ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.91
Committed: Mon Jan 28 06:58:51 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.90: +16 -16 lines
Log Message:
typo

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166e;
8 dl 1.71
9 dl 1.52 import java.util.Comparator;
10 dl 1.24 import java.util.Arrays;
11 dl 1.1 import java.util.Map;
12     import java.util.Set;
13     import java.util.Collection;
14     import java.util.AbstractMap;
15     import java.util.AbstractSet;
16     import java.util.AbstractCollection;
17     import java.util.Hashtable;
18     import java.util.HashMap;
19     import java.util.Iterator;
20     import java.util.Enumeration;
21     import java.util.ConcurrentModificationException;
22     import java.util.NoSuchElementException;
23     import java.util.concurrent.ConcurrentMap;
24 dl 1.38 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 dl 1.82 import java.util.concurrent.atomic.AtomicInteger;
26 dl 1.52 import java.util.concurrent.atomic.AtomicReference;
27 dl 1.79 import java.io.Serializable;
28    
29 dl 1.1 /**
30     * A hash table supporting full concurrency of retrievals and
31     * high expected concurrency for updates. This class obeys the
32     * same functional specification as {@link java.util.Hashtable}, and
33     * includes versions of methods corresponding to each method of
34     * {@code Hashtable}. However, even though all operations are
35     * thread-safe, retrieval operations do <em>not</em> entail locking,
36     * and there is <em>not</em> any support for locking the entire table
37     * in a way that prevents all access. This class is fully
38     * interoperable with {@code Hashtable} in programs that rely on its
39     * thread safety but not on its synchronization details.
40     *
41 jsr166 1.78 * <p>Retrieval operations (including {@code get}) generally do not
42 dl 1.1 * block, so may overlap with update operations (including {@code put}
43     * and {@code remove}). Retrievals reflect the results of the most
44     * recently <em>completed</em> update operations holding upon their
45 dl 1.59 * onset. (More formally, an update operation for a given key bears a
46     * <em>happens-before</em> relation with any (non-null) retrieval for
47     * that key reporting the updated value.) For aggregate operations
48     * such as {@code putAll} and {@code clear}, concurrent retrievals may
49     * reflect insertion or removal of only some entries. Similarly,
50     * Iterators and Enumerations return elements reflecting the state of
51     * the hash table at some point at or since the creation of the
52     * iterator/enumeration. They do <em>not</em> throw {@link
53     * ConcurrentModificationException}. However, iterators are designed
54     * to be used by only one thread at a time. Bear in mind that the
55     * results of aggregate status methods including {@code size}, {@code
56     * isEmpty}, and {@code containsValue} are typically useful only when
57     * a map is not undergoing concurrent updates in other threads.
58     * Otherwise the results of these methods reflect transient states
59     * that may be adequate for monitoring or estimation purposes, but not
60     * for program control.
61 dl 1.1 *
62 jsr166 1.78 * <p>The table is dynamically expanded when there are too many
63 dl 1.16 * collisions (i.e., keys that have distinct hash codes but fall into
64     * the same slot modulo the table size), with the expected average
65 dl 1.24 * effect of maintaining roughly two bins per mapping (corresponding
66     * to a 0.75 load factor threshold for resizing). There may be much
67     * variance around this average as mappings are added and removed, but
68     * overall, this maintains a commonly accepted time/space tradeoff for
69     * hash tables. However, resizing this or any other kind of hash
70     * table may be a relatively slow operation. When possible, it is a
71     * good idea to provide a size estimate as an optional {@code
72 dl 1.16 * initialCapacity} constructor argument. An additional optional
73     * {@code loadFactor} constructor argument provides a further means of
74     * customizing initial table capacity by specifying the table density
75     * to be used in calculating the amount of space to allocate for the
76     * given number of elements. Also, for compatibility with previous
77     * versions of this class, constructors may optionally specify an
78     * expected {@code concurrencyLevel} as an additional hint for
79     * internal sizing. Note that using many keys with exactly the same
80 jsr166 1.31 * {@code hashCode()} is a sure way to slow down performance of any
81 dl 1.16 * hash table.
82 dl 1.1 *
83 jsr166 1.78 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
84 dl 1.70 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
85     * (using {@link #keySet(Object)} when only keys are of interest, and the
86     * mapped values are (perhaps transiently) not used or all take the
87     * same mapping value.
88     *
89 jsr166 1.78 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 dl 1.70 * form of histogram or multiset) by using {@link LongAdder} values
91     * and initializing via {@link #computeIfAbsent}. For example, to add
92     * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93     * can use {@code freqs.computeIfAbsent(k -> new
94     * LongAdder()).increment();}
95     *
96 dl 1.1 * <p>This class and its views and iterators implement all of the
97     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
98     * interfaces.
99     *
100 jsr166 1.78 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
101 dl 1.1 * does <em>not</em> allow {@code null} to be used as a key or value.
102     *
103 dl 1.84 * <p>ConcurrentHashMapV8s support sequential and parallel operations
104     * bulk operations. (Parallel forms use the {@link
105     * ForkJoinPool#commonPool()}). Tasks that may be used in other
106     * contexts are available in class {@link ForkJoinTasks}. These
107     * operations are designed to be safely, and often sensibly, applied
108     * even with maps that are being concurrently updated by other
109     * threads; for example, when computing a snapshot summary of the
110     * values in a shared registry. There are three kinds of operation,
111     * each with four forms, accepting functions with Keys, Values,
112     * Entries, and (Key, Value) arguments and/or return values. Because
113     * the elements of a ConcurrentHashMapV8 are not ordered in any
114     * particular way, and may be processed in different orders in
115     * different parallel executions, the correctness of supplied
116     * functions should not depend on any ordering, or on any other
117     * objects or values that may transiently change while computation is
118     * in progress; and except for forEach actions, should ideally be
119     * side-effect-free.
120 dl 1.70 *
121     * <ul>
122     * <li> forEach: Perform a given action on each element.
123     * A variant form applies a given transformation on each element
124     * before performing the action.</li>
125     *
126     * <li> search: Return the first available non-null result of
127     * applying a given function on each element; skipping further
128     * search when a result is found.</li>
129     *
130     * <li> reduce: Accumulate each element. The supplied reduction
131     * function cannot rely on ordering (more formally, it should be
132     * both associative and commutative). There are five variants:
133     *
134     * <ul>
135     *
136     * <li> Plain reductions. (There is not a form of this method for
137     * (key, value) function arguments since there is no corresponding
138     * return type.)</li>
139     *
140     * <li> Mapped reductions that accumulate the results of a given
141     * function applied to each element.</li>
142     *
143     * <li> Reductions to scalar doubles, longs, and ints, using a
144     * given basis value.</li>
145     *
146     * </li>
147     * </ul>
148     * </ul>
149     *
150     * <p>The concurrency properties of bulk operations follow
151     * from those of ConcurrentHashMapV8: Any non-null result returned
152     * from {@code get(key)} and related access methods bears a
153     * happens-before relation with the associated insertion or
154     * update. The result of any bulk operation reflects the
155     * composition of these per-element relations (but is not
156     * necessarily atomic with respect to the map as a whole unless it
157     * is somehow known to be quiescent). Conversely, because keys
158     * and values in the map are never null, null serves as a reliable
159     * atomic indicator of the current lack of any result. To
160     * maintain this property, null serves as an implicit basis for
161     * all non-scalar reduction operations. For the double, long, and
162     * int versions, the basis should be one that, when combined with
163     * any other value, returns that other value (more formally, it
164     * should be the identity element for the reduction). Most common
165     * reductions have these properties; for example, computing a sum
166     * with basis 0 or a minimum with basis MAX_VALUE.
167     *
168     * <p>Search and transformation functions provided as arguments
169     * should similarly return null to indicate the lack of any result
170     * (in which case it is not used). In the case of mapped
171     * reductions, this also enables transformations to serve as
172     * filters, returning null (or, in the case of primitive
173     * specializations, the identity basis) if the element should not
174     * be combined. You can create compound transformations and
175     * filterings by composing them yourself under this "null means
176     * there is nothing there now" rule before using them in search or
177     * reduce operations.
178     *
179     * <p>Methods accepting and/or returning Entry arguments maintain
180     * key-value associations. They may be useful for example when
181     * finding the key for the greatest value. Note that "plain" Entry
182     * arguments can be supplied using {@code new
183     * AbstractMap.SimpleEntry(k,v)}.
184     *
185 jsr166 1.78 * <p>Bulk operations may complete abruptly, throwing an
186 dl 1.70 * exception encountered in the application of a supplied
187     * function. Bear in mind when handling such exceptions that other
188     * concurrently executing functions could also have thrown
189     * exceptions, or would have done so if the first exception had
190     * not occurred.
191     *
192 dl 1.84 * <p>Speedups for parallel compared to sequential forms are common
193     * but not guaranteed. Parallel operations involving brief functions
194     * on small maps may execute more slowly than sequential forms if the
195     * underlying work to parallelize the computation is more expensive
196     * than the computation itself. Similarly, parallelization may not
197     * lead to much actual parallelism if all processors are busy
198     * performing unrelated tasks.
199 dl 1.70 *
200 jsr166 1.78 * <p>All arguments to all task methods must be non-null.
201 dl 1.70 *
202     * <p><em>jsr166e note: During transition, this class
203     * uses nested functional interfaces with different names but the
204 jsr166 1.77 * same forms as those expected for JDK8.</em>
205 dl 1.70 *
206 dl 1.1 * <p>This class is a member of the
207     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
208     * Java Collections Framework</a>.
209     *
210 jsr166 1.22 * @since 1.5
211 dl 1.1 * @author Doug Lea
212     * @param <K> the type of keys maintained by this map
213     * @param <V> the type of mapped values
214     */
215     public class ConcurrentHashMapV8<K, V>
216 dl 1.52 implements ConcurrentMap<K, V>, Serializable {
217 dl 1.1 private static final long serialVersionUID = 7249069246763182397L;
218    
219     /**
220 dl 1.41 * A partitionable iterator. A Spliterator can be traversed
221     * directly, but can also be partitioned (before traversal) by
222     * creating another Spliterator that covers a non-overlapping
223     * portion of the elements, and so may be amenable to parallel
224     * execution.
225     *
226 jsr166 1.78 * <p>This interface exports a subset of expected JDK8
227 dl 1.41 * functionality.
228     *
229     * <p>Sample usage: Here is one (of the several) ways to compute
230     * the sum of the values held in a map using the ForkJoin
231     * framework. As illustrated here, Spliterators are well suited to
232     * designs in which a task repeatedly splits off half its work
233     * into forked subtasks until small enough to process directly,
234 jsr166 1.44 * and then joins these subtasks. Variants of this style can also
235     * be used in completion-based designs.
236 dl 1.41 *
237     * <pre>
238     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 dl 1.52 * // split as if have 8 * parallelism, for load balance
240     * int n = m.size();
241     * int p = aForkJoinPool.getParallelism() * 8;
242     * int split = (n < p)? n : p;
243     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 dl 1.41 * // ...
245     * static class SumValues extends RecursiveTask<Long> {
246     * final Spliterator<Long> s;
247 dl 1.52 * final int split; // split while > 1
248 dl 1.41 * final SumValues nextJoin; // records forked subtasks to join
249     * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250     * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251     * }
252     * public Long compute() {
253     * long sum = 0;
254     * SumValues subtasks = null; // fork subtasks
255 dl 1.52 * for (int s = split >>> 1; s > 0; s >>>= 1)
256     * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 dl 1.41 * while (s.hasNext()) // directly process remaining elements
258     * sum += s.next();
259     * for (SumValues t = subtasks; t != null; t = t.nextJoin)
260     * sum += t.join(); // collect subtask results
261     * return sum;
262     * }
263     * }
264     * }</pre>
265     */
266     public static interface Spliterator<T> extends Iterator<T> {
267     /**
268     * Returns a Spliterator covering approximately half of the
269     * elements, guaranteed not to overlap with those subsequently
270     * returned by this Spliterator. After invoking this method,
271     * the current Spliterator will <em>not</em> produce any of
272     * the elements of the returned Spliterator, but the two
273     * Spliterators together will produce all of the elements that
274     * would have been produced by this Spliterator had this
275     * method not been called. The exact number of elements
276     * produced by the returned Spliterator is not guaranteed, and
277     * may be zero (i.e., with {@code hasNext()} reporting {@code
278     * false}) if this Spliterator cannot be further split.
279     *
280     * @return a Spliterator covering approximately half of the
281     * elements
282     * @throws IllegalStateException if this Spliterator has
283 jsr166 1.45 * already commenced traversing elements
284 dl 1.41 */
285     Spliterator<T> split();
286     }
287    
288 dl 1.1 /*
289     * Overview:
290     *
291     * The primary design goal of this hash table is to maintain
292     * concurrent readability (typically method get(), but also
293     * iterators and related methods) while minimizing update
294 dl 1.24 * contention. Secondary goals are to keep space consumption about
295     * the same or better than java.util.HashMap, and to support high
296     * initial insertion rates on an empty table by many threads.
297 dl 1.1 *
298 dl 1.84 * Each key-value mapping is held in a Node. Because Node key
299     * fields can contain special values, they are defined using plain
300     * Object types (not type "K"). This leads to a lot of explicit
301     * casting (and many explicit warning suppressions to tell
302     * compilers not to complain about it). It also allows some of the
303     * public methods to be factored into a smaller number of internal
304     * methods (although sadly not so for the five variants of
305     * put-related operations). The validation-based approach
306     * explained below leads to a lot of code sprawl because
307 dl 1.38 * retry-control precludes factoring into smaller methods.
308 dl 1.1 *
309     * The table is lazily initialized to a power-of-two size upon the
310 dl 1.38 * first insertion. Each bin in the table normally contains a
311     * list of Nodes (most often, the list has only zero or one Node).
312     * Table accesses require volatile/atomic reads, writes, and
313     * CASes. Because there is no other way to arrange this without
314     * adding further indirections, we use intrinsics
315     * (sun.misc.Unsafe) operations. The lists of nodes within bins
316     * are always accurately traversable under volatile reads, so long
317     * as lookups check hash code and non-nullness of value before
318     * checking key equality.
319 dl 1.24 *
320 dl 1.82 * We use the top (sign) bit of Node hash fields for control
321     * purposes -- it is available anyway because of addressing
322     * constraints. Nodes with negative hash fields are forwarding
323     * nodes to either TreeBins or resized tables. The lower 31 bits
324     * of each normal Node's hash field contain a transformation of
325     * the key's hash code.
326 dl 1.14 *
327 dl 1.27 * Insertion (via put or its variants) of the first node in an
328 dl 1.14 * empty bin is performed by just CASing it to the bin. This is
329 dl 1.38 * by far the most common case for put operations under most
330     * key/hash distributions. Other update operations (insert,
331     * delete, and replace) require locks. We do not want to waste
332     * the space required to associate a distinct lock object with
333     * each bin, so instead use the first node of a bin list itself as
334 dl 1.82 * a lock. Locking support for these locks relies on builtin
335     * "synchronized" monitors.
336 dl 1.24 *
337     * Using the first node of a list as a lock does not by itself
338     * suffice though: When a node is locked, any update must first
339     * validate that it is still the first node after locking it, and
340     * retry if not. Because new nodes are always appended to lists,
341     * once a node is first in a bin, it remains first until deleted
342 dl 1.27 * or the bin becomes invalidated (upon resizing). However,
343     * operations that only conditionally update may inspect nodes
344     * until the point of update. This is a converse of sorts to the
345     * lazy locking technique described by Herlihy & Shavit.
346 dl 1.14 *
347 dl 1.24 * The main disadvantage of per-bin locks is that other update
348 dl 1.14 * operations on other nodes in a bin list protected by the same
349     * lock can stall, for example when user equals() or mapping
350 dl 1.38 * functions take a long time. However, statistically, under
351     * random hash codes, this is not a common problem. Ideally, the
352     * frequency of nodes in bins follows a Poisson distribution
353 dl 1.14 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
354 dl 1.16 * parameter of about 0.5 on average, given the resizing threshold
355     * of 0.75, although with a large variance because of resizing
356     * granularity. Ignoring variance, the expected occurrences of
357     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
358 dl 1.38 * first values are:
359 dl 1.16 *
360 dl 1.38 * 0: 0.60653066
361     * 1: 0.30326533
362     * 2: 0.07581633
363     * 3: 0.01263606
364     * 4: 0.00157952
365     * 5: 0.00015795
366     * 6: 0.00001316
367     * 7: 0.00000094
368     * 8: 0.00000006
369     * more: less than 1 in ten million
370 dl 1.16 *
371     * Lock contention probability for two threads accessing distinct
372 dl 1.38 * elements is roughly 1 / (8 * #elements) under random hashes.
373     *
374     * Actual hash code distributions encountered in practice
375     * sometimes deviate significantly from uniform randomness. This
376     * includes the case when N > (1<<30), so some keys MUST collide.
377     * Similarly for dumb or hostile usages in which multiple keys are
378     * designed to have identical hash codes. Also, although we guard
379     * against the worst effects of this (see method spread), sets of
380     * hashes may differ only in bits that do not impact their bin
381     * index for a given power-of-two mask. So we use a secondary
382     * strategy that applies when the number of nodes in a bin exceeds
383     * a threshold, and at least one of the keys implements
384     * Comparable. These TreeBins use a balanced tree to hold nodes
385     * (a specialized form of red-black trees), bounding search time
386     * to O(log N). Each search step in a TreeBin is around twice as
387     * slow as in a regular list, but given that N cannot exceed
388     * (1<<64) (before running out of addresses) this bounds search
389     * steps, lock hold times, etc, to reasonable constants (roughly
390     * 100 nodes inspected per operation worst case) so long as keys
391     * are Comparable (which is very common -- String, Long, etc).
392     * TreeBin nodes (TreeNodes) also maintain the same "next"
393     * traversal pointers as regular nodes, so can be traversed in
394     * iterators in the same way.
395 dl 1.1 *
396 dl 1.38 * The table is resized when occupancy exceeds a percentage
397 dl 1.82 * threshold (nominally, 0.75, but see below). Any thread
398     * noticing an overfull bin may assist in resizing after the
399     * initiating thread allocates and sets up the replacement
400     * array. However, rather than stalling, these other threads may
401     * proceed with insertions etc. The use of TreeBins shields us
402     * from the worst case effects of overfilling while resizes are in
403     * progress. Resizing proceeds by transferring bins, one by one,
404     * from the table to the next table. To enable concurrency, the
405     * next table must be (incrementally) prefilled with place-holders
406     * serving as reverse forwarders to the old table. Because we are
407     * using power-of-two expansion, the elements from each bin must
408     * either stay at same index, or move with a power of two
409     * offset. We eliminate unnecessary node creation by catching
410     * cases where old nodes can be reused because their next fields
411     * won't change. On average, only about one-sixth of them need
412     * cloning when a table doubles. The nodes they replace will be
413     * garbage collectable as soon as they are no longer referenced by
414     * any reader thread that may be in the midst of concurrently
415     * traversing table. Upon transfer, the old table bin contains
416     * only a special forwarding node (with hash field "MOVED") that
417     * contains the next table as its key. On encountering a
418     * forwarding node, access and update operations restart, using
419     * the new table.
420     *
421     * Each bin transfer requires its bin lock, which can stall
422     * waiting for locks while resizing. However, because other
423     * threads can join in and help resize rather than contend for
424     * locks, average aggregate waits become shorter as resizing
425     * progresses. The transfer operation must also ensure that all
426     * accessible bins in both the old and new table are usable by any
427     * traversal. This is arranged by proceeding from the last bin
428     * (table.length - 1) up towards the first. Upon seeing a
429     * forwarding node, traversals (see class Traverser) arrange to
430     * move to the new table without revisiting nodes. However, to
431     * ensure that no intervening nodes are skipped, bin splitting can
432     * only begin after the associated reverse-forwarders are in
433     * place.
434 dl 1.14 *
435 dl 1.24 * The traversal scheme also applies to partial traversals of
436 dl 1.52 * ranges of bins (via an alternate Traverser constructor)
437 dl 1.41 * to support partitioned aggregate operations. Also, read-only
438     * operations give up if ever forwarded to a null table, which
439     * provides support for shutdown-style clearing, which is also not
440     * currently implemented.
441 dl 1.14 *
442     * Lazy table initialization minimizes footprint until first use,
443     * and also avoids resizings when the first operation is from a
444     * putAll, constructor with map argument, or deserialization.
445 dl 1.24 * These cases attempt to override the initial capacity settings,
446     * but harmlessly fail to take effect in cases of races.
447 dl 1.1 *
448 dl 1.82 * The element count is maintained using a specialization of
449     * LongAdder. We need to incorporate a specialization rather than
450     * just use a LongAdder in order to access implicit
451     * contention-sensing that leads to creation of multiple
452     * CounterCells. The counter mechanics avoid contention on
453     * updates but can encounter cache thrashing if read too
454     * frequently during concurrent access. To avoid reading so often,
455     * resizing under contention is attempted only upon adding to a
456     * bin already holding two or more nodes. Under uniform hash
457     * distributions, the probability of this occurring at threshold
458     * is around 13%, meaning that only about 1 in 8 puts check
459     * threshold (and after resizing, many fewer do so). The bulk
460     * putAll operation further reduces contention by only committing
461     * count updates upon these size checks.
462 dl 1.14 *
463     * Maintaining API and serialization compatibility with previous
464     * versions of this class introduces several oddities. Mainly: We
465     * leave untouched but unused constructor arguments refering to
466 dl 1.24 * concurrencyLevel. We accept a loadFactor constructor argument,
467     * but apply it only to initial table capacity (which is the only
468     * time that we can guarantee to honor it.) We also declare an
469     * unused "Segment" class that is instantiated in minimal form
470     * only when serializing.
471 dl 1.1 */
472    
473     /* ---------------- Constants -------------- */
474    
475     /**
476 dl 1.16 * The largest possible table capacity. This value must be
477     * exactly 1<<30 to stay within Java array allocation and indexing
478 dl 1.24 * bounds for power of two table sizes, and is further required
479     * because the top two bits of 32bit hash fields are used for
480     * control purposes.
481 dl 1.1 */
482 dl 1.14 private static final int MAXIMUM_CAPACITY = 1 << 30;
483 dl 1.1
484     /**
485 dl 1.14 * The default initial table capacity. Must be a power of 2
486     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
487 dl 1.1 */
488 dl 1.14 private static final int DEFAULT_CAPACITY = 16;
489 dl 1.1
490     /**
491 dl 1.24 * The largest possible (non-power of two) array size.
492     * Needed by toArray and related methods.
493     */
494     static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
495    
496     /**
497     * The default concurrency level for this table. Unused but
498     * defined for compatibility with previous versions of this class.
499     */
500     private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
501    
502     /**
503 dl 1.16 * The load factor for this table. Overrides of this value in
504     * constructors affect only the initial table capacity. The
505 dl 1.24 * actual floating point value isn't normally used -- it is
506     * simpler to use expressions such as {@code n - (n >>> 2)} for
507     * the associated resizing threshold.
508 dl 1.1 */
509 dl 1.16 private static final float LOAD_FACTOR = 0.75f;
510 dl 1.1
511     /**
512 dl 1.38 * The bin count threshold for using a tree rather than list for a
513     * bin. The value reflects the approximate break-even point for
514     * using tree-based operations.
515     */
516     private static final int TREE_THRESHOLD = 8;
517    
518 dl 1.82 /**
519     * Minimum number of rebinnings per transfer step. Ranges are
520     * subdivided to allow multiple resizer threads. This value
521     * serves as a lower bound to avoid resizers encountering
522     * excessive memory contention. The value should be at least
523     * DEFAULT_CAPACITY.
524     */
525     private static final int MIN_TRANSFER_STRIDE = 16;
526    
527 dl 1.24 /*
528 dl 1.82 * Encodings for Node hash fields. See above for explanation.
529 dl 1.1 */
530 jsr166 1.35 static final int MOVED = 0x80000000; // hash field for forwarding nodes
531 dl 1.82 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
532    
533     /** Number of CPUS, to place bounds on some sizings */
534     static final int NCPU = Runtime.getRuntime().availableProcessors();
535    
536     /* ---------------- Counters -------------- */
537    
538     // Adapted from LongAdder and Striped64.
539     // See their internal docs for explanation.
540    
541     // A padded cell for distributing counts
542     static final class CounterCell {
543     volatile long p0, p1, p2, p3, p4, p5, p6;
544     volatile long value;
545     volatile long q0, q1, q2, q3, q4, q5, q6;
546     CounterCell(long x) { value = x; }
547     }
548    
549     /**
550     * Holder for the thread-local hash code determining which
551     * CounterCell to use. The code is initialized via the
552     * counterHashCodeGenerator, but may be moved upon collisions.
553     */
554     static final class CounterHashCode {
555     int code;
556     }
557    
558     /**
559     * Generates initial value for per-thread CounterHashCodes
560     */
561     static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
562    
563     /**
564     * Increment for counterHashCodeGenerator. See class ThreadLocal
565     * for explanation.
566     */
567     static final int SEED_INCREMENT = 0x61c88647;
568    
569     /**
570 jsr166 1.86 * Per-thread counter hash codes. Shared across all instances.
571 dl 1.82 */
572     static final ThreadLocal<CounterHashCode> threadCounterHashCode =
573     new ThreadLocal<CounterHashCode>();
574 dl 1.24
575     /* ---------------- Fields -------------- */
576    
577     /**
578     * The array of bins. Lazily initialized upon first insertion.
579     * Size is always a power of two. Accessed directly by iterators.
580     */
581 dl 1.84 transient volatile Node<V>[] table;
582 dl 1.14
583 dl 1.16 /**
584 dl 1.82 * The next table to use; non-null only while resizing.
585     */
586 dl 1.84 private transient volatile Node<V>[] nextTable;
587 dl 1.82
588     /**
589     * Base counter value, used mainly when there is no contention,
590     * but also as a fallback during table initialization
591     * races. Updated via CAS.
592 dl 1.16 */
593 dl 1.82 private transient volatile long baseCount;
594 dl 1.24
595     /**
596     * Table initialization and resizing control. When negative, the
597 dl 1.82 * table is being initialized or resized: -1 for initialization,
598     * else -(1 + the number of active resizing threads). Otherwise,
599     * when table is null, holds the initial table size to use upon
600     * creation, or 0 for default. After initialization, holds the
601     * next element count value upon which to resize the table.
602 dl 1.24 */
603     private transient volatile int sizeCtl;
604    
605 dl 1.82 /**
606     * The next table index (plus one) to split while resizing.
607     */
608     private transient volatile int transferIndex;
609    
610     /**
611     * The least available table index to split while resizing.
612     */
613     private transient volatile int transferOrigin;
614    
615     /**
616     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
617     */
618     private transient volatile int counterBusy;
619    
620     /**
621     * Table of counter cells. When non-null, size is a power of 2.
622     */
623     private transient volatile CounterCell[] counterCells;
624    
625 dl 1.24 // views
626 dl 1.70 private transient KeySetView<K,V> keySet;
627 dl 1.75 private transient ValuesView<K,V> values;
628     private transient EntrySetView<K,V> entrySet;
629 dl 1.24
630     /** For serialization compatibility. Null unless serialized; see below */
631     private Segment<K,V>[] segments;
632 dl 1.16
633 dl 1.38 /* ---------------- Table element access -------------- */
634    
635     /*
636     * Volatile access methods are used for table elements as well as
637     * elements of in-progress next table while resizing. Uses are
638     * null checked by callers, and implicitly bounds-checked, relying
639     * on the invariants that tab arrays have non-zero size, and all
640     * indices are masked with (tab.length - 1) which is never
641     * negative and always less than length. Note that, to be correct
642     * wrt arbitrary concurrency errors by users, bounds checks must
643     * operate on local variables, which accounts for some odd-looking
644     * inline assignments below.
645     */
646    
647 dl 1.84 @SuppressWarnings("unchecked") static final <V> Node<V> tabAt
648     (Node<V>[] tab, int i) { // used by Traverser
649     return (Node<V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
650 dl 1.38 }
651    
652 dl 1.84 private static final <V> boolean casTabAt
653     (Node<V>[] tab, int i, Node<V> c, Node<V> v) {
654 dl 1.82 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
655 dl 1.38 }
656    
657 dl 1.84 private static final <V> void setTabAt
658     (Node<V>[] tab, int i, Node<V> v) {
659 dl 1.82 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
660 dl 1.38 }
661    
662 dl 1.14 /* ---------------- Nodes -------------- */
663 dl 1.1
664     /**
665 dl 1.14 * Key-value entry. Note that this is never exported out as a
666 dl 1.41 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
667     * field of MOVED are special, and do not contain user keys or
668     * values. Otherwise, keys are never null, and null val fields
669     * indicate that a node is in the process of being deleted or
670     * created. For purposes of read-only access, a key may be read
671     * before a val, but can only be used after checking val to be
672     * non-null.
673 dl 1.1 */
674 dl 1.84 static class Node<V> {
675 dl 1.82 final int hash;
676 dl 1.14 final Object key;
677 dl 1.84 volatile V val;
678     volatile Node<V> next;
679 dl 1.14
680 dl 1.84 Node(int hash, Object key, V val, Node<V> next) {
681 dl 1.14 this.hash = hash;
682     this.key = key;
683     this.val = val;
684     this.next = next;
685     }
686 dl 1.24 }
687 dl 1.1
688 dl 1.38 /* ---------------- TreeBins -------------- */
689    
690     /**
691     * Nodes for use in TreeBins
692     */
693 dl 1.84 static final class TreeNode<V> extends Node<V> {
694     TreeNode<V> parent; // red-black tree links
695     TreeNode<V> left;
696     TreeNode<V> right;
697     TreeNode<V> prev; // needed to unlink next upon deletion
698 dl 1.38 boolean red;
699    
700 dl 1.84 TreeNode(int hash, Object key, V val, Node<V> next, TreeNode<V> parent) {
701 dl 1.38 super(hash, key, val, next);
702     this.parent = parent;
703     }
704     }
705 dl 1.1
706 dl 1.38 /**
707     * A specialized form of red-black tree for use in bins
708     * whose size exceeds a threshold.
709     *
710     * TreeBins use a special form of comparison for search and
711     * related operations (which is the main reason we cannot use
712     * existing collections such as TreeMaps). TreeBins contain
713     * Comparable elements, but may contain others, as well as
714     * elements that are Comparable but not necessarily Comparable<T>
715     * for the same T, so we cannot invoke compareTo among them. To
716     * handle this, the tree is ordered primarily by hash value, then
717     * by getClass().getName() order, and then by Comparator order
718     * among elements of the same class. On lookup at a node, if
719 dl 1.41 * elements are not comparable or compare as 0, both left and
720     * right children may need to be searched in the case of tied hash
721     * values. (This corresponds to the full list search that would be
722     * necessary if all elements were non-Comparable and had tied
723     * hashes.) The red-black balancing code is updated from
724     * pre-jdk-collections
725     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
726     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
727     * Algorithms" (CLR).
728 dl 1.38 *
729     * TreeBins also maintain a separate locking discipline than
730     * regular bins. Because they are forwarded via special MOVED
731     * nodes at bin heads (which can never change once established),
732 jsr166 1.51 * we cannot use those nodes as locks. Instead, TreeBin
733 dl 1.38 * extends AbstractQueuedSynchronizer to support a simple form of
734     * read-write lock. For update operations and table validation,
735     * the exclusive form of lock behaves in the same way as bin-head
736     * locks. However, lookups use shared read-lock mechanics to allow
737     * multiple readers in the absence of writers. Additionally,
738     * these lookups do not ever block: While the lock is not
739     * available, they proceed along the slow traversal path (via
740     * next-pointers) until the lock becomes available or the list is
741     * exhausted, whichever comes first. (These cases are not fast,
742     * but maximize aggregate expected throughput.) The AQS mechanics
743     * for doing this are straightforward. The lock state is held as
744     * AQS getState(). Read counts are negative; the write count (1)
745     * is positive. There are no signalling preferences among readers
746     * and writers. Since we don't need to export full Lock API, we
747     * just override the minimal AQS methods and use them directly.
748 dl 1.1 */
749 dl 1.84 static final class TreeBin<V> extends AbstractQueuedSynchronizer {
750 dl 1.38 private static final long serialVersionUID = 2249069246763182397L;
751 dl 1.84 transient TreeNode<V> root; // root of tree
752     transient TreeNode<V> first; // head of next-pointer list
753 dl 1.1
754 dl 1.38 /* AQS overrides */
755     public final boolean isHeldExclusively() { return getState() > 0; }
756     public final boolean tryAcquire(int ignore) {
757     if (compareAndSetState(0, 1)) {
758     setExclusiveOwnerThread(Thread.currentThread());
759     return true;
760     }
761     return false;
762     }
763     public final boolean tryRelease(int ignore) {
764     setExclusiveOwnerThread(null);
765     setState(0);
766     return true;
767     }
768     public final int tryAcquireShared(int ignore) {
769     for (int c;;) {
770     if ((c = getState()) > 0)
771     return -1;
772     if (compareAndSetState(c, c -1))
773     return 1;
774     }
775     }
776     public final boolean tryReleaseShared(int ignore) {
777     int c;
778     do {} while (!compareAndSetState(c = getState(), c + 1));
779     return c == -1;
780     }
781    
782 dl 1.41 /** From CLR */
783 dl 1.84 private void rotateLeft(TreeNode<V> p) {
784 dl 1.41 if (p != null) {
785 dl 1.84 TreeNode<V> r = p.right, pp, rl;
786 dl 1.41 if ((rl = p.right = r.left) != null)
787     rl.parent = p;
788     if ((pp = r.parent = p.parent) == null)
789     root = r;
790     else if (pp.left == p)
791     pp.left = r;
792     else
793     pp.right = r;
794     r.left = p;
795     p.parent = r;
796     }
797     }
798    
799     /** From CLR */
800 dl 1.84 private void rotateRight(TreeNode<V> p) {
801 dl 1.41 if (p != null) {
802 dl 1.84 TreeNode<V> l = p.left, pp, lr;
803 dl 1.41 if ((lr = p.left = l.right) != null)
804     lr.parent = p;
805     if ((pp = l.parent = p.parent) == null)
806     root = l;
807     else if (pp.right == p)
808     pp.right = l;
809     else
810     pp.left = l;
811     l.right = p;
812     p.parent = l;
813     }
814     }
815    
816 dl 1.38 /**
817 jsr166 1.56 * Returns the TreeNode (or null if not found) for the given key
818 dl 1.38 * starting at given root.
819     */
820 dl 1.84 @SuppressWarnings("unchecked") final TreeNode<V> getTreeNode
821     (int h, Object k, TreeNode<V> p) {
822 dl 1.38 Class<?> c = k.getClass();
823     while (p != null) {
824 dl 1.41 int dir, ph; Object pk; Class<?> pc;
825     if ((ph = p.hash) == h) {
826     if ((pk = p.key) == k || k.equals(pk))
827     return p;
828     if (c != (pc = pk.getClass()) ||
829     !(k instanceof Comparable) ||
830     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
831 dl 1.81 if ((dir = (c == pc) ? 0 :
832     c.getName().compareTo(pc.getName())) == 0) {
833 dl 1.84 TreeNode<V> r = null, pl, pr; // check both sides
834 dl 1.81 if ((pr = p.right) != null && h >= pr.hash &&
835     (r = getTreeNode(h, k, pr)) != null)
836     return r;
837     else if ((pl = p.left) != null && h <= pl.hash)
838     dir = -1;
839     else // nothing there
840     return null;
841 dl 1.41 }
842     }
843     }
844 dl 1.38 else
845 dl 1.41 dir = (h < ph) ? -1 : 1;
846     p = (dir > 0) ? p.right : p.left;
847 dl 1.38 }
848     return null;
849     }
850    
851     /**
852     * Wrapper for getTreeNode used by CHM.get. Tries to obtain
853     * read-lock to call getTreeNode, but during failure to get
854     * lock, searches along next links.
855     */
856 dl 1.84 final V getValue(int h, Object k) {
857     Node<V> r = null;
858 dl 1.38 int c = getState(); // Must read lock state first
859 dl 1.84 for (Node<V> e = first; e != null; e = e.next) {
860 dl 1.38 if (c <= 0 && compareAndSetState(c, c - 1)) {
861     try {
862     r = getTreeNode(h, k, root);
863     } finally {
864     releaseShared(0);
865     }
866     break;
867     }
868 dl 1.82 else if (e.hash == h && k.equals(e.key)) {
869 dl 1.38 r = e;
870     break;
871     }
872     else
873     c = getState();
874     }
875     return r == null ? null : r.val;
876     }
877    
878     /**
879 jsr166 1.45 * Finds or adds a node.
880 dl 1.38 * @return null if added
881     */
882 dl 1.84 @SuppressWarnings("unchecked") final TreeNode<V> putTreeNode
883     (int h, Object k, V v) {
884 dl 1.38 Class<?> c = k.getClass();
885 dl 1.84 TreeNode<V> pp = root, p = null;
886 dl 1.38 int dir = 0;
887 dl 1.41 while (pp != null) { // find existing node or leaf to insert at
888     int ph; Object pk; Class<?> pc;
889     p = pp;
890     if ((ph = p.hash) == h) {
891     if ((pk = p.key) == k || k.equals(pk))
892 dl 1.38 return p;
893 dl 1.41 if (c != (pc = pk.getClass()) ||
894     !(k instanceof Comparable) ||
895     (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
896 dl 1.84 TreeNode<V> s = null, r = null, pr;
897 dl 1.81 if ((dir = (c == pc) ? 0 :
898     c.getName().compareTo(pc.getName())) == 0) {
899     if ((pr = p.right) != null && h >= pr.hash &&
900     (r = getTreeNode(h, k, pr)) != null)
901     return r;
902     else // continue left
903     dir = -1;
904 dl 1.41 }
905     else if ((pr = p.right) != null && h >= pr.hash)
906     s = pr;
907     if (s != null && (r = getTreeNode(h, k, s)) != null)
908     return r;
909 dl 1.38 }
910     }
911 dl 1.41 else
912     dir = (h < ph) ? -1 : 1;
913     pp = (dir > 0) ? p.right : p.left;
914 dl 1.38 }
915 dl 1.41
916 dl 1.84 TreeNode<V> f = first;
917     TreeNode<V> x = first = new TreeNode<V>(h, k, v, f, p);
918 dl 1.38 if (p == null)
919 dl 1.41 root = x;
920     else { // attach and rebalance; adapted from CLR
921 dl 1.84 TreeNode<V> xp, xpp;
922 dl 1.41 if (f != null)
923     f.prev = x;
924 dl 1.38 if (dir <= 0)
925 dl 1.41 p.left = x;
926 dl 1.38 else
927 dl 1.41 p.right = x;
928     x.red = true;
929     while (x != null && (xp = x.parent) != null && xp.red &&
930     (xpp = xp.parent) != null) {
931 dl 1.84 TreeNode<V> xppl = xpp.left;
932 dl 1.41 if (xp == xppl) {
933 dl 1.84 TreeNode<V> y = xpp.right;
934 dl 1.41 if (y != null && y.red) {
935     y.red = false;
936     xp.red = false;
937     xpp.red = true;
938     x = xpp;
939     }
940     else {
941     if (x == xp.right) {
942     rotateLeft(x = xp);
943     xpp = (xp = x.parent) == null ? null : xp.parent;
944     }
945     if (xp != null) {
946     xp.red = false;
947     if (xpp != null) {
948     xpp.red = true;
949     rotateRight(xpp);
950     }
951     }
952     }
953     }
954     else {
955 dl 1.84 TreeNode<V> y = xppl;
956 dl 1.41 if (y != null && y.red) {
957     y.red = false;
958     xp.red = false;
959     xpp.red = true;
960     x = xpp;
961     }
962     else {
963     if (x == xp.left) {
964     rotateRight(x = xp);
965     xpp = (xp = x.parent) == null ? null : xp.parent;
966     }
967     if (xp != null) {
968     xp.red = false;
969     if (xpp != null) {
970     xpp.red = true;
971     rotateLeft(xpp);
972     }
973     }
974     }
975     }
976     }
977 dl 1.84 TreeNode<V> r = root;
978 dl 1.41 if (r != null && r.red)
979     r.red = false;
980 dl 1.38 }
981     return null;
982     }
983 dl 1.1
984 dl 1.38 /**
985     * Removes the given node, that must be present before this
986     * call. This is messier than typical red-black deletion code
987     * because we cannot swap the contents of an interior node
988     * with a leaf successor that is pinned by "next" pointers
989     * that are accessible independently of lock. So instead we
990     * swap the tree linkages.
991     */
992 dl 1.84 final void deleteTreeNode(TreeNode<V> p) {
993     TreeNode<V> next = (TreeNode<V>)p.next; // unlink traversal pointers
994     TreeNode<V> pred = p.prev;
995 dl 1.38 if (pred == null)
996     first = next;
997     else
998     pred.next = next;
999     if (next != null)
1000     next.prev = pred;
1001 dl 1.84 TreeNode<V> replacement;
1002     TreeNode<V> pl = p.left;
1003     TreeNode<V> pr = p.right;
1004 dl 1.38 if (pl != null && pr != null) {
1005 dl 1.84 TreeNode<V> s = pr, sl;
1006 dl 1.41 while ((sl = s.left) != null) // find successor
1007     s = sl;
1008 dl 1.38 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1009 dl 1.84 TreeNode<V> sr = s.right;
1010     TreeNode<V> pp = p.parent;
1011 dl 1.38 if (s == pr) { // p was s's direct parent
1012     p.parent = s;
1013     s.right = p;
1014     }
1015     else {
1016 dl 1.84 TreeNode<V> sp = s.parent;
1017 dl 1.38 if ((p.parent = sp) != null) {
1018     if (s == sp.left)
1019     sp.left = p;
1020     else
1021     sp.right = p;
1022     }
1023     if ((s.right = pr) != null)
1024     pr.parent = s;
1025     }
1026     p.left = null;
1027     if ((p.right = sr) != null)
1028     sr.parent = p;
1029     if ((s.left = pl) != null)
1030     pl.parent = s;
1031     if ((s.parent = pp) == null)
1032     root = s;
1033     else if (p == pp.left)
1034     pp.left = s;
1035     else
1036     pp.right = s;
1037     replacement = sr;
1038     }
1039     else
1040     replacement = (pl != null) ? pl : pr;
1041 dl 1.84 TreeNode<V> pp = p.parent;
1042 dl 1.38 if (replacement == null) {
1043     if (pp == null) {
1044     root = null;
1045     return;
1046     }
1047     replacement = p;
1048     }
1049     else {
1050     replacement.parent = pp;
1051     if (pp == null)
1052     root = replacement;
1053     else if (p == pp.left)
1054     pp.left = replacement;
1055     else
1056     pp.right = replacement;
1057     p.left = p.right = p.parent = null;
1058     }
1059 dl 1.41 if (!p.red) { // rebalance, from CLR
1060 dl 1.84 TreeNode<V> x = replacement;
1061 dl 1.41 while (x != null) {
1062 dl 1.84 TreeNode<V> xp, xpl;
1063 dl 1.41 if (x.red || (xp = x.parent) == null) {
1064     x.red = false;
1065     break;
1066 dl 1.38 }
1067 dl 1.41 if (x == (xpl = xp.left)) {
1068 dl 1.84 TreeNode<V> sib = xp.right;
1069 dl 1.41 if (sib != null && sib.red) {
1070     sib.red = false;
1071     xp.red = true;
1072     rotateLeft(xp);
1073     sib = (xp = x.parent) == null ? null : xp.right;
1074 dl 1.38 }
1075 dl 1.41 if (sib == null)
1076 dl 1.38 x = xp;
1077     else {
1078 dl 1.84 TreeNode<V> sl = sib.left, sr = sib.right;
1079 dl 1.41 if ((sr == null || !sr.red) &&
1080     (sl == null || !sl.red)) {
1081 dl 1.38 sib.red = true;
1082 dl 1.41 x = xp;
1083 dl 1.38 }
1084 dl 1.41 else {
1085     if (sr == null || !sr.red) {
1086     if (sl != null)
1087     sl.red = false;
1088     sib.red = true;
1089     rotateRight(sib);
1090 dl 1.82 sib = (xp = x.parent) == null ?
1091     null : xp.right;
1092 dl 1.41 }
1093     if (sib != null) {
1094 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1095 dl 1.41 if ((sr = sib.right) != null)
1096     sr.red = false;
1097     }
1098     if (xp != null) {
1099     xp.red = false;
1100     rotateLeft(xp);
1101     }
1102     x = root;
1103 dl 1.38 }
1104     }
1105     }
1106 dl 1.41 else { // symmetric
1107 dl 1.84 TreeNode<V> sib = xpl;
1108 dl 1.41 if (sib != null && sib.red) {
1109     sib.red = false;
1110     xp.red = true;
1111     rotateRight(xp);
1112     sib = (xp = x.parent) == null ? null : xp.left;
1113     }
1114     if (sib == null)
1115 dl 1.38 x = xp;
1116     else {
1117 dl 1.84 TreeNode<V> sl = sib.left, sr = sib.right;
1118 dl 1.41 if ((sl == null || !sl.red) &&
1119     (sr == null || !sr.red)) {
1120 dl 1.38 sib.red = true;
1121 dl 1.41 x = xp;
1122 dl 1.38 }
1123 dl 1.41 else {
1124     if (sl == null || !sl.red) {
1125     if (sr != null)
1126     sr.red = false;
1127     sib.red = true;
1128     rotateLeft(sib);
1129 dl 1.82 sib = (xp = x.parent) == null ?
1130     null : xp.left;
1131 dl 1.41 }
1132     if (sib != null) {
1133 jsr166 1.42 sib.red = (xp == null) ? false : xp.red;
1134 dl 1.41 if ((sl = sib.left) != null)
1135     sl.red = false;
1136     }
1137     if (xp != null) {
1138     xp.red = false;
1139     rotateRight(xp);
1140     }
1141     x = root;
1142 dl 1.38 }
1143     }
1144     }
1145     }
1146     }
1147 dl 1.41 if (p == replacement && (pp = p.parent) != null) {
1148     if (p == pp.left) // detach pointers
1149     pp.left = null;
1150     else if (p == pp.right)
1151     pp.right = null;
1152     p.parent = null;
1153     }
1154 dl 1.38 }
1155 dl 1.1 }
1156    
1157 dl 1.38 /* ---------------- Collision reduction methods -------------- */
1158 dl 1.14
1159     /**
1160 dl 1.82 * Spreads higher bits to lower, and also forces top bit to 0.
1161 dl 1.38 * Because the table uses power-of-two masking, sets of hashes
1162     * that vary only in bits above the current mask will always
1163     * collide. (Among known examples are sets of Float keys holding
1164     * consecutive whole numbers in small tables.) To counter this,
1165     * we apply a transform that spreads the impact of higher bits
1166     * downward. There is a tradeoff between speed, utility, and
1167     * quality of bit-spreading. Because many common sets of hashes
1168 jsr166 1.40 * are already reasonably distributed across bits (so don't benefit
1169 dl 1.38 * from spreading), and because we use trees to handle large sets
1170     * of collisions in bins, we don't need excessively high quality.
1171 dl 1.14 */
1172     private static final int spread(int h) {
1173 dl 1.38 h ^= (h >>> 18) ^ (h >>> 12);
1174     return (h ^ (h >>> 10)) & HASH_BITS;
1175     }
1176    
1177     /**
1178 dl 1.82 * Replaces a list bin with a tree bin if key is comparable. Call
1179     * only when locked.
1180 dl 1.38 */
1181 dl 1.84 private final void replaceWithTreeBin(Node<V>[] tab, int index, Object key) {
1182 dl 1.82 if (key instanceof Comparable) {
1183 dl 1.84 TreeBin<V> t = new TreeBin<V>();
1184     for (Node<V> e = tabAt(tab, index); e != null; e = e.next)
1185 dl 1.82 t.putTreeNode(e.hash, e.key, e.val);
1186 dl 1.84 setTabAt(tab, index, new Node<V>(MOVED, t, null, null));
1187 dl 1.38 }
1188 dl 1.14 }
1189 dl 1.1
1190 dl 1.38 /* ---------------- Internal access and update methods -------------- */
1191    
1192 dl 1.14 /** Implementation for get and containsKey */
1193 dl 1.82 @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1194 dl 1.1 int h = spread(k.hashCode());
1195 dl 1.84 retry: for (Node<V>[] tab = table; tab != null;) {
1196     Node<V> e; Object ek; V ev; int eh; // locals to read fields once
1197 dl 1.14 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1198 dl 1.82 if ((eh = e.hash) < 0) {
1199 dl 1.38 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1200 dl 1.84 return ((TreeBin<V>)ek).getValue(h, k);
1201     else { // restart with new table
1202     tab = (Node<V>[])ek;
1203 dl 1.38 continue retry;
1204     }
1205 dl 1.1 }
1206 dl 1.82 else if (eh == h && (ev = e.val) != null &&
1207 dl 1.38 ((ek = e.key) == k || k.equals(ek)))
1208 dl 1.84 return ev;
1209 dl 1.1 }
1210     break;
1211     }
1212     return null;
1213     }
1214    
1215 dl 1.27 /**
1216     * Implementation for the four public remove/replace methods:
1217     * Replaces node value with v, conditional upon match of cv if
1218     * non-null. If resulting value is null, delete.
1219     */
1220 dl 1.82 @SuppressWarnings("unchecked") private final V internalReplace
1221     (Object k, V v, Object cv) {
1222 dl 1.27 int h = spread(k.hashCode());
1223 dl 1.84 V oldVal = null;
1224     for (Node<V>[] tab = table;;) {
1225     Node<V> f; int i, fh; Object fk;
1226 dl 1.27 if (tab == null ||
1227     (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1228     break;
1229 dl 1.82 else if ((fh = f.hash) < 0) {
1230 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1231 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1232 dl 1.38 boolean validated = false;
1233     boolean deleted = false;
1234     t.acquire(0);
1235     try {
1236     if (tabAt(tab, i) == f) {
1237     validated = true;
1238 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1239 dl 1.38 if (p != null) {
1240 dl 1.84 V pv = p.val;
1241 dl 1.38 if (cv == null || cv == pv || cv.equals(pv)) {
1242     oldVal = pv;
1243     if ((p.val = v) == null) {
1244     deleted = true;
1245     t.deleteTreeNode(p);
1246     }
1247     }
1248     }
1249     }
1250     } finally {
1251     t.release(0);
1252     }
1253     if (validated) {
1254     if (deleted)
1255 dl 1.82 addCount(-1L, -1);
1256 dl 1.38 break;
1257     }
1258     }
1259     else
1260 dl 1.84 tab = (Node<V>[])fk;
1261 dl 1.38 }
1262 dl 1.82 else if (fh != h && f.next == null) // precheck
1263 dl 1.27 break; // rules out possible existence
1264 dl 1.82 else {
1265 dl 1.27 boolean validated = false;
1266     boolean deleted = false;
1267 jsr166 1.83 synchronized (f) {
1268 dl 1.27 if (tabAt(tab, i) == f) {
1269     validated = true;
1270 dl 1.84 for (Node<V> e = f, pred = null;;) {
1271     Object ek; V ev;
1272 dl 1.82 if (e.hash == h &&
1273 dl 1.27 ((ev = e.val) != null) &&
1274     ((ek = e.key) == k || k.equals(ek))) {
1275     if (cv == null || cv == ev || cv.equals(ev)) {
1276     oldVal = ev;
1277     if ((e.val = v) == null) {
1278     deleted = true;
1279 dl 1.84 Node<V> en = e.next;
1280 dl 1.27 if (pred != null)
1281     pred.next = en;
1282     else
1283     setTabAt(tab, i, en);
1284     }
1285     }
1286     break;
1287     }
1288     pred = e;
1289     if ((e = e.next) == null)
1290     break;
1291     }
1292     }
1293     }
1294     if (validated) {
1295     if (deleted)
1296 dl 1.82 addCount(-1L, -1);
1297 dl 1.27 break;
1298     }
1299     }
1300     }
1301 dl 1.84 return oldVal;
1302 dl 1.27 }
1303    
1304     /*
1305 dl 1.82 * Internal versions of insertion methods
1306     * All have the same basic structure as the first (internalPut):
1307 dl 1.27 * 1. If table uninitialized, create
1308     * 2. If bin empty, try to CAS new node
1309     * 3. If bin stale, use new table
1310 dl 1.38 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1311     * 5. Lock and validate; if valid, scan and add or update
1312 dl 1.27 *
1313 dl 1.82 * The putAll method differs mainly in attempting to pre-allocate
1314     * enough table space, and also more lazily performs count updates
1315     * and checks.
1316     *
1317     * Most of the function-accepting methods can't be factored nicely
1318     * because they require different functional forms, so instead
1319     * sprawl out similar mechanics.
1320 dl 1.27 */
1321    
1322 dl 1.82 /** Implementation for put and putIfAbsent */
1323     @SuppressWarnings("unchecked") private final V internalPut
1324     (K k, V v, boolean onlyIfAbsent) {
1325     if (k == null || v == null) throw new NullPointerException();
1326 dl 1.1 int h = spread(k.hashCode());
1327 dl 1.82 int len = 0;
1328 dl 1.84 for (Node<V>[] tab = table;;) {
1329     int i, fh; Node<V> f; Object fk; V fv;
1330 dl 1.1 if (tab == null)
1331 dl 1.24 tab = initTable();
1332     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1333 dl 1.84 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null)))
1334 dl 1.14 break; // no lock when adding to empty bin
1335     }
1336 dl 1.82 else if ((fh = f.hash) < 0) {
1337 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1338 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1339     V oldVal = null;
1340 dl 1.38 t.acquire(0);
1341     try {
1342     if (tabAt(tab, i) == f) {
1343 dl 1.82 len = 2;
1344 dl 1.84 TreeNode<V> p = t.putTreeNode(h, k, v);
1345 dl 1.38 if (p != null) {
1346     oldVal = p.val;
1347 dl 1.82 if (!onlyIfAbsent)
1348     p.val = v;
1349 dl 1.38 }
1350     }
1351     } finally {
1352     t.release(0);
1353     }
1354 dl 1.82 if (len != 0) {
1355 dl 1.38 if (oldVal != null)
1356 dl 1.84 return oldVal;
1357 dl 1.38 break;
1358     }
1359     }
1360     else
1361 dl 1.84 tab = (Node<V>[])fk;
1362 dl 1.38 }
1363 dl 1.82 else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1364     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1365 dl 1.84 return fv;
1366 dl 1.82 else {
1367 dl 1.84 V oldVal = null;
1368 jsr166 1.83 synchronized (f) {
1369 dl 1.24 if (tabAt(tab, i) == f) {
1370 dl 1.82 len = 1;
1371 dl 1.84 for (Node<V> e = f;; ++len) {
1372     Object ek; V ev;
1373 dl 1.82 if (e.hash == h &&
1374 dl 1.24 (ev = e.val) != null &&
1375     ((ek = e.key) == k || k.equals(ek))) {
1376 dl 1.1 oldVal = ev;
1377 dl 1.82 if (!onlyIfAbsent)
1378     e.val = v;
1379 dl 1.10 break;
1380 dl 1.1 }
1381 dl 1.84 Node<V> last = e;
1382 dl 1.10 if ((e = e.next) == null) {
1383 dl 1.84 last.next = new Node<V>(h, k, v, null);
1384 dl 1.82 if (len >= TREE_THRESHOLD)
1385 dl 1.38 replaceWithTreeBin(tab, i, k);
1386 dl 1.10 break;
1387 dl 1.1 }
1388     }
1389     }
1390     }
1391 dl 1.82 if (len != 0) {
1392 dl 1.27 if (oldVal != null)
1393 dl 1.84 return oldVal;
1394 dl 1.1 break;
1395     }
1396     }
1397     }
1398 dl 1.82 addCount(1L, len);
1399 dl 1.27 return null;
1400     }
1401    
1402     /** Implementation for computeIfAbsent */
1403 dl 1.82 @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1404 dl 1.84 (K k, Fun<? super K, ? extends V> mf) {
1405 dl 1.82 if (k == null || mf == null)
1406     throw new NullPointerException();
1407 dl 1.27 int h = spread(k.hashCode());
1408 dl 1.84 V val = null;
1409 dl 1.82 int len = 0;
1410 dl 1.84 for (Node<V>[] tab = table;;) {
1411     Node<V> f; int i; Object fk;
1412 dl 1.27 if (tab == null)
1413     tab = initTable();
1414     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1415 dl 1.84 Node<V> node = new Node<V>(h, k, null, null);
1416 jsr166 1.83 synchronized (node) {
1417 dl 1.82 if (casTabAt(tab, i, null, node)) {
1418     len = 1;
1419     try {
1420     if ((val = mf.apply(k)) != null)
1421     node.val = val;
1422     } finally {
1423     if (val == null)
1424     setTabAt(tab, i, null);
1425 dl 1.27 }
1426 dl 1.1 }
1427     }
1428 dl 1.82 if (len != 0)
1429 dl 1.24 break;
1430 dl 1.27 }
1431 dl 1.82 else if (f.hash < 0) {
1432 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1433 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1434 dl 1.38 boolean added = false;
1435     t.acquire(0);
1436     try {
1437     if (tabAt(tab, i) == f) {
1438 dl 1.82 len = 1;
1439 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1440 dl 1.38 if (p != null)
1441     val = p.val;
1442 dl 1.52 else if ((val = mf.apply(k)) != null) {
1443 dl 1.38 added = true;
1444 dl 1.82 len = 2;
1445 dl 1.38 t.putTreeNode(h, k, val);
1446     }
1447     }
1448     } finally {
1449     t.release(0);
1450     }
1451 dl 1.82 if (len != 0) {
1452 dl 1.38 if (!added)
1453 dl 1.84 return val;
1454 dl 1.38 break;
1455     }
1456     }
1457     else
1458 dl 1.84 tab = (Node<V>[])fk;
1459 dl 1.38 }
1460 dl 1.27 else {
1461 dl 1.84 for (Node<V> e = f; e != null; e = e.next) { // prescan
1462     Object ek; V ev;
1463 dl 1.82 if (e.hash == h && (ev = e.val) != null &&
1464     ((ek = e.key) == k || k.equals(ek)))
1465 dl 1.84 return ev;
1466 dl 1.27 }
1467 dl 1.82 boolean added = false;
1468 jsr166 1.83 synchronized (f) {
1469 dl 1.82 if (tabAt(tab, i) == f) {
1470     len = 1;
1471 dl 1.84 for (Node<V> e = f;; ++len) {
1472     Object ek; V ev;
1473 dl 1.82 if (e.hash == h &&
1474     (ev = e.val) != null &&
1475     ((ek = e.key) == k || k.equals(ek))) {
1476     val = ev;
1477     break;
1478     }
1479 dl 1.84 Node<V> last = e;
1480 dl 1.82 if ((e = e.next) == null) {
1481     if ((val = mf.apply(k)) != null) {
1482     added = true;
1483 dl 1.84 last.next = new Node<V>(h, k, val, null);
1484 dl 1.82 if (len >= TREE_THRESHOLD)
1485     replaceWithTreeBin(tab, i, k);
1486 dl 1.27 }
1487 dl 1.82 break;
1488 dl 1.27 }
1489     }
1490 dl 1.38 }
1491 dl 1.82 }
1492     if (len != 0) {
1493     if (!added)
1494 dl 1.84 return val;
1495 dl 1.82 break;
1496 dl 1.1 }
1497     }
1498     }
1499 dl 1.82 if (val != null)
1500     addCount(1L, len);
1501 dl 1.84 return val;
1502 dl 1.1 }
1503    
1504 dl 1.27 /** Implementation for compute */
1505 dl 1.82 @SuppressWarnings("unchecked") private final V internalCompute
1506     (K k, boolean onlyIfPresent,
1507     BiFun<? super K, ? super V, ? extends V> mf) {
1508     if (k == null || mf == null)
1509     throw new NullPointerException();
1510 dl 1.1 int h = spread(k.hashCode());
1511 dl 1.84 V val = null;
1512 dl 1.41 int delta = 0;
1513 dl 1.82 int len = 0;
1514 dl 1.84 for (Node<V>[] tab = table;;) {
1515     Node<V> f; int i, fh; Object fk;
1516 dl 1.1 if (tab == null)
1517 dl 1.24 tab = initTable();
1518     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1519 dl 1.52 if (onlyIfPresent)
1520     break;
1521 dl 1.84 Node<V> node = new Node<V>(h, k, null, null);
1522 jsr166 1.83 synchronized (node) {
1523 dl 1.82 if (casTabAt(tab, i, null, node)) {
1524     try {
1525     len = 1;
1526     if ((val = mf.apply(k, null)) != null) {
1527     node.val = val;
1528     delta = 1;
1529     }
1530     } finally {
1531     if (delta == 0)
1532     setTabAt(tab, i, null);
1533 dl 1.1 }
1534     }
1535     }
1536 dl 1.82 if (len != 0)
1537 dl 1.10 break;
1538 dl 1.1 }
1539 dl 1.82 else if ((fh = f.hash) < 0) {
1540 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1541 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1542 dl 1.38 t.acquire(0);
1543     try {
1544     if (tabAt(tab, i) == f) {
1545 dl 1.82 len = 1;
1546 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1547 dl 1.82 if (p == null && onlyIfPresent)
1548     break;
1549 dl 1.84 V pv = (p == null) ? null : p.val;
1550     if ((val = mf.apply(k, pv)) != null) {
1551 dl 1.38 if (p != null)
1552     p.val = val;
1553     else {
1554 dl 1.82 len = 2;
1555 dl 1.41 delta = 1;
1556 dl 1.38 t.putTreeNode(h, k, val);
1557     }
1558     }
1559 dl 1.41 else if (p != null) {
1560     delta = -1;
1561     t.deleteTreeNode(p);
1562     }
1563 dl 1.38 }
1564     } finally {
1565     t.release(0);
1566     }
1567 dl 1.82 if (len != 0)
1568 dl 1.38 break;
1569     }
1570     else
1571 dl 1.84 tab = (Node<V>[])fk;
1572 dl 1.38 }
1573 dl 1.82 else {
1574 jsr166 1.83 synchronized (f) {
1575 dl 1.24 if (tabAt(tab, i) == f) {
1576 dl 1.82 len = 1;
1577 dl 1.84 for (Node<V> e = f, pred = null;; ++len) {
1578     Object ek; V ev;
1579 dl 1.82 if (e.hash == h &&
1580 dl 1.24 (ev = e.val) != null &&
1581     ((ek = e.key) == k || k.equals(ek))) {
1582 dl 1.84 val = mf.apply(k, ev);
1583 dl 1.27 if (val != null)
1584     e.val = val;
1585 dl 1.41 else {
1586     delta = -1;
1587 dl 1.84 Node<V> en = e.next;
1588 dl 1.41 if (pred != null)
1589     pred.next = en;
1590     else
1591     setTabAt(tab, i, en);
1592     }
1593 dl 1.10 break;
1594 dl 1.1 }
1595 dl 1.41 pred = e;
1596 dl 1.10 if ((e = e.next) == null) {
1597 dl 1.82 if (!onlyIfPresent &&
1598     (val = mf.apply(k, null)) != null) {
1599 dl 1.84 pred.next = new Node<V>(h, k, val, null);
1600 dl 1.41 delta = 1;
1601 dl 1.82 if (len >= TREE_THRESHOLD)
1602 dl 1.38 replaceWithTreeBin(tab, i, k);
1603 dl 1.1 }
1604 dl 1.10 break;
1605 dl 1.1 }
1606     }
1607     }
1608     }
1609 dl 1.82 if (len != 0)
1610 dl 1.10 break;
1611 dl 1.1 }
1612 dl 1.10 }
1613 dl 1.82 if (delta != 0)
1614     addCount((long)delta, len);
1615 dl 1.84 return val;
1616 dl 1.1 }
1617    
1618 dl 1.59 /** Implementation for merge */
1619 dl 1.82 @SuppressWarnings("unchecked") private final V internalMerge
1620 dl 1.61 (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1621 dl 1.82 if (k == null || v == null || mf == null)
1622     throw new NullPointerException();
1623 dl 1.52 int h = spread(k.hashCode());
1624 dl 1.84 V val = null;
1625 dl 1.52 int delta = 0;
1626 dl 1.82 int len = 0;
1627 dl 1.84 for (Node<V>[] tab = table;;) {
1628     int i; Node<V> f; Object fk; V fv;
1629 dl 1.52 if (tab == null)
1630     tab = initTable();
1631     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1632 dl 1.84 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1633 dl 1.52 delta = 1;
1634     val = v;
1635     break;
1636     }
1637     }
1638 dl 1.82 else if (f.hash < 0) {
1639 dl 1.52 if ((fk = f.key) instanceof TreeBin) {
1640 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1641 dl 1.52 t.acquire(0);
1642     try {
1643     if (tabAt(tab, i) == f) {
1644 dl 1.82 len = 1;
1645 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1646     val = (p == null) ? v : mf.apply(p.val, v);
1647 dl 1.52 if (val != null) {
1648     if (p != null)
1649     p.val = val;
1650     else {
1651 dl 1.82 len = 2;
1652 dl 1.52 delta = 1;
1653     t.putTreeNode(h, k, val);
1654     }
1655     }
1656     else if (p != null) {
1657     delta = -1;
1658     t.deleteTreeNode(p);
1659     }
1660     }
1661     } finally {
1662     t.release(0);
1663     }
1664 dl 1.82 if (len != 0)
1665 dl 1.52 break;
1666     }
1667     else
1668 dl 1.84 tab = (Node<V>[])fk;
1669 dl 1.52 }
1670 dl 1.82 else {
1671 jsr166 1.83 synchronized (f) {
1672 dl 1.52 if (tabAt(tab, i) == f) {
1673 dl 1.82 len = 1;
1674 dl 1.84 for (Node<V> e = f, pred = null;; ++len) {
1675     Object ek; V ev;
1676 dl 1.82 if (e.hash == h &&
1677 dl 1.52 (ev = e.val) != null &&
1678     ((ek = e.key) == k || k.equals(ek))) {
1679 dl 1.84 val = mf.apply(ev, v);
1680 dl 1.52 if (val != null)
1681     e.val = val;
1682     else {
1683     delta = -1;
1684 dl 1.84 Node<V> en = e.next;
1685 dl 1.52 if (pred != null)
1686     pred.next = en;
1687     else
1688     setTabAt(tab, i, en);
1689     }
1690     break;
1691     }
1692     pred = e;
1693     if ((e = e.next) == null) {
1694     val = v;
1695 dl 1.84 pred.next = new Node<V>(h, k, val, null);
1696 dl 1.52 delta = 1;
1697 dl 1.82 if (len >= TREE_THRESHOLD)
1698 dl 1.52 replaceWithTreeBin(tab, i, k);
1699     break;
1700     }
1701     }
1702     }
1703     }
1704 dl 1.82 if (len != 0)
1705 dl 1.52 break;
1706     }
1707     }
1708 dl 1.82 if (delta != 0)
1709     addCount((long)delta, len);
1710 dl 1.84 return val;
1711 dl 1.52 }
1712    
1713 dl 1.27 /** Implementation for putAll */
1714 dl 1.84 @SuppressWarnings("unchecked") private final void internalPutAll
1715     (Map<? extends K, ? extends V> m) {
1716 dl 1.27 tryPresize(m.size());
1717     long delta = 0L; // number of uncommitted additions
1718     boolean npe = false; // to throw exception on exit for nulls
1719     try { // to clean up counts on other exceptions
1720 dl 1.84 for (Map.Entry<?, ? extends V> entry : m.entrySet()) {
1721     Object k; V v;
1722 dl 1.27 if (entry == null || (k = entry.getKey()) == null ||
1723     (v = entry.getValue()) == null) {
1724     npe = true;
1725     break;
1726     }
1727     int h = spread(k.hashCode());
1728 dl 1.84 for (Node<V>[] tab = table;;) {
1729     int i; Node<V> f; int fh; Object fk;
1730 dl 1.27 if (tab == null)
1731     tab = initTable();
1732     else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1733 dl 1.84 if (casTabAt(tab, i, null, new Node<V>(h, k, v, null))) {
1734 dl 1.27 ++delta;
1735     break;
1736     }
1737     }
1738 dl 1.82 else if ((fh = f.hash) < 0) {
1739 dl 1.38 if ((fk = f.key) instanceof TreeBin) {
1740 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1741 dl 1.38 boolean validated = false;
1742     t.acquire(0);
1743     try {
1744     if (tabAt(tab, i) == f) {
1745     validated = true;
1746 dl 1.84 TreeNode<V> p = t.getTreeNode(h, k, t.root);
1747 dl 1.38 if (p != null)
1748     p.val = v;
1749     else {
1750     t.putTreeNode(h, k, v);
1751     ++delta;
1752     }
1753     }
1754     } finally {
1755     t.release(0);
1756     }
1757     if (validated)
1758     break;
1759     }
1760     else
1761 dl 1.84 tab = (Node<V>[])fk;
1762 dl 1.38 }
1763 dl 1.82 else {
1764     int len = 0;
1765 jsr166 1.83 synchronized (f) {
1766 dl 1.27 if (tabAt(tab, i) == f) {
1767 dl 1.82 len = 1;
1768 dl 1.84 for (Node<V> e = f;; ++len) {
1769     Object ek; V ev;
1770 dl 1.82 if (e.hash == h &&
1771 dl 1.27 (ev = e.val) != null &&
1772     ((ek = e.key) == k || k.equals(ek))) {
1773     e.val = v;
1774     break;
1775     }
1776 dl 1.84 Node<V> last = e;
1777 dl 1.27 if ((e = e.next) == null) {
1778     ++delta;
1779 dl 1.84 last.next = new Node<V>(h, k, v, null);
1780 dl 1.82 if (len >= TREE_THRESHOLD)
1781 dl 1.38 replaceWithTreeBin(tab, i, k);
1782 dl 1.27 break;
1783     }
1784     }
1785     }
1786     }
1787 dl 1.82 if (len != 0) {
1788 dl 1.90 if (len > 1) {
1789 dl 1.82 addCount(delta, len);
1790 dl 1.90 delta = 0L;
1791     }
1792 dl 1.27 break;
1793 dl 1.24 }
1794     }
1795 dl 1.1 }
1796     }
1797 dl 1.27 } finally {
1798 dl 1.82 if (delta != 0L)
1799     addCount(delta, 2);
1800 dl 1.1 }
1801 dl 1.27 if (npe)
1802     throw new NullPointerException();
1803 dl 1.1 }
1804    
1805 dl 1.82 /**
1806     * Implementation for clear. Steps through each bin, removing all
1807     * nodes.
1808     */
1809 dl 1.84 @SuppressWarnings("unchecked") private final void internalClear() {
1810 dl 1.82 long delta = 0L; // negative number of deletions
1811     int i = 0;
1812 dl 1.84 Node<V>[] tab = table;
1813 dl 1.82 while (tab != null && i < tab.length) {
1814 dl 1.84 Node<V> f = tabAt(tab, i);
1815 dl 1.82 if (f == null)
1816     ++i;
1817     else if (f.hash < 0) {
1818     Object fk;
1819     if ((fk = f.key) instanceof TreeBin) {
1820 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
1821 dl 1.82 t.acquire(0);
1822     try {
1823     if (tabAt(tab, i) == f) {
1824 dl 1.84 for (Node<V> p = t.first; p != null; p = p.next) {
1825 dl 1.82 if (p.val != null) { // (currently always true)
1826     p.val = null;
1827     --delta;
1828     }
1829     }
1830     t.first = null;
1831     t.root = null;
1832     ++i;
1833     }
1834     } finally {
1835     t.release(0);
1836     }
1837     }
1838     else
1839 dl 1.84 tab = (Node<V>[])fk;
1840 dl 1.82 }
1841     else {
1842 jsr166 1.83 synchronized (f) {
1843 dl 1.82 if (tabAt(tab, i) == f) {
1844 dl 1.84 for (Node<V> e = f; e != null; e = e.next) {
1845 dl 1.82 if (e.val != null) { // (currently always true)
1846     e.val = null;
1847     --delta;
1848     }
1849     }
1850     setTabAt(tab, i, null);
1851     ++i;
1852     }
1853     }
1854     }
1855     }
1856     if (delta != 0L)
1857     addCount(delta, -1);
1858     }
1859    
1860 dl 1.27 /* ---------------- Table Initialization and Resizing -------------- */
1861 dl 1.24
1862     /**
1863     * Returns a power of two table size for the given desired capacity.
1864     * See Hackers Delight, sec 3.2
1865     */
1866     private static final int tableSizeFor(int c) {
1867     int n = c - 1;
1868     n |= n >>> 1;
1869     n |= n >>> 2;
1870     n |= n >>> 4;
1871     n |= n >>> 8;
1872     n |= n >>> 16;
1873     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1874     }
1875    
1876     /**
1877     * Initializes table, using the size recorded in sizeCtl.
1878     */
1879 dl 1.84 @SuppressWarnings("unchecked") private final Node<V>[] initTable() {
1880     Node<V>[] tab; int sc;
1881 dl 1.24 while ((tab = table) == null) {
1882     if ((sc = sizeCtl) < 0)
1883     Thread.yield(); // lost initialization race; just spin
1884 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1885 dl 1.24 try {
1886     if ((tab = table) == null) {
1887     int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1888 dl 1.84 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1889     table = tab = (Node<V>[])tb;
1890 dl 1.27 sc = n - (n >>> 2);
1891 dl 1.24 }
1892     } finally {
1893     sizeCtl = sc;
1894     }
1895     break;
1896     }
1897     }
1898     return tab;
1899     }
1900    
1901     /**
1902 dl 1.82 * Adds to count, and if table is too small and not already
1903     * resizing, initiates transfer. If already resizing, helps
1904     * perform transfer if work is available. Rechecks occupancy
1905     * after a transfer to see if another resize is already needed
1906     * because resizings are lagging additions.
1907     *
1908     * @param x the count to add
1909     * @param check if <0, don't check resize, if <= 1 only check if uncontended
1910     */
1911     private final void addCount(long x, int check) {
1912     CounterCell[] as; long b, s;
1913     if ((as = counterCells) != null ||
1914     !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
1915     CounterHashCode hc; CounterCell a; long v; int m;
1916     boolean uncontended = true;
1917     if ((hc = threadCounterHashCode.get()) == null ||
1918     as == null || (m = as.length - 1) < 0 ||
1919     (a = as[m & hc.code]) == null ||
1920     !(uncontended =
1921     U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
1922     fullAddCount(x, hc, uncontended);
1923     return;
1924     }
1925     if (check <= 1)
1926     return;
1927     s = sumCount();
1928     }
1929     if (check >= 0) {
1930 dl 1.84 Node<V>[] tab, nt; int sc;
1931 dl 1.82 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
1932     tab.length < MAXIMUM_CAPACITY) {
1933     if (sc < 0) {
1934     if (sc == -1 || transferIndex <= transferOrigin ||
1935     (nt = nextTable) == null)
1936     break;
1937     if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
1938     transfer(tab, nt);
1939 dl 1.24 }
1940 dl 1.82 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
1941     transfer(tab, null);
1942     s = sumCount();
1943 dl 1.24 }
1944     }
1945     }
1946    
1947 dl 1.27 /**
1948     * Tries to presize table to accommodate the given number of elements.
1949     *
1950     * @param size number of elements (doesn't need to be perfectly accurate)
1951     */
1952 dl 1.84 @SuppressWarnings("unchecked") private final void tryPresize(int size) {
1953 dl 1.27 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1954     tableSizeFor(size + (size >>> 1) + 1);
1955     int sc;
1956     while ((sc = sizeCtl) >= 0) {
1957 dl 1.84 Node<V>[] tab = table; int n;
1958 dl 1.27 if (tab == null || (n = tab.length) == 0) {
1959 jsr166 1.30 n = (sc > c) ? sc : c;
1960 dl 1.82 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
1961 dl 1.27 try {
1962     if (table == tab) {
1963 dl 1.84 @SuppressWarnings("rawtypes") Node[] tb = new Node[n];
1964     table = (Node<V>[])tb;
1965 dl 1.27 sc = n - (n >>> 2);
1966     }
1967     } finally {
1968     sizeCtl = sc;
1969     }
1970     }
1971     }
1972     else if (c <= sc || n >= MAXIMUM_CAPACITY)
1973     break;
1974 dl 1.82 else if (tab == table &&
1975     U.compareAndSwapInt(this, SIZECTL, sc, -2))
1976     transfer(tab, null);
1977 dl 1.27 }
1978     }
1979    
1980 dl 1.24 /*
1981     * Moves and/or copies the nodes in each bin to new table. See
1982     * above for explanation.
1983     */
1984 dl 1.84 @SuppressWarnings("unchecked") private final void transfer
1985     (Node<V>[] tab, Node<V>[] nextTab) {
1986 dl 1.82 int n = tab.length, stride;
1987     if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
1988     stride = MIN_TRANSFER_STRIDE; // subdivide range
1989     if (nextTab == null) { // initiating
1990     try {
1991 dl 1.84 @SuppressWarnings("rawtypes") Node[] tb = new Node[n << 1];
1992     nextTab = (Node<V>[])tb;
1993 jsr166 1.83 } catch (Throwable ex) { // try to cope with OOME
1994 dl 1.82 sizeCtl = Integer.MAX_VALUE;
1995     return;
1996     }
1997     nextTable = nextTab;
1998     transferOrigin = n;
1999     transferIndex = n;
2000 dl 1.84 Node<V> rev = new Node<V>(MOVED, tab, null, null);
2001 dl 1.82 for (int k = n; k > 0;) { // progressively reveal ready slots
2002 jsr166 1.83 int nextk = (k > stride) ? k - stride : 0;
2003 dl 1.82 for (int m = nextk; m < k; ++m)
2004     nextTab[m] = rev;
2005     for (int m = n + nextk; m < n + k; ++m)
2006     nextTab[m] = rev;
2007     U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2008     }
2009     }
2010     int nextn = nextTab.length;
2011 dl 1.84 Node<V> fwd = new Node<V>(MOVED, nextTab, null, null);
2012 dl 1.82 boolean advance = true;
2013     for (int i = 0, bound = 0;;) {
2014 dl 1.84 int nextIndex, nextBound; Node<V> f; Object fk;
2015 dl 1.82 while (advance) {
2016     if (--i >= bound)
2017     advance = false;
2018     else if ((nextIndex = transferIndex) <= transferOrigin) {
2019     i = -1;
2020     advance = false;
2021     }
2022     else if (U.compareAndSwapInt
2023     (this, TRANSFERINDEX, nextIndex,
2024 jsr166 1.83 nextBound = (nextIndex > stride ?
2025 dl 1.82 nextIndex - stride : 0))) {
2026     bound = nextBound;
2027     i = nextIndex - 1;
2028     advance = false;
2029     }
2030     }
2031     if (i < 0 || i >= n || i + n >= nextn) {
2032     for (int sc;;) {
2033     if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2034     if (sc == -1) {
2035     nextTable = null;
2036     table = nextTab;
2037     sizeCtl = (n << 1) - (n >>> 1);
2038     }
2039     return;
2040     }
2041     }
2042     }
2043     else if ((f = tabAt(tab, i)) == null) {
2044     if (casTabAt(tab, i, null, fwd)) {
2045 dl 1.24 setTabAt(nextTab, i, null);
2046     setTabAt(nextTab, i + n, null);
2047 dl 1.82 advance = true;
2048 dl 1.24 }
2049     }
2050 dl 1.82 else if (f.hash >= 0) {
2051 jsr166 1.83 synchronized (f) {
2052 dl 1.82 if (tabAt(tab, i) == f) {
2053     int runBit = f.hash & n;
2054 dl 1.84 Node<V> lastRun = f, lo = null, hi = null;
2055     for (Node<V> p = f.next; p != null; p = p.next) {
2056 dl 1.82 int b = p.hash & n;
2057     if (b != runBit) {
2058     runBit = b;
2059     lastRun = p;
2060     }
2061     }
2062     if (runBit == 0)
2063     lo = lastRun;
2064     else
2065     hi = lastRun;
2066 dl 1.84 for (Node<V> p = f; p != lastRun; p = p.next) {
2067 dl 1.82 int ph = p.hash;
2068 dl 1.84 Object pk = p.key; V pv = p.val;
2069 dl 1.82 if ((ph & n) == 0)
2070 dl 1.84 lo = new Node<V>(ph, pk, pv, lo);
2071 dl 1.82 else
2072 dl 1.84 hi = new Node<V>(ph, pk, pv, hi);
2073 dl 1.38 }
2074 dl 1.82 setTabAt(nextTab, i, lo);
2075     setTabAt(nextTab, i + n, hi);
2076     setTabAt(tab, i, fwd);
2077     advance = true;
2078 dl 1.38 }
2079     }
2080     }
2081 dl 1.82 else if ((fk = f.key) instanceof TreeBin) {
2082 dl 1.84 TreeBin<V> t = (TreeBin<V>)fk;
2083 dl 1.82 t.acquire(0);
2084     try {
2085 dl 1.24 if (tabAt(tab, i) == f) {
2086 dl 1.84 TreeBin<V> lt = new TreeBin<V>();
2087     TreeBin<V> ht = new TreeBin<V>();
2088 dl 1.82 int lc = 0, hc = 0;
2089 dl 1.84 for (Node<V> e = t.first; e != null; e = e.next) {
2090 dl 1.82 int h = e.hash;
2091 dl 1.84 Object k = e.key; V v = e.val;
2092 dl 1.82 if ((h & n) == 0) {
2093     ++lc;
2094     lt.putTreeNode(h, k, v);
2095     }
2096     else {
2097     ++hc;
2098     ht.putTreeNode(h, k, v);
2099     }
2100     }
2101 dl 1.84 Node<V> ln, hn; // throw away trees if too small
2102 dl 1.82 if (lc < TREE_THRESHOLD) {
2103     ln = null;
2104 dl 1.84 for (Node<V> p = lt.first; p != null; p = p.next)
2105     ln = new Node<V>(p.hash, p.key, p.val, ln);
2106 dl 1.82 }
2107     else
2108 dl 1.84 ln = new Node<V>(MOVED, lt, null, null);
2109 dl 1.82 setTabAt(nextTab, i, ln);
2110     if (hc < TREE_THRESHOLD) {
2111     hn = null;
2112 dl 1.84 for (Node<V> p = ht.first; p != null; p = p.next)
2113     hn = new Node<V>(p.hash, p.key, p.val, hn);
2114 dl 1.82 }
2115     else
2116 dl 1.84 hn = new Node<V>(MOVED, ht, null, null);
2117 dl 1.82 setTabAt(nextTab, i + n, hn);
2118 dl 1.24 setTabAt(tab, i, fwd);
2119 dl 1.82 advance = true;
2120 dl 1.24 }
2121     } finally {
2122 dl 1.82 t.release(0);
2123 dl 1.24 }
2124     }
2125     else
2126 dl 1.82 advance = true; // already processed
2127 dl 1.24 }
2128     }
2129    
2130 dl 1.82 /* ---------------- Counter support -------------- */
2131    
2132     final long sumCount() {
2133     CounterCell[] as = counterCells; CounterCell a;
2134     long sum = baseCount;
2135     if (as != null) {
2136     for (int i = 0; i < as.length; ++i) {
2137     if ((a = as[i]) != null)
2138     sum += a.value;
2139 dl 1.38 }
2140     }
2141 dl 1.82 return sum;
2142 dl 1.38 }
2143    
2144 dl 1.82 // See LongAdder version for explanation
2145     private final void fullAddCount(long x, CounterHashCode hc,
2146     boolean wasUncontended) {
2147     int h;
2148     if (hc == null) {
2149     hc = new CounterHashCode();
2150     int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2151     h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2152     threadCounterHashCode.set(hc);
2153 dl 1.38 }
2154     else
2155 dl 1.82 h = hc.code;
2156     boolean collide = false; // True if last slot nonempty
2157     for (;;) {
2158     CounterCell[] as; CounterCell a; int n; long v;
2159     if ((as = counterCells) != null && (n = as.length) > 0) {
2160     if ((a = as[(n - 1) & h]) == null) {
2161     if (counterBusy == 0) { // Try to attach new Cell
2162     CounterCell r = new CounterCell(x); // Optimistic create
2163     if (counterBusy == 0 &&
2164     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2165     boolean created = false;
2166     try { // Recheck under lock
2167     CounterCell[] rs; int m, j;
2168     if ((rs = counterCells) != null &&
2169     (m = rs.length) > 0 &&
2170     rs[j = (m - 1) & h] == null) {
2171     rs[j] = r;
2172     created = true;
2173 dl 1.61 }
2174 dl 1.82 } finally {
2175     counterBusy = 0;
2176 dl 1.38 }
2177 dl 1.82 if (created)
2178     break;
2179     continue; // Slot is now non-empty
2180     }
2181     }
2182     collide = false;
2183     }
2184     else if (!wasUncontended) // CAS already known to fail
2185     wasUncontended = true; // Continue after rehash
2186     else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2187     break;
2188     else if (counterCells != as || n >= NCPU)
2189     collide = false; // At max size or stale
2190     else if (!collide)
2191     collide = true;
2192     else if (counterBusy == 0 &&
2193     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2194     try {
2195     if (counterCells == as) {// Expand table unless stale
2196     CounterCell[] rs = new CounterCell[n << 1];
2197     for (int i = 0; i < n; ++i)
2198     rs[i] = as[i];
2199     counterCells = rs;
2200 dl 1.38 }
2201     } finally {
2202 dl 1.82 counterBusy = 0;
2203 dl 1.38 }
2204 dl 1.82 collide = false;
2205     continue; // Retry with expanded table
2206 dl 1.38 }
2207 dl 1.82 h ^= h << 13; // Rehash
2208     h ^= h >>> 17;
2209     h ^= h << 5;
2210     }
2211     else if (counterBusy == 0 && counterCells == as &&
2212     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2213     boolean init = false;
2214     try { // Initialize table
2215     if (counterCells == as) {
2216     CounterCell[] rs = new CounterCell[2];
2217     rs[h & 1] = new CounterCell(x);
2218     counterCells = rs;
2219     init = true;
2220 dl 1.27 }
2221     } finally {
2222 dl 1.82 counterBusy = 0;
2223 dl 1.27 }
2224 dl 1.82 if (init)
2225     break;
2226 dl 1.27 }
2227 dl 1.82 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2228     break; // Fall back on using base
2229 dl 1.27 }
2230 dl 1.82 hc.code = h; // Record index for next time
2231 dl 1.27 }
2232    
2233 dl 1.14 /* ----------------Table Traversal -------------- */
2234    
2235 dl 1.1 /**
2236 dl 1.14 * Encapsulates traversal for methods such as containsValue; also
2237 dl 1.59 * serves as a base class for other iterators and bulk tasks.
2238 dl 1.14 *
2239     * At each step, the iterator snapshots the key ("nextKey") and
2240     * value ("nextVal") of a valid node (i.e., one that, at point of
2241 jsr166 1.36 * snapshot, has a non-null user value). Because val fields can
2242 dl 1.14 * change (including to null, indicating deletion), field nextVal
2243     * might not be accurate at point of use, but still maintains the
2244     * weak consistency property of holding a value that was once
2245 dl 1.70 * valid. To support iterator.remove, the nextKey field is not
2246     * updated (nulled out) when the iterator cannot advance.
2247 dl 1.14 *
2248     * Internal traversals directly access these fields, as in:
2249 dl 1.41 * {@code while (it.advance() != null) { process(it.nextKey); }}
2250 dl 1.14 *
2251 dl 1.41 * Exported iterators must track whether the iterator has advanced
2252     * (in hasNext vs next) (by setting/checking/nulling field
2253     * nextVal), and then extract key, value, or key-value pairs as
2254     * return values of next().
2255 dl 1.14 *
2256 dl 1.27 * The iterator visits once each still-valid node that was
2257     * reachable upon iterator construction. It might miss some that
2258     * were added to a bin after the bin was visited, which is OK wrt
2259     * consistency guarantees. Maintaining this property in the face
2260     * of possible ongoing resizes requires a fair amount of
2261     * bookkeeping state that is difficult to optimize away amidst
2262     * volatile accesses. Even so, traversal maintains reasonable
2263     * throughput.
2264 dl 1.14 *
2265     * Normally, iteration proceeds bin-by-bin traversing lists.
2266     * However, if the table has been resized, then all future steps
2267     * must traverse both the bin at the current index as well as at
2268     * (index + baseSize); and so on for further resizings. To
2269     * paranoically cope with potential sharing by users of iterators
2270     * across threads, iteration terminates if a bounds checks fails
2271     * for a table read.
2272 dl 1.52 *
2273 dl 1.79 * This class extends CountedCompleter to streamline parallel
2274     * iteration in bulk operations. This adds only a few fields of
2275     * space overhead, which is small enough in cases where it is not
2276     * needed to not worry about it. Because CountedCompleter is
2277     * Serializable, but iterators need not be, we need to add warning
2278     * suppressions.
2279 dl 1.14 */
2280 dl 1.82 @SuppressWarnings("serial") static class Traverser<K,V,R>
2281     extends CountedCompleter<R> {
2282 dl 1.41 final ConcurrentHashMapV8<K, V> map;
2283 dl 1.84 Node<V> next; // the next entry to use
2284 dl 1.14 Object nextKey; // cached key field of next
2285 dl 1.84 V nextVal; // cached val field of next
2286     Node<V>[] tab; // current table; updated if resized
2287 dl 1.14 int index; // index of bin to use next
2288     int baseIndex; // current index of initial table
2289 dl 1.41 int baseLimit; // index bound for initial table
2290 dl 1.63 int baseSize; // initial table size
2291 dl 1.79 int batch; // split control
2292 dl 1.14
2293     /** Creates iterator for all entries in the table. */
2294 dl 1.52 Traverser(ConcurrentHashMapV8<K, V> map) {
2295 dl 1.63 this.map = map;
2296 dl 1.14 }
2297    
2298 dl 1.79 /** Creates iterator for split() methods and task constructors */
2299     Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2300     super(it);
2301     this.batch = batch;
2302     if ((this.map = map) != null && it != null) { // split parent
2303 dl 1.84 Node<V>[] t;
2304 dl 1.79 if ((t = it.tab) == null &&
2305     (t = it.tab = map.table) != null)
2306     it.baseLimit = it.baseSize = t.length;
2307     this.tab = t;
2308     this.baseSize = it.baseSize;
2309     int hi = this.baseLimit = it.baseLimit;
2310     it.baseLimit = this.index = this.baseIndex =
2311     (hi + it.baseIndex + 1) >>> 1;
2312     }
2313 dl 1.41 }
2314    
2315     /**
2316 jsr166 1.48 * Advances next; returns nextVal or null if terminated.
2317 dl 1.41 * See above for explanation.
2318     */
2319 dl 1.84 @SuppressWarnings("unchecked") final V advance() {
2320     Node<V> e = next;
2321     V ev = null;
2322 dl 1.14 outer: do {
2323 dl 1.24 if (e != null) // advance past used/skipped node
2324 dl 1.1 e = e.next;
2325 dl 1.24 while (e == null) { // get to next non-null bin
2326 dl 1.63 ConcurrentHashMapV8<K, V> m;
2327 dl 1.84 Node<V>[] t; int b, i, n; Object ek; // must use locals
2328 dl 1.63 if ((t = tab) != null)
2329     n = t.length;
2330     else if ((m = map) != null && (t = tab = m.table) != null)
2331     n = baseLimit = baseSize = t.length;
2332     else
2333 dl 1.14 break outer;
2334 dl 1.63 if ((b = baseIndex) >= baseLimit ||
2335     (i = index) < 0 || i >= n)
2336     break outer;
2337 dl 1.82 if ((e = tabAt(t, i)) != null && e.hash < 0) {
2338 dl 1.38 if ((ek = e.key) instanceof TreeBin)
2339 dl 1.84 e = ((TreeBin<V>)ek).first;
2340 dl 1.38 else {
2341 dl 1.84 tab = (Node<V>[])ek;
2342 dl 1.38 continue; // restarts due to null val
2343     }
2344     } // visit upper slots if present
2345     index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2346 dl 1.1 }
2347 dl 1.14 nextKey = e.key;
2348 dl 1.41 } while ((ev = e.val) == null); // skip deleted or special nodes
2349 dl 1.14 next = e;
2350 dl 1.41 return nextVal = ev;
2351 dl 1.1 }
2352 dl 1.41
2353     public final void remove() {
2354 dl 1.70 Object k = nextKey;
2355     if (k == null && (advance() == null || (k = nextKey) == null))
2356 dl 1.41 throw new IllegalStateException();
2357 dl 1.70 map.internalReplace(k, null, null);
2358 dl 1.41 }
2359    
2360     public final boolean hasNext() {
2361     return nextVal != null || advance() != null;
2362     }
2363    
2364     public final boolean hasMoreElements() { return hasNext(); }
2365 dl 1.79
2366     public void compute() { } // default no-op CountedCompleter body
2367    
2368     /**
2369     * Returns a batch value > 0 if this task should (and must) be
2370     * split, if so, adding to pending count, and in any case
2371     * updating batch value. The initial batch value is approx
2372     * exp2 of the number of times (minus one) to split task by
2373     * two before executing leaf action. This value is faster to
2374     * compute and more convenient to use as a guide to splitting
2375     * than is the depth, since it is used while dividing by two
2376     * anyway.
2377     */
2378     final int preSplit() {
2379 dl 1.84 ConcurrentHashMapV8<K, V> m; int b; Node<V>[] t; ForkJoinPool pool;
2380 dl 1.79 if ((b = batch) < 0 && (m = map) != null) { // force initialization
2381     if ((t = tab) == null && (t = tab = m.table) != null)
2382     baseLimit = baseSize = t.length;
2383     if (t != null) {
2384 dl 1.82 long n = m.sumCount();
2385 dl 1.79 int par = ((pool = getPool()) == null) ?
2386     ForkJoinPool.getCommonPoolParallelism() :
2387     pool.getParallelism();
2388     int sp = par << 3; // slack of 8
2389     b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2390     }
2391     }
2392 jsr166 1.80 b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2393 dl 1.79 if ((batch = b) > 0)
2394     addToPendingCount(1);
2395     return b;
2396     }
2397    
2398 dl 1.1 }
2399    
2400     /* ---------------- Public operations -------------- */
2401    
2402     /**
2403 jsr166 1.48 * Creates a new, empty map with the default initial table size (16).
2404 dl 1.1 */
2405 dl 1.16 public ConcurrentHashMapV8() {
2406 dl 1.1 }
2407    
2408     /**
2409 dl 1.16 * Creates a new, empty map with an initial table size
2410     * accommodating the specified number of elements without the need
2411     * to dynamically resize.
2412 dl 1.1 *
2413     * @param initialCapacity The implementation performs internal
2414     * sizing to accommodate this many elements.
2415     * @throws IllegalArgumentException if the initial capacity of
2416 jsr166 1.18 * elements is negative
2417 dl 1.1 */
2418 dl 1.16 public ConcurrentHashMapV8(int initialCapacity) {
2419     if (initialCapacity < 0)
2420     throw new IllegalArgumentException();
2421     int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2422     MAXIMUM_CAPACITY :
2423     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2424 dl 1.24 this.sizeCtl = cap;
2425 dl 1.1 }
2426    
2427     /**
2428 dl 1.16 * Creates a new map with the same mappings as the given map.
2429 dl 1.1 *
2430 dl 1.16 * @param m the map
2431 dl 1.1 */
2432 dl 1.16 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2433 dl 1.24 this.sizeCtl = DEFAULT_CAPACITY;
2434 dl 1.27 internalPutAll(m);
2435 dl 1.1 }
2436    
2437     /**
2438 dl 1.16 * Creates a new, empty map with an initial table size based on
2439     * the given number of elements ({@code initialCapacity}) and
2440     * initial table density ({@code loadFactor}).
2441     *
2442     * @param initialCapacity the initial capacity. The implementation
2443     * performs internal sizing to accommodate this many elements,
2444     * given the specified load factor.
2445     * @param loadFactor the load factor (table density) for
2446 jsr166 1.18 * establishing the initial table size
2447 dl 1.16 * @throws IllegalArgumentException if the initial capacity of
2448     * elements is negative or the load factor is nonpositive
2449 jsr166 1.22 *
2450     * @since 1.6
2451 dl 1.1 */
2452 dl 1.16 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2453     this(initialCapacity, loadFactor, 1);
2454 dl 1.1 }
2455    
2456     /**
2457 dl 1.16 * Creates a new, empty map with an initial table size based on
2458     * the given number of elements ({@code initialCapacity}), table
2459     * density ({@code loadFactor}), and number of concurrently
2460     * updating threads ({@code concurrencyLevel}).
2461 dl 1.1 *
2462 dl 1.16 * @param initialCapacity the initial capacity. The implementation
2463     * performs internal sizing to accommodate this many elements,
2464     * given the specified load factor.
2465     * @param loadFactor the load factor (table density) for
2466 jsr166 1.18 * establishing the initial table size
2467 dl 1.16 * @param concurrencyLevel the estimated number of concurrently
2468     * updating threads. The implementation may use this value as
2469     * a sizing hint.
2470     * @throws IllegalArgumentException if the initial capacity is
2471     * negative or the load factor or concurrencyLevel are
2472 jsr166 1.18 * nonpositive
2473 dl 1.1 */
2474 dl 1.16 public ConcurrentHashMapV8(int initialCapacity,
2475     float loadFactor, int concurrencyLevel) {
2476     if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2477     throw new IllegalArgumentException();
2478     if (initialCapacity < concurrencyLevel) // Use at least as many bins
2479     initialCapacity = concurrencyLevel; // as estimated threads
2480     long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2481 jsr166 1.49 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2482     MAXIMUM_CAPACITY : tableSizeFor((int)size);
2483 dl 1.24 this.sizeCtl = cap;
2484 dl 1.1 }
2485    
2486     /**
2487 dl 1.70 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2488     * from the given type to {@code Boolean.TRUE}.
2489     *
2490     * @return the new set
2491     */
2492     public static <K> KeySetView<K,Boolean> newKeySet() {
2493     return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2494     Boolean.TRUE);
2495     }
2496    
2497     /**
2498     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2499     * from the given type to {@code Boolean.TRUE}.
2500     *
2501     * @param initialCapacity The implementation performs internal
2502     * sizing to accommodate this many elements.
2503     * @throws IllegalArgumentException if the initial capacity of
2504     * elements is negative
2505     * @return the new set
2506     */
2507     public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2508 dl 1.82 return new KeySetView<K,Boolean>
2509     (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2510 dl 1.70 }
2511    
2512     /**
2513 dl 1.14 * {@inheritDoc}
2514 dl 1.1 */
2515     public boolean isEmpty() {
2516 dl 1.82 return sumCount() <= 0L; // ignore transient negative values
2517 dl 1.1 }
2518    
2519     /**
2520 dl 1.14 * {@inheritDoc}
2521 dl 1.1 */
2522     public int size() {
2523 dl 1.82 long n = sumCount();
2524 jsr166 1.15 return ((n < 0L) ? 0 :
2525     (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2526 dl 1.14 (int)n);
2527 dl 1.1 }
2528    
2529 dl 1.52 /**
2530     * Returns the number of mappings. This method should be used
2531 dl 1.70 * instead of {@link #size} because a ConcurrentHashMapV8 may
2532 dl 1.52 * contain more mappings than can be represented as an int. The
2533 dl 1.79 * value returned is an estimate; the actual count may differ if
2534     * there are concurrent insertions or removals.
2535 dl 1.52 *
2536     * @return the number of mappings
2537     */
2538     public long mappingCount() {
2539 dl 1.82 long n = sumCount();
2540 dl 1.59 return (n < 0L) ? 0L : n; // ignore transient negative values
2541 dl 1.24 }
2542    
2543 dl 1.1 /**
2544     * Returns the value to which the specified key is mapped,
2545     * or {@code null} if this map contains no mapping for the key.
2546     *
2547     * <p>More formally, if this map contains a mapping from a key
2548     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2549     * then this method returns {@code v}; otherwise it returns
2550     * {@code null}. (There can be at most one such mapping.)
2551     *
2552     * @throws NullPointerException if the specified key is null
2553     */
2554 dl 1.82 public V get(Object key) {
2555     return internalGet(key);
2556 dl 1.1 }
2557    
2558     /**
2559 dl 1.62 * Returns the value to which the specified key is mapped,
2560 jsr166 1.66 * or the given defaultValue if this map contains no mapping for the key.
2561 dl 1.62 *
2562     * @param key the key
2563     * @param defaultValue the value to return if this map contains
2564 jsr166 1.67 * no mapping for the given key
2565 dl 1.62 * @return the mapping for the key, if present; else the defaultValue
2566     * @throws NullPointerException if the specified key is null
2567     */
2568 dl 1.82 public V getValueOrDefault(Object key, V defaultValue) {
2569     V v;
2570     return (v = internalGet(key)) == null ? defaultValue : v;
2571 dl 1.62 }
2572    
2573     /**
2574 dl 1.1 * Tests if the specified object is a key in this table.
2575     *
2576     * @param key possible key
2577     * @return {@code true} if and only if the specified object
2578     * is a key in this table, as determined by the
2579 jsr166 1.18 * {@code equals} method; {@code false} otherwise
2580 dl 1.1 * @throws NullPointerException if the specified key is null
2581     */
2582     public boolean containsKey(Object key) {
2583     return internalGet(key) != null;
2584     }
2585    
2586     /**
2587     * Returns {@code true} if this map maps one or more keys to the
2588 dl 1.14 * specified value. Note: This method may require a full traversal
2589     * of the map, and is much slower than method {@code containsKey}.
2590 dl 1.1 *
2591     * @param value value whose presence in this map is to be tested
2592     * @return {@code true} if this map maps one or more keys to the
2593     * specified value
2594     * @throws NullPointerException if the specified value is null
2595     */
2596     public boolean containsValue(Object value) {
2597     if (value == null)
2598     throw new NullPointerException();
2599 dl 1.84 V v;
2600 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2601 dl 1.41 while ((v = it.advance()) != null) {
2602     if (v == value || value.equals(v))
2603 dl 1.14 return true;
2604     }
2605     return false;
2606 dl 1.1 }
2607    
2608     /**
2609     * Legacy method testing if some key maps into the specified value
2610     * in this table. This method is identical in functionality to
2611     * {@link #containsValue}, and exists solely to ensure
2612     * full compatibility with class {@link java.util.Hashtable},
2613     * which supported this method prior to introduction of the
2614     * Java Collections framework.
2615     *
2616     * @param value a value to search for
2617     * @return {@code true} if and only if some key maps to the
2618     * {@code value} argument in this table as
2619     * determined by the {@code equals} method;
2620     * {@code false} otherwise
2621     * @throws NullPointerException if the specified value is null
2622     */
2623 dl 1.84 @Deprecated public boolean contains(Object value) {
2624 dl 1.1 return containsValue(value);
2625     }
2626    
2627     /**
2628     * Maps the specified key to the specified value in this table.
2629     * Neither the key nor the value can be null.
2630     *
2631 jsr166 1.78 * <p>The value can be retrieved by calling the {@code get} method
2632 dl 1.1 * with a key that is equal to the original key.
2633     *
2634     * @param key key with which the specified value is to be associated
2635     * @param value value to be associated with the specified key
2636     * @return the previous value associated with {@code key}, or
2637     * {@code null} if there was no mapping for {@code key}
2638     * @throws NullPointerException if the specified key or value is null
2639     */
2640 dl 1.82 public V put(K key, V value) {
2641     return internalPut(key, value, false);
2642 dl 1.1 }
2643    
2644     /**
2645     * {@inheritDoc}
2646     *
2647     * @return the previous value associated with the specified key,
2648     * or {@code null} if there was no mapping for the key
2649     * @throws NullPointerException if the specified key or value is null
2650     */
2651 dl 1.82 public V putIfAbsent(K key, V value) {
2652     return internalPut(key, value, true);
2653 dl 1.1 }
2654    
2655     /**
2656     * Copies all of the mappings from the specified map to this one.
2657     * These mappings replace any mappings that this map had for any of the
2658     * keys currently in the specified map.
2659     *
2660     * @param m mappings to be stored in this map
2661     */
2662     public void putAll(Map<? extends K, ? extends V> m) {
2663 dl 1.27 internalPutAll(m);
2664 dl 1.1 }
2665    
2666     /**
2667     * If the specified key is not already associated with a value,
2668 dl 1.41 * computes its value using the given mappingFunction and enters
2669     * it into the map unless null. This is equivalent to
2670 dl 1.27 * <pre> {@code
2671 jsr166 1.13 * if (map.containsKey(key))
2672     * return map.get(key);
2673 dl 1.52 * value = mappingFunction.apply(key);
2674 dl 1.41 * if (value != null)
2675     * map.put(key, value);
2676 jsr166 1.13 * return value;}</pre>
2677 dl 1.1 *
2678 dl 1.27 * except that the action is performed atomically. If the
2679 dl 1.41 * function returns {@code null} no mapping is recorded. If the
2680     * function itself throws an (unchecked) exception, the exception
2681     * is rethrown to its caller, and no mapping is recorded. Some
2682     * attempted update operations on this map by other threads may be
2683     * blocked while computation is in progress, so the computation
2684     * should be short and simple, and must not attempt to update any
2685     * other mappings of this Map. The most appropriate usage is to
2686     * construct a new object serving as an initial mapped value, or
2687     * memoized result, as in:
2688 dl 1.27 *
2689 jsr166 1.13 * <pre> {@code
2690 dl 1.52 * map.computeIfAbsent(key, new Fun<K, V>() {
2691 jsr166 1.13 * public V map(K k) { return new Value(f(k)); }});}</pre>
2692 dl 1.1 *
2693     * @param key key with which the specified value is to be associated
2694     * @param mappingFunction the function to compute a value
2695     * @return the current (existing or computed) value associated with
2696 jsr166 1.67 * the specified key, or null if the computed value is null
2697 dl 1.41 * @throws NullPointerException if the specified key or mappingFunction
2698     * is null
2699 dl 1.5 * @throws IllegalStateException if the computation detectably
2700     * attempts a recursive update to this map that would
2701 jsr166 1.18 * otherwise never complete
2702 dl 1.1 * @throws RuntimeException or Error if the mappingFunction does so,
2703 jsr166 1.18 * in which case the mapping is left unestablished
2704 dl 1.1 */
2705 dl 1.82 public V computeIfAbsent
2706 dl 1.61 (K key, Fun<? super K, ? extends V> mappingFunction) {
2707 dl 1.82 return internalComputeIfAbsent(key, mappingFunction);
2708 dl 1.2 }
2709    
2710     /**
2711 dl 1.52 * If the given key is present, computes a new mapping value given a key and
2712     * its current mapped value. This is equivalent to
2713     * <pre> {@code
2714     * if (map.containsKey(key)) {
2715     * value = remappingFunction.apply(key, map.get(key));
2716     * if (value != null)
2717     * map.put(key, value);
2718     * else
2719     * map.remove(key);
2720     * }
2721     * }</pre>
2722     *
2723     * except that the action is performed atomically. If the
2724     * function returns {@code null}, the mapping is removed. If the
2725     * function itself throws an (unchecked) exception, the exception
2726     * is rethrown to its caller, and the current mapping is left
2727     * unchanged. Some attempted update operations on this map by
2728     * other threads may be blocked while computation is in progress,
2729     * so the computation should be short and simple, and must not
2730     * attempt to update any other mappings of this Map. For example,
2731     * to either create or append new messages to a value mapping:
2732     *
2733     * @param key key with which the specified value is to be associated
2734     * @param remappingFunction the function to compute a value
2735 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2736 dl 1.52 * @throws NullPointerException if the specified key or remappingFunction
2737     * is null
2738     * @throws IllegalStateException if the computation detectably
2739     * attempts a recursive update to this map that would
2740     * otherwise never complete
2741     * @throws RuntimeException or Error if the remappingFunction does so,
2742     * in which case the mapping is unchanged
2743     */
2744 dl 1.82 public V computeIfPresent
2745 dl 1.61 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2746 dl 1.82 return internalCompute(key, true, remappingFunction);
2747 dl 1.52 }
2748    
2749     /**
2750 dl 1.41 * Computes a new mapping value given a key and
2751 dl 1.27 * its current mapped value (or {@code null} if there is no current
2752     * mapping). This is equivalent to
2753 jsr166 1.13 * <pre> {@code
2754 dl 1.52 * value = remappingFunction.apply(key, map.get(key));
2755 dl 1.41 * if (value != null)
2756     * map.put(key, value);
2757     * else
2758     * map.remove(key);
2759 dl 1.27 * }</pre>
2760 dl 1.2 *
2761 dl 1.27 * except that the action is performed atomically. If the
2762 dl 1.41 * function returns {@code null}, the mapping is removed. If the
2763     * function itself throws an (unchecked) exception, the exception
2764     * is rethrown to its caller, and the current mapping is left
2765     * unchanged. Some attempted update operations on this map by
2766     * other threads may be blocked while computation is in progress,
2767     * so the computation should be short and simple, and must not
2768     * attempt to update any other mappings of this Map. For example,
2769     * to either create or append new messages to a value mapping:
2770 dl 1.27 *
2771     * <pre> {@code
2772     * Map<Key, String> map = ...;
2773     * final String msg = ...;
2774 dl 1.52 * map.compute(key, new BiFun<Key, String, String>() {
2775     * public String apply(Key k, String v) {
2776 dl 1.28 * return (v == null) ? msg : v + msg;});}}</pre>
2777 dl 1.2 *
2778     * @param key key with which the specified value is to be associated
2779 dl 1.27 * @param remappingFunction the function to compute a value
2780 jsr166 1.56 * @return the new value associated with the specified key, or null if none
2781 dl 1.27 * @throws NullPointerException if the specified key or remappingFunction
2782 dl 1.41 * is null
2783 dl 1.5 * @throws IllegalStateException if the computation detectably
2784     * attempts a recursive update to this map that would
2785 jsr166 1.18 * otherwise never complete
2786 dl 1.29 * @throws RuntimeException or Error if the remappingFunction does so,
2787 jsr166 1.18 * in which case the mapping is unchanged
2788 dl 1.2 */
2789 dl 1.82 public V compute
2790 dl 1.61 (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2791 dl 1.82 return internalCompute(key, false, remappingFunction);
2792 dl 1.52 }
2793    
2794     /**
2795     * If the specified key is not already associated
2796     * with a value, associate it with the given value.
2797     * Otherwise, replace the value with the results of
2798     * the given remapping function. This is equivalent to:
2799     * <pre> {@code
2800     * if (!map.containsKey(key))
2801     * map.put(value);
2802     * else {
2803     * newValue = remappingFunction.apply(map.get(key), value);
2804     * if (value != null)
2805     * map.put(key, value);
2806     * else
2807     * map.remove(key);
2808     * }
2809     * }</pre>
2810     * except that the action is performed atomically. If the
2811     * function returns {@code null}, the mapping is removed. If the
2812     * function itself throws an (unchecked) exception, the exception
2813     * is rethrown to its caller, and the current mapping is left
2814     * unchanged. Some attempted update operations on this map by
2815     * other threads may be blocked while computation is in progress,
2816     * so the computation should be short and simple, and must not
2817     * attempt to update any other mappings of this Map.
2818     */
2819 dl 1.82 public V merge
2820     (K key, V value,
2821     BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2822     return internalMerge(key, value, remappingFunction);
2823 dl 1.1 }
2824    
2825     /**
2826     * Removes the key (and its corresponding value) from this map.
2827     * This method does nothing if the key is not in the map.
2828     *
2829     * @param key the key that needs to be removed
2830     * @return the previous value associated with {@code key}, or
2831     * {@code null} if there was no mapping for {@code key}
2832     * @throws NullPointerException if the specified key is null
2833     */
2834 dl 1.82 public V remove(Object key) {
2835     return internalReplace(key, null, null);
2836 dl 1.1 }
2837    
2838     /**
2839     * {@inheritDoc}
2840     *
2841     * @throws NullPointerException if the specified key is null
2842     */
2843     public boolean remove(Object key, Object value) {
2844 dl 1.82 return value != null && internalReplace(key, null, value) != null;
2845 dl 1.1 }
2846    
2847     /**
2848     * {@inheritDoc}
2849     *
2850     * @throws NullPointerException if any of the arguments are null
2851     */
2852     public boolean replace(K key, V oldValue, V newValue) {
2853     if (key == null || oldValue == null || newValue == null)
2854     throw new NullPointerException();
2855 jsr166 1.3 return internalReplace(key, newValue, oldValue) != null;
2856 dl 1.1 }
2857    
2858     /**
2859     * {@inheritDoc}
2860     *
2861     * @return the previous value associated with the specified key,
2862     * or {@code null} if there was no mapping for the key
2863     * @throws NullPointerException if the specified key or value is null
2864     */
2865 dl 1.82 public V replace(K key, V value) {
2866 dl 1.1 if (key == null || value == null)
2867     throw new NullPointerException();
2868 dl 1.82 return internalReplace(key, value, null);
2869 dl 1.1 }
2870    
2871     /**
2872     * Removes all of the mappings from this map.
2873     */
2874     public void clear() {
2875     internalClear();
2876     }
2877    
2878     /**
2879     * Returns a {@link Set} view of the keys contained in this map.
2880     * The set is backed by the map, so changes to the map are
2881 dl 1.70 * reflected in the set, and vice-versa.
2882     *
2883     * @return the set view
2884     */
2885     public KeySetView<K,V> keySet() {
2886     KeySetView<K,V> ks = keySet;
2887     return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2888     }
2889    
2890     /**
2891     * Returns a {@link Set} view of the keys in this map, using the
2892     * given common mapped value for any additions (i.e., {@link
2893     * Collection#add} and {@link Collection#addAll}). This is of
2894     * course only appropriate if it is acceptable to use the same
2895     * value for all additions from this view.
2896 dl 1.1 *
2897 dl 1.70 * @param mappedValue the mapped value to use for any
2898     * additions.
2899     * @return the set view
2900     * @throws NullPointerException if the mappedValue is null
2901 dl 1.1 */
2902 dl 1.70 public KeySetView<K,V> keySet(V mappedValue) {
2903     if (mappedValue == null)
2904     throw new NullPointerException();
2905     return new KeySetView<K,V>(this, mappedValue);
2906 dl 1.1 }
2907    
2908     /**
2909     * Returns a {@link Collection} view of the values contained in this map.
2910     * The collection is backed by the map, so changes to the map are
2911 jsr166 1.76 * reflected in the collection, and vice-versa.
2912 dl 1.1 */
2913 dl 1.75 public ValuesView<K,V> values() {
2914     ValuesView<K,V> vs = values;
2915     return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2916 dl 1.1 }
2917    
2918     /**
2919     * Returns a {@link Set} view of the mappings contained in this map.
2920     * The set is backed by the map, so changes to the map are
2921     * reflected in the set, and vice-versa. The set supports element
2922     * removal, which removes the corresponding mapping from the map,
2923     * via the {@code Iterator.remove}, {@code Set.remove},
2924     * {@code removeAll}, {@code retainAll}, and {@code clear}
2925     * operations. It does not support the {@code add} or
2926     * {@code addAll} operations.
2927     *
2928     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2929     * that will never throw {@link ConcurrentModificationException},
2930     * and guarantees to traverse elements as they existed upon
2931     * construction of the iterator, and may (but is not guaranteed to)
2932     * reflect any modifications subsequent to construction.
2933     */
2934     public Set<Map.Entry<K,V>> entrySet() {
2935 dl 1.75 EntrySetView<K,V> es = entrySet;
2936     return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2937 dl 1.1 }
2938    
2939     /**
2940     * Returns an enumeration of the keys in this table.
2941     *
2942     * @return an enumeration of the keys in this table
2943     * @see #keySet()
2944     */
2945     public Enumeration<K> keys() {
2946 dl 1.14 return new KeyIterator<K,V>(this);
2947 dl 1.1 }
2948    
2949     /**
2950     * Returns an enumeration of the values in this table.
2951     *
2952     * @return an enumeration of the values in this table
2953     * @see #values()
2954     */
2955     public Enumeration<V> elements() {
2956 dl 1.14 return new ValueIterator<K,V>(this);
2957 dl 1.1 }
2958    
2959     /**
2960 jsr166 1.55 * Returns a partitionable iterator of the keys in this map.
2961 dl 1.41 *
2962 jsr166 1.55 * @return a partitionable iterator of the keys in this map
2963 dl 1.41 */
2964     public Spliterator<K> keySpliterator() {
2965     return new KeyIterator<K,V>(this);
2966     }
2967    
2968     /**
2969 jsr166 1.55 * Returns a partitionable iterator of the values in this map.
2970 dl 1.41 *
2971 jsr166 1.55 * @return a partitionable iterator of the values in this map
2972 dl 1.41 */
2973     public Spliterator<V> valueSpliterator() {
2974     return new ValueIterator<K,V>(this);
2975     }
2976    
2977     /**
2978 jsr166 1.55 * Returns a partitionable iterator of the entries in this map.
2979 dl 1.41 *
2980 jsr166 1.55 * @return a partitionable iterator of the entries in this map
2981 dl 1.41 */
2982     public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2983     return new EntryIterator<K,V>(this);
2984     }
2985    
2986     /**
2987 dl 1.2 * Returns the hash code value for this {@link Map}, i.e.,
2988     * the sum of, for each key-value pair in the map,
2989     * {@code key.hashCode() ^ value.hashCode()}.
2990     *
2991     * @return the hash code value for this map
2992 dl 1.1 */
2993     public int hashCode() {
2994 dl 1.14 int h = 0;
2995 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2996 dl 1.84 V v;
2997 dl 1.41 while ((v = it.advance()) != null) {
2998     h += it.nextKey.hashCode() ^ v.hashCode();
2999 dl 1.14 }
3000     return h;
3001 dl 1.1 }
3002    
3003     /**
3004 dl 1.2 * Returns a string representation of this map. The string
3005     * representation consists of a list of key-value mappings (in no
3006     * particular order) enclosed in braces ("{@code {}}"). Adjacent
3007     * mappings are separated by the characters {@code ", "} (comma
3008     * and space). Each key-value mapping is rendered as the key
3009     * followed by an equals sign ("{@code =}") followed by the
3010     * associated value.
3011     *
3012     * @return a string representation of this map
3013 dl 1.1 */
3014     public String toString() {
3015 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3016 dl 1.14 StringBuilder sb = new StringBuilder();
3017     sb.append('{');
3018 dl 1.84 V v;
3019 dl 1.41 if ((v = it.advance()) != null) {
3020 dl 1.14 for (;;) {
3021 dl 1.41 Object k = it.nextKey;
3022 dl 1.14 sb.append(k == this ? "(this Map)" : k);
3023     sb.append('=');
3024     sb.append(v == this ? "(this Map)" : v);
3025 dl 1.41 if ((v = it.advance()) == null)
3026 dl 1.14 break;
3027     sb.append(',').append(' ');
3028     }
3029     }
3030     return sb.append('}').toString();
3031 dl 1.1 }
3032    
3033     /**
3034 dl 1.2 * Compares the specified object with this map for equality.
3035     * Returns {@code true} if the given object is a map with the same
3036     * mappings as this map. This operation may return misleading
3037     * results if either map is concurrently modified during execution
3038     * of this method.
3039     *
3040     * @param o object to be compared for equality with this map
3041     * @return {@code true} if the specified object is equal to this map
3042 dl 1.1 */
3043     public boolean equals(Object o) {
3044 dl 1.14 if (o != this) {
3045     if (!(o instanceof Map))
3046     return false;
3047     Map<?,?> m = (Map<?,?>) o;
3048 dl 1.52 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3049 dl 1.84 V val;
3050 dl 1.41 while ((val = it.advance()) != null) {
3051 dl 1.14 Object v = m.get(it.nextKey);
3052     if (v == null || (v != val && !v.equals(val)))
3053 dl 1.1 return false;
3054 dl 1.14 }
3055 dl 1.1 for (Map.Entry<?,?> e : m.entrySet()) {
3056 dl 1.14 Object mk, mv, v;
3057     if ((mk = e.getKey()) == null ||
3058     (mv = e.getValue()) == null ||
3059     (v = internalGet(mk)) == null ||
3060     (mv != v && !mv.equals(v)))
3061 dl 1.1 return false;
3062     }
3063 dl 1.14 }
3064     return true;
3065     }
3066    
3067     /* ----------------Iterators -------------- */
3068    
3069 dl 1.82 @SuppressWarnings("serial") static final class KeyIterator<K,V>
3070     extends Traverser<K,V,Object>
3071 dl 1.41 implements Spliterator<K>, Enumeration<K> {
3072     KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3073 dl 1.79 KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3074     super(map, it, -1);
3075 dl 1.41 }
3076     public KeyIterator<K,V> split() {
3077 dl 1.70 if (nextKey != null)
3078 dl 1.41 throw new IllegalStateException();
3079 dl 1.79 return new KeyIterator<K,V>(map, this);
3080 dl 1.14 }
3081 dl 1.61 @SuppressWarnings("unchecked") public final K next() {
3082 dl 1.41 if (nextVal == null && advance() == null)
3083 dl 1.14 throw new NoSuchElementException();
3084     Object k = nextKey;
3085 dl 1.41 nextVal = null;
3086     return (K) k;
3087 dl 1.14 }
3088    
3089     public final K nextElement() { return next(); }
3090     }
3091    
3092 dl 1.82 @SuppressWarnings("serial") static final class ValueIterator<K,V>
3093     extends Traverser<K,V,Object>
3094 dl 1.41 implements Spliterator<V>, Enumeration<V> {
3095 dl 1.14 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3096 dl 1.79 ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3097     super(map, it, -1);
3098 dl 1.41 }
3099     public ValueIterator<K,V> split() {
3100 dl 1.70 if (nextKey != null)
3101 dl 1.41 throw new IllegalStateException();
3102 dl 1.79 return new ValueIterator<K,V>(map, this);
3103 dl 1.41 }
3104    
3105 dl 1.84 public final V next() {
3106     V v;
3107 dl 1.41 if ((v = nextVal) == null && (v = advance()) == null)
3108 dl 1.14 throw new NoSuchElementException();
3109 dl 1.41 nextVal = null;
3110 dl 1.84 return v;
3111 dl 1.14 }
3112    
3113     public final V nextElement() { return next(); }
3114     }
3115    
3116 dl 1.82 @SuppressWarnings("serial") static final class EntryIterator<K,V>
3117     extends Traverser<K,V,Object>
3118 dl 1.41 implements Spliterator<Map.Entry<K,V>> {
3119 dl 1.14 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3120 dl 1.79 EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3121     super(map, it, -1);
3122 dl 1.41 }
3123     public EntryIterator<K,V> split() {
3124 dl 1.70 if (nextKey != null)
3125 dl 1.41 throw new IllegalStateException();
3126 dl 1.79 return new EntryIterator<K,V>(map, this);
3127 dl 1.41 }
3128 dl 1.24
3129 dl 1.61 @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3130 dl 1.84 V v;
3131 dl 1.41 if ((v = nextVal) == null && (v = advance()) == null)
3132 dl 1.24 throw new NoSuchElementException();
3133     Object k = nextKey;
3134 dl 1.41 nextVal = null;
3135 dl 1.84 return new MapEntry<K,V>((K)k, v, map);
3136 dl 1.1 }
3137     }
3138    
3139     /**
3140 dl 1.41 * Exported Entry for iterators
3141 dl 1.1 */
3142 dl 1.41 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3143 dl 1.14 final K key; // non-null
3144     V val; // non-null
3145 dl 1.41 final ConcurrentHashMapV8<K, V> map;
3146     MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3147     this.key = key;
3148     this.val = val;
3149     this.map = map;
3150     }
3151 dl 1.14 public final K getKey() { return key; }
3152     public final V getValue() { return val; }
3153     public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3154     public final String toString(){ return key + "=" + val; }
3155    
3156     public final boolean equals(Object o) {
3157     Object k, v; Map.Entry<?,?> e;
3158     return ((o instanceof Map.Entry) &&
3159     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3160     (v = e.getValue()) != null &&
3161     (k == key || k.equals(key)) &&
3162     (v == val || v.equals(val)));
3163 dl 1.1 }
3164    
3165     /**
3166     * Sets our entry's value and writes through to the map. The
3167 jsr166 1.50 * value to return is somewhat arbitrary here. Since we do not
3168     * necessarily track asynchronous changes, the most recent
3169 dl 1.41 * "previous" value could be different from what we return (or
3170     * could even have been removed in which case the put will
3171     * re-establish). We do not and cannot guarantee more.
3172 dl 1.1 */
3173 dl 1.14 public final V setValue(V value) {
3174 dl 1.1 if (value == null) throw new NullPointerException();
3175 dl 1.14 V v = val;
3176     val = value;
3177     map.put(key, value);
3178 dl 1.1 return v;
3179     }
3180     }
3181    
3182 dl 1.79 /**
3183     * Returns exportable snapshot entry for the given key and value
3184     * when write-through can't or shouldn't be used.
3185     */
3186     static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3187     return new AbstractMap.SimpleEntry<K,V>(k, v);
3188     }
3189    
3190 dl 1.75 /* ---------------- Serialization Support -------------- */
3191 dl 1.1
3192 dl 1.24 /**
3193 dl 1.75 * Stripped-down version of helper class used in previous version,
3194     * declared for the sake of serialization compatibility
3195 dl 1.14 */
3196 dl 1.75 static class Segment<K,V> implements Serializable {
3197     private static final long serialVersionUID = 2249069246763182397L;
3198     final float loadFactor;
3199     Segment(float lf) { this.loadFactor = lf; }
3200     }
3201 dl 1.24
3202 dl 1.75 /**
3203     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3204     * stream (i.e., serializes it).
3205     * @param s the stream
3206     * @serialData
3207     * the key (Object) and value (Object)
3208     * for each key-value mapping, followed by a null pair.
3209     * The key-value mappings are emitted in no particular order.
3210     */
3211 dl 1.82 @SuppressWarnings("unchecked") private void writeObject
3212     (java.io.ObjectOutputStream s)
3213 dl 1.75 throws java.io.IOException {
3214     if (segments == null) { // for serialization compatibility
3215     segments = (Segment<K,V>[])
3216     new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3217     for (int i = 0; i < segments.length; ++i)
3218     segments[i] = new Segment<K,V>(LOAD_FACTOR);
3219     }
3220     s.defaultWriteObject();
3221     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3222 dl 1.84 V v;
3223 dl 1.75 while ((v = it.advance()) != null) {
3224     s.writeObject(it.nextKey);
3225     s.writeObject(v);
3226     }
3227     s.writeObject(null);
3228     s.writeObject(null);
3229     segments = null; // throw away
3230     }
3231 dl 1.24
3232 dl 1.75 /**
3233     * Reconstitutes the instance from a stream (that is, deserializes it).
3234     * @param s the stream
3235     */
3236 dl 1.82 @SuppressWarnings("unchecked") private void readObject
3237     (java.io.ObjectInputStream s)
3238 dl 1.75 throws java.io.IOException, ClassNotFoundException {
3239     s.defaultReadObject();
3240     this.segments = null; // unneeded
3241 dl 1.24
3242 dl 1.75 // Create all nodes, then place in table once size is known
3243     long size = 0L;
3244 dl 1.84 Node<V> p = null;
3245 dl 1.75 for (;;) {
3246     K k = (K) s.readObject();
3247     V v = (V) s.readObject();
3248     if (k != null && v != null) {
3249     int h = spread(k.hashCode());
3250 dl 1.84 p = new Node<V>(h, k, v, p);
3251 dl 1.75 ++size;
3252 dl 1.24 }
3253 dl 1.75 else
3254     break;
3255 dl 1.24 }
3256 dl 1.75 if (p != null) {
3257     boolean init = false;
3258     int n;
3259     if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3260     n = MAXIMUM_CAPACITY;
3261     else {
3262     int sz = (int)size;
3263     n = tableSizeFor(sz + (sz >>> 1) + 1);
3264     }
3265     int sc = sizeCtl;
3266     boolean collide = false;
3267     if (n > sc &&
3268 dl 1.82 U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3269 dl 1.75 try {
3270     if (table == null) {
3271     init = true;
3272 dl 1.84 @SuppressWarnings("rawtypes") Node[] rt = new Node[n];
3273     Node<V>[] tab = (Node<V>[])rt;
3274 dl 1.75 int mask = n - 1;
3275     while (p != null) {
3276     int j = p.hash & mask;
3277 dl 1.84 Node<V> next = p.next;
3278     Node<V> q = p.next = tabAt(tab, j);
3279 dl 1.75 setTabAt(tab, j, p);
3280     if (!collide && q != null && q.hash == p.hash)
3281     collide = true;
3282     p = next;
3283     }
3284     table = tab;
3285 dl 1.82 addCount(size, -1);
3286 dl 1.75 sc = n - (n >>> 2);
3287     }
3288     } finally {
3289     sizeCtl = sc;
3290     }
3291     if (collide) { // rescan and convert to TreeBins
3292 dl 1.84 Node<V>[] tab = table;
3293 dl 1.75 for (int i = 0; i < tab.length; ++i) {
3294     int c = 0;
3295 dl 1.84 for (Node<V> e = tabAt(tab, i); e != null; e = e.next) {
3296 dl 1.75 if (++c > TREE_THRESHOLD &&
3297     (e.key instanceof Comparable)) {
3298     replaceWithTreeBin(tab, i, e.key);
3299     break;
3300     }
3301     }
3302     }
3303 dl 1.24 }
3304     }
3305 dl 1.75 if (!init) { // Can only happen if unsafely published.
3306     while (p != null) {
3307 dl 1.84 internalPut((K)p.key, p.val, false);
3308 dl 1.75 p = p.next;
3309     }
3310 dl 1.24 }
3311     }
3312 dl 1.75 }
3313    
3314     // -------------------------------------------------------
3315 dl 1.24
3316 dl 1.75 // Sams
3317     /** Interface describing a void action of one argument */
3318     public interface Action<A> { void apply(A a); }
3319 dl 1.52 /** Interface describing a void action of two arguments */
3320     public interface BiAction<A,B> { void apply(A a, B b); }
3321     /** Interface describing a function of one argument */
3322     public interface Fun<A,T> { T apply(A a); }
3323     /** Interface describing a function of two arguments */
3324     public interface BiFun<A,B,T> { T apply(A a, B b); }
3325     /** Interface describing a function of no arguments */
3326     public interface Generator<T> { T apply(); }
3327     /** Interface describing a function mapping its argument to a double */
3328     public interface ObjectToDouble<A> { double apply(A a); }
3329     /** Interface describing a function mapping its argument to a long */
3330     public interface ObjectToLong<A> { long apply(A a); }
3331     /** Interface describing a function mapping its argument to an int */
3332     public interface ObjectToInt<A> {int apply(A a); }
3333     /** Interface describing a function mapping two arguments to a double */
3334     public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3335     /** Interface describing a function mapping two arguments to a long */
3336     public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3337     /** Interface describing a function mapping two arguments to an int */
3338     public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3339     /** Interface describing a function mapping a double to a double */
3340     public interface DoubleToDouble { double apply(double a); }
3341     /** Interface describing a function mapping a long to a long */
3342     public interface LongToLong { long apply(long a); }
3343     /** Interface describing a function mapping an int to an int */
3344     public interface IntToInt { int apply(int a); }
3345     /** Interface describing a function mapping two doubles to a double */
3346     public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3347     /** Interface describing a function mapping two longs to a long */
3348     public interface LongByLongToLong { long apply(long a, long b); }
3349     /** Interface describing a function mapping two ints to an int */
3350     public interface IntByIntToInt { int apply(int a, int b); }
3351    
3352    
3353     // -------------------------------------------------------
3354    
3355 dl 1.84 // Sequential bulk operations
3356    
3357 dl 1.52 /**
3358 dl 1.70 * Performs the given action for each (key, value).
3359 dl 1.52 *
3360 dl 1.70 * @param action the action
3361 dl 1.52 */
3362 dl 1.84 @SuppressWarnings("unchecked") public void forEachSequentially
3363     (BiAction<K,V> action) {
3364     if (action == null) throw new NullPointerException();
3365     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3366     V v;
3367     while ((v = it.advance()) != null)
3368     action.apply((K)it.nextKey, v);
3369 dl 1.52 }
3370    
3371     /**
3372 dl 1.70 * Performs the given action for each non-null transformation
3373     * of each (key, value).
3374     *
3375     * @param transformer a function returning the transformation
3376 jsr166 1.91 * for an element, or null if there is no transformation (in
3377 dl 1.70 * which case the action is not applied).
3378     * @param action the action
3379 dl 1.52 */
3380 dl 1.84 @SuppressWarnings("unchecked") public <U> void forEachSequentially
3381     (BiFun<? super K, ? super V, ? extends U> transformer,
3382     Action<U> action) {
3383     if (transformer == null || action == null)
3384     throw new NullPointerException();
3385     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3386     V v; U u;
3387     while ((v = it.advance()) != null) {
3388     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3389     action.apply(u);
3390     }
3391 dl 1.70 }
3392    
3393     /**
3394     * Returns a non-null result from applying the given search
3395 dl 1.84 * function on each (key, value), or null if none.
3396 dl 1.70 *
3397     * @param searchFunction a function returning a non-null
3398     * result on success, else null
3399     * @return a non-null result from applying the given search
3400     * function on each (key, value), or null if none
3401     */
3402 dl 1.84 @SuppressWarnings("unchecked") public <U> U searchSequentially
3403     (BiFun<? super K, ? super V, ? extends U> searchFunction) {
3404     if (searchFunction == null) throw new NullPointerException();
3405     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3406     V v; U u;
3407     while ((v = it.advance()) != null) {
3408     if ((u = searchFunction.apply((K)it.nextKey, v)) != null)
3409     return u;
3410     }
3411     return null;
3412 dl 1.70 }
3413    
3414     /**
3415     * Returns the result of accumulating the given transformation
3416     * of all (key, value) pairs using the given reducer to
3417     * combine values, or null if none.
3418     *
3419     * @param transformer a function returning the transformation
3420 jsr166 1.91 * for an element, or null if there is no transformation (in
3421 dl 1.70 * which case it is not combined).
3422     * @param reducer a commutative associative combining function
3423     * @return the result of accumulating the given transformation
3424     * of all (key, value) pairs
3425     */
3426 dl 1.84 @SuppressWarnings("unchecked") public <U> U reduceSequentially
3427     (BiFun<? super K, ? super V, ? extends U> transformer,
3428     BiFun<? super U, ? super U, ? extends U> reducer) {
3429     if (transformer == null || reducer == null)
3430     throw new NullPointerException();
3431     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3432     U r = null, u; V v;
3433     while ((v = it.advance()) != null) {
3434     if ((u = transformer.apply((K)it.nextKey, v)) != null)
3435     r = (r == null) ? u : reducer.apply(r, u);
3436     }
3437     return r;
3438 dl 1.70 }
3439 dl 1.52
3440 dl 1.70 /**
3441     * Returns the result of accumulating the given transformation
3442     * of all (key, value) pairs using the given reducer to
3443     * combine values, and the given basis as an identity value.
3444     *
3445     * @param transformer a function returning the transformation
3446     * for an element
3447     * @param basis the identity (initial default value) for the reduction
3448     * @param reducer a commutative associative combining function
3449     * @return the result of accumulating the given transformation
3450     * of all (key, value) pairs
3451     */
3452 dl 1.84 @SuppressWarnings("unchecked") public double reduceToDoubleSequentially
3453     (ObjectByObjectToDouble<? super K, ? super V> transformer,
3454     double basis,
3455     DoubleByDoubleToDouble reducer) {
3456     if (transformer == null || reducer == null)
3457     throw new NullPointerException();
3458     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3459     double r = basis; V v;
3460     while ((v = it.advance()) != null)
3461     r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3462     return r;
3463 dl 1.70 }
3464    
3465     /**
3466     * Returns the result of accumulating the given transformation
3467     * of all (key, value) pairs using the given reducer to
3468     * combine values, and the given basis as an identity value.
3469     *
3470     * @param transformer a function returning the transformation
3471     * for an element
3472     * @param basis the identity (initial default value) for the reduction
3473     * @param reducer a commutative associative combining function
3474     * @return the result of accumulating the given transformation
3475     * of all (key, value) pairs
3476     */
3477 dl 1.84 @SuppressWarnings("unchecked") public long reduceToLongSequentially
3478     (ObjectByObjectToLong<? super K, ? super V> transformer,
3479     long basis,
3480     LongByLongToLong reducer) {
3481     if (transformer == null || reducer == null)
3482     throw new NullPointerException();
3483     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3484     long r = basis; V v;
3485     while ((v = it.advance()) != null)
3486     r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3487     return r;
3488 dl 1.70 }
3489    
3490     /**
3491     * Returns the result of accumulating the given transformation
3492     * of all (key, value) pairs using the given reducer to
3493     * combine values, and the given basis as an identity value.
3494     *
3495     * @param transformer a function returning the transformation
3496     * for an element
3497     * @param basis the identity (initial default value) for the reduction
3498     * @param reducer a commutative associative combining function
3499     * @return the result of accumulating the given transformation
3500     * of all (key, value) pairs
3501     */
3502 dl 1.84 @SuppressWarnings("unchecked") public int reduceToIntSequentially
3503     (ObjectByObjectToInt<? super K, ? super V> transformer,
3504     int basis,
3505     IntByIntToInt reducer) {
3506     if (transformer == null || reducer == null)
3507     throw new NullPointerException();
3508     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3509     int r = basis; V v;
3510     while ((v = it.advance()) != null)
3511     r = reducer.apply(r, transformer.apply((K)it.nextKey, v));
3512     return r;
3513 dl 1.70 }
3514 dl 1.52
3515 dl 1.70 /**
3516     * Performs the given action for each key.
3517     *
3518     * @param action the action
3519     */
3520 dl 1.84 @SuppressWarnings("unchecked") public void forEachKeySequentially
3521     (Action<K> action) {
3522     if (action == null) throw new NullPointerException();
3523     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3524     while (it.advance() != null)
3525     action.apply((K)it.nextKey);
3526 dl 1.70 }
3527 dl 1.52
3528 dl 1.70 /**
3529     * Performs the given action for each non-null transformation
3530     * of each key.
3531     *
3532     * @param transformer a function returning the transformation
3533 jsr166 1.91 * for an element, or null if there is no transformation (in
3534 dl 1.70 * which case the action is not applied).
3535     * @param action the action
3536     */
3537 dl 1.84 @SuppressWarnings("unchecked") public <U> void forEachKeySequentially
3538     (Fun<? super K, ? extends U> transformer,
3539     Action<U> action) {
3540     if (transformer == null || action == null)
3541     throw new NullPointerException();
3542     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3543     U u;
3544     while (it.advance() != null) {
3545     if ((u = transformer.apply((K)it.nextKey)) != null)
3546     action.apply(u);
3547     }
3548 dl 1.70 ForkJoinTasks.forEachKey
3549     (this, transformer, action).invoke();
3550     }
3551 dl 1.52
3552 dl 1.70 /**
3553 dl 1.71 * Returns a non-null result from applying the given search
3554 dl 1.84 * function on each key, or null if none.
3555 dl 1.71 *
3556     * @param searchFunction a function returning a non-null
3557     * result on success, else null
3558     * @return a non-null result from applying the given search
3559     * function on each key, or null if none
3560     */
3561 dl 1.84 @SuppressWarnings("unchecked") public <U> U searchKeysSequentially
3562     (Fun<? super K, ? extends U> searchFunction) {
3563     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3564     U u;
3565     while (it.advance() != null) {
3566     if ((u = searchFunction.apply((K)it.nextKey)) != null)
3567     return u;
3568     }
3569     return null;
3570 dl 1.71 }
3571    
3572     /**
3573 dl 1.70 * Returns the result of accumulating all keys using the given
3574     * reducer to combine values, or null if none.
3575     *
3576     * @param reducer a commutative associative combining function
3577     * @return the result of accumulating all keys using the given
3578     * reducer to combine values, or null if none
3579     */
3580 dl 1.84 @SuppressWarnings("unchecked") public K reduceKeysSequentially
3581     (BiFun<? super K, ? super K, ? extends K> reducer) {
3582     if (reducer == null) throw new NullPointerException();
3583     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3584     K r = null;
3585     while (it.advance() != null) {
3586     K u = (K)it.nextKey;
3587     r = (r == null) ? u : reducer.apply(r, u);
3588     }
3589     return r;
3590 dl 1.70 }
3591 dl 1.1
3592 dl 1.70 /**
3593     * Returns the result of accumulating the given transformation
3594     * of all keys using the given reducer to combine values, or
3595     * null if none.
3596     *
3597     * @param transformer a function returning the transformation
3598 jsr166 1.91 * for an element, or null if there is no transformation (in
3599 dl 1.70 * which case it is not combined).
3600     * @param reducer a commutative associative combining function
3601     * @return the result of accumulating the given transformation
3602     * of all keys
3603     */
3604 dl 1.84 @SuppressWarnings("unchecked") public <U> U reduceKeysSequentially
3605     (Fun<? super K, ? extends U> transformer,
3606     BiFun<? super U, ? super U, ? extends U> reducer) {
3607     if (transformer == null || reducer == null)
3608     throw new NullPointerException();
3609     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3610     U r = null, u;
3611     while (it.advance() != null) {
3612     if ((u = transformer.apply((K)it.nextKey)) != null)
3613     r = (r == null) ? u : reducer.apply(r, u);
3614     }
3615     return r;
3616 dl 1.70 }
3617 dl 1.1
3618 dl 1.70 /**
3619     * Returns the result of accumulating the given transformation
3620     * of all keys using the given reducer to combine values, and
3621     * the given basis as an identity value.
3622     *
3623     * @param transformer a function returning the transformation
3624     * for an element
3625     * @param basis the identity (initial default value) for the reduction
3626     * @param reducer a commutative associative combining function
3627     * @return the result of accumulating the given transformation
3628     * of all keys
3629     */
3630 dl 1.84 @SuppressWarnings("unchecked") public double reduceKeysToDoubleSequentially
3631     (ObjectToDouble<? super K> transformer,
3632     double basis,
3633     DoubleByDoubleToDouble reducer) {
3634     if (transformer == null || reducer == null)
3635     throw new NullPointerException();
3636     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3637     double r = basis;
3638     while (it.advance() != null)
3639     r = reducer.apply(r, transformer.apply((K)it.nextKey));
3640     return r;
3641 dl 1.70 }
3642 dl 1.52
3643 dl 1.70 /**
3644     * Returns the result of accumulating the given transformation
3645     * of all keys using the given reducer to combine values, and
3646     * the given basis as an identity value.
3647     *
3648     * @param transformer a function returning the transformation
3649     * for an element
3650     * @param basis the identity (initial default value) for the reduction
3651     * @param reducer a commutative associative combining function
3652     * @return the result of accumulating the given transformation
3653     * of all keys
3654     */
3655 dl 1.84 @SuppressWarnings("unchecked") public long reduceKeysToLongSequentially
3656     (ObjectToLong<? super K> transformer,
3657     long basis,
3658     LongByLongToLong reducer) {
3659     if (transformer == null || reducer == null)
3660     throw new NullPointerException();
3661     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3662     long r = basis;
3663     while (it.advance() != null)
3664     r = reducer.apply(r, transformer.apply((K)it.nextKey));
3665     return r;
3666 dl 1.70 }
3667 dl 1.52
3668 dl 1.70 /**
3669     * Returns the result of accumulating the given transformation
3670     * of all keys using the given reducer to combine values, and
3671     * the given basis as an identity value.
3672     *
3673     * @param transformer a function returning the transformation
3674     * for an element
3675     * @param basis the identity (initial default value) for the reduction
3676     * @param reducer a commutative associative combining function
3677     * @return the result of accumulating the given transformation
3678     * of all keys
3679     */
3680 dl 1.84 @SuppressWarnings("unchecked") public int reduceKeysToIntSequentially
3681     (ObjectToInt<? super K> transformer,
3682     int basis,
3683     IntByIntToInt reducer) {
3684     if (transformer == null || reducer == null)
3685     throw new NullPointerException();
3686     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3687     int r = basis;
3688     while (it.advance() != null)
3689     r = reducer.apply(r, transformer.apply((K)it.nextKey));
3690     return r;
3691 dl 1.70 }
3692 dl 1.52
3693 dl 1.70 /**
3694     * Performs the given action for each value.
3695     *
3696     * @param action the action
3697     */
3698 dl 1.84 public void forEachValueSequentially(Action<V> action) {
3699     if (action == null) throw new NullPointerException();
3700     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3701     V v;
3702     while ((v = it.advance()) != null)
3703     action.apply(v);
3704 dl 1.70 }
3705 dl 1.52
3706 dl 1.70 /**
3707     * Performs the given action for each non-null transformation
3708     * of each value.
3709     *
3710     * @param transformer a function returning the transformation
3711 jsr166 1.91 * for an element, or null if there is no transformation (in
3712 dl 1.70 * which case the action is not applied).
3713     */
3714 dl 1.84 public <U> void forEachValueSequentially
3715     (Fun<? super V, ? extends U> transformer,
3716     Action<U> action) {
3717     if (transformer == null || action == null)
3718     throw new NullPointerException();
3719     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3720     V v; U u;
3721     while ((v = it.advance()) != null) {
3722     if ((u = transformer.apply(v)) != null)
3723     action.apply(u);
3724     }
3725 dl 1.70 }
3726 dl 1.52
3727 dl 1.70 /**
3728     * Returns a non-null result from applying the given search
3729 dl 1.84 * function on each value, or null if none.
3730 dl 1.70 *
3731     * @param searchFunction a function returning a non-null
3732     * result on success, else null
3733     * @return a non-null result from applying the given search
3734     * function on each value, or null if none
3735     */
3736 dl 1.84 public <U> U searchValuesSequentially
3737     (Fun<? super V, ? extends U> searchFunction) {
3738     if (searchFunction == null) throw new NullPointerException();
3739     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3740     V v; U u;
3741     while ((v = it.advance()) != null) {
3742     if ((u = searchFunction.apply(v)) != null)
3743     return u;
3744     }
3745     return null;
3746 dl 1.70 }
3747 dl 1.52
3748 dl 1.70 /**
3749     * Returns the result of accumulating all values using the
3750     * given reducer to combine values, or null if none.
3751     *
3752     * @param reducer a commutative associative combining function
3753     * @return the result of accumulating all values
3754     */
3755 dl 1.84 public V reduceValuesSequentially
3756     (BiFun<? super V, ? super V, ? extends V> reducer) {
3757     if (reducer == null) throw new NullPointerException();
3758     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3759     V r = null; V v;
3760     while ((v = it.advance()) != null)
3761     r = (r == null) ? v : reducer.apply(r, v);
3762     return r;
3763 dl 1.70 }
3764 dl 1.52
3765 dl 1.70 /**
3766     * Returns the result of accumulating the given transformation
3767     * of all values using the given reducer to combine values, or
3768     * null if none.
3769     *
3770     * @param transformer a function returning the transformation
3771 jsr166 1.91 * for an element, or null if there is no transformation (in
3772 dl 1.70 * which case it is not combined).
3773     * @param reducer a commutative associative combining function
3774     * @return the result of accumulating the given transformation
3775     * of all values
3776     */
3777 dl 1.84 public <U> U reduceValuesSequentially
3778     (Fun<? super V, ? extends U> transformer,
3779     BiFun<? super U, ? super U, ? extends U> reducer) {
3780     if (transformer == null || reducer == null)
3781     throw new NullPointerException();
3782     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3783     U r = null, u; V v;
3784     while ((v = it.advance()) != null) {
3785     if ((u = transformer.apply(v)) != null)
3786     r = (r == null) ? u : reducer.apply(r, u);
3787     }
3788     return r;
3789 dl 1.70 }
3790 dl 1.52
3791 dl 1.70 /**
3792     * Returns the result of accumulating the given transformation
3793     * of all values using the given reducer to combine values,
3794     * and the given basis as an identity value.
3795     *
3796     * @param transformer a function returning the transformation
3797     * for an element
3798     * @param basis the identity (initial default value) for the reduction
3799     * @param reducer a commutative associative combining function
3800     * @return the result of accumulating the given transformation
3801     * of all values
3802     */
3803 dl 1.84 public double reduceValuesToDoubleSequentially
3804     (ObjectToDouble<? super V> transformer,
3805     double basis,
3806     DoubleByDoubleToDouble reducer) {
3807     if (transformer == null || reducer == null)
3808     throw new NullPointerException();
3809     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3810     double r = basis; V v;
3811     while ((v = it.advance()) != null)
3812     r = reducer.apply(r, transformer.apply(v));
3813     return r;
3814 dl 1.75 }
3815    
3816     /**
3817     * Returns the result of accumulating the given transformation
3818     * of all values using the given reducer to combine values,
3819     * and the given basis as an identity value.
3820     *
3821     * @param transformer a function returning the transformation
3822     * for an element
3823     * @param basis the identity (initial default value) for the reduction
3824     * @param reducer a commutative associative combining function
3825     * @return the result of accumulating the given transformation
3826     * of all values
3827     */
3828 dl 1.84 public long reduceValuesToLongSequentially
3829     (ObjectToLong<? super V> transformer,
3830     long basis,
3831     LongByLongToLong reducer) {
3832     if (transformer == null || reducer == null)
3833     throw new NullPointerException();
3834     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3835     long r = basis; V v;
3836     while ((v = it.advance()) != null)
3837     r = reducer.apply(r, transformer.apply(v));
3838     return r;
3839 dl 1.75 }
3840    
3841     /**
3842     * Returns the result of accumulating the given transformation
3843     * of all values using the given reducer to combine values,
3844     * and the given basis as an identity value.
3845     *
3846     * @param transformer a function returning the transformation
3847     * for an element
3848     * @param basis the identity (initial default value) for the reduction
3849     * @param reducer a commutative associative combining function
3850     * @return the result of accumulating the given transformation
3851     * of all values
3852     */
3853 dl 1.84 public int reduceValuesToIntSequentially
3854     (ObjectToInt<? super V> transformer,
3855     int basis,
3856     IntByIntToInt reducer) {
3857     if (transformer == null || reducer == null)
3858     throw new NullPointerException();
3859     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3860     int r = basis; V v;
3861     while ((v = it.advance()) != null)
3862     r = reducer.apply(r, transformer.apply(v));
3863     return r;
3864 dl 1.75 }
3865    
3866     /**
3867     * Performs the given action for each entry.
3868     *
3869     * @param action the action
3870     */
3871 dl 1.84 @SuppressWarnings("unchecked") public void forEachEntrySequentially
3872     (Action<Map.Entry<K,V>> action) {
3873     if (action == null) throw new NullPointerException();
3874     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3875     V v;
3876     while ((v = it.advance()) != null)
3877     action.apply(entryFor((K)it.nextKey, v));
3878 dl 1.75 }
3879    
3880     /**
3881     * Performs the given action for each non-null transformation
3882     * of each entry.
3883     *
3884     * @param transformer a function returning the transformation
3885 jsr166 1.91 * for an element, or null if there is no transformation (in
3886 dl 1.75 * which case the action is not applied).
3887     * @param action the action
3888     */
3889 dl 1.84 @SuppressWarnings("unchecked") public <U> void forEachEntrySequentially
3890     (Fun<Map.Entry<K,V>, ? extends U> transformer,
3891     Action<U> action) {
3892     if (transformer == null || action == null)
3893     throw new NullPointerException();
3894     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3895     V v; U u;
3896     while ((v = it.advance()) != null) {
3897     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3898     action.apply(u);
3899     }
3900 dl 1.75 }
3901    
3902     /**
3903     * Returns a non-null result from applying the given search
3904 dl 1.84 * function on each entry, or null if none.
3905 dl 1.75 *
3906     * @param searchFunction a function returning a non-null
3907     * result on success, else null
3908     * @return a non-null result from applying the given search
3909     * function on each entry, or null if none
3910     */
3911 dl 1.84 @SuppressWarnings("unchecked") public <U> U searchEntriesSequentially
3912     (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3913     if (searchFunction == null) throw new NullPointerException();
3914     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3915     V v; U u;
3916     while ((v = it.advance()) != null) {
3917     if ((u = searchFunction.apply(entryFor((K)it.nextKey, v))) != null)
3918     return u;
3919     }
3920     return null;
3921 dl 1.75 }
3922    
3923     /**
3924     * Returns the result of accumulating all entries using the
3925     * given reducer to combine values, or null if none.
3926     *
3927     * @param reducer a commutative associative combining function
3928     * @return the result of accumulating all entries
3929     */
3930 dl 1.84 @SuppressWarnings("unchecked") public Map.Entry<K,V> reduceEntriesSequentially
3931     (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3932     if (reducer == null) throw new NullPointerException();
3933     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3934     Map.Entry<K,V> r = null; V v;
3935     while ((v = it.advance()) != null) {
3936     Map.Entry<K,V> u = entryFor((K)it.nextKey, v);
3937     r = (r == null) ? u : reducer.apply(r, u);
3938     }
3939     return r;
3940 dl 1.75 }
3941    
3942     /**
3943     * Returns the result of accumulating the given transformation
3944     * of all entries using the given reducer to combine values,
3945     * or null if none.
3946     *
3947     * @param transformer a function returning the transformation
3948 jsr166 1.91 * for an element, or null if there is no transformation (in
3949 dl 1.75 * which case it is not combined).
3950     * @param reducer a commutative associative combining function
3951     * @return the result of accumulating the given transformation
3952     * of all entries
3953     */
3954 dl 1.84 @SuppressWarnings("unchecked") public <U> U reduceEntriesSequentially
3955     (Fun<Map.Entry<K,V>, ? extends U> transformer,
3956     BiFun<? super U, ? super U, ? extends U> reducer) {
3957     if (transformer == null || reducer == null)
3958     throw new NullPointerException();
3959     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3960     U r = null, u; V v;
3961     while ((v = it.advance()) != null) {
3962     if ((u = transformer.apply(entryFor((K)it.nextKey, v))) != null)
3963     r = (r == null) ? u : reducer.apply(r, u);
3964     }
3965     return r;
3966 dl 1.75 }
3967    
3968     /**
3969     * Returns the result of accumulating the given transformation
3970     * of all entries using the given reducer to combine values,
3971     * and the given basis as an identity value.
3972     *
3973     * @param transformer a function returning the transformation
3974     * for an element
3975     * @param basis the identity (initial default value) for the reduction
3976     * @param reducer a commutative associative combining function
3977     * @return the result of accumulating the given transformation
3978     * of all entries
3979     */
3980 dl 1.84 @SuppressWarnings("unchecked") public double reduceEntriesToDoubleSequentially
3981     (ObjectToDouble<Map.Entry<K,V>> transformer,
3982     double basis,
3983     DoubleByDoubleToDouble reducer) {
3984     if (transformer == null || reducer == null)
3985     throw new NullPointerException();
3986     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3987     double r = basis; V v;
3988     while ((v = it.advance()) != null)
3989     r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
3990     return r;
3991 dl 1.75 }
3992    
3993     /**
3994     * Returns the result of accumulating the given transformation
3995     * of all entries using the given reducer to combine values,
3996     * and the given basis as an identity value.
3997     *
3998     * @param transformer a function returning the transformation
3999     * for an element
4000     * @param basis the identity (initial default value) for the reduction
4001     * @param reducer a commutative associative combining function
4002     * @return the result of accumulating the given transformation
4003     * of all entries
4004     */
4005 dl 1.84 @SuppressWarnings("unchecked") public long reduceEntriesToLongSequentially
4006     (ObjectToLong<Map.Entry<K,V>> transformer,
4007     long basis,
4008     LongByLongToLong reducer) {
4009     if (transformer == null || reducer == null)
4010     throw new NullPointerException();
4011     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4012     long r = basis; V v;
4013     while ((v = it.advance()) != null)
4014     r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4015     return r;
4016 dl 1.75 }
4017    
4018     /**
4019     * Returns the result of accumulating the given transformation
4020     * of all entries using the given reducer to combine values,
4021     * and the given basis as an identity value.
4022     *
4023     * @param transformer a function returning the transformation
4024     * for an element
4025     * @param basis the identity (initial default value) for the reduction
4026     * @param reducer a commutative associative combining function
4027     * @return the result of accumulating the given transformation
4028     * of all entries
4029     */
4030 dl 1.84 @SuppressWarnings("unchecked") public int reduceEntriesToIntSequentially
4031     (ObjectToInt<Map.Entry<K,V>> transformer,
4032     int basis,
4033     IntByIntToInt reducer) {
4034     if (transformer == null || reducer == null)
4035     throw new NullPointerException();
4036     Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
4037     int r = basis; V v;
4038     while ((v = it.advance()) != null)
4039     r = reducer.apply(r, transformer.apply(entryFor((K)it.nextKey, v)));
4040     return r;
4041 dl 1.75 }
4042    
4043 dl 1.84 // Parallel bulk operations
4044 dl 1.75
4045     /**
4046 dl 1.84 * Performs the given action for each (key, value).
4047     *
4048     * @param action the action
4049 dl 1.75 */
4050 dl 1.84 public void forEachInParallel(BiAction<K,V> action) {
4051     ForkJoinTasks.forEach
4052     (this, action).invoke();
4053     }
4054 dl 1.75
4055 dl 1.84 /**
4056     * Performs the given action for each non-null transformation
4057     * of each (key, value).
4058     *
4059     * @param transformer a function returning the transformation
4060 jsr166 1.91 * for an element, or null if there is no transformation (in
4061 dl 1.84 * which case the action is not applied).
4062     * @param action the action
4063     */
4064     public <U> void forEachInParallel
4065     (BiFun<? super K, ? super V, ? extends U> transformer,
4066     Action<U> action) {
4067     ForkJoinTasks.forEach
4068     (this, transformer, action).invoke();
4069     }
4070 dl 1.75
4071 dl 1.84 /**
4072     * Returns a non-null result from applying the given search
4073     * function on each (key, value), or null if none. Upon
4074     * success, further element processing is suppressed and the
4075     * results of any other parallel invocations of the search
4076     * function are ignored.
4077     *
4078     * @param searchFunction a function returning a non-null
4079     * result on success, else null
4080     * @return a non-null result from applying the given search
4081     * function on each (key, value), or null if none
4082     */
4083     public <U> U searchInParallel
4084     (BiFun<? super K, ? super V, ? extends U> searchFunction) {
4085     return ForkJoinTasks.search
4086     (this, searchFunction).invoke();
4087     }
4088 dl 1.75
4089 dl 1.84 /**
4090     * Returns the result of accumulating the given transformation
4091     * of all (key, value) pairs using the given reducer to
4092     * combine values, or null if none.
4093     *
4094     * @param transformer a function returning the transformation
4095 jsr166 1.91 * for an element, or null if there is no transformation (in
4096 dl 1.84 * which case it is not combined).
4097     * @param reducer a commutative associative combining function
4098     * @return the result of accumulating the given transformation
4099     * of all (key, value) pairs
4100     */
4101     public <U> U reduceInParallel
4102     (BiFun<? super K, ? super V, ? extends U> transformer,
4103     BiFun<? super U, ? super U, ? extends U> reducer) {
4104     return ForkJoinTasks.reduce
4105     (this, transformer, reducer).invoke();
4106     }
4107 dl 1.75
4108 dl 1.84 /**
4109     * Returns the result of accumulating the given transformation
4110     * of all (key, value) pairs using the given reducer to
4111     * combine values, and the given basis as an identity value.
4112     *
4113     * @param transformer a function returning the transformation
4114     * for an element
4115     * @param basis the identity (initial default value) for the reduction
4116     * @param reducer a commutative associative combining function
4117     * @return the result of accumulating the given transformation
4118     * of all (key, value) pairs
4119     */
4120     public double reduceToDoubleInParallel
4121     (ObjectByObjectToDouble<? super K, ? super V> transformer,
4122     double basis,
4123     DoubleByDoubleToDouble reducer) {
4124     return ForkJoinTasks.reduceToDouble
4125     (this, transformer, basis, reducer).invoke();
4126     }
4127    
4128     /**
4129     * Returns the result of accumulating the given transformation
4130     * of all (key, value) pairs using the given reducer to
4131     * combine values, and the given basis as an identity value.
4132     *
4133     * @param transformer a function returning the transformation
4134     * for an element
4135     * @param basis the identity (initial default value) for the reduction
4136     * @param reducer a commutative associative combining function
4137     * @return the result of accumulating the given transformation
4138     * of all (key, value) pairs
4139     */
4140     public long reduceToLongInParallel
4141     (ObjectByObjectToLong<? super K, ? super V> transformer,
4142     long basis,
4143     LongByLongToLong reducer) {
4144     return ForkJoinTasks.reduceToLong
4145     (this, transformer, basis, reducer).invoke();
4146     }
4147    
4148     /**
4149     * Returns the result of accumulating the given transformation
4150     * of all (key, value) pairs using the given reducer to
4151     * combine values, and the given basis as an identity value.
4152     *
4153     * @param transformer a function returning the transformation
4154     * for an element
4155     * @param basis the identity (initial default value) for the reduction
4156     * @param reducer a commutative associative combining function
4157     * @return the result of accumulating the given transformation
4158     * of all (key, value) pairs
4159     */
4160     public int reduceToIntInParallel
4161     (ObjectByObjectToInt<? super K, ? super V> transformer,
4162     int basis,
4163     IntByIntToInt reducer) {
4164     return ForkJoinTasks.reduceToInt
4165     (this, transformer, basis, reducer).invoke();
4166     }
4167    
4168     /**
4169     * Performs the given action for each key.
4170     *
4171     * @param action the action
4172     */
4173     public void forEachKeyInParallel(Action<K> action) {
4174     ForkJoinTasks.forEachKey
4175     (this, action).invoke();
4176     }
4177    
4178     /**
4179     * Performs the given action for each non-null transformation
4180     * of each key.
4181     *
4182     * @param transformer a function returning the transformation
4183 jsr166 1.91 * for an element, or null if there is no transformation (in
4184 dl 1.84 * which case the action is not applied).
4185     * @param action the action
4186     */
4187     public <U> void forEachKeyInParallel
4188     (Fun<? super K, ? extends U> transformer,
4189     Action<U> action) {
4190     ForkJoinTasks.forEachKey
4191     (this, transformer, action).invoke();
4192     }
4193    
4194     /**
4195     * Returns a non-null result from applying the given search
4196     * function on each key, or null if none. Upon success,
4197     * further element processing is suppressed and the results of
4198     * any other parallel invocations of the search function are
4199     * ignored.
4200     *
4201     * @param searchFunction a function returning a non-null
4202     * result on success, else null
4203     * @return a non-null result from applying the given search
4204     * function on each key, or null if none
4205     */
4206     public <U> U searchKeysInParallel
4207     (Fun<? super K, ? extends U> searchFunction) {
4208     return ForkJoinTasks.searchKeys
4209     (this, searchFunction).invoke();
4210     }
4211    
4212     /**
4213     * Returns the result of accumulating all keys using the given
4214     * reducer to combine values, or null if none.
4215     *
4216     * @param reducer a commutative associative combining function
4217     * @return the result of accumulating all keys using the given
4218     * reducer to combine values, or null if none
4219     */
4220     public K reduceKeysInParallel
4221     (BiFun<? super K, ? super K, ? extends K> reducer) {
4222     return ForkJoinTasks.reduceKeys
4223     (this, reducer).invoke();
4224     }
4225    
4226     /**
4227     * Returns the result of accumulating the given transformation
4228     * of all keys using the given reducer to combine values, or
4229     * null if none.
4230     *
4231     * @param transformer a function returning the transformation
4232 jsr166 1.91 * for an element, or null if there is no transformation (in
4233 dl 1.84 * which case it is not combined).
4234     * @param reducer a commutative associative combining function
4235     * @return the result of accumulating the given transformation
4236     * of all keys
4237     */
4238     public <U> U reduceKeysInParallel
4239     (Fun<? super K, ? extends U> transformer,
4240     BiFun<? super U, ? super U, ? extends U> reducer) {
4241     return ForkJoinTasks.reduceKeys
4242     (this, transformer, reducer).invoke();
4243     }
4244    
4245     /**
4246     * Returns the result of accumulating the given transformation
4247     * of all keys using the given reducer to combine values, and
4248     * the given basis as an identity value.
4249     *
4250     * @param transformer a function returning the transformation
4251     * for an element
4252     * @param basis the identity (initial default value) for the reduction
4253     * @param reducer a commutative associative combining function
4254     * @return the result of accumulating the given transformation
4255     * of all keys
4256     */
4257     public double reduceKeysToDoubleInParallel
4258     (ObjectToDouble<? super K> transformer,
4259     double basis,
4260     DoubleByDoubleToDouble reducer) {
4261     return ForkJoinTasks.reduceKeysToDouble
4262     (this, transformer, basis, reducer).invoke();
4263     }
4264    
4265     /**
4266     * Returns the result of accumulating the given transformation
4267     * of all keys using the given reducer to combine values, and
4268     * the given basis as an identity value.
4269     *
4270     * @param transformer a function returning the transformation
4271     * for an element
4272     * @param basis the identity (initial default value) for the reduction
4273     * @param reducer a commutative associative combining function
4274     * @return the result of accumulating the given transformation
4275     * of all keys
4276     */
4277     public long reduceKeysToLongInParallel
4278     (ObjectToLong<? super K> transformer,
4279     long basis,
4280     LongByLongToLong reducer) {
4281     return ForkJoinTasks.reduceKeysToLong
4282     (this, transformer, basis, reducer).invoke();
4283     }
4284    
4285     /**
4286     * Returns the result of accumulating the given transformation
4287     * of all keys using the given reducer to combine values, and
4288     * the given basis as an identity value.
4289     *
4290     * @param transformer a function returning the transformation
4291     * for an element
4292     * @param basis the identity (initial default value) for the reduction
4293     * @param reducer a commutative associative combining function
4294     * @return the result of accumulating the given transformation
4295     * of all keys
4296     */
4297     public int reduceKeysToIntInParallel
4298     (ObjectToInt<? super K> transformer,
4299     int basis,
4300     IntByIntToInt reducer) {
4301     return ForkJoinTasks.reduceKeysToInt
4302     (this, transformer, basis, reducer).invoke();
4303     }
4304    
4305     /**
4306     * Performs the given action for each value.
4307     *
4308     * @param action the action
4309     */
4310     public void forEachValueInParallel(Action<V> action) {
4311     ForkJoinTasks.forEachValue
4312     (this, action).invoke();
4313     }
4314    
4315     /**
4316     * Performs the given action for each non-null transformation
4317     * of each value.
4318     *
4319     * @param transformer a function returning the transformation
4320 jsr166 1.91 * for an element, or null if there is no transformation (in
4321 dl 1.84 * which case the action is not applied).
4322     */
4323     public <U> void forEachValueInParallel
4324     (Fun<? super V, ? extends U> transformer,
4325     Action<U> action) {
4326     ForkJoinTasks.forEachValue
4327     (this, transformer, action).invoke();
4328     }
4329    
4330     /**
4331     * Returns a non-null result from applying the given search
4332     * function on each value, or null if none. Upon success,
4333     * further element processing is suppressed and the results of
4334     * any other parallel invocations of the search function are
4335     * ignored.
4336     *
4337     * @param searchFunction a function returning a non-null
4338     * result on success, else null
4339     * @return a non-null result from applying the given search
4340     * function on each value, or null if none
4341     */
4342     public <U> U searchValuesInParallel
4343     (Fun<? super V, ? extends U> searchFunction) {
4344     return ForkJoinTasks.searchValues
4345     (this, searchFunction).invoke();
4346     }
4347    
4348     /**
4349     * Returns the result of accumulating all values using the
4350     * given reducer to combine values, or null if none.
4351     *
4352     * @param reducer a commutative associative combining function
4353     * @return the result of accumulating all values
4354     */
4355     public V reduceValuesInParallel
4356     (BiFun<? super V, ? super V, ? extends V> reducer) {
4357     return ForkJoinTasks.reduceValues
4358     (this, reducer).invoke();
4359     }
4360    
4361     /**
4362     * Returns the result of accumulating the given transformation
4363     * of all values using the given reducer to combine values, or
4364     * null if none.
4365     *
4366     * @param transformer a function returning the transformation
4367 jsr166 1.91 * for an element, or null if there is no transformation (in
4368 dl 1.84 * which case it is not combined).
4369     * @param reducer a commutative associative combining function
4370     * @return the result of accumulating the given transformation
4371     * of all values
4372     */
4373     public <U> U reduceValuesInParallel
4374     (Fun<? super V, ? extends U> transformer,
4375     BiFun<? super U, ? super U, ? extends U> reducer) {
4376     return ForkJoinTasks.reduceValues
4377     (this, transformer, reducer).invoke();
4378     }
4379    
4380     /**
4381     * Returns the result of accumulating the given transformation
4382     * of all values using the given reducer to combine values,
4383     * and the given basis as an identity value.
4384     *
4385     * @param transformer a function returning the transformation
4386     * for an element
4387     * @param basis the identity (initial default value) for the reduction
4388     * @param reducer a commutative associative combining function
4389     * @return the result of accumulating the given transformation
4390     * of all values
4391     */
4392     public double reduceValuesToDoubleInParallel
4393     (ObjectToDouble<? super V> transformer,
4394     double basis,
4395     DoubleByDoubleToDouble reducer) {
4396     return ForkJoinTasks.reduceValuesToDouble
4397     (this, transformer, basis, reducer).invoke();
4398     }
4399    
4400     /**
4401     * Returns the result of accumulating the given transformation
4402     * of all values using the given reducer to combine values,
4403     * and the given basis as an identity value.
4404     *
4405     * @param transformer a function returning the transformation
4406     * for an element
4407     * @param basis the identity (initial default value) for the reduction
4408     * @param reducer a commutative associative combining function
4409     * @return the result of accumulating the given transformation
4410     * of all values
4411     */
4412     public long reduceValuesToLongInParallel
4413     (ObjectToLong<? super V> transformer,
4414     long basis,
4415     LongByLongToLong reducer) {
4416     return ForkJoinTasks.reduceValuesToLong
4417     (this, transformer, basis, reducer).invoke();
4418     }
4419    
4420     /**
4421     * Returns the result of accumulating the given transformation
4422     * of all values using the given reducer to combine values,
4423     * and the given basis as an identity value.
4424     *
4425     * @param transformer a function returning the transformation
4426     * for an element
4427     * @param basis the identity (initial default value) for the reduction
4428     * @param reducer a commutative associative combining function
4429     * @return the result of accumulating the given transformation
4430     * of all values
4431     */
4432     public int reduceValuesToIntInParallel
4433     (ObjectToInt<? super V> transformer,
4434     int basis,
4435     IntByIntToInt reducer) {
4436     return ForkJoinTasks.reduceValuesToInt
4437     (this, transformer, basis, reducer).invoke();
4438     }
4439    
4440     /**
4441     * Performs the given action for each entry.
4442     *
4443     * @param action the action
4444     */
4445     public void forEachEntryInParallel(Action<Map.Entry<K,V>> action) {
4446     ForkJoinTasks.forEachEntry
4447     (this, action).invoke();
4448     }
4449    
4450     /**
4451     * Performs the given action for each non-null transformation
4452     * of each entry.
4453     *
4454     * @param transformer a function returning the transformation
4455 jsr166 1.91 * for an element, or null if there is no transformation (in
4456 dl 1.84 * which case the action is not applied).
4457     * @param action the action
4458     */
4459     public <U> void forEachEntryInParallel
4460     (Fun<Map.Entry<K,V>, ? extends U> transformer,
4461     Action<U> action) {
4462     ForkJoinTasks.forEachEntry
4463     (this, transformer, action).invoke();
4464     }
4465    
4466     /**
4467     * Returns a non-null result from applying the given search
4468     * function on each entry, or null if none. Upon success,
4469     * further element processing is suppressed and the results of
4470     * any other parallel invocations of the search function are
4471     * ignored.
4472     *
4473     * @param searchFunction a function returning a non-null
4474     * result on success, else null
4475     * @return a non-null result from applying the given search
4476     * function on each entry, or null if none
4477     */
4478     public <U> U searchEntriesInParallel
4479     (Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4480     return ForkJoinTasks.searchEntries
4481     (this, searchFunction).invoke();
4482     }
4483    
4484     /**
4485     * Returns the result of accumulating all entries using the
4486     * given reducer to combine values, or null if none.
4487     *
4488     * @param reducer a commutative associative combining function
4489     * @return the result of accumulating all entries
4490     */
4491     public Map.Entry<K,V> reduceEntriesInParallel
4492     (BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4493     return ForkJoinTasks.reduceEntries
4494     (this, reducer).invoke();
4495     }
4496    
4497     /**
4498     * Returns the result of accumulating the given transformation
4499     * of all entries using the given reducer to combine values,
4500     * or null if none.
4501     *
4502     * @param transformer a function returning the transformation
4503 jsr166 1.91 * for an element, or null if there is no transformation (in
4504 dl 1.84 * which case it is not combined).
4505     * @param reducer a commutative associative combining function
4506     * @return the result of accumulating the given transformation
4507     * of all entries
4508     */
4509     public <U> U reduceEntriesInParallel
4510     (Fun<Map.Entry<K,V>, ? extends U> transformer,
4511     BiFun<? super U, ? super U, ? extends U> reducer) {
4512     return ForkJoinTasks.reduceEntries
4513     (this, transformer, reducer).invoke();
4514     }
4515    
4516     /**
4517     * Returns the result of accumulating the given transformation
4518     * of all entries using the given reducer to combine values,
4519     * and the given basis as an identity value.
4520     *
4521     * @param transformer a function returning the transformation
4522     * for an element
4523     * @param basis the identity (initial default value) for the reduction
4524     * @param reducer a commutative associative combining function
4525     * @return the result of accumulating the given transformation
4526     * of all entries
4527     */
4528     public double reduceEntriesToDoubleInParallel
4529     (ObjectToDouble<Map.Entry<K,V>> transformer,
4530     double basis,
4531     DoubleByDoubleToDouble reducer) {
4532     return ForkJoinTasks.reduceEntriesToDouble
4533     (this, transformer, basis, reducer).invoke();
4534     }
4535    
4536     /**
4537     * Returns the result of accumulating the given transformation
4538     * of all entries using the given reducer to combine values,
4539     * and the given basis as an identity value.
4540     *
4541     * @param transformer a function returning the transformation
4542     * for an element
4543     * @param basis the identity (initial default value) for the reduction
4544     * @param reducer a commutative associative combining function
4545     * @return the result of accumulating the given transformation
4546     * of all entries
4547     */
4548     public long reduceEntriesToLongInParallel
4549     (ObjectToLong<Map.Entry<K,V>> transformer,
4550     long basis,
4551     LongByLongToLong reducer) {
4552     return ForkJoinTasks.reduceEntriesToLong
4553     (this, transformer, basis, reducer).invoke();
4554     }
4555    
4556     /**
4557     * Returns the result of accumulating the given transformation
4558     * of all entries using the given reducer to combine values,
4559     * and the given basis as an identity value.
4560     *
4561     * @param transformer a function returning the transformation
4562     * for an element
4563     * @param basis the identity (initial default value) for the reduction
4564     * @param reducer a commutative associative combining function
4565     * @return the result of accumulating the given transformation
4566     * of all entries
4567     */
4568     public int reduceEntriesToIntInParallel
4569     (ObjectToInt<Map.Entry<K,V>> transformer,
4570     int basis,
4571     IntByIntToInt reducer) {
4572     return ForkJoinTasks.reduceEntriesToInt
4573     (this, transformer, basis, reducer).invoke();
4574     }
4575    
4576    
4577     /* ----------------Views -------------- */
4578    
4579     /**
4580     * Base class for views.
4581     */
4582 jsr166 1.88 abstract static class CHMView<K, V> {
4583 dl 1.84 final ConcurrentHashMapV8<K, V> map;
4584     CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
4585    
4586     /**
4587     * Returns the map backing this view.
4588     *
4589     * @return the map backing this view
4590     */
4591     public ConcurrentHashMapV8<K,V> getMap() { return map; }
4592    
4593     public final int size() { return map.size(); }
4594     public final boolean isEmpty() { return map.isEmpty(); }
4595     public final void clear() { map.clear(); }
4596    
4597     // implementations below rely on concrete classes supplying these
4598 jsr166 1.88 public abstract Iterator<?> iterator();
4599     public abstract boolean contains(Object o);
4600     public abstract boolean remove(Object o);
4601 dl 1.84
4602     private static final String oomeMsg = "Required array size too large";
4603 dl 1.75
4604     public final Object[] toArray() {
4605     long sz = map.mappingCount();
4606     if (sz > (long)(MAX_ARRAY_SIZE))
4607     throw new OutOfMemoryError(oomeMsg);
4608     int n = (int)sz;
4609     Object[] r = new Object[n];
4610     int i = 0;
4611     Iterator<?> it = iterator();
4612     while (it.hasNext()) {
4613     if (i == n) {
4614     if (n >= MAX_ARRAY_SIZE)
4615     throw new OutOfMemoryError(oomeMsg);
4616     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4617     n = MAX_ARRAY_SIZE;
4618     else
4619     n += (n >>> 1) + 1;
4620     r = Arrays.copyOf(r, n);
4621     }
4622     r[i++] = it.next();
4623     }
4624     return (i == n) ? r : Arrays.copyOf(r, i);
4625     }
4626    
4627     @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4628     long sz = map.mappingCount();
4629     if (sz > (long)(MAX_ARRAY_SIZE))
4630     throw new OutOfMemoryError(oomeMsg);
4631     int m = (int)sz;
4632     T[] r = (a.length >= m) ? a :
4633     (T[])java.lang.reflect.Array
4634     .newInstance(a.getClass().getComponentType(), m);
4635     int n = r.length;
4636     int i = 0;
4637     Iterator<?> it = iterator();
4638     while (it.hasNext()) {
4639     if (i == n) {
4640     if (n >= MAX_ARRAY_SIZE)
4641     throw new OutOfMemoryError(oomeMsg);
4642     if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4643     n = MAX_ARRAY_SIZE;
4644     else
4645     n += (n >>> 1) + 1;
4646     r = Arrays.copyOf(r, n);
4647     }
4648     r[i++] = (T)it.next();
4649     }
4650     if (a == r && i < n) {
4651     r[i] = null; // null-terminate
4652     return r;
4653     }
4654     return (i == n) ? r : Arrays.copyOf(r, i);
4655     }
4656    
4657     public final int hashCode() {
4658     int h = 0;
4659     for (Iterator<?> it = iterator(); it.hasNext();)
4660     h += it.next().hashCode();
4661     return h;
4662     }
4663    
4664     public final String toString() {
4665     StringBuilder sb = new StringBuilder();
4666     sb.append('[');
4667     Iterator<?> it = iterator();
4668     if (it.hasNext()) {
4669     for (;;) {
4670     Object e = it.next();
4671     sb.append(e == this ? "(this Collection)" : e);
4672     if (!it.hasNext())
4673     break;
4674     sb.append(',').append(' ');
4675     }
4676     }
4677     return sb.append(']').toString();
4678     }
4679    
4680     public final boolean containsAll(Collection<?> c) {
4681     if (c != this) {
4682     for (Iterator<?> it = c.iterator(); it.hasNext();) {
4683     Object e = it.next();
4684     if (e == null || !contains(e))
4685     return false;
4686     }
4687     }
4688     return true;
4689     }
4690    
4691     public final boolean removeAll(Collection<?> c) {
4692     boolean modified = false;
4693     for (Iterator<?> it = iterator(); it.hasNext();) {
4694     if (c.contains(it.next())) {
4695     it.remove();
4696     modified = true;
4697     }
4698     }
4699     return modified;
4700     }
4701    
4702     public final boolean retainAll(Collection<?> c) {
4703     boolean modified = false;
4704     for (Iterator<?> it = iterator(); it.hasNext();) {
4705     if (!c.contains(it.next())) {
4706     it.remove();
4707     modified = true;
4708     }
4709     }
4710     return modified;
4711     }
4712    
4713     }
4714    
4715     /**
4716     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4717     * which additions may optionally be enabled by mapping to a
4718     * common value. This class cannot be directly instantiated. See
4719     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4720     * {@link #newKeySet(int)}.
4721     */
4722 dl 1.82 public static class KeySetView<K,V> extends CHMView<K,V>
4723     implements Set<K>, java.io.Serializable {
4724 dl 1.75 private static final long serialVersionUID = 7249069246763182397L;
4725     private final V value;
4726     KeySetView(ConcurrentHashMapV8<K, V> map, V value) { // non-public
4727     super(map);
4728     this.value = value;
4729     }
4730    
4731     /**
4732     * Returns the default mapped value for additions,
4733     * or {@code null} if additions are not supported.
4734     *
4735     * @return the default mapped value for additions, or {@code null}
4736     * if not supported.
4737     */
4738     public V getMappedValue() { return value; }
4739    
4740     // implement Set API
4741    
4742     public boolean contains(Object o) { return map.containsKey(o); }
4743     public boolean remove(Object o) { return map.remove(o) != null; }
4744    
4745     /**
4746     * Returns a "weakly consistent" iterator that will never
4747     * throw {@link ConcurrentModificationException}, and
4748     * guarantees to traverse elements as they existed upon
4749     * construction of the iterator, and may (but is not
4750     * guaranteed to) reflect any modifications subsequent to
4751     * construction.
4752     *
4753     * @return an iterator over the keys of this map
4754     */
4755     public Iterator<K> iterator() { return new KeyIterator<K,V>(map); }
4756     public boolean add(K e) {
4757     V v;
4758     if ((v = value) == null)
4759     throw new UnsupportedOperationException();
4760     if (e == null)
4761     throw new NullPointerException();
4762 dl 1.82 return map.internalPut(e, v, true) == null;
4763 dl 1.75 }
4764     public boolean addAll(Collection<? extends K> c) {
4765     boolean added = false;
4766     V v;
4767     if ((v = value) == null)
4768     throw new UnsupportedOperationException();
4769     for (K e : c) {
4770     if (e == null)
4771     throw new NullPointerException();
4772 dl 1.82 if (map.internalPut(e, v, true) == null)
4773 dl 1.75 added = true;
4774     }
4775     return added;
4776     }
4777     public boolean equals(Object o) {
4778     Set<?> c;
4779     return ((o instanceof Set) &&
4780     ((c = (Set<?>)o) == this ||
4781     (containsAll(c) && c.containsAll(this))));
4782     }
4783     }
4784    
4785     /**
4786     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4787     * values, in which additions are disabled. This class cannot be
4788     * directly instantiated. See {@link #values},
4789     *
4790     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4791     * that will never throw {@link ConcurrentModificationException},
4792     * and guarantees to traverse elements as they existed upon
4793     * construction of the iterator, and may (but is not guaranteed to)
4794     * reflect any modifications subsequent to construction.
4795     */
4796     public static final class ValuesView<K,V> extends CHMView<K,V>
4797     implements Collection<V> {
4798     ValuesView(ConcurrentHashMapV8<K, V> map) { super(map); }
4799     public final boolean contains(Object o) { return map.containsValue(o); }
4800     public final boolean remove(Object o) {
4801     if (o != null) {
4802     Iterator<V> it = new ValueIterator<K,V>(map);
4803     while (it.hasNext()) {
4804     if (o.equals(it.next())) {
4805     it.remove();
4806     return true;
4807     }
4808     }
4809     }
4810     return false;
4811     }
4812    
4813     /**
4814     * Returns a "weakly consistent" iterator that will never
4815     * throw {@link ConcurrentModificationException}, and
4816     * guarantees to traverse elements as they existed upon
4817     * construction of the iterator, and may (but is not
4818     * guaranteed to) reflect any modifications subsequent to
4819     * construction.
4820     *
4821     * @return an iterator over the values of this map
4822     */
4823     public final Iterator<V> iterator() {
4824     return new ValueIterator<K,V>(map);
4825     }
4826     public final boolean add(V e) {
4827     throw new UnsupportedOperationException();
4828     }
4829     public final boolean addAll(Collection<? extends V> c) {
4830     throw new UnsupportedOperationException();
4831     }
4832    
4833 dl 1.70 }
4834 dl 1.52
4835 dl 1.70 /**
4836 dl 1.75 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4837     * entries. This class cannot be directly instantiated. See
4838     * {@link #entrySet}.
4839 dl 1.70 */
4840 dl 1.75 public static final class EntrySetView<K,V> extends CHMView<K,V>
4841     implements Set<Map.Entry<K,V>> {
4842     EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4843     public final boolean contains(Object o) {
4844     Object k, v, r; Map.Entry<?,?> e;
4845     return ((o instanceof Map.Entry) &&
4846     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4847     (r = map.get(k)) != null &&
4848     (v = e.getValue()) != null &&
4849     (v == r || v.equals(r)));
4850     }
4851     public final boolean remove(Object o) {
4852     Object k, v; Map.Entry<?,?> e;
4853     return ((o instanceof Map.Entry) &&
4854     (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4855     (v = e.getValue()) != null &&
4856     map.remove(k, v));
4857     }
4858    
4859     /**
4860     * Returns a "weakly consistent" iterator that will never
4861     * throw {@link ConcurrentModificationException}, and
4862     * guarantees to traverse elements as they existed upon
4863     * construction of the iterator, and may (but is not
4864     * guaranteed to) reflect any modifications subsequent to
4865     * construction.
4866     *
4867     * @return an iterator over the entries of this map
4868     */
4869     public final Iterator<Map.Entry<K,V>> iterator() {
4870     return new EntryIterator<K,V>(map);
4871     }
4872    
4873     public final boolean add(Entry<K,V> e) {
4874     K key = e.getKey();
4875     V value = e.getValue();
4876     if (key == null || value == null)
4877     throw new NullPointerException();
4878 dl 1.82 return map.internalPut(key, value, false) == null;
4879 dl 1.75 }
4880     public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4881     boolean added = false;
4882     for (Entry<K,V> e : c) {
4883     if (add(e))
4884     added = true;
4885     }
4886     return added;
4887     }
4888     public boolean equals(Object o) {
4889     Set<?> c;
4890     return ((o instanceof Set) &&
4891     ((c = (Set<?>)o) == this ||
4892     (containsAll(c) && c.containsAll(this))));
4893     }
4894 dl 1.52 }
4895    
4896     // ---------------------------------------------------------------------
4897    
4898     /**
4899     * Predefined tasks for performing bulk parallel operations on
4900 dl 1.70 * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4901     * for bulk operations. Each method has the same name, but returns
4902     * a task rather than invoking it. These methods may be useful in
4903     * custom applications such as submitting a task without waiting
4904     * for completion, using a custom pool, or combining with other
4905     * tasks.
4906 dl 1.52 */
4907     public static class ForkJoinTasks {
4908     private ForkJoinTasks() {}
4909    
4910     /**
4911     * Returns a task that when invoked, performs the given
4912     * action for each (key, value)
4913     *
4914     * @param map the map
4915     * @param action the action
4916     * @return the task
4917     */
4918 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEach
4919 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4920     BiAction<K,V> action) {
4921     if (action == null) throw new NullPointerException();
4922 dl 1.79 return new ForEachMappingTask<K,V>(map, null, -1, action);
4923 dl 1.52 }
4924    
4925     /**
4926     * Returns a task that when invoked, performs the given
4927     * action for each non-null transformation of each (key, value)
4928     *
4929     * @param map the map
4930     * @param transformer a function returning the transformation
4931 jsr166 1.68 * for an element, or null if there is no transformation (in
4932 jsr166 1.67 * which case the action is not applied)
4933 dl 1.52 * @param action the action
4934     * @return the task
4935     */
4936 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEach
4937 dl 1.52 (ConcurrentHashMapV8<K,V> map,
4938     BiFun<? super K, ? super V, ? extends U> transformer,
4939     Action<U> action) {
4940     if (transformer == null || action == null)
4941     throw new NullPointerException();
4942     return new ForEachTransformedMappingTask<K,V,U>
4943 dl 1.79 (map, null, -1, transformer, action);
4944 dl 1.52 }
4945    
4946     /**
4947 dl 1.59 * Returns a task that when invoked, returns a non-null result
4948     * from applying the given search function on each (key,
4949     * value), or null if none. Upon success, further element
4950     * processing is suppressed and the results of any other
4951     * parallel invocations of the search function are ignored.
4952 dl 1.52 *
4953     * @param map the map
4954     * @param searchFunction a function returning a non-null
4955     * result on success, else null
4956     * @return the task
4957     */
4958     public static <K,V,U> ForkJoinTask<U> search
4959     (ConcurrentHashMapV8<K,V> map,
4960     BiFun<? super K, ? super V, ? extends U> searchFunction) {
4961     if (searchFunction == null) throw new NullPointerException();
4962     return new SearchMappingsTask<K,V,U>
4963 dl 1.79 (map, null, -1, searchFunction,
4964 dl 1.52 new AtomicReference<U>());
4965     }
4966    
4967     /**
4968     * Returns a task that when invoked, returns the result of
4969     * accumulating the given transformation of all (key, value) pairs
4970     * using the given reducer to combine values, or null if none.
4971     *
4972     * @param map the map
4973     * @param transformer a function returning the transformation
4974 jsr166 1.68 * for an element, or null if there is no transformation (in
4975 dl 1.52 * which case it is not combined).
4976     * @param reducer a commutative associative combining function
4977     * @return the task
4978     */
4979     public static <K,V,U> ForkJoinTask<U> reduce
4980     (ConcurrentHashMapV8<K,V> map,
4981     BiFun<? super K, ? super V, ? extends U> transformer,
4982     BiFun<? super U, ? super U, ? extends U> reducer) {
4983     if (transformer == null || reducer == null)
4984     throw new NullPointerException();
4985     return new MapReduceMappingsTask<K,V,U>
4986 dl 1.63 (map, null, -1, null, transformer, reducer);
4987 dl 1.52 }
4988    
4989     /**
4990     * Returns a task that when invoked, returns the result of
4991     * accumulating the given transformation of all (key, value) pairs
4992     * using the given reducer to combine values, and the given
4993     * basis as an identity value.
4994     *
4995     * @param map the map
4996     * @param transformer a function returning the transformation
4997     * for an element
4998     * @param basis the identity (initial default value) for the reduction
4999     * @param reducer a commutative associative combining function
5000     * @return the task
5001     */
5002     public static <K,V> ForkJoinTask<Double> reduceToDouble
5003     (ConcurrentHashMapV8<K,V> map,
5004     ObjectByObjectToDouble<? super K, ? super V> transformer,
5005     double basis,
5006     DoubleByDoubleToDouble reducer) {
5007     if (transformer == null || reducer == null)
5008     throw new NullPointerException();
5009     return new MapReduceMappingsToDoubleTask<K,V>
5010 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5011 dl 1.52 }
5012    
5013     /**
5014     * Returns a task that when invoked, returns the result of
5015     * accumulating the given transformation of all (key, value) pairs
5016     * using the given reducer to combine values, and the given
5017     * basis as an identity value.
5018     *
5019     * @param map the map
5020     * @param transformer a function returning the transformation
5021     * for an element
5022     * @param basis the identity (initial default value) for the reduction
5023     * @param reducer a commutative associative combining function
5024     * @return the task
5025     */
5026     public static <K,V> ForkJoinTask<Long> reduceToLong
5027     (ConcurrentHashMapV8<K,V> map,
5028     ObjectByObjectToLong<? super K, ? super V> transformer,
5029     long basis,
5030     LongByLongToLong reducer) {
5031     if (transformer == null || reducer == null)
5032     throw new NullPointerException();
5033     return new MapReduceMappingsToLongTask<K,V>
5034 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5035 dl 1.52 }
5036    
5037     /**
5038     * Returns a task that when invoked, returns the result of
5039     * accumulating the given transformation of all (key, value) pairs
5040     * using the given reducer to combine values, and the given
5041     * basis as an identity value.
5042     *
5043     * @param transformer a function returning the transformation
5044     * for an element
5045     * @param basis the identity (initial default value) for the reduction
5046     * @param reducer a commutative associative combining function
5047     * @return the task
5048     */
5049     public static <K,V> ForkJoinTask<Integer> reduceToInt
5050     (ConcurrentHashMapV8<K,V> map,
5051     ObjectByObjectToInt<? super K, ? super V> transformer,
5052     int basis,
5053     IntByIntToInt reducer) {
5054     if (transformer == null || reducer == null)
5055     throw new NullPointerException();
5056     return new MapReduceMappingsToIntTask<K,V>
5057 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5058 dl 1.52 }
5059    
5060     /**
5061     * Returns a task that when invoked, performs the given action
5062 jsr166 1.56 * for each key.
5063 dl 1.52 *
5064     * @param map the map
5065     * @param action the action
5066     * @return the task
5067     */
5068 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachKey
5069 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5070     Action<K> action) {
5071     if (action == null) throw new NullPointerException();
5072 dl 1.79 return new ForEachKeyTask<K,V>(map, null, -1, action);
5073 dl 1.52 }
5074    
5075     /**
5076     * Returns a task that when invoked, performs the given action
5077 jsr166 1.56 * for each non-null transformation of each key.
5078 dl 1.52 *
5079     * @param map the map
5080     * @param transformer a function returning the transformation
5081 jsr166 1.68 * for an element, or null if there is no transformation (in
5082 jsr166 1.67 * which case the action is not applied)
5083 dl 1.52 * @param action the action
5084     * @return the task
5085     */
5086 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachKey
5087 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5088     Fun<? super K, ? extends U> transformer,
5089     Action<U> action) {
5090     if (transformer == null || action == null)
5091     throw new NullPointerException();
5092     return new ForEachTransformedKeyTask<K,V,U>
5093 dl 1.79 (map, null, -1, transformer, action);
5094 dl 1.52 }
5095    
5096     /**
5097     * Returns a task that when invoked, returns a non-null result
5098     * from applying the given search function on each key, or
5099 dl 1.59 * null if none. Upon success, further element processing is
5100     * suppressed and the results of any other parallel
5101     * invocations of the search function are ignored.
5102 dl 1.52 *
5103     * @param map the map
5104     * @param searchFunction a function returning a non-null
5105     * result on success, else null
5106     * @return the task
5107     */
5108     public static <K,V,U> ForkJoinTask<U> searchKeys
5109     (ConcurrentHashMapV8<K,V> map,
5110     Fun<? super K, ? extends U> searchFunction) {
5111     if (searchFunction == null) throw new NullPointerException();
5112     return new SearchKeysTask<K,V,U>
5113 dl 1.79 (map, null, -1, searchFunction,
5114 dl 1.52 new AtomicReference<U>());
5115     }
5116    
5117     /**
5118     * Returns a task that when invoked, returns the result of
5119     * accumulating all keys using the given reducer to combine
5120     * values, or null if none.
5121     *
5122     * @param map the map
5123     * @param reducer a commutative associative combining function
5124     * @return the task
5125     */
5126     public static <K,V> ForkJoinTask<K> reduceKeys
5127     (ConcurrentHashMapV8<K,V> map,
5128     BiFun<? super K, ? super K, ? extends K> reducer) {
5129     if (reducer == null) throw new NullPointerException();
5130     return new ReduceKeysTask<K,V>
5131 dl 1.63 (map, null, -1, null, reducer);
5132 dl 1.52 }
5133 jsr166 1.58
5134 dl 1.52 /**
5135     * Returns a task that when invoked, returns the result of
5136     * accumulating the given transformation of all keys using the given
5137     * reducer to combine values, or null if none.
5138     *
5139     * @param map the map
5140     * @param transformer a function returning the transformation
5141 jsr166 1.68 * for an element, or null if there is no transformation (in
5142 dl 1.52 * which case it is not combined).
5143     * @param reducer a commutative associative combining function
5144     * @return the task
5145     */
5146     public static <K,V,U> ForkJoinTask<U> reduceKeys
5147     (ConcurrentHashMapV8<K,V> map,
5148     Fun<? super K, ? extends U> transformer,
5149     BiFun<? super U, ? super U, ? extends U> reducer) {
5150     if (transformer == null || reducer == null)
5151     throw new NullPointerException();
5152     return new MapReduceKeysTask<K,V,U>
5153 dl 1.63 (map, null, -1, null, transformer, reducer);
5154 dl 1.52 }
5155    
5156     /**
5157     * Returns a task that when invoked, returns the result of
5158     * accumulating the given transformation of all keys using the given
5159     * reducer to combine values, and the given basis as an
5160     * identity value.
5161     *
5162     * @param map the map
5163     * @param transformer a function returning the transformation
5164     * for an element
5165     * @param basis the identity (initial default value) for the reduction
5166     * @param reducer a commutative associative combining function
5167     * @return the task
5168     */
5169     public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
5170     (ConcurrentHashMapV8<K,V> map,
5171     ObjectToDouble<? super K> transformer,
5172     double basis,
5173     DoubleByDoubleToDouble reducer) {
5174     if (transformer == null || reducer == null)
5175     throw new NullPointerException();
5176     return new MapReduceKeysToDoubleTask<K,V>
5177 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5178 dl 1.52 }
5179    
5180     /**
5181     * Returns a task that when invoked, returns the result of
5182     * accumulating the given transformation of all keys using the given
5183     * reducer to combine values, and the given basis as an
5184     * identity value.
5185     *
5186     * @param map the map
5187     * @param transformer a function returning the transformation
5188     * for an element
5189     * @param basis the identity (initial default value) for the reduction
5190     * @param reducer a commutative associative combining function
5191     * @return the task
5192     */
5193     public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5194     (ConcurrentHashMapV8<K,V> map,
5195     ObjectToLong<? super K> transformer,
5196     long basis,
5197     LongByLongToLong reducer) {
5198     if (transformer == null || reducer == null)
5199     throw new NullPointerException();
5200     return new MapReduceKeysToLongTask<K,V>
5201 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5202 dl 1.52 }
5203    
5204     /**
5205     * Returns a task that when invoked, returns the result of
5206     * accumulating the given transformation of all keys using the given
5207     * reducer to combine values, and the given basis as an
5208     * identity value.
5209     *
5210     * @param map the map
5211     * @param transformer a function returning the transformation
5212     * for an element
5213     * @param basis the identity (initial default value) for the reduction
5214     * @param reducer a commutative associative combining function
5215     * @return the task
5216     */
5217     public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5218     (ConcurrentHashMapV8<K,V> map,
5219     ObjectToInt<? super K> transformer,
5220     int basis,
5221     IntByIntToInt reducer) {
5222     if (transformer == null || reducer == null)
5223     throw new NullPointerException();
5224     return new MapReduceKeysToIntTask<K,V>
5225 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5226 dl 1.52 }
5227    
5228     /**
5229     * Returns a task that when invoked, performs the given action
5230 jsr166 1.56 * for each value.
5231 dl 1.52 *
5232     * @param map the map
5233     * @param action the action
5234     */
5235 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachValue
5236 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5237     Action<V> action) {
5238     if (action == null) throw new NullPointerException();
5239 dl 1.79 return new ForEachValueTask<K,V>(map, null, -1, action);
5240 dl 1.52 }
5241    
5242     /**
5243     * Returns a task that when invoked, performs the given action
5244 jsr166 1.56 * for each non-null transformation of each value.
5245 dl 1.52 *
5246     * @param map the map
5247     * @param transformer a function returning the transformation
5248 jsr166 1.68 * for an element, or null if there is no transformation (in
5249 jsr166 1.67 * which case the action is not applied)
5250 dl 1.52 * @param action the action
5251     */
5252 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachValue
5253 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5254     Fun<? super V, ? extends U> transformer,
5255     Action<U> action) {
5256     if (transformer == null || action == null)
5257     throw new NullPointerException();
5258     return new ForEachTransformedValueTask<K,V,U>
5259 dl 1.79 (map, null, -1, transformer, action);
5260 dl 1.52 }
5261    
5262     /**
5263     * Returns a task that when invoked, returns a non-null result
5264     * from applying the given search function on each value, or
5265 dl 1.59 * null if none. Upon success, further element processing is
5266     * suppressed and the results of any other parallel
5267     * invocations of the search function are ignored.
5268 dl 1.52 *
5269     * @param map the map
5270     * @param searchFunction a function returning a non-null
5271     * result on success, else null
5272     * @return the task
5273     */
5274     public static <K,V,U> ForkJoinTask<U> searchValues
5275     (ConcurrentHashMapV8<K,V> map,
5276     Fun<? super V, ? extends U> searchFunction) {
5277     if (searchFunction == null) throw new NullPointerException();
5278     return new SearchValuesTask<K,V,U>
5279 dl 1.79 (map, null, -1, searchFunction,
5280 dl 1.52 new AtomicReference<U>());
5281     }
5282    
5283     /**
5284     * Returns a task that when invoked, returns the result of
5285     * accumulating all values using the given reducer to combine
5286     * values, or null if none.
5287     *
5288     * @param map the map
5289     * @param reducer a commutative associative combining function
5290     * @return the task
5291     */
5292     public static <K,V> ForkJoinTask<V> reduceValues
5293     (ConcurrentHashMapV8<K,V> map,
5294     BiFun<? super V, ? super V, ? extends V> reducer) {
5295     if (reducer == null) throw new NullPointerException();
5296     return new ReduceValuesTask<K,V>
5297 dl 1.63 (map, null, -1, null, reducer);
5298 dl 1.52 }
5299    
5300     /**
5301     * Returns a task that when invoked, returns the result of
5302     * accumulating the given transformation of all values using the
5303     * given reducer to combine values, or null if none.
5304     *
5305     * @param map the map
5306     * @param transformer a function returning the transformation
5307 jsr166 1.68 * for an element, or null if there is no transformation (in
5308 dl 1.52 * which case it is not combined).
5309     * @param reducer a commutative associative combining function
5310     * @return the task
5311     */
5312     public static <K,V,U> ForkJoinTask<U> reduceValues
5313     (ConcurrentHashMapV8<K,V> map,
5314     Fun<? super V, ? extends U> transformer,
5315     BiFun<? super U, ? super U, ? extends U> reducer) {
5316     if (transformer == null || reducer == null)
5317     throw new NullPointerException();
5318     return new MapReduceValuesTask<K,V,U>
5319 dl 1.63 (map, null, -1, null, transformer, reducer);
5320 dl 1.52 }
5321    
5322     /**
5323     * Returns a task that when invoked, returns the result of
5324     * accumulating the given transformation of all values using the
5325     * given reducer to combine values, and the given basis as an
5326     * identity value.
5327     *
5328     * @param map the map
5329     * @param transformer a function returning the transformation
5330     * for an element
5331     * @param basis the identity (initial default value) for the reduction
5332     * @param reducer a commutative associative combining function
5333     * @return the task
5334     */
5335     public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5336     (ConcurrentHashMapV8<K,V> map,
5337     ObjectToDouble<? super V> transformer,
5338     double basis,
5339     DoubleByDoubleToDouble reducer) {
5340     if (transformer == null || reducer == null)
5341     throw new NullPointerException();
5342     return new MapReduceValuesToDoubleTask<K,V>
5343 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5344 dl 1.52 }
5345    
5346     /**
5347     * Returns a task that when invoked, returns the result of
5348     * accumulating the given transformation of all values using the
5349     * given reducer to combine values, and the given basis as an
5350     * identity value.
5351     *
5352     * @param map the map
5353     * @param transformer a function returning the transformation
5354     * for an element
5355     * @param basis the identity (initial default value) for the reduction
5356     * @param reducer a commutative associative combining function
5357     * @return the task
5358     */
5359     public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5360     (ConcurrentHashMapV8<K,V> map,
5361     ObjectToLong<? super V> transformer,
5362     long basis,
5363     LongByLongToLong reducer) {
5364     if (transformer == null || reducer == null)
5365     throw new NullPointerException();
5366     return new MapReduceValuesToLongTask<K,V>
5367 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5368 dl 1.52 }
5369    
5370     /**
5371     * Returns a task that when invoked, returns the result of
5372     * accumulating the given transformation of all values using the
5373     * given reducer to combine values, and the given basis as an
5374     * identity value.
5375     *
5376     * @param map the map
5377     * @param transformer a function returning the transformation
5378     * for an element
5379     * @param basis the identity (initial default value) for the reduction
5380     * @param reducer a commutative associative combining function
5381     * @return the task
5382     */
5383     public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5384     (ConcurrentHashMapV8<K,V> map,
5385     ObjectToInt<? super V> transformer,
5386     int basis,
5387     IntByIntToInt reducer) {
5388     if (transformer == null || reducer == null)
5389     throw new NullPointerException();
5390     return new MapReduceValuesToIntTask<K,V>
5391 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5392 dl 1.52 }
5393    
5394     /**
5395     * Returns a task that when invoked, perform the given action
5396 jsr166 1.56 * for each entry.
5397 dl 1.52 *
5398     * @param map the map
5399     * @param action the action
5400     */
5401 jsr166 1.53 public static <K,V> ForkJoinTask<Void> forEachEntry
5402 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5403     Action<Map.Entry<K,V>> action) {
5404     if (action == null) throw new NullPointerException();
5405 dl 1.79 return new ForEachEntryTask<K,V>(map, null, -1, action);
5406 dl 1.52 }
5407    
5408     /**
5409     * Returns a task that when invoked, perform the given action
5410 jsr166 1.56 * for each non-null transformation of each entry.
5411 dl 1.52 *
5412     * @param map the map
5413     * @param transformer a function returning the transformation
5414 jsr166 1.68 * for an element, or null if there is no transformation (in
5415 jsr166 1.67 * which case the action is not applied)
5416 dl 1.52 * @param action the action
5417     */
5418 jsr166 1.53 public static <K,V,U> ForkJoinTask<Void> forEachEntry
5419 dl 1.52 (ConcurrentHashMapV8<K,V> map,
5420     Fun<Map.Entry<K,V>, ? extends U> transformer,
5421     Action<U> action) {
5422     if (transformer == null || action == null)
5423     throw new NullPointerException();
5424     return new ForEachTransformedEntryTask<K,V,U>
5425 dl 1.79 (map, null, -1, transformer, action);
5426 dl 1.52 }
5427    
5428     /**
5429     * Returns a task that when invoked, returns a non-null result
5430     * from applying the given search function on each entry, or
5431 dl 1.59 * null if none. Upon success, further element processing is
5432     * suppressed and the results of any other parallel
5433     * invocations of the search function are ignored.
5434 dl 1.52 *
5435     * @param map the map
5436     * @param searchFunction a function returning a non-null
5437     * result on success, else null
5438     * @return the task
5439     */
5440     public static <K,V,U> ForkJoinTask<U> searchEntries
5441     (ConcurrentHashMapV8<K,V> map,
5442     Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5443     if (searchFunction == null) throw new NullPointerException();
5444     return new SearchEntriesTask<K,V,U>
5445 dl 1.79 (map, null, -1, searchFunction,
5446 dl 1.52 new AtomicReference<U>());
5447     }
5448    
5449     /**
5450     * Returns a task that when invoked, returns the result of
5451     * accumulating all entries using the given reducer to combine
5452     * values, or null if none.
5453     *
5454     * @param map the map
5455     * @param reducer a commutative associative combining function
5456     * @return the task
5457     */
5458     public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5459     (ConcurrentHashMapV8<K,V> map,
5460     BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5461     if (reducer == null) throw new NullPointerException();
5462     return new ReduceEntriesTask<K,V>
5463 dl 1.63 (map, null, -1, null, reducer);
5464 dl 1.52 }
5465    
5466     /**
5467     * Returns a task that when invoked, returns the result of
5468     * accumulating the given transformation of all entries using the
5469     * given reducer to combine values, or null if none.
5470     *
5471     * @param map the map
5472     * @param transformer a function returning the transformation
5473 jsr166 1.68 * for an element, or null if there is no transformation (in
5474 dl 1.52 * which case it is not combined).
5475     * @param reducer a commutative associative combining function
5476     * @return the task
5477     */
5478     public static <K,V,U> ForkJoinTask<U> reduceEntries
5479     (ConcurrentHashMapV8<K,V> map,
5480     Fun<Map.Entry<K,V>, ? extends U> transformer,
5481     BiFun<? super U, ? super U, ? extends U> reducer) {
5482     if (transformer == null || reducer == null)
5483     throw new NullPointerException();
5484     return new MapReduceEntriesTask<K,V,U>
5485 dl 1.63 (map, null, -1, null, transformer, reducer);
5486 dl 1.52 }
5487    
5488     /**
5489     * Returns a task that when invoked, returns the result of
5490     * accumulating the given transformation of all entries using the
5491     * given reducer to combine values, and the given basis as an
5492     * identity value.
5493     *
5494     * @param map the map
5495     * @param transformer a function returning the transformation
5496     * for an element
5497     * @param basis the identity (initial default value) for the reduction
5498     * @param reducer a commutative associative combining function
5499     * @return the task
5500     */
5501     public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5502     (ConcurrentHashMapV8<K,V> map,
5503     ObjectToDouble<Map.Entry<K,V>> transformer,
5504     double basis,
5505     DoubleByDoubleToDouble reducer) {
5506     if (transformer == null || reducer == null)
5507     throw new NullPointerException();
5508     return new MapReduceEntriesToDoubleTask<K,V>
5509 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5510 dl 1.52 }
5511    
5512     /**
5513     * Returns a task that when invoked, returns the result of
5514     * accumulating the given transformation of all entries using the
5515     * given reducer to combine values, and the given basis as an
5516     * identity value.
5517     *
5518     * @param map the map
5519     * @param transformer a function returning the transformation
5520     * for an element
5521     * @param basis the identity (initial default value) for the reduction
5522     * @param reducer a commutative associative combining function
5523     * @return the task
5524     */
5525     public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5526     (ConcurrentHashMapV8<K,V> map,
5527     ObjectToLong<Map.Entry<K,V>> transformer,
5528     long basis,
5529     LongByLongToLong reducer) {
5530     if (transformer == null || reducer == null)
5531     throw new NullPointerException();
5532     return new MapReduceEntriesToLongTask<K,V>
5533 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5534 dl 1.52 }
5535    
5536     /**
5537     * Returns a task that when invoked, returns the result of
5538     * accumulating the given transformation of all entries using the
5539     * given reducer to combine values, and the given basis as an
5540     * identity value.
5541     *
5542     * @param map the map
5543     * @param transformer a function returning the transformation
5544     * for an element
5545     * @param basis the identity (initial default value) for the reduction
5546     * @param reducer a commutative associative combining function
5547     * @return the task
5548     */
5549     public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5550     (ConcurrentHashMapV8<K,V> map,
5551     ObjectToInt<Map.Entry<K,V>> transformer,
5552     int basis,
5553     IntByIntToInt reducer) {
5554     if (transformer == null || reducer == null)
5555     throw new NullPointerException();
5556     return new MapReduceEntriesToIntTask<K,V>
5557 dl 1.63 (map, null, -1, null, transformer, basis, reducer);
5558 dl 1.52 }
5559     }
5560    
5561     // -------------------------------------------------------
5562    
5563     /*
5564     * Task classes. Coded in a regular but ugly format/style to
5565     * simplify checks that each variant differs in the right way from
5566 dl 1.82 * others. The null screenings exist because compilers cannot tell
5567     * that we've already null-checked task arguments, so we force
5568     * simplest hoisted bypass to help avoid convoluted traps.
5569 dl 1.52 */
5570    
5571 dl 1.61 @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5572 dl 1.79 extends Traverser<K,V,Void> {
5573 dl 1.52 final Action<K> action;
5574     ForEachKeyTask
5575 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5576 dl 1.52 Action<K> action) {
5577 dl 1.79 super(m, p, b);
5578 dl 1.52 this.action = action;
5579     }
5580 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5581     final Action<K> action;
5582 dl 1.82 if ((action = this.action) != null) {
5583     for (int b; (b = preSplit()) > 0;)
5584     new ForEachKeyTask<K,V>(map, this, b, action).fork();
5585     while (advance() != null)
5586     action.apply((K)nextKey);
5587     propagateCompletion();
5588     }
5589 dl 1.52 }
5590     }
5591    
5592 dl 1.61 @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5593 dl 1.79 extends Traverser<K,V,Void> {
5594 dl 1.52 final Action<V> action;
5595     ForEachValueTask
5596 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5597 dl 1.52 Action<V> action) {
5598 dl 1.79 super(m, p, b);
5599 dl 1.52 this.action = action;
5600     }
5601 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5602     final Action<V> action;
5603 dl 1.82 if ((action = this.action) != null) {
5604     for (int b; (b = preSplit()) > 0;)
5605     new ForEachValueTask<K,V>(map, this, b, action).fork();
5606 dl 1.84 V v;
5607 dl 1.82 while ((v = advance()) != null)
5608 dl 1.84 action.apply(v);
5609 dl 1.82 propagateCompletion();
5610     }
5611 dl 1.52 }
5612     }
5613    
5614 dl 1.61 @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5615 dl 1.79 extends Traverser<K,V,Void> {
5616 dl 1.52 final Action<Entry<K,V>> action;
5617     ForEachEntryTask
5618 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5619 dl 1.52 Action<Entry<K,V>> action) {
5620 dl 1.79 super(m, p, b);
5621 dl 1.52 this.action = action;
5622     }
5623 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5624     final Action<Entry<K,V>> action;
5625 dl 1.82 if ((action = this.action) != null) {
5626     for (int b; (b = preSplit()) > 0;)
5627     new ForEachEntryTask<K,V>(map, this, b, action).fork();
5628 dl 1.84 V v;
5629 dl 1.82 while ((v = advance()) != null)
5630 dl 1.84 action.apply(entryFor((K)nextKey, v));
5631 dl 1.82 propagateCompletion();
5632     }
5633 dl 1.52 }
5634     }
5635    
5636 dl 1.61 @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5637 dl 1.79 extends Traverser<K,V,Void> {
5638 dl 1.52 final BiAction<K,V> action;
5639     ForEachMappingTask
5640 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5641 dl 1.52 BiAction<K,V> action) {
5642 dl 1.79 super(m, p, b);
5643 dl 1.52 this.action = action;
5644     }
5645 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5646     final BiAction<K,V> action;
5647 dl 1.82 if ((action = this.action) != null) {
5648     for (int b; (b = preSplit()) > 0;)
5649     new ForEachMappingTask<K,V>(map, this, b, action).fork();
5650 dl 1.84 V v;
5651 dl 1.82 while ((v = advance()) != null)
5652 dl 1.84 action.apply((K)nextKey, v);
5653 dl 1.82 propagateCompletion();
5654     }
5655 dl 1.52 }
5656     }
5657    
5658 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5659 dl 1.79 extends Traverser<K,V,Void> {
5660 dl 1.52 final Fun<? super K, ? extends U> transformer;
5661     final Action<U> action;
5662     ForEachTransformedKeyTask
5663 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5664     Fun<? super K, ? extends U> transformer, Action<U> action) {
5665     super(m, p, b);
5666     this.transformer = transformer; this.action = action;
5667     }
5668     @SuppressWarnings("unchecked") public final void compute() {
5669     final Fun<? super K, ? extends U> transformer;
5670     final Action<U> action;
5671 dl 1.82 if ((transformer = this.transformer) != null &&
5672     (action = this.action) != null) {
5673     for (int b; (b = preSplit()) > 0;)
5674     new ForEachTransformedKeyTask<K,V,U>
5675     (map, this, b, transformer, action).fork();
5676     U u;
5677     while (advance() != null) {
5678     if ((u = transformer.apply((K)nextKey)) != null)
5679     action.apply(u);
5680     }
5681     propagateCompletion();
5682 dl 1.52 }
5683     }
5684     }
5685    
5686 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5687 dl 1.79 extends Traverser<K,V,Void> {
5688 dl 1.52 final Fun<? super V, ? extends U> transformer;
5689     final Action<U> action;
5690     ForEachTransformedValueTask
5691 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5692     Fun<? super V, ? extends U> transformer, Action<U> action) {
5693     super(m, p, b);
5694     this.transformer = transformer; this.action = action;
5695     }
5696     @SuppressWarnings("unchecked") public final void compute() {
5697     final Fun<? super V, ? extends U> transformer;
5698     final Action<U> action;
5699 dl 1.82 if ((transformer = this.transformer) != null &&
5700     (action = this.action) != null) {
5701     for (int b; (b = preSplit()) > 0;)
5702     new ForEachTransformedValueTask<K,V,U>
5703     (map, this, b, transformer, action).fork();
5704 dl 1.84 V v; U u;
5705 dl 1.82 while ((v = advance()) != null) {
5706 dl 1.84 if ((u = transformer.apply(v)) != null)
5707 dl 1.82 action.apply(u);
5708     }
5709     propagateCompletion();
5710 dl 1.52 }
5711     }
5712     }
5713    
5714 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5715 dl 1.79 extends Traverser<K,V,Void> {
5716 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5717     final Action<U> action;
5718     ForEachTransformedEntryTask
5719 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5720     Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5721     super(m, p, b);
5722     this.transformer = transformer; this.action = action;
5723     }
5724     @SuppressWarnings("unchecked") public final void compute() {
5725     final Fun<Map.Entry<K,V>, ? extends U> transformer;
5726     final Action<U> action;
5727 dl 1.82 if ((transformer = this.transformer) != null &&
5728     (action = this.action) != null) {
5729     for (int b; (b = preSplit()) > 0;)
5730     new ForEachTransformedEntryTask<K,V,U>
5731     (map, this, b, transformer, action).fork();
5732 dl 1.84 V v; U u;
5733 dl 1.82 while ((v = advance()) != null) {
5734     if ((u = transformer.apply(entryFor((K)nextKey,
5735 dl 1.84 v))) != null)
5736 dl 1.82 action.apply(u);
5737     }
5738     propagateCompletion();
5739 dl 1.52 }
5740     }
5741     }
5742    
5743 dl 1.61 @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5744 dl 1.79 extends Traverser<K,V,Void> {
5745 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
5746     final Action<U> action;
5747     ForEachTransformedMappingTask
5748 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5749 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
5750     Action<U> action) {
5751 dl 1.79 super(m, p, b);
5752     this.transformer = transformer; this.action = action;
5753 dl 1.52 }
5754 dl 1.79 @SuppressWarnings("unchecked") public final void compute() {
5755     final BiFun<? super K, ? super V, ? extends U> transformer;
5756     final Action<U> action;
5757 dl 1.82 if ((transformer = this.transformer) != null &&
5758     (action = this.action) != null) {
5759     for (int b; (b = preSplit()) > 0;)
5760     new ForEachTransformedMappingTask<K,V,U>
5761     (map, this, b, transformer, action).fork();
5762 dl 1.84 V v; U u;
5763 dl 1.82 while ((v = advance()) != null) {
5764 dl 1.84 if ((u = transformer.apply((K)nextKey, v)) != null)
5765 dl 1.82 action.apply(u);
5766     }
5767     propagateCompletion();
5768 dl 1.52 }
5769     }
5770     }
5771    
5772 dl 1.61 @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5773 dl 1.79 extends Traverser<K,V,U> {
5774 dl 1.52 final Fun<? super K, ? extends U> searchFunction;
5775     final AtomicReference<U> result;
5776     SearchKeysTask
5777 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5778 dl 1.52 Fun<? super K, ? extends U> searchFunction,
5779     AtomicReference<U> result) {
5780 dl 1.79 super(m, p, b);
5781 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5782     }
5783 dl 1.79 public final U getRawResult() { return result.get(); }
5784     @SuppressWarnings("unchecked") public final void compute() {
5785     final Fun<? super K, ? extends U> searchFunction;
5786     final AtomicReference<U> result;
5787 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5788     (result = this.result) != null) {
5789     for (int b;;) {
5790     if (result.get() != null)
5791     return;
5792     if ((b = preSplit()) <= 0)
5793     break;
5794     new SearchKeysTask<K,V,U>
5795     (map, this, b, searchFunction, result).fork();
5796 dl 1.61 }
5797 dl 1.82 while (result.get() == null) {
5798     U u;
5799     if (advance() == null) {
5800     propagateCompletion();
5801     break;
5802     }
5803     if ((u = searchFunction.apply((K)nextKey)) != null) {
5804     if (result.compareAndSet(null, u))
5805     quietlyCompleteRoot();
5806     break;
5807     }
5808 dl 1.52 }
5809     }
5810     }
5811     }
5812    
5813 dl 1.61 @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5814 dl 1.79 extends Traverser<K,V,U> {
5815 dl 1.52 final Fun<? super V, ? extends U> searchFunction;
5816     final AtomicReference<U> result;
5817     SearchValuesTask
5818 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5819 dl 1.52 Fun<? super V, ? extends U> searchFunction,
5820     AtomicReference<U> result) {
5821 dl 1.79 super(m, p, b);
5822 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5823     }
5824 dl 1.79 public final U getRawResult() { return result.get(); }
5825     @SuppressWarnings("unchecked") public final void compute() {
5826     final Fun<? super V, ? extends U> searchFunction;
5827     final AtomicReference<U> result;
5828 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5829     (result = this.result) != null) {
5830     for (int b;;) {
5831     if (result.get() != null)
5832     return;
5833     if ((b = preSplit()) <= 0)
5834     break;
5835     new SearchValuesTask<K,V,U>
5836     (map, this, b, searchFunction, result).fork();
5837 dl 1.61 }
5838 dl 1.82 while (result.get() == null) {
5839 dl 1.84 V v; U u;
5840 dl 1.82 if ((v = advance()) == null) {
5841     propagateCompletion();
5842     break;
5843     }
5844 dl 1.84 if ((u = searchFunction.apply(v)) != null) {
5845 dl 1.82 if (result.compareAndSet(null, u))
5846     quietlyCompleteRoot();
5847     break;
5848     }
5849 dl 1.52 }
5850     }
5851     }
5852     }
5853    
5854 dl 1.61 @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5855 dl 1.79 extends Traverser<K,V,U> {
5856 dl 1.52 final Fun<Entry<K,V>, ? extends U> searchFunction;
5857     final AtomicReference<U> result;
5858     SearchEntriesTask
5859 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5860 dl 1.52 Fun<Entry<K,V>, ? extends U> searchFunction,
5861     AtomicReference<U> result) {
5862 dl 1.79 super(m, p, b);
5863 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5864     }
5865 dl 1.79 public final U getRawResult() { return result.get(); }
5866     @SuppressWarnings("unchecked") public final void compute() {
5867     final Fun<Entry<K,V>, ? extends U> searchFunction;
5868     final AtomicReference<U> result;
5869 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5870     (result = this.result) != null) {
5871     for (int b;;) {
5872     if (result.get() != null)
5873     return;
5874     if ((b = preSplit()) <= 0)
5875     break;
5876     new SearchEntriesTask<K,V,U>
5877     (map, this, b, searchFunction, result).fork();
5878 dl 1.61 }
5879 dl 1.82 while (result.get() == null) {
5880 dl 1.84 V v; U u;
5881 dl 1.82 if ((v = advance()) == null) {
5882     propagateCompletion();
5883     break;
5884     }
5885     if ((u = searchFunction.apply(entryFor((K)nextKey,
5886 dl 1.84 v))) != null) {
5887 dl 1.82 if (result.compareAndSet(null, u))
5888     quietlyCompleteRoot();
5889     return;
5890     }
5891 dl 1.52 }
5892     }
5893     }
5894     }
5895    
5896 dl 1.61 @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5897 dl 1.79 extends Traverser<K,V,U> {
5898 dl 1.52 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5899     final AtomicReference<U> result;
5900     SearchMappingsTask
5901 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5902 dl 1.52 BiFun<? super K, ? super V, ? extends U> searchFunction,
5903     AtomicReference<U> result) {
5904 dl 1.79 super(m, p, b);
5905 dl 1.52 this.searchFunction = searchFunction; this.result = result;
5906     }
5907 dl 1.79 public final U getRawResult() { return result.get(); }
5908     @SuppressWarnings("unchecked") public final void compute() {
5909     final BiFun<? super K, ? super V, ? extends U> searchFunction;
5910     final AtomicReference<U> result;
5911 dl 1.82 if ((searchFunction = this.searchFunction) != null &&
5912     (result = this.result) != null) {
5913     for (int b;;) {
5914     if (result.get() != null)
5915     return;
5916     if ((b = preSplit()) <= 0)
5917     break;
5918     new SearchMappingsTask<K,V,U>
5919     (map, this, b, searchFunction, result).fork();
5920 dl 1.61 }
5921 dl 1.82 while (result.get() == null) {
5922 dl 1.84 V v; U u;
5923 dl 1.82 if ((v = advance()) == null) {
5924     propagateCompletion();
5925     break;
5926     }
5927 dl 1.84 if ((u = searchFunction.apply((K)nextKey, v)) != null) {
5928 dl 1.82 if (result.compareAndSet(null, u))
5929     quietlyCompleteRoot();
5930     break;
5931     }
5932 dl 1.52 }
5933     }
5934     }
5935     }
5936    
5937 dl 1.61 @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5938 dl 1.79 extends Traverser<K,V,K> {
5939 dl 1.52 final BiFun<? super K, ? super K, ? extends K> reducer;
5940     K result;
5941 dl 1.61 ReduceKeysTask<K,V> rights, nextRight;
5942 dl 1.52 ReduceKeysTask
5943 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5944 dl 1.61 ReduceKeysTask<K,V> nextRight,
5945 dl 1.52 BiFun<? super K, ? super K, ? extends K> reducer) {
5946 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5947 dl 1.52 this.reducer = reducer;
5948     }
5949 dl 1.79 public final K getRawResult() { return result; }
5950     @SuppressWarnings("unchecked") public final void compute() {
5951 dl 1.82 final BiFun<? super K, ? super K, ? extends K> reducer;
5952     if ((reducer = this.reducer) != null) {
5953     for (int b; (b = preSplit()) > 0;)
5954     (rights = new ReduceKeysTask<K,V>
5955     (map, this, b, rights, reducer)).fork();
5956     K r = null;
5957     while (advance() != null) {
5958     K u = (K)nextKey;
5959     r = (r == null) ? u : reducer.apply(r, u);
5960     }
5961     result = r;
5962     CountedCompleter<?> c;
5963     for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964     ReduceKeysTask<K,V>
5965     t = (ReduceKeysTask<K,V>)c,
5966     s = t.rights;
5967     while (s != null) {
5968     K tr, sr;
5969     if ((sr = s.result) != null)
5970     t.result = (((tr = t.result) == null) ? sr :
5971     reducer.apply(tr, sr));
5972     s = t.rights = s.nextRight;
5973     }
5974 dl 1.52 }
5975 dl 1.71 }
5976 dl 1.52 }
5977     }
5978    
5979 dl 1.61 @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5980 dl 1.79 extends Traverser<K,V,V> {
5981 dl 1.52 final BiFun<? super V, ? super V, ? extends V> reducer;
5982     V result;
5983 dl 1.61 ReduceValuesTask<K,V> rights, nextRight;
5984 dl 1.52 ReduceValuesTask
5985 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5986 dl 1.61 ReduceValuesTask<K,V> nextRight,
5987 dl 1.52 BiFun<? super V, ? super V, ? extends V> reducer) {
5988 dl 1.63 super(m, p, b); this.nextRight = nextRight;
5989 dl 1.52 this.reducer = reducer;
5990     }
5991 dl 1.79 public final V getRawResult() { return result; }
5992     @SuppressWarnings("unchecked") public final void compute() {
5993 dl 1.82 final BiFun<? super V, ? super V, ? extends V> reducer;
5994     if ((reducer = this.reducer) != null) {
5995     for (int b; (b = preSplit()) > 0;)
5996     (rights = new ReduceValuesTask<K,V>
5997     (map, this, b, rights, reducer)).fork();
5998     V r = null;
5999 dl 1.84 V v;
6000 dl 1.82 while ((v = advance()) != null) {
6001 dl 1.84 V u = v;
6002 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6003     }
6004     result = r;
6005     CountedCompleter<?> c;
6006     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6007     ReduceValuesTask<K,V>
6008     t = (ReduceValuesTask<K,V>)c,
6009     s = t.rights;
6010     while (s != null) {
6011     V tr, sr;
6012     if ((sr = s.result) != null)
6013     t.result = (((tr = t.result) == null) ? sr :
6014     reducer.apply(tr, sr));
6015     s = t.rights = s.nextRight;
6016     }
6017 dl 1.52 }
6018     }
6019     }
6020     }
6021    
6022 dl 1.61 @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
6023 dl 1.79 extends Traverser<K,V,Map.Entry<K,V>> {
6024 dl 1.52 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6025     Map.Entry<K,V> result;
6026 dl 1.61 ReduceEntriesTask<K,V> rights, nextRight;
6027 dl 1.52 ReduceEntriesTask
6028 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6029 dl 1.63 ReduceEntriesTask<K,V> nextRight,
6030 dl 1.52 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
6031 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6032 dl 1.52 this.reducer = reducer;
6033     }
6034 dl 1.79 public final Map.Entry<K,V> getRawResult() { return result; }
6035     @SuppressWarnings("unchecked") public final void compute() {
6036 dl 1.82 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
6037     if ((reducer = this.reducer) != null) {
6038     for (int b; (b = preSplit()) > 0;)
6039     (rights = new ReduceEntriesTask<K,V>
6040     (map, this, b, rights, reducer)).fork();
6041     Map.Entry<K,V> r = null;
6042 dl 1.84 V v;
6043 dl 1.82 while ((v = advance()) != null) {
6044 dl 1.84 Map.Entry<K,V> u = entryFor((K)nextKey, v);
6045 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6046     }
6047     result = r;
6048     CountedCompleter<?> c;
6049     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6050     ReduceEntriesTask<K,V>
6051     t = (ReduceEntriesTask<K,V>)c,
6052     s = t.rights;
6053     while (s != null) {
6054     Map.Entry<K,V> tr, sr;
6055     if ((sr = s.result) != null)
6056     t.result = (((tr = t.result) == null) ? sr :
6057     reducer.apply(tr, sr));
6058     s = t.rights = s.nextRight;
6059     }
6060 dl 1.52 }
6061     }
6062     }
6063     }
6064    
6065 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
6066 dl 1.79 extends Traverser<K,V,U> {
6067 dl 1.52 final Fun<? super K, ? extends U> transformer;
6068     final BiFun<? super U, ? super U, ? extends U> reducer;
6069     U result;
6070 dl 1.61 MapReduceKeysTask<K,V,U> rights, nextRight;
6071 dl 1.52 MapReduceKeysTask
6072 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6073 dl 1.61 MapReduceKeysTask<K,V,U> nextRight,
6074 dl 1.52 Fun<? super K, ? extends U> transformer,
6075     BiFun<? super U, ? super U, ? extends U> reducer) {
6076 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6077 dl 1.52 this.transformer = transformer;
6078     this.reducer = reducer;
6079     }
6080 dl 1.79 public final U getRawResult() { return result; }
6081     @SuppressWarnings("unchecked") public final void compute() {
6082 dl 1.82 final Fun<? super K, ? extends U> transformer;
6083     final BiFun<? super U, ? super U, ? extends U> reducer;
6084     if ((transformer = this.transformer) != null &&
6085     (reducer = this.reducer) != null) {
6086     for (int b; (b = preSplit()) > 0;)
6087     (rights = new MapReduceKeysTask<K,V,U>
6088     (map, this, b, rights, transformer, reducer)).fork();
6089     U r = null, u;
6090     while (advance() != null) {
6091     if ((u = transformer.apply((K)nextKey)) != null)
6092     r = (r == null) ? u : reducer.apply(r, u);
6093     }
6094     result = r;
6095     CountedCompleter<?> c;
6096     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6097     MapReduceKeysTask<K,V,U>
6098     t = (MapReduceKeysTask<K,V,U>)c,
6099     s = t.rights;
6100     while (s != null) {
6101     U tr, sr;
6102     if ((sr = s.result) != null)
6103     t.result = (((tr = t.result) == null) ? sr :
6104     reducer.apply(tr, sr));
6105     s = t.rights = s.nextRight;
6106     }
6107 dl 1.52 }
6108     }
6109     }
6110     }
6111    
6112 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
6113 dl 1.79 extends Traverser<K,V,U> {
6114 dl 1.52 final Fun<? super V, ? extends U> transformer;
6115     final BiFun<? super U, ? super U, ? extends U> reducer;
6116     U result;
6117 dl 1.61 MapReduceValuesTask<K,V,U> rights, nextRight;
6118 dl 1.52 MapReduceValuesTask
6119 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6120 dl 1.61 MapReduceValuesTask<K,V,U> nextRight,
6121 dl 1.52 Fun<? super V, ? extends U> transformer,
6122     BiFun<? super U, ? super U, ? extends U> reducer) {
6123 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6124 dl 1.52 this.transformer = transformer;
6125     this.reducer = reducer;
6126     }
6127 dl 1.79 public final U getRawResult() { return result; }
6128     @SuppressWarnings("unchecked") public final void compute() {
6129 dl 1.82 final Fun<? super V, ? extends U> transformer;
6130     final BiFun<? super U, ? super U, ? extends U> reducer;
6131     if ((transformer = this.transformer) != null &&
6132     (reducer = this.reducer) != null) {
6133     for (int b; (b = preSplit()) > 0;)
6134     (rights = new MapReduceValuesTask<K,V,U>
6135     (map, this, b, rights, transformer, reducer)).fork();
6136     U r = null, u;
6137 dl 1.84 V v;
6138 dl 1.82 while ((v = advance()) != null) {
6139 dl 1.84 if ((u = transformer.apply(v)) != null)
6140 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6141     }
6142     result = r;
6143     CountedCompleter<?> c;
6144     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6145     MapReduceValuesTask<K,V,U>
6146     t = (MapReduceValuesTask<K,V,U>)c,
6147     s = t.rights;
6148     while (s != null) {
6149     U tr, sr;
6150     if ((sr = s.result) != null)
6151     t.result = (((tr = t.result) == null) ? sr :
6152     reducer.apply(tr, sr));
6153     s = t.rights = s.nextRight;
6154     }
6155 dl 1.52 }
6156 dl 1.71 }
6157 dl 1.52 }
6158     }
6159    
6160 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
6161 dl 1.79 extends Traverser<K,V,U> {
6162 dl 1.52 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6163     final BiFun<? super U, ? super U, ? extends U> reducer;
6164     U result;
6165 dl 1.61 MapReduceEntriesTask<K,V,U> rights, nextRight;
6166 dl 1.52 MapReduceEntriesTask
6167 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6168 dl 1.61 MapReduceEntriesTask<K,V,U> nextRight,
6169 dl 1.52 Fun<Map.Entry<K,V>, ? extends U> transformer,
6170     BiFun<? super U, ? super U, ? extends U> reducer) {
6171 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6172 dl 1.52 this.transformer = transformer;
6173     this.reducer = reducer;
6174     }
6175 dl 1.79 public final U getRawResult() { return result; }
6176     @SuppressWarnings("unchecked") public final void compute() {
6177 dl 1.82 final Fun<Map.Entry<K,V>, ? extends U> transformer;
6178     final BiFun<? super U, ? super U, ? extends U> reducer;
6179     if ((transformer = this.transformer) != null &&
6180     (reducer = this.reducer) != null) {
6181     for (int b; (b = preSplit()) > 0;)
6182     (rights = new MapReduceEntriesTask<K,V,U>
6183     (map, this, b, rights, transformer, reducer)).fork();
6184     U r = null, u;
6185 dl 1.84 V v;
6186 dl 1.82 while ((v = advance()) != null) {
6187     if ((u = transformer.apply(entryFor((K)nextKey,
6188 dl 1.84 v))) != null)
6189 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6190     }
6191     result = r;
6192     CountedCompleter<?> c;
6193     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6194     MapReduceEntriesTask<K,V,U>
6195     t = (MapReduceEntriesTask<K,V,U>)c,
6196     s = t.rights;
6197     while (s != null) {
6198     U tr, sr;
6199     if ((sr = s.result) != null)
6200     t.result = (((tr = t.result) == null) ? sr :
6201     reducer.apply(tr, sr));
6202     s = t.rights = s.nextRight;
6203     }
6204 dl 1.52 }
6205     }
6206     }
6207     }
6208    
6209 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6210 dl 1.79 extends Traverser<K,V,U> {
6211 dl 1.52 final BiFun<? super K, ? super V, ? extends U> transformer;
6212     final BiFun<? super U, ? super U, ? extends U> reducer;
6213     U result;
6214 dl 1.61 MapReduceMappingsTask<K,V,U> rights, nextRight;
6215 dl 1.52 MapReduceMappingsTask
6216 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6217 dl 1.61 MapReduceMappingsTask<K,V,U> nextRight,
6218 dl 1.52 BiFun<? super K, ? super V, ? extends U> transformer,
6219     BiFun<? super U, ? super U, ? extends U> reducer) {
6220 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6221 dl 1.52 this.transformer = transformer;
6222     this.reducer = reducer;
6223     }
6224 dl 1.79 public final U getRawResult() { return result; }
6225     @SuppressWarnings("unchecked") public final void compute() {
6226 dl 1.82 final BiFun<? super K, ? super V, ? extends U> transformer;
6227     final BiFun<? super U, ? super U, ? extends U> reducer;
6228     if ((transformer = this.transformer) != null &&
6229     (reducer = this.reducer) != null) {
6230     for (int b; (b = preSplit()) > 0;)
6231     (rights = new MapReduceMappingsTask<K,V,U>
6232     (map, this, b, rights, transformer, reducer)).fork();
6233     U r = null, u;
6234 dl 1.84 V v;
6235 dl 1.82 while ((v = advance()) != null) {
6236 dl 1.84 if ((u = transformer.apply((K)nextKey, v)) != null)
6237 dl 1.82 r = (r == null) ? u : reducer.apply(r, u);
6238     }
6239     result = r;
6240     CountedCompleter<?> c;
6241     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6242     MapReduceMappingsTask<K,V,U>
6243     t = (MapReduceMappingsTask<K,V,U>)c,
6244     s = t.rights;
6245     while (s != null) {
6246     U tr, sr;
6247     if ((sr = s.result) != null)
6248     t.result = (((tr = t.result) == null) ? sr :
6249     reducer.apply(tr, sr));
6250     s = t.rights = s.nextRight;
6251     }
6252 dl 1.52 }
6253 dl 1.71 }
6254 dl 1.52 }
6255     }
6256    
6257 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6258 dl 1.79 extends Traverser<K,V,Double> {
6259 dl 1.52 final ObjectToDouble<? super K> transformer;
6260     final DoubleByDoubleToDouble reducer;
6261     final double basis;
6262     double result;
6263 dl 1.61 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6264 dl 1.52 MapReduceKeysToDoubleTask
6265 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6266 dl 1.61 MapReduceKeysToDoubleTask<K,V> nextRight,
6267 dl 1.52 ObjectToDouble<? super K> transformer,
6268     double basis,
6269     DoubleByDoubleToDouble reducer) {
6270 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6271 dl 1.52 this.transformer = transformer;
6272     this.basis = basis; this.reducer = reducer;
6273     }
6274 dl 1.79 public final Double getRawResult() { return result; }
6275     @SuppressWarnings("unchecked") public final void compute() {
6276 dl 1.82 final ObjectToDouble<? super K> transformer;
6277     final DoubleByDoubleToDouble reducer;
6278     if ((transformer = this.transformer) != null &&
6279     (reducer = this.reducer) != null) {
6280     double r = this.basis;
6281     for (int b; (b = preSplit()) > 0;)
6282     (rights = new MapReduceKeysToDoubleTask<K,V>
6283     (map, this, b, rights, transformer, r, reducer)).fork();
6284     while (advance() != null)
6285     r = reducer.apply(r, transformer.apply((K)nextKey));
6286     result = r;
6287     CountedCompleter<?> c;
6288     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6289     MapReduceKeysToDoubleTask<K,V>
6290     t = (MapReduceKeysToDoubleTask<K,V>)c,
6291     s = t.rights;
6292     while (s != null) {
6293     t.result = reducer.apply(t.result, s.result);
6294     s = t.rights = s.nextRight;
6295     }
6296 dl 1.52 }
6297 dl 1.71 }
6298 dl 1.52 }
6299     }
6300    
6301 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6302 dl 1.79 extends Traverser<K,V,Double> {
6303 dl 1.52 final ObjectToDouble<? super V> transformer;
6304     final DoubleByDoubleToDouble reducer;
6305     final double basis;
6306     double result;
6307 dl 1.61 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6308 dl 1.52 MapReduceValuesToDoubleTask
6309 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6310 dl 1.61 MapReduceValuesToDoubleTask<K,V> nextRight,
6311 dl 1.52 ObjectToDouble<? super V> transformer,
6312     double basis,
6313     DoubleByDoubleToDouble reducer) {
6314 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6315 dl 1.52 this.transformer = transformer;
6316     this.basis = basis; this.reducer = reducer;
6317     }
6318 dl 1.79 public final Double getRawResult() { return result; }
6319     @SuppressWarnings("unchecked") public final void compute() {
6320 dl 1.82 final ObjectToDouble<? super V> transformer;
6321     final DoubleByDoubleToDouble reducer;
6322     if ((transformer = this.transformer) != null &&
6323     (reducer = this.reducer) != null) {
6324     double r = this.basis;
6325     for (int b; (b = preSplit()) > 0;)
6326     (rights = new MapReduceValuesToDoubleTask<K,V>
6327     (map, this, b, rights, transformer, r, reducer)).fork();
6328 dl 1.84 V v;
6329 dl 1.82 while ((v = advance()) != null)
6330 dl 1.84 r = reducer.apply(r, transformer.apply(v));
6331 dl 1.82 result = r;
6332     CountedCompleter<?> c;
6333     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6334     MapReduceValuesToDoubleTask<K,V>
6335     t = (MapReduceValuesToDoubleTask<K,V>)c,
6336     s = t.rights;
6337     while (s != null) {
6338     t.result = reducer.apply(t.result, s.result);
6339     s = t.rights = s.nextRight;
6340     }
6341 dl 1.52 }
6342 dl 1.71 }
6343 dl 1.52 }
6344     }
6345    
6346 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6347 dl 1.79 extends Traverser<K,V,Double> {
6348 dl 1.52 final ObjectToDouble<Map.Entry<K,V>> transformer;
6349     final DoubleByDoubleToDouble reducer;
6350     final double basis;
6351     double result;
6352 dl 1.61 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6353 dl 1.52 MapReduceEntriesToDoubleTask
6354 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6355 dl 1.61 MapReduceEntriesToDoubleTask<K,V> nextRight,
6356 dl 1.52 ObjectToDouble<Map.Entry<K,V>> transformer,
6357     double basis,
6358     DoubleByDoubleToDouble reducer) {
6359 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6360 dl 1.52 this.transformer = transformer;
6361     this.basis = basis; this.reducer = reducer;
6362     }
6363 dl 1.79 public final Double getRawResult() { return result; }
6364     @SuppressWarnings("unchecked") public final void compute() {
6365 dl 1.82 final ObjectToDouble<Map.Entry<K,V>> transformer;
6366     final DoubleByDoubleToDouble reducer;
6367     if ((transformer = this.transformer) != null &&
6368     (reducer = this.reducer) != null) {
6369     double r = this.basis;
6370     for (int b; (b = preSplit()) > 0;)
6371     (rights = new MapReduceEntriesToDoubleTask<K,V>
6372     (map, this, b, rights, transformer, r, reducer)).fork();
6373 dl 1.84 V v;
6374 dl 1.82 while ((v = advance()) != null)
6375     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6376 dl 1.84 v)));
6377 dl 1.82 result = r;
6378     CountedCompleter<?> c;
6379     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6380     MapReduceEntriesToDoubleTask<K,V>
6381     t = (MapReduceEntriesToDoubleTask<K,V>)c,
6382     s = t.rights;
6383     while (s != null) {
6384     t.result = reducer.apply(t.result, s.result);
6385     s = t.rights = s.nextRight;
6386     }
6387 dl 1.52 }
6388 dl 1.71 }
6389 dl 1.52 }
6390     }
6391    
6392 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6393 dl 1.79 extends Traverser<K,V,Double> {
6394 dl 1.52 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6395     final DoubleByDoubleToDouble reducer;
6396     final double basis;
6397     double result;
6398 dl 1.61 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6399 dl 1.52 MapReduceMappingsToDoubleTask
6400 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6401 dl 1.61 MapReduceMappingsToDoubleTask<K,V> nextRight,
6402 dl 1.52 ObjectByObjectToDouble<? super K, ? super V> transformer,
6403     double basis,
6404     DoubleByDoubleToDouble reducer) {
6405 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6406 dl 1.52 this.transformer = transformer;
6407     this.basis = basis; this.reducer = reducer;
6408     }
6409 dl 1.79 public final Double getRawResult() { return result; }
6410     @SuppressWarnings("unchecked") public final void compute() {
6411 dl 1.82 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6412     final DoubleByDoubleToDouble reducer;
6413     if ((transformer = this.transformer) != null &&
6414     (reducer = this.reducer) != null) {
6415     double r = this.basis;
6416     for (int b; (b = preSplit()) > 0;)
6417     (rights = new MapReduceMappingsToDoubleTask<K,V>
6418     (map, this, b, rights, transformer, r, reducer)).fork();
6419 dl 1.84 V v;
6420 dl 1.82 while ((v = advance()) != null)
6421 dl 1.84 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6422 dl 1.82 result = r;
6423     CountedCompleter<?> c;
6424     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6425     MapReduceMappingsToDoubleTask<K,V>
6426     t = (MapReduceMappingsToDoubleTask<K,V>)c,
6427     s = t.rights;
6428     while (s != null) {
6429     t.result = reducer.apply(t.result, s.result);
6430     s = t.rights = s.nextRight;
6431     }
6432 dl 1.52 }
6433 dl 1.71 }
6434 dl 1.52 }
6435     }
6436    
6437 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6438 dl 1.79 extends Traverser<K,V,Long> {
6439 dl 1.52 final ObjectToLong<? super K> transformer;
6440     final LongByLongToLong reducer;
6441     final long basis;
6442     long result;
6443 dl 1.61 MapReduceKeysToLongTask<K,V> rights, nextRight;
6444 dl 1.52 MapReduceKeysToLongTask
6445 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6446 dl 1.61 MapReduceKeysToLongTask<K,V> nextRight,
6447 dl 1.52 ObjectToLong<? super K> transformer,
6448     long basis,
6449     LongByLongToLong reducer) {
6450 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6451 dl 1.52 this.transformer = transformer;
6452     this.basis = basis; this.reducer = reducer;
6453     }
6454 dl 1.79 public final Long getRawResult() { return result; }
6455     @SuppressWarnings("unchecked") public final void compute() {
6456 dl 1.82 final ObjectToLong<? super K> transformer;
6457     final LongByLongToLong reducer;
6458     if ((transformer = this.transformer) != null &&
6459     (reducer = this.reducer) != null) {
6460     long r = this.basis;
6461     for (int b; (b = preSplit()) > 0;)
6462     (rights = new MapReduceKeysToLongTask<K,V>
6463     (map, this, b, rights, transformer, r, reducer)).fork();
6464     while (advance() != null)
6465     r = reducer.apply(r, transformer.apply((K)nextKey));
6466     result = r;
6467     CountedCompleter<?> c;
6468     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6469     MapReduceKeysToLongTask<K,V>
6470     t = (MapReduceKeysToLongTask<K,V>)c,
6471     s = t.rights;
6472     while (s != null) {
6473     t.result = reducer.apply(t.result, s.result);
6474     s = t.rights = s.nextRight;
6475     }
6476 dl 1.52 }
6477 dl 1.71 }
6478 dl 1.52 }
6479     }
6480    
6481 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6482 dl 1.79 extends Traverser<K,V,Long> {
6483 dl 1.52 final ObjectToLong<? super V> transformer;
6484     final LongByLongToLong reducer;
6485     final long basis;
6486     long result;
6487 dl 1.61 MapReduceValuesToLongTask<K,V> rights, nextRight;
6488 dl 1.52 MapReduceValuesToLongTask
6489 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6490 dl 1.61 MapReduceValuesToLongTask<K,V> nextRight,
6491 dl 1.52 ObjectToLong<? super V> transformer,
6492     long basis,
6493     LongByLongToLong reducer) {
6494 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6495 dl 1.52 this.transformer = transformer;
6496     this.basis = basis; this.reducer = reducer;
6497     }
6498 dl 1.79 public final Long getRawResult() { return result; }
6499     @SuppressWarnings("unchecked") public final void compute() {
6500 dl 1.82 final ObjectToLong<? super V> transformer;
6501     final LongByLongToLong reducer;
6502     if ((transformer = this.transformer) != null &&
6503     (reducer = this.reducer) != null) {
6504     long r = this.basis;
6505     for (int b; (b = preSplit()) > 0;)
6506     (rights = new MapReduceValuesToLongTask<K,V>
6507     (map, this, b, rights, transformer, r, reducer)).fork();
6508 dl 1.84 V v;
6509 dl 1.82 while ((v = advance()) != null)
6510 dl 1.84 r = reducer.apply(r, transformer.apply(v));
6511 dl 1.82 result = r;
6512     CountedCompleter<?> c;
6513     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6514     MapReduceValuesToLongTask<K,V>
6515     t = (MapReduceValuesToLongTask<K,V>)c,
6516     s = t.rights;
6517     while (s != null) {
6518     t.result = reducer.apply(t.result, s.result);
6519     s = t.rights = s.nextRight;
6520     }
6521 dl 1.52 }
6522 dl 1.71 }
6523 dl 1.52 }
6524     }
6525    
6526 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6527 dl 1.79 extends Traverser<K,V,Long> {
6528 dl 1.52 final ObjectToLong<Map.Entry<K,V>> transformer;
6529     final LongByLongToLong reducer;
6530     final long basis;
6531     long result;
6532 dl 1.61 MapReduceEntriesToLongTask<K,V> rights, nextRight;
6533 dl 1.52 MapReduceEntriesToLongTask
6534 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6535 dl 1.61 MapReduceEntriesToLongTask<K,V> nextRight,
6536 dl 1.52 ObjectToLong<Map.Entry<K,V>> transformer,
6537     long basis,
6538     LongByLongToLong reducer) {
6539 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6540 dl 1.52 this.transformer = transformer;
6541     this.basis = basis; this.reducer = reducer;
6542     }
6543 dl 1.79 public final Long getRawResult() { return result; }
6544     @SuppressWarnings("unchecked") public final void compute() {
6545 dl 1.82 final ObjectToLong<Map.Entry<K,V>> transformer;
6546     final LongByLongToLong reducer;
6547     if ((transformer = this.transformer) != null &&
6548     (reducer = this.reducer) != null) {
6549     long r = this.basis;
6550     for (int b; (b = preSplit()) > 0;)
6551     (rights = new MapReduceEntriesToLongTask<K,V>
6552     (map, this, b, rights, transformer, r, reducer)).fork();
6553 dl 1.84 V v;
6554 dl 1.82 while ((v = advance()) != null)
6555     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6556 dl 1.84 v)));
6557 dl 1.82 result = r;
6558     CountedCompleter<?> c;
6559     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6560     MapReduceEntriesToLongTask<K,V>
6561     t = (MapReduceEntriesToLongTask<K,V>)c,
6562     s = t.rights;
6563     while (s != null) {
6564     t.result = reducer.apply(t.result, s.result);
6565     s = t.rights = s.nextRight;
6566     }
6567 dl 1.52 }
6568     }
6569     }
6570     }
6571    
6572 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6573 dl 1.79 extends Traverser<K,V,Long> {
6574 dl 1.52 final ObjectByObjectToLong<? super K, ? super V> transformer;
6575     final LongByLongToLong reducer;
6576     final long basis;
6577     long result;
6578 dl 1.61 MapReduceMappingsToLongTask<K,V> rights, nextRight;
6579 dl 1.52 MapReduceMappingsToLongTask
6580 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6581 dl 1.61 MapReduceMappingsToLongTask<K,V> nextRight,
6582 dl 1.52 ObjectByObjectToLong<? super K, ? super V> transformer,
6583     long basis,
6584     LongByLongToLong reducer) {
6585 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6586 dl 1.52 this.transformer = transformer;
6587     this.basis = basis; this.reducer = reducer;
6588     }
6589 dl 1.79 public final Long getRawResult() { return result; }
6590     @SuppressWarnings("unchecked") public final void compute() {
6591 dl 1.82 final ObjectByObjectToLong<? super K, ? super V> transformer;
6592     final LongByLongToLong reducer;
6593     if ((transformer = this.transformer) != null &&
6594     (reducer = this.reducer) != null) {
6595     long r = this.basis;
6596     for (int b; (b = preSplit()) > 0;)
6597     (rights = new MapReduceMappingsToLongTask<K,V>
6598     (map, this, b, rights, transformer, r, reducer)).fork();
6599 dl 1.84 V v;
6600 dl 1.82 while ((v = advance()) != null)
6601 dl 1.84 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6602 dl 1.82 result = r;
6603     CountedCompleter<?> c;
6604     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6605     MapReduceMappingsToLongTask<K,V>
6606     t = (MapReduceMappingsToLongTask<K,V>)c,
6607     s = t.rights;
6608     while (s != null) {
6609     t.result = reducer.apply(t.result, s.result);
6610     s = t.rights = s.nextRight;
6611     }
6612 dl 1.52 }
6613 dl 1.71 }
6614 dl 1.52 }
6615     }
6616    
6617 dl 1.61 @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6618 dl 1.79 extends Traverser<K,V,Integer> {
6619 dl 1.52 final ObjectToInt<? super K> transformer;
6620     final IntByIntToInt reducer;
6621     final int basis;
6622     int result;
6623 dl 1.61 MapReduceKeysToIntTask<K,V> rights, nextRight;
6624 dl 1.52 MapReduceKeysToIntTask
6625 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6626 dl 1.61 MapReduceKeysToIntTask<K,V> nextRight,
6627 dl 1.52 ObjectToInt<? super K> transformer,
6628     int basis,
6629     IntByIntToInt reducer) {
6630 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6631 dl 1.52 this.transformer = transformer;
6632     this.basis = basis; this.reducer = reducer;
6633     }
6634 dl 1.79 public final Integer getRawResult() { return result; }
6635     @SuppressWarnings("unchecked") public final void compute() {
6636 dl 1.82 final ObjectToInt<? super K> transformer;
6637     final IntByIntToInt reducer;
6638     if ((transformer = this.transformer) != null &&
6639     (reducer = this.reducer) != null) {
6640     int r = this.basis;
6641     for (int b; (b = preSplit()) > 0;)
6642     (rights = new MapReduceKeysToIntTask<K,V>
6643     (map, this, b, rights, transformer, r, reducer)).fork();
6644     while (advance() != null)
6645     r = reducer.apply(r, transformer.apply((K)nextKey));
6646     result = r;
6647     CountedCompleter<?> c;
6648     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6649     MapReduceKeysToIntTask<K,V>
6650     t = (MapReduceKeysToIntTask<K,V>)c,
6651     s = t.rights;
6652     while (s != null) {
6653     t.result = reducer.apply(t.result, s.result);
6654     s = t.rights = s.nextRight;
6655     }
6656 dl 1.52 }
6657 dl 1.71 }
6658 dl 1.52 }
6659     }
6660    
6661 dl 1.61 @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6662 dl 1.79 extends Traverser<K,V,Integer> {
6663 dl 1.52 final ObjectToInt<? super V> transformer;
6664     final IntByIntToInt reducer;
6665     final int basis;
6666     int result;
6667 dl 1.61 MapReduceValuesToIntTask<K,V> rights, nextRight;
6668 dl 1.52 MapReduceValuesToIntTask
6669 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6670 dl 1.61 MapReduceValuesToIntTask<K,V> nextRight,
6671 dl 1.52 ObjectToInt<? super V> transformer,
6672     int basis,
6673     IntByIntToInt reducer) {
6674 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6675 dl 1.52 this.transformer = transformer;
6676     this.basis = basis; this.reducer = reducer;
6677     }
6678 dl 1.79 public final Integer getRawResult() { return result; }
6679     @SuppressWarnings("unchecked") public final void compute() {
6680 dl 1.82 final ObjectToInt<? super V> transformer;
6681     final IntByIntToInt reducer;
6682     if ((transformer = this.transformer) != null &&
6683     (reducer = this.reducer) != null) {
6684     int r = this.basis;
6685     for (int b; (b = preSplit()) > 0;)
6686     (rights = new MapReduceValuesToIntTask<K,V>
6687     (map, this, b, rights, transformer, r, reducer)).fork();
6688 dl 1.84 V v;
6689 dl 1.82 while ((v = advance()) != null)
6690 dl 1.84 r = reducer.apply(r, transformer.apply(v));
6691 dl 1.82 result = r;
6692     CountedCompleter<?> c;
6693     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6694     MapReduceValuesToIntTask<K,V>
6695     t = (MapReduceValuesToIntTask<K,V>)c,
6696     s = t.rights;
6697     while (s != null) {
6698     t.result = reducer.apply(t.result, s.result);
6699     s = t.rights = s.nextRight;
6700     }
6701 dl 1.52 }
6702 dl 1.71 }
6703 dl 1.52 }
6704     }
6705    
6706 dl 1.61 @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6707 dl 1.79 extends Traverser<K,V,Integer> {
6708 dl 1.52 final ObjectToInt<Map.Entry<K,V>> transformer;
6709     final IntByIntToInt reducer;
6710     final int basis;
6711     int result;
6712 dl 1.61 MapReduceEntriesToIntTask<K,V> rights, nextRight;
6713 dl 1.52 MapReduceEntriesToIntTask
6714 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6715 dl 1.61 MapReduceEntriesToIntTask<K,V> nextRight,
6716 dl 1.52 ObjectToInt<Map.Entry<K,V>> transformer,
6717     int basis,
6718     IntByIntToInt reducer) {
6719 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6720 dl 1.52 this.transformer = transformer;
6721     this.basis = basis; this.reducer = reducer;
6722     }
6723 dl 1.79 public final Integer getRawResult() { return result; }
6724     @SuppressWarnings("unchecked") public final void compute() {
6725 dl 1.82 final ObjectToInt<Map.Entry<K,V>> transformer;
6726     final IntByIntToInt reducer;
6727     if ((transformer = this.transformer) != null &&
6728     (reducer = this.reducer) != null) {
6729     int r = this.basis;
6730     for (int b; (b = preSplit()) > 0;)
6731     (rights = new MapReduceEntriesToIntTask<K,V>
6732     (map, this, b, rights, transformer, r, reducer)).fork();
6733 dl 1.84 V v;
6734 dl 1.82 while ((v = advance()) != null)
6735     r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
6736 dl 1.84 v)));
6737 dl 1.82 result = r;
6738     CountedCompleter<?> c;
6739     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6740     MapReduceEntriesToIntTask<K,V>
6741     t = (MapReduceEntriesToIntTask<K,V>)c,
6742     s = t.rights;
6743     while (s != null) {
6744     t.result = reducer.apply(t.result, s.result);
6745     s = t.rights = s.nextRight;
6746     }
6747 dl 1.52 }
6748     }
6749     }
6750     }
6751    
6752 dl 1.61 @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6753 dl 1.79 extends Traverser<K,V,Integer> {
6754 dl 1.52 final ObjectByObjectToInt<? super K, ? super V> transformer;
6755     final IntByIntToInt reducer;
6756     final int basis;
6757     int result;
6758 dl 1.61 MapReduceMappingsToIntTask<K,V> rights, nextRight;
6759 dl 1.52 MapReduceMappingsToIntTask
6760 dl 1.79 (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6761     MapReduceMappingsToIntTask<K,V> nextRight,
6762 dl 1.52 ObjectByObjectToInt<? super K, ? super V> transformer,
6763     int basis,
6764     IntByIntToInt reducer) {
6765 dl 1.63 super(m, p, b); this.nextRight = nextRight;
6766 dl 1.52 this.transformer = transformer;
6767     this.basis = basis; this.reducer = reducer;
6768     }
6769 dl 1.79 public final Integer getRawResult() { return result; }
6770     @SuppressWarnings("unchecked") public final void compute() {
6771 dl 1.82 final ObjectByObjectToInt<? super K, ? super V> transformer;
6772     final IntByIntToInt reducer;
6773     if ((transformer = this.transformer) != null &&
6774     (reducer = this.reducer) != null) {
6775     int r = this.basis;
6776     for (int b; (b = preSplit()) > 0;)
6777     (rights = new MapReduceMappingsToIntTask<K,V>
6778     (map, this, b, rights, transformer, r, reducer)).fork();
6779 dl 1.84 V v;
6780 dl 1.82 while ((v = advance()) != null)
6781 dl 1.84 r = reducer.apply(r, transformer.apply((K)nextKey, v));
6782 dl 1.82 result = r;
6783     CountedCompleter<?> c;
6784     for (c = firstComplete(); c != null; c = c.nextComplete()) {
6785     MapReduceMappingsToIntTask<K,V>
6786     t = (MapReduceMappingsToIntTask<K,V>)c,
6787     s = t.rights;
6788     while (s != null) {
6789     t.result = reducer.apply(t.result, s.result);
6790     s = t.rights = s.nextRight;
6791     }
6792 dl 1.52 }
6793     }
6794     }
6795     }
6796    
6797     // Unsafe mechanics
6798 dl 1.82 private static final sun.misc.Unsafe U;
6799     private static final long SIZECTL;
6800     private static final long TRANSFERINDEX;
6801     private static final long TRANSFERORIGIN;
6802     private static final long BASECOUNT;
6803     private static final long COUNTERBUSY;
6804     private static final long CELLVALUE;
6805 dl 1.52 private static final long ABASE;
6806     private static final int ASHIFT;
6807    
6808     static {
6809     try {
6810 dl 1.82 U = getUnsafe();
6811 dl 1.52 Class<?> k = ConcurrentHashMapV8.class;
6812 dl 1.82 SIZECTL = U.objectFieldOffset
6813 dl 1.52 (k.getDeclaredField("sizeCtl"));
6814 dl 1.82 TRANSFERINDEX = U.objectFieldOffset
6815     (k.getDeclaredField("transferIndex"));
6816     TRANSFERORIGIN = U.objectFieldOffset
6817     (k.getDeclaredField("transferOrigin"));
6818     BASECOUNT = U.objectFieldOffset
6819     (k.getDeclaredField("baseCount"));
6820     COUNTERBUSY = U.objectFieldOffset
6821     (k.getDeclaredField("counterBusy"));
6822     Class<?> ck = CounterCell.class;
6823     CELLVALUE = U.objectFieldOffset
6824     (ck.getDeclaredField("value"));
6825 dl 1.52 Class<?> sc = Node[].class;
6826 dl 1.82 ABASE = U.arrayBaseOffset(sc);
6827 jsr166 1.89 int scale = U.arrayIndexScale(sc);
6828     if ((scale & (scale - 1)) != 0)
6829     throw new Error("data type scale not a power of two");
6830     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6831 dl 1.52 } catch (Exception e) {
6832     throw new Error(e);
6833     }
6834     }
6835    
6836     /**
6837     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6838     * Replace with a simple call to Unsafe.getUnsafe when integrating
6839     * into a jdk.
6840     *
6841     * @return a sun.misc.Unsafe
6842     */
6843     private static sun.misc.Unsafe getUnsafe() {
6844     try {
6845     return sun.misc.Unsafe.getUnsafe();
6846 jsr166 1.87 } catch (SecurityException tryReflectionInstead) {}
6847     try {
6848     return java.security.AccessController.doPrivileged
6849     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6850     public sun.misc.Unsafe run() throws Exception {
6851     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6852     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6853     f.setAccessible(true);
6854     Object x = f.get(null);
6855     if (k.isInstance(x))
6856     return k.cast(x);
6857     }
6858     throw new NoSuchFieldError("the Unsafe");
6859     }});
6860     } catch (java.security.PrivilegedActionException e) {
6861     throw new RuntimeException("Could not initialize intrinsics",
6862     e.getCause());
6863 dl 1.52 }
6864     }
6865 dl 1.1 }