ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.89
Committed: Sat Jan 19 20:39:43 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.88: +4 -5 lines
Log Message:
standardize style for arrayIndexScale checking code

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.52 import java.util.Comparator;
10 dl 1.24 import java.util.Arrays;
11 dl 1.1 import java.util.Map;
12     import java.util.Set;
13     import java.util.Collection;
14     import java.util.AbstractMap;
15     import java.util.AbstractSet;
16     import java.util.AbstractCollection;
17     import java.util.Hashtable;
18     import java.util.HashMap;
19     import java.util.Iterator;
20     import java.util.Enumeration;
21     import java.util.ConcurrentModificationException;
22     import java.util.NoSuchElementException;
23     import java.util.concurrent.ConcurrentMap;
24 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.82 import java.util.concurrent.atomic.AtomicInteger;
26 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
27 dl 1.79 import java.io.Serializable;
28    
29 dl 1.1 /**
30     * A hash table supporting full concurrency of retrievals and
31     * high expected concurrency for updates. This class obeys the
32     * same functional specification as {@link java.util.Hashtable}, and
33     * includes versions of methods corresponding to each method of
34     * {@code Hashtable}. However, even though all operations are
35     * thread-safe, retrieval operations do <em>not</em> entail locking,
36     * and there is <em>not</em> any support for locking the entire table
37     * in a way that prevents all access. This class is fully
38     * interoperable with {@code Hashtable} in programs that rely on its
39     * thread safety but not on its synchronization details.
40     *
41 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
42 dl 1.1 * block, so may overlap with update operations (including {@code put}
43     * and {@code remove}). Retrievals reflect the results of the most
44     * recently <em>completed</em> update operations holding upon their
45 dl 1.59 * onset. (More formally, an update operation for a given key bears a
46     * <em>happens-before</em> relation with any (non-null) retrieval for
47     * that key reporting the updated value.) For aggregate operations
48     * such as {@code putAll} and {@code clear}, concurrent retrievals may
49     * reflect insertion or removal of only some entries. Similarly,
50     * Iterators and Enumerations return elements reflecting the state of
51     * the hash table at some point at or since the creation of the
52     * iterator/enumeration. They do <em>not</em> throw {@link
53     * ConcurrentModificationException}. However, iterators are designed
54     * to be used by only one thread at a time. Bear in mind that the
55     * results of aggregate status methods including {@code size}, {@code
56     * isEmpty}, and {@code containsValue} are typically useful only when
57     * a map is not undergoing concurrent updates in other threads.
58     * Otherwise the results of these methods reflect transient states
59     * that may be adequate for monitoring or estimation purposes, but not
60     * for program control.
61 dl 1.1 *
62 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
63 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
64     * the same slot modulo the table size), with the expected average
65 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
66     * to a 0.75 load factor threshold for resizing). There may be much
67     * variance around this average as mappings are added and removed, but
68     * overall, this maintains a commonly accepted time/space tradeoff for
69     * hash tables. However, resizing this or any other kind of hash
70     * table may be a relatively slow operation. When possible, it is a
71     * good idea to provide a size estimate as an optional {@code
72 dl 1.16 * initialCapacity} constructor argument. An additional optional
73     * {@code loadFactor} constructor argument provides a further means of
74     * customizing initial table capacity by specifying the table density
75     * to be used in calculating the amount of space to allocate for the
76     * given number of elements. Also, for compatibility with previous
77     * versions of this class, constructors may optionally specify an
78     * expected {@code concurrencyLevel} as an additional hint for
79     * internal sizing. Note that using many keys with exactly the same
80 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
81 dl 1.16 * hash table.
82 dl 1.1 *
83 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85     * (using {@link #keySet(Object)} when only keys are of interest, and the
86     * mapped values are (perhaps transiently) not used or all take the
87     * same mapping value.
88     *
89 jsr166 1.78 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 dl 1.70 * form of histogram or multiset) by using {@link LongAdder} values
91     * and initializing via {@link #computeIfAbsent}. For example, to add
92     * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93     * can use {@code freqs.computeIfAbsent(k -> new
94     * LongAdder()).increment();}
95     *
96 dl 1.1 * <p>This class and its views and iterators implement all of the
97     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98     * interfaces.
99     *
100 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
102     *
103 dl 1.84 * <p>ConcurrentHashMapV8s support sequential and parallel operations
104     * bulk operations. (Parallel forms use the {@link
105     * ForkJoinPool#commonPool()}). Tasks that may be used in other
106     * contexts are available in class {@link ForkJoinTasks}. These
107     * operations are designed to be safely, and often sensibly, applied
108     * even with maps that are being concurrently updated by other
109     * threads; for example, when computing a snapshot summary of the
110     * values in a shared registry. There are three kinds of operation,
111     * each with four forms, accepting functions with Keys, Values,
112     * Entries, and (Key, Value) arguments and/or return values. Because
113     * the elements of a ConcurrentHashMapV8 are not ordered in any
114     * particular way, and may be processed in different orders in
115     * different parallel executions, the correctness of supplied
116     * functions should not depend on any ordering, or on any other
117     * objects or values that may transiently change while computation is
118     * in progress; and except for forEach actions, should ideally be
119     * side-effect-free.
120 dl 1.70 *
121     * <ul>
122     * <li> forEach: Perform a given action on each element.
123     * A variant form applies a given transformation on each element
124     * before performing the action.</li>
125     *
126     * <li> search: Return the first available non-null result of
127     * applying a given function on each element; skipping further
128     * search when a result is found.</li>
129     *
130     * <li> reduce: Accumulate each element. The supplied reduction
131     * function cannot rely on ordering (more formally, it should be
132     * both associative and commutative). There are five variants:
133     *
134     * <ul>
135     *
136     * <li> Plain reductions. (There is not a form of this method for
137     * (key, value) function arguments since there is no corresponding
138     * return type.)</li>
139     *
140     * <li> Mapped reductions that accumulate the results of a given
141     * function applied to each element.</li>
142     *
143     * <li> Reductions to scalar doubles, longs, and ints, using a
144     * given basis value.</li>
145     *
146     * </li>
147     * </ul>
148     * </ul>
149     *
150     * <p>The concurrency properties of bulk operations follow
151     * from those of ConcurrentHashMapV8: Any non-null result returned
152     * from {@code get(key)} and related access methods bears a
153     * happens-before relation with the associated insertion or
154     * update. The result of any bulk operation reflects the
155     * composition of these per-element relations (but is not
156     * necessarily atomic with respect to the map as a whole unless it
157     * is somehow known to be quiescent). Conversely, because keys
158     * and values in the map are never null, null serves as a reliable
159     * atomic indicator of the current lack of any result. To
160     * maintain this property, null serves as an implicit basis for
161     * all non-scalar reduction operations. For the double, long, and
162     * int versions, the basis should be one that, when combined with
163     * any other value, returns that other value (more formally, it
164     * should be the identity element for the reduction). Most common
165     * reductions have these properties; for example, computing a sum
166     * with basis 0 or a minimum with basis MAX_VALUE.
167     *
168     * <p>Search and transformation functions provided as arguments
169     * should similarly return null to indicate the lack of any result
170     * (in which case it is not used). In the case of mapped
171     * reductions, this also enables transformations to serve as
172     * filters, returning null (or, in the case of primitive
173     * specializations, the identity basis) if the element should not
174     * be combined. You can create compound transformations and
175     * filterings by composing them yourself under this "null means
176     * there is nothing there now" rule before using them in search or
177     * reduce operations.
178     *
179     * <p>Methods accepting and/or returning Entry arguments maintain
180     * key-value associations. They may be useful for example when
181     * finding the key for the greatest value. Note that "plain" Entry
182     * arguments can be supplied using {@code new
183     * AbstractMap.SimpleEntry(k,v)}.
184     *
185 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
186 dl 1.70 * exception encountered in the application of a supplied
187     * function. Bear in mind when handling such exceptions that other
188     * concurrently executing functions could also have thrown
189     * exceptions, or would have done so if the first exception had
190     * not occurred.
191     *
192 dl 1.84 * <p>Speedups for parallel compared to sequential forms are common
193     * but not guaranteed. Parallel operations involving brief functions
194     * on small maps may execute more slowly than sequential forms if the
195     * underlying work to parallelize the computation is more expensive
196     * than the computation itself. Similarly, parallelization may not
197     * lead to much actual parallelism if all processors are busy
198     * performing unrelated tasks.
199 dl 1.70 *
200 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
201 dl 1.70 *
202     * <p><em>jsr166e note: During transition, this class
203     * uses nested functional interfaces with different names but the
204 jsr166 1.77 * same forms as those expected for JDK8.</em>
205 dl 1.70 *
206 dl 1.1 * <p>This class is a member of the
207     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208     * Java Collections Framework</a>.
209     *
210 jsr166 1.22 * @since 1.5
211 dl 1.1 * @author Doug Lea
212     * @param <K> the type of keys maintained by this map
213     * @param <V> the type of mapped values
214     */
215     public class ConcurrentHashMapV8<K, V>
216 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
217 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
218    
219     /**
220 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
221     * directly, but can also be partitioned (before traversal) by
222     * creating another Spliterator that covers a non-overlapping
223     * portion of the elements, and so may be amenable to parallel
224     * execution.
225     *
226 jsr166 1.78 * <p>This interface exports a subset of expected JDK8
227 dl 1.41 * functionality.
228     *
229     * <p>Sample usage: Here is one (of the several) ways to compute
230     * the sum of the values held in a map using the ForkJoin
231     * framework. As illustrated here, Spliterators are well suited to
232     * designs in which a task repeatedly splits off half its work
233     * into forked subtasks until small enough to process directly,
234 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
235     * be used in completion-based designs.
236 dl 1.41 *
237     * <pre>
238     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 dl 1.52 * // split as if have 8 * parallelism, for load balance
240     * int n = m.size();
241     * int p = aForkJoinPool.getParallelism() * 8;
242     * int split = (n < p)? n : p;
243     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 dl 1.41 * // ...
245     * static class SumValues extends RecursiveTask<Long> {
246     * final Spliterator<Long> s;
247 dl 1.52 * final int split; // split while > 1
248 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
249     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251     * }
252     * public Long compute() {
253     * long sum = 0;
254     * SumValues subtasks = null; // fork subtasks
255 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
256     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 dl 1.41 * while (s.hasNext()) // directly process remaining elements
258     * sum += s.next();
259     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
260     * sum += t.join(); // collect subtask results
261     * return sum;
262     * }
263     * }
264     * }</pre>
265     */
266     public static interface Spliterator<T> extends Iterator<T> {
267     /**
268     * Returns a Spliterator covering approximately half of the
269     * elements, guaranteed not to overlap with those subsequently
270     * returned by this Spliterator. After invoking this method,
271     * the current Spliterator will <em>not</em> produce any of
272     * the elements of the returned Spliterator, but the two
273     * Spliterators together will produce all of the elements that
274     * would have been produced by this Spliterator had this
275     * method not been called. The exact number of elements
276     * produced by the returned Spliterator is not guaranteed, and
277     * may be zero (i.e., with {@code hasNext()} reporting {@code
278     * false}) if this Spliterator cannot be further split.
279     *
280     * @return a Spliterator covering approximately half of the
281     * elements
282     * @throws IllegalStateException if this Spliterator has
283 jsr166 1.45 * already commenced traversing elements
284 dl 1.41 */
285     Spliterator<T> split();
286     }
287    
288 dl 1.1 /*
289     * Overview:
290     *
291     * The primary design goal of this hash table is to maintain
292     * concurrent readability (typically method get(), but also
293     * iterators and related methods) while minimizing update
294 dl 1.24 * contention. Secondary goals are to keep space consumption about
295     * the same or better than java.util.HashMap, and to support high
296     * initial insertion rates on an empty table by many threads.
297 dl 1.1 *
298 dl 1.84 * Each key-value mapping is held in a Node. Because Node key
299     * fields can contain special values, they are defined using plain
300     * Object types (not type "K"). This leads to a lot of explicit
301     * casting (and many explicit warning suppressions to tell
302     * compilers not to complain about it). It also allows some of the
303     * public methods to be factored into a smaller number of internal
304     * methods (although sadly not so for the five variants of
305     * put-related operations). The validation-based approach
306     * explained below leads to a lot of code sprawl because
307 dl 1.38 * retry-control precludes factoring into smaller methods.
308 dl 1.1 *
309     * The table is lazily initialized to a power-of-two size upon the
310 dl 1.38 * first insertion. Each bin in the table normally contains a
311     * list of Nodes (most often, the list has only zero or one Node).
312     * Table accesses require volatile/atomic reads, writes, and
313     * CASes. Because there is no other way to arrange this without
314     * adding further indirections, we use intrinsics
315     * (sun.misc.Unsafe) operations. The lists of nodes within bins
316     * are always accurately traversable under volatile reads, so long
317     * as lookups check hash code and non-nullness of value before
318     * checking key equality.
319 dl 1.24 *
320 dl 1.82 * We use the top (sign) bit of Node hash fields for control
321     * purposes -- it is available anyway because of addressing
322     * constraints. Nodes with negative hash fields are forwarding
323     * nodes to either TreeBins or resized tables. The lower 31 bits
324     * of each normal Node's hash field contain a transformation of
325     * the key's hash code.
326 dl 1.14 *
327 dl 1.27 * Insertion (via put or its variants) of the first node in an
328 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
329 dl 1.38 * by far the most common case for put operations under most
330     * key/hash distributions. Other update operations (insert,
331     * delete, and replace) require locks. We do not want to waste
332     * the space required to associate a distinct lock object with
333     * each bin, so instead use the first node of a bin list itself as
334 dl 1.82 * a lock. Locking support for these locks relies on builtin
335     * "synchronized" monitors.
336 dl 1.24 *
337     * Using the first node of a list as a lock does not by itself
338     * suffice though: When a node is locked, any update must first
339     * validate that it is still the first node after locking it, and
340     * retry if not. Because new nodes are always appended to lists,
341     * once a node is first in a bin, it remains first until deleted
342 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
343     * operations that only conditionally update may inspect nodes
344     * until the point of update. This is a converse of sorts to the
345     * lazy locking technique described by Herlihy & Shavit.
346 dl 1.14 *
347 dl 1.24 * The main disadvantage of per-bin locks is that other update
348 dl 1.14 * operations on other nodes in a bin list protected by the same
349     * lock can stall, for example when user equals() or mapping
350 dl 1.38 * functions take a long time. However, statistically, under
351     * random hash codes, this is not a common problem. Ideally, the
352     * frequency of nodes in bins follows a Poisson distribution
353 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
355     * of 0.75, although with a large variance because of resizing
356     * granularity. Ignoring variance, the expected occurrences of
357     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 dl 1.38 * first values are:
359 dl 1.16 *
360 dl 1.38 * 0: 0.60653066
361     * 1: 0.30326533
362     * 2: 0.07581633
363     * 3: 0.01263606
364     * 4: 0.00157952
365     * 5: 0.00015795
366     * 6: 0.00001316
367     * 7: 0.00000094
368     * 8: 0.00000006
369     * more: less than 1 in ten million
370 dl 1.16 *
371     * Lock contention probability for two threads accessing distinct
372 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
373     *
374     * Actual hash code distributions encountered in practice
375     * sometimes deviate significantly from uniform randomness. This
376     * includes the case when N > (1<<30), so some keys MUST collide.
377     * Similarly for dumb or hostile usages in which multiple keys are
378     * designed to have identical hash codes. Also, although we guard
379     * against the worst effects of this (see method spread), sets of
380     * hashes may differ only in bits that do not impact their bin
381     * index for a given power-of-two mask. So we use a secondary
382     * strategy that applies when the number of nodes in a bin exceeds
383     * a threshold, and at least one of the keys implements
384     * Comparable. These TreeBins use a balanced tree to hold nodes
385     * (a specialized form of red-black trees), bounding search time
386     * to O(log N). Each search step in a TreeBin is around twice as
387     * slow as in a regular list, but given that N cannot exceed
388     * (1<<64) (before running out of addresses) this bounds search
389     * steps, lock hold times, etc, to reasonable constants (roughly
390     * 100 nodes inspected per operation worst case) so long as keys
391     * are Comparable (which is very common -- String, Long, etc).
392     * TreeBin nodes (TreeNodes) also maintain the same "next"
393     * traversal pointers as regular nodes, so can be traversed in
394     * iterators in the same way.
395 dl 1.1 *
396 dl 1.38 * The table is resized when occupancy exceeds a percentage
397 dl 1.82 * threshold (nominally, 0.75, but see below). Any thread
398     * noticing an overfull bin may assist in resizing after the
399     * initiating thread allocates and sets up the replacement
400     * array. However, rather than stalling, these other threads may
401     * proceed with insertions etc. The use of TreeBins shields us
402     * from the worst case effects of overfilling while resizes are in
403     * progress. Resizing proceeds by transferring bins, one by one,
404     * from the table to the next table. To enable concurrency, the
405     * next table must be (incrementally) prefilled with place-holders
406     * serving as reverse forwarders to the old table. Because we are
407     * using power-of-two expansion, the elements from each bin must
408     * either stay at same index, or move with a power of two
409     * offset. We eliminate unnecessary node creation by catching
410     * cases where old nodes can be reused because their next fields
411     * won't change. On average, only about one-sixth of them need
412     * cloning when a table doubles. The nodes they replace will be
413     * garbage collectable as soon as they are no longer referenced by
414     * any reader thread that may be in the midst of concurrently
415     * traversing table. Upon transfer, the old table bin contains
416     * only a special forwarding node (with hash field "MOVED") that
417     * contains the next table as its key. On encountering a
418     * forwarding node, access and update operations restart, using
419     * the new table.
420     *
421     * Each bin transfer requires its bin lock, which can stall
422     * waiting for locks while resizing. However, because other
423     * threads can join in and help resize rather than contend for
424     * locks, average aggregate waits become shorter as resizing
425     * progresses. The transfer operation must also ensure that all
426     * accessible bins in both the old and new table are usable by any
427     * traversal. This is arranged by proceeding from the last bin
428     * (table.length - 1) up towards the first. Upon seeing a
429     * forwarding node, traversals (see class Traverser) arrange to
430     * move to the new table without revisiting nodes. However, to
431     * ensure that no intervening nodes are skipped, bin splitting can
432     * only begin after the associated reverse-forwarders are in
433     * place.
434 dl 1.14 *
435 dl 1.24 * The traversal scheme also applies to partial traversals of
436 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
437 dl 1.41 * to support partitioned aggregate operations. Also, read-only
438     * operations give up if ever forwarded to a null table, which
439     * provides support for shutdown-style clearing, which is also not
440     * currently implemented.
441 dl 1.14 *
442     * Lazy table initialization minimizes footprint until first use,
443     * and also avoids resizings when the first operation is from a
444     * putAll, constructor with map argument, or deserialization.
445 dl 1.24 * These cases attempt to override the initial capacity settings,
446     * but harmlessly fail to take effect in cases of races.
447 dl 1.1 *
448 dl 1.82 * The element count is maintained using a specialization of
449     * LongAdder. We need to incorporate a specialization rather than
450     * just use a LongAdder in order to access implicit
451     * contention-sensing that leads to creation of multiple
452     * CounterCells. The counter mechanics avoid contention on
453     * updates but can encounter cache thrashing if read too
454     * frequently during concurrent access. To avoid reading so often,
455     * resizing under contention is attempted only upon adding to a
456     * bin already holding two or more nodes. Under uniform hash
457     * distributions, the probability of this occurring at threshold
458     * is around 13%, meaning that only about 1 in 8 puts check
459     * threshold (and after resizing, many fewer do so). The bulk
460     * putAll operation further reduces contention by only committing
461     * count updates upon these size checks.
462 dl 1.14 *
463     * Maintaining API and serialization compatibility with previous
464     * versions of this class introduces several oddities. Mainly: We
465     * leave untouched but unused constructor arguments refering to
466 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
467     * but apply it only to initial table capacity (which is the only
468     * time that we can guarantee to honor it.) We also declare an
469     * unused "Segment" class that is instantiated in minimal form
470     * only when serializing.
471 dl 1.1 */
472    
473     /* ---------------- Constants -------------- */
474    
475     /**
476 dl 1.16 * The largest possible table capacity. This value must be
477     * exactly 1<<30 to stay within Java array allocation and indexing
478 dl 1.24 * bounds for power of two table sizes, and is further required
479     * because the top two bits of 32bit hash fields are used for
480     * control purposes.
481 dl 1.1 */
482 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
483 dl 1.1
484     /**
485 dl 1.14 * The default initial table capacity. Must be a power of 2
486     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 dl 1.1 */
488 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
489 dl 1.1
490     /**
491 dl 1.24 * The largest possible (non-power of two) array size.
492     * Needed by toArray and related methods.
493     */
494     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495    
496     /**
497     * The default concurrency level for this table. Unused but
498     * defined for compatibility with previous versions of this class.
499     */
500     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501    
502     /**
503 dl 1.16 * The load factor for this table. Overrides of this value in
504     * constructors affect only the initial table capacity. The
505 dl 1.24 * actual floating point value isn't normally used -- it is
506     * simpler to use expressions such as {@code n - (n >>> 2)} for
507     * the associated resizing threshold.
508 dl 1.1 */
509 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
510 dl 1.1
511     /**
512 dl 1.38 * The bin count threshold for using a tree rather than list for a
513     * bin. The value reflects the approximate break-even point for
514     * using tree-based operations.
515     */
516     private static final int TREE_THRESHOLD = 8;
517    
518 dl 1.82 /**
519     * Minimum number of rebinnings per transfer step. Ranges are
520     * subdivided to allow multiple resizer threads. This value
521     * serves as a lower bound to avoid resizers encountering
522     * excessive memory contention. The value should be at least
523     * DEFAULT_CAPACITY.
524     */
525     private static final int MIN_TRANSFER_STRIDE = 16;
526    
527 dl 1.24 /*
528 dl 1.82 * Encodings for Node hash fields. See above for explanation.
529 dl 1.1 */
530 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
531 dl 1.82 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532    
533     /** Number of CPUS, to place bounds on some sizings */
534     static final int NCPU = Runtime.getRuntime().availableProcessors();
535    
536     /* ---------------- Counters -------------- */
537    
538     // Adapted from LongAdder and Striped64.
539     // See their internal docs for explanation.
540    
541     // A padded cell for distributing counts
542     static final class CounterCell {
543     volatile long p0, p1, p2, p3, p4, p5, p6;
544     volatile long value;
545     volatile long q0, q1, q2, q3, q4, q5, q6;
546     CounterCell(long x) { value = x; }
547     }
548    
549     /**
550     * Holder for the thread-local hash code determining which
551     * CounterCell to use. The code is initialized via the
552     * counterHashCodeGenerator, but may be moved upon collisions.
553     */
554     static final class CounterHashCode {
555     int code;
556     }
557    
558     /**
559     * Generates initial value for per-thread CounterHashCodes
560     */
561     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562    
563     /**
564     * Increment for counterHashCodeGenerator. See class ThreadLocal
565     * for explanation.
566     */
567     static final int SEED_INCREMENT = 0x61c88647;
568    
569     /**
570 jsr166 1.86 * Per-thread counter hash codes. Shared across all instances.
571 dl 1.82 */
572     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573     new ThreadLocal<CounterHashCode>();
574 dl 1.24
575     /* ---------------- Fields -------------- */
576    
577     /**
578     * The array of bins. Lazily initialized upon first insertion.
579     * Size is always a power of two. Accessed directly by iterators.
580     */
581 dl 1.84 transient volatile Node<V>[] table;
582 dl 1.14
583 dl 1.16 /**
584 dl 1.82 * The next table to use; non-null only while resizing.
585     */
586 dl 1.84 private transient volatile Node<V>[] nextTable;
587 dl 1.82
588     /**
589     * Base counter value, used mainly when there is no contention,
590     * but also as a fallback during table initialization
591     * races. Updated via CAS.
592 dl 1.16 */
593 dl 1.82 private transient volatile long baseCount;
594 dl 1.24
595     /**
596     * Table initialization and resizing control. When negative, the
597 dl 1.82 * table is being initialized or resized: -1 for initialization,
598     * else -(1 + the number of active resizing threads). Otherwise,
599     * when table is null, holds the initial table size to use upon
600     * creation, or 0 for default. After initialization, holds the
601     * next element count value upon which to resize the table.
602 dl 1.24 */
603     private transient volatile int sizeCtl;
604    
605 dl 1.82 /**
606     * The next table index (plus one) to split while resizing.
607     */
608     private transient volatile int transferIndex;
609    
610     /**
611     * The least available table index to split while resizing.
612     */
613     private transient volatile int transferOrigin;
614    
615     /**
616     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617     */
618     private transient volatile int counterBusy;
619    
620     /**
621     * Table of counter cells. When non-null, size is a power of 2.
622     */
623     private transient volatile CounterCell[] counterCells;
624    
625 dl 1.24 // views
626 dl 1.70 private transient KeySetView<K,V> keySet;
627 dl 1.75 private transient ValuesView<K,V> values;
628     private transient EntrySetView<K,V> entrySet;
629 dl 1.24
630     /** For serialization compatibility. Null unless serialized; see below */
631     private Segment<K,V>[] segments;
632 dl 1.16
633 dl 1.38 /* ---------------- Table element access -------------- */
634    
635     /*
636     * Volatile access methods are used for table elements as well as
637     * elements of in-progress next table while resizing. Uses are
638     * null checked by callers, and implicitly bounds-checked, relying
639     * on the invariants that tab arrays have non-zero size, and all
640     * indices are masked with (tab.length - 1) which is never
641     * negative and always less than length. Note that, to be correct
642     * wrt arbitrary concurrency errors by users, bounds checks must
643     * operate on local variables, which accounts for some odd-looking
644     * inline assignments below.
645     */
646    
647 dl 1.84 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648     (Node<V>[] tab, int i) { // used by Traverser
649     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 dl 1.38 }
651    
652 dl 1.84 private static final <V> boolean casTabAt
653     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 dl 1.82 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 dl 1.38 }
656    
657 dl 1.84 private static final <V> void setTabAt
658     (Node<V>[] tab, int i, Node<V> v) {
659 dl 1.82 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660 dl 1.38 }
661    
662 dl 1.14 /* ---------------- Nodes -------------- */
663 dl 1.1
664     /**
665 dl 1.14 * Key-value entry. Note that this is never exported out as a
666 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667     * field of MOVED are special, and do not contain user keys or
668     * values. Otherwise, keys are never null, and null val fields
669     * indicate that a node is in the process of being deleted or
670     * created. For purposes of read-only access, a key may be read
671     * before a val, but can only be used after checking val to be
672     * non-null.
673 dl 1.1 */
674 dl 1.84 static class Node<V> {
675 dl 1.82 final int hash;
676 dl 1.14 final Object key;
677 dl 1.84 volatile V val;
678     volatile Node<V> next;
679 dl 1.14
680 dl 1.84 Node(int hash, Object key, V val, Node<V> next) {
681 dl 1.14 this.hash = hash;
682     this.key = key;
683     this.val = val;
684     this.next = next;
685     }
686 dl 1.24 }
687 dl 1.1
688 dl 1.38 /* ---------------- TreeBins -------------- */
689    
690     /**
691     * Nodes for use in TreeBins
692     */
693 dl 1.84 static final class TreeNode<V> extends Node<V> {
694     TreeNode<V> parent; // red-black tree links
695     TreeNode<V> left;
696     TreeNode<V> right;
697     TreeNode<V> prev; // needed to unlink next upon deletion
698 dl 1.38 boolean red;
699    
700 dl 1.84 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 dl 1.38 super(hash, key, val, next);
702     this.parent = parent;
703     }
704     }
705 dl 1.1
706 dl 1.38 /**
707     * A specialized form of red-black tree for use in bins
708     * whose size exceeds a threshold.
709     *
710     * TreeBins use a special form of comparison for search and
711     * related operations (which is the main reason we cannot use
712     * existing collections such as TreeMaps). TreeBins contain
713     * Comparable elements, but may contain others, as well as
714     * elements that are Comparable but not necessarily Comparable<T>
715     * for the same T, so we cannot invoke compareTo among them. To
716     * handle this, the tree is ordered primarily by hash value, then
717     * by getClass().getName() order, and then by Comparator order
718     * among elements of the same class. On lookup at a node, if
719 dl 1.41 * elements are not comparable or compare as 0, both left and
720     * right children may need to be searched in the case of tied hash
721     * values. (This corresponds to the full list search that would be
722     * necessary if all elements were non-Comparable and had tied
723     * hashes.) The red-black balancing code is updated from
724     * pre-jdk-collections
725     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727     * Algorithms" (CLR).
728 dl 1.38 *
729     * TreeBins also maintain a separate locking discipline than
730     * regular bins. Because they are forwarded via special MOVED
731     * nodes at bin heads (which can never change once established),
732 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
733 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
734     * read-write lock. For update operations and table validation,
735     * the exclusive form of lock behaves in the same way as bin-head
736     * locks. However, lookups use shared read-lock mechanics to allow
737     * multiple readers in the absence of writers. Additionally,
738     * these lookups do not ever block: While the lock is not
739     * available, they proceed along the slow traversal path (via
740     * next-pointers) until the lock becomes available or the list is
741     * exhausted, whichever comes first. (These cases are not fast,
742     * but maximize aggregate expected throughput.) The AQS mechanics
743     * for doing this are straightforward. The lock state is held as
744     * AQS getState(). Read counts are negative; the write count (1)
745     * is positive. There are no signalling preferences among readers
746     * and writers. Since we don't need to export full Lock API, we
747     * just override the minimal AQS methods and use them directly.
748 dl 1.1 */
749 dl 1.84 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 dl 1.38 private static final long serialVersionUID = 2249069246763182397L;
751 dl 1.84 transient TreeNode<V> root; // root of tree
752     transient TreeNode<V> first; // head of next-pointer list
753 dl 1.1
754 dl 1.38 /* AQS overrides */
755     public final boolean isHeldExclusively() { return getState() > 0; }
756     public final boolean tryAcquire(int ignore) {
757     if (compareAndSetState(0, 1)) {
758     setExclusiveOwnerThread(Thread.currentThread());
759     return true;
760     }
761     return false;
762     }
763     public final boolean tryRelease(int ignore) {
764     setExclusiveOwnerThread(null);
765     setState(0);
766     return true;
767     }
768     public final int tryAcquireShared(int ignore) {
769     for (int c;;) {
770     if ((c = getState()) > 0)
771     return -1;
772     if (compareAndSetState(c, c -1))
773     return 1;
774     }
775     }
776     public final boolean tryReleaseShared(int ignore) {
777     int c;
778     do {} while (!compareAndSetState(c = getState(), c + 1));
779     return c == -1;
780     }
781    
782 dl 1.41 /** From CLR */
783 dl 1.84 private void rotateLeft(TreeNode<V> p) {
784 dl 1.41 if (p != null) {
785 dl 1.84 TreeNode<V> r = p.right, pp, rl;
786 dl 1.41 if ((rl = p.right = r.left) != null)
787     rl.parent = p;
788     if ((pp = r.parent = p.parent) == null)
789     root = r;
790     else if (pp.left == p)
791     pp.left = r;
792     else
793     pp.right = r;
794     r.left = p;
795     p.parent = r;
796     }
797     }
798    
799     /** From CLR */
800 dl 1.84 private void rotateRight(TreeNode<V> p) {
801 dl 1.41 if (p != null) {
802 dl 1.84 TreeNode<V> l = p.left, pp, lr;
803 dl 1.41 if ((lr = p.left = l.right) != null)
804     lr.parent = p;
805     if ((pp = l.parent = p.parent) == null)
806     root = l;
807     else if (pp.right == p)
808     pp.right = l;
809     else
810     pp.left = l;
811     l.right = p;
812     p.parent = l;
813     }
814     }
815    
816 dl 1.38 /**
817 jsr166 1.56 * Returns the TreeNode (or null if not found) for the given key
818 dl 1.38 * starting at given root.
819     */
820 dl 1.84 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821     (int h, Object k, TreeNode<V> p) {
822 dl 1.38 Class<?> c = k.getClass();
823     while (p != null) {
824 dl 1.41 int dir, ph; Object pk; Class<?> pc;
825     if ((ph = p.hash) == h) {
826     if ((pk = p.key) == k || k.equals(pk))
827     return p;
828     if (c != (pc = pk.getClass()) ||
829     !(k instanceof Comparable) ||
830     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 dl 1.81 if ((dir = (c == pc) ? 0 :
832     c.getName().compareTo(pc.getName())) == 0) {
833 dl 1.84 TreeNode<V> r = null, pl, pr; // check both sides
834 dl 1.81 if ((pr = p.right) != null && h >= pr.hash &&
835     (r = getTreeNode(h, k, pr)) != null)
836     return r;
837     else if ((pl = p.left) != null && h <= pl.hash)
838     dir = -1;
839     else // nothing there
840     return null;
841 dl 1.41 }
842     }
843     }
844 dl 1.38 else
845 dl 1.41 dir = (h < ph) ? -1 : 1;
846     p = (dir > 0) ? p.right : p.left;
847 dl 1.38 }
848     return null;
849     }
850    
851     /**
852     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853     * read-lock to call getTreeNode, but during failure to get
854     * lock, searches along next links.
855     */
856 dl 1.84 final V getValue(int h, Object k) {
857     Node<V> r = null;
858 dl 1.38 int c = getState(); // Must read lock state first
859 dl 1.84 for (Node<V> e = first; e != null; e = e.next) {
860 dl 1.38 if (c <= 0 && compareAndSetState(c, c - 1)) {
861     try {
862     r = getTreeNode(h, k, root);
863     } finally {
864     releaseShared(0);
865     }
866     break;
867     }
868 dl 1.82 else if (e.hash == h && k.equals(e.key)) {
869 dl 1.38 r = e;
870     break;
871     }
872     else
873     c = getState();
874     }
875     return r == null ? null : r.val;
876     }
877    
878     /**
879 jsr166 1.45 * Finds or adds a node.
880 dl 1.38 * @return null if added
881     */
882 dl 1.84 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883     (int h, Object k, V v) {
884 dl 1.38 Class<?> c = k.getClass();
885 dl 1.84 TreeNode<V> pp = root, p = null;
886 dl 1.38 int dir = 0;
887 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
888     int ph; Object pk; Class<?> pc;
889     p = pp;
890     if ((ph = p.hash) == h) {
891     if ((pk = p.key) == k || k.equals(pk))
892 dl 1.38 return p;
893 dl 1.41 if (c != (pc = pk.getClass()) ||
894     !(k instanceof Comparable) ||
895     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 dl 1.84 TreeNode<V> s = null, r = null, pr;
897 dl 1.81 if ((dir = (c == pc) ? 0 :
898     c.getName().compareTo(pc.getName())) == 0) {
899     if ((pr = p.right) != null && h >= pr.hash &&
900     (r = getTreeNode(h, k, pr)) != null)
901     return r;
902     else // continue left
903     dir = -1;
904 dl 1.41 }
905     else if ((pr = p.right) != null && h >= pr.hash)
906     s = pr;
907     if (s != null && (r = getTreeNode(h, k, s)) != null)
908     return r;
909 dl 1.38 }
910     }
911 dl 1.41 else
912     dir = (h < ph) ? -1 : 1;
913     pp = (dir > 0) ? p.right : p.left;
914 dl 1.38 }
915 dl 1.41
916 dl 1.84 TreeNode<V> f = first;
917     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 dl 1.38 if (p == null)
919 dl 1.41 root = x;
920     else { // attach and rebalance; adapted from CLR
921 dl 1.84 TreeNode<V> xp, xpp;
922 dl 1.41 if (f != null)
923     f.prev = x;
924 dl 1.38 if (dir <= 0)
925 dl 1.41 p.left = x;
926 dl 1.38 else
927 dl 1.41 p.right = x;
928     x.red = true;
929     while (x != null && (xp = x.parent) != null && xp.red &&
930     (xpp = xp.parent) != null) {
931 dl 1.84 TreeNode<V> xppl = xpp.left;
932 dl 1.41 if (xp == xppl) {
933 dl 1.84 TreeNode<V> y = xpp.right;
934 dl 1.41 if (y != null && y.red) {
935     y.red = false;
936     xp.red = false;
937     xpp.red = true;
938     x = xpp;
939     }
940     else {
941     if (x == xp.right) {
942     rotateLeft(x = xp);
943     xpp = (xp = x.parent) == null ? null : xp.parent;
944     }
945     if (xp != null) {
946     xp.red = false;
947     if (xpp != null) {
948     xpp.red = true;
949     rotateRight(xpp);
950     }
951     }
952     }
953     }
954     else {
955 dl 1.84 TreeNode<V> y = xppl;
956 dl 1.41 if (y != null && y.red) {
957     y.red = false;
958     xp.red = false;
959     xpp.red = true;
960     x = xpp;
961     }
962     else {
963     if (x == xp.left) {
964     rotateRight(x = xp);
965     xpp = (xp = x.parent) == null ? null : xp.parent;
966     }
967     if (xp != null) {
968     xp.red = false;
969     if (xpp != null) {
970     xpp.red = true;
971     rotateLeft(xpp);
972     }
973     }
974     }
975     }
976     }
977 dl 1.84 TreeNode<V> r = root;
978 dl 1.41 if (r != null && r.red)
979     r.red = false;
980 dl 1.38 }
981     return null;
982     }
983 dl 1.1
984 dl 1.38 /**
985     * Removes the given node, that must be present before this
986     * call. This is messier than typical red-black deletion code
987     * because we cannot swap the contents of an interior node
988     * with a leaf successor that is pinned by "next" pointers
989     * that are accessible independently of lock. So instead we
990     * swap the tree linkages.
991     */
992 dl 1.84 final void deleteTreeNode(TreeNode<V> p) {
993     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994     TreeNode<V> pred = p.prev;
995 dl 1.38 if (pred == null)
996     first = next;
997     else
998     pred.next = next;
999     if (next != null)
1000     next.prev = pred;
1001 dl 1.84 TreeNode<V> replacement;
1002     TreeNode<V> pl = p.left;
1003     TreeNode<V> pr = p.right;
1004 dl 1.38 if (pl != null && pr != null) {
1005 dl 1.84 TreeNode<V> s = pr, sl;
1006 dl 1.41 while ((sl = s.left) != null) // find successor
1007     s = sl;
1008 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 dl 1.84 TreeNode<V> sr = s.right;
1010     TreeNode<V> pp = p.parent;
1011 dl 1.38 if (s == pr) { // p was s's direct parent
1012     p.parent = s;
1013     s.right = p;
1014     }
1015     else {
1016 dl 1.84 TreeNode<V> sp = s.parent;
1017 dl 1.38 if ((p.parent = sp) != null) {
1018     if (s == sp.left)
1019     sp.left = p;
1020     else
1021     sp.right = p;
1022     }
1023     if ((s.right = pr) != null)
1024     pr.parent = s;
1025     }
1026     p.left = null;
1027     if ((p.right = sr) != null)
1028     sr.parent = p;
1029     if ((s.left = pl) != null)
1030     pl.parent = s;
1031     if ((s.parent = pp) == null)
1032     root = s;
1033     else if (p == pp.left)
1034     pp.left = s;
1035     else
1036     pp.right = s;
1037     replacement = sr;
1038     }
1039     else
1040     replacement = (pl != null) ? pl : pr;
1041 dl 1.84 TreeNode<V> pp = p.parent;
1042 dl 1.38 if (replacement == null) {
1043     if (pp == null) {
1044     root = null;
1045     return;
1046     }
1047     replacement = p;
1048     }
1049     else {
1050     replacement.parent = pp;
1051     if (pp == null)
1052     root = replacement;
1053     else if (p == pp.left)
1054     pp.left = replacement;
1055     else
1056     pp.right = replacement;
1057     p.left = p.right = p.parent = null;
1058     }
1059 dl 1.41 if (!p.red) { // rebalance, from CLR
1060 dl 1.84 TreeNode<V> x = replacement;
1061 dl 1.41 while (x != null) {
1062 dl 1.84 TreeNode<V> xp, xpl;
1063 dl 1.41 if (x.red || (xp = x.parent) == null) {
1064     x.red = false;
1065     break;
1066 dl 1.38 }
1067 dl 1.41 if (x == (xpl = xp.left)) {
1068 dl 1.84 TreeNode<V> sib = xp.right;
1069 dl 1.41 if (sib != null && sib.red) {
1070     sib.red = false;
1071     xp.red = true;
1072     rotateLeft(xp);
1073     sib = (xp = x.parent) == null ? null : xp.right;
1074 dl 1.38 }
1075 dl 1.41 if (sib == null)
1076 dl 1.38 x = xp;
1077     else {
1078 dl 1.84 TreeNode<V> sl = sib.left, sr = sib.right;
1079 dl 1.41 if ((sr == null || !sr.red) &&
1080     (sl == null || !sl.red)) {
1081 dl 1.38 sib.red = true;
1082 dl 1.41 x = xp;
1083 dl 1.38 }
1084 dl 1.41 else {
1085     if (sr == null || !sr.red) {
1086     if (sl != null)
1087     sl.red = false;
1088     sib.red = true;
1089     rotateRight(sib);
1090 dl 1.82 sib = (xp = x.parent) == null ?
1091     null : xp.right;
1092 dl 1.41 }
1093     if (sib != null) {
1094 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1095 dl 1.41 if ((sr = sib.right) != null)
1096     sr.red = false;
1097     }
1098     if (xp != null) {
1099     xp.red = false;
1100     rotateLeft(xp);
1101     }
1102     x = root;
1103 dl 1.38 }
1104     }
1105     }
1106 dl 1.41 else { // symmetric
1107 dl 1.84 TreeNode<V> sib = xpl;
1108 dl 1.41 if (sib != null && sib.red) {
1109     sib.red = false;
1110     xp.red = true;
1111     rotateRight(xp);
1112     sib = (xp = x.parent) == null ? null : xp.left;
1113     }
1114     if (sib == null)
1115 dl 1.38 x = xp;
1116     else {
1117 dl 1.84 TreeNode<V> sl = sib.left, sr = sib.right;
1118 dl 1.41 if ((sl == null || !sl.red) &&
1119     (sr == null || !sr.red)) {
1120 dl 1.38 sib.red = true;
1121 dl 1.41 x = xp;
1122 dl 1.38 }
1123 dl 1.41 else {
1124     if (sl == null || !sl.red) {
1125     if (sr != null)
1126     sr.red = false;
1127     sib.red = true;
1128     rotateLeft(sib);
1129 dl 1.82 sib = (xp = x.parent) == null ?
1130     null : xp.left;
1131 dl 1.41 }
1132     if (sib != null) {
1133 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1134 dl 1.41 if ((sl = sib.left) != null)
1135     sl.red = false;
1136     }
1137     if (xp != null) {
1138     xp.red = false;
1139     rotateRight(xp);
1140     }
1141     x = root;
1142 dl 1.38 }
1143     }
1144     }
1145     }
1146     }
1147 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1148     if (p == pp.left) // detach pointers
1149     pp.left = null;
1150     else if (p == pp.right)
1151     pp.right = null;
1152     p.parent = null;
1153     }
1154 dl 1.38 }
1155 dl 1.1 }
1156    
1157 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1158 dl 1.14
1159     /**
1160 dl 1.82 * Spreads higher bits to lower, and also forces top bit to 0.
1161 dl 1.38 * Because the table uses power-of-two masking, sets of hashes
1162     * that vary only in bits above the current mask will always
1163     * collide. (Among known examples are sets of Float keys holding
1164     * consecutive whole numbers in small tables.) To counter this,
1165     * we apply a transform that spreads the impact of higher bits
1166     * downward. There is a tradeoff between speed, utility, and
1167     * quality of bit-spreading. Because many common sets of hashes
1168 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1169 dl 1.38 * from spreading), and because we use trees to handle large sets
1170     * of collisions in bins, we don't need excessively high quality.
1171 dl 1.14 */
1172     private static final int spread(int h) {
1173 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1174     return (h ^ (h >>> 10)) & HASH_BITS;
1175     }
1176    
1177     /**
1178 dl 1.82 * Replaces a list bin with a tree bin if key is comparable. Call
1179     * only when locked.
1180 dl 1.38 */
1181 dl 1.84 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 dl 1.82 if (key instanceof Comparable) {
1183 dl 1.84 TreeBin<V> t = new TreeBin<V>();
1184     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 dl 1.82 t.putTreeNode(e.hash, e.key, e.val);
1186 dl 1.84 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 dl 1.38 }
1188 dl 1.14 }
1189 dl 1.1
1190 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1191    
1192 dl 1.14 /** Implementation for get and containsKey */
1193 dl 1.82 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194 dl 1.1 int h = spread(k.hashCode());
1195 dl 1.84 retry: for (Node<V>[] tab = table; tab != null;) {
1196     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 dl 1.82 if ((eh = e.hash) < 0) {
1199 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1200 dl 1.84 return ((TreeBin<V>)ek).getValue(h, k);
1201     else { // restart with new table
1202     tab = (Node<V>[])ek;
1203 dl 1.38 continue retry;
1204     }
1205 dl 1.1 }
1206 dl 1.82 else if (eh == h && (ev = e.val) != null &&
1207 dl 1.38 ((ek = e.key) == k || k.equals(ek)))
1208 dl 1.84 return ev;
1209 dl 1.1 }
1210     break;
1211     }
1212     return null;
1213     }
1214    
1215 dl 1.27 /**
1216     * Implementation for the four public remove/replace methods:
1217     * Replaces node value with v, conditional upon match of cv if
1218     * non-null. If resulting value is null, delete.
1219     */
1220 dl 1.82 @SuppressWarnings("unchecked") private final V internalReplace
1221     (Object k, V v, Object cv) {
1222 dl 1.27 int h = spread(k.hashCode());
1223 dl 1.84 V oldVal = null;
1224     for (Node<V>[] tab = table;;) {
1225     Node<V> f; int i, fh; Object fk;
1226 dl 1.27 if (tab == null ||
1227     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228     break;
1229 dl 1.82 else if ((fh = f.hash) < 0) {
1230 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1231 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1232 dl 1.38 boolean validated = false;
1233     boolean deleted = false;
1234     t.acquire(0);
1235     try {
1236     if (tabAt(tab, i) == f) {
1237     validated = true;
1238 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 dl 1.38 if (p != null) {
1240 dl 1.84 V pv = p.val;
1241 dl 1.38 if (cv == null || cv == pv || cv.equals(pv)) {
1242     oldVal = pv;
1243     if ((p.val = v) == null) {
1244     deleted = true;
1245     t.deleteTreeNode(p);
1246     }
1247     }
1248     }
1249     }
1250     } finally {
1251     t.release(0);
1252     }
1253     if (validated) {
1254     if (deleted)
1255 dl 1.82 addCount(-1L, -1);
1256 dl 1.38 break;
1257     }
1258     }
1259     else
1260 dl 1.84 tab = (Node<V>[])fk;
1261 dl 1.38 }
1262 dl 1.82 else if (fh != h && f.next == null) // precheck
1263 dl 1.27 break; // rules out possible existence
1264 dl 1.82 else {
1265 dl 1.27 boolean validated = false;
1266     boolean deleted = false;
1267 jsr166 1.83 synchronized (f) {
1268 dl 1.27 if (tabAt(tab, i) == f) {
1269     validated = true;
1270 dl 1.84 for (Node<V> e = f, pred = null;;) {
1271     Object ek; V ev;
1272 dl 1.82 if (e.hash == h &&
1273 dl 1.27 ((ev = e.val) != null) &&
1274     ((ek = e.key) == k || k.equals(ek))) {
1275     if (cv == null || cv == ev || cv.equals(ev)) {
1276     oldVal = ev;
1277     if ((e.val = v) == null) {
1278     deleted = true;
1279 dl 1.84 Node<V> en = e.next;
1280 dl 1.27 if (pred != null)
1281     pred.next = en;
1282     else
1283     setTabAt(tab, i, en);
1284     }
1285     }
1286     break;
1287     }
1288     pred = e;
1289     if ((e = e.next) == null)
1290     break;
1291     }
1292     }
1293     }
1294     if (validated) {
1295     if (deleted)
1296 dl 1.82 addCount(-1L, -1);
1297 dl 1.27 break;
1298     }
1299     }
1300     }
1301 dl 1.84 return oldVal;
1302 dl 1.27 }
1303    
1304     /*
1305 dl 1.82 * Internal versions of insertion methods
1306     * All have the same basic structure as the first (internalPut):
1307 dl 1.27 * 1. If table uninitialized, create
1308     * 2. If bin empty, try to CAS new node
1309     * 3. If bin stale, use new table
1310 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311     * 5. Lock and validate; if valid, scan and add or update
1312 dl 1.27 *
1313 dl 1.82 * The putAll method differs mainly in attempting to pre-allocate
1314     * enough table space, and also more lazily performs count updates
1315     * and checks.
1316     *
1317     * Most of the function-accepting methods can't be factored nicely
1318     * because they require different functional forms, so instead
1319     * sprawl out similar mechanics.
1320 dl 1.27 */
1321    
1322 dl 1.82 /** Implementation for put and putIfAbsent */
1323     @SuppressWarnings("unchecked") private final V internalPut
1324     (K k, V v, boolean onlyIfAbsent) {
1325     if (k == null || v == null) throw new NullPointerException();
1326 dl 1.1 int h = spread(k.hashCode());
1327 dl 1.82 int len = 0;
1328 dl 1.84 for (Node<V>[] tab = table;;) {
1329     int i, fh; Node<V> f; Object fk; V fv;
1330 dl 1.1 if (tab == null)
1331 dl 1.24 tab = initTable();
1332     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 dl 1.84 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334 dl 1.14 break; // no lock when adding to empty bin
1335     }
1336 dl 1.82 else if ((fh = f.hash) < 0) {
1337 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1338 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1339     V oldVal = null;
1340 dl 1.38 t.acquire(0);
1341     try {
1342     if (tabAt(tab, i) == f) {
1343 dl 1.82 len = 2;
1344 dl 1.84 TreeNode<V> p = t.putTreeNode(h, k, v);
1345 dl 1.38 if (p != null) {
1346     oldVal = p.val;
1347 dl 1.82 if (!onlyIfAbsent)
1348     p.val = v;
1349 dl 1.38 }
1350     }
1351     } finally {
1352     t.release(0);
1353     }
1354 dl 1.82 if (len != 0) {
1355 dl 1.38 if (oldVal != null)
1356 dl 1.84 return oldVal;
1357 dl 1.38 break;
1358     }
1359     }
1360     else
1361 dl 1.84 tab = (Node<V>[])fk;
1362 dl 1.38 }
1363 dl 1.82 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 dl 1.84 return fv;
1366 dl 1.82 else {
1367 dl 1.84 V oldVal = null;
1368 jsr166 1.83 synchronized (f) {
1369 dl 1.24 if (tabAt(tab, i) == f) {
1370 dl 1.82 len = 1;
1371 dl 1.84 for (Node<V> e = f;; ++len) {
1372     Object ek; V ev;
1373 dl 1.82 if (e.hash == h &&
1374 dl 1.24 (ev = e.val) != null &&
1375     ((ek = e.key) == k || k.equals(ek))) {
1376 dl 1.1 oldVal = ev;
1377 dl 1.82 if (!onlyIfAbsent)
1378     e.val = v;
1379 dl 1.10 break;
1380 dl 1.1 }
1381 dl 1.84 Node<V> last = e;
1382 dl 1.10 if ((e = e.next) == null) {
1383 dl 1.84 last.next = new Node<V>(h, k, v, null);
1384 dl 1.82 if (len >= TREE_THRESHOLD)
1385 dl 1.38 replaceWithTreeBin(tab, i, k);
1386 dl 1.10 break;
1387 dl 1.1 }
1388     }
1389     }
1390     }
1391 dl 1.82 if (len != 0) {
1392 dl 1.27 if (oldVal != null)
1393 dl 1.84 return oldVal;
1394 dl 1.1 break;
1395     }
1396     }
1397     }
1398 dl 1.82 addCount(1L, len);
1399 dl 1.27 return null;
1400     }
1401    
1402     /** Implementation for computeIfAbsent */
1403 dl 1.82 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 dl 1.84 (K k, Fun<? super K, ? extends V> mf) {
1405 dl 1.82 if (k == null || mf == null)
1406     throw new NullPointerException();
1407 dl 1.27 int h = spread(k.hashCode());
1408 dl 1.84 V val = null;
1409 dl 1.82 int len = 0;
1410 dl 1.84 for (Node<V>[] tab = table;;) {
1411     Node<V> f; int i; Object fk;
1412 dl 1.27 if (tab == null)
1413     tab = initTable();
1414     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 dl 1.84 Node<V> node = new Node<V>(h, k, null, null);
1416 jsr166 1.83 synchronized (node) {
1417 dl 1.82 if (casTabAt(tab, i, null, node)) {
1418     len = 1;
1419     try {
1420     if ((val = mf.apply(k)) != null)
1421     node.val = val;
1422     } finally {
1423     if (val == null)
1424     setTabAt(tab, i, null);
1425 dl 1.27 }
1426 dl 1.1 }
1427     }
1428 dl 1.82 if (len != 0)
1429 dl 1.24 break;
1430 dl 1.27 }
1431 dl 1.82 else if (f.hash < 0) {
1432 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1433 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1434 dl 1.38 boolean added = false;
1435     t.acquire(0);
1436     try {
1437     if (tabAt(tab, i) == f) {
1438 dl 1.82 len = 1;
1439 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 dl 1.38 if (p != null)
1441     val = p.val;
1442 dl 1.52 else if ((val = mf.apply(k)) != null) {
1443 dl 1.38 added = true;
1444 dl 1.82 len = 2;
1445 dl 1.38 t.putTreeNode(h, k, val);
1446     }
1447     }
1448     } finally {
1449     t.release(0);
1450     }
1451 dl 1.82 if (len != 0) {
1452 dl 1.38 if (!added)
1453 dl 1.84 return val;
1454 dl 1.38 break;
1455     }
1456     }
1457     else
1458 dl 1.84 tab = (Node<V>[])fk;
1459 dl 1.38 }
1460 dl 1.27 else {
1461 dl 1.84 for (Node<V> e = f; e != null; e = e.next) { // prescan
1462     Object ek; V ev;
1463 dl 1.82 if (e.hash == h && (ev = e.val) != null &&
1464     ((ek = e.key) == k || k.equals(ek)))
1465 dl 1.84 return ev;
1466 dl 1.27 }
1467 dl 1.82 boolean added = false;
1468 jsr166 1.83 synchronized (f) {
1469 dl 1.82 if (tabAt(tab, i) == f) {
1470     len = 1;
1471 dl 1.84 for (Node<V> e = f;; ++len) {
1472     Object ek; V ev;
1473 dl 1.82 if (e.hash == h &&
1474     (ev = e.val) != null &&
1475     ((ek = e.key) == k || k.equals(ek))) {
1476     val = ev;
1477     break;
1478     }
1479 dl 1.84 Node<V> last = e;
1480 dl 1.82 if ((e = e.next) == null) {
1481     if ((val = mf.apply(k)) != null) {
1482     added = true;
1483 dl 1.84 last.next = new Node<V>(h, k, val, null);
1484 dl 1.82 if (len >= TREE_THRESHOLD)
1485     replaceWithTreeBin(tab, i, k);
1486 dl 1.27 }
1487 dl 1.82 break;
1488 dl 1.27 }
1489     }
1490 dl 1.38 }
1491 dl 1.82 }
1492     if (len != 0) {
1493     if (!added)
1494 dl 1.84 return val;
1495 dl 1.82 break;
1496 dl 1.1 }
1497     }
1498     }
1499 dl 1.82 if (val != null)
1500     addCount(1L, len);
1501 dl 1.84 return val;
1502 dl 1.1 }
1503    
1504 dl 1.27 /** Implementation for compute */
1505 dl 1.82 @SuppressWarnings("unchecked") private final V internalCompute
1506     (K k, boolean onlyIfPresent,
1507     BiFun<? super K, ? super V, ? extends V> mf) {
1508     if (k == null || mf == null)
1509     throw new NullPointerException();
1510 dl 1.1 int h = spread(k.hashCode());
1511 dl 1.84 V val = null;
1512 dl 1.41 int delta = 0;
1513 dl 1.82 int len = 0;
1514 dl 1.84 for (Node<V>[] tab = table;;) {
1515     Node<V> f; int i, fh; Object fk;
1516 dl 1.1 if (tab == null)
1517 dl 1.24 tab = initTable();
1518     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 dl 1.52 if (onlyIfPresent)
1520     break;
1521 dl 1.84 Node<V> node = new Node<V>(h, k, null, null);
1522 jsr166 1.83 synchronized (node) {
1523 dl 1.82 if (casTabAt(tab, i, null, node)) {
1524     try {
1525     len = 1;
1526     if ((val = mf.apply(k, null)) != null) {
1527     node.val = val;
1528     delta = 1;
1529     }
1530     } finally {
1531     if (delta == 0)
1532     setTabAt(tab, i, null);
1533 dl 1.1 }
1534     }
1535     }
1536 dl 1.82 if (len != 0)
1537 dl 1.10 break;
1538 dl 1.1 }
1539 dl 1.82 else if ((fh = f.hash) < 0) {
1540 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1541 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1542 dl 1.38 t.acquire(0);
1543     try {
1544     if (tabAt(tab, i) == f) {
1545 dl 1.82 len = 1;
1546 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 dl 1.82 if (p == null && onlyIfPresent)
1548     break;
1549 dl 1.84 V pv = (p == null) ? null : p.val;
1550     if ((val = mf.apply(k, pv)) != null) {
1551 dl 1.38 if (p != null)
1552     p.val = val;
1553     else {
1554 dl 1.82 len = 2;
1555 dl 1.41 delta = 1;
1556 dl 1.38 t.putTreeNode(h, k, val);
1557     }
1558     }
1559 dl 1.41 else if (p != null) {
1560     delta = -1;
1561     t.deleteTreeNode(p);
1562     }
1563 dl 1.38 }
1564     } finally {
1565     t.release(0);
1566     }
1567 dl 1.82 if (len != 0)
1568 dl 1.38 break;
1569     }
1570     else
1571 dl 1.84 tab = (Node<V>[])fk;
1572 dl 1.38 }
1573 dl 1.82 else {
1574 jsr166 1.83 synchronized (f) {
1575 dl 1.24 if (tabAt(tab, i) == f) {
1576 dl 1.82 len = 1;
1577 dl 1.84 for (Node<V> e = f, pred = null;; ++len) {
1578     Object ek; V ev;
1579 dl 1.82 if (e.hash == h &&
1580 dl 1.24 (ev = e.val) != null &&
1581     ((ek = e.key) == k || k.equals(ek))) {
1582 dl 1.84 val = mf.apply(k, ev);
1583 dl 1.27 if (val != null)
1584     e.val = val;
1585 dl 1.41 else {
1586     delta = -1;
1587 dl 1.84 Node<V> en = e.next;
1588 dl 1.41 if (pred != null)
1589     pred.next = en;
1590     else
1591     setTabAt(tab, i, en);
1592     }
1593 dl 1.10 break;
1594 dl 1.1 }
1595 dl 1.41 pred = e;
1596 dl 1.10 if ((e = e.next) == null) {
1597 dl 1.82 if (!onlyIfPresent &&
1598     (val = mf.apply(k, null)) != null) {
1599 dl 1.84 pred.next = new Node<V>(h, k, val, null);
1600 dl 1.41 delta = 1;
1601 dl 1.82 if (len >= TREE_THRESHOLD)
1602 dl 1.38 replaceWithTreeBin(tab, i, k);
1603 dl 1.1 }
1604 dl 1.10 break;
1605 dl 1.1 }
1606     }
1607     }
1608     }
1609 dl 1.82 if (len != 0)
1610 dl 1.10 break;
1611 dl 1.1 }
1612 dl 1.10 }
1613 dl 1.82 if (delta != 0)
1614     addCount((long)delta, len);
1615 dl 1.84 return val;
1616 dl 1.1 }
1617    
1618 dl 1.59 /** Implementation for merge */
1619 dl 1.82 @SuppressWarnings("unchecked") private final V internalMerge
1620 dl 1.61 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 dl 1.82 if (k == null || v == null || mf == null)
1622     throw new NullPointerException();
1623 dl 1.52 int h = spread(k.hashCode());
1624 dl 1.84 V val = null;
1625 dl 1.52 int delta = 0;
1626 dl 1.82 int len = 0;
1627 dl 1.84 for (Node<V>[] tab = table;;) {
1628     int i; Node<V> f; Object fk; V fv;
1629 dl 1.52 if (tab == null)
1630     tab = initTable();
1631     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 dl 1.84 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 dl 1.52 delta = 1;
1634     val = v;
1635     break;
1636     }
1637     }
1638 dl 1.82 else if (f.hash < 0) {
1639 dl 1.52 if ((fk = f.key) instanceof TreeBin) {
1640 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1641 dl 1.52 t.acquire(0);
1642     try {
1643     if (tabAt(tab, i) == f) {
1644 dl 1.82 len = 1;
1645 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646     val = (p == null) ? v : mf.apply(p.val, v);
1647 dl 1.52 if (val != null) {
1648     if (p != null)
1649     p.val = val;
1650     else {
1651 dl 1.82 len = 2;
1652 dl 1.52 delta = 1;
1653     t.putTreeNode(h, k, val);
1654     }
1655     }
1656     else if (p != null) {
1657     delta = -1;
1658     t.deleteTreeNode(p);
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664 dl 1.82 if (len != 0)
1665 dl 1.52 break;
1666     }
1667     else
1668 dl 1.84 tab = (Node<V>[])fk;
1669 dl 1.52 }
1670 dl 1.82 else {
1671 jsr166 1.83 synchronized (f) {
1672 dl 1.52 if (tabAt(tab, i) == f) {
1673 dl 1.82 len = 1;
1674 dl 1.84 for (Node<V> e = f, pred = null;; ++len) {
1675     Object ek; V ev;
1676 dl 1.82 if (e.hash == h &&
1677 dl 1.52 (ev = e.val) != null &&
1678     ((ek = e.key) == k || k.equals(ek))) {
1679 dl 1.84 val = mf.apply(ev, v);
1680 dl 1.52 if (val != null)
1681     e.val = val;
1682     else {
1683     delta = -1;
1684 dl 1.84 Node<V> en = e.next;
1685 dl 1.52 if (pred != null)
1686     pred.next = en;
1687     else
1688     setTabAt(tab, i, en);
1689     }
1690     break;
1691     }
1692     pred = e;
1693     if ((e = e.next) == null) {
1694     val = v;
1695 dl 1.84 pred.next = new Node<V>(h, k, val, null);
1696 dl 1.52 delta = 1;
1697 dl 1.82 if (len >= TREE_THRESHOLD)
1698 dl 1.52 replaceWithTreeBin(tab, i, k);
1699     break;
1700     }
1701     }
1702     }
1703     }
1704 dl 1.82 if (len != 0)
1705 dl 1.52 break;
1706     }
1707     }
1708 dl 1.82 if (delta != 0)
1709     addCount((long)delta, len);
1710 dl 1.84 return val;
1711 dl 1.52 }
1712    
1713 dl 1.27 /** Implementation for putAll */
1714 dl 1.84 @SuppressWarnings("unchecked") private final void internalPutAll
1715     (Map<? extends K, ? extends V> m) {
1716 dl 1.27 tryPresize(m.size());
1717     long delta = 0L; // number of uncommitted additions
1718     boolean npe = false; // to throw exception on exit for nulls
1719     try { // to clean up counts on other exceptions
1720 dl 1.84 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721     Object k; V v;
1722 dl 1.27 if (entry == null || (k = entry.getKey()) == null ||
1723     (v = entry.getValue()) == null) {
1724     npe = true;
1725     break;
1726     }
1727     int h = spread(k.hashCode());
1728 dl 1.84 for (Node<V>[] tab = table;;) {
1729     int i; Node<V> f; int fh; Object fk;
1730 dl 1.27 if (tab == null)
1731     tab = initTable();
1732     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 dl 1.84 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 dl 1.27 ++delta;
1735     break;
1736     }
1737     }
1738 dl 1.82 else if ((fh = f.hash) < 0) {
1739 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1740 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1741 dl 1.38 boolean validated = false;
1742     t.acquire(0);
1743     try {
1744     if (tabAt(tab, i) == f) {
1745     validated = true;
1746 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 dl 1.38 if (p != null)
1748     p.val = v;
1749     else {
1750     t.putTreeNode(h, k, v);
1751     ++delta;
1752     }
1753     }
1754     } finally {
1755     t.release(0);
1756     }
1757     if (validated)
1758     break;
1759     }
1760     else
1761 dl 1.84 tab = (Node<V>[])fk;
1762 dl 1.38 }
1763 dl 1.82 else {
1764     int len = 0;
1765 jsr166 1.83 synchronized (f) {
1766 dl 1.27 if (tabAt(tab, i) == f) {
1767 dl 1.82 len = 1;
1768 dl 1.84 for (Node<V> e = f;; ++len) {
1769     Object ek; V ev;
1770 dl 1.82 if (e.hash == h &&
1771 dl 1.27 (ev = e.val) != null &&
1772     ((ek = e.key) == k || k.equals(ek))) {
1773     e.val = v;
1774     break;
1775     }
1776 dl 1.84 Node<V> last = e;
1777 dl 1.27 if ((e = e.next) == null) {
1778     ++delta;
1779 dl 1.84 last.next = new Node<V>(h, k, v, null);
1780 dl 1.82 if (len >= TREE_THRESHOLD)
1781 dl 1.38 replaceWithTreeBin(tab, i, k);
1782 dl 1.27 break;
1783     }
1784     }
1785     }
1786     }
1787 dl 1.82 if (len != 0) {
1788     if (len > 1)
1789     addCount(delta, len);
1790 dl 1.27 break;
1791 dl 1.24 }
1792     }
1793 dl 1.1 }
1794     }
1795 dl 1.27 } finally {
1796 dl 1.82 if (delta != 0L)
1797     addCount(delta, 2);
1798 dl 1.1 }
1799 dl 1.27 if (npe)
1800     throw new NullPointerException();
1801 dl 1.1 }
1802    
1803 dl 1.82 /**
1804     * Implementation for clear. Steps through each bin, removing all
1805     * nodes.
1806     */
1807 dl 1.84 @SuppressWarnings("unchecked") private final void internalClear() {
1808 dl 1.82 long delta = 0L; // negative number of deletions
1809     int i = 0;
1810 dl 1.84 Node<V>[] tab = table;
1811 dl 1.82 while (tab != null && i < tab.length) {
1812 dl 1.84 Node<V> f = tabAt(tab, i);
1813 dl 1.82 if (f == null)
1814     ++i;
1815     else if (f.hash < 0) {
1816     Object fk;
1817     if ((fk = f.key) instanceof TreeBin) {
1818 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1819 dl 1.82 t.acquire(0);
1820     try {
1821     if (tabAt(tab, i) == f) {
1822 dl 1.84 for (Node<V> p = t.first; p != null; p = p.next) {
1823 dl 1.82 if (p.val != null) { // (currently always true)
1824     p.val = null;
1825     --delta;
1826     }
1827     }
1828     t.first = null;
1829     t.root = null;
1830     ++i;
1831     }
1832     } finally {
1833     t.release(0);
1834     }
1835     }
1836     else
1837 dl 1.84 tab = (Node<V>[])fk;
1838 dl 1.82 }
1839     else {
1840 jsr166 1.83 synchronized (f) {
1841 dl 1.82 if (tabAt(tab, i) == f) {
1842 dl 1.84 for (Node<V> e = f; e != null; e = e.next) {
1843 dl 1.82 if (e.val != null) { // (currently always true)
1844     e.val = null;
1845     --delta;
1846     }
1847     }
1848     setTabAt(tab, i, null);
1849     ++i;
1850     }
1851     }
1852     }
1853     }
1854     if (delta != 0L)
1855     addCount(delta, -1);
1856     }
1857    
1858 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
1859 dl 1.24
1860     /**
1861     * Returns a power of two table size for the given desired capacity.
1862     * See Hackers Delight, sec 3.2
1863     */
1864     private static final int tableSizeFor(int c) {
1865     int n = c - 1;
1866     n |= n >>> 1;
1867     n |= n >>> 2;
1868     n |= n >>> 4;
1869     n |= n >>> 8;
1870     n |= n >>> 16;
1871     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1872     }
1873    
1874     /**
1875     * Initializes table, using the size recorded in sizeCtl.
1876     */
1877 dl 1.84 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1878     Node<V>[] tab; int sc;
1879 dl 1.24 while ((tab = table) == null) {
1880     if ((sc = sizeCtl) < 0)
1881     Thread.yield(); // lost initialization race; just spin
1882 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1883 dl 1.24 try {
1884     if ((tab = table) == null) {
1885     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1886 dl 1.84 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1887     table = tab = (Node<V>[])tb;
1888 dl 1.27 sc = n - (n >>> 2);
1889 dl 1.24 }
1890     } finally {
1891     sizeCtl = sc;
1892     }
1893     break;
1894     }
1895     }
1896     return tab;
1897     }
1898    
1899     /**
1900 dl 1.82 * Adds to count, and if table is too small and not already
1901     * resizing, initiates transfer. If already resizing, helps
1902     * perform transfer if work is available. Rechecks occupancy
1903     * after a transfer to see if another resize is already needed
1904     * because resizings are lagging additions.
1905     *
1906     * @param x the count to add
1907     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1908     */
1909     private final void addCount(long x, int check) {
1910     CounterCell[] as; long b, s;
1911     if ((as = counterCells) != null ||
1912     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1913     CounterHashCode hc; CounterCell a; long v; int m;
1914     boolean uncontended = true;
1915     if ((hc = threadCounterHashCode.get()) == null ||
1916     as == null || (m = as.length - 1) < 0 ||
1917     (a = as[m & hc.code]) == null ||
1918     !(uncontended =
1919     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1920     fullAddCount(x, hc, uncontended);
1921     return;
1922     }
1923     if (check <= 1)
1924     return;
1925     s = sumCount();
1926     }
1927     if (check >= 0) {
1928 dl 1.84 Node<V>[] tab, nt; int sc;
1929 dl 1.82 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1930     tab.length < MAXIMUM_CAPACITY) {
1931     if (sc < 0) {
1932     if (sc == -1 || transferIndex <= transferOrigin ||
1933     (nt = nextTable) == null)
1934     break;
1935     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1936     transfer(tab, nt);
1937 dl 1.24 }
1938 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1939     transfer(tab, null);
1940     s = sumCount();
1941 dl 1.24 }
1942     }
1943     }
1944    
1945 dl 1.27 /**
1946     * Tries to presize table to accommodate the given number of elements.
1947     *
1948     * @param size number of elements (doesn't need to be perfectly accurate)
1949     */
1950 dl 1.84 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1951 dl 1.27 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1952     tableSizeFor(size + (size >>> 1) + 1);
1953     int sc;
1954     while ((sc = sizeCtl) >= 0) {
1955 dl 1.84 Node<V>[] tab = table; int n;
1956 dl 1.27 if (tab == null || (n = tab.length) == 0) {
1957 jsr166 1.30 n = (sc > c) ? sc : c;
1958 dl 1.82 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1959 dl 1.27 try {
1960     if (table == tab) {
1961 dl 1.84 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1962     table = (Node<V>[])tb;
1963 dl 1.27 sc = n - (n >>> 2);
1964     }
1965     } finally {
1966     sizeCtl = sc;
1967     }
1968     }
1969     }
1970     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971     break;
1972 dl 1.82 else if (tab == table &&
1973     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1974     transfer(tab, null);
1975 dl 1.27 }
1976     }
1977    
1978 dl 1.24 /*
1979     * Moves and/or copies the nodes in each bin to new table. See
1980     * above for explanation.
1981     */
1982 dl 1.84 @SuppressWarnings("unchecked") private final void transfer
1983     (Node<V>[] tab, Node<V>[] nextTab) {
1984 dl 1.82 int n = tab.length, stride;
1985     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1986     stride = MIN_TRANSFER_STRIDE; // subdivide range
1987     if (nextTab == null) { // initiating
1988     try {
1989 dl 1.84 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1990     nextTab = (Node<V>[])tb;
1991 jsr166 1.83 } catch (Throwable ex) { // try to cope with OOME
1992 dl 1.82 sizeCtl = Integer.MAX_VALUE;
1993     return;
1994     }
1995     nextTable = nextTab;
1996     transferOrigin = n;
1997     transferIndex = n;
1998 dl 1.84 Node<V> rev = new Node<V>(MOVED, tab, null, null);
1999 dl 1.82 for (int k = n; k > 0;) { // progressively reveal ready slots
2000 jsr166 1.83 int nextk = (k > stride) ? k - stride : 0;
2001 dl 1.82 for (int m = nextk; m < k; ++m)
2002     nextTab[m] = rev;
2003     for (int m = n + nextk; m < n + k; ++m)
2004     nextTab[m] = rev;
2005     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2006     }
2007     }
2008     int nextn = nextTab.length;
2009 dl 1.84 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2010 dl 1.82 boolean advance = true;
2011     for (int i = 0, bound = 0;;) {
2012 dl 1.84 int nextIndex, nextBound; Node<V> f; Object fk;
2013 dl 1.82 while (advance) {
2014     if (--i >= bound)
2015     advance = false;
2016     else if ((nextIndex = transferIndex) <= transferOrigin) {
2017     i = -1;
2018     advance = false;
2019     }
2020     else if (U.compareAndSwapInt
2021     (this, TRANSFERINDEX, nextIndex,
2022 jsr166 1.83 nextBound = (nextIndex > stride ?
2023 dl 1.82 nextIndex - stride : 0))) {
2024     bound = nextBound;
2025     i = nextIndex - 1;
2026     advance = false;
2027     }
2028     }
2029     if (i < 0 || i >= n || i + n >= nextn) {
2030     for (int sc;;) {
2031     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2032     if (sc == -1) {
2033     nextTable = null;
2034     table = nextTab;
2035     sizeCtl = (n << 1) - (n >>> 1);
2036     }
2037     return;
2038     }
2039     }
2040     }
2041     else if ((f = tabAt(tab, i)) == null) {
2042     if (casTabAt(tab, i, null, fwd)) {
2043 dl 1.24 setTabAt(nextTab, i, null);
2044     setTabAt(nextTab, i + n, null);
2045 dl 1.82 advance = true;
2046 dl 1.24 }
2047     }
2048 dl 1.82 else if (f.hash >= 0) {
2049 jsr166 1.83 synchronized (f) {
2050 dl 1.82 if (tabAt(tab, i) == f) {
2051     int runBit = f.hash & n;
2052 dl 1.84 Node<V> lastRun = f, lo = null, hi = null;
2053     for (Node<V> p = f.next; p != null; p = p.next) {
2054 dl 1.82 int b = p.hash & n;
2055     if (b != runBit) {
2056     runBit = b;
2057     lastRun = p;
2058     }
2059     }
2060     if (runBit == 0)
2061     lo = lastRun;
2062     else
2063     hi = lastRun;
2064 dl 1.84 for (Node<V> p = f; p != lastRun; p = p.next) {
2065 dl 1.82 int ph = p.hash;
2066 dl 1.84 Object pk = p.key; V pv = p.val;
2067 dl 1.82 if ((ph & n) == 0)
2068 dl 1.84 lo = new Node<V>(ph, pk, pv, lo);
2069 dl 1.82 else
2070 dl 1.84 hi = new Node<V>(ph, pk, pv, hi);
2071 dl 1.38 }
2072 dl 1.82 setTabAt(nextTab, i, lo);
2073     setTabAt(nextTab, i + n, hi);
2074     setTabAt(tab, i, fwd);
2075     advance = true;
2076 dl 1.38 }
2077     }
2078     }
2079 dl 1.82 else if ((fk = f.key) instanceof TreeBin) {
2080 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
2081 dl 1.82 t.acquire(0);
2082     try {
2083 dl 1.24 if (tabAt(tab, i) == f) {
2084 dl 1.84 TreeBin<V> lt = new TreeBin<V>();
2085     TreeBin<V> ht = new TreeBin<V>();
2086 dl 1.82 int lc = 0, hc = 0;
2087 dl 1.84 for (Node<V> e = t.first; e != null; e = e.next) {
2088 dl 1.82 int h = e.hash;
2089 dl 1.84 Object k = e.key; V v = e.val;
2090 dl 1.82 if ((h & n) == 0) {
2091     ++lc;
2092     lt.putTreeNode(h, k, v);
2093     }
2094     else {
2095     ++hc;
2096     ht.putTreeNode(h, k, v);
2097     }
2098     }
2099 dl 1.84 Node<V> ln, hn; // throw away trees if too small
2100 dl 1.82 if (lc < TREE_THRESHOLD) {
2101     ln = null;
2102 dl 1.84 for (Node<V> p = lt.first; p != null; p = p.next)
2103     ln = new Node<V>(p.hash, p.key, p.val, ln);
2104 dl 1.82 }
2105     else
2106 dl 1.84 ln = new Node<V>(MOVED, lt, null, null);
2107 dl 1.82 setTabAt(nextTab, i, ln);
2108     if (hc < TREE_THRESHOLD) {
2109     hn = null;
2110 dl 1.84 for (Node<V> p = ht.first; p != null; p = p.next)
2111     hn = new Node<V>(p.hash, p.key, p.val, hn);
2112 dl 1.82 }
2113     else
2114 dl 1.84 hn = new Node<V>(MOVED, ht, null, null);
2115 dl 1.82 setTabAt(nextTab, i + n, hn);
2116 dl 1.24 setTabAt(tab, i, fwd);
2117 dl 1.82 advance = true;
2118 dl 1.24 }
2119     } finally {
2120 dl 1.82 t.release(0);
2121 dl 1.24 }
2122     }
2123     else
2124 dl 1.82 advance = true; // already processed
2125 dl 1.24 }
2126     }
2127    
2128 dl 1.82 /* ---------------- Counter support -------------- */
2129    
2130     final long sumCount() {
2131     CounterCell[] as = counterCells; CounterCell a;
2132     long sum = baseCount;
2133     if (as != null) {
2134     for (int i = 0; i < as.length; ++i) {
2135     if ((a = as[i]) != null)
2136     sum += a.value;
2137 dl 1.38 }
2138     }
2139 dl 1.82 return sum;
2140 dl 1.38 }
2141    
2142 dl 1.82 // See LongAdder version for explanation
2143     private final void fullAddCount(long x, CounterHashCode hc,
2144     boolean wasUncontended) {
2145     int h;
2146     if (hc == null) {
2147     hc = new CounterHashCode();
2148     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2149     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2150     threadCounterHashCode.set(hc);
2151 dl 1.38 }
2152     else
2153 dl 1.82 h = hc.code;
2154     boolean collide = false; // True if last slot nonempty
2155     for (;;) {
2156     CounterCell[] as; CounterCell a; int n; long v;
2157     if ((as = counterCells) != null && (n = as.length) > 0) {
2158     if ((a = as[(n - 1) & h]) == null) {
2159     if (counterBusy == 0) { // Try to attach new Cell
2160     CounterCell r = new CounterCell(x); // Optimistic create
2161     if (counterBusy == 0 &&
2162     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2163     boolean created = false;
2164     try { // Recheck under lock
2165     CounterCell[] rs; int m, j;
2166     if ((rs = counterCells) != null &&
2167     (m = rs.length) > 0 &&
2168     rs[j = (m - 1) & h] == null) {
2169     rs[j] = r;
2170     created = true;
2171 dl 1.61 }
2172 dl 1.82 } finally {
2173     counterBusy = 0;
2174 dl 1.38 }
2175 dl 1.82 if (created)
2176     break;
2177     continue; // Slot is now non-empty
2178     }
2179     }
2180     collide = false;
2181     }
2182     else if (!wasUncontended) // CAS already known to fail
2183     wasUncontended = true; // Continue after rehash
2184     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2185     break;
2186     else if (counterCells != as || n >= NCPU)
2187     collide = false; // At max size or stale
2188     else if (!collide)
2189     collide = true;
2190     else if (counterBusy == 0 &&
2191     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2192     try {
2193     if (counterCells == as) {// Expand table unless stale
2194     CounterCell[] rs = new CounterCell[n << 1];
2195     for (int i = 0; i < n; ++i)
2196     rs[i] = as[i];
2197     counterCells = rs;
2198 dl 1.38 }
2199     } finally {
2200 dl 1.82 counterBusy = 0;
2201 dl 1.38 }
2202 dl 1.82 collide = false;
2203     continue; // Retry with expanded table
2204 dl 1.38 }
2205 dl 1.82 h ^= h << 13; // Rehash
2206     h ^= h >>> 17;
2207     h ^= h << 5;
2208     }
2209     else if (counterBusy == 0 && counterCells == as &&
2210     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2211     boolean init = false;
2212     try { // Initialize table
2213     if (counterCells == as) {
2214     CounterCell[] rs = new CounterCell[2];
2215     rs[h & 1] = new CounterCell(x);
2216     counterCells = rs;
2217     init = true;
2218 dl 1.27 }
2219     } finally {
2220 dl 1.82 counterBusy = 0;
2221 dl 1.27 }
2222 dl 1.82 if (init)
2223     break;
2224 dl 1.27 }
2225 dl 1.82 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2226     break; // Fall back on using base
2227 dl 1.27 }
2228 dl 1.82 hc.code = h; // Record index for next time
2229 dl 1.27 }
2230    
2231 dl 1.14 /* ----------------Table Traversal -------------- */
2232    
2233 dl 1.1 /**
2234 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2235 dl 1.59 * serves as a base class for other iterators and bulk tasks.
2236 dl 1.14 *
2237     * At each step, the iterator snapshots the key ("nextKey") and
2238     * value ("nextVal") of a valid node (i.e., one that, at point of
2239 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2240 dl 1.14 * change (including to null, indicating deletion), field nextVal
2241     * might not be accurate at point of use, but still maintains the
2242     * weak consistency property of holding a value that was once
2243 dl 1.70 * valid. To support iterator.remove, the nextKey field is not
2244     * updated (nulled out) when the iterator cannot advance.
2245 dl 1.14 *
2246     * Internal traversals directly access these fields, as in:
2247 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2248 dl 1.14 *
2249 dl 1.41 * Exported iterators must track whether the iterator has advanced
2250     * (in hasNext vs next) (by setting/checking/nulling field
2251     * nextVal), and then extract key, value, or key-value pairs as
2252     * return values of next().
2253 dl 1.14 *
2254 dl 1.27 * The iterator visits once each still-valid node that was
2255     * reachable upon iterator construction. It might miss some that
2256     * were added to a bin after the bin was visited, which is OK wrt
2257     * consistency guarantees. Maintaining this property in the face
2258     * of possible ongoing resizes requires a fair amount of
2259     * bookkeeping state that is difficult to optimize away amidst
2260     * volatile accesses. Even so, traversal maintains reasonable
2261     * throughput.
2262 dl 1.14 *
2263     * Normally, iteration proceeds bin-by-bin traversing lists.
2264     * However, if the table has been resized, then all future steps
2265     * must traverse both the bin at the current index as well as at
2266     * (index + baseSize); and so on for further resizings. To
2267     * paranoically cope with potential sharing by users of iterators
2268     * across threads, iteration terminates if a bounds checks fails
2269     * for a table read.
2270 dl 1.52 *
2271 dl 1.79 * This class extends CountedCompleter to streamline parallel
2272     * iteration in bulk operations. This adds only a few fields of
2273     * space overhead, which is small enough in cases where it is not
2274     * needed to not worry about it. Because CountedCompleter is
2275     * Serializable, but iterators need not be, we need to add warning
2276     * suppressions.
2277 dl 1.14 */
2278 dl 1.82 @SuppressWarnings("serial") static class Traverser<K,V,R>
2279     extends CountedCompleter<R> {
2280 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2281 dl 1.84 Node<V> next; // the next entry to use
2282 dl 1.14 Object nextKey; // cached key field of next
2283 dl 1.84 V nextVal; // cached val field of next
2284     Node<V>[] tab; // current table; updated if resized
2285 dl 1.14 int index; // index of bin to use next
2286     int baseIndex; // current index of initial table
2287 dl 1.41 int baseLimit; // index bound for initial table
2288 dl 1.63 int baseSize; // initial table size
2289 dl 1.79 int batch; // split control
2290 dl 1.14
2291     /** Creates iterator for all entries in the table. */
2292 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2293 dl 1.63 this.map = map;
2294 dl 1.14 }
2295    
2296 dl 1.79 /** Creates iterator for split() methods and task constructors */
2297     Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2298     super(it);
2299     this.batch = batch;
2300     if ((this.map = map) != null && it != null) { // split parent
2301 dl 1.84 Node<V>[] t;
2302 dl 1.79 if ((t = it.tab) == null &&
2303     (t = it.tab = map.table) != null)
2304     it.baseLimit = it.baseSize = t.length;
2305     this.tab = t;
2306     this.baseSize = it.baseSize;
2307     int hi = this.baseLimit = it.baseLimit;
2308     it.baseLimit = this.index = this.baseIndex =
2309     (hi + it.baseIndex + 1) >>> 1;
2310     }
2311 dl 1.41 }
2312    
2313     /**
2314 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2315 dl 1.41 * See above for explanation.
2316     */
2317 dl 1.84 @SuppressWarnings("unchecked") final V advance() {
2318     Node<V> e = next;
2319     V ev = null;
2320 dl 1.14 outer: do {
2321 dl 1.24 if (e != null) // advance past used/skipped node
2322 dl 1.1 e = e.next;
2323 dl 1.24 while (e == null) { // get to next non-null bin
2324 dl 1.63 ConcurrentHashMapV8<K, V> m;
2325 dl 1.84 Node<V>[] t; int b, i, n; Object ek; // must use locals
2326 dl 1.63 if ((t = tab) != null)
2327     n = t.length;
2328     else if ((m = map) != null && (t = tab = m.table) != null)
2329     n = baseLimit = baseSize = t.length;
2330     else
2331 dl 1.14 break outer;
2332 dl 1.63 if ((b = baseIndex) >= baseLimit ||
2333     (i = index) < 0 || i >= n)
2334     break outer;
2335 dl 1.82 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2336 dl 1.38 if ((ek = e.key) instanceof TreeBin)
2337 dl 1.84 e = ((TreeBin<V>)ek).first;
2338 dl 1.38 else {
2339 dl 1.84 tab = (Node<V>[])ek;
2340 dl 1.38 continue; // restarts due to null val
2341     }
2342     } // visit upper slots if present
2343     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2344 dl 1.1 }
2345 dl 1.14 nextKey = e.key;
2346 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2347 dl 1.14 next = e;
2348 dl 1.41 return nextVal = ev;
2349 dl 1.1 }
2350 dl 1.41
2351     public final void remove() {
2352 dl 1.70 Object k = nextKey;
2353     if (k == null && (advance() == null || (k = nextKey) == null))
2354 dl 1.41 throw new IllegalStateException();
2355 dl 1.70 map.internalReplace(k, null, null);
2356 dl 1.41 }
2357    
2358     public final boolean hasNext() {
2359     return nextVal != null || advance() != null;
2360     }
2361    
2362     public final boolean hasMoreElements() { return hasNext(); }
2363 dl 1.79
2364     public void compute() { } // default no-op CountedCompleter body
2365    
2366     /**
2367     * Returns a batch value > 0 if this task should (and must) be
2368     * split, if so, adding to pending count, and in any case
2369     * updating batch value. The initial batch value is approx
2370     * exp2 of the number of times (minus one) to split task by
2371     * two before executing leaf action. This value is faster to
2372     * compute and more convenient to use as a guide to splitting
2373     * than is the depth, since it is used while dividing by two
2374     * anyway.
2375     */
2376     final int preSplit() {
2377 dl 1.84 ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t; ForkJoinPool pool;
2378 dl 1.79 if ((b = batch) < 0 && (m = map) != null) { // force initialization
2379     if ((t = tab) == null && (t = tab = m.table) != null)
2380     baseLimit = baseSize = t.length;
2381     if (t != null) {
2382 dl 1.82 long n = m.sumCount();
2383 dl 1.79 int par = ((pool = getPool()) == null) ?
2384     ForkJoinPool.getCommonPoolParallelism() :
2385     pool.getParallelism();
2386     int sp = par << 3; // slack of 8
2387     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2388     }
2389     }
2390 jsr166 1.80 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2391 dl 1.79 if ((batch = b) > 0)
2392     addToPendingCount(1);
2393     return b;
2394     }
2395    
2396 dl 1.1 }
2397    
2398     /* ---------------- Public operations -------------- */
2399    
2400     /**
2401 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2402 dl 1.1 */
2403 dl 1.16 public ConcurrentHashMapV8() {
2404 dl 1.1 }
2405    
2406     /**
2407 dl 1.16 * Creates a new, empty map with an initial table size
2408     * accommodating the specified number of elements without the need
2409     * to dynamically resize.
2410 dl 1.1 *
2411     * @param initialCapacity The implementation performs internal
2412     * sizing to accommodate this many elements.
2413     * @throws IllegalArgumentException if the initial capacity of
2414 jsr166 1.18 * elements is negative
2415 dl 1.1 */
2416 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2417     if (initialCapacity < 0)
2418     throw new IllegalArgumentException();
2419     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2420     MAXIMUM_CAPACITY :
2421     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2422 dl 1.24 this.sizeCtl = cap;
2423 dl 1.1 }
2424    
2425     /**
2426 dl 1.16 * Creates a new map with the same mappings as the given map.
2427 dl 1.1 *
2428 dl 1.16 * @param m the map
2429 dl 1.1 */
2430 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2431 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2432 dl 1.27 internalPutAll(m);
2433 dl 1.1 }
2434    
2435     /**
2436 dl 1.16 * Creates a new, empty map with an initial table size based on
2437     * the given number of elements ({@code initialCapacity}) and
2438     * initial table density ({@code loadFactor}).
2439     *
2440     * @param initialCapacity the initial capacity. The implementation
2441     * performs internal sizing to accommodate this many elements,
2442     * given the specified load factor.
2443     * @param loadFactor the load factor (table density) for
2444 jsr166 1.18 * establishing the initial table size
2445 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2446     * elements is negative or the load factor is nonpositive
2447 jsr166 1.22 *
2448     * @since 1.6
2449 dl 1.1 */
2450 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2451     this(initialCapacity, loadFactor, 1);
2452 dl 1.1 }
2453    
2454     /**
2455 dl 1.16 * Creates a new, empty map with an initial table size based on
2456     * the given number of elements ({@code initialCapacity}), table
2457     * density ({@code loadFactor}), and number of concurrently
2458     * updating threads ({@code concurrencyLevel}).
2459 dl 1.1 *
2460 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2461     * performs internal sizing to accommodate this many elements,
2462     * given the specified load factor.
2463     * @param loadFactor the load factor (table density) for
2464 jsr166 1.18 * establishing the initial table size
2465 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2466     * updating threads. The implementation may use this value as
2467     * a sizing hint.
2468     * @throws IllegalArgumentException if the initial capacity is
2469     * negative or the load factor or concurrencyLevel are
2470 jsr166 1.18 * nonpositive
2471 dl 1.1 */
2472 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2473     float loadFactor, int concurrencyLevel) {
2474     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2475     throw new IllegalArgumentException();
2476     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2477     initialCapacity = concurrencyLevel; // as estimated threads
2478     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2479 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2480     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2481 dl 1.24 this.sizeCtl = cap;
2482 dl 1.1 }
2483    
2484     /**
2485 dl 1.70 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2486     * from the given type to {@code Boolean.TRUE}.
2487     *
2488     * @return the new set
2489     */
2490     public static <K> KeySetView<K,Boolean> newKeySet() {
2491     return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2492     Boolean.TRUE);
2493     }
2494    
2495     /**
2496     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2497     * from the given type to {@code Boolean.TRUE}.
2498     *
2499     * @param initialCapacity The implementation performs internal
2500     * sizing to accommodate this many elements.
2501     * @throws IllegalArgumentException if the initial capacity of
2502     * elements is negative
2503     * @return the new set
2504     */
2505     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2506 dl 1.82 return new KeySetView<K,Boolean>
2507     (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2508 dl 1.70 }
2509    
2510     /**
2511 dl 1.14 * {@inheritDoc}
2512 dl 1.1 */
2513     public boolean isEmpty() {
2514 dl 1.82 return sumCount() <= 0L; // ignore transient negative values
2515 dl 1.1 }
2516    
2517     /**
2518 dl 1.14 * {@inheritDoc}
2519 dl 1.1 */
2520     public int size() {
2521 dl 1.82 long n = sumCount();
2522 jsr166 1.15 return ((n < 0L) ? 0 :
2523     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2524 dl 1.14 (int)n);
2525 dl 1.1 }
2526    
2527 dl 1.52 /**
2528     * Returns the number of mappings. This method should be used
2529 dl 1.70 * instead of {@link #size} because a ConcurrentHashMapV8 may
2530 dl 1.52 * contain more mappings than can be represented as an int. The
2531 dl 1.79 * value returned is an estimate; the actual count may differ if
2532     * there are concurrent insertions or removals.
2533 dl 1.52 *
2534     * @return the number of mappings
2535     */
2536     public long mappingCount() {
2537 dl 1.82 long n = sumCount();
2538 dl 1.59 return (n < 0L) ? 0L : n; // ignore transient negative values
2539 dl 1.24 }
2540    
2541 dl 1.1 /**
2542     * Returns the value to which the specified key is mapped,
2543     * or {@code null} if this map contains no mapping for the key.
2544     *
2545     * <p>More formally, if this map contains a mapping from a key
2546     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2547     * then this method returns {@code v}; otherwise it returns
2548     * {@code null}. (There can be at most one such mapping.)
2549     *
2550     * @throws NullPointerException if the specified key is null
2551     */
2552 dl 1.82 public V get(Object key) {
2553     return internalGet(key);
2554 dl 1.1 }
2555    
2556     /**
2557 dl 1.62 * Returns the value to which the specified key is mapped,
2558 jsr166 1.66 * or the given defaultValue if this map contains no mapping for the key.
2559 dl 1.62 *
2560     * @param key the key
2561     * @param defaultValue the value to return if this map contains
2562 jsr166 1.67 * no mapping for the given key
2563 dl 1.62 * @return the mapping for the key, if present; else the defaultValue
2564     * @throws NullPointerException if the specified key is null
2565     */
2566 dl 1.82 public V getValueOrDefault(Object key, V defaultValue) {
2567     V v;
2568     return (v = internalGet(key)) == null ? defaultValue : v;
2569 dl 1.62 }
2570    
2571     /**
2572 dl 1.1 * Tests if the specified object is a key in this table.
2573     *
2574     * @param key possible key
2575     * @return {@code true} if and only if the specified object
2576     * is a key in this table, as determined by the
2577 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2578 dl 1.1 * @throws NullPointerException if the specified key is null
2579     */
2580     public boolean containsKey(Object key) {
2581     return internalGet(key) != null;
2582     }
2583    
2584     /**
2585     * Returns {@code true} if this map maps one or more keys to the
2586 dl 1.14 * specified value. Note: This method may require a full traversal
2587     * of the map, and is much slower than method {@code containsKey}.
2588 dl 1.1 *
2589     * @param value value whose presence in this map is to be tested
2590     * @return {@code true} if this map maps one or more keys to the
2591     * specified value
2592     * @throws NullPointerException if the specified value is null
2593     */
2594     public boolean containsValue(Object value) {
2595     if (value == null)
2596     throw new NullPointerException();
2597 dl 1.84 V v;
2598 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2599 dl 1.41 while ((v = it.advance()) != null) {
2600     if (v == value || value.equals(v))
2601 dl 1.14 return true;
2602     }
2603     return false;
2604 dl 1.1 }
2605    
2606     /**
2607     * Legacy method testing if some key maps into the specified value
2608     * in this table. This method is identical in functionality to
2609     * {@link #containsValue}, and exists solely to ensure
2610     * full compatibility with class {@link java.util.Hashtable},
2611     * which supported this method prior to introduction of the
2612     * Java Collections framework.
2613     *
2614     * @param value a value to search for
2615     * @return {@code true} if and only if some key maps to the
2616     * {@code value} argument in this table as
2617     * determined by the {@code equals} method;
2618     * {@code false} otherwise
2619     * @throws NullPointerException if the specified value is null
2620     */
2621 dl 1.84 @Deprecated public boolean contains(Object value) {
2622 dl 1.1 return containsValue(value);
2623     }
2624    
2625     /**
2626     * Maps the specified key to the specified value in this table.
2627     * Neither the key nor the value can be null.
2628     *
2629 jsr166 1.78 * <p>The value can be retrieved by calling the {@code get} method
2630 dl 1.1 * with a key that is equal to the original key.
2631     *
2632     * @param key key with which the specified value is to be associated
2633     * @param value value to be associated with the specified key
2634     * @return the previous value associated with {@code key}, or
2635     * {@code null} if there was no mapping for {@code key}
2636     * @throws NullPointerException if the specified key or value is null
2637     */
2638 dl 1.82 public V put(K key, V value) {
2639     return internalPut(key, value, false);
2640 dl 1.1 }
2641    
2642     /**
2643     * {@inheritDoc}
2644     *
2645     * @return the previous value associated with the specified key,
2646     * or {@code null} if there was no mapping for the key
2647     * @throws NullPointerException if the specified key or value is null
2648     */
2649 dl 1.82 public V putIfAbsent(K key, V value) {
2650     return internalPut(key, value, true);
2651 dl 1.1 }
2652    
2653     /**
2654     * Copies all of the mappings from the specified map to this one.
2655     * These mappings replace any mappings that this map had for any of the
2656     * keys currently in the specified map.
2657     *
2658     * @param m mappings to be stored in this map
2659     */
2660     public void putAll(Map<? extends K, ? extends V> m) {
2661 dl 1.27 internalPutAll(m);
2662 dl 1.1 }
2663    
2664     /**
2665     * If the specified key is not already associated with a value,
2666 dl 1.41 * computes its value using the given mappingFunction and enters
2667     * it into the map unless null. This is equivalent to
2668 dl 1.27 * <pre> {@code
2669 jsr166 1.13 * if (map.containsKey(key))
2670     * return map.get(key);
2671 dl 1.52 * value = mappingFunction.apply(key);
2672 dl 1.41 * if (value != null)
2673     * map.put(key, value);
2674 jsr166 1.13 * return value;}</pre>
2675 dl 1.1 *
2676 dl 1.27 * except that the action is performed atomically. If the
2677 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2678     * function itself throws an (unchecked) exception, the exception
2679     * is rethrown to its caller, and no mapping is recorded. Some
2680     * attempted update operations on this map by other threads may be
2681     * blocked while computation is in progress, so the computation
2682     * should be short and simple, and must not attempt to update any
2683     * other mappings of this Map. The most appropriate usage is to
2684     * construct a new object serving as an initial mapped value, or
2685     * memoized result, as in:
2686 dl 1.27 *
2687 jsr166 1.13 * <pre> {@code
2688 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2689 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2690 dl 1.1 *
2691     * @param key key with which the specified value is to be associated
2692     * @param mappingFunction the function to compute a value
2693     * @return the current (existing or computed) value associated with
2694 jsr166 1.67 * the specified key, or null if the computed value is null
2695 dl 1.41 * @throws NullPointerException if the specified key or mappingFunction
2696     * is null
2697 dl 1.5 * @throws IllegalStateException if the computation detectably
2698     * attempts a recursive update to this map that would
2699 jsr166 1.18 * otherwise never complete
2700 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2701 jsr166 1.18 * in which case the mapping is left unestablished
2702 dl 1.1 */
2703 dl 1.82 public V computeIfAbsent
2704 dl 1.61 (K key, Fun<? super K, ? extends V> mappingFunction) {
2705 dl 1.82 return internalComputeIfAbsent(key, mappingFunction);
2706 dl 1.2 }
2707    
2708     /**
2709 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2710     * its current mapped value. This is equivalent to
2711     * <pre> {@code
2712     * if (map.containsKey(key)) {
2713     * value = remappingFunction.apply(key, map.get(key));
2714     * if (value != null)
2715     * map.put(key, value);
2716     * else
2717     * map.remove(key);
2718     * }
2719     * }</pre>
2720     *
2721     * except that the action is performed atomically. If the
2722     * function returns {@code null}, the mapping is removed. If the
2723     * function itself throws an (unchecked) exception, the exception
2724     * is rethrown to its caller, and the current mapping is left
2725     * unchanged. Some attempted update operations on this map by
2726     * other threads may be blocked while computation is in progress,
2727     * so the computation should be short and simple, and must not
2728     * attempt to update any other mappings of this Map. For example,
2729     * to either create or append new messages to a value mapping:
2730     *
2731     * @param key key with which the specified value is to be associated
2732     * @param remappingFunction the function to compute a value
2733 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2734 dl 1.52 * @throws NullPointerException if the specified key or remappingFunction
2735     * is null
2736     * @throws IllegalStateException if the computation detectably
2737     * attempts a recursive update to this map that would
2738     * otherwise never complete
2739     * @throws RuntimeException or Error if the remappingFunction does so,
2740     * in which case the mapping is unchanged
2741     */
2742 dl 1.82 public V computeIfPresent
2743 dl 1.61 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2744 dl 1.82 return internalCompute(key, true, remappingFunction);
2745 dl 1.52 }
2746    
2747     /**
2748 dl 1.41 * Computes a new mapping value given a key and
2749 dl 1.27 * its current mapped value (or {@code null} if there is no current
2750     * mapping). This is equivalent to
2751 jsr166 1.13 * <pre> {@code
2752 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2753 dl 1.41 * if (value != null)
2754     * map.put(key, value);
2755     * else
2756     * map.remove(key);
2757 dl 1.27 * }</pre>
2758 dl 1.2 *
2759 dl 1.27 * except that the action is performed atomically. If the
2760 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2761     * function itself throws an (unchecked) exception, the exception
2762     * is rethrown to its caller, and the current mapping is left
2763     * unchanged. Some attempted update operations on this map by
2764     * other threads may be blocked while computation is in progress,
2765     * so the computation should be short and simple, and must not
2766     * attempt to update any other mappings of this Map. For example,
2767     * to either create or append new messages to a value mapping:
2768 dl 1.27 *
2769     * <pre> {@code
2770     * Map<Key, String> map = ...;
2771     * final String msg = ...;
2772 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2773     * public String apply(Key k, String v) {
2774 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2775 dl 1.2 *
2776     * @param key key with which the specified value is to be associated
2777 dl 1.27 * @param remappingFunction the function to compute a value
2778 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2779 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2780 dl 1.41 * is null
2781 dl 1.5 * @throws IllegalStateException if the computation detectably
2782     * attempts a recursive update to this map that would
2783 jsr166 1.18 * otherwise never complete
2784 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2785 jsr166 1.18 * in which case the mapping is unchanged
2786 dl 1.2 */
2787 dl 1.82 public V compute
2788 dl 1.61 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2789 dl 1.82 return internalCompute(key, false, remappingFunction);
2790 dl 1.52 }
2791    
2792     /**
2793     * If the specified key is not already associated
2794     * with a value, associate it with the given value.
2795     * Otherwise, replace the value with the results of
2796     * the given remapping function. This is equivalent to:
2797     * <pre> {@code
2798     * if (!map.containsKey(key))
2799     * map.put(value);
2800     * else {
2801     * newValue = remappingFunction.apply(map.get(key), value);
2802     * if (value != null)
2803     * map.put(key, value);
2804     * else
2805     * map.remove(key);
2806     * }
2807     * }</pre>
2808     * except that the action is performed atomically. If the
2809     * function returns {@code null}, the mapping is removed. If the
2810     * function itself throws an (unchecked) exception, the exception
2811     * is rethrown to its caller, and the current mapping is left
2812     * unchanged. Some attempted update operations on this map by
2813     * other threads may be blocked while computation is in progress,
2814     * so the computation should be short and simple, and must not
2815     * attempt to update any other mappings of this Map.
2816     */
2817 dl 1.82 public V merge
2818     (K key, V value,
2819     BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2820     return internalMerge(key, value, remappingFunction);
2821 dl 1.1 }
2822    
2823     /**
2824     * Removes the key (and its corresponding value) from this map.
2825     * This method does nothing if the key is not in the map.
2826     *
2827     * @param key the key that needs to be removed
2828     * @return the previous value associated with {@code key}, or
2829     * {@code null} if there was no mapping for {@code key}
2830     * @throws NullPointerException if the specified key is null
2831     */
2832 dl 1.82 public V remove(Object key) {
2833     return internalReplace(key, null, null);
2834 dl 1.1 }
2835    
2836     /**
2837     * {@inheritDoc}
2838     *
2839     * @throws NullPointerException if the specified key is null
2840     */
2841     public boolean remove(Object key, Object value) {
2842 dl 1.82 return value != null && internalReplace(key, null, value) != null;
2843 dl 1.1 }
2844    
2845     /**
2846     * {@inheritDoc}
2847     *
2848     * @throws NullPointerException if any of the arguments are null
2849     */
2850     public boolean replace(K key, V oldValue, V newValue) {
2851     if (key == null || oldValue == null || newValue == null)
2852     throw new NullPointerException();
2853 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
2854 dl 1.1 }
2855    
2856     /**
2857     * {@inheritDoc}
2858     *
2859     * @return the previous value associated with the specified key,
2860     * or {@code null} if there was no mapping for the key
2861     * @throws NullPointerException if the specified key or value is null
2862     */
2863 dl 1.82 public V replace(K key, V value) {
2864 dl 1.1 if (key == null || value == null)
2865     throw new NullPointerException();
2866 dl 1.82 return internalReplace(key, value, null);
2867 dl 1.1 }
2868    
2869     /**
2870     * Removes all of the mappings from this map.
2871     */
2872     public void clear() {
2873     internalClear();
2874     }
2875    
2876     /**
2877     * Returns a {@link Set} view of the keys contained in this map.
2878     * The set is backed by the map, so changes to the map are
2879 dl 1.70 * reflected in the set, and vice-versa.
2880     *
2881     * @return the set view
2882     */
2883     public KeySetView<K,V> keySet() {
2884     KeySetView<K,V> ks = keySet;
2885     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2886     }
2887    
2888     /**
2889     * Returns a {@link Set} view of the keys in this map, using the
2890     * given common mapped value for any additions (i.e., {@link
2891     * Collection#add} and {@link Collection#addAll}). This is of
2892     * course only appropriate if it is acceptable to use the same
2893     * value for all additions from this view.
2894 dl 1.1 *
2895 dl 1.70 * @param mappedValue the mapped value to use for any
2896     * additions.
2897     * @return the set view
2898     * @throws NullPointerException if the mappedValue is null
2899 dl 1.1 */
2900 dl 1.70 public KeySetView<K,V> keySet(V mappedValue) {
2901     if (mappedValue == null)
2902     throw new NullPointerException();
2903     return new KeySetView<K,V>(this, mappedValue);
2904 dl 1.1 }
2905    
2906     /**
2907     * Returns a {@link Collection} view of the values contained in this map.
2908     * The collection is backed by the map, so changes to the map are
2909 jsr166 1.76 * reflected in the collection, and vice-versa.
2910 dl 1.1 */
2911 dl 1.75 public ValuesView<K,V> values() {
2912     ValuesView<K,V> vs = values;
2913     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2914 dl 1.1 }
2915    
2916     /**
2917     * Returns a {@link Set} view of the mappings contained in this map.
2918     * The set is backed by the map, so changes to the map are
2919     * reflected in the set, and vice-versa. The set supports element
2920     * removal, which removes the corresponding mapping from the map,
2921     * via the {@code Iterator.remove}, {@code Set.remove},
2922     * {@code removeAll}, {@code retainAll}, and {@code clear}
2923     * operations. It does not support the {@code add} or
2924     * {@code addAll} operations.
2925     *
2926     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2927     * that will never throw {@link ConcurrentModificationException},
2928     * and guarantees to traverse elements as they existed upon
2929     * construction of the iterator, and may (but is not guaranteed to)
2930     * reflect any modifications subsequent to construction.
2931     */
2932     public Set<Map.Entry<K,V>> entrySet() {
2933 dl 1.75 EntrySetView<K,V> es = entrySet;
2934     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2935 dl 1.1 }
2936    
2937     /**
2938     * Returns an enumeration of the keys in this table.
2939     *
2940     * @return an enumeration of the keys in this table
2941     * @see #keySet()
2942     */
2943     public Enumeration<K> keys() {
2944 dl 1.14 return new KeyIterator<K,V>(this);
2945 dl 1.1 }
2946    
2947     /**
2948     * Returns an enumeration of the values in this table.
2949     *
2950     * @return an enumeration of the values in this table
2951     * @see #values()
2952     */
2953     public Enumeration<V> elements() {
2954 dl 1.14 return new ValueIterator<K,V>(this);
2955 dl 1.1 }
2956    
2957     /**
2958 jsr166 1.55 * Returns a partitionable iterator of the keys in this map.
2959 dl 1.41 *
2960 jsr166 1.55 * @return a partitionable iterator of the keys in this map
2961 dl 1.41 */
2962     public Spliterator<K> keySpliterator() {
2963     return new KeyIterator<K,V>(this);
2964     }
2965    
2966     /**
2967 jsr166 1.55 * Returns a partitionable iterator of the values in this map.
2968 dl 1.41 *
2969 jsr166 1.55 * @return a partitionable iterator of the values in this map
2970 dl 1.41 */
2971     public Spliterator<V> valueSpliterator() {
2972     return new ValueIterator<K,V>(this);
2973     }
2974    
2975     /**
2976 jsr166 1.55 * Returns a partitionable iterator of the entries in this map.
2977 dl 1.41 *
2978 jsr166 1.55 * @return a partitionable iterator of the entries in this map
2979 dl 1.41 */
2980     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2981     return new EntryIterator<K,V>(this);
2982     }
2983    
2984     /**
2985 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
2986     * the sum of, for each key-value pair in the map,
2987     * {@code key.hashCode() ^ value.hashCode()}.
2988     *
2989     * @return the hash code value for this map
2990 dl 1.1 */
2991     public int hashCode() {
2992 dl 1.14 int h = 0;
2993 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2994 dl 1.84 V v;
2995 dl 1.41 while ((v = it.advance()) != null) {
2996     h += it.nextKey.hashCode() ^ v.hashCode();
2997 dl 1.14 }
2998     return h;
2999 dl 1.1 }
3000    
3001     /**
3002 dl 1.2 * Returns a string representation of this map. The string
3003     * representation consists of a list of key-value mappings (in no
3004     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3005     * mappings are separated by the characters {@code ", "} (comma
3006     * and space). Each key-value mapping is rendered as the key
3007     * followed by an equals sign ("{@code =}") followed by the
3008     * associated value.
3009     *
3010     * @return a string representation of this map
3011 dl 1.1 */
3012     public String toString() {
3013 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3014 dl 1.14 StringBuilder sb = new StringBuilder();
3015     sb.append('{');
3016 dl 1.84 V v;
3017 dl 1.41 if ((v = it.advance()) != null) {
3018 dl 1.14 for (;;) {
3019 dl 1.41 Object k = it.nextKey;
3020 dl 1.14 sb.append(k == this ? "(this Map)" : k);
3021     sb.append('=');
3022     sb.append(v == this ? "(this Map)" : v);
3023 dl 1.41 if ((v = it.advance()) == null)
3024 dl 1.14 break;
3025     sb.append(',').append(' ');
3026     }
3027     }
3028     return sb.append('}').toString();
3029 dl 1.1 }
3030    
3031     /**
3032 dl 1.2 * Compares the specified object with this map for equality.
3033     * Returns {@code true} if the given object is a map with the same
3034     * mappings as this map. This operation may return misleading
3035     * results if either map is concurrently modified during execution
3036     * of this method.
3037     *
3038     * @param o object to be compared for equality with this map
3039     * @return {@code true} if the specified object is equal to this map
3040 dl 1.1 */
3041     public boolean equals(Object o) {
3042 dl 1.14 if (o != this) {
3043     if (!(o instanceof Map))
3044     return false;
3045     Map<?,?> m = (Map<?,?>) o;
3046 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3047 dl 1.84 V val;
3048 dl 1.41 while ((val = it.advance()) != null) {
3049 dl 1.14 Object v = m.get(it.nextKey);
3050     if (v == null || (v != val && !v.equals(val)))
3051 dl 1.1 return false;
3052 dl 1.14 }
3053 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
3054 dl 1.14 Object mk, mv, v;
3055     if ((mk = e.getKey()) == null ||
3056     (mv = e.getValue()) == null ||
3057     (v = internalGet(mk)) == null ||
3058     (mv != v && !mv.equals(v)))
3059 dl 1.1 return false;
3060     }
3061 dl 1.14 }
3062     return true;
3063     }
3064    
3065     /* ----------------Iterators -------------- */
3066    
3067 dl 1.82 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3068     extends Traverser<K,V,Object>
3069 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3070     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3071 dl 1.79 KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3072     super(map, it, -1);
3073 dl 1.41 }
3074     public KeyIterator<K,V> split() {
3075 dl 1.70 if (nextKey != null)
3076 dl 1.41 throw new IllegalStateException();
3077 dl 1.79 return new KeyIterator<K,V>(map, this);
3078 dl 1.14 }
3079 dl 1.61 @SuppressWarnings("unchecked") public final K next() {
3080 dl 1.41 if (nextVal == null && advance() == null)
3081 dl 1.14 throw new NoSuchElementException();
3082     Object k = nextKey;
3083 dl 1.41 nextVal = null;
3084     return (K) k;
3085 dl 1.14 }
3086    
3087     public final K nextElement() { return next(); }
3088     }
3089    
3090 dl 1.82 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3091     extends Traverser<K,V,Object>
3092 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3093 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3094 dl 1.79 ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3095     super(map, it, -1);
3096 dl 1.41 }
3097     public ValueIterator<K,V> split() {
3098 dl 1.70 if (nextKey != null)
3099 dl 1.41 throw new IllegalStateException();
3100 dl 1.79 return new ValueIterator<K,V>(map, this);
3101 dl 1.41 }
3102    
3103 dl 1.84 public final V next() {
3104     V v;
3105 dl 1.41 if ((v = nextVal) == null && (v = advance()) == null)
3106 dl 1.14 throw new NoSuchElementException();
3107 dl 1.41 nextVal = null;
3108 dl 1.84 return v;
3109 dl 1.14 }
3110    
3111     public final V nextElement() { return next(); }
3112     }
3113    
3114 dl 1.82 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3115     extends Traverser<K,V,Object>
3116 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3117 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3118 dl 1.79 EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3119     super(map, it, -1);
3120 dl 1.41 }
3121     public EntryIterator<K,V> split() {
3122 dl 1.70 if (nextKey != null)
3123 dl 1.41 throw new IllegalStateException();
3124 dl 1.79 return new EntryIterator<K,V>(map, this);
3125 dl 1.41 }
3126 dl 1.24
3127 dl 1.61 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3128 dl 1.84 V v;
3129 dl 1.41 if ((v = nextVal) == null && (v = advance()) == null)
3130 dl 1.24 throw new NoSuchElementException();
3131     Object k = nextKey;
3132 dl 1.41 nextVal = null;
3133 dl 1.84 return new MapEntry<K,V>((K)k, v, map);
3134 dl 1.1 }
3135     }
3136    
3137     /**
3138 dl 1.41 * Exported Entry for iterators
3139 dl 1.1 */
3140 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3141 dl 1.14 final K key; // non-null
3142     V val; // non-null
3143 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3144     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3145     this.key = key;
3146     this.val = val;
3147     this.map = map;
3148     }
3149 dl 1.14 public final K getKey() { return key; }
3150     public final V getValue() { return val; }
3151     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3152     public final String toString(){ return key + "=" + val; }
3153    
3154     public final boolean equals(Object o) {
3155     Object k, v; Map.Entry<?,?> e;
3156     return ((o instanceof Map.Entry) &&
3157     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3158     (v = e.getValue()) != null &&
3159     (k == key || k.equals(key)) &&
3160     (v == val || v.equals(val)));
3161 dl 1.1 }
3162    
3163     /**
3164     * Sets our entry's value and writes through to the map. The
3165 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3166     * necessarily track asynchronous changes, the most recent
3167 dl 1.41 * "previous" value could be different from what we return (or
3168     * could even have been removed in which case the put will
3169     * re-establish). We do not and cannot guarantee more.
3170 dl 1.1 */
3171 dl 1.14 public final V setValue(V value) {
3172 dl 1.1 if (value == null) throw new NullPointerException();
3173 dl 1.14 V v = val;
3174     val = value;
3175     map.put(key, value);
3176 dl 1.1 return v;
3177     }
3178     }
3179    
3180 dl 1.79 /**
3181     * Returns exportable snapshot entry for the given key and value
3182     * when write-through can't or shouldn't be used.
3183     */
3184     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3185     return new AbstractMap.SimpleEntry<K,V>(k, v);
3186     }
3187    
3188 dl 1.75 /* ---------------- Serialization Support -------------- */
3189 dl 1.1
3190 dl 1.24 /**
3191 dl 1.75 * Stripped-down version of helper class used in previous version,
3192     * declared for the sake of serialization compatibility
3193 dl 1.14 */
3194 dl 1.75 static class Segment<K,V> implements Serializable {
3195     private static final long serialVersionUID = 2249069246763182397L;
3196     final float loadFactor;
3197     Segment(float lf) { this.loadFactor = lf; }
3198     }
3199 dl 1.24
3200 dl 1.75 /**
3201     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3202     * stream (i.e., serializes it).
3203     * @param s the stream
3204     * @serialData
3205     * the key (Object) and value (Object)
3206     * for each key-value mapping, followed by a null pair.
3207     * The key-value mappings are emitted in no particular order.
3208     */
3209 dl 1.82 @SuppressWarnings("unchecked") private void writeObject
3210     (java.io.ObjectOutputStream s)
3211 dl 1.75 throws java.io.IOException {
3212     if (segments == null) { // for serialization compatibility
3213     segments = (Segment<K,V>[])
3214     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3215     for (int i = 0; i < segments.length; ++i)
3216     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3217     }
3218     s.defaultWriteObject();
3219     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3220 dl 1.84 V v;
3221 dl 1.75 while ((v = it.advance()) != null) {
3222     s.writeObject(it.nextKey);
3223     s.writeObject(v);
3224     }
3225     s.writeObject(null);
3226     s.writeObject(null);
3227     segments = null; // throw away
3228     }
3229 dl 1.24
3230 dl 1.75 /**
3231     * Reconstitutes the instance from a stream (that is, deserializes it).
3232     * @param s the stream
3233     */
3234 dl 1.82 @SuppressWarnings("unchecked") private void readObject
3235     (java.io.ObjectInputStream s)
3236 dl 1.75 throws java.io.IOException, ClassNotFoundException {
3237     s.defaultReadObject();
3238     this.segments = null; // unneeded
3239 dl 1.24
3240 dl 1.75 // Create all nodes, then place in table once size is known
3241     long size = 0L;
3242 dl 1.84 Node<V> p = null;
3243 dl 1.75 for (;;) {
3244     K k = (K) s.readObject();
3245     V v = (V) s.readObject();
3246     if (k != null && v != null) {
3247     int h = spread(k.hashCode());
3248 dl 1.84 p = new Node<V>(h, k, v, p);
3249 dl 1.75 ++size;
3250 dl 1.24 }
3251 dl 1.75 else
3252     break;
3253 dl 1.24 }
3254 dl 1.75 if (p != null) {
3255     boolean init = false;
3256     int n;
3257     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3258     n = MAXIMUM_CAPACITY;
3259     else {
3260     int sz = (int)size;
3261     n = tableSizeFor(sz + (sz >>> 1) + 1);
3262     }
3263     int sc = sizeCtl;
3264     boolean collide = false;
3265     if (n > sc &&
3266 dl 1.82 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3267 dl 1.75 try {
3268     if (table == null) {
3269     init = true;
3270 dl 1.84 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3271     Node<V>[] tab = (Node<V>[])rt;
3272 dl 1.75 int mask = n - 1;
3273     while (p != null) {
3274     int j = p.hash & mask;
3275 dl 1.84 Node<V> next = p.next;
3276     Node<V> q = p.next = tabAt(tab, j);
3277 dl 1.75 setTabAt(tab, j, p);
3278     if (!collide && q != null && q.hash == p.hash)
3279     collide = true;
3280     p = next;
3281     }
3282     table = tab;
3283 dl 1.82 addCount(size, -1);
3284 dl 1.75 sc = n - (n >>> 2);
3285     }
3286     } finally {
3287     sizeCtl = sc;
3288     }
3289     if (collide) { // rescan and convert to TreeBins
3290 dl 1.84 Node<V>[] tab = table;
3291 dl 1.75 for (int i = 0; i < tab.length; ++i) {
3292     int c = 0;
3293 dl 1.84 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3294 dl 1.75 if (++c > TREE_THRESHOLD &&
3295     (e.key instanceof Comparable)) {
3296     replaceWithTreeBin(tab, i, e.key);
3297     break;
3298     }
3299     }
3300     }
3301 dl 1.24 }
3302     }
3303 dl 1.75 if (!init) { // Can only happen if unsafely published.
3304     while (p != null) {
3305 dl 1.84 internalPut((K)p.key, p.val, false);
3306 dl 1.75 p = p.next;
3307     }
3308 dl 1.24 }
3309     }
3310 dl 1.75 }
3311    
3312     // -------------------------------------------------------
3313 dl 1.24
3314 dl 1.75 // Sams
3315     /** Interface describing a void action of one argument */
3316     public interface Action<A> { void apply(A a); }
3317 dl 1.52 /** Interface describing a void action of two arguments */
3318     public interface BiAction<A,B> { void apply(A a, B b); }
3319     /** Interface describing a function of one argument */
3320     public interface Fun<A,T> { T apply(A a); }
3321     /** Interface describing a function of two arguments */
3322     public interface BiFun<A,B,T> { T apply(A a, B b); }
3323     /** Interface describing a function of no arguments */
3324     public interface Generator<T> { T apply(); }
3325     /** Interface describing a function mapping its argument to a double */
3326     public interface ObjectToDouble<A> { double apply(A a); }
3327     /** Interface describing a function mapping its argument to a long */
3328     public interface ObjectToLong<A> { long apply(A a); }
3329     /** Interface describing a function mapping its argument to an int */
3330     public interface ObjectToInt<A> {int apply(A a); }
3331     /** Interface describing a function mapping two arguments to a double */
3332     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3333     /** Interface describing a function mapping two arguments to a long */
3334     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3335     /** Interface describing a function mapping two arguments to an int */
3336     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3337     /** Interface describing a function mapping a double to a double */
3338     public interface DoubleToDouble { double apply(double a); }
3339     /** Interface describing a function mapping a long to a long */
3340     public interface LongToLong { long apply(long a); }
3341     /** Interface describing a function mapping an int to an int */
3342     public interface IntToInt { int apply(int a); }
3343     /** Interface describing a function mapping two doubles to a double */
3344     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3345     /** Interface describing a function mapping two longs to a long */
3346     public interface LongByLongToLong { long apply(long a, long b); }
3347     /** Interface describing a function mapping two ints to an int */
3348     public interface IntByIntToInt { int apply(int a, int b); }
3349    
3350    
3351     // -------------------------------------------------------
3352    
3353 dl 1.84 // Sequential bulk operations
3354    
3355 dl 1.52 /**
3356 dl 1.70 * Performs the given action for each (key, value).
3357 dl 1.52 *
3358 dl 1.70 * @param action the action
3359 dl 1.52 */
3360 dl 1.84 @SuppressWarnings("unchecked") public void forEachSequentially
3361     (BiAction<K,V> action) {
3362     if (action == null) throw new NullPointerException();
3363     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3364     V v;
3365     while ((v = it.advance()) != null)
3366     action.apply((K)it.nextKey, v);
3367 dl 1.52 }
3368    
3369     /**
3370 dl 1.70 * Performs the given action for each non-null transformation
3371     * of each (key, value).
3372     *
3373     * @param transformer a function returning the transformation
3374     * for an element, or null of there is no transformation (in
3375     * which case the action is not applied).
3376     * @param action the action
3377 dl 1.52 */
3378 dl 1.84 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3379     (BiFun<? super K, ? super V, ? extends U> transformer,
3380     Action<U> action) {
3381     if (transformer == null || action == null)
3382     throw new NullPointerException();
3383     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3384     V v; U u;
3385     while ((v = it.advance()) != null) {
3386     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3387     action.apply(u);
3388     }
3389 dl 1.70 }
3390    
3391     /**
3392     * Returns a non-null result from applying the given search
3393 dl 1.84 * function on each (key, value), or null if none.
3394 dl 1.70 *
3395     * @param searchFunction a function returning a non-null
3396     * result on success, else null
3397     * @return a non-null result from applying the given search
3398     * function on each (key, value), or null if none
3399     */
3400 dl 1.84 @SuppressWarnings("unchecked") public <U> U searchSequentially
3401     (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3402     if (searchFunction == null) throw new NullPointerException();
3403     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3404     V v; U u;
3405     while ((v = it.advance()) != null) {
3406     if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3407     return u;
3408     }
3409     return null;
3410 dl 1.70 }
3411    
3412     /**
3413     * Returns the result of accumulating the given transformation
3414     * of all (key, value) pairs using the given reducer to
3415     * combine values, or null if none.
3416     *
3417     * @param transformer a function returning the transformation
3418     * for an element, or null of there is no transformation (in
3419     * which case it is not combined).
3420     * @param reducer a commutative associative combining function
3421     * @return the result of accumulating the given transformation
3422     * of all (key, value) pairs
3423     */
3424 dl 1.84 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3425     (BiFun<? super K, ? super V, ? extends U> transformer,
3426     BiFun<? super U, ? super U, ? extends U> reducer) {
3427     if (transformer == null || reducer == null)
3428     throw new NullPointerException();
3429     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3430     U r = null, u; V v;
3431     while ((v = it.advance()) != null) {
3432     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3433     r = (r == null) ? u : reducer.apply(r, u);
3434     }
3435     return r;
3436 dl 1.70 }
3437 dl 1.52
3438 dl 1.70 /**
3439     * Returns the result of accumulating the given transformation
3440     * of all (key, value) pairs using the given reducer to
3441     * combine values, and the given basis as an identity value.
3442     *
3443     * @param transformer a function returning the transformation
3444     * for an element
3445     * @param basis the identity (initial default value) for the reduction
3446     * @param reducer a commutative associative combining function
3447     * @return the result of accumulating the given transformation
3448     * of all (key, value) pairs
3449     */
3450 dl 1.84 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3451     (ObjectByObjectToDouble<? super K, ? super V> transformer,
3452     double basis,
3453     DoubleByDoubleToDouble reducer) {
3454     if (transformer == null || reducer == null)
3455     throw new NullPointerException();
3456     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3457     double r = basis; V v;
3458     while ((v = it.advance()) != null)
3459     r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3460     return r;
3461 dl 1.70 }
3462    
3463     /**
3464     * Returns the result of accumulating the given transformation
3465     * of all (key, value) pairs using the given reducer to
3466     * combine values, and the given basis as an identity value.
3467     *
3468     * @param transformer a function returning the transformation
3469     * for an element
3470     * @param basis the identity (initial default value) for the reduction
3471     * @param reducer a commutative associative combining function
3472     * @return the result of accumulating the given transformation
3473     * of all (key, value) pairs
3474     */
3475 dl 1.84 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3476     (ObjectByObjectToLong<? super K, ? super V> transformer,
3477     long basis,
3478     LongByLongToLong reducer) {
3479     if (transformer == null || reducer == null)
3480     throw new NullPointerException();
3481     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3482     long r = basis; V v;
3483     while ((v = it.advance()) != null)
3484     r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3485     return r;
3486 dl 1.70 }
3487    
3488     /**
3489     * Returns the result of accumulating the given transformation
3490     * of all (key, value) pairs using the given reducer to
3491     * combine values, and the given basis as an identity value.
3492     *
3493     * @param transformer a function returning the transformation
3494     * for an element
3495     * @param basis the identity (initial default value) for the reduction
3496     * @param reducer a commutative associative combining function
3497     * @return the result of accumulating the given transformation
3498     * of all (key, value) pairs
3499     */
3500 dl 1.84 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3501     (ObjectByObjectToInt<? super K, ? super V> transformer,
3502     int basis,
3503     IntByIntToInt reducer) {
3504     if (transformer == null || reducer == null)
3505     throw new NullPointerException();
3506     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3507     int r = basis; V v;
3508     while ((v = it.advance()) != null)
3509     r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3510     return r;
3511 dl 1.70 }
3512 dl 1.52
3513 dl 1.70 /**
3514     * Performs the given action for each key.
3515     *
3516     * @param action the action
3517     */
3518 dl 1.84 @SuppressWarnings("unchecked") public void forEachKeySequentially
3519     (Action<K> action) {
3520     if (action == null) throw new NullPointerException();
3521     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3522     while (it.advance() != null)
3523     action.apply((K)it.nextKey);
3524 dl 1.70 }
3525 dl 1.52
3526 dl 1.70 /**
3527     * Performs the given action for each non-null transformation
3528     * of each key.
3529     *
3530     * @param transformer a function returning the transformation
3531     * for an element, or null of there is no transformation (in
3532     * which case the action is not applied).
3533     * @param action the action
3534     */
3535 dl 1.84 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3536     (Fun<? super K, ? extends U> transformer,
3537     Action<U> action) {
3538     if (transformer == null || action == null)
3539     throw new NullPointerException();
3540     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3541     U u;
3542     while (it.advance() != null) {
3543     if ((u = transformer.apply((K)it.nextKey)) != null)
3544     action.apply(u);
3545     }
3546 dl 1.70 ForkJoinTasks.forEachKey
3547     (this, transformer, action).invoke();
3548     }
3549 dl 1.52
3550 dl 1.70 /**
3551 dl 1.71 * Returns a non-null result from applying the given search
3552 dl 1.84 * function on each key, or null if none.
3553 dl 1.71 *
3554     * @param searchFunction a function returning a non-null
3555     * result on success, else null
3556     * @return a non-null result from applying the given search
3557     * function on each key, or null if none
3558     */
3559 dl 1.84 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3560     (Fun<? super K, ? extends U> searchFunction) {
3561     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3562     U u;
3563     while (it.advance() != null) {
3564     if ((u = searchFunction.apply((K)it.nextKey)) != null)
3565     return u;
3566     }
3567     return null;
3568 dl 1.71 }
3569    
3570     /**
3571 dl 1.70 * Returns the result of accumulating all keys using the given
3572     * reducer to combine values, or null if none.
3573     *
3574     * @param reducer a commutative associative combining function
3575     * @return the result of accumulating all keys using the given
3576     * reducer to combine values, or null if none
3577     */
3578 dl 1.84 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3579     (BiFun<? super K, ? super K, ? extends K> reducer) {
3580     if (reducer == null) throw new NullPointerException();
3581     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3582     K r = null;
3583     while (it.advance() != null) {
3584     K u = (K)it.nextKey;
3585     r = (r == null) ? u : reducer.apply(r, u);
3586     }
3587     return r;
3588 dl 1.70 }
3589 dl 1.1
3590 dl 1.70 /**
3591     * Returns the result of accumulating the given transformation
3592     * of all keys using the given reducer to combine values, or
3593     * null if none.
3594     *
3595     * @param transformer a function returning the transformation
3596     * for an element, or null of there is no transformation (in
3597     * which case it is not combined).
3598     * @param reducer a commutative associative combining function
3599     * @return the result of accumulating the given transformation
3600     * of all keys
3601     */
3602 dl 1.84 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3603     (Fun<? super K, ? extends U> transformer,
3604     BiFun<? super U, ? super U, ? extends U> reducer) {
3605     if (transformer == null || reducer == null)
3606     throw new NullPointerException();
3607     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3608     U r = null, u;
3609     while (it.advance() != null) {
3610     if ((u = transformer.apply((K)it.nextKey)) != null)
3611     r = (r == null) ? u : reducer.apply(r, u);
3612     }
3613     return r;
3614 dl 1.70 }
3615 dl 1.1
3616 dl 1.70 /**
3617     * Returns the result of accumulating the given transformation
3618     * of all keys using the given reducer to combine values, and
3619     * the given basis as an identity value.
3620     *
3621     * @param transformer a function returning the transformation
3622     * for an element
3623     * @param basis the identity (initial default value) for the reduction
3624     * @param reducer a commutative associative combining function
3625     * @return the result of accumulating the given transformation
3626     * of all keys
3627     */
3628 dl 1.84 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3629     (ObjectToDouble<? super K> transformer,
3630     double basis,
3631     DoubleByDoubleToDouble reducer) {
3632     if (transformer == null || reducer == null)
3633     throw new NullPointerException();
3634     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3635     double r = basis;
3636     while (it.advance() != null)
3637     r = reducer.apply(r, transformer.apply((K)it.nextKey));
3638     return r;
3639 dl 1.70 }
3640 dl 1.52
3641 dl 1.70 /**
3642     * Returns the result of accumulating the given transformation
3643     * of all keys using the given reducer to combine values, and
3644     * the given basis as an identity value.
3645     *
3646     * @param transformer a function returning the transformation
3647     * for an element
3648     * @param basis the identity (initial default value) for the reduction
3649     * @param reducer a commutative associative combining function
3650     * @return the result of accumulating the given transformation
3651     * of all keys
3652     */
3653 dl 1.84 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3654     (ObjectToLong<? super K> transformer,
3655     long basis,
3656     LongByLongToLong reducer) {
3657     if (transformer == null || reducer == null)
3658     throw new NullPointerException();
3659     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3660     long r = basis;
3661     while (it.advance() != null)
3662     r = reducer.apply(r, transformer.apply((K)it.nextKey));
3663     return r;
3664 dl 1.70 }
3665 dl 1.52
3666 dl 1.70 /**
3667     * Returns the result of accumulating the given transformation
3668     * of all keys using the given reducer to combine values, and
3669     * the given basis as an identity value.
3670     *
3671     * @param transformer a function returning the transformation
3672     * for an element
3673     * @param basis the identity (initial default value) for the reduction
3674     * @param reducer a commutative associative combining function
3675     * @return the result of accumulating the given transformation
3676     * of all keys
3677     */
3678 dl 1.84 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3679     (ObjectToInt<? super K> transformer,
3680     int basis,
3681     IntByIntToInt reducer) {
3682     if (transformer == null || reducer == null)
3683     throw new NullPointerException();
3684     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3685     int r = basis;
3686     while (it.advance() != null)
3687     r = reducer.apply(r, transformer.apply((K)it.nextKey));
3688     return r;
3689 dl 1.70 }
3690 dl 1.52
3691 dl 1.70 /**
3692     * Performs the given action for each value.
3693     *
3694     * @param action the action
3695     */
3696 dl 1.84 public void forEachValueSequentially(Action<V> action) {
3697     if (action == null) throw new NullPointerException();
3698     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3699     V v;
3700     while ((v = it.advance()) != null)
3701     action.apply(v);
3702 dl 1.70 }
3703 dl 1.52
3704 dl 1.70 /**
3705     * Performs the given action for each non-null transformation
3706     * of each value.
3707     *
3708     * @param transformer a function returning the transformation
3709     * for an element, or null of there is no transformation (in
3710     * which case the action is not applied).
3711     */
3712 dl 1.84 public <U> void forEachValueSequentially
3713     (Fun<? super V, ? extends U> transformer,
3714     Action<U> action) {
3715     if (transformer == null || action == null)
3716     throw new NullPointerException();
3717     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3718     V v; U u;
3719     while ((v = it.advance()) != null) {
3720     if ((u = transformer.apply(v)) != null)
3721     action.apply(u);
3722     }
3723 dl 1.70 }
3724 dl 1.52
3725 dl 1.70 /**
3726     * Returns a non-null result from applying the given search
3727 dl 1.84 * function on each value, or null if none.
3728 dl 1.70 *
3729     * @param searchFunction a function returning a non-null
3730     * result on success, else null
3731     * @return a non-null result from applying the given search
3732     * function on each value, or null if none
3733     */
3734 dl 1.84 public <U> U searchValuesSequentially
3735     (Fun<? super V, ? extends U> searchFunction) {
3736     if (searchFunction == null) throw new NullPointerException();
3737     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3738     V v; U u;
3739     while ((v = it.advance()) != null) {
3740     if ((u = searchFunction.apply(v)) != null)
3741     return u;
3742     }
3743     return null;
3744 dl 1.70 }
3745 dl 1.52
3746 dl 1.70 /**
3747     * Returns the result of accumulating all values using the
3748     * given reducer to combine values, or null if none.
3749     *
3750     * @param reducer a commutative associative combining function
3751     * @return the result of accumulating all values
3752     */
3753 dl 1.84 public V reduceValuesSequentially
3754     (BiFun<? super V, ? super V, ? extends V> reducer) {
3755     if (reducer == null) throw new NullPointerException();
3756     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3757     V r = null; V v;
3758     while ((v = it.advance()) != null)
3759     r = (r == null) ? v : reducer.apply(r, v);
3760     return r;
3761 dl 1.70 }
3762 dl 1.52
3763 dl 1.70 /**
3764     * Returns the result of accumulating the given transformation
3765     * of all values using the given reducer to combine values, or
3766     * null if none.
3767     *
3768     * @param transformer a function returning the transformation
3769     * for an element, or null of there is no transformation (in
3770     * which case it is not combined).
3771     * @param reducer a commutative associative combining function
3772     * @return the result of accumulating the given transformation
3773     * of all values
3774     */
3775 dl 1.84 public <U> U reduceValuesSequentially
3776     (Fun<? super V, ? extends U> transformer,
3777     BiFun<? super U, ? super U, ? extends U> reducer) {
3778     if (transformer == null || reducer == null)
3779     throw new NullPointerException();
3780     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3781     U r = null, u; V v;
3782     while ((v = it.advance()) != null) {
3783     if ((u = transformer.apply(v)) != null)
3784     r = (r == null) ? u : reducer.apply(r, u);
3785     }
3786     return r;
3787 dl 1.70 }
3788 dl 1.52
3789 dl 1.70 /**
3790     * Returns the result of accumulating the given transformation
3791     * of all values using the given reducer to combine values,
3792     * and the given basis as an identity value.
3793     *
3794     * @param transformer a function returning the transformation
3795     * for an element
3796     * @param basis the identity (initial default value) for the reduction
3797     * @param reducer a commutative associative combining function
3798     * @return the result of accumulating the given transformation
3799     * of all values
3800     */
3801 dl 1.84 public double reduceValuesToDoubleSequentially
3802     (ObjectToDouble<? super V> transformer,
3803     double basis,
3804     DoubleByDoubleToDouble reducer) {
3805     if (transformer == null || reducer == null)
3806     throw new NullPointerException();
3807     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3808     double r = basis; V v;
3809     while ((v = it.advance()) != null)
3810     r = reducer.apply(r, transformer.apply(v));
3811     return r;
3812 dl 1.75 }
3813    
3814     /**
3815     * Returns the result of accumulating the given transformation
3816     * of all values using the given reducer to combine values,
3817     * and the given basis as an identity value.
3818     *
3819     * @param transformer a function returning the transformation
3820     * for an element
3821     * @param basis the identity (initial default value) for the reduction
3822     * @param reducer a commutative associative combining function
3823     * @return the result of accumulating the given transformation
3824     * of all values
3825     */
3826 dl 1.84 public long reduceValuesToLongSequentially
3827     (ObjectToLong<? super V> transformer,
3828     long basis,
3829     LongByLongToLong reducer) {
3830     if (transformer == null || reducer == null)
3831     throw new NullPointerException();
3832     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3833     long r = basis; V v;
3834     while ((v = it.advance()) != null)
3835     r = reducer.apply(r, transformer.apply(v));
3836     return r;
3837 dl 1.75 }
3838    
3839     /**
3840     * Returns the result of accumulating the given transformation
3841     * of all values using the given reducer to combine values,
3842     * and the given basis as an identity value.
3843     *
3844     * @param transformer a function returning the transformation
3845     * for an element
3846     * @param basis the identity (initial default value) for the reduction
3847     * @param reducer a commutative associative combining function
3848     * @return the result of accumulating the given transformation
3849     * of all values
3850     */
3851 dl 1.84 public int reduceValuesToIntSequentially
3852     (ObjectToInt<? super V> transformer,
3853     int basis,
3854     IntByIntToInt reducer) {
3855     if (transformer == null || reducer == null)
3856     throw new NullPointerException();
3857     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3858     int r = basis; V v;
3859     while ((v = it.advance()) != null)
3860     r = reducer.apply(r, transformer.apply(v));
3861     return r;
3862 dl 1.75 }
3863    
3864     /**
3865     * Performs the given action for each entry.
3866     *
3867     * @param action the action
3868     */
3869 dl 1.84 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3870     (Action<Map.Entry<K,V>> action) {
3871     if (action == null) throw new NullPointerException();
3872     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3873     V v;
3874     while ((v = it.advance()) != null)
3875     action.apply(entryFor((K)it.nextKey, v));
3876 dl 1.75 }
3877    
3878     /**
3879     * Performs the given action for each non-null transformation
3880     * of each entry.
3881     *
3882     * @param transformer a function returning the transformation
3883     * for an element, or null of there is no transformation (in
3884     * which case the action is not applied).
3885     * @param action the action
3886     */
3887 dl 1.84 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3888     (Fun<Map.Entry<K,V>, ? extends U> transformer,
3889     Action<U> action) {
3890     if (transformer == null || action == null)
3891     throw new NullPointerException();
3892     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3893     V v; U u;
3894     while ((v = it.advance()) != null) {
3895     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3896     action.apply(u);
3897     }
3898 dl 1.75 }
3899    
3900     /**
3901     * Returns a non-null result from applying the given search
3902 dl 1.84 * function on each entry, or null if none.
3903 dl 1.75 *
3904     * @param searchFunction a function returning a non-null
3905     * result on success, else null
3906     * @return a non-null result from applying the given search
3907     * function on each entry, or null if none
3908     */
3909 dl 1.84 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3910     (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3911     if (searchFunction == null) throw new NullPointerException();
3912     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3913     V v; U u;
3914     while ((v = it.advance()) != null) {
3915     if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3916     return u;
3917     }
3918     return null;
3919 dl 1.75 }
3920    
3921     /**
3922     * Returns the result of accumulating all entries using the
3923     * given reducer to combine values, or null if none.
3924     *
3925     * @param reducer a commutative associative combining function
3926     * @return the result of accumulating all entries
3927     */
3928 dl 1.84 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3929     (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3930     if (reducer == null) throw new NullPointerException();
3931     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3932     Map.Entry<K,V> r = null; V v;
3933     while ((v = it.advance()) != null) {
3934     Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3935     r = (r == null) ? u : reducer.apply(r, u);
3936     }
3937     return r;
3938 dl 1.75 }
3939    
3940     /**
3941     * Returns the result of accumulating the given transformation
3942     * of all entries using the given reducer to combine values,
3943     * or null if none.
3944     *
3945     * @param transformer a function returning the transformation
3946     * for an element, or null of there is no transformation (in
3947     * which case it is not combined).
3948     * @param reducer a commutative associative combining function
3949     * @return the result of accumulating the given transformation
3950     * of all entries
3951     */
3952 dl 1.84 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3953     (Fun<Map.Entry<K,V>, ? extends U> transformer,
3954     BiFun<? super U, ? super U, ? extends U> reducer) {
3955     if (transformer == null || reducer == null)
3956     throw new NullPointerException();
3957     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3958     U r = null, u; V v;
3959     while ((v = it.advance()) != null) {
3960     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3961     r = (r == null) ? u : reducer.apply(r, u);
3962     }
3963     return r;
3964 dl 1.75 }
3965    
3966     /**
3967     * Returns the result of accumulating the given transformation
3968     * of all entries using the given reducer to combine values,
3969     * and the given basis as an identity value.
3970     *
3971     * @param transformer a function returning the transformation
3972     * for an element
3973     * @param basis the identity (initial default value) for the reduction
3974     * @param reducer a commutative associative combining function
3975     * @return the result of accumulating the given transformation
3976     * of all entries
3977     */
3978 dl 1.84 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3979     (ObjectToDouble<Map.Entry<K,V>> transformer,
3980     double basis,
3981     DoubleByDoubleToDouble reducer) {
3982     if (transformer == null || reducer == null)
3983     throw new NullPointerException();
3984     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3985     double r = basis; V v;
3986     while ((v = it.advance()) != null)
3987     r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3988     return r;
3989 dl 1.75 }
3990    
3991     /**
3992     * Returns the result of accumulating the given transformation
3993     * of all entries using the given reducer to combine values,
3994     * and the given basis as an identity value.
3995     *
3996     * @param transformer a function returning the transformation
3997     * for an element
3998     * @param basis the identity (initial default value) for the reduction
3999     * @param reducer a commutative associative combining function
4000     * @return the result of accumulating the given transformation
4001     * of all entries
4002     */
4003 dl 1.84 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4004     (ObjectToLong<Map.Entry<K,V>> transformer,
4005     long basis,
4006     LongByLongToLong reducer) {
4007     if (transformer == null || reducer == null)
4008     throw new NullPointerException();
4009     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4010     long r = basis; V v;
4011     while ((v = it.advance()) != null)
4012     r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4013     return r;
4014 dl 1.75 }
4015    
4016     /**
4017     * Returns the result of accumulating the given transformation
4018     * of all entries using the given reducer to combine values,
4019     * and the given basis as an identity value.
4020     *
4021     * @param transformer a function returning the transformation
4022     * for an element
4023     * @param basis the identity (initial default value) for the reduction
4024     * @param reducer a commutative associative combining function
4025     * @return the result of accumulating the given transformation
4026     * of all entries
4027     */
4028 dl 1.84 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4029     (ObjectToInt<Map.Entry<K,V>> transformer,
4030     int basis,
4031     IntByIntToInt reducer) {
4032     if (transformer == null || reducer == null)
4033     throw new NullPointerException();
4034     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4035     int r = basis; V v;
4036     while ((v = it.advance()) != null)
4037     r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4038     return r;
4039 dl 1.75 }
4040    
4041 dl 1.84 // Parallel bulk operations
4042 dl 1.75
4043     /**
4044 dl 1.84 * Performs the given action for each (key, value).
4045     *
4046     * @param action the action
4047 dl 1.75 */
4048 dl 1.84 public void forEachInParallel(BiAction<K,V> action) {
4049     ForkJoinTasks.forEach
4050     (this, action).invoke();
4051     }
4052 dl 1.75
4053 dl 1.84 /**
4054     * Performs the given action for each non-null transformation
4055     * of each (key, value).
4056     *
4057     * @param transformer a function returning the transformation
4058     * for an element, or null of there is no transformation (in
4059     * which case the action is not applied).
4060     * @param action the action
4061     */
4062     public <U> void forEachInParallel
4063     (BiFun<? super K, ? super V, ? extends U> transformer,
4064     Action<U> action) {
4065     ForkJoinTasks.forEach
4066     (this, transformer, action).invoke();
4067     }
4068 dl 1.75
4069 dl 1.84 /**
4070     * Returns a non-null result from applying the given search
4071     * function on each (key, value), or null if none. Upon
4072     * success, further element processing is suppressed and the
4073     * results of any other parallel invocations of the search
4074     * function are ignored.
4075     *
4076     * @param searchFunction a function returning a non-null
4077     * result on success, else null
4078     * @return a non-null result from applying the given search
4079     * function on each (key, value), or null if none
4080     */
4081     public <U> U searchInParallel
4082     (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4083     return ForkJoinTasks.search
4084     (this, searchFunction).invoke();
4085     }
4086 dl 1.75
4087 dl 1.84 /**
4088     * Returns the result of accumulating the given transformation
4089     * of all (key, value) pairs using the given reducer to
4090     * combine values, or null if none.
4091     *
4092     * @param transformer a function returning the transformation
4093     * for an element, or null of there is no transformation (in
4094     * which case it is not combined).
4095     * @param reducer a commutative associative combining function
4096     * @return the result of accumulating the given transformation
4097     * of all (key, value) pairs
4098     */
4099     public <U> U reduceInParallel
4100     (BiFun<? super K, ? super V, ? extends U> transformer,
4101     BiFun<? super U, ? super U, ? extends U> reducer) {
4102     return ForkJoinTasks.reduce
4103     (this, transformer, reducer).invoke();
4104     }
4105 dl 1.75
4106 dl 1.84 /**
4107     * Returns the result of accumulating the given transformation
4108     * of all (key, value) pairs using the given reducer to
4109     * combine values, and the given basis as an identity value.
4110     *
4111     * @param transformer a function returning the transformation
4112     * for an element
4113     * @param basis the identity (initial default value) for the reduction
4114     * @param reducer a commutative associative combining function
4115     * @return the result of accumulating the given transformation
4116     * of all (key, value) pairs
4117     */
4118     public double reduceToDoubleInParallel
4119     (ObjectByObjectToDouble<? super K, ? super V> transformer,
4120     double basis,
4121     DoubleByDoubleToDouble reducer) {
4122     return ForkJoinTasks.reduceToDouble
4123     (this, transformer, basis, reducer).invoke();
4124     }
4125    
4126     /**
4127     * Returns the result of accumulating the given transformation
4128     * of all (key, value) pairs using the given reducer to
4129     * combine values, and the given basis as an identity value.
4130     *
4131     * @param transformer a function returning the transformation
4132     * for an element
4133     * @param basis the identity (initial default value) for the reduction
4134     * @param reducer a commutative associative combining function
4135     * @return the result of accumulating the given transformation
4136     * of all (key, value) pairs
4137     */
4138     public long reduceToLongInParallel
4139     (ObjectByObjectToLong<? super K, ? super V> transformer,
4140     long basis,
4141     LongByLongToLong reducer) {
4142     return ForkJoinTasks.reduceToLong
4143     (this, transformer, basis, reducer).invoke();
4144     }
4145    
4146     /**
4147     * Returns the result of accumulating the given transformation
4148     * of all (key, value) pairs using the given reducer to
4149     * combine values, and the given basis as an identity value.
4150     *
4151     * @param transformer a function returning the transformation
4152     * for an element
4153     * @param basis the identity (initial default value) for the reduction
4154     * @param reducer a commutative associative combining function
4155     * @return the result of accumulating the given transformation
4156     * of all (key, value) pairs
4157     */
4158     public int reduceToIntInParallel
4159     (ObjectByObjectToInt<? super K, ? super V> transformer,
4160     int basis,
4161     IntByIntToInt reducer) {
4162     return ForkJoinTasks.reduceToInt
4163     (this, transformer, basis, reducer).invoke();
4164     }
4165    
4166     /**
4167     * Performs the given action for each key.
4168     *
4169     * @param action the action
4170     */
4171     public void forEachKeyInParallel(Action<K> action) {
4172     ForkJoinTasks.forEachKey
4173     (this, action).invoke();
4174     }
4175    
4176     /**
4177     * Performs the given action for each non-null transformation
4178     * of each key.
4179     *
4180     * @param transformer a function returning the transformation
4181     * for an element, or null of there is no transformation (in
4182     * which case the action is not applied).
4183     * @param action the action
4184     */
4185     public <U> void forEachKeyInParallel
4186     (Fun<? super K, ? extends U> transformer,
4187     Action<U> action) {
4188     ForkJoinTasks.forEachKey
4189     (this, transformer, action).invoke();
4190     }
4191    
4192     /**
4193     * Returns a non-null result from applying the given search
4194     * function on each key, or null if none. Upon success,
4195     * further element processing is suppressed and the results of
4196     * any other parallel invocations of the search function are
4197     * ignored.
4198     *
4199     * @param searchFunction a function returning a non-null
4200     * result on success, else null
4201     * @return a non-null result from applying the given search
4202     * function on each key, or null if none
4203     */
4204     public <U> U searchKeysInParallel
4205     (Fun<? super K, ? extends U> searchFunction) {
4206     return ForkJoinTasks.searchKeys
4207     (this, searchFunction).invoke();
4208     }
4209    
4210     /**
4211     * Returns the result of accumulating all keys using the given
4212     * reducer to combine values, or null if none.
4213     *
4214     * @param reducer a commutative associative combining function
4215     * @return the result of accumulating all keys using the given
4216     * reducer to combine values, or null if none
4217     */
4218     public K reduceKeysInParallel
4219     (BiFun<? super K, ? super K, ? extends K> reducer) {
4220     return ForkJoinTasks.reduceKeys
4221     (this, reducer).invoke();
4222     }
4223    
4224     /**
4225     * Returns the result of accumulating the given transformation
4226     * of all keys using the given reducer to combine values, or
4227     * null if none.
4228     *
4229     * @param transformer a function returning the transformation
4230     * for an element, or null of there is no transformation (in
4231     * which case it is not combined).
4232     * @param reducer a commutative associative combining function
4233     * @return the result of accumulating the given transformation
4234     * of all keys
4235     */
4236     public <U> U reduceKeysInParallel
4237     (Fun<? super K, ? extends U> transformer,
4238     BiFun<? super U, ? super U, ? extends U> reducer) {
4239     return ForkJoinTasks.reduceKeys
4240     (this, transformer, reducer).invoke();
4241     }
4242    
4243     /**
4244     * Returns the result of accumulating the given transformation
4245     * of all keys using the given reducer to combine values, and
4246     * the given basis as an identity value.
4247     *
4248     * @param transformer a function returning the transformation
4249     * for an element
4250     * @param basis the identity (initial default value) for the reduction
4251     * @param reducer a commutative associative combining function
4252     * @return the result of accumulating the given transformation
4253     * of all keys
4254     */
4255     public double reduceKeysToDoubleInParallel
4256     (ObjectToDouble<? super K> transformer,
4257     double basis,
4258     DoubleByDoubleToDouble reducer) {
4259     return ForkJoinTasks.reduceKeysToDouble
4260     (this, transformer, basis, reducer).invoke();
4261     }
4262    
4263     /**
4264     * Returns the result of accumulating the given transformation
4265     * of all keys using the given reducer to combine values, and
4266     * the given basis as an identity value.
4267     *
4268     * @param transformer a function returning the transformation
4269     * for an element
4270     * @param basis the identity (initial default value) for the reduction
4271     * @param reducer a commutative associative combining function
4272     * @return the result of accumulating the given transformation
4273     * of all keys
4274     */
4275     public long reduceKeysToLongInParallel
4276     (ObjectToLong<? super K> transformer,
4277     long basis,
4278     LongByLongToLong reducer) {
4279     return ForkJoinTasks.reduceKeysToLong
4280     (this, transformer, basis, reducer).invoke();
4281     }
4282    
4283     /**
4284     * Returns the result of accumulating the given transformation
4285     * of all keys using the given reducer to combine values, and
4286     * the given basis as an identity value.
4287     *
4288     * @param transformer a function returning the transformation
4289     * for an element
4290     * @param basis the identity (initial default value) for the reduction
4291     * @param reducer a commutative associative combining function
4292     * @return the result of accumulating the given transformation
4293     * of all keys
4294     */
4295     public int reduceKeysToIntInParallel
4296     (ObjectToInt<? super K> transformer,
4297     int basis,
4298     IntByIntToInt reducer) {
4299     return ForkJoinTasks.reduceKeysToInt
4300     (this, transformer, basis, reducer).invoke();
4301     }
4302    
4303     /**
4304     * Performs the given action for each value.
4305     *
4306     * @param action the action
4307     */
4308     public void forEachValueInParallel(Action<V> action) {
4309     ForkJoinTasks.forEachValue
4310     (this, action).invoke();
4311     }
4312    
4313     /**
4314     * Performs the given action for each non-null transformation
4315     * of each value.
4316     *
4317     * @param transformer a function returning the transformation
4318     * for an element, or null of there is no transformation (in
4319     * which case the action is not applied).
4320     */
4321     public <U> void forEachValueInParallel
4322     (Fun<? super V, ? extends U> transformer,
4323     Action<U> action) {
4324     ForkJoinTasks.forEachValue
4325     (this, transformer, action).invoke();
4326     }
4327    
4328     /**
4329     * Returns a non-null result from applying the given search
4330     * function on each value, or null if none. Upon success,
4331     * further element processing is suppressed and the results of
4332     * any other parallel invocations of the search function are
4333     * ignored.
4334     *
4335     * @param searchFunction a function returning a non-null
4336     * result on success, else null
4337     * @return a non-null result from applying the given search
4338     * function on each value, or null if none
4339     */
4340     public <U> U searchValuesInParallel
4341     (Fun<? super V, ? extends U> searchFunction) {
4342     return ForkJoinTasks.searchValues
4343     (this, searchFunction).invoke();
4344     }
4345    
4346     /**
4347     * Returns the result of accumulating all values using the
4348     * given reducer to combine values, or null if none.
4349     *
4350     * @param reducer a commutative associative combining function
4351     * @return the result of accumulating all values
4352     */
4353     public V reduceValuesInParallel
4354     (BiFun<? super V, ? super V, ? extends V> reducer) {
4355     return ForkJoinTasks.reduceValues
4356     (this, reducer).invoke();
4357     }
4358    
4359     /**
4360     * Returns the result of accumulating the given transformation
4361     * of all values using the given reducer to combine values, or
4362     * null if none.
4363     *
4364     * @param transformer a function returning the transformation
4365     * for an element, or null of there is no transformation (in
4366     * which case it is not combined).
4367     * @param reducer a commutative associative combining function
4368     * @return the result of accumulating the given transformation
4369     * of all values
4370     */
4371     public <U> U reduceValuesInParallel
4372     (Fun<? super V, ? extends U> transformer,
4373     BiFun<? super U, ? super U, ? extends U> reducer) {
4374     return ForkJoinTasks.reduceValues
4375     (this, transformer, reducer).invoke();
4376     }
4377    
4378     /**
4379     * Returns the result of accumulating the given transformation
4380     * of all values using the given reducer to combine values,
4381     * and the given basis as an identity value.
4382     *
4383     * @param transformer a function returning the transformation
4384     * for an element
4385     * @param basis the identity (initial default value) for the reduction
4386     * @param reducer a commutative associative combining function
4387     * @return the result of accumulating the given transformation
4388     * of all values
4389     */
4390     public double reduceValuesToDoubleInParallel
4391     (ObjectToDouble<? super V> transformer,
4392     double basis,
4393     DoubleByDoubleToDouble reducer) {
4394     return ForkJoinTasks.reduceValuesToDouble
4395     (this, transformer, basis, reducer).invoke();
4396     }
4397    
4398     /**
4399     * Returns the result of accumulating the given transformation
4400     * of all values using the given reducer to combine values,
4401     * and the given basis as an identity value.
4402     *
4403     * @param transformer a function returning the transformation
4404     * for an element
4405     * @param basis the identity (initial default value) for the reduction
4406     * @param reducer a commutative associative combining function
4407     * @return the result of accumulating the given transformation
4408     * of all values
4409     */
4410     public long reduceValuesToLongInParallel
4411     (ObjectToLong<? super V> transformer,
4412     long basis,
4413     LongByLongToLong reducer) {
4414     return ForkJoinTasks.reduceValuesToLong
4415     (this, transformer, basis, reducer).invoke();
4416     }
4417    
4418     /**
4419     * Returns the result of accumulating the given transformation
4420     * of all values using the given reducer to combine values,
4421     * and the given basis as an identity value.
4422     *
4423     * @param transformer a function returning the transformation
4424     * for an element
4425     * @param basis the identity (initial default value) for the reduction
4426     * @param reducer a commutative associative combining function
4427     * @return the result of accumulating the given transformation
4428     * of all values
4429     */
4430     public int reduceValuesToIntInParallel
4431     (ObjectToInt<? super V> transformer,
4432     int basis,
4433     IntByIntToInt reducer) {
4434     return ForkJoinTasks.reduceValuesToInt
4435     (this, transformer, basis, reducer).invoke();
4436     }
4437    
4438     /**
4439     * Performs the given action for each entry.
4440     *
4441     * @param action the action
4442     */
4443     public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4444     ForkJoinTasks.forEachEntry
4445     (this, action).invoke();
4446     }
4447    
4448     /**
4449     * Performs the given action for each non-null transformation
4450     * of each entry.
4451     *
4452     * @param transformer a function returning the transformation
4453     * for an element, or null of there is no transformation (in
4454     * which case the action is not applied).
4455     * @param action the action
4456     */
4457     public <U> void forEachEntryInParallel
4458     (Fun<Map.Entry<K,V>, ? extends U> transformer,
4459     Action<U> action) {
4460     ForkJoinTasks.forEachEntry
4461     (this, transformer, action).invoke();
4462     }
4463    
4464     /**
4465     * Returns a non-null result from applying the given search
4466     * function on each entry, or null if none. Upon success,
4467     * further element processing is suppressed and the results of
4468     * any other parallel invocations of the search function are
4469     * ignored.
4470     *
4471     * @param searchFunction a function returning a non-null
4472     * result on success, else null
4473     * @return a non-null result from applying the given search
4474     * function on each entry, or null if none
4475     */
4476     public <U> U searchEntriesInParallel
4477     (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4478     return ForkJoinTasks.searchEntries
4479     (this, searchFunction).invoke();
4480     }
4481    
4482     /**
4483     * Returns the result of accumulating all entries using the
4484     * given reducer to combine values, or null if none.
4485     *
4486     * @param reducer a commutative associative combining function
4487     * @return the result of accumulating all entries
4488     */
4489     public Map.Entry<K,V> reduceEntriesInParallel
4490     (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4491     return ForkJoinTasks.reduceEntries
4492     (this, reducer).invoke();
4493     }
4494    
4495     /**
4496     * Returns the result of accumulating the given transformation
4497     * of all entries using the given reducer to combine values,
4498     * or null if none.
4499     *
4500     * @param transformer a function returning the transformation
4501     * for an element, or null of there is no transformation (in
4502     * which case it is not combined).
4503     * @param reducer a commutative associative combining function
4504     * @return the result of accumulating the given transformation
4505     * of all entries
4506     */
4507     public <U> U reduceEntriesInParallel
4508     (Fun<Map.Entry<K,V>, ? extends U> transformer,
4509     BiFun<? super U, ? super U, ? extends U> reducer) {
4510     return ForkJoinTasks.reduceEntries
4511     (this, transformer, reducer).invoke();
4512     }
4513    
4514     /**
4515     * Returns the result of accumulating the given transformation
4516     * of all entries using the given reducer to combine values,
4517     * and the given basis as an identity value.
4518     *
4519     * @param transformer a function returning the transformation
4520     * for an element
4521     * @param basis the identity (initial default value) for the reduction
4522     * @param reducer a commutative associative combining function
4523     * @return the result of accumulating the given transformation
4524     * of all entries
4525     */
4526     public double reduceEntriesToDoubleInParallel
4527     (ObjectToDouble<Map.Entry<K,V>> transformer,
4528     double basis,
4529     DoubleByDoubleToDouble reducer) {
4530     return ForkJoinTasks.reduceEntriesToDouble
4531     (this, transformer, basis, reducer).invoke();
4532     }
4533    
4534     /**
4535     * Returns the result of accumulating the given transformation
4536     * of all entries using the given reducer to combine values,
4537     * and the given basis as an identity value.
4538     *
4539     * @param transformer a function returning the transformation
4540     * for an element
4541     * @param basis the identity (initial default value) for the reduction
4542     * @param reducer a commutative associative combining function
4543     * @return the result of accumulating the given transformation
4544     * of all entries
4545     */
4546     public long reduceEntriesToLongInParallel
4547     (ObjectToLong<Map.Entry<K,V>> transformer,
4548     long basis,
4549     LongByLongToLong reducer) {
4550     return ForkJoinTasks.reduceEntriesToLong
4551     (this, transformer, basis, reducer).invoke();
4552     }
4553    
4554     /**
4555     * Returns the result of accumulating the given transformation
4556     * of all entries using the given reducer to combine values,
4557     * and the given basis as an identity value.
4558     *
4559     * @param transformer a function returning the transformation
4560     * for an element
4561     * @param basis the identity (initial default value) for the reduction
4562     * @param reducer a commutative associative combining function
4563     * @return the result of accumulating the given transformation
4564     * of all entries
4565     */
4566     public int reduceEntriesToIntInParallel
4567     (ObjectToInt<Map.Entry<K,V>> transformer,
4568     int basis,
4569     IntByIntToInt reducer) {
4570     return ForkJoinTasks.reduceEntriesToInt
4571     (this, transformer, basis, reducer).invoke();
4572     }
4573    
4574    
4575     /* ----------------Views -------------- */
4576    
4577     /**
4578     * Base class for views.
4579     */
4580 jsr166 1.88 abstract static class CHMView<K, V> {
4581 dl 1.84 final ConcurrentHashMapV8<K, V> map;
4582     CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4583    
4584     /**
4585     * Returns the map backing this view.
4586     *
4587     * @return the map backing this view
4588     */
4589     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4590    
4591     public final int size() { return map.size(); }
4592     public final boolean isEmpty() { return map.isEmpty(); }
4593     public final void clear() { map.clear(); }
4594    
4595     // implementations below rely on concrete classes supplying these
4596 jsr166 1.88 public abstract Iterator<?> iterator();
4597     public abstract boolean contains(Object o);
4598     public abstract boolean remove(Object o);
4599 dl 1.84
4600     private static final String oomeMsg = "Required array size too large";
4601 dl 1.75
4602     public final Object[] toArray() {
4603     long sz = map.mappingCount();
4604     if (sz > (long)(MAX_ARRAY_SIZE))
4605     throw new OutOfMemoryError(oomeMsg);
4606     int n = (int)sz;
4607     Object[] r = new Object[n];
4608     int i = 0;
4609     Iterator<?> it = iterator();
4610     while (it.hasNext()) {
4611     if (i == n) {
4612     if (n >= MAX_ARRAY_SIZE)
4613     throw new OutOfMemoryError(oomeMsg);
4614     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4615     n = MAX_ARRAY_SIZE;
4616     else
4617     n += (n >>> 1) + 1;
4618     r = Arrays.copyOf(r, n);
4619     }
4620     r[i++] = it.next();
4621     }
4622     return (i == n) ? r : Arrays.copyOf(r, i);
4623     }
4624    
4625     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4626     long sz = map.mappingCount();
4627     if (sz > (long)(MAX_ARRAY_SIZE))
4628     throw new OutOfMemoryError(oomeMsg);
4629     int m = (int)sz;
4630     T[] r = (a.length >= m) ? a :
4631     (T[])java.lang.reflect.Array
4632     .newInstance(a.getClass().getComponentType(), m);
4633     int n = r.length;
4634     int i = 0;
4635     Iterator<?> it = iterator();
4636     while (it.hasNext()) {
4637     if (i == n) {
4638     if (n >= MAX_ARRAY_SIZE)
4639     throw new OutOfMemoryError(oomeMsg);
4640     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4641     n = MAX_ARRAY_SIZE;
4642     else
4643     n += (n >>> 1) + 1;
4644     r = Arrays.copyOf(r, n);
4645     }
4646     r[i++] = (T)it.next();
4647     }
4648     if (a == r && i < n) {
4649     r[i] = null; // null-terminate
4650     return r;
4651     }
4652     return (i == n) ? r : Arrays.copyOf(r, i);
4653     }
4654    
4655     public final int hashCode() {
4656     int h = 0;
4657     for (Iterator<?> it = iterator(); it.hasNext();)
4658     h += it.next().hashCode();
4659     return h;
4660     }
4661    
4662     public final String toString() {
4663     StringBuilder sb = new StringBuilder();
4664     sb.append('[');
4665     Iterator<?> it = iterator();
4666     if (it.hasNext()) {
4667     for (;;) {
4668     Object e = it.next();
4669     sb.append(e == this ? "(this Collection)" : e);
4670     if (!it.hasNext())
4671     break;
4672     sb.append(',').append(' ');
4673     }
4674     }
4675     return sb.append(']').toString();
4676     }
4677    
4678     public final boolean containsAll(Collection<?> c) {
4679     if (c != this) {
4680     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4681     Object e = it.next();
4682     if (e == null || !contains(e))
4683     return false;
4684     }
4685     }
4686     return true;
4687     }
4688    
4689     public final boolean removeAll(Collection<?> c) {
4690     boolean modified = false;
4691     for (Iterator<?> it = iterator(); it.hasNext();) {
4692     if (c.contains(it.next())) {
4693     it.remove();
4694     modified = true;
4695     }
4696     }
4697     return modified;
4698     }
4699    
4700     public final boolean retainAll(Collection<?> c) {
4701     boolean modified = false;
4702     for (Iterator<?> it = iterator(); it.hasNext();) {
4703     if (!c.contains(it.next())) {
4704     it.remove();
4705     modified = true;
4706     }
4707     }
4708     return modified;
4709     }
4710    
4711     }
4712    
4713     /**
4714     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4715     * which additions may optionally be enabled by mapping to a
4716     * common value. This class cannot be directly instantiated. See
4717     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4718     * {@link #newKeySet(int)}.
4719     */
4720 dl 1.82 public static class KeySetView<K,V> extends CHMView<K,V>
4721     implements Set<K>, java.io.Serializable {
4722 dl 1.75 private static final long serialVersionUID = 7249069246763182397L;
4723     private final V value;
4724     KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4725     super(map);
4726     this.value = value;
4727     }
4728    
4729     /**
4730     * Returns the default mapped value for additions,
4731     * or {@code null} if additions are not supported.
4732     *
4733     * @return the default mapped value for additions, or {@code null}
4734     * if not supported.
4735     */
4736     public V getMappedValue() { return value; }
4737    
4738     // implement Set API
4739    
4740     public boolean contains(Object o) { return map.containsKey(o); }
4741     public boolean remove(Object o) { return map.remove(o) != null; }
4742    
4743     /**
4744     * Returns a "weakly consistent" iterator that will never
4745     * throw {@link ConcurrentModificationException}, and
4746     * guarantees to traverse elements as they existed upon
4747     * construction of the iterator, and may (but is not
4748     * guaranteed to) reflect any modifications subsequent to
4749     * construction.
4750     *
4751     * @return an iterator over the keys of this map
4752     */
4753     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4754     public boolean add(K e) {
4755     V v;
4756     if ((v = value) == null)
4757     throw new UnsupportedOperationException();
4758     if (e == null)
4759     throw new NullPointerException();
4760 dl 1.82 return map.internalPut(e, v, true) == null;
4761 dl 1.75 }
4762     public boolean addAll(Collection<? extends K> c) {
4763     boolean added = false;
4764     V v;
4765     if ((v = value) == null)
4766     throw new UnsupportedOperationException();
4767     for (K e : c) {
4768     if (e == null)
4769     throw new NullPointerException();
4770 dl 1.82 if (map.internalPut(e, v, true) == null)
4771 dl 1.75 added = true;
4772     }
4773     return added;
4774     }
4775     public boolean equals(Object o) {
4776     Set<?> c;
4777     return ((o instanceof Set) &&
4778     ((c = (Set<?>)o) == this ||
4779     (containsAll(c) && c.containsAll(this))));
4780     }
4781     }
4782    
4783     /**
4784     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4785     * values, in which additions are disabled. This class cannot be
4786     * directly instantiated. See {@link #values},
4787     *
4788     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4789     * that will never throw {@link ConcurrentModificationException},
4790     * and guarantees to traverse elements as they existed upon
4791     * construction of the iterator, and may (but is not guaranteed to)
4792     * reflect any modifications subsequent to construction.
4793     */
4794     public static final class ValuesView<K,V> extends CHMView<K,V>
4795     implements Collection<V> {
4796     ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4797     public final boolean contains(Object o) { return map.containsValue(o); }
4798     public final boolean remove(Object o) {
4799     if (o != null) {
4800     Iterator<V> it = new ValueIterator<K,V>(map);
4801     while (it.hasNext()) {
4802     if (o.equals(it.next())) {
4803     it.remove();
4804     return true;
4805     }
4806     }
4807     }
4808     return false;
4809     }
4810    
4811     /**
4812     * Returns a "weakly consistent" iterator that will never
4813     * throw {@link ConcurrentModificationException}, and
4814     * guarantees to traverse elements as they existed upon
4815     * construction of the iterator, and may (but is not
4816     * guaranteed to) reflect any modifications subsequent to
4817     * construction.
4818     *
4819     * @return an iterator over the values of this map
4820     */
4821     public final Iterator<V> iterator() {
4822     return new ValueIterator<K,V>(map);
4823     }
4824     public final boolean add(V e) {
4825     throw new UnsupportedOperationException();
4826     }
4827     public final boolean addAll(Collection<? extends V> c) {
4828     throw new UnsupportedOperationException();
4829     }
4830    
4831 dl 1.70 }
4832 dl 1.52
4833 dl 1.70 /**
4834 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4835     * entries. This class cannot be directly instantiated. See
4836     * {@link #entrySet}.
4837 dl 1.70 */
4838 dl 1.75 public static final class EntrySetView<K,V> extends CHMView<K,V>
4839     implements Set<Map.Entry<K,V>> {
4840     EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4841     public final boolean contains(Object o) {
4842     Object k, v, r; Map.Entry<?,?> e;
4843     return ((o instanceof Map.Entry) &&
4844     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4845     (r = map.get(k)) != null &&
4846     (v = e.getValue()) != null &&
4847     (v == r || v.equals(r)));
4848     }
4849     public final boolean remove(Object o) {
4850     Object k, v; Map.Entry<?,?> e;
4851     return ((o instanceof Map.Entry) &&
4852     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4853     (v = e.getValue()) != null &&
4854     map.remove(k, v));
4855     }
4856    
4857     /**
4858     * Returns a "weakly consistent" iterator that will never
4859     * throw {@link ConcurrentModificationException}, and
4860     * guarantees to traverse elements as they existed upon
4861     * construction of the iterator, and may (but is not
4862     * guaranteed to) reflect any modifications subsequent to
4863     * construction.
4864     *
4865     * @return an iterator over the entries of this map
4866     */
4867     public final Iterator<Map.Entry<K,V>> iterator() {
4868     return new EntryIterator<K,V>(map);
4869     }
4870    
4871     public final boolean add(Entry<K,V> e) {
4872     K key = e.getKey();
4873     V value = e.getValue();
4874     if (key == null || value == null)
4875     throw new NullPointerException();
4876 dl 1.82 return map.internalPut(key, value, false) == null;
4877 dl 1.75 }
4878     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4879     boolean added = false;
4880     for (Entry<K,V> e : c) {
4881     if (add(e))
4882     added = true;
4883     }
4884     return added;
4885     }
4886     public boolean equals(Object o) {
4887     Set<?> c;
4888     return ((o instanceof Set) &&
4889     ((c = (Set<?>)o) == this ||
4890     (containsAll(c) && c.containsAll(this))));
4891     }
4892 dl 1.52 }
4893    
4894     // ---------------------------------------------------------------------
4895    
4896     /**
4897     * Predefined tasks for performing bulk parallel operations on
4898 dl 1.70 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4899     * for bulk operations. Each method has the same name, but returns
4900     * a task rather than invoking it. These methods may be useful in
4901     * custom applications such as submitting a task without waiting
4902     * for completion, using a custom pool, or combining with other
4903     * tasks.
4904 dl 1.52 */
4905     public static class ForkJoinTasks {
4906     private ForkJoinTasks() {}
4907    
4908     /**
4909     * Returns a task that when invoked, performs the given
4910     * action for each (key, value)
4911     *
4912     * @param map the map
4913     * @param action the action
4914     * @return the task
4915     */
4916 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4917 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4918     BiAction<K,V> action) {
4919     if (action == null) throw new NullPointerException();
4920 dl 1.79 return new ForEachMappingTask<K,V>(map, null, -1, action);
4921 dl 1.52 }
4922    
4923     /**
4924     * Returns a task that when invoked, performs the given
4925     * action for each non-null transformation of each (key, value)
4926     *
4927     * @param map the map
4928     * @param transformer a function returning the transformation
4929 jsr166 1.68 * for an element, or null if there is no transformation (in
4930 jsr166 1.67 * which case the action is not applied)
4931 dl 1.52 * @param action the action
4932     * @return the task
4933     */
4934 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4935 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4936     BiFun<? super K, ? super V, ? extends U> transformer,
4937     Action<U> action) {
4938     if (transformer == null || action == null)
4939     throw new NullPointerException();
4940     return new ForEachTransformedMappingTask<K,V,U>
4941 dl 1.79 (map, null, -1, transformer, action);
4942 dl 1.52 }
4943    
4944     /**
4945 dl 1.59 * Returns a task that when invoked, returns a non-null result
4946     * from applying the given search function on each (key,
4947     * value), or null if none. Upon success, further element
4948     * processing is suppressed and the results of any other
4949     * parallel invocations of the search function are ignored.
4950 dl 1.52 *
4951     * @param map the map
4952     * @param searchFunction a function returning a non-null
4953     * result on success, else null
4954     * @return the task
4955     */
4956     public static <K,V,U> ForkJoinTask<U> search
4957     (ConcurrentHashMapV8<K,V> map,
4958     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4959     if (searchFunction == null) throw new NullPointerException();
4960     return new SearchMappingsTask<K,V,U>
4961 dl 1.79 (map, null, -1, searchFunction,
4962 dl 1.52 new AtomicReference<U>());
4963     }
4964    
4965     /**
4966     * Returns a task that when invoked, returns the result of
4967     * accumulating the given transformation of all (key, value) pairs
4968     * using the given reducer to combine values, or null if none.
4969     *
4970     * @param map the map
4971     * @param transformer a function returning the transformation
4972 jsr166 1.68 * for an element, or null if there is no transformation (in
4973 dl 1.52 * which case it is not combined).
4974     * @param reducer a commutative associative combining function
4975     * @return the task
4976     */
4977     public static <K,V,U> ForkJoinTask<U> reduce
4978     (ConcurrentHashMapV8<K,V> map,
4979     BiFun<? super K, ? super V, ? extends U> transformer,
4980     BiFun<? super U, ? super U, ? extends U> reducer) {
4981     if (transformer == null || reducer == null)
4982     throw new NullPointerException();
4983     return new MapReduceMappingsTask<K,V,U>
4984 dl 1.63 (map, null, -1, null, transformer, reducer);
4985 dl 1.52 }
4986    
4987     /**
4988     * Returns a task that when invoked, returns the result of
4989     * accumulating the given transformation of all (key, value) pairs
4990     * using the given reducer to combine values, and the given
4991     * basis as an identity value.
4992     *
4993     * @param map the map
4994     * @param transformer a function returning the transformation
4995     * for an element
4996     * @param basis the identity (initial default value) for the reduction
4997     * @param reducer a commutative associative combining function
4998     * @return the task
4999     */
5000     public static <K,V> ForkJoinTask<Double> reduceToDouble
5001     (ConcurrentHashMapV8<K,V> map,
5002     ObjectByObjectToDouble<? super K, ? super V> transformer,
5003     double basis,
5004     DoubleByDoubleToDouble reducer) {
5005     if (transformer == null || reducer == null)
5006     throw new NullPointerException();
5007     return new MapReduceMappingsToDoubleTask<K,V>
5008 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5009 dl 1.52 }
5010    
5011     /**
5012     * Returns a task that when invoked, returns the result of
5013     * accumulating the given transformation of all (key, value) pairs
5014     * using the given reducer to combine values, and the given
5015     * basis as an identity value.
5016     *
5017     * @param map the map
5018     * @param transformer a function returning the transformation
5019     * for an element
5020     * @param basis the identity (initial default value) for the reduction
5021     * @param reducer a commutative associative combining function
5022     * @return the task
5023     */
5024     public static <K,V> ForkJoinTask<Long> reduceToLong
5025     (ConcurrentHashMapV8<K,V> map,
5026     ObjectByObjectToLong<? super K, ? super V> transformer,
5027     long basis,
5028     LongByLongToLong reducer) {
5029     if (transformer == null || reducer == null)
5030     throw new NullPointerException();
5031     return new MapReduceMappingsToLongTask<K,V>
5032 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5033 dl 1.52 }
5034    
5035     /**
5036     * Returns a task that when invoked, returns the result of
5037     * accumulating the given transformation of all (key, value) pairs
5038     * using the given reducer to combine values, and the given
5039     * basis as an identity value.
5040     *
5041     * @param transformer a function returning the transformation
5042     * for an element
5043     * @param basis the identity (initial default value) for the reduction
5044     * @param reducer a commutative associative combining function
5045     * @return the task
5046     */
5047     public static <K,V> ForkJoinTask<Integer> reduceToInt
5048     (ConcurrentHashMapV8<K,V> map,
5049     ObjectByObjectToInt<? super K, ? super V> transformer,
5050     int basis,
5051     IntByIntToInt reducer) {
5052     if (transformer == null || reducer == null)
5053     throw new NullPointerException();
5054     return new MapReduceMappingsToIntTask<K,V>
5055 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5056 dl 1.52 }
5057    
5058     /**
5059     * Returns a task that when invoked, performs the given action
5060 jsr166 1.56 * for each key.
5061 dl 1.52 *
5062     * @param map the map
5063     * @param action the action
5064     * @return the task
5065     */
5066 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
5067 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5068     Action<K> action) {
5069     if (action == null) throw new NullPointerException();
5070 dl 1.79 return new ForEachKeyTask<K,V>(map, null, -1, action);
5071 dl 1.52 }
5072    
5073     /**
5074     * Returns a task that when invoked, performs the given action
5075 jsr166 1.56 * for each non-null transformation of each key.
5076 dl 1.52 *
5077     * @param map the map
5078     * @param transformer a function returning the transformation
5079 jsr166 1.68 * for an element, or null if there is no transformation (in
5080 jsr166 1.67 * which case the action is not applied)
5081 dl 1.52 * @param action the action
5082     * @return the task
5083     */
5084 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
5085 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5086     Fun<? super K, ? extends U> transformer,
5087     Action<U> action) {
5088     if (transformer == null || action == null)
5089     throw new NullPointerException();
5090     return new ForEachTransformedKeyTask<K,V,U>
5091 dl 1.79 (map, null, -1, transformer, action);
5092 dl 1.52 }
5093    
5094     /**
5095     * Returns a task that when invoked, returns a non-null result
5096     * from applying the given search function on each key, or
5097 dl 1.59 * null if none. Upon success, further element processing is
5098     * suppressed and the results of any other parallel
5099     * invocations of the search function are ignored.
5100 dl 1.52 *
5101     * @param map the map
5102     * @param searchFunction a function returning a non-null
5103     * result on success, else null
5104     * @return the task
5105     */
5106     public static <K,V,U> ForkJoinTask<U> searchKeys
5107     (ConcurrentHashMapV8<K,V> map,
5108     Fun<? super K, ? extends U> searchFunction) {
5109     if (searchFunction == null) throw new NullPointerException();
5110     return new SearchKeysTask<K,V,U>
5111 dl 1.79 (map, null, -1, searchFunction,
5112 dl 1.52 new AtomicReference<U>());
5113     }
5114    
5115     /**
5116     * Returns a task that when invoked, returns the result of
5117     * accumulating all keys using the given reducer to combine
5118     * values, or null if none.
5119     *
5120     * @param map the map
5121     * @param reducer a commutative associative combining function
5122     * @return the task
5123     */
5124     public static <K,V> ForkJoinTask<K> reduceKeys
5125     (ConcurrentHashMapV8<K,V> map,
5126     BiFun<? super K, ? super K, ? extends K> reducer) {
5127     if (reducer == null) throw new NullPointerException();
5128     return new ReduceKeysTask<K,V>
5129 dl 1.63 (map, null, -1, null, reducer);
5130 dl 1.52 }
5131 jsr166 1.58
5132 dl 1.52 /**
5133     * Returns a task that when invoked, returns the result of
5134     * accumulating the given transformation of all keys using the given
5135     * reducer to combine values, or null if none.
5136     *
5137     * @param map the map
5138     * @param transformer a function returning the transformation
5139 jsr166 1.68 * for an element, or null if there is no transformation (in
5140 dl 1.52 * which case it is not combined).
5141     * @param reducer a commutative associative combining function
5142     * @return the task
5143     */
5144     public static <K,V,U> ForkJoinTask<U> reduceKeys
5145     (ConcurrentHashMapV8<K,V> map,
5146     Fun<? super K, ? extends U> transformer,
5147     BiFun<? super U, ? super U, ? extends U> reducer) {
5148     if (transformer == null || reducer == null)
5149     throw new NullPointerException();
5150     return new MapReduceKeysTask<K,V,U>
5151 dl 1.63 (map, null, -1, null, transformer, reducer);
5152 dl 1.52 }
5153    
5154     /**
5155     * Returns a task that when invoked, returns the result of
5156     * accumulating the given transformation of all keys using the given
5157     * reducer to combine values, and the given basis as an
5158     * identity value.
5159     *
5160     * @param map the map
5161     * @param transformer a function returning the transformation
5162     * for an element
5163     * @param basis the identity (initial default value) for the reduction
5164     * @param reducer a commutative associative combining function
5165     * @return the task
5166     */
5167     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5168     (ConcurrentHashMapV8<K,V> map,
5169     ObjectToDouble<? super K> transformer,
5170     double basis,
5171     DoubleByDoubleToDouble reducer) {
5172     if (transformer == null || reducer == null)
5173     throw new NullPointerException();
5174     return new MapReduceKeysToDoubleTask<K,V>
5175 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5176 dl 1.52 }
5177    
5178     /**
5179     * Returns a task that when invoked, returns the result of
5180     * accumulating the given transformation of all keys using the given
5181     * reducer to combine values, and the given basis as an
5182     * identity value.
5183     *
5184     * @param map the map
5185     * @param transformer a function returning the transformation
5186     * for an element
5187     * @param basis the identity (initial default value) for the reduction
5188     * @param reducer a commutative associative combining function
5189     * @return the task
5190     */
5191     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5192     (ConcurrentHashMapV8<K,V> map,
5193     ObjectToLong<? super K> transformer,
5194     long basis,
5195     LongByLongToLong reducer) {
5196     if (transformer == null || reducer == null)
5197     throw new NullPointerException();
5198     return new MapReduceKeysToLongTask<K,V>
5199 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5200 dl 1.52 }
5201    
5202     /**
5203     * Returns a task that when invoked, returns the result of
5204     * accumulating the given transformation of all keys using the given
5205     * reducer to combine values, and the given basis as an
5206     * identity value.
5207     *
5208     * @param map the map
5209     * @param transformer a function returning the transformation
5210     * for an element
5211     * @param basis the identity (initial default value) for the reduction
5212     * @param reducer a commutative associative combining function
5213     * @return the task
5214     */
5215     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5216     (ConcurrentHashMapV8<K,V> map,
5217     ObjectToInt<? super K> transformer,
5218     int basis,
5219     IntByIntToInt reducer) {
5220     if (transformer == null || reducer == null)
5221     throw new NullPointerException();
5222     return new MapReduceKeysToIntTask<K,V>
5223 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5224 dl 1.52 }
5225    
5226     /**
5227     * Returns a task that when invoked, performs the given action
5228 jsr166 1.56 * for each value.
5229 dl 1.52 *
5230     * @param map the map
5231     * @param action the action
5232     */
5233 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
5234 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5235     Action<V> action) {
5236     if (action == null) throw new NullPointerException();
5237 dl 1.79 return new ForEachValueTask<K,V>(map, null, -1, action);
5238 dl 1.52 }
5239    
5240     /**
5241     * Returns a task that when invoked, performs the given action
5242 jsr166 1.56 * for each non-null transformation of each value.
5243 dl 1.52 *
5244     * @param map the map
5245     * @param transformer a function returning the transformation
5246 jsr166 1.68 * for an element, or null if there is no transformation (in
5247 jsr166 1.67 * which case the action is not applied)
5248 dl 1.52 * @param action the action
5249     */
5250 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
5251 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5252     Fun<? super V, ? extends U> transformer,
5253     Action<U> action) {
5254     if (transformer == null || action == null)
5255     throw new NullPointerException();
5256     return new ForEachTransformedValueTask<K,V,U>
5257 dl 1.79 (map, null, -1, transformer, action);
5258 dl 1.52 }
5259    
5260     /**
5261     * Returns a task that when invoked, returns a non-null result
5262     * from applying the given search function on each value, or
5263 dl 1.59 * null if none. Upon success, further element processing is
5264     * suppressed and the results of any other parallel
5265     * invocations of the search function are ignored.
5266 dl 1.52 *
5267     * @param map the map
5268     * @param searchFunction a function returning a non-null
5269     * result on success, else null
5270     * @return the task
5271     */
5272     public static <K,V,U> ForkJoinTask<U> searchValues
5273     (ConcurrentHashMapV8<K,V> map,
5274     Fun<? super V, ? extends U> searchFunction) {
5275     if (searchFunction == null) throw new NullPointerException();
5276     return new SearchValuesTask<K,V,U>
5277 dl 1.79 (map, null, -1, searchFunction,
5278 dl 1.52 new AtomicReference<U>());
5279     }
5280    
5281     /**
5282     * Returns a task that when invoked, returns the result of
5283     * accumulating all values using the given reducer to combine
5284     * values, or null if none.
5285     *
5286     * @param map the map
5287     * @param reducer a commutative associative combining function
5288     * @return the task
5289     */
5290     public static <K,V> ForkJoinTask<V> reduceValues
5291     (ConcurrentHashMapV8<K,V> map,
5292     BiFun<? super V, ? super V, ? extends V> reducer) {
5293     if (reducer == null) throw new NullPointerException();
5294     return new ReduceValuesTask<K,V>
5295 dl 1.63 (map, null, -1, null, reducer);
5296 dl 1.52 }
5297    
5298     /**
5299     * Returns a task that when invoked, returns the result of
5300     * accumulating the given transformation of all values using the
5301     * given reducer to combine values, or null if none.
5302     *
5303     * @param map the map
5304     * @param transformer a function returning the transformation
5305 jsr166 1.68 * for an element, or null if there is no transformation (in
5306 dl 1.52 * which case it is not combined).
5307     * @param reducer a commutative associative combining function
5308     * @return the task
5309     */
5310     public static <K,V,U> ForkJoinTask<U> reduceValues
5311     (ConcurrentHashMapV8<K,V> map,
5312     Fun<? super V, ? extends U> transformer,
5313     BiFun<? super U, ? super U, ? extends U> reducer) {
5314     if (transformer == null || reducer == null)
5315     throw new NullPointerException();
5316     return new MapReduceValuesTask<K,V,U>
5317 dl 1.63 (map, null, -1, null, transformer, reducer);
5318 dl 1.52 }
5319    
5320     /**
5321     * Returns a task that when invoked, returns the result of
5322     * accumulating the given transformation of all values using the
5323     * given reducer to combine values, and the given basis as an
5324     * identity value.
5325     *
5326     * @param map the map
5327     * @param transformer a function returning the transformation
5328     * for an element
5329     * @param basis the identity (initial default value) for the reduction
5330     * @param reducer a commutative associative combining function
5331     * @return the task
5332     */
5333     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5334     (ConcurrentHashMapV8<K,V> map,
5335     ObjectToDouble<? super V> transformer,
5336     double basis,
5337     DoubleByDoubleToDouble reducer) {
5338     if (transformer == null || reducer == null)
5339     throw new NullPointerException();
5340     return new MapReduceValuesToDoubleTask<K,V>
5341 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5342 dl 1.52 }
5343    
5344     /**
5345     * Returns a task that when invoked, returns the result of
5346     * accumulating the given transformation of all values using the
5347     * given reducer to combine values, and the given basis as an
5348     * identity value.
5349     *
5350     * @param map the map
5351     * @param transformer a function returning the transformation
5352     * for an element
5353     * @param basis the identity (initial default value) for the reduction
5354     * @param reducer a commutative associative combining function
5355     * @return the task
5356     */
5357     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5358     (ConcurrentHashMapV8<K,V> map,
5359     ObjectToLong<? super V> transformer,
5360     long basis,
5361     LongByLongToLong reducer) {
5362     if (transformer == null || reducer == null)
5363     throw new NullPointerException();
5364     return new MapReduceValuesToLongTask<K,V>
5365 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5366 dl 1.52 }
5367    
5368     /**
5369     * Returns a task that when invoked, returns the result of
5370     * accumulating the given transformation of all values using the
5371     * given reducer to combine values, and the given basis as an
5372     * identity value.
5373     *
5374     * @param map the map
5375     * @param transformer a function returning the transformation
5376     * for an element
5377     * @param basis the identity (initial default value) for the reduction
5378     * @param reducer a commutative associative combining function
5379     * @return the task
5380     */
5381     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5382     (ConcurrentHashMapV8<K,V> map,
5383     ObjectToInt<? super V> transformer,
5384     int basis,
5385     IntByIntToInt reducer) {
5386     if (transformer == null || reducer == null)
5387     throw new NullPointerException();
5388     return new MapReduceValuesToIntTask<K,V>
5389 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5390 dl 1.52 }
5391    
5392     /**
5393     * Returns a task that when invoked, perform the given action
5394 jsr166 1.56 * for each entry.
5395 dl 1.52 *
5396     * @param map the map
5397     * @param action the action
5398     */
5399 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
5400 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5401     Action<Map.Entry<K,V>> action) {
5402     if (action == null) throw new NullPointerException();
5403 dl 1.79 return new ForEachEntryTask<K,V>(map, null, -1, action);
5404 dl 1.52 }
5405    
5406     /**
5407     * Returns a task that when invoked, perform the given action
5408 jsr166 1.56 * for each non-null transformation of each entry.
5409 dl 1.52 *
5410     * @param map the map
5411     * @param transformer a function returning the transformation
5412 jsr166 1.68 * for an element, or null if there is no transformation (in
5413 jsr166 1.67 * which case the action is not applied)
5414 dl 1.52 * @param action the action
5415     */
5416 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5417 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5418     Fun<Map.Entry<K,V>, ? extends U> transformer,
5419     Action<U> action) {
5420     if (transformer == null || action == null)
5421     throw new NullPointerException();
5422     return new ForEachTransformedEntryTask<K,V,U>
5423 dl 1.79 (map, null, -1, transformer, action);
5424 dl 1.52 }
5425    
5426     /**
5427     * Returns a task that when invoked, returns a non-null result
5428     * from applying the given search function on each entry, or
5429 dl 1.59 * null if none. Upon success, further element processing is
5430     * suppressed and the results of any other parallel
5431     * invocations of the search function are ignored.
5432 dl 1.52 *
5433     * @param map the map
5434     * @param searchFunction a function returning a non-null
5435     * result on success, else null
5436     * @return the task
5437     */
5438     public static <K,V,U> ForkJoinTask<U> searchEntries
5439     (ConcurrentHashMapV8<K,V> map,
5440     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5441     if (searchFunction == null) throw new NullPointerException();
5442     return new SearchEntriesTask<K,V,U>
5443 dl 1.79 (map, null, -1, searchFunction,
5444 dl 1.52 new AtomicReference<U>());
5445     }
5446    
5447     /**
5448     * Returns a task that when invoked, returns the result of
5449     * accumulating all entries using the given reducer to combine
5450     * values, or null if none.
5451     *
5452     * @param map the map
5453     * @param reducer a commutative associative combining function
5454     * @return the task
5455     */
5456     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5457     (ConcurrentHashMapV8<K,V> map,
5458     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5459     if (reducer == null) throw new NullPointerException();
5460     return new ReduceEntriesTask<K,V>
5461 dl 1.63 (map, null, -1, null, reducer);
5462 dl 1.52 }
5463    
5464     /**
5465     * Returns a task that when invoked, returns the result of
5466     * accumulating the given transformation of all entries using the
5467     * given reducer to combine values, or null if none.
5468     *
5469     * @param map the map
5470     * @param transformer a function returning the transformation
5471 jsr166 1.68 * for an element, or null if there is no transformation (in
5472 dl 1.52 * which case it is not combined).
5473     * @param reducer a commutative associative combining function
5474     * @return the task
5475     */
5476     public static <K,V,U> ForkJoinTask<U> reduceEntries
5477     (ConcurrentHashMapV8<K,V> map,
5478     Fun<Map.Entry<K,V>, ? extends U> transformer,
5479     BiFun<? super U, ? super U, ? extends U> reducer) {
5480     if (transformer == null || reducer == null)
5481     throw new NullPointerException();
5482     return new MapReduceEntriesTask<K,V,U>
5483 dl 1.63 (map, null, -1, null, transformer, reducer);
5484 dl 1.52 }
5485    
5486     /**
5487     * Returns a task that when invoked, returns the result of
5488     * accumulating the given transformation of all entries using the
5489     * given reducer to combine values, and the given basis as an
5490     * identity value.
5491     *
5492     * @param map the map
5493     * @param transformer a function returning the transformation
5494     * for an element
5495     * @param basis the identity (initial default value) for the reduction
5496     * @param reducer a commutative associative combining function
5497     * @return the task
5498     */
5499     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5500     (ConcurrentHashMapV8<K,V> map,
5501     ObjectToDouble<Map.Entry<K,V>> transformer,
5502     double basis,
5503     DoubleByDoubleToDouble reducer) {
5504     if (transformer == null || reducer == null)
5505     throw new NullPointerException();
5506     return new MapReduceEntriesToDoubleTask<K,V>
5507 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5508 dl 1.52 }
5509    
5510     /**
5511     * Returns a task that when invoked, returns the result of
5512     * accumulating the given transformation of all entries using the
5513     * given reducer to combine values, and the given basis as an
5514     * identity value.
5515     *
5516     * @param map the map
5517     * @param transformer a function returning the transformation
5518     * for an element
5519     * @param basis the identity (initial default value) for the reduction
5520     * @param reducer a commutative associative combining function
5521     * @return the task
5522     */
5523     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5524     (ConcurrentHashMapV8<K,V> map,
5525     ObjectToLong<Map.Entry<K,V>> transformer,
5526     long basis,
5527     LongByLongToLong reducer) {
5528     if (transformer == null || reducer == null)
5529     throw new NullPointerException();
5530     return new MapReduceEntriesToLongTask<K,V>
5531 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5532 dl 1.52 }
5533    
5534     /**
5535     * Returns a task that when invoked, returns the result of
5536     * accumulating the given transformation of all entries using the
5537     * given reducer to combine values, and the given basis as an
5538     * identity value.
5539     *
5540     * @param map the map
5541     * @param transformer a function returning the transformation
5542     * for an element
5543     * @param basis the identity (initial default value) for the reduction
5544     * @param reducer a commutative associative combining function
5545     * @return the task
5546     */
5547     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5548     (ConcurrentHashMapV8<K,V> map,
5549     ObjectToInt<Map.Entry<K,V>> transformer,
5550     int basis,
5551     IntByIntToInt reducer) {
5552     if (transformer == null || reducer == null)
5553     throw new NullPointerException();
5554     return new MapReduceEntriesToIntTask<K,V>
5555 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5556 dl 1.52 }
5557     }
5558    
5559     // -------------------------------------------------------
5560    
5561     /*
5562     * Task classes. Coded in a regular but ugly format/style to
5563     * simplify checks that each variant differs in the right way from
5564 dl 1.82 * others. The null screenings exist because compilers cannot tell
5565     * that we've already null-checked task arguments, so we force
5566     * simplest hoisted bypass to help avoid convoluted traps.
5567 dl 1.52 */
5568    
5569 dl 1.61 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5570 dl 1.79 extends Traverser<K,V,Void> {
5571 dl 1.52 final Action<K> action;
5572     ForEachKeyTask
5573 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5574 dl 1.52 Action<K> action) {
5575 dl 1.79 super(m, p, b);
5576 dl 1.52 this.action = action;
5577     }
5578 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5579     final Action<K> action;
5580 dl 1.82 if ((action = this.action) != null) {
5581     for (int b; (b = preSplit()) > 0;)
5582     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5583     while (advance() != null)
5584     action.apply((K)nextKey);
5585     propagateCompletion();
5586     }
5587 dl 1.52 }
5588     }
5589    
5590 dl 1.61 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5591 dl 1.79 extends Traverser<K,V,Void> {
5592 dl 1.52 final Action<V> action;
5593     ForEachValueTask
5594 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5595 dl 1.52 Action<V> action) {
5596 dl 1.79 super(m, p, b);
5597 dl 1.52 this.action = action;
5598     }
5599 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5600     final Action<V> action;
5601 dl 1.82 if ((action = this.action) != null) {
5602     for (int b; (b = preSplit()) > 0;)
5603     new ForEachValueTask<K,V>(map, this, b, action).fork();
5604 dl 1.84 V v;
5605 dl 1.82 while ((v = advance()) != null)
5606 dl 1.84 action.apply(v);
5607 dl 1.82 propagateCompletion();
5608     }
5609 dl 1.52 }
5610     }
5611    
5612 dl 1.61 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5613 dl 1.79 extends Traverser<K,V,Void> {
5614 dl 1.52 final Action<Entry<K,V>> action;
5615     ForEachEntryTask
5616 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5617 dl 1.52 Action<Entry<K,V>> action) {
5618 dl 1.79 super(m, p, b);
5619 dl 1.52 this.action = action;
5620     }
5621 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5622     final Action<Entry<K,V>> action;
5623 dl 1.82 if ((action = this.action) != null) {
5624     for (int b; (b = preSplit()) > 0;)
5625     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5626 dl 1.84 V v;
5627 dl 1.82 while ((v = advance()) != null)
5628 dl 1.84 action.apply(entryFor((K)nextKey, v));
5629 dl 1.82 propagateCompletion();
5630     }
5631 dl 1.52 }
5632     }
5633    
5634 dl 1.61 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5635 dl 1.79 extends Traverser<K,V,Void> {
5636 dl 1.52 final BiAction<K,V> action;
5637     ForEachMappingTask
5638 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5639 dl 1.52 BiAction<K,V> action) {
5640 dl 1.79 super(m, p, b);
5641 dl 1.52 this.action = action;
5642     }
5643 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5644     final BiAction<K,V> action;
5645 dl 1.82 if ((action = this.action) != null) {
5646     for (int b; (b = preSplit()) > 0;)
5647     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5648 dl 1.84 V v;
5649 dl 1.82 while ((v = advance()) != null)
5650 dl 1.84 action.apply((K)nextKey, v);
5651 dl 1.82 propagateCompletion();
5652     }
5653 dl 1.52 }
5654     }
5655    
5656 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5657 dl 1.79 extends Traverser<K,V,Void> {
5658 dl 1.52 final Fun<? super K, ? extends U> transformer;
5659     final Action<U> action;
5660     ForEachTransformedKeyTask
5661 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5662     Fun<? super K, ? extends U> transformer, Action<U> action) {
5663     super(m, p, b);
5664     this.transformer = transformer; this.action = action;
5665     }
5666     @SuppressWarnings("unchecked") public final void compute() {
5667     final Fun<? super K, ? extends U> transformer;
5668     final Action<U> action;
5669 dl 1.82 if ((transformer = this.transformer) != null &&
5670     (action = this.action) != null) {
5671     for (int b; (b = preSplit()) > 0;)
5672     new ForEachTransformedKeyTask<K,V,U>
5673     (map, this, b, transformer, action).fork();
5674     U u;
5675     while (advance() != null) {
5676     if ((u = transformer.apply((K)nextKey)) != null)
5677     action.apply(u);
5678     }
5679     propagateCompletion();
5680 dl 1.52 }
5681     }
5682     }
5683    
5684 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5685 dl 1.79 extends Traverser<K,V,Void> {
5686 dl 1.52 final Fun<? super V, ? extends U> transformer;
5687     final Action<U> action;
5688     ForEachTransformedValueTask
5689 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5690     Fun<? super V, ? extends U> transformer, Action<U> action) {
5691     super(m, p, b);
5692     this.transformer = transformer; this.action = action;
5693     }
5694     @SuppressWarnings("unchecked") public final void compute() {
5695     final Fun<? super V, ? extends U> transformer;
5696     final Action<U> action;
5697 dl 1.82 if ((transformer = this.transformer) != null &&
5698     (action = this.action) != null) {
5699     for (int b; (b = preSplit()) > 0;)
5700     new ForEachTransformedValueTask<K,V,U>
5701     (map, this, b, transformer, action).fork();
5702 dl 1.84 V v; U u;
5703 dl 1.82 while ((v = advance()) != null) {
5704 dl 1.84 if ((u = transformer.apply(v)) != null)
5705 dl 1.82 action.apply(u);
5706     }
5707     propagateCompletion();
5708 dl 1.52 }
5709     }
5710     }
5711    
5712 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5713 dl 1.79 extends Traverser<K,V,Void> {
5714 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5715     final Action<U> action;
5716     ForEachTransformedEntryTask
5717 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5718     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5719     super(m, p, b);
5720     this.transformer = transformer; this.action = action;
5721     }
5722     @SuppressWarnings("unchecked") public final void compute() {
5723     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5724     final Action<U> action;
5725 dl 1.82 if ((transformer = this.transformer) != null &&
5726     (action = this.action) != null) {
5727     for (int b; (b = preSplit()) > 0;)
5728     new ForEachTransformedEntryTask<K,V,U>
5729     (map, this, b, transformer, action).fork();
5730 dl 1.84 V v; U u;
5731 dl 1.82 while ((v = advance()) != null) {
5732     if ((u = transformer.apply(entryFor((K)nextKey,
5733 dl 1.84 v))) != null)
5734 dl 1.82 action.apply(u);
5735     }
5736     propagateCompletion();
5737 dl 1.52 }
5738     }
5739     }
5740    
5741 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5742 dl 1.79 extends Traverser<K,V,Void> {
5743 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5744     final Action<U> action;
5745     ForEachTransformedMappingTask
5746 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5747 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5748     Action<U> action) {
5749 dl 1.79 super(m, p, b);
5750     this.transformer = transformer; this.action = action;
5751 dl 1.52 }
5752 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5753     final BiFun<? super K, ? super V, ? extends U> transformer;
5754     final Action<U> action;
5755 dl 1.82 if ((transformer = this.transformer) != null &&
5756     (action = this.action) != null) {
5757     for (int b; (b = preSplit()) > 0;)
5758     new ForEachTransformedMappingTask<K,V,U>
5759     (map, this, b, transformer, action).fork();
5760 dl 1.84 V v; U u;
5761 dl 1.82 while ((v = advance()) != null) {
5762 dl 1.84 if ((u = transformer.apply((K)nextKey, v)) != null)
5763 dl 1.82 action.apply(u);
5764     }
5765     propagateCompletion();
5766 dl 1.52 }
5767     }
5768     }
5769    
5770 dl 1.61 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5771 dl 1.79 extends Traverser<K,V,U> {
5772 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
5773     final AtomicReference<U> result;
5774     SearchKeysTask
5775 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5776 dl 1.52 Fun<? super K, ? extends U> searchFunction,
5777     AtomicReference<U> result) {
5778 dl 1.79 super(m, p, b);
5779 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5780     }
5781 dl 1.79 public final U getRawResult() { return result.get(); }
5782     @SuppressWarnings("unchecked") public final void compute() {
5783     final Fun<? super K, ? extends U> searchFunction;
5784     final AtomicReference<U> result;
5785 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5786     (result = this.result) != null) {
5787     for (int b;;) {
5788     if (result.get() != null)
5789     return;
5790     if ((b = preSplit()) <= 0)
5791     break;
5792     new SearchKeysTask<K,V,U>
5793     (map, this, b, searchFunction, result).fork();
5794 dl 1.61 }
5795 dl 1.82 while (result.get() == null) {
5796     U u;
5797     if (advance() == null) {
5798     propagateCompletion();
5799     break;
5800     }
5801     if ((u = searchFunction.apply((K)nextKey)) != null) {
5802     if (result.compareAndSet(null, u))
5803     quietlyCompleteRoot();
5804     break;
5805     }
5806 dl 1.52 }
5807     }
5808     }
5809     }
5810    
5811 dl 1.61 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5812 dl 1.79 extends Traverser<K,V,U> {
5813 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
5814     final AtomicReference<U> result;
5815     SearchValuesTask
5816 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5817 dl 1.52 Fun<? super V, ? extends U> searchFunction,
5818     AtomicReference<U> result) {
5819 dl 1.79 super(m, p, b);
5820 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5821     }
5822 dl 1.79 public final U getRawResult() { return result.get(); }
5823     @SuppressWarnings("unchecked") public final void compute() {
5824     final Fun<? super V, ? extends U> searchFunction;
5825     final AtomicReference<U> result;
5826 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5827     (result = this.result) != null) {
5828     for (int b;;) {
5829     if (result.get() != null)
5830     return;
5831     if ((b = preSplit()) <= 0)
5832     break;
5833     new SearchValuesTask<K,V,U>
5834     (map, this, b, searchFunction, result).fork();
5835 dl 1.61 }
5836 dl 1.82 while (result.get() == null) {
5837 dl 1.84 V v; U u;
5838 dl 1.82 if ((v = advance()) == null) {
5839     propagateCompletion();
5840     break;
5841     }
5842 dl 1.84 if ((u = searchFunction.apply(v)) != null) {
5843 dl 1.82 if (result.compareAndSet(null, u))
5844     quietlyCompleteRoot();
5845     break;
5846     }
5847 dl 1.52 }
5848     }
5849     }
5850     }
5851    
5852 dl 1.61 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5853 dl 1.79 extends Traverser<K,V,U> {
5854 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
5855     final AtomicReference<U> result;
5856     SearchEntriesTask
5857 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5858 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
5859     AtomicReference<U> result) {
5860 dl 1.79 super(m, p, b);
5861 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5862     }
5863 dl 1.79 public final U getRawResult() { return result.get(); }
5864     @SuppressWarnings("unchecked") public final void compute() {
5865     final Fun<Entry<K,V>, ? extends U> searchFunction;
5866     final AtomicReference<U> result;
5867 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5868     (result = this.result) != null) {
5869     for (int b;;) {
5870     if (result.get() != null)
5871     return;
5872     if ((b = preSplit()) <= 0)
5873     break;
5874     new SearchEntriesTask<K,V,U>
5875     (map, this, b, searchFunction, result).fork();
5876 dl 1.61 }
5877 dl 1.82 while (result.get() == null) {
5878 dl 1.84 V v; U u;
5879 dl 1.82 if ((v = advance()) == null) {
5880     propagateCompletion();
5881     break;
5882     }
5883     if ((u = searchFunction.apply(entryFor((K)nextKey,
5884 dl 1.84 v))) != null) {
5885 dl 1.82 if (result.compareAndSet(null, u))
5886     quietlyCompleteRoot();
5887     return;
5888     }
5889 dl 1.52 }
5890     }
5891     }
5892     }
5893    
5894 dl 1.61 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5895 dl 1.79 extends Traverser<K,V,U> {
5896 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5897     final AtomicReference<U> result;
5898     SearchMappingsTask
5899 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5900 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5901     AtomicReference<U> result) {
5902 dl 1.79 super(m, p, b);
5903 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5904     }
5905 dl 1.79 public final U getRawResult() { return result.get(); }
5906     @SuppressWarnings("unchecked") public final void compute() {
5907     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5908     final AtomicReference<U> result;
5909 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5910     (result = this.result) != null) {
5911     for (int b;;) {
5912     if (result.get() != null)
5913     return;
5914     if ((b = preSplit()) <= 0)
5915     break;
5916     new SearchMappingsTask<K,V,U>
5917     (map, this, b, searchFunction, result).fork();
5918 dl 1.61 }
5919 dl 1.82 while (result.get() == null) {
5920 dl 1.84 V v; U u;
5921 dl 1.82 if ((v = advance()) == null) {
5922     propagateCompletion();
5923     break;
5924     }
5925 dl 1.84 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5926 dl 1.82 if (result.compareAndSet(null, u))
5927     quietlyCompleteRoot();
5928     break;
5929     }
5930 dl 1.52 }
5931     }
5932     }
5933     }
5934    
5935 dl 1.61 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5936 dl 1.79 extends Traverser<K,V,K> {
5937 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5938     K result;
5939 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5940 dl 1.52 ReduceKeysTask
5941 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5942 dl 1.61 ReduceKeysTask<K,V> nextRight,
5943 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5944 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5945 dl 1.52 this.reducer = reducer;
5946     }
5947 dl 1.79 public final K getRawResult() { return result; }
5948     @SuppressWarnings("unchecked") public final void compute() {
5949 dl 1.82 final BiFun<? super K, ? super K, ? extends K> reducer;
5950     if ((reducer = this.reducer) != null) {
5951     for (int b; (b = preSplit()) > 0;)
5952     (rights = new ReduceKeysTask<K,V>
5953     (map, this, b, rights, reducer)).fork();
5954     K r = null;
5955     while (advance() != null) {
5956     K u = (K)nextKey;
5957     r = (r == null) ? u : reducer.apply(r, u);
5958     }
5959     result = r;
5960     CountedCompleter<?> c;
5961     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5962     ReduceKeysTask<K,V>
5963     t = (ReduceKeysTask<K,V>)c,
5964     s = t.rights;
5965     while (s != null) {
5966     K tr, sr;
5967     if ((sr = s.result) != null)
5968     t.result = (((tr = t.result) == null) ? sr :
5969     reducer.apply(tr, sr));
5970     s = t.rights = s.nextRight;
5971     }
5972 dl 1.52 }
5973 dl 1.71 }
5974 dl 1.52 }
5975     }
5976    
5977 dl 1.61 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5978 dl 1.79 extends Traverser<K,V,V> {
5979 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5980     V result;
5981 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5982 dl 1.52 ReduceValuesTask
5983 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5984 dl 1.61 ReduceValuesTask<K,V> nextRight,
5985 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5986 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5987 dl 1.52 this.reducer = reducer;
5988     }
5989 dl 1.79 public final V getRawResult() { return result; }
5990     @SuppressWarnings("unchecked") public final void compute() {
5991 dl 1.82 final BiFun<? super V, ? super V, ? extends V> reducer;
5992     if ((reducer = this.reducer) != null) {
5993     for (int b; (b = preSplit()) > 0;)
5994     (rights = new ReduceValuesTask<K,V>
5995     (map, this, b, rights, reducer)).fork();
5996     V r = null;
5997 dl 1.84 V v;
5998 dl 1.82 while ((v = advance()) != null) {
5999 dl 1.84 V u = v;
6000 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6001     }
6002     result = r;
6003     CountedCompleter<?> c;
6004     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6005     ReduceValuesTask<K,V>
6006     t = (ReduceValuesTask<K,V>)c,
6007     s = t.rights;
6008     while (s != null) {
6009     V tr, sr;
6010     if ((sr = s.result) != null)
6011     t.result = (((tr = t.result) == null) ? sr :
6012     reducer.apply(tr, sr));
6013     s = t.rights = s.nextRight;
6014     }
6015 dl 1.52 }
6016     }
6017     }
6018     }
6019    
6020 dl 1.61 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6021 dl 1.79 extends Traverser<K,V,Map.Entry<K,V>> {
6022 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6023     Map.Entry<K,V> result;
6024 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
6025 dl 1.52 ReduceEntriesTask
6026 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6027 dl 1.63 ReduceEntriesTask<K,V> nextRight,
6028 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6029 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6030 dl 1.52 this.reducer = reducer;
6031     }
6032 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
6033     @SuppressWarnings("unchecked") public final void compute() {
6034 dl 1.82 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6035     if ((reducer = this.reducer) != null) {
6036     for (int b; (b = preSplit()) > 0;)
6037     (rights = new ReduceEntriesTask<K,V>
6038     (map, this, b, rights, reducer)).fork();
6039     Map.Entry<K,V> r = null;
6040 dl 1.84 V v;
6041 dl 1.82 while ((v = advance()) != null) {
6042 dl 1.84 Map.Entry<K,V> u = entryFor((K)nextKey, v);
6043 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6044     }
6045     result = r;
6046     CountedCompleter<?> c;
6047     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6048     ReduceEntriesTask<K,V>
6049     t = (ReduceEntriesTask<K,V>)c,
6050     s = t.rights;
6051     while (s != null) {
6052     Map.Entry<K,V> tr, sr;
6053     if ((sr = s.result) != null)
6054     t.result = (((tr = t.result) == null) ? sr :
6055     reducer.apply(tr, sr));
6056     s = t.rights = s.nextRight;
6057     }
6058 dl 1.52 }
6059     }
6060     }
6061     }
6062    
6063 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6064 dl 1.79 extends Traverser<K,V,U> {
6065 dl 1.52 final Fun<? super K, ? extends U> transformer;
6066     final BiFun<? super U, ? super U, ? extends U> reducer;
6067     U result;
6068 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
6069 dl 1.52 MapReduceKeysTask
6070 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6071 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
6072 dl 1.52 Fun<? super K, ? extends U> transformer,
6073     BiFun<? super U, ? super U, ? extends U> reducer) {
6074 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6075 dl 1.52 this.transformer = transformer;
6076     this.reducer = reducer;
6077     }
6078 dl 1.79 public final U getRawResult() { return result; }
6079     @SuppressWarnings("unchecked") public final void compute() {
6080 dl 1.82 final Fun<? super K, ? extends U> transformer;
6081     final BiFun<? super U, ? super U, ? extends U> reducer;
6082     if ((transformer = this.transformer) != null &&
6083     (reducer = this.reducer) != null) {
6084     for (int b; (b = preSplit()) > 0;)
6085     (rights = new MapReduceKeysTask<K,V,U>
6086     (map, this, b, rights, transformer, reducer)).fork();
6087     U r = null, u;
6088     while (advance() != null) {
6089     if ((u = transformer.apply((K)nextKey)) != null)
6090     r = (r == null) ? u : reducer.apply(r, u);
6091     }
6092     result = r;
6093     CountedCompleter<?> c;
6094     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6095     MapReduceKeysTask<K,V,U>
6096     t = (MapReduceKeysTask<K,V,U>)c,
6097     s = t.rights;
6098     while (s != null) {
6099     U tr, sr;
6100     if ((sr = s.result) != null)
6101     t.result = (((tr = t.result) == null) ? sr :
6102     reducer.apply(tr, sr));
6103     s = t.rights = s.nextRight;
6104     }
6105 dl 1.52 }
6106     }
6107     }
6108     }
6109    
6110 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6111 dl 1.79 extends Traverser<K,V,U> {
6112 dl 1.52 final Fun<? super V, ? extends U> transformer;
6113     final BiFun<? super U, ? super U, ? extends U> reducer;
6114     U result;
6115 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
6116 dl 1.52 MapReduceValuesTask
6117 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6118 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
6119 dl 1.52 Fun<? super V, ? extends U> transformer,
6120     BiFun<? super U, ? super U, ? extends U> reducer) {
6121 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6122 dl 1.52 this.transformer = transformer;
6123     this.reducer = reducer;
6124     }
6125 dl 1.79 public final U getRawResult() { return result; }
6126     @SuppressWarnings("unchecked") public final void compute() {
6127 dl 1.82 final Fun<? super V, ? extends U> transformer;
6128     final BiFun<? super U, ? super U, ? extends U> reducer;
6129     if ((transformer = this.transformer) != null &&
6130     (reducer = this.reducer) != null) {
6131     for (int b; (b = preSplit()) > 0;)
6132     (rights = new MapReduceValuesTask<K,V,U>
6133     (map, this, b, rights, transformer, reducer)).fork();
6134     U r = null, u;
6135 dl 1.84 V v;
6136 dl 1.82 while ((v = advance()) != null) {
6137 dl 1.84 if ((u = transformer.apply(v)) != null)
6138 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6139     }
6140     result = r;
6141     CountedCompleter<?> c;
6142     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6143     MapReduceValuesTask<K,V,U>
6144     t = (MapReduceValuesTask<K,V,U>)c,
6145     s = t.rights;
6146     while (s != null) {
6147     U tr, sr;
6148     if ((sr = s.result) != null)
6149     t.result = (((tr = t.result) == null) ? sr :
6150     reducer.apply(tr, sr));
6151     s = t.rights = s.nextRight;
6152     }
6153 dl 1.52 }
6154 dl 1.71 }
6155 dl 1.52 }
6156     }
6157    
6158 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6159 dl 1.79 extends Traverser<K,V,U> {
6160 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6161     final BiFun<? super U, ? super U, ? extends U> reducer;
6162     U result;
6163 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
6164 dl 1.52 MapReduceEntriesTask
6165 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6166 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
6167 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
6168     BiFun<? super U, ? super U, ? extends U> reducer) {
6169 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6170 dl 1.52 this.transformer = transformer;
6171     this.reducer = reducer;
6172     }
6173 dl 1.79 public final U getRawResult() { return result; }
6174     @SuppressWarnings("unchecked") public final void compute() {
6175 dl 1.82 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6176     final BiFun<? super U, ? super U, ? extends U> reducer;
6177     if ((transformer = this.transformer) != null &&
6178     (reducer = this.reducer) != null) {
6179     for (int b; (b = preSplit()) > 0;)
6180     (rights = new MapReduceEntriesTask<K,V,U>
6181     (map, this, b, rights, transformer, reducer)).fork();
6182     U r = null, u;
6183 dl 1.84 V v;
6184 dl 1.82 while ((v = advance()) != null) {
6185     if ((u = transformer.apply(entryFor((K)nextKey,
6186 dl 1.84 v))) != null)
6187 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6188     }
6189     result = r;
6190     CountedCompleter<?> c;
6191     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6192     MapReduceEntriesTask<K,V,U>
6193     t = (MapReduceEntriesTask<K,V,U>)c,
6194     s = t.rights;
6195     while (s != null) {
6196     U tr, sr;
6197     if ((sr = s.result) != null)
6198     t.result = (((tr = t.result) == null) ? sr :
6199     reducer.apply(tr, sr));
6200     s = t.rights = s.nextRight;
6201     }
6202 dl 1.52 }
6203     }
6204     }
6205     }
6206    
6207 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6208 dl 1.79 extends Traverser<K,V,U> {
6209 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
6210     final BiFun<? super U, ? super U, ? extends U> reducer;
6211     U result;
6212 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
6213 dl 1.52 MapReduceMappingsTask
6214 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6215 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
6216 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
6217     BiFun<? super U, ? super U, ? extends U> reducer) {
6218 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6219 dl 1.52 this.transformer = transformer;
6220     this.reducer = reducer;
6221     }
6222 dl 1.79 public final U getRawResult() { return result; }
6223     @SuppressWarnings("unchecked") public final void compute() {
6224 dl 1.82 final BiFun<? super K, ? super V, ? extends U> transformer;
6225     final BiFun<? super U, ? super U, ? extends U> reducer;
6226     if ((transformer = this.transformer) != null &&
6227     (reducer = this.reducer) != null) {
6228     for (int b; (b = preSplit()) > 0;)
6229     (rights = new MapReduceMappingsTask<K,V,U>
6230     (map, this, b, rights, transformer, reducer)).fork();
6231     U r = null, u;
6232 dl 1.84 V v;
6233 dl 1.82 while ((v = advance()) != null) {
6234 dl 1.84 if ((u = transformer.apply((K)nextKey, v)) != null)
6235 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6236     }
6237     result = r;
6238     CountedCompleter<?> c;
6239     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240     MapReduceMappingsTask<K,V,U>
6241     t = (MapReduceMappingsTask<K,V,U>)c,
6242     s = t.rights;
6243     while (s != null) {
6244     U tr, sr;
6245     if ((sr = s.result) != null)
6246     t.result = (((tr = t.result) == null) ? sr :
6247     reducer.apply(tr, sr));
6248     s = t.rights = s.nextRight;
6249     }
6250 dl 1.52 }
6251 dl 1.71 }
6252 dl 1.52 }
6253     }
6254    
6255 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6256 dl 1.79 extends Traverser<K,V,Double> {
6257 dl 1.52 final ObjectToDouble<? super K> transformer;
6258     final DoubleByDoubleToDouble reducer;
6259     final double basis;
6260     double result;
6261 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6262 dl 1.52 MapReduceKeysToDoubleTask
6263 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6264 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
6265 dl 1.52 ObjectToDouble<? super K> transformer,
6266     double basis,
6267     DoubleByDoubleToDouble reducer) {
6268 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6269 dl 1.52 this.transformer = transformer;
6270     this.basis = basis; this.reducer = reducer;
6271     }
6272 dl 1.79 public final Double getRawResult() { return result; }
6273     @SuppressWarnings("unchecked") public final void compute() {
6274 dl 1.82 final ObjectToDouble<? super K> transformer;
6275     final DoubleByDoubleToDouble reducer;
6276     if ((transformer = this.transformer) != null &&
6277     (reducer = this.reducer) != null) {
6278     double r = this.basis;
6279     for (int b; (b = preSplit()) > 0;)
6280     (rights = new MapReduceKeysToDoubleTask<K,V>
6281     (map, this, b, rights, transformer, r, reducer)).fork();
6282     while (advance() != null)
6283     r = reducer.apply(r, transformer.apply((K)nextKey));
6284     result = r;
6285     CountedCompleter<?> c;
6286     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6287     MapReduceKeysToDoubleTask<K,V>
6288     t = (MapReduceKeysToDoubleTask<K,V>)c,
6289     s = t.rights;
6290     while (s != null) {
6291     t.result = reducer.apply(t.result, s.result);
6292     s = t.rights = s.nextRight;
6293     }
6294 dl 1.52 }
6295 dl 1.71 }
6296 dl 1.52 }
6297     }
6298    
6299 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6300 dl 1.79 extends Traverser<K,V,Double> {
6301 dl 1.52 final ObjectToDouble<? super V> transformer;
6302     final DoubleByDoubleToDouble reducer;
6303     final double basis;
6304     double result;
6305 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6306 dl 1.52 MapReduceValuesToDoubleTask
6307 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6308 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
6309 dl 1.52 ObjectToDouble<? super V> transformer,
6310     double basis,
6311     DoubleByDoubleToDouble reducer) {
6312 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6313 dl 1.52 this.transformer = transformer;
6314     this.basis = basis; this.reducer = reducer;
6315     }
6316 dl 1.79 public final Double getRawResult() { return result; }
6317     @SuppressWarnings("unchecked") public final void compute() {
6318 dl 1.82 final ObjectToDouble<? super V> transformer;
6319     final DoubleByDoubleToDouble reducer;
6320     if ((transformer = this.transformer) != null &&
6321     (reducer = this.reducer) != null) {
6322     double r = this.basis;
6323     for (int b; (b = preSplit()) > 0;)
6324     (rights = new MapReduceValuesToDoubleTask<K,V>
6325     (map, this, b, rights, transformer, r, reducer)).fork();
6326 dl 1.84 V v;
6327 dl 1.82 while ((v = advance()) != null)
6328 dl 1.84 r = reducer.apply(r, transformer.apply(v));
6329 dl 1.82 result = r;
6330     CountedCompleter<?> c;
6331     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6332     MapReduceValuesToDoubleTask<K,V>
6333     t = (MapReduceValuesToDoubleTask<K,V>)c,
6334     s = t.rights;
6335     while (s != null) {
6336     t.result = reducer.apply(t.result, s.result);
6337     s = t.rights = s.nextRight;
6338     }
6339 dl 1.52 }
6340 dl 1.71 }
6341 dl 1.52 }
6342     }
6343    
6344 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6345 dl 1.79 extends Traverser<K,V,Double> {
6346 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
6347     final DoubleByDoubleToDouble reducer;
6348     final double basis;
6349     double result;
6350 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6351 dl 1.52 MapReduceEntriesToDoubleTask
6352 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6353 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
6354 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
6355     double basis,
6356     DoubleByDoubleToDouble reducer) {
6357 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6358 dl 1.52 this.transformer = transformer;
6359     this.basis = basis; this.reducer = reducer;
6360     }
6361 dl 1.79 public final Double getRawResult() { return result; }
6362     @SuppressWarnings("unchecked") public final void compute() {
6363 dl 1.82 final ObjectToDouble<Map.Entry<K,V>> transformer;
6364     final DoubleByDoubleToDouble reducer;
6365     if ((transformer = this.transformer) != null &&
6366     (reducer = this.reducer) != null) {
6367     double r = this.basis;
6368     for (int b; (b = preSplit()) > 0;)
6369     (rights = new MapReduceEntriesToDoubleTask<K,V>
6370     (map, this, b, rights, transformer, r, reducer)).fork();
6371 dl 1.84 V v;
6372 dl 1.82 while ((v = advance()) != null)
6373     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6374 dl 1.84 v)));
6375 dl 1.82 result = r;
6376     CountedCompleter<?> c;
6377     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378     MapReduceEntriesToDoubleTask<K,V>
6379     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6380     s = t.rights;
6381     while (s != null) {
6382     t.result = reducer.apply(t.result, s.result);
6383     s = t.rights = s.nextRight;
6384     }
6385 dl 1.52 }
6386 dl 1.71 }
6387 dl 1.52 }
6388     }
6389    
6390 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6391 dl 1.79 extends Traverser<K,V,Double> {
6392 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6393     final DoubleByDoubleToDouble reducer;
6394     final double basis;
6395     double result;
6396 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6397 dl 1.52 MapReduceMappingsToDoubleTask
6398 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6399 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
6400 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
6401     double basis,
6402     DoubleByDoubleToDouble reducer) {
6403 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6404 dl 1.52 this.transformer = transformer;
6405     this.basis = basis; this.reducer = reducer;
6406     }
6407 dl 1.79 public final Double getRawResult() { return result; }
6408     @SuppressWarnings("unchecked") public final void compute() {
6409 dl 1.82 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6410     final DoubleByDoubleToDouble reducer;
6411     if ((transformer = this.transformer) != null &&
6412     (reducer = this.reducer) != null) {
6413     double r = this.basis;
6414     for (int b; (b = preSplit()) > 0;)
6415     (rights = new MapReduceMappingsToDoubleTask<K,V>
6416     (map, this, b, rights, transformer, r, reducer)).fork();
6417 dl 1.84 V v;
6418 dl 1.82 while ((v = advance()) != null)
6419 dl 1.84 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6420 dl 1.82 result = r;
6421     CountedCompleter<?> c;
6422     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423     MapReduceMappingsToDoubleTask<K,V>
6424     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6425     s = t.rights;
6426     while (s != null) {
6427     t.result = reducer.apply(t.result, s.result);
6428     s = t.rights = s.nextRight;
6429     }
6430 dl 1.52 }
6431 dl 1.71 }
6432 dl 1.52 }
6433     }
6434    
6435 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6436 dl 1.79 extends Traverser<K,V,Long> {
6437 dl 1.52 final ObjectToLong<? super K> transformer;
6438     final LongByLongToLong reducer;
6439     final long basis;
6440     long result;
6441 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
6442 dl 1.52 MapReduceKeysToLongTask
6443 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6444 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
6445 dl 1.52 ObjectToLong<? super K> transformer,
6446     long basis,
6447     LongByLongToLong reducer) {
6448 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6449 dl 1.52 this.transformer = transformer;
6450     this.basis = basis; this.reducer = reducer;
6451     }
6452 dl 1.79 public final Long getRawResult() { return result; }
6453     @SuppressWarnings("unchecked") public final void compute() {
6454 dl 1.82 final ObjectToLong<? super K> transformer;
6455     final LongByLongToLong reducer;
6456     if ((transformer = this.transformer) != null &&
6457     (reducer = this.reducer) != null) {
6458     long r = this.basis;
6459     for (int b; (b = preSplit()) > 0;)
6460     (rights = new MapReduceKeysToLongTask<K,V>
6461     (map, this, b, rights, transformer, r, reducer)).fork();
6462     while (advance() != null)
6463     r = reducer.apply(r, transformer.apply((K)nextKey));
6464     result = r;
6465     CountedCompleter<?> c;
6466     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467     MapReduceKeysToLongTask<K,V>
6468     t = (MapReduceKeysToLongTask<K,V>)c,
6469     s = t.rights;
6470     while (s != null) {
6471     t.result = reducer.apply(t.result, s.result);
6472     s = t.rights = s.nextRight;
6473     }
6474 dl 1.52 }
6475 dl 1.71 }
6476 dl 1.52 }
6477     }
6478    
6479 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6480 dl 1.79 extends Traverser<K,V,Long> {
6481 dl 1.52 final ObjectToLong<? super V> transformer;
6482     final LongByLongToLong reducer;
6483     final long basis;
6484     long result;
6485 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
6486 dl 1.52 MapReduceValuesToLongTask
6487 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6488 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
6489 dl 1.52 ObjectToLong<? super V> transformer,
6490     long basis,
6491     LongByLongToLong reducer) {
6492 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6493 dl 1.52 this.transformer = transformer;
6494     this.basis = basis; this.reducer = reducer;
6495     }
6496 dl 1.79 public final Long getRawResult() { return result; }
6497     @SuppressWarnings("unchecked") public final void compute() {
6498 dl 1.82 final ObjectToLong<? super V> transformer;
6499     final LongByLongToLong reducer;
6500     if ((transformer = this.transformer) != null &&
6501     (reducer = this.reducer) != null) {
6502     long r = this.basis;
6503     for (int b; (b = preSplit()) > 0;)
6504     (rights = new MapReduceValuesToLongTask<K,V>
6505     (map, this, b, rights, transformer, r, reducer)).fork();
6506 dl 1.84 V v;
6507 dl 1.82 while ((v = advance()) != null)
6508 dl 1.84 r = reducer.apply(r, transformer.apply(v));
6509 dl 1.82 result = r;
6510     CountedCompleter<?> c;
6511     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512     MapReduceValuesToLongTask<K,V>
6513     t = (MapReduceValuesToLongTask<K,V>)c,
6514     s = t.rights;
6515     while (s != null) {
6516     t.result = reducer.apply(t.result, s.result);
6517     s = t.rights = s.nextRight;
6518     }
6519 dl 1.52 }
6520 dl 1.71 }
6521 dl 1.52 }
6522     }
6523    
6524 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6525 dl 1.79 extends Traverser<K,V,Long> {
6526 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
6527     final LongByLongToLong reducer;
6528     final long basis;
6529     long result;
6530 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6531 dl 1.52 MapReduceEntriesToLongTask
6532 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6533 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
6534 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
6535     long basis,
6536     LongByLongToLong reducer) {
6537 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6538 dl 1.52 this.transformer = transformer;
6539     this.basis = basis; this.reducer = reducer;
6540     }
6541 dl 1.79 public final Long getRawResult() { return result; }
6542     @SuppressWarnings("unchecked") public final void compute() {
6543 dl 1.82 final ObjectToLong<Map.Entry<K,V>> transformer;
6544     final LongByLongToLong reducer;
6545     if ((transformer = this.transformer) != null &&
6546     (reducer = this.reducer) != null) {
6547     long r = this.basis;
6548     for (int b; (b = preSplit()) > 0;)
6549     (rights = new MapReduceEntriesToLongTask<K,V>
6550     (map, this, b, rights, transformer, r, reducer)).fork();
6551 dl 1.84 V v;
6552 dl 1.82 while ((v = advance()) != null)
6553     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6554 dl 1.84 v)));
6555 dl 1.82 result = r;
6556     CountedCompleter<?> c;
6557     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6558     MapReduceEntriesToLongTask<K,V>
6559     t = (MapReduceEntriesToLongTask<K,V>)c,
6560     s = t.rights;
6561     while (s != null) {
6562     t.result = reducer.apply(t.result, s.result);
6563     s = t.rights = s.nextRight;
6564     }
6565 dl 1.52 }
6566     }
6567     }
6568     }
6569    
6570 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6571 dl 1.79 extends Traverser<K,V,Long> {
6572 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
6573     final LongByLongToLong reducer;
6574     final long basis;
6575     long result;
6576 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6577 dl 1.52 MapReduceMappingsToLongTask
6578 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6579 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
6580 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
6581     long basis,
6582     LongByLongToLong reducer) {
6583 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6584 dl 1.52 this.transformer = transformer;
6585     this.basis = basis; this.reducer = reducer;
6586     }
6587 dl 1.79 public final Long getRawResult() { return result; }
6588     @SuppressWarnings("unchecked") public final void compute() {
6589 dl 1.82 final ObjectByObjectToLong<? super K, ? super V> transformer;
6590     final LongByLongToLong reducer;
6591     if ((transformer = this.transformer) != null &&
6592     (reducer = this.reducer) != null) {
6593     long r = this.basis;
6594     for (int b; (b = preSplit()) > 0;)
6595     (rights = new MapReduceMappingsToLongTask<K,V>
6596     (map, this, b, rights, transformer, r, reducer)).fork();
6597 dl 1.84 V v;
6598 dl 1.82 while ((v = advance()) != null)
6599 dl 1.84 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6600 dl 1.82 result = r;
6601     CountedCompleter<?> c;
6602     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6603     MapReduceMappingsToLongTask<K,V>
6604     t = (MapReduceMappingsToLongTask<K,V>)c,
6605     s = t.rights;
6606     while (s != null) {
6607     t.result = reducer.apply(t.result, s.result);
6608     s = t.rights = s.nextRight;
6609     }
6610 dl 1.52 }
6611 dl 1.71 }
6612 dl 1.52 }
6613     }
6614    
6615 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6616 dl 1.79 extends Traverser<K,V,Integer> {
6617 dl 1.52 final ObjectToInt<? super K> transformer;
6618     final IntByIntToInt reducer;
6619     final int basis;
6620     int result;
6621 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
6622 dl 1.52 MapReduceKeysToIntTask
6623 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6624 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
6625 dl 1.52 ObjectToInt<? super K> transformer,
6626     int basis,
6627     IntByIntToInt reducer) {
6628 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6629 dl 1.52 this.transformer = transformer;
6630     this.basis = basis; this.reducer = reducer;
6631     }
6632 dl 1.79 public final Integer getRawResult() { return result; }
6633     @SuppressWarnings("unchecked") public final void compute() {
6634 dl 1.82 final ObjectToInt<? super K> transformer;
6635     final IntByIntToInt reducer;
6636     if ((transformer = this.transformer) != null &&
6637     (reducer = this.reducer) != null) {
6638     int r = this.basis;
6639     for (int b; (b = preSplit()) > 0;)
6640     (rights = new MapReduceKeysToIntTask<K,V>
6641     (map, this, b, rights, transformer, r, reducer)).fork();
6642     while (advance() != null)
6643     r = reducer.apply(r, transformer.apply((K)nextKey));
6644     result = r;
6645     CountedCompleter<?> c;
6646     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6647     MapReduceKeysToIntTask<K,V>
6648     t = (MapReduceKeysToIntTask<K,V>)c,
6649     s = t.rights;
6650     while (s != null) {
6651     t.result = reducer.apply(t.result, s.result);
6652     s = t.rights = s.nextRight;
6653     }
6654 dl 1.52 }
6655 dl 1.71 }
6656 dl 1.52 }
6657     }
6658    
6659 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6660 dl 1.79 extends Traverser<K,V,Integer> {
6661 dl 1.52 final ObjectToInt<? super V> transformer;
6662     final IntByIntToInt reducer;
6663     final int basis;
6664     int result;
6665 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
6666 dl 1.52 MapReduceValuesToIntTask
6667 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6668 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
6669 dl 1.52 ObjectToInt<? super V> transformer,
6670     int basis,
6671     IntByIntToInt reducer) {
6672 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6673 dl 1.52 this.transformer = transformer;
6674     this.basis = basis; this.reducer = reducer;
6675     }
6676 dl 1.79 public final Integer getRawResult() { return result; }
6677     @SuppressWarnings("unchecked") public final void compute() {
6678 dl 1.82 final ObjectToInt<? super V> transformer;
6679     final IntByIntToInt reducer;
6680     if ((transformer = this.transformer) != null &&
6681     (reducer = this.reducer) != null) {
6682     int r = this.basis;
6683     for (int b; (b = preSplit()) > 0;)
6684     (rights = new MapReduceValuesToIntTask<K,V>
6685     (map, this, b, rights, transformer, r, reducer)).fork();
6686 dl 1.84 V v;
6687 dl 1.82 while ((v = advance()) != null)
6688 dl 1.84 r = reducer.apply(r, transformer.apply(v));
6689 dl 1.82 result = r;
6690     CountedCompleter<?> c;
6691     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6692     MapReduceValuesToIntTask<K,V>
6693     t = (MapReduceValuesToIntTask<K,V>)c,
6694     s = t.rights;
6695     while (s != null) {
6696     t.result = reducer.apply(t.result, s.result);
6697     s = t.rights = s.nextRight;
6698     }
6699 dl 1.52 }
6700 dl 1.71 }
6701 dl 1.52 }
6702     }
6703    
6704 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6705 dl 1.79 extends Traverser<K,V,Integer> {
6706 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
6707     final IntByIntToInt reducer;
6708     final int basis;
6709     int result;
6710 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6711 dl 1.52 MapReduceEntriesToIntTask
6712 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6713 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
6714 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
6715     int basis,
6716     IntByIntToInt reducer) {
6717 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6718 dl 1.52 this.transformer = transformer;
6719     this.basis = basis; this.reducer = reducer;
6720     }
6721 dl 1.79 public final Integer getRawResult() { return result; }
6722     @SuppressWarnings("unchecked") public final void compute() {
6723 dl 1.82 final ObjectToInt<Map.Entry<K,V>> transformer;
6724     final IntByIntToInt reducer;
6725     if ((transformer = this.transformer) != null &&
6726     (reducer = this.reducer) != null) {
6727     int r = this.basis;
6728     for (int b; (b = preSplit()) > 0;)
6729     (rights = new MapReduceEntriesToIntTask<K,V>
6730     (map, this, b, rights, transformer, r, reducer)).fork();
6731 dl 1.84 V v;
6732 dl 1.82 while ((v = advance()) != null)
6733     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6734 dl 1.84 v)));
6735 dl 1.82 result = r;
6736     CountedCompleter<?> c;
6737     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6738     MapReduceEntriesToIntTask<K,V>
6739     t = (MapReduceEntriesToIntTask<K,V>)c,
6740     s = t.rights;
6741     while (s != null) {
6742     t.result = reducer.apply(t.result, s.result);
6743     s = t.rights = s.nextRight;
6744     }
6745 dl 1.52 }
6746     }
6747     }
6748     }
6749    
6750 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6751 dl 1.79 extends Traverser<K,V,Integer> {
6752 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
6753     final IntByIntToInt reducer;
6754     final int basis;
6755     int result;
6756 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6757 dl 1.52 MapReduceMappingsToIntTask
6758 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6759     MapReduceMappingsToIntTask<K,V> nextRight,
6760 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
6761     int basis,
6762     IntByIntToInt reducer) {
6763 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6764 dl 1.52 this.transformer = transformer;
6765     this.basis = basis; this.reducer = reducer;
6766     }
6767 dl 1.79 public final Integer getRawResult() { return result; }
6768     @SuppressWarnings("unchecked") public final void compute() {
6769 dl 1.82 final ObjectByObjectToInt<? super K, ? super V> transformer;
6770     final IntByIntToInt reducer;
6771     if ((transformer = this.transformer) != null &&
6772     (reducer = this.reducer) != null) {
6773     int r = this.basis;
6774     for (int b; (b = preSplit()) > 0;)
6775     (rights = new MapReduceMappingsToIntTask<K,V>
6776     (map, this, b, rights, transformer, r, reducer)).fork();
6777 dl 1.84 V v;
6778 dl 1.82 while ((v = advance()) != null)
6779 dl 1.84 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6780 dl 1.82 result = r;
6781     CountedCompleter<?> c;
6782     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6783     MapReduceMappingsToIntTask<K,V>
6784     t = (MapReduceMappingsToIntTask<K,V>)c,
6785     s = t.rights;
6786     while (s != null) {
6787     t.result = reducer.apply(t.result, s.result);
6788     s = t.rights = s.nextRight;
6789     }
6790 dl 1.52 }
6791     }
6792     }
6793     }
6794    
6795     // Unsafe mechanics
6796 dl 1.82 private static final sun.misc.Unsafe U;
6797     private static final long SIZECTL;
6798     private static final long TRANSFERINDEX;
6799     private static final long TRANSFERORIGIN;
6800     private static final long BASECOUNT;
6801     private static final long COUNTERBUSY;
6802     private static final long CELLVALUE;
6803 dl 1.52 private static final long ABASE;
6804     private static final int ASHIFT;
6805    
6806     static {
6807     try {
6808 dl 1.82 U = getUnsafe();
6809 dl 1.52 Class<?> k = ConcurrentHashMapV8.class;
6810 dl 1.82 SIZECTL = U.objectFieldOffset
6811 dl 1.52 (k.getDeclaredField("sizeCtl"));
6812 dl 1.82 TRANSFERINDEX = U.objectFieldOffset
6813     (k.getDeclaredField("transferIndex"));
6814     TRANSFERORIGIN = U.objectFieldOffset
6815     (k.getDeclaredField("transferOrigin"));
6816     BASECOUNT = U.objectFieldOffset
6817     (k.getDeclaredField("baseCount"));
6818     COUNTERBUSY = U.objectFieldOffset
6819     (k.getDeclaredField("counterBusy"));
6820     Class<?> ck = CounterCell.class;
6821     CELLVALUE = U.objectFieldOffset
6822     (ck.getDeclaredField("value"));
6823 dl 1.52 Class<?> sc = Node[].class;
6824 dl 1.82 ABASE = U.arrayBaseOffset(sc);
6825 jsr166 1.89 int scale = U.arrayIndexScale(sc);
6826     if ((scale & (scale - 1)) != 0)
6827     throw new Error("data type scale not a power of two");
6828     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6829 dl 1.52 } catch (Exception e) {
6830     throw new Error(e);
6831     }
6832     }
6833    
6834     /**
6835     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6836     * Replace with a simple call to Unsafe.getUnsafe when integrating
6837     * into a jdk.
6838     *
6839     * @return a sun.misc.Unsafe
6840     */
6841     private static sun.misc.Unsafe getUnsafe() {
6842     try {
6843     return sun.misc.Unsafe.getUnsafe();
6844 jsr166 1.87 } catch (SecurityException tryReflectionInstead) {}
6845     try {
6846     return java.security.AccessController.doPrivileged
6847     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6848     public sun.misc.Unsafe run() throws Exception {
6849     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6850     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6851     f.setAccessible(true);
6852     Object x = f.get(null);
6853     if (k.isInstance(x))
6854     return k.cast(x);
6855     }
6856     throw new NoSuchFieldError("the Unsafe");
6857     }});
6858     } catch (java.security.PrivilegedActionException e) {
6859     throw new RuntimeException("Could not initialize intrinsics",
6860     e.getCause());
6861 dl 1.52 }
6862     }
6863 dl 1.1 }