dl 1.79 extends Traverser<K,V,U> {
5980 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5981     final BiFun<? super U, ? super U, ? extends U> reducer;
5982     U result;
5983 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
5984 dl 1.52 MapReduceEntriesTask
5985 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5986 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
5987 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
5988     BiFun<? super U, ? super U, ? extends U> reducer) {
5989 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5990 dl 1.52 this.transformer = transformer;
5991     this.reducer = reducer;
5992     }
5993 dl 1.79 public final U getRawResult() { return result; }
5994     @SuppressWarnings("unchecked") public final void compute() {
5995 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5996     this.transformer;
5997     final BiFun<? super U, ? super U, ? extends U> reducer =
5998     this.reducer;
5999     if (transformer == null || reducer == null)
6000 dl 1.79 throw new NullPointerException();
6001     for (int b; (b = preSplit()) > 0;)
6002     (rights = new MapReduceEntriesTask<K,V,U>
6003     (map, this, b, rights, transformer, reducer)).fork();
6004     U r = null, u;
6005     Object v;
6006     while ((v = advance()) != null) {
6007     if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6008     r = (r == null) ? u : reducer.apply(r, u);
6009     }
6010     result = r;
6011     CountedCompleter<?> c;
6012     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6013     MapReduceEntriesTask<K,V,U>
6014     t = (MapReduceEntriesTask<K,V,U>)c,
6015     s = t.rights;
6016     while (s != null) {
6017     U tr, sr;
6018     if ((sr = s.result) != null)
6019     t.result = (((tr = t.result) == null) ? sr :
6020     reducer.apply(tr, sr));
6021     s = t.rights = s.nextRight;
6022 dl 1.52 }
6023     }
6024     }
6025     }
6026    
6027 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6028 dl 1.79 extends Traverser<K,V,U> {
6029 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
6030     final BiFun<? super U, ? super U, ? extends U> reducer;
6031     U result;
6032 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
6033 dl 1.52 MapReduceMappingsTask
6034 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6035 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
6036 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
6037     BiFun<? super U, ? super U, ? extends U> reducer) {
6038 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6039 dl 1.52 this.transformer = transformer;
6040     this.reducer = reducer;
6041     }
6042 dl 1.79 public final U getRawResult() { return result; }
6043     @SuppressWarnings("unchecked") public final void compute() {
6044 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer =
6045     this.transformer;
6046     final BiFun<? super U, ? super U, ? extends U> reducer =
6047     this.reducer;
6048     if (transformer == null || reducer == null)
6049 dl 1.79 throw new NullPointerException();
6050     for (int b; (b = preSplit()) > 0;)
6051     (rights = new MapReduceMappingsTask<K,V,U>
6052     (map, this, b, rights, transformer, reducer)).fork();
6053     U r = null, u;
6054     Object v;
6055     while ((v = advance()) != null) {
6056     if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6057     r = (r == null) ? u : reducer.apply(r, u);
6058     }
6059     result = r;
6060     CountedCompleter<?> c;
6061     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6062     MapReduceMappingsTask<K,V,U>
6063     t = (MapReduceMappingsTask<K,V,U>)c,
6064     s = t.rights;
6065     while (s != null) {
6066     U tr, sr;
6067     if ((sr = s.result) != null)
6068     t.result = (((tr = t.result) == null) ? sr :
6069     reducer.apply(tr, sr));
6070     s = t.rights = s.nextRight;
6071 dl 1.52 }
6072 dl 1.71 }
6073 dl 1.52 }
6074     }
6075    
6076 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6077 dl 1.79 extends Traverser<K,V,Double> {
6078 dl 1.52 final ObjectToDouble<? super K> transformer;
6079     final DoubleByDoubleToDouble reducer;
6080     final double basis;
6081     double result;
6082 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6083 dl 1.52 MapReduceKeysToDoubleTask
6084 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6085 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
6086 dl 1.52 ObjectToDouble<? super K> transformer,
6087     double basis,
6088     DoubleByDoubleToDouble reducer) {
6089 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6090 dl 1.52 this.transformer = transformer;
6091     this.basis = basis; this.reducer = reducer;
6092     }
6093 dl 1.79 public final Double getRawResult() { return result; }
6094     @SuppressWarnings("unchecked") public final void compute() {
6095 dl 1.52 final ObjectToDouble<? super K> transformer =
6096     this.transformer;
6097     final DoubleByDoubleToDouble reducer = this.reducer;
6098     if (transformer == null || reducer == null)
6099 dl 1.79 throw new NullPointerException();
6100     double r = this.basis;
6101     for (int b; (b = preSplit()) > 0;)
6102     (rights = new MapReduceKeysToDoubleTask<K,V>
6103     (map, this, b, rights, transformer, r, reducer)).fork();
6104     while (advance() != null)
6105     r = reducer.apply(r, transformer.apply((K)nextKey));
6106     result = r;
6107     CountedCompleter<?> c;
6108     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6109     MapReduceKeysToDoubleTask<K,V>
6110     t = (MapReduceKeysToDoubleTask<K,V>)c,
6111     s = t.rights;
6112     while (s != null) {
6113     t.result = reducer.apply(t.result, s.result);
6114     s = t.rights = s.nextRight;
6115 dl 1.52 }
6116 dl 1.71 }
6117 dl 1.52 }
6118     }
6119    
6120 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6121 dl 1.79 extends Traverser<K,V,Double> {
6122 dl 1.52 final ObjectToDouble<? super V> transformer;
6123     final DoubleByDoubleToDouble reducer;
6124     final double basis;
6125     double result;
6126 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6127 dl 1.52 MapReduceValuesToDoubleTask
6128 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6129 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
6130 dl 1.52 ObjectToDouble<? super V> transformer,
6131     double basis,
6132     DoubleByDoubleToDouble reducer) {
6133 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6134 dl 1.52 this.transformer = transformer;
6135     this.basis = basis; this.reducer = reducer;
6136     }
6137 dl 1.79 public final Double getRawResult() { return result; }
6138     @SuppressWarnings("unchecked") public final void compute() {
6139 dl 1.52 final ObjectToDouble<? super V> transformer =
6140     this.transformer;
6141     final DoubleByDoubleToDouble reducer = this.reducer;
6142     if (transformer == null || reducer == null)
6143 dl 1.79 throw new NullPointerException();
6144     double r = this.basis;
6145     for (int b; (b = preSplit()) > 0;)
6146     (rights = new MapReduceValuesToDoubleTask<K,V>
6147     (map, this, b, rights, transformer, r, reducer)).fork();
6148     Object v;
6149     while ((v = advance()) != null)
6150     r = reducer.apply(r, transformer.apply((V)v));
6151     result = r;
6152     CountedCompleter<?> c;
6153     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6154     MapReduceValuesToDoubleTask<K,V>
6155     t = (MapReduceValuesToDoubleTask<K,V>)c,
6156     s = t.rights;
6157     while (s != null) {
6158     t.result = reducer.apply(t.result, s.result);
6159     s = t.rights = s.nextRight;
6160 dl 1.52 }
6161 dl 1.71 }
6162 dl 1.52 }
6163     }
6164    
6165 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6166 dl 1.79 extends Traverser<K,V,Double> {
6167 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
6168     final DoubleByDoubleToDouble reducer;
6169     final double basis;
6170     double result;
6171 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6172 dl 1.52 MapReduceEntriesToDoubleTask
6173 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6174 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
6175 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
6176     double basis,
6177     DoubleByDoubleToDouble reducer) {
6178 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6179 dl 1.52 this.transformer = transformer;
6180     this.basis = basis; this.reducer = reducer;
6181     }
6182 dl 1.79 public final Double getRawResult() { return result; }
6183     @SuppressWarnings("unchecked") public final void compute() {
6184 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer =
6185     this.transformer;
6186     final DoubleByDoubleToDouble reducer = this.reducer;
6187     if (transformer == null || reducer == null)
6188 dl 1.79 throw new NullPointerException();
6189     double r = this.basis;
6190     for (int b; (b = preSplit()) > 0;)
6191     (rights = new MapReduceEntriesToDoubleTask<K,V>
6192     (map, this, b, rights, transformer, r, reducer)).fork();
6193     Object v;
6194     while ((v = advance()) != null)
6195     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6196     result = r;
6197     CountedCompleter<?> c;
6198     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6199     MapReduceEntriesToDoubleTask<K,V>
6200     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6201     s = t.rights;
6202     while (s != null) {
6203     t.result = reducer.apply(t.result, s.result);
6204     s = t.rights = s.nextRight;
6205 dl 1.52 }
6206 dl 1.71 }
6207 dl 1.52 }
6208     }
6209    
6210 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6211 dl 1.79 extends Traverser<K,V,Double> {
6212 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6213     final DoubleByDoubleToDouble reducer;
6214     final double basis;
6215     double result;
6216 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6217 dl 1.52 MapReduceMappingsToDoubleTask
6218 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6219 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
6220 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
6221     double basis,
6222     DoubleByDoubleToDouble reducer) {
6223 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6224 dl 1.52 this.transformer = transformer;
6225     this.basis = basis; this.reducer = reducer;
6226     }
6227 dl 1.79 public final Double getRawResult() { return result; }
6228     @SuppressWarnings("unchecked") public final void compute() {
6229 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6230     this.transformer;
6231     final DoubleByDoubleToDouble reducer = this.reducer;
6232     if (transformer == null || reducer == null)
6233 dl 1.79 throw new NullPointerException();
6234     double r = this.basis;
6235     for (int b; (b = preSplit()) > 0;)
6236     (rights = new MapReduceMappingsToDoubleTask<K,V>
6237     (map, this, b, rights, transformer, r, reducer)).fork();
6238     Object v;
6239     while ((v = advance()) != null)
6240     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6241     result = r;
6242     CountedCompleter<?> c;
6243     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6244     MapReduceMappingsToDoubleTask<K,V>
6245     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6246     s = t.rights;
6247     while (s != null) {
6248     t.result = reducer.apply(t.result, s.result);
6249     s = t.rights = s.nextRight;
6250 dl 1.52 }
6251 dl 1.71 }
6252 dl 1.52 }
6253     }
6254    
6255 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6256 dl 1.79 extends Traverser<K,V,Long> {
6257 dl 1.52 final ObjectToLong<? super K> transformer;
6258     final LongByLongToLong reducer;
6259     final long basis;
6260     long result;
6261 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
6262 dl 1.52 MapReduceKeysToLongTask
6263 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6264 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
6265 dl 1.52 ObjectToLong<? super K> transformer,
6266     long basis,
6267     LongByLongToLong reducer) {
6268 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6269 dl 1.52 this.transformer = transformer;
6270     this.basis = basis; this.reducer = reducer;
6271     }
6272 dl 1.79 public final Long getRawResult() { return result; }
6273     @SuppressWarnings("unchecked") public final void compute() {
6274 dl 1.52 final ObjectToLong<? super K> transformer =
6275     this.transformer;
6276     final LongByLongToLong reducer = this.reducer;
6277     if (transformer == null || reducer == null)
6278 dl 1.79 throw new NullPointerException();
6279     long r = this.basis;
6280     for (int b; (b = preSplit()) > 0;)
6281     (rights = new MapReduceKeysToLongTask<K,V>
6282     (map, this, b, rights, transformer, r, reducer)).fork();
6283     while (advance() != null)
6284     r = reducer.apply(r, transformer.apply((K)nextKey));
6285     result = r;
6286     CountedCompleter<?> c;
6287     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6288     MapReduceKeysToLongTask<K,V>
6289     t = (MapReduceKeysToLongTask<K,V>)c,
6290     s = t.rights;
6291     while (s != null) {
6292     t.result = reducer.apply(t.result, s.result);
6293     s = t.rights = s.nextRight;
6294 dl 1.52 }
6295 dl 1.71 }
6296 dl 1.52 }
6297     }
6298    
6299 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6300 dl 1.79 extends Traverser<K,V,Long> {
6301 dl 1.52 final ObjectToLong<? super V> transformer;
6302     final LongByLongToLong reducer;
6303     final long basis;
6304     long result;
6305 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
6306 dl 1.52 MapReduceValuesToLongTask
6307 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6308 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
6309 dl 1.52 ObjectToLong<? super V> transformer,
6310     long basis,
6311     LongByLongToLong reducer) {
6312 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6313 dl 1.52 this.transformer = transformer;
6314     this.basis = basis; this.reducer = reducer;
6315     }
6316 dl 1.79 public final Long getRawResult() { return result; }
6317     @SuppressWarnings("unchecked") public final void compute() {
6318 dl 1.52 final ObjectToLong<? super V> transformer =
6319     this.transformer;
6320     final LongByLongToLong reducer = this.reducer;
6321     if (transformer == null || reducer == null)
6322 dl 1.79 throw new NullPointerException();
6323     long r = this.basis;
6324     for (int b; (b = preSplit()) > 0;)
6325     (rights = new MapReduceValuesToLongTask<K,V>
6326     (map, this, b, rights, transformer, r, reducer)).fork();
6327     Object v;
6328     while ((v = advance()) != null)
6329     r = reducer.apply(r, transformer.apply((V)v));
6330     result = r;
6331     CountedCompleter<?> c;
6332     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6333     MapReduceValuesToLongTask<K,V>
6334     t = (MapReduceValuesToLongTask<K,V>)c,
6335     s = t.rights;
6336     while (s != null) {
6337     t.result = reducer.apply(t.result, s.result);
6338     s = t.rights = s.nextRight;
6339 dl 1.52 }
6340 dl 1.71 }
6341 dl 1.52 }
6342     }
6343    
6344 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6345 dl 1.79 extends Traverser<K,V,Long> {
6346 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
6347     final LongByLongToLong reducer;
6348     final long basis;
6349     long result;
6350 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6351 dl 1.52 MapReduceEntriesToLongTask
6352 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6353 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
6354 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
6355     long basis,
6356     LongByLongToLong reducer) {
6357 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6358 dl 1.52 this.transformer = transformer;
6359     this.basis = basis; this.reducer = reducer;
6360     }
6361 dl 1.79 public final Long getRawResult() { return result; }
6362     @SuppressWarnings("unchecked") public final void compute() {
6363 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer =
6364     this.transformer;
6365     final LongByLongToLong reducer = this.reducer;
6366     if (transformer == null || reducer == null)
6367 dl 1.79 throw new NullPointerException();
6368     long r = this.basis;
6369     for (int b; (b = preSplit()) > 0;)
6370     (rights = new MapReduceEntriesToLongTask<K,V>
6371     (map, this, b, rights, transformer, r, reducer)).fork();
6372     Object v;
6373     while ((v = advance()) != null)
6374     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6375     result = r;
6376     CountedCompleter<?> c;
6377     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378     MapReduceEntriesToLongTask<K,V>
6379     t = (MapReduceEntriesToLongTask<K,V>)c,
6380     s = t.rights;
6381     while (s != null) {
6382     t.result = reducer.apply(t.result, s.result);
6383     s = t.rights = s.nextRight;
6384 dl 1.52 }
6385     }
6386     }
6387     }
6388    
6389 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6390 dl 1.79 extends Traverser<K,V,Long> {
6391 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
6392     final LongByLongToLong reducer;
6393     final long basis;
6394     long result;
6395 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6396 dl 1.52 MapReduceMappingsToLongTask
6397 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6398 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
6399 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
6400     long basis,
6401     LongByLongToLong reducer) {
6402 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6403 dl 1.52 this.transformer = transformer;
6404     this.basis = basis; this.reducer = reducer;
6405     }
6406 dl 1.79 public final Long getRawResult() { return result; }
6407     @SuppressWarnings("unchecked") public final void compute() {
6408 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer =
6409     this.transformer;
6410     final LongByLongToLong reducer = this.reducer;
6411     if (transformer == null || reducer == null)
6412 dl 1.79 throw new NullPointerException();
6413     long r = this.basis;
6414     for (int b; (b = preSplit()) > 0;)
6415     (rights = new MapReduceMappingsToLongTask<K,V>
6416     (map, this, b, rights, transformer, r, reducer)).fork();
6417     Object v;
6418     while ((v = advance()) != null)
6419     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6420     result = r;
6421     CountedCompleter<?> c;
6422     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423     MapReduceMappingsToLongTask<K,V>
6424     t = (MapReduceMappingsToLongTask<K,V>)c,
6425     s = t.rights;
6426     while (s != null) {
6427     t.result = reducer.apply(t.result, s.result);
6428     s = t.rights = s.nextRight;
6429 dl 1.52 }
6430 dl 1.71 }
6431 dl 1.52 }
6432     }
6433    
6434 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6435 dl 1.79 extends Traverser<K,V,Integer> {
6436 dl 1.52 final ObjectToInt<? super K> transformer;
6437     final IntByIntToInt reducer;
6438     final int basis;
6439     int result;
6440 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
6441 dl 1.52 MapReduceKeysToIntTask
6442 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6443 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
6444 dl 1.52 ObjectToInt<? super K> transformer,
6445     int basis,
6446     IntByIntToInt reducer) {
6447 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6448 dl 1.52 this.transformer = transformer;
6449     this.basis = basis; this.reducer = reducer;
6450     }
6451 dl 1.79 public final Integer getRawResult() { return result; }
6452     @SuppressWarnings("unchecked") public final void compute() {
6453 dl 1.52 final ObjectToInt<? super K> transformer =
6454     this.transformer;
6455     final IntByIntToInt reducer = this.reducer;
6456     if (transformer == null || reducer == null)
6457 dl 1.79 throw new NullPointerException();
6458     int r = this.basis;
6459     for (int b; (b = preSplit()) > 0;)
6460     (rights = new MapReduceKeysToIntTask<K,V>
6461     (map, this, b, rights, transformer, r, reducer)).fork();
6462     while (advance() != null)
6463     r = reducer.apply(r, transformer.apply((K)nextKey));
6464     result = r;
6465     CountedCompleter<?> c;
6466     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467     MapReduceKeysToIntTask<K,V>
6468     t = (MapReduceKeysToIntTask<K,V>)c,
6469     s = t.rights;
6470     while (s != null) {
6471     t.result = reducer.apply(t.result, s.result);
6472     s = t.rights = s.nextRight;
6473 dl 1.52 }
6474 dl 1.71 }
6475 dl 1.52 }
6476     }
6477    
6478 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6479 dl 1.79 extends Traverser<K,V,Integer> {
6480 dl 1.52 final ObjectToInt<? super V> transformer;
6481     final IntByIntToInt reducer;
6482     final int basis;
6483     int result;
6484 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
6485 dl 1.52 MapReduceValuesToIntTask
6486 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6487 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
6488 dl 1.52 ObjectToInt<? super V> transformer,
6489     int basis,
6490     IntByIntToInt reducer) {
6491 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6492 dl 1.52 this.transformer = transformer;
6493     this.basis = basis; this.reducer = reducer;
6494     }
6495 dl 1.79 public final Integer getRawResult() { return result; }
6496     @SuppressWarnings("unchecked") public final void compute() {
6497 dl 1.52 final ObjectToInt<? super V> transformer =
6498     this.transformer;
6499     final IntByIntToInt reducer = this.reducer;
6500     if (transformer == null || reducer == null)
6501 dl 1.79 throw new NullPointerException();
6502     int r = this.basis;
6503     for (int b; (b = preSplit()) > 0;)
6504     (rights = new MapReduceValuesToIntTask<K,V>
6505     (map, this, b, rights, transformer, r, reducer)).fork();
6506     Object v;
6507     while ((v = advance()) != null)
6508     r = reducer.apply(r, transformer.apply((V)v));
6509     result = r;
6510     CountedCompleter<?> c;
6511     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512     MapReduceValuesToIntTask<K,V>
6513     t = (MapReduceValuesToIntTask<K,V>)c,
6514     s = t.rights;
6515     while (s != null) {
6516     t.result = reducer.apply(t.result, s.result);
6517     s = t.rights = s.nextRight;
6518 dl 1.52 }
6519 dl 1.71 }
6520 dl 1.52 }
6521     }
6522    
6523 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6524 dl 1.79 extends Traverser<K,V,Integer> {
6525 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
6526     final IntByIntToInt reducer;
6527     final int basis;
6528     int result;
6529 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6530 dl 1.52 MapReduceEntriesToIntTask
6531 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6532 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
6533 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
6534     int basis,
6535     IntByIntToInt reducer) {
6536 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6537 dl 1.52 this.transformer = transformer;
6538     this.basis = basis; this.reducer = reducer;
6539     }
6540 dl 1.79 public final Integer getRawResult() { return result; }
6541     @SuppressWarnings("unchecked") public final void compute() {
6542 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer =
6543     this.transformer;
6544     final IntByIntToInt reducer = this.reducer;
6545     if (transformer == null || reducer == null)
6546 dl 1.79 throw new NullPointerException();
6547     int r = this.basis;
6548     for (int b; (b = preSplit()) > 0;)
6549     (rights = new MapReduceEntriesToIntTask<K,V>
6550     (map, this, b, rights, transformer, r, reducer)).fork();
6551     Object v;
6552     while ((v = advance()) != null)
6553     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6554     result = r;
6555     CountedCompleter<?> c;
6556     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6557     MapReduceEntriesToIntTask<K,V>
6558     t = (MapReduceEntriesToIntTask<K,V>)c,
6559     s = t.rights;
6560     while (s != null) {
6561     t.result = reducer.apply(t.result, s.result);
6562     s = t.rights = s.nextRight;
6563 dl 1.52 }
6564     }
6565     }
6566     }
6567    
6568 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6569 dl 1.79 extends Traverser<K,V,Integer> {
6570 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
6571     final IntByIntToInt reducer;
6572     final int basis;
6573     int result;
6574 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6575 dl 1.52 MapReduceMappingsToIntTask
6576 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6577     MapReduceMappingsToIntTask<K,V> nextRight,
6578 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
6579     int basis,
6580     IntByIntToInt reducer) {
6581 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6582 dl 1.52 this.transformer = transformer;
6583     this.basis = basis; this.reducer = reducer;
6584     }
6585 dl 1.79 public final Integer getRawResult() { return result; }
6586     @SuppressWarnings("unchecked") public final void compute() {
6587 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer =
6588     this.transformer;
6589     final IntByIntToInt reducer = this.reducer;
6590     if (transformer == null || reducer == null)
6591 dl 1.79 throw new NullPointerException();
6592     int r = this.basis;
6593     for (int b; (b = preSplit()) > 0;)
6594     (rights = new MapReduceMappingsToIntTask<K,V>
6595     (map, this, b, rights, transformer, r, reducer)).fork();
6596     Object v;
6597     while ((v = advance()) != null)
6598     r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6599     result = r;
6600     CountedCompleter<?> c;
6601     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6602     MapReduceMappingsToIntTask<K,V>
6603     t = (MapReduceMappingsToIntTask<K,V>)c,
6604     s = t.rights;
6605     while (s != null) {
6606     t.result = reducer.apply(t.result, s.result);
6607     s = t.rights = s.nextRight;
6608 dl 1.52 }
6609     }
6610     }
6611     }
6612    
6613     // Unsafe mechanics
6614     private static final sun.misc.Unsafe UNSAFE;
6615     private static final long counterOffset;
6616     private static final long sizeCtlOffset;
6617     private static final long ABASE;
6618     private static final int ASHIFT;
6619    
6620     static {
6621     int ss;
6622     try {
6623     UNSAFE = getUnsafe();
6624     Class<?> k = ConcurrentHashMapV8.class;
6625     counterOffset = UNSAFE.objectFieldOffset
6626     (k.getDeclaredField("counter"));
6627     sizeCtlOffset = UNSAFE.objectFieldOffset
6628     (k.getDeclaredField("sizeCtl"));
6629     Class<?> sc = Node[].class;
6630     ABASE = UNSAFE.arrayBaseOffset(sc);
6631     ss = UNSAFE.arrayIndexScale(sc);
6632     } catch (Exception e) {
6633     throw new Error(e);
6634     }
6635     if ((ss & (ss-1)) != 0)
6636     throw new Error("data type scale not a power of two");
6637     ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6638     }
6639    
6640     /**
6641     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6642     * Replace with a simple call to Unsafe.getUnsafe when integrating
6643     * into a jdk.
6644     *
6645     * @return a sun.misc.Unsafe
6646     */
6647     private static sun.misc.Unsafe getUnsafe() {
6648     try {
6649     return sun.misc.Unsafe.getUnsafe();
6650     } catch (SecurityException se) {
6651     try {
6652     return java.security.AccessController.doPrivileged
6653     (new java.security
6654     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6655     public sun.misc.Unsafe run() throws Exception {
6656     java.lang.reflect.Field f = sun.misc
6657     .Unsafe.class.getDeclaredField("theUnsafe");
6658     f.setAccessible(true);
6659     return (sun.misc.Unsafe) f.get(null);
6660     }});
6661     } catch (java.security.PrivilegedActionException e) {
6662     throw new RuntimeException("Could not initialize intrinsics",
6663     e.getCause());
6664     }
6665     }
6666     }
6667 dl 1.1 }