ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.23 by jsr166, Sun Sep 11 04:25:00 2011 UTC vs.
Revision 1.39 by jsr166, Sat Jun 9 16:54:12 2012 UTC

# Line 4 | Line 4
4   * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7 + // Snapshot Tue Jun  5 14:56:09 2012  Doug Lea  (dl at altair)
8 +
9   package jsr166e;
10   import jsr166e.LongAdder;
11 + import java.util.Arrays;
12   import java.util.Map;
13   import java.util.Set;
14   import java.util.Collection;
# Line 19 | Line 22 | import java.util.Enumeration;
22   import java.util.ConcurrentModificationException;
23   import java.util.NoSuchElementException;
24   import java.util.concurrent.ConcurrentMap;
25 + import java.util.concurrent.ThreadLocalRandom;
26 + import java.util.concurrent.locks.LockSupport;
27 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
28   import java.io.Serializable;
29  
30   /**
# Line 54 | Line 60 | import java.io.Serializable;
60   * <p> The table is dynamically expanded when there are too many
61   * collisions (i.e., keys that have distinct hash codes but fall into
62   * the same slot modulo the table size), with the expected average
63 < * effect of maintaining roughly two bins per mapping. There may be
64 < * much variance around this average as mappings are added and
65 < * removed, but overall, this maintains a commonly accepted time/space
66 < * tradeoff for hash tables.  However, resizing this or any other kind
67 < * of hash table may be a relatively slow operation. When possible, it
68 < * is a good idea to provide a size estimate as an optional {@code
63 > * effect of maintaining roughly two bins per mapping (corresponding
64 > * to a 0.75 load factor threshold for resizing). There may be much
65 > * variance around this average as mappings are added and removed, but
66 > * overall, this maintains a commonly accepted time/space tradeoff for
67 > * hash tables.  However, resizing this or any other kind of hash
68 > * table may be a relatively slow operation. When possible, it is a
69 > * good idea to provide a size estimate as an optional {@code
70   * initialCapacity} constructor argument. An additional optional
71   * {@code loadFactor} constructor argument provides a further means of
72   * customizing initial table capacity by specifying the table density
# Line 68 | Line 75 | import java.io.Serializable;
75   * versions of this class, constructors may optionally specify an
76   * expected {@code concurrencyLevel} as an additional hint for
77   * internal sizing.  Note that using many keys with exactly the same
78 < * {@code hashCode{}} is a sure way to slow down performance of any
78 > * {@code hashCode()} is a sure way to slow down performance of any
79   * hash table.
80   *
81   * <p>This class and its views and iterators implement all of the
# Line 95 | Line 102 | public class ConcurrentHashMapV8<K, V>
102      private static final long serialVersionUID = 7249069246763182397L;
103  
104      /**
105 <     * A function computing a mapping from the given key to a value,
106 <     * or {@code null} if there is no mapping. This is a place-holder
100 <     * for an upcoming JDK8 interface.
105 >     * A function computing a mapping from the given key to a value.
106 >     * This is a place-holder for an upcoming JDK8 interface.
107       */
108      public static interface MappingFunction<K, V> {
109          /**
110 <         * Returns a value for the given key, or null if there is no
105 <         * mapping. If this function throws an (unchecked) exception,
106 <         * the exception is rethrown to its caller, and no mapping is
107 <         * recorded.  Because this function is invoked within
108 <         * atomicity control, the computation should be short and
109 <         * simple. The most common usage is to construct a new object
110 <         * serving as an initial mapped value.
110 >         * Returns a non-null value for the given key.
111           *
112           * @param key the (non-null) key
113 <         * @return a value, or null if none
113 >         * @return a non-null value
114           */
115          V map(K key);
116      }
117  
118 +    /**
119 +     * A function computing a new mapping given a key and its current
120 +     * mapped value (or {@code null} if there is no current
121 +     * mapping). This is a place-holder for an upcoming JDK8
122 +     * interface.
123 +     */
124 +    public static interface RemappingFunction<K, V> {
125 +        /**
126 +         * Returns a new value given a key and its current value.
127 +         *
128 +         * @param key the (non-null) key
129 +         * @param value the current value, or null if there is no mapping
130 +         * @return a non-null value
131 +         */
132 +        V remap(K key, V value);
133 +    }
134 +
135      /*
136       * Overview:
137       *
138       * The primary design goal of this hash table is to maintain
139       * concurrent readability (typically method get(), but also
140       * iterators and related methods) while minimizing update
141 <     * contention.
141 >     * contention. Secondary goals are to keep space consumption about
142 >     * the same or better than java.util.HashMap, and to support high
143 >     * initial insertion rates on an empty table by many threads.
144       *
145       * Each key-value mapping is held in a Node.  Because Node fields
146       * can contain special values, they are defined using plain Object
# Line 129 | Line 148 | public class ConcurrentHashMapV8<K, V>
148       * work off Object types. And similarly, so do the internal
149       * methods of auxiliary iterator and view classes.  All public
150       * generic typed methods relay in/out of these internal methods,
151 <     * supplying null-checks and casts as needed.
151 >     * supplying null-checks and casts as needed. This also allows
152 >     * many of the public methods to be factored into a smaller number
153 >     * of internal methods (although sadly not so for the five
154 >     * variants of put-related operations). The validation-based
155 >     * approach explained below leads to a lot of code sprawl because
156 >     * retry-control precludes factoring into smaller methods.
157       *
158       * The table is lazily initialized to a power-of-two size upon the
159 <     * first insertion.  Each bin in the table contains a list of
160 <     * Nodes (most often, zero or one Node).  Table accesses require
161 <     * volatile/atomic reads, writes, and CASes.  Because there is no
162 <     * other way to arrange this without adding further indirections,
163 <     * we use intrinsics (sun.misc.Unsafe) operations.  The lists of
164 <     * nodes within bins are always accurately traversable under
165 <     * volatile reads, so long as lookups check hash code and
166 <     * non-nullness of value before checking key equality. (All valid
167 <     * hash codes are nonnegative. Negative values are reserved for
168 <     * special forwarding nodes; see below.)
159 >     * first insertion.  Each bin in the table normally contains a
160 >     * list of Nodes (most often, the list has only zero or one Node).
161 >     * Table accesses require volatile/atomic reads, writes, and
162 >     * CASes.  Because there is no other way to arrange this without
163 >     * adding further indirections, we use intrinsics
164 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
165 >     * are always accurately traversable under volatile reads, so long
166 >     * as lookups check hash code and non-nullness of value before
167 >     * checking key equality.
168 >     *
169 >     * We use the top two bits of Node hash fields for control
170 >     * purposes -- they are available anyway because of addressing
171 >     * constraints.  As explained further below, these top bits are
172 >     * used as follows:
173 >     *  00 - Normal
174 >     *  01 - Locked
175 >     *  11 - Locked and may have a thread waiting for lock
176 >     *  10 - Node is a forwarding node
177 >     *
178 >     * The lower 30 bits of each Node's hash field contain a
179 >     * transformation of the key's hash code, except for forwarding
180 >     * nodes, for which the lower bits are zero (and so always have
181 >     * hash field == MOVED).
182       *
183 <     * Insertion (via put or putIfAbsent) of the first node in an
183 >     * Insertion (via put or its variants) of the first node in an
184       * empty bin is performed by just CASing it to the bin.  This is
185 <     * on average by far the most common case for put operations.
186 <     * Other update operations (insert, delete, and replace) require
187 <     * locks.  We do not want to waste the space required to associate
188 <     * a distinct lock object with each bin, so instead use the first
189 <     * node of a bin list itself as a lock, using plain "synchronized"
190 <     * locks. These save space and we can live with block-structured
191 <     * lock/unlock operations. Using the first node of a list as a
192 <     * lock does not by itself suffice though. When a node is locked,
193 <     * any update must first validate that it is still the first node,
194 <     * and retry if not. Because new nodes are always appended to
195 <     * lists, once a node is first in a bin, it remains first until
196 <     * deleted or the bin becomes invalidated.  However, operations
197 <     * that only conditionally update can and sometimes do inspect
198 <     * nodes until the point of update. This is a converse of sorts to
199 <     * the lazy locking technique described by Herlihy & Shavit.
185 >     * by far the most common case for put operations under most
186 >     * key/hash distributions.  Other update operations (insert,
187 >     * delete, and replace) require locks.  We do not want to waste
188 >     * the space required to associate a distinct lock object with
189 >     * each bin, so instead use the first node of a bin list itself as
190 >     * a lock. Blocking support for these locks relies on the builtin
191 >     * "synchronized" monitors.  However, we also need a tryLock
192 >     * construction, so we overlay these by using bits of the Node
193 >     * hash field for lock control (see above), and so normally use
194 >     * builtin monitors only for blocking and signalling using
195 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
196 >     *
197 >     * Using the first node of a list as a lock does not by itself
198 >     * suffice though: When a node is locked, any update must first
199 >     * validate that it is still the first node after locking it, and
200 >     * retry if not. Because new nodes are always appended to lists,
201 >     * once a node is first in a bin, it remains first until deleted
202 >     * or the bin becomes invalidated (upon resizing).  However,
203 >     * operations that only conditionally update may inspect nodes
204 >     * until the point of update. This is a converse of sorts to the
205 >     * lazy locking technique described by Herlihy & Shavit.
206       *
207 <     * The main disadvantage of this approach is that most update
207 >     * The main disadvantage of per-bin locks is that other update
208       * operations on other nodes in a bin list protected by the same
209       * lock can stall, for example when user equals() or mapping
210 <     * functions take a long time.  However, statistically, this is
211 <     * not a common enough problem to outweigh the time/space overhead
212 <     * of alternatives: Under random hash codes, the frequency of
170 <     * nodes in bins follows a Poisson distribution
210 >     * functions take a long time.  However, statistically, under
211 >     * random hash codes, this is not a common problem.  Ideally, the
212 >     * frequency of nodes in bins follows a Poisson distribution
213       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
214       * parameter of about 0.5 on average, given the resizing threshold
215       * of 0.75, although with a large variance because of resizing
216       * granularity. Ignoring variance, the expected occurrences of
217       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
218 <     * first few values are:
218 >     * first values are:
219       *
220 <     * 0:    0.607
221 <     * 1:    0.303
222 <     * 2:    0.076
223 <     * 3:    0.012
224 <     * more: 0.002
220 >     * 0:    0.60653066
221 >     * 1:    0.30326533
222 >     * 2:    0.07581633
223 >     * 3:    0.01263606
224 >     * 4:    0.00157952
225 >     * 5:    0.00015795
226 >     * 6:    0.00001316
227 >     * 7:    0.00000094
228 >     * 8:    0.00000006
229 >     * more: less than 1 in ten million
230       *
231       * Lock contention probability for two threads accessing distinct
232 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
186 <     * performs hashCode randomization that improves the likelihood
187 <     * that these assumptions hold unless users define exactly the
188 <     * same value for too many hashCodes.
189 <     *
190 <     * The table is resized when occupancy exceeds a threshold.  Only
191 <     * a single thread performs the resize (using field "resizing", to
192 <     * arrange exclusion), but the table otherwise remains usable for
193 <     * reads and updates. Resizing proceeds by transferring bins, one
194 <     * by one, from the table to the next table.  Upon transfer, the
195 <     * old table bin contains only a special forwarding node (with
196 <     * negative hash field) that contains the next table as its
197 <     * key. On encountering a forwarding node, access and update
198 <     * operations restart, using the new table. To ensure concurrent
199 <     * readability of traversals, transfers must proceed from the last
200 <     * bin (table.length - 1) up towards the first.  Upon seeing a
201 <     * forwarding node, traversals (see class InternalIterator)
202 <     * arrange to move to the new table for the rest of the traversal
203 <     * without revisiting nodes.  This constrains bin transfers to a
204 <     * particular order, and so can block indefinitely waiting for the
205 <     * next lock, and other threads cannot help with the transfer.
206 <     * However, expected stalls are infrequent enough to not warrant
207 <     * the additional overhead of access and iteration schemes that
208 <     * could admit out-of-order or concurrent bin transfers.
232 >     * elements is roughly 1 / (8 * #elements) under random hashes.
233       *
234 <     * This traversal scheme also applies to partial traversals of
234 >     * Actual hash code distributions encountered in practice
235 >     * sometimes deviate significantly from uniform randomness.  This
236 >     * includes the case when N > (1<<30), so some keys MUST collide.
237 >     * Similarly for dumb or hostile usages in which multiple keys are
238 >     * designed to have identical hash codes. Also, although we guard
239 >     * against the worst effects of this (see method spread), sets of
240 >     * hashes may differ only in bits that do not impact their bin
241 >     * index for a given power-of-two mask.  So we use a secondary
242 >     * strategy that applies when the number of nodes in a bin exceeds
243 >     * a threshold, and at least one of the keys implements
244 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
245 >     * (a specialized form of red-black trees), bounding search time
246 >     * to O(log N).  Each search step in a TreeBin is around twice as
247 >     * slow as in a regular list, but given that N cannot exceed
248 >     * (1<<64) (before running out of addresses) this bounds search
249 >     * steps, lock hold times, etc, to reasonable constants (roughly
250 >     * 100 nodes inspected per operation worst case) so long as keys
251 >     * are Comparable (which is very common -- String, Long, etc).
252 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
253 >     * traversal pointers as regular nodes, so can be traversed in
254 >     * iterators in the same way.
255 >     *
256 >     * The table is resized when occupancy exceeds a percentage
257 >     * threshold (nominally, 0.75, but see below).  Only a single
258 >     * thread performs the resize (using field "sizeCtl", to arrange
259 >     * exclusion), but the table otherwise remains usable for reads
260 >     * and updates. Resizing proceeds by transferring bins, one by
261 >     * one, from the table to the next table.  Because we are using
262 >     * power-of-two expansion, the elements from each bin must either
263 >     * stay at same index, or move with a power of two offset. We
264 >     * eliminate unnecessary node creation by catching cases where old
265 >     * nodes can be reused because their next fields won't change.  On
266 >     * average, only about one-sixth of them need cloning when a table
267 >     * doubles. The nodes they replace will be garbage collectable as
268 >     * soon as they are no longer referenced by any reader thread that
269 >     * may be in the midst of concurrently traversing table.  Upon
270 >     * transfer, the old table bin contains only a special forwarding
271 >     * node (with hash field "MOVED") that contains the next table as
272 >     * its key. On encountering a forwarding node, access and update
273 >     * operations restart, using the new table.
274 >     *
275 >     * Each bin transfer requires its bin lock. However, unlike other
276 >     * cases, a transfer can skip a bin if it fails to acquire its
277 >     * lock, and revisit it later (unless it is a TreeBin). Method
278 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
279 >     * have been skipped because of failure to acquire a lock, and
280 >     * blocks only if none are available (i.e., only very rarely).
281 >     * The transfer operation must also ensure that all accessible
282 >     * bins in both the old and new table are usable by any traversal.
283 >     * When there are no lock acquisition failures, this is arranged
284 >     * simply by proceeding from the last bin (table.length - 1) up
285 >     * towards the first.  Upon seeing a forwarding node, traversals
286 >     * (see class InternalIterator) arrange to move to the new table
287 >     * without revisiting nodes.  However, when any node is skipped
288 >     * during a transfer, all earlier table bins may have become
289 >     * visible, so are initialized with a reverse-forwarding node back
290 >     * to the old table until the new ones are established. (This
291 >     * sometimes requires transiently locking a forwarding node, which
292 >     * is possible under the above encoding.) These more expensive
293 >     * mechanics trigger only when necessary.
294 >     *
295 >     * The traversal scheme also applies to partial traversals of
296       * ranges of bins (via an alternate InternalIterator constructor)
297       * to support partitioned aggregate operations (that are not
298       * otherwise implemented yet).  Also, read-only operations give up
# Line 218 | Line 303 | public class ConcurrentHashMapV8<K, V>
303       * Lazy table initialization minimizes footprint until first use,
304       * and also avoids resizings when the first operation is from a
305       * putAll, constructor with map argument, or deserialization.
306 <     * These cases attempt to override the targetCapacity used in
307 <     * growTable. These harmlessly fail to take effect in cases of
223 <     * races with other ongoing resizings. Uses of the threshold and
224 <     * targetCapacity during attempted initializations or resizings
225 <     * are racy but fall back on checks to preserve correctness.
306 >     * These cases attempt to override the initial capacity settings,
307 >     * but harmlessly fail to take effect in cases of races.
308       *
309       * The element count is maintained using a LongAdder, which avoids
310       * contention on updates but can encounter cache thrashing if read
311       * too frequently during concurrent access. To avoid reading so
312 <     * often, resizing is normally attempted only upon adding to a bin
313 <     * already holding two or more nodes. Under uniform hash
314 <     * distributions, the probability of this occurring at threshold
315 <     * is around 13%, meaning that only about 1 in 8 puts check
316 <     * threshold (and after resizing, many fewer do so). But this
317 <     * approximation has high variance for small table sizes, so we
318 <     * check on any collision for sizes <= 64.  Further, to increase
319 <     * the probability that a resize occurs soon enough, we offset the
320 <     * threshold (see THRESHOLD_OFFSET) by the expected number of puts
321 <     * between checks.
312 >     * often, resizing is attempted either when a bin lock is
313 >     * contended, or upon adding to a bin already holding two or more
314 >     * nodes (checked before adding in the xIfAbsent methods, after
315 >     * adding in others). Under uniform hash distributions, the
316 >     * probability of this occurring at threshold is around 13%,
317 >     * meaning that only about 1 in 8 puts check threshold (and after
318 >     * resizing, many fewer do so). But this approximation has high
319 >     * variance for small table sizes, so we check on any collision
320 >     * for sizes <= 64. The bulk putAll operation further reduces
321 >     * contention by only committing count updates upon these size
322 >     * checks.
323       *
324       * Maintaining API and serialization compatibility with previous
325       * versions of this class introduces several oddities. Mainly: We
326       * leave untouched but unused constructor arguments refering to
327 <     * concurrencyLevel. We also declare an unused "Segment" class
328 <     * that is instantiated in minimal form only when serializing.
327 >     * concurrencyLevel. We accept a loadFactor constructor argument,
328 >     * but apply it only to initial table capacity (which is the only
329 >     * time that we can guarantee to honor it.) We also declare an
330 >     * unused "Segment" class that is instantiated in minimal form
331 >     * only when serializing.
332       */
333  
334      /* ---------------- Constants -------------- */
# Line 250 | Line 336 | public class ConcurrentHashMapV8<K, V>
336      /**
337       * The largest possible table capacity.  This value must be
338       * exactly 1<<30 to stay within Java array allocation and indexing
339 <     * bounds for power of two table sizes.
339 >     * bounds for power of two table sizes, and is further required
340 >     * because the top two bits of 32bit hash fields are used for
341 >     * control purposes.
342       */
343      private static final int MAXIMUM_CAPACITY = 1 << 30;
344  
# Line 261 | Line 349 | public class ConcurrentHashMapV8<K, V>
349      private static final int DEFAULT_CAPACITY = 16;
350  
351      /**
352 <     * The load factor for this table. Overrides of this value in
353 <     * constructors affect only the initial table capacity.  The
266 <     * actual floating point value isn't normally used, because it is
267 <     * simpler to rely on the expression {@code n - (n >>> 2)} for the
268 <     * associated resizing threshold.
352 >     * The largest possible (non-power of two) array size.
353 >     * Needed by toArray and related methods.
354       */
355 <    private static final float LOAD_FACTOR = 0.75f;
355 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
356  
357      /**
358 <     * The count value to offset thresholds to compensate for checking
359 <     * for the need to resize only when inserting into bins with two
275 <     * or more elements. See above for explanation.
358 >     * The default concurrency level for this table. Unused but
359 >     * defined for compatibility with previous versions of this class.
360       */
361 <    private static final int THRESHOLD_OFFSET = 8;
361 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
362  
363      /**
364 <     * The default concurrency level for this table. Unused except as
365 <     * a sizing hint, but defined for compatibility with previous
366 <     * versions of this class.
364 >     * The load factor for this table. Overrides of this value in
365 >     * constructors affect only the initial table capacity.  The
366 >     * actual floating point value isn't normally used -- it is
367 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
368 >     * the associated resizing threshold.
369       */
370 <    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
285 <
286 <    /* ---------------- Nodes -------------- */
370 >    private static final float LOAD_FACTOR = 0.75f;
371  
372      /**
373 <     * Key-value entry. Note that this is never exported out as a
374 <     * user-visible Map.Entry. Nodes with a negative hash field are
375 <     * special, and do not contain user keys or values.  Otherwise,
292 <     * keys are never null, and null val fields indicate that a node
293 <     * is in the process of being deleted or created. For purposes of
294 <     * read-only access, a key may be read before a val, but can only
295 <     * be used after checking val.  (For an update operation, when a
296 <     * lock is held on a node, order doesn't matter.)
373 >     * The buffer size for skipped bins during transfers. The
374 >     * value is arbitrary but should be large enough to avoid
375 >     * most locking stalls during resizes.
376       */
377 <    static final class Node {
299 <        final int hash;
300 <        final Object key;
301 <        volatile Object val;
302 <        volatile Node next;
303 <
304 <        Node(int hash, Object key, Object val, Node next) {
305 <            this.hash = hash;
306 <            this.key = key;
307 <            this.val = val;
308 <            this.next = next;
309 <        }
310 <    }
377 >    private static final int TRANSFER_BUFFER_SIZE = 32;
378  
379      /**
380 <     * Sign bit of node hash value indicating to use table in node.key.
380 >     * The bin count threshold for using a tree rather than list for a
381 >     * bin.  The value reflects the approximate break-even point for
382 >     * using tree-based operations.
383       */
384 <    private static final int SIGN_BIT = 0x80000000;
384 >    private static final int TREE_THRESHOLD = 8;
385 >
386 >    /*
387 >     * Encodings for special uses of Node hash fields. See above for
388 >     * explanation.
389 >     */
390 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
391 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
392 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
393 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
394  
395      /* ---------------- Fields -------------- */
396  
# Line 322 | Line 400 | public class ConcurrentHashMapV8<K, V>
400       */
401      transient volatile Node[] table;
402  
403 <    /** The counter maintaining number of elements. */
403 >    /**
404 >     * The counter maintaining number of elements.
405 >     */
406      private transient final LongAdder counter;
407 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
408 <    private transient volatile int resizing;
409 <    /** The next element count value upon which to resize the table. */
410 <    private transient int threshold;
411 <    /** The target capacity; volatile to cover initialization races. */
412 <    private transient volatile int targetCapacity;
407 >
408 >    /**
409 >     * Table initialization and resizing control.  When negative, the
410 >     * table is being initialized or resized. Otherwise, when table is
411 >     * null, holds the initial table size to use upon creation, or 0
412 >     * for default. After initialization, holds the next element count
413 >     * value upon which to resize the table.
414 >     */
415 >    private transient volatile int sizeCtl;
416  
417      // views
418      private transient KeySet<K,V> keySet;
# Line 365 | Line 448 | public class ConcurrentHashMapV8<K, V>
448          UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
449      }
450  
451 <    /* ----------------Table Initialization and Resizing -------------- */
451 >    /* ---------------- Nodes -------------- */
452  
453      /**
454 <     * Returns a power of two table size for the given desired capacity.
455 <     * See Hackers Delight, sec 3.2
454 >     * Key-value entry. Note that this is never exported out as a
455 >     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
456 >     * below). Nodes with a hash field of MOVED are special, and do
457 >     * not contain user keys or values.  Otherwise, keys are never
458 >     * null, and null val fields indicate that a node is in the
459 >     * process of being deleted or created. For purposes of read-only
460 >     * access, a key may be read before a val, but can only be used
461 >     * after checking val to be non-null.
462       */
463 <    private static final int tableSizeFor(int c) {
464 <        int n = c - 1;
465 <        n |= n >>> 1;
466 <        n |= n >>> 2;
467 <        n |= n >>> 4;
468 <        n |= n >>> 8;
469 <        n |= n >>> 16;
470 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
463 >    static class Node {
464 >        volatile int hash;
465 >        final Object key;
466 >        volatile Object val;
467 >        volatile Node next;
468 >
469 >        Node(int hash, Object key, Object val, Node next) {
470 >            this.hash = hash;
471 >            this.key = key;
472 >            this.val = val;
473 >            this.next = next;
474 >        }
475 >
476 >        /** CompareAndSet the hash field */
477 >        final boolean casHash(int cmp, int val) {
478 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
479 >        }
480 >
481 >        /** The number of spins before blocking for a lock */
482 >        static final int MAX_SPINS =
483 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
484 >
485 >        /**
486 >         * Spins a while if LOCKED bit set and this node is the first
487 >         * of its bin, and then sets WAITING bits on hash field and
488 >         * blocks (once) if they are still set.  It is OK for this
489 >         * method to return even if lock is not available upon exit,
490 >         * which enables these simple single-wait mechanics.
491 >         *
492 >         * The corresponding signalling operation is performed within
493 >         * callers: Upon detecting that WAITING has been set when
494 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
495 >         * state), unlockers acquire the sync lock and perform a
496 >         * notifyAll.
497 >         */
498 >        final void tryAwaitLock(Node[] tab, int i) {
499 >            if (tab != null && i >= 0 && i < tab.length) { // bounds check
500 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
501 >                int spins = MAX_SPINS, h;
502 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
503 >                    if (spins >= 0) {
504 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
505 >                        if (r >= 0 && --spins == 0)
506 >                            Thread.yield();  // yield before block
507 >                    }
508 >                    else if (casHash(h, h | WAITING)) {
509 >                        synchronized (this) {
510 >                            if (tabAt(tab, i) == this &&
511 >                                (hash & WAITING) == WAITING) {
512 >                                try {
513 >                                    wait();
514 >                                } catch (InterruptedException ie) {
515 >                                    Thread.currentThread().interrupt();
516 >                                }
517 >                            }
518 >                            else
519 >                                notifyAll(); // possibly won race vs signaller
520 >                        }
521 >                        break;
522 >                    }
523 >                }
524 >            }
525 >        }
526 >
527 >        // Unsafe mechanics for casHash
528 >        private static final sun.misc.Unsafe UNSAFE;
529 >        private static final long hashOffset;
530 >
531 >        static {
532 >            try {
533 >                UNSAFE = getUnsafe();
534 >                Class<?> k = Node.class;
535 >                hashOffset = UNSAFE.objectFieldOffset
536 >                    (k.getDeclaredField("hash"));
537 >            } catch (Exception e) {
538 >                throw new Error(e);
539 >            }
540 >        }
541      }
542  
543 +    /* ---------------- TreeBins -------------- */
544 +
545      /**
546 <     * If not already resizing, initializes or creates next table and
547 <     * transfers bins. Initial table size uses the capacity recorded
548 <     * in targetCapacity.  Rechecks occupancy after a transfer to see
549 <     * if another resize is already needed because resizings are
550 <     * lagging additions.
551 <     *
552 <     * @return current table
553 <     */
554 <    private final Node[] growTable() {
555 <        if (resizing == 0 &&
556 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
557 <            try {
546 >     * Nodes for use in TreeBins
547 >     */
548 >    static final class TreeNode extends Node {
549 >        TreeNode parent;  // red-black tree links
550 >        TreeNode left;
551 >        TreeNode right;
552 >        TreeNode prev;    // needed to unlink next upon deletion
553 >        boolean red;
554 >
555 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
556 >            super(hash, key, val, next);
557 >            this.parent = parent;
558 >        }
559 >    }
560 >
561 >    /**
562 >     * A specialized form of red-black tree for use in bins
563 >     * whose size exceeds a threshold.
564 >     *
565 >     * TreeBins use a special form of comparison for search and
566 >     * related operations (which is the main reason we cannot use
567 >     * existing collections such as TreeMaps). TreeBins contain
568 >     * Comparable elements, but may contain others, as well as
569 >     * elements that are Comparable but not necessarily Comparable<T>
570 >     * for the same T, so we cannot invoke compareTo among them. To
571 >     * handle this, the tree is ordered primarily by hash value, then
572 >     * by getClass().getName() order, and then by Comparator order
573 >     * among elements of the same class.  On lookup at a node, if
574 >     * non-Comparable, both left and right children may need to be
575 >     * searched in the case of tied hash values. (This corresponds to
576 >     * the full list search that would be necessary if all elements
577 >     * were non-Comparable and had tied hashes.)
578 >     *
579 >     * TreeBins also maintain a separate locking discipline than
580 >     * regular bins. Because they are forwarded via special MOVED
581 >     * nodes at bin heads (which can never change once established),
582 >     * we cannot use use those nodes as locks. Instead, TreeBin
583 >     * extends AbstractQueuedSynchronizer to support a simple form of
584 >     * read-write lock. For update operations and table validation,
585 >     * the exclusive form of lock behaves in the same way as bin-head
586 >     * locks. However, lookups use shared read-lock mechanics to allow
587 >     * multiple readers in the absence of writers.  Additionally,
588 >     * these lookups do not ever block: While the lock is not
589 >     * available, they proceed along the slow traversal path (via
590 >     * next-pointers) until the lock becomes available or the list is
591 >     * exhausted, whichever comes first. (These cases are not fast,
592 >     * but maximize aggregate expected throughput.)  The AQS mechanics
593 >     * for doing this are straightforward.  The lock state is held as
594 >     * AQS getState().  Read counts are negative; the write count (1)
595 >     * is positive.  There are no signalling preferences among readers
596 >     * and writers. Since we don't need to export full Lock API, we
597 >     * just override the minimal AQS methods and use them directly.
598 >     */
599 >    static final class TreeBin extends AbstractQueuedSynchronizer {
600 >        private static final long serialVersionUID = 2249069246763182397L;
601 >        TreeNode root;  // root of tree
602 >        TreeNode first; // head of next-pointer list
603 >
604 >        /* AQS overrides */
605 >        public final boolean isHeldExclusively() { return getState() > 0; }
606 >        public final boolean tryAcquire(int ignore) {
607 >            if (compareAndSetState(0, 1)) {
608 >                setExclusiveOwnerThread(Thread.currentThread());
609 >                return true;
610 >            }
611 >            return false;
612 >        }
613 >        public final boolean tryRelease(int ignore) {
614 >            setExclusiveOwnerThread(null);
615 >            setState(0);
616 >            return true;
617 >        }
618 >        public final int tryAcquireShared(int ignore) {
619 >            for (int c;;) {
620 >                if ((c = getState()) > 0)
621 >                    return -1;
622 >                if (compareAndSetState(c, c -1))
623 >                    return 1;
624 >            }
625 >        }
626 >        public final boolean tryReleaseShared(int ignore) {
627 >            int c;
628 >            do {} while (!compareAndSetState(c = getState(), c + 1));
629 >            return c == -1;
630 >        }
631 >
632 >        /**
633 >         * Return the TreeNode (or null if not found) for the given key
634 >         * starting at given root.
635 >         */
636 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
637 >        final TreeNode getTreeNode(int h, Object k, TreeNode p) {
638 >            Class<?> c = k.getClass();
639 >            while (p != null) {
640 >                int dir, ph;  Object pk; Class<?> pc; TreeNode r;
641 >                if (h < (ph = p.hash))
642 >                    dir = -1;
643 >                else if (h > ph)
644 >                    dir = 1;
645 >                else if ((pk = p.key) == k || k.equals(pk))
646 >                    return p;
647 >                else if (c != (pc = pk.getClass()))
648 >                    dir = c.getName().compareTo(pc.getName());
649 >                else if (k instanceof Comparable)
650 >                    dir = ((Comparable)k).compareTo((Comparable)pk);
651 >                else
652 >                    dir = 0;
653 >                TreeNode pr = p.right;
654 >                if (dir > 0)
655 >                    p = pr;
656 >                else if (dir == 0 && pr != null && h >= pr.hash &&
657 >                         (r = getTreeNode(h, k, pr)) != null)
658 >                    return r;
659 >                else
660 >                    p = p.left;
661 >            }
662 >            return null;
663 >        }
664 >
665 >        /**
666 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
667 >         * read-lock to call getTreeNode, but during failure to get
668 >         * lock, searches along next links.
669 >         */
670 >        final Object getValue(int h, Object k) {
671 >            Node r = null;
672 >            int c = getState(); // Must read lock state first
673 >            for (Node e = first; e != null; e = e.next) {
674 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
675 >                    try {
676 >                        r = getTreeNode(h, k, root);
677 >                    } finally {
678 >                        releaseShared(0);
679 >                    }
680 >                    break;
681 >                }
682 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
683 >                    r = e;
684 >                    break;
685 >                }
686 >                else
687 >                    c = getState();
688 >            }
689 >            return r == null ? null : r.val;
690 >        }
691 >
692 >        /**
693 >         * Find or add a node
694 >         * @return null if added
695 >         */
696 >        @SuppressWarnings("unchecked") // suppress Comparable cast warning
697 >        final TreeNode putTreeNode(int h, Object k, Object v) {
698 >            Class<?> c = k.getClass();
699 >            TreeNode p = root;
700 >            int dir = 0;
701 >            if (p != null) {
702                  for (;;) {
703 <                    Node[] tab = table;
704 <                    int n, c, m;
705 <                    if (tab == null)
706 <                        n = (c = targetCapacity) > 0 ? c : DEFAULT_CAPACITY;
707 <                    else if ((m = tab.length) < MAXIMUM_CAPACITY &&
708 <                             counter.sum() >= (long)threshold)
709 <                        n = m << 1;
703 >                    int ph;  Object pk; Class<?> pc; TreeNode r;
704 >                    if (h < (ph = p.hash))
705 >                        dir = -1;
706 >                    else if (h > ph)
707 >                        dir = 1;
708 >                    else if ((pk = p.key) == k || k.equals(pk))
709 >                        return p;
710 >                    else if (c != (pc = (pk = p.key).getClass()))
711 >                        dir = c.getName().compareTo(pc.getName());
712 >                    else if (k instanceof Comparable)
713 >                        dir = ((Comparable)k).compareTo((Comparable)pk);
714                      else
715 +                        dir = 0;
716 +                    TreeNode pr = p.right, pl;
717 +                    if (dir > 0) {
718 +                        if (pr == null)
719 +                            break;
720 +                        p = pr;
721 +                    }
722 +                    else if (dir == 0 && pr != null && h >= pr.hash &&
723 +                             (r = getTreeNode(h, k, pr)) != null)
724 +                        return r;
725 +                    else if ((pl = p.left) == null)
726                          break;
727 <                    threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
728 <                    Node[] nextTab = new Node[n];
409 <                    if (tab != null)
410 <                        transfer(tab, nextTab,
411 <                                 new Node(SIGN_BIT, nextTab, null, null));
412 <                    table = nextTab;
413 <                    if (tab == null)
414 <                        break;
727 >                    else
728 >                        p = pl;
729                  }
416            } finally {
417                resizing = 0;
730              }
731 +            TreeNode f = first;
732 +            TreeNode r = first = new TreeNode(h, k, v, f, p);
733 +            if (p == null)
734 +                root = r;
735 +            else {
736 +                if (dir <= 0)
737 +                    p.left = r;
738 +                else
739 +                    p.right = r;
740 +                if (f != null)
741 +                    f.prev = r;
742 +                fixAfterInsertion(r);
743 +            }
744 +            return null;
745          }
420        else if (table == null)
421            Thread.yield(); // lost initialization race; just spin
422        return table;
423    }
746  
747 <    /**
748 <     * Reclassifies nodes in each bin to new table.  Because we are
749 <     * using power-of-two expansion, the elements from each bin must
750 <     * either stay at same index, or move with a power of two
751 <     * offset. We eliminate unnecessary node creation by catching
752 <     * cases where old nodes can be reused because their next fields
753 <     * won't change.  Statistically, only about one-sixth of them need
754 <     * cloning when a table doubles. The nodes they replace will be
755 <     * garbage collectable as soon as they are no longer referenced by
756 <     * any reader thread that may be in the midst of concurrently
757 <     * traversing table.
758 <     *
759 <     * Transfers are done from the bottom up to preserve iterator
760 <     * traversability. On each step, the old bin is locked,
761 <     * moved/copied, and then replaced with a forwarding node.
762 <     */
763 <    private static final void transfer(Node[] tab, Node[] nextTab, Node fwd) {
764 <        int n = tab.length;
765 <        Node ignore = nextTab[n + n - 1]; // force bounds check
766 <        for (int i = n - 1; i >= 0; --i) {
767 <            for (Node e;;) {
768 <                if ((e = tabAt(tab, i)) != null) {
769 <                    boolean validated = false;
770 <                    synchronized (e) {
771 <                        if (tabAt(tab, i) == e) {
772 <                            validated = true;
773 <                            Node lo = null, hi = null, lastRun = e;
774 <                            int runBit = e.hash & n;
775 <                            for (Node p = e.next; p != null; p = p.next) {
776 <                                int b = p.hash & n;
777 <                                if (b != runBit) {
778 <                                    runBit = b;
779 <                                    lastRun = p;
780 <                                }
747 >        /**
748 >         * Removes the given node, that must be present before this
749 >         * call.  This is messier than typical red-black deletion code
750 >         * because we cannot swap the contents of an interior node
751 >         * with a leaf successor that is pinned by "next" pointers
752 >         * that are accessible independently of lock. So instead we
753 >         * swap the tree linkages.
754 >         */
755 >        final void deleteTreeNode(TreeNode p) {
756 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
757 >            TreeNode pred = p.prev;
758 >            if (pred == null)
759 >                first = next;
760 >            else
761 >                pred.next = next;
762 >            if (next != null)
763 >                next.prev = pred;
764 >            TreeNode replacement;
765 >            TreeNode pl = p.left;
766 >            TreeNode pr = p.right;
767 >            if (pl != null && pr != null) {
768 >                TreeNode s = pr;
769 >                while (s.left != null) // find successor
770 >                    s = s.left;
771 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
772 >                TreeNode sr = s.right;
773 >                TreeNode pp = p.parent;
774 >                if (s == pr) { // p was s's direct parent
775 >                    p.parent = s;
776 >                    s.right = p;
777 >                }
778 >                else {
779 >                    TreeNode sp = s.parent;
780 >                    if ((p.parent = sp) != null) {
781 >                        if (s == sp.left)
782 >                            sp.left = p;
783 >                        else
784 >                            sp.right = p;
785 >                    }
786 >                    if ((s.right = pr) != null)
787 >                        pr.parent = s;
788 >                }
789 >                p.left = null;
790 >                if ((p.right = sr) != null)
791 >                    sr.parent = p;
792 >                if ((s.left = pl) != null)
793 >                    pl.parent = s;
794 >                if ((s.parent = pp) == null)
795 >                    root = s;
796 >                else if (p == pp.left)
797 >                    pp.left = s;
798 >                else
799 >                    pp.right = s;
800 >                replacement = sr;
801 >            }
802 >            else
803 >                replacement = (pl != null) ? pl : pr;
804 >            TreeNode pp = p.parent;
805 >            if (replacement == null) {
806 >                if (pp == null) {
807 >                    root = null;
808 >                    return;
809 >                }
810 >                replacement = p;
811 >            }
812 >            else {
813 >                replacement.parent = pp;
814 >                if (pp == null)
815 >                    root = replacement;
816 >                else if (p == pp.left)
817 >                    pp.left = replacement;
818 >                else
819 >                    pp.right = replacement;
820 >                p.left = p.right = p.parent = null;
821 >            }
822 >            if (!p.red)
823 >                fixAfterDeletion(replacement);
824 >            if (p == replacement && (pp = p.parent) != null) {
825 >                if (p == pp.left) // detach pointers
826 >                    pp.left = null;
827 >                else if (p == pp.right)
828 >                    pp.right = null;
829 >                p.parent = null;
830 >            }
831 >        }
832 >
833 >        // CLR code updated from pre-jdk-collections version at
834 >        // http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java
835 >
836 >        /** From CLR */
837 >        private void rotateLeft(TreeNode p) {
838 >            if (p != null) {
839 >                TreeNode r = p.right, pp, rl;
840 >                if ((rl = p.right = r.left) != null)
841 >                    rl.parent = p;
842 >                if ((pp = r.parent = p.parent) == null)
843 >                    root = r;
844 >                else if (pp.left == p)
845 >                    pp.left = r;
846 >                else
847 >                    pp.right = r;
848 >                r.left = p;
849 >                p.parent = r;
850 >            }
851 >        }
852 >
853 >        /** From CLR */
854 >        private void rotateRight(TreeNode p) {
855 >            if (p != null) {
856 >                TreeNode l = p.left, pp, lr;
857 >                if ((lr = p.left = l.right) != null)
858 >                    lr.parent = p;
859 >                if ((pp = l.parent = p.parent) == null)
860 >                    root = l;
861 >                else if (pp.right == p)
862 >                    pp.right = l;
863 >                else
864 >                    pp.left = l;
865 >                l.right = p;
866 >                p.parent = l;
867 >            }
868 >        }
869 >
870 >        /** From CLR */
871 >        private void fixAfterInsertion(TreeNode x) {
872 >            x.red = true;
873 >            TreeNode xp, xpp;
874 >            while (x != null && (xp = x.parent) != null && xp.red &&
875 >                   (xpp = xp.parent) != null) {
876 >                TreeNode xppl = xpp.left;
877 >                if (xp == xppl) {
878 >                    TreeNode y = xpp.right;
879 >                    if (y != null && y.red) {
880 >                        y.red = false;
881 >                        xp.red = false;
882 >                        xpp.red = true;
883 >                        x = xpp;
884 >                    }
885 >                    else {
886 >                        if (x == xp.right) {
887 >                            x = xp;
888 >                            rotateLeft(x);
889 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
890 >                        }
891 >                        if (xp != null) {
892 >                            xp.red = false;
893 >                            if (xpp != null) {
894 >                                xpp.red = true;
895 >                                rotateRight(xpp);
896                              }
897 <                            if (runBit == 0)
898 <                                lo = lastRun;
899 <                            else
900 <                                hi = lastRun;
901 <                            for (Node p = e; p != lastRun; p = p.next) {
902 <                                int ph = p.hash;
903 <                                Object pk = p.key, pv = p.val;
904 <                                if ((ph & n) == 0)
905 <                                    lo = new Node(ph, pk, pv, lo);
906 <                                else
907 <                                    hi = new Node(ph, pk, pv, hi);
897 >                        }
898 >                    }
899 >                }
900 >                else {
901 >                    TreeNode y = xppl;
902 >                    if (y != null && y.red) {
903 >                        y.red = false;
904 >                        xp.red = false;
905 >                        xpp.red = true;
906 >                        x = xpp;
907 >                    }
908 >                    else {
909 >                        if (x == xp.left) {
910 >                            x = xp;
911 >                            rotateRight(x);
912 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
913 >                        }
914 >                        if (xp != null) {
915 >                            xp.red = false;
916 >                            if (xpp != null) {
917 >                                xpp.red = true;
918 >                                rotateLeft(xpp);
919                              }
472                            setTabAt(nextTab, i, lo);
473                            setTabAt(nextTab, i + n, hi);
474                            setTabAt(tab, i, fwd);
920                          }
921                      }
477                    if (validated)
478                        break;
922                  }
923 <                else if (casTabAt(tab, i, e, fwd))
923 >            }
924 >            TreeNode r = root;
925 >            if (r != null && r.red)
926 >                r.red = false;
927 >        }
928 >
929 >        /** From CLR */
930 >        private void fixAfterDeletion(TreeNode x) {
931 >            while (x != null) {
932 >                TreeNode xp, xpl;
933 >                if (x.red || (xp = x.parent) == null) {
934 >                    x.red = false;
935                      break;
936 +                }
937 +                if (x == (xpl = xp.left)) {
938 +                    TreeNode sib = xp.right;
939 +                    if (sib != null && sib.red) {
940 +                        sib.red = false;
941 +                        xp.red = true;
942 +                        rotateLeft(xp);
943 +                        sib = (xp = x.parent) == null ? null : xp.right;
944 +                    }
945 +                    if (sib == null)
946 +                        x = xp;
947 +                    else {
948 +                        TreeNode sl = sib.left, sr = sib.right;
949 +                        if ((sr == null || !sr.red) &&
950 +                            (sl == null || !sl.red)) {
951 +                            sib.red = true;
952 +                            x = xp;
953 +                        }
954 +                        else {
955 +                            if (sr == null || !sr.red) {
956 +                                if (sl != null)
957 +                                    sl.red = false;
958 +                                sib.red = true;
959 +                                rotateRight(sib);
960 +                                sib = (xp = x.parent) == null ? null : xp.right;
961 +                            }
962 +                            if (sib != null) {
963 +                                sib.red = (xp == null) ? false : xp.red;
964 +                                if ((sr = sib.right) != null)
965 +                                    sr.red = false;
966 +                            }
967 +                            if (xp != null) {
968 +                                xp.red = false;
969 +                                rotateLeft(xp);
970 +                            }
971 +                            x = root;
972 +                        }
973 +                    }
974 +                }
975 +                else { // symmetric
976 +                    TreeNode sib = xpl;
977 +                    if (sib != null && sib.red) {
978 +                        sib.red = false;
979 +                        xp.red = true;
980 +                        rotateRight(xp);
981 +                        sib = (xp = x.parent) == null ? null : xp.left;
982 +                    }
983 +                    if (sib == null)
984 +                        x = xp;
985 +                    else {
986 +                        TreeNode sl = sib.left, sr = sib.right;
987 +                        if ((sl == null || !sl.red) &&
988 +                            (sr == null || !sr.red)) {
989 +                            sib.red = true;
990 +                            x = xp;
991 +                        }
992 +                        else {
993 +                            if (sl == null || !sl.red) {
994 +                                if (sr != null)
995 +                                    sr.red = false;
996 +                                sib.red = true;
997 +                                rotateLeft(sib);
998 +                                sib = (xp = x.parent) == null ? null : xp.left;
999 +                            }
1000 +                            if (sib != null) {
1001 +                                sib.red = (xp == null) ? false : xp.red;
1002 +                                if ((sl = sib.left) != null)
1003 +                                    sl.red = false;
1004 +                            }
1005 +                            if (xp != null) {
1006 +                                xp.red = false;
1007 +                                rotateRight(xp);
1008 +                            }
1009 +                            x = root;
1010 +                        }
1011 +                    }
1012 +                }
1013              }
1014          }
1015      }
1016  
1017 <    /* ---------------- Internal access and update methods -------------- */
1017 >    /* ---------------- Collision reduction methods -------------- */
1018  
1019      /**
1020 <     * Applies a supplemental hash function to a given hashCode, which
1021 <     * defends against poor quality hash functions.  The result must
1022 <     * be non-negative, and for reasonable performance must have good
1023 <     * avalanche properties; i.e., that each bit of the argument
1024 <     * affects each bit (except sign bit) of the result.
1020 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1021 >     * Because the table uses power-of-two masking, sets of hashes
1022 >     * that vary only in bits above the current mask will always
1023 >     * collide. (Among known examples are sets of Float keys holding
1024 >     * consecutive whole numbers in small tables.)  To counter this,
1025 >     * we apply a transform that spreads the impact of higher bits
1026 >     * downward. There is a tradeoff between speed, utility, and
1027 >     * quality of bit-spreading. Because many common sets of hashes
1028 >     * are already reaonably distributed across bits (so don't benefit
1029 >     * from spreading), and because we use trees to handle large sets
1030 >     * of collisions in bins, we don't need excessively high quality.
1031       */
1032      private static final int spread(int h) {
1033 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1034 <        h ^= h >>> 16;
498 <        h *= 0x85ebca6b;
499 <        h ^= h >>> 13;
500 <        h *= 0xc2b2ae35;
501 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
1033 >        h ^= (h >>> 18) ^ (h >>> 12);
1034 >        return (h ^ (h >>> 10)) & HASH_BITS;
1035      }
1036  
1037 +    /**
1038 +     * Replaces a list bin with a tree bin. Call only when locked.
1039 +     * Fails to replace if the given key is non-comparable or table
1040 +     * is, or needs, resizing.
1041 +     */
1042 +    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1043 +        if ((key instanceof Comparable) &&
1044 +            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1045 +            TreeBin t = new TreeBin();
1046 +            for (Node e = tabAt(tab, index); e != null; e = e.next)
1047 +                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1048 +            setTabAt(tab, index, new Node(MOVED, t, null, null));
1049 +        }
1050 +    }
1051 +
1052 +    /* ---------------- Internal access and update methods -------------- */
1053 +
1054      /** Implementation for get and containsKey */
1055      private final Object internalGet(Object k) {
1056          int h = spread(k.hashCode());
1057          retry: for (Node[] tab = table; tab != null;) {
1058 <            Node e; Object ek, ev; int eh;  // locals to read fields once
1058 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1059              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1060 <                if ((eh = e.hash) == h) {
1061 <                    if ((ev = e.val) != null &&
1062 <                        ((ek = e.key) == k || k.equals(ek)))
1063 <                        return ev;
1064 <                }
1065 <                else if (eh < 0) {          // sign bit set
1066 <                    tab = (Node[])e.key;    // bin was moved during resize
517 <                    continue retry;
1060 >                if ((eh = e.hash) == MOVED) {
1061 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1062 >                        return ((TreeBin)ek).getValue(h, k);
1063 >                    else {                        // restart with new table
1064 >                        tab = (Node[])ek;
1065 >                        continue retry;
1066 >                    }
1067                  }
1068 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1069 +                         ((ek = e.key) == k || k.equals(ek)))
1070 +                    return ev;
1071              }
1072              break;
1073          }
1074          return null;
1075      }
1076  
1077 <    /** Implementation for put and putIfAbsent */
1078 <    private final Object internalPut(Object k, Object v, boolean replace) {
1077 >    /**
1078 >     * Implementation for the four public remove/replace methods:
1079 >     * Replaces node value with v, conditional upon match of cv if
1080 >     * non-null.  If resulting value is null, delete.
1081 >     */
1082 >    private final Object internalReplace(Object k, Object v, Object cv) {
1083          int h = spread(k.hashCode());
1084 <        Object oldVal = null;               // previous value or null if none
1084 >        Object oldVal = null;
1085          for (Node[] tab = table;;) {
1086 <            Node e; int i; Object ek, ev;
1086 >            Node f; int i, fh; Object fk;
1087 >            if (tab == null ||
1088 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1089 >                break;
1090 >            else if ((fh = f.hash) == MOVED) {
1091 >                if ((fk = f.key) instanceof TreeBin) {
1092 >                    TreeBin t = (TreeBin)fk;
1093 >                    boolean validated = false;
1094 >                    boolean deleted = false;
1095 >                    t.acquire(0);
1096 >                    try {
1097 >                        if (tabAt(tab, i) == f) {
1098 >                            validated = true;
1099 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1100 >                            if (p != null) {
1101 >                                Object pv = p.val;
1102 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1103 >                                    oldVal = pv;
1104 >                                    if ((p.val = v) == null) {
1105 >                                        deleted = true;
1106 >                                        t.deleteTreeNode(p);
1107 >                                    }
1108 >                                }
1109 >                            }
1110 >                        }
1111 >                    } finally {
1112 >                        t.release(0);
1113 >                    }
1114 >                    if (validated) {
1115 >                        if (deleted)
1116 >                            counter.add(-1L);
1117 >                        break;
1118 >                    }
1119 >                }
1120 >                else
1121 >                    tab = (Node[])fk;
1122 >            }
1123 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1124 >                break;                          // rules out possible existence
1125 >            else if ((fh & LOCKED) != 0) {
1126 >                checkForResize();               // try resizing if can't get lock
1127 >                f.tryAwaitLock(tab, i);
1128 >            }
1129 >            else if (f.casHash(fh, fh | LOCKED)) {
1130 >                boolean validated = false;
1131 >                boolean deleted = false;
1132 >                try {
1133 >                    if (tabAt(tab, i) == f) {
1134 >                        validated = true;
1135 >                        for (Node e = f, pred = null;;) {
1136 >                            Object ek, ev;
1137 >                            if ((e.hash & HASH_BITS) == h &&
1138 >                                ((ev = e.val) != null) &&
1139 >                                ((ek = e.key) == k || k.equals(ek))) {
1140 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1141 >                                    oldVal = ev;
1142 >                                    if ((e.val = v) == null) {
1143 >                                        deleted = true;
1144 >                                        Node en = e.next;
1145 >                                        if (pred != null)
1146 >                                            pred.next = en;
1147 >                                        else
1148 >                                            setTabAt(tab, i, en);
1149 >                                    }
1150 >                                }
1151 >                                break;
1152 >                            }
1153 >                            pred = e;
1154 >                            if ((e = e.next) == null)
1155 >                                break;
1156 >                        }
1157 >                    }
1158 >                } finally {
1159 >                    if (!f.casHash(fh | LOCKED, fh)) {
1160 >                        f.hash = fh;
1161 >                        synchronized (f) { f.notifyAll(); };
1162 >                    }
1163 >                }
1164 >                if (validated) {
1165 >                    if (deleted)
1166 >                        counter.add(-1L);
1167 >                    break;
1168 >                }
1169 >            }
1170 >        }
1171 >        return oldVal;
1172 >    }
1173 >
1174 >    /*
1175 >     * Internal versions of the five insertion methods, each a
1176 >     * little more complicated than the last. All have
1177 >     * the same basic structure as the first (internalPut):
1178 >     *  1. If table uninitialized, create
1179 >     *  2. If bin empty, try to CAS new node
1180 >     *  3. If bin stale, use new table
1181 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1182 >     *  5. Lock and validate; if valid, scan and add or update
1183 >     *
1184 >     * The others interweave other checks and/or alternative actions:
1185 >     *  * Plain put checks for and performs resize after insertion.
1186 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1187 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1188 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1189 >     *    mechanics to deal with, calls, potential exceptions and null
1190 >     *    returns from function call.
1191 >     *  * compute uses the same function-call mechanics, but without
1192 >     *    the prescans
1193 >     *  * putAll attempts to pre-allocate enough table space
1194 >     *    and more lazily performs count updates and checks.
1195 >     *
1196 >     * Someday when details settle down a bit more, it might be worth
1197 >     * some factoring to reduce sprawl.
1198 >     */
1199 >
1200 >    /** Implementation for put */
1201 >    private final Object internalPut(Object k, Object v) {
1202 >        int h = spread(k.hashCode());
1203 >        int count = 0;
1204 >        for (Node[] tab = table;;) {
1205 >            int i; Node f; int fh; Object fk;
1206              if (tab == null)
1207 <                tab = growTable();
1208 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1207 >                tab = initTable();
1208 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1209                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1210                      break;                   // no lock when adding to empty bin
1211              }
1212 <            else if (e.hash < 0)             // resized -- restart with new table
1213 <                tab = (Node[])e.key;
1214 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1215 <                     ((ek = e.key) == k || k.equals(ek))) {
1216 <                if (tabAt(tab, i) == e) {    // inspect and validate 1st node
1217 <                    oldVal = ev;             // without lock for putIfAbsent
1218 <                    break;
1212 >            else if ((fh = f.hash) == MOVED) {
1213 >                if ((fk = f.key) instanceof TreeBin) {
1214 >                    TreeBin t = (TreeBin)fk;
1215 >                    Object oldVal = null;
1216 >                    t.acquire(0);
1217 >                    try {
1218 >                        if (tabAt(tab, i) == f) {
1219 >                            count = 2;
1220 >                            TreeNode p = t.putTreeNode(h, k, v);
1221 >                            if (p != null) {
1222 >                                oldVal = p.val;
1223 >                                p.val = v;
1224 >                            }
1225 >                        }
1226 >                    } finally {
1227 >                        t.release(0);
1228 >                    }
1229 >                    if (count != 0) {
1230 >                        if (oldVal != null)
1231 >                            return oldVal;
1232 >                        break;
1233 >                    }
1234                  }
1235 +                else
1236 +                    tab = (Node[])fk;
1237              }
1238 <            else {
1239 <                boolean validated = false;
1240 <                boolean checkSize = false;
1241 <                synchronized (e) {           // lock the 1st node of bin list
1242 <                    if (tabAt(tab, i) == e) {
1243 <                        validated = true;    // retry if 1st already deleted
1244 <                        for (Node first = e;;) {
1245 <                            if (e.hash == h &&
1246 <                                ((ek = e.key) == k || k.equals(ek)) &&
1247 <                                (ev = e.val) != null) {
1238 >            else if ((fh & LOCKED) != 0) {
1239 >                checkForResize();
1240 >                f.tryAwaitLock(tab, i);
1241 >            }
1242 >            else if (f.casHash(fh, fh | LOCKED)) {
1243 >                Object oldVal = null;
1244 >                try {                        // needed in case equals() throws
1245 >                    if (tabAt(tab, i) == f) {
1246 >                        count = 1;
1247 >                        for (Node e = f;; ++count) {
1248 >                            Object ek, ev;
1249 >                            if ((e.hash & HASH_BITS) == h &&
1250 >                                (ev = e.val) != null &&
1251 >                                ((ek = e.key) == k || k.equals(ek))) {
1252                                  oldVal = ev;
1253 <                                if (replace)
558 <                                    e.val = v;
1253 >                                e.val = v;
1254                                  break;
1255                              }
1256                              Node last = e;
1257                              if ((e = e.next) == null) {
1258                                  last.next = new Node(h, k, v, null);
1259 <                                if (last != first || tab.length <= 64)
1260 <                                    checkSize = true;
1259 >                                if (count >= TREE_THRESHOLD)
1260 >                                    replaceWithTreeBin(tab, i, k);
1261                                  break;
1262                              }
1263                          }
1264                      }
1265 +                } finally {                  // unlock and signal if needed
1266 +                    if (!f.casHash(fh | LOCKED, fh)) {
1267 +                        f.hash = fh;
1268 +                        synchronized (f) { f.notifyAll(); };
1269 +                    }
1270                  }
1271 <                if (validated) {
1272 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1273 <                        resizing == 0 && counter.sum() >= (long)threshold)
1274 <                        growTable();
1271 >                if (count != 0) {
1272 >                    if (oldVal != null)
1273 >                        return oldVal;
1274 >                    if (tab.length <= 64)
1275 >                        count = 2;
1276                      break;
1277                  }
1278              }
1279          }
1280 <        if (oldVal == null)
1281 <            counter.increment();             // update counter outside of locks
1282 <        return oldVal;
1280 >        counter.add(1L);
1281 >        if (count > 1)
1282 >            checkForResize();
1283 >        return null;
1284      }
1285  
1286 <    /**
1287 <     * Implementation for the four public remove/replace methods:
586 <     * Replaces node value with v, conditional upon match of cv if
587 <     * non-null.  If resulting value is null, delete.
588 <     */
589 <    private final Object internalReplace(Object k, Object v, Object cv) {
1286 >    /** Implementation for putIfAbsent */
1287 >    private final Object internalPutIfAbsent(Object k, Object v) {
1288          int h = spread(k.hashCode());
1289 +        int count = 0;
1290          for (Node[] tab = table;;) {
1291 <            Node e; int i;
1292 <            if (tab == null ||
1293 <                (e = tabAt(tab, i = (tab.length - 1) & h)) == null)
1294 <                return null;
1295 <            else if (e.hash < 0)
1296 <                tab = (Node[])e.key;
1291 >            int i; Node f; int fh; Object fk, fv;
1292 >            if (tab == null)
1293 >                tab = initTable();
1294 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1295 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1296 >                    break;
1297 >            }
1298 >            else if ((fh = f.hash) == MOVED) {
1299 >                if ((fk = f.key) instanceof TreeBin) {
1300 >                    TreeBin t = (TreeBin)fk;
1301 >                    Object oldVal = null;
1302 >                    t.acquire(0);
1303 >                    try {
1304 >                        if (tabAt(tab, i) == f) {
1305 >                            count = 2;
1306 >                            TreeNode p = t.putTreeNode(h, k, v);
1307 >                            if (p != null)
1308 >                                oldVal = p.val;
1309 >                        }
1310 >                    } finally {
1311 >                        t.release(0);
1312 >                    }
1313 >                    if (count != 0) {
1314 >                        if (oldVal != null)
1315 >                            return oldVal;
1316 >                        break;
1317 >                    }
1318 >                }
1319 >                else
1320 >                    tab = (Node[])fk;
1321 >            }
1322 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1323 >                     ((fk = f.key) == k || k.equals(fk)))
1324 >                return fv;
1325              else {
1326 <                Object oldVal = null;
1327 <                boolean validated = false;
1328 <                boolean deleted = false;
1329 <                synchronized (e) {
1330 <                    if (tabAt(tab, i) == e) {
1331 <                        validated = true;
1332 <                        Node pred = null;
1333 <                        do {
1334 <                            Object ek, ev;
1335 <                            if (e.hash == h &&
1336 <                                ((ek = e.key) == k || k.equals(ek)) &&
1337 <                                ((ev = e.val) != null)) {
1338 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1326 >                Node g = f.next;
1327 >                if (g != null) { // at least 2 nodes -- search and maybe resize
1328 >                    for (Node e = g;;) {
1329 >                        Object ek, ev;
1330 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1331 >                            ((ek = e.key) == k || k.equals(ek)))
1332 >                            return ev;
1333 >                        if ((e = e.next) == null) {
1334 >                            checkForResize();
1335 >                            break;
1336 >                        }
1337 >                    }
1338 >                }
1339 >                if (((fh = f.hash) & LOCKED) != 0) {
1340 >                    checkForResize();
1341 >                    f.tryAwaitLock(tab, i);
1342 >                }
1343 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1344 >                    Object oldVal = null;
1345 >                    try {
1346 >                        if (tabAt(tab, i) == f) {
1347 >                            count = 1;
1348 >                            for (Node e = f;; ++count) {
1349 >                                Object ek, ev;
1350 >                                if ((e.hash & HASH_BITS) == h &&
1351 >                                    (ev = e.val) != null &&
1352 >                                    ((ek = e.key) == k || k.equals(ek))) {
1353                                      oldVal = ev;
1354 <                                    if ((e.val = v) == null) {
1355 <                                        deleted = true;
1356 <                                        Node en = e.next;
1357 <                                        if (pred != null)
1358 <                                            pred.next = en;
1359 <                                        else
1360 <                                            setTabAt(tab, i, en);
1361 <                                    }
1354 >                                    break;
1355 >                                }
1356 >                                Node last = e;
1357 >                                if ((e = e.next) == null) {
1358 >                                    last.next = new Node(h, k, v, null);
1359 >                                    if (count >= TREE_THRESHOLD)
1360 >                                        replaceWithTreeBin(tab, i, k);
1361 >                                    break;
1362                                  }
622                                break;
1363                              }
1364 <                        } while ((e = (pred = e).next) != null);
1364 >                        }
1365 >                    } finally {
1366 >                        if (!f.casHash(fh | LOCKED, fh)) {
1367 >                            f.hash = fh;
1368 >                            synchronized (f) { f.notifyAll(); };
1369 >                        }
1370 >                    }
1371 >                    if (count != 0) {
1372 >                        if (oldVal != null)
1373 >                            return oldVal;
1374 >                        if (tab.length <= 64)
1375 >                            count = 2;
1376 >                        break;
1377                      }
1378                  }
1379 <                if (validated) {
1380 <                    if (deleted)
1381 <                        counter.decrement();
1382 <                    return oldVal;
1379 >            }
1380 >        }
1381 >        counter.add(1L);
1382 >        if (count > 1)
1383 >            checkForResize();
1384 >        return null;
1385 >    }
1386 >
1387 >    /** Implementation for computeIfAbsent */
1388 >    private final Object internalComputeIfAbsent(K k,
1389 >                                                 MappingFunction<? super K, ?> mf) {
1390 >        int h = spread(k.hashCode());
1391 >        Object val = null;
1392 >        int count = 0;
1393 >        for (Node[] tab = table;;) {
1394 >            Node f; int i, fh; Object fk, fv;
1395 >            if (tab == null)
1396 >                tab = initTable();
1397 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1398 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1399 >                if (casTabAt(tab, i, null, node)) {
1400 >                    count = 1;
1401 >                    try {
1402 >                        if ((val = mf.map(k)) != null)
1403 >                            node.val = val;
1404 >                    } finally {
1405 >                        if (val == null)
1406 >                            setTabAt(tab, i, null);
1407 >                        if (!node.casHash(fh, h)) {
1408 >                            node.hash = h;
1409 >                            synchronized (node) { node.notifyAll(); };
1410 >                        }
1411 >                    }
1412 >                }
1413 >                if (count != 0)
1414 >                    break;
1415 >            }
1416 >            else if ((fh = f.hash) == MOVED) {
1417 >                if ((fk = f.key) instanceof TreeBin) {
1418 >                    TreeBin t = (TreeBin)fk;
1419 >                    boolean added = false;
1420 >                    t.acquire(0);
1421 >                    try {
1422 >                        if (tabAt(tab, i) == f) {
1423 >                            count = 1;
1424 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1425 >                            if (p != null)
1426 >                                val = p.val;
1427 >                            else if ((val = mf.map(k)) != null) {
1428 >                                added = true;
1429 >                                count = 2;
1430 >                                t.putTreeNode(h, k, val);
1431 >                            }
1432 >                        }
1433 >                    } finally {
1434 >                        t.release(0);
1435 >                    }
1436 >                    if (count != 0) {
1437 >                        if (!added)
1438 >                            return val;
1439 >                        break;
1440 >                    }
1441 >                }
1442 >                else
1443 >                    tab = (Node[])fk;
1444 >            }
1445 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1446 >                     ((fk = f.key) == k || k.equals(fk)))
1447 >                return fv;
1448 >            else {
1449 >                Node g = f.next;
1450 >                if (g != null) {
1451 >                    for (Node e = g;;) {
1452 >                        Object ek, ev;
1453 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1454 >                            ((ek = e.key) == k || k.equals(ek)))
1455 >                            return ev;
1456 >                        if ((e = e.next) == null) {
1457 >                            checkForResize();
1458 >                            break;
1459 >                        }
1460 >                    }
1461 >                }
1462 >                if (((fh = f.hash) & LOCKED) != 0) {
1463 >                    checkForResize();
1464 >                    f.tryAwaitLock(tab, i);
1465 >                }
1466 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1467 >                    boolean added = false;
1468 >                    try {
1469 >                        if (tabAt(tab, i) == f) {
1470 >                            count = 1;
1471 >                            for (Node e = f;; ++count) {
1472 >                                Object ek, ev;
1473 >                                if ((e.hash & HASH_BITS) == h &&
1474 >                                    (ev = e.val) != null &&
1475 >                                    ((ek = e.key) == k || k.equals(ek))) {
1476 >                                    val = ev;
1477 >                                    break;
1478 >                                }
1479 >                                Node last = e;
1480 >                                if ((e = e.next) == null) {
1481 >                                    if ((val = mf.map(k)) != null) {
1482 >                                        added = true;
1483 >                                        last.next = new Node(h, k, val, null);
1484 >                                        if (count >= TREE_THRESHOLD)
1485 >                                            replaceWithTreeBin(tab, i, k);
1486 >                                    }
1487 >                                    break;
1488 >                                }
1489 >                            }
1490 >                        }
1491 >                    } finally {
1492 >                        if (!f.casHash(fh | LOCKED, fh)) {
1493 >                            f.hash = fh;
1494 >                            synchronized (f) { f.notifyAll(); };
1495 >                        }
1496 >                    }
1497 >                    if (count != 0) {
1498 >                        if (!added)
1499 >                            return val;
1500 >                        if (tab.length <= 64)
1501 >                            count = 2;
1502 >                        break;
1503 >                    }
1504                  }
1505              }
1506          }
1507 +        if (val == null)
1508 +            throw new NullPointerException();
1509 +        counter.add(1L);
1510 +        if (count > 1)
1511 +            checkForResize();
1512 +        return val;
1513      }
1514  
1515 <    /** Implementation for computeIfAbsent and compute. Like put, but messier. */
1515 >    /** Implementation for compute */
1516      @SuppressWarnings("unchecked")
1517 <    private final V internalCompute(K k,
1518 <                                    MappingFunction<? super K, ? extends V> f,
640 <                                    boolean replace) {
1517 >    private final Object internalCompute(K k,
1518 >                                         RemappingFunction<? super K, V> mf) {
1519          int h = spread(k.hashCode());
1520 <        V val = null;
1520 >        Object val = null;
1521          boolean added = false;
1522 <        Node[] tab = table;
1523 <        outer:for (;;) {
1524 <            Node e; int i; Object ek, ev;
1522 >        int count = 0;
1523 >        for (Node[] tab = table;;) {
1524 >            Node f; int i, fh; Object fk;
1525              if (tab == null)
1526 <                tab = growTable();
1527 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1528 <                Node node = new Node(h, k, null, null);
1529 <                boolean validated = false;
1530 <                synchronized (node) {  // must lock while computing value
1531 <                    if (casTabAt(tab, i, null, node)) {
1532 <                        validated = true;
1533 <                        try {
1534 <                            val = f.map(k);
1535 <                            if (val != null) {
1536 <                                node.val = val;
1537 <                                added = true;
1538 <                            }
1539 <                        } finally {
1540 <                            if (!added)
1541 <                                setTabAt(tab, i, null);
1526 >                tab = initTable();
1527 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1528 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1529 >                if (casTabAt(tab, i, null, node)) {
1530 >                    try {
1531 >                        count = 1;
1532 >                        if ((val = mf.remap(k, null)) != null) {
1533 >                            node.val = val;
1534 >                            added = true;
1535 >                        }
1536 >                    } finally {
1537 >                        if (!added)
1538 >                            setTabAt(tab, i, null);
1539 >                        if (!node.casHash(fh, h)) {
1540 >                            node.hash = h;
1541 >                            synchronized (node) { node.notifyAll(); };
1542                          }
1543                      }
1544                  }
1545 <                if (validated)
1545 >                if (count != 0)
1546                      break;
1547              }
1548 <            else if (e.hash < 0)
1549 <                tab = (Node[])e.key;
1550 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1551 <                     ((ek = e.key) == k || k.equals(ek))) {
1552 <                if (tabAt(tab, i) == e) {
1553 <                    val = (V)ev;
1554 <                    break;
1548 >            else if ((fh = f.hash) == MOVED) {
1549 >                if ((fk = f.key) instanceof TreeBin) {
1550 >                    TreeBin t = (TreeBin)fk;
1551 >                    t.acquire(0);
1552 >                    try {
1553 >                        if (tabAt(tab, i) == f) {
1554 >                            count = 1;
1555 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1556 >                            Object pv = (p == null) ? null : p.val;
1557 >                            if ((val = mf.remap(k, (V)pv)) != null) {
1558 >                                if (p != null)
1559 >                                    p.val = val;
1560 >                                else {
1561 >                                    count = 2;
1562 >                                    added = true;
1563 >                                    t.putTreeNode(h, k, val);
1564 >                                }
1565 >                            }
1566 >                        }
1567 >                    } finally {
1568 >                        t.release(0);
1569 >                    }
1570 >                    if (count != 0)
1571 >                        break;
1572                  }
1573 +                else
1574 +                    tab = (Node[])fk;
1575              }
1576 <            else if (Thread.holdsLock(e))
1577 <                throw new IllegalStateException("Recursive map computation");
1578 <            else {
1579 <                boolean validated = false;
1580 <                boolean checkSize = false;
1581 <                synchronized (e) {
1582 <                    if (tabAt(tab, i) == e) {
1583 <                        validated = true;
1584 <                        for (Node first = e;;) {
1585 <                            if (e.hash == h &&
1586 <                                ((ek = e.key) == k || k.equals(ek)) &&
1587 <                                ((ev = e.val) != null)) {
1588 <                                Object fv;
1589 <                                if (replace && (fv = f.map(k)) != null)
1590 <                                    ev = e.val = fv;
1591 <                                val = (V)ev;
1576 >            else if ((fh & LOCKED) != 0) {
1577 >                checkForResize();
1578 >                f.tryAwaitLock(tab, i);
1579 >            }
1580 >            else if (f.casHash(fh, fh | LOCKED)) {
1581 >                try {
1582 >                    if (tabAt(tab, i) == f) {
1583 >                        count = 1;
1584 >                        for (Node e = f;; ++count) {
1585 >                            Object ek, ev;
1586 >                            if ((e.hash & HASH_BITS) == h &&
1587 >                                (ev = e.val) != null &&
1588 >                                ((ek = e.key) == k || k.equals(ek))) {
1589 >                                val = mf.remap(k, (V)ev);
1590 >                                if (val != null)
1591 >                                    e.val = val;
1592                                  break;
1593                              }
1594                              Node last = e;
1595                              if ((e = e.next) == null) {
1596 <                                if ((val = f.map(k)) != null) {
1596 >                                if ((val = mf.remap(k, null)) != null) {
1597                                      last.next = new Node(h, k, val, null);
1598                                      added = true;
1599 <                                    if (last != first || tab.length <= 64)
1600 <                                        checkSize = true;
1599 >                                    if (count >= TREE_THRESHOLD)
1600 >                                        replaceWithTreeBin(tab, i, k);
1601                                  }
1602                                  break;
1603                              }
1604                          }
1605                      }
1606 +                } finally {
1607 +                    if (!f.casHash(fh | LOCKED, fh)) {
1608 +                        f.hash = fh;
1609 +                        synchronized (f) { f.notifyAll(); };
1610 +                    }
1611                  }
1612 <                if (validated) {
1613 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1614 <                        resizing == 0 && counter.sum() >= (long)threshold)
713 <                        growTable();
1612 >                if (count != 0) {
1613 >                    if (tab.length <= 64)
1614 >                        count = 2;
1615                      break;
1616                  }
1617              }
1618          }
1619 <        if (added)
1620 <            counter.increment();
1619 >        if (val == null)
1620 >            throw new NullPointerException();
1621 >        if (added) {
1622 >            counter.add(1L);
1623 >            if (count > 1)
1624 >                checkForResize();
1625 >        }
1626          return val;
1627      }
1628  
1629 +    /** Implementation for putAll */
1630 +    private final void internalPutAll(Map<?, ?> m) {
1631 +        tryPresize(m.size());
1632 +        long delta = 0L;     // number of uncommitted additions
1633 +        boolean npe = false; // to throw exception on exit for nulls
1634 +        try {                // to clean up counts on other exceptions
1635 +            for (Map.Entry<?, ?> entry : m.entrySet()) {
1636 +                Object k, v;
1637 +                if (entry == null || (k = entry.getKey()) == null ||
1638 +                    (v = entry.getValue()) == null) {
1639 +                    npe = true;
1640 +                    break;
1641 +                }
1642 +                int h = spread(k.hashCode());
1643 +                for (Node[] tab = table;;) {
1644 +                    int i; Node f; int fh; Object fk;
1645 +                    if (tab == null)
1646 +                        tab = initTable();
1647 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1648 +                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1649 +                            ++delta;
1650 +                            break;
1651 +                        }
1652 +                    }
1653 +                    else if ((fh = f.hash) == MOVED) {
1654 +                        if ((fk = f.key) instanceof TreeBin) {
1655 +                            TreeBin t = (TreeBin)fk;
1656 +                            boolean validated = false;
1657 +                            t.acquire(0);
1658 +                            try {
1659 +                                if (tabAt(tab, i) == f) {
1660 +                                    validated = true;
1661 +                                    TreeNode p = t.getTreeNode(h, k, t.root);
1662 +                                    if (p != null)
1663 +                                        p.val = v;
1664 +                                    else {
1665 +                                        t.putTreeNode(h, k, v);
1666 +                                        ++delta;
1667 +                                    }
1668 +                                }
1669 +                            } finally {
1670 +                                t.release(0);
1671 +                            }
1672 +                            if (validated)
1673 +                                break;
1674 +                        }
1675 +                        else
1676 +                            tab = (Node[])fk;
1677 +                    }
1678 +                    else if ((fh & LOCKED) != 0) {
1679 +                        counter.add(delta);
1680 +                        delta = 0L;
1681 +                        checkForResize();
1682 +                        f.tryAwaitLock(tab, i);
1683 +                    }
1684 +                    else if (f.casHash(fh, fh | LOCKED)) {
1685 +                        int count = 0;
1686 +                        try {
1687 +                            if (tabAt(tab, i) == f) {
1688 +                                count = 1;
1689 +                                for (Node e = f;; ++count) {
1690 +                                    Object ek, ev;
1691 +                                    if ((e.hash & HASH_BITS) == h &&
1692 +                                        (ev = e.val) != null &&
1693 +                                        ((ek = e.key) == k || k.equals(ek))) {
1694 +                                        e.val = v;
1695 +                                        break;
1696 +                                    }
1697 +                                    Node last = e;
1698 +                                    if ((e = e.next) == null) {
1699 +                                        ++delta;
1700 +                                        last.next = new Node(h, k, v, null);
1701 +                                        if (count >= TREE_THRESHOLD)
1702 +                                            replaceWithTreeBin(tab, i, k);
1703 +                                        break;
1704 +                                    }
1705 +                                }
1706 +                            }
1707 +                        } finally {
1708 +                            if (!f.casHash(fh | LOCKED, fh)) {
1709 +                                f.hash = fh;
1710 +                                synchronized (f) { f.notifyAll(); };
1711 +                            }
1712 +                        }
1713 +                        if (count != 0) {
1714 +                            if (count > 1) {
1715 +                                counter.add(delta);
1716 +                                delta = 0L;
1717 +                                checkForResize();
1718 +                            }
1719 +                            break;
1720 +                        }
1721 +                    }
1722 +                }
1723 +            }
1724 +        } finally {
1725 +            if (delta != 0)
1726 +                counter.add(delta);
1727 +        }
1728 +        if (npe)
1729 +            throw new NullPointerException();
1730 +    }
1731 +
1732 +    /* ---------------- Table Initialization and Resizing -------------- */
1733 +
1734 +    /**
1735 +     * Returns a power of two table size for the given desired capacity.
1736 +     * See Hackers Delight, sec 3.2
1737 +     */
1738 +    private static final int tableSizeFor(int c) {
1739 +        int n = c - 1;
1740 +        n |= n >>> 1;
1741 +        n |= n >>> 2;
1742 +        n |= n >>> 4;
1743 +        n |= n >>> 8;
1744 +        n |= n >>> 16;
1745 +        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1746 +    }
1747 +
1748 +    /**
1749 +     * Initializes table, using the size recorded in sizeCtl.
1750 +     */
1751 +    private final Node[] initTable() {
1752 +        Node[] tab; int sc;
1753 +        while ((tab = table) == null) {
1754 +            if ((sc = sizeCtl) < 0)
1755 +                Thread.yield(); // lost initialization race; just spin
1756 +            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1757 +                try {
1758 +                    if ((tab = table) == null) {
1759 +                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1760 +                        tab = table = new Node[n];
1761 +                        sc = n - (n >>> 2);
1762 +                    }
1763 +                } finally {
1764 +                    sizeCtl = sc;
1765 +                }
1766 +                break;
1767 +            }
1768 +        }
1769 +        return tab;
1770 +    }
1771 +
1772 +    /**
1773 +     * If table is too small and not already resizing, creates next
1774 +     * table and transfers bins.  Rechecks occupancy after a transfer
1775 +     * to see if another resize is already needed because resizings
1776 +     * are lagging additions.
1777 +     */
1778 +    private final void checkForResize() {
1779 +        Node[] tab; int n, sc;
1780 +        while ((tab = table) != null &&
1781 +               (n = tab.length) < MAXIMUM_CAPACITY &&
1782 +               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1783 +               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1784 +            try {
1785 +                if (tab == table) {
1786 +                    table = rebuild(tab);
1787 +                    sc = (n << 1) - (n >>> 1);
1788 +                }
1789 +            } finally {
1790 +                sizeCtl = sc;
1791 +            }
1792 +        }
1793 +    }
1794 +
1795 +    /**
1796 +     * Tries to presize table to accommodate the given number of elements.
1797 +     *
1798 +     * @param size number of elements (doesn't need to be perfectly accurate)
1799 +     */
1800 +    private final void tryPresize(int size) {
1801 +        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1802 +            tableSizeFor(size + (size >>> 1) + 1);
1803 +        int sc;
1804 +        while ((sc = sizeCtl) >= 0) {
1805 +            Node[] tab = table; int n;
1806 +            if (tab == null || (n = tab.length) == 0) {
1807 +                n = (sc > c) ? sc : c;
1808 +                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1809 +                    try {
1810 +                        if (table == tab) {
1811 +                            table = new Node[n];
1812 +                            sc = n - (n >>> 2);
1813 +                        }
1814 +                    } finally {
1815 +                        sizeCtl = sc;
1816 +                    }
1817 +                }
1818 +            }
1819 +            else if (c <= sc || n >= MAXIMUM_CAPACITY)
1820 +                break;
1821 +            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1822 +                try {
1823 +                    if (table == tab) {
1824 +                        table = rebuild(tab);
1825 +                        sc = (n << 1) - (n >>> 1);
1826 +                    }
1827 +                } finally {
1828 +                    sizeCtl = sc;
1829 +                }
1830 +            }
1831 +        }
1832 +    }
1833 +
1834 +    /*
1835 +     * Moves and/or copies the nodes in each bin to new table. See
1836 +     * above for explanation.
1837 +     *
1838 +     * @return the new table
1839 +     */
1840 +    private static final Node[] rebuild(Node[] tab) {
1841 +        int n = tab.length;
1842 +        Node[] nextTab = new Node[n << 1];
1843 +        Node fwd = new Node(MOVED, nextTab, null, null);
1844 +        int[] buffer = null;       // holds bins to revisit; null until needed
1845 +        Node rev = null;           // reverse forwarder; null until needed
1846 +        int nbuffered = 0;         // the number of bins in buffer list
1847 +        int bufferIndex = 0;       // buffer index of current buffered bin
1848 +        int bin = n - 1;           // current non-buffered bin or -1 if none
1849 +
1850 +        for (int i = bin;;) {      // start upwards sweep
1851 +            int fh; Node f;
1852 +            if ((f = tabAt(tab, i)) == null) {
1853 +                if (bin >= 0) {    // no lock needed (or available)
1854 +                    if (!casTabAt(tab, i, f, fwd))
1855 +                        continue;
1856 +                }
1857 +                else {             // transiently use a locked forwarding node
1858 +                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
1859 +                    if (!casTabAt(tab, i, f, g))
1860 +                        continue;
1861 +                    setTabAt(nextTab, i, null);
1862 +                    setTabAt(nextTab, i + n, null);
1863 +                    setTabAt(tab, i, fwd);
1864 +                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
1865 +                        g.hash = MOVED;
1866 +                        synchronized (g) { g.notifyAll(); }
1867 +                    }
1868 +                }
1869 +            }
1870 +            else if ((fh = f.hash) == MOVED) {
1871 +                Object fk = f.key;
1872 +                if (fk instanceof TreeBin) {
1873 +                    TreeBin t = (TreeBin)fk;
1874 +                    boolean validated = false;
1875 +                    t.acquire(0);
1876 +                    try {
1877 +                        if (tabAt(tab, i) == f) {
1878 +                            validated = true;
1879 +                            splitTreeBin(nextTab, i, t);
1880 +                            setTabAt(tab, i, fwd);
1881 +                        }
1882 +                    } finally {
1883 +                        t.release(0);
1884 +                    }
1885 +                    if (!validated)
1886 +                        continue;
1887 +                }
1888 +            }
1889 +            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
1890 +                boolean validated = false;
1891 +                try {              // split to lo and hi lists; copying as needed
1892 +                    if (tabAt(tab, i) == f) {
1893 +                        validated = true;
1894 +                        splitBin(nextTab, i, f);
1895 +                        setTabAt(tab, i, fwd);
1896 +                    }
1897 +                } finally {
1898 +                    if (!f.casHash(fh | LOCKED, fh)) {
1899 +                        f.hash = fh;
1900 +                        synchronized (f) { f.notifyAll(); };
1901 +                    }
1902 +                }
1903 +                if (!validated)
1904 +                    continue;
1905 +            }
1906 +            else {
1907 +                if (buffer == null) // initialize buffer for revisits
1908 +                    buffer = new int[TRANSFER_BUFFER_SIZE];
1909 +                if (bin < 0 && bufferIndex > 0) {
1910 +                    int j = buffer[--bufferIndex];
1911 +                    buffer[bufferIndex] = i;
1912 +                    i = j;         // swap with another bin
1913 +                    continue;
1914 +                }
1915 +                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
1916 +                    f.tryAwaitLock(tab, i);
1917 +                    continue;      // no other options -- block
1918 +                }
1919 +                if (rev == null)   // initialize reverse-forwarder
1920 +                    rev = new Node(MOVED, tab, null, null);
1921 +                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
1922 +                    continue;      // recheck before adding to list
1923 +                buffer[nbuffered++] = i;
1924 +                setTabAt(nextTab, i, rev);     // install place-holders
1925 +                setTabAt(nextTab, i + n, rev);
1926 +            }
1927 +
1928 +            if (bin > 0)
1929 +                i = --bin;
1930 +            else if (buffer != null && nbuffered > 0) {
1931 +                bin = -1;
1932 +                i = buffer[bufferIndex = --nbuffered];
1933 +            }
1934 +            else
1935 +                return nextTab;
1936 +        }
1937 +    }
1938 +
1939 +    /**
1940 +     * Split a normal bin with list headed by e into lo and hi parts;
1941 +     * install in given table
1942 +     */
1943 +    private static void splitBin(Node[] nextTab, int i, Node e) {
1944 +        int bit = nextTab.length >>> 1; // bit to split on
1945 +        int runBit = e.hash & bit;
1946 +        Node lastRun = e, lo = null, hi = null;
1947 +        for (Node p = e.next; p != null; p = p.next) {
1948 +            int b = p.hash & bit;
1949 +            if (b != runBit) {
1950 +                runBit = b;
1951 +                lastRun = p;
1952 +            }
1953 +        }
1954 +        if (runBit == 0)
1955 +            lo = lastRun;
1956 +        else
1957 +            hi = lastRun;
1958 +        for (Node p = e; p != lastRun; p = p.next) {
1959 +            int ph = p.hash & HASH_BITS;
1960 +            Object pk = p.key, pv = p.val;
1961 +            if ((ph & bit) == 0)
1962 +                lo = new Node(ph, pk, pv, lo);
1963 +            else
1964 +                hi = new Node(ph, pk, pv, hi);
1965 +        }
1966 +        setTabAt(nextTab, i, lo);
1967 +        setTabAt(nextTab, i + bit, hi);
1968 +    }
1969 +
1970      /**
1971 <     * Implementation for clear. Steps through each bin, removing all nodes.
1971 >     * Split a tree bin into lo and hi parts; install in given table
1972 >     */
1973 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
1974 >        int bit = nextTab.length >>> 1;
1975 >        TreeBin lt = new TreeBin();
1976 >        TreeBin ht = new TreeBin();
1977 >        int lc = 0, hc = 0;
1978 >        for (Node e = t.first; e != null; e = e.next) {
1979 >            int h = e.hash & HASH_BITS;
1980 >            Object k = e.key, v = e.val;
1981 >            if ((h & bit) == 0) {
1982 >                ++lc;
1983 >                lt.putTreeNode(h, k, v);
1984 >            }
1985 >            else {
1986 >                ++hc;
1987 >                ht.putTreeNode(h, k, v);
1988 >            }
1989 >        }
1990 >        Node ln, hn; // throw away trees if too small
1991 >        if (lc <= (TREE_THRESHOLD >>> 1)) {
1992 >            ln = null;
1993 >            for (Node p = lt.first; p != null; p = p.next)
1994 >                ln = new Node(p.hash, p.key, p.val, ln);
1995 >        }
1996 >        else
1997 >            ln = new Node(MOVED, lt, null, null);
1998 >        setTabAt(nextTab, i, ln);
1999 >        if (hc <= (TREE_THRESHOLD >>> 1)) {
2000 >            hn = null;
2001 >            for (Node p = ht.first; p != null; p = p.next)
2002 >                hn = new Node(p.hash, p.key, p.val, hn);
2003 >        }
2004 >        else
2005 >            hn = new Node(MOVED, ht, null, null);
2006 >        setTabAt(nextTab, i + bit, hn);
2007 >    }
2008 >
2009 >    /**
2010 >     * Implementation for clear. Steps through each bin, removing all
2011 >     * nodes.
2012       */
2013      private final void internalClear() {
2014          long delta = 0L; // negative number of deletions
2015          int i = 0;
2016          Node[] tab = table;
2017          while (tab != null && i < tab.length) {
2018 <            Node e = tabAt(tab, i);
2019 <            if (e == null)
2018 >            int fh; Object fk;
2019 >            Node f = tabAt(tab, i);
2020 >            if (f == null)
2021                  ++i;
2022 <            else if (e.hash < 0)
2023 <                tab = (Node[])e.key;
2024 <            else {
2025 <                boolean validated = false;
2026 <                synchronized (e) {
2027 <                    if (tabAt(tab, i) == e) {
2028 <                        validated = true;
2029 <                        Node en;
742 <                        do {
743 <                            en = e.next;
744 <                            if (e.val != null) { // currently always true
745 <                                e.val = null;
2022 >            else if ((fh = f.hash) == MOVED) {
2023 >                if ((fk = f.key) instanceof TreeBin) {
2024 >                    TreeBin t = (TreeBin)fk;
2025 >                    t.acquire(0);
2026 >                    try {
2027 >                        if (tabAt(tab, i) == f) {
2028 >                            for (Node p = t.first; p != null; p = p.next) {
2029 >                                p.val = null;
2030                                  --delta;
2031                              }
2032 <                        } while ((e = en) != null);
2032 >                            t.first = null;
2033 >                            t.root = null;
2034 >                            ++i;
2035 >                        }
2036 >                    } finally {
2037 >                        t.release(0);
2038 >                    }
2039 >                }
2040 >                else
2041 >                    tab = (Node[])fk;
2042 >            }
2043 >            else if ((fh & LOCKED) != 0) {
2044 >                counter.add(delta); // opportunistically update count
2045 >                delta = 0L;
2046 >                f.tryAwaitLock(tab, i);
2047 >            }
2048 >            else if (f.casHash(fh, fh | LOCKED)) {
2049 >                try {
2050 >                    if (tabAt(tab, i) == f) {
2051 >                        for (Node e = f; e != null; e = e.next) {
2052 >                            e.val = null;
2053 >                            --delta;
2054 >                        }
2055                          setTabAt(tab, i, null);
2056 +                        ++i;
2057 +                    }
2058 +                } finally {
2059 +                    if (!f.casHash(fh | LOCKED, fh)) {
2060 +                        f.hash = fh;
2061 +                        synchronized (f) { f.notifyAll(); };
2062                      }
2063                  }
752                if (validated)
753                    ++i;
2064              }
2065          }
2066 <        counter.add(delta);
2066 >        if (delta != 0)
2067 >            counter.add(delta);
2068      }
2069  
2070      /* ----------------Table Traversal -------------- */
# Line 764 | Line 2075 | public class ConcurrentHashMapV8<K, V>
2075       *
2076       * At each step, the iterator snapshots the key ("nextKey") and
2077       * value ("nextVal") of a valid node (i.e., one that, at point of
2078 <     * snapshot, has a nonnull user value). Because val fields can
2078 >     * snapshot, has a non-null user value). Because val fields can
2079       * change (including to null, indicating deletion), field nextVal
2080       * might not be accurate at point of use, but still maintains the
2081       * weak consistency property of holding a value that was once
# Line 777 | Line 2088 | public class ConcurrentHashMapV8<K, V>
2088       * value, or key-value pairs as return values of Iterator.next(),
2089       * and encapsulate the it.next check as hasNext();
2090       *
2091 <     * The iterator visits each valid node that was reachable upon
2092 <     * iterator construction once. It might miss some that were added
2093 <     * to a bin after the bin was visited, which is OK wrt consistency
2094 <     * guarantees. Maintaining this property in the face of possible
2095 <     * ongoing resizes requires a fair amount of bookkeeping state
2096 <     * that is difficult to optimize away amidst volatile accesses.
2097 <     * Even so, traversal maintains reasonable throughput.
2091 >     * The iterator visits once each still-valid node that was
2092 >     * reachable upon iterator construction. It might miss some that
2093 >     * were added to a bin after the bin was visited, which is OK wrt
2094 >     * consistency guarantees. Maintaining this property in the face
2095 >     * of possible ongoing resizes requires a fair amount of
2096 >     * bookkeeping state that is difficult to optimize away amidst
2097 >     * volatile accesses.  Even so, traversal maintains reasonable
2098 >     * throughput.
2099       *
2100       * Normally, iteration proceeds bin-by-bin traversing lists.
2101       * However, if the table has been resized, then all future steps
# Line 821 | Line 2133 | public class ConcurrentHashMapV8<K, V>
2133              this.tab = tab;
2134              baseSize = (tab == null) ? 0 : tab.length;
2135              baseLimit = (hi <= baseSize) ? hi : baseSize;
2136 <            index = baseIndex = lo;
2136 >            index = baseIndex = (lo >= 0) ? lo : 0;
2137              next = null;
2138              advance();
2139          }
# Line 830 | Line 2142 | public class ConcurrentHashMapV8<K, V>
2142          final void advance() {
2143              Node e = last = next;
2144              outer: do {
2145 <                if (e != null)                   // pass used or skipped node
2145 >                if (e != null)                  // advance past used/skipped node
2146                      e = e.next;
2147 <                while (e == null) {              // get to next non-null bin
2148 <                    Node[] t; int b, i, n;       // checks must use locals
2147 >                while (e == null) {             // get to next non-null bin
2148 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2149                      if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2150                          (t = tab) == null || i >= (n = t.length))
2151                          break outer;
2152 <                    else if ((e = tabAt(t, i)) != null && e.hash < 0)
2153 <                        tab = (Node[])e.key;     // restarts due to null val
2154 <                    else                         // visit upper slots if present
2155 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2152 >                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2153 >                        if ((ek = e.key) instanceof TreeBin)
2154 >                            e = ((TreeBin)ek).first;
2155 >                        else {
2156 >                            tab = (Node[])ek;
2157 >                            continue;           // restarts due to null val
2158 >                        }
2159 >                    }                           // visit upper slots if present
2160 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2161                  }
2162                  nextKey = e.key;
2163 <            } while ((nextVal = e.val) == null); // skip deleted or special nodes
2163 >            } while ((nextVal = e.val) == null);// skip deleted or special nodes
2164              next = e;
2165          }
2166      }
# Line 855 | Line 2172 | public class ConcurrentHashMapV8<K, V>
2172       */
2173      public ConcurrentHashMapV8() {
2174          this.counter = new LongAdder();
858        this.targetCapacity = DEFAULT_CAPACITY;
2175      }
2176  
2177      /**
# Line 875 | Line 2191 | public class ConcurrentHashMapV8<K, V>
2191                     MAXIMUM_CAPACITY :
2192                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2193          this.counter = new LongAdder();
2194 <        this.targetCapacity = cap;
2194 >        this.sizeCtl = cap;
2195      }
2196  
2197      /**
# Line 885 | Line 2201 | public class ConcurrentHashMapV8<K, V>
2201       */
2202      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2203          this.counter = new LongAdder();
2204 <        this.targetCapacity = DEFAULT_CAPACITY;
2205 <        putAll(m);
2204 >        this.sizeCtl = DEFAULT_CAPACITY;
2205 >        internalPutAll(m);
2206      }
2207  
2208      /**
# Line 933 | Line 2249 | public class ConcurrentHashMapV8<K, V>
2249          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2250              initialCapacity = concurrencyLevel;   // as estimated threads
2251          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2252 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
2253 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
2252 >        int cap = ((size >= (long)MAXIMUM_CAPACITY) ?
2253 >                   MAXIMUM_CAPACITY: tableSizeFor((int)size));
2254          this.counter = new LongAdder();
2255 <        this.targetCapacity = cap;
2255 >        this.sizeCtl = cap;
2256      }
2257  
2258      /**
# Line 956 | Line 2272 | public class ConcurrentHashMapV8<K, V>
2272                  (int)n);
2273      }
2274  
2275 +    final long longSize() { // accurate version of size needed for views
2276 +        long n = counter.sum();
2277 +        return (n < 0L) ? 0L : n;
2278 +    }
2279 +
2280      /**
2281       * Returns the value to which the specified key is mapped,
2282       * or {@code null} if this map contains no mapping for the key.
# Line 1048 | Line 2369 | public class ConcurrentHashMapV8<K, V>
2369      public V put(K key, V value) {
2370          if (key == null || value == null)
2371              throw new NullPointerException();
2372 <        return (V)internalPut(key, value, true);
2372 >        return (V)internalPut(key, value);
2373      }
2374  
2375      /**
# Line 1062 | Line 2383 | public class ConcurrentHashMapV8<K, V>
2383      public V putIfAbsent(K key, V value) {
2384          if (key == null || value == null)
2385              throw new NullPointerException();
2386 <        return (V)internalPut(key, value, false);
2386 >        return (V)internalPutIfAbsent(key, value);
2387      }
2388  
2389      /**
# Line 1073 | Line 2394 | public class ConcurrentHashMapV8<K, V>
2394       * @param m mappings to be stored in this map
2395       */
2396      public void putAll(Map<? extends K, ? extends V> m) {
2397 <        if (m == null)
1077 <            throw new NullPointerException();
1078 <        /*
1079 <         * If uninitialized, try to adjust targetCapacity to
1080 <         * accommodate the given number of elements.
1081 <         */
1082 <        if (table == null) {
1083 <            int size = m.size();
1084 <            int cap = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1085 <                tableSizeFor(size + (size >>> 1) + 1);
1086 <            if (cap > targetCapacity)
1087 <                targetCapacity = cap;
1088 <        }
1089 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1090 <            put(e.getKey(), e.getValue());
2397 >        internalPutAll(m);
2398      }
2399  
2400      /**
2401       * If the specified key is not already associated with a value,
2402 <     * computes its value using the given mappingFunction, and if
2403 <     * non-null, enters it into the map.  This is equivalent to
2404 <     *  <pre> {@code
2402 >     * computes its value using the given mappingFunction and
2403 >     * enters it into the map.  This is equivalent to
2404 >     * <pre> {@code
2405       * if (map.containsKey(key))
2406       *   return map.get(key);
2407       * value = mappingFunction.map(key);
2408 <     * if (value != null)
1102 <     *   map.put(key, value);
2408 >     * map.put(key, value);
2409       * return value;}</pre>
2410       *
2411 <     * except that the action is performed atomically.  Some attempted
2412 <     * update operations on this map by other threads may be blocked
2413 <     * while computation is in progress, so the computation should be
2414 <     * short and simple, and must not attempt to update any other
2415 <     * mappings of this Map. The most appropriate usage is to
2416 <     * construct a new object serving as an initial mapped value, or
2417 <     * memoized result, as in:
2411 >     * except that the action is performed atomically.  If the
2412 >     * function returns {@code null} (in which case a {@code
2413 >     * NullPointerException} is thrown), or the function itself throws
2414 >     * an (unchecked) exception, the exception is rethrown to its
2415 >     * caller, and no mapping is recorded.  Some attempted update
2416 >     * operations on this map by other threads may be blocked while
2417 >     * computation is in progress, so the computation should be short
2418 >     * and simple, and must not attempt to update any other mappings
2419 >     * of this Map. The most appropriate usage is to construct a new
2420 >     * object serving as an initial mapped value, or memoized result,
2421 >     * as in:
2422 >     *
2423       *  <pre> {@code
2424       * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2425       *   public V map(K k) { return new Value(f(k)); }});}</pre>
# Line 1116 | Line 2427 | public class ConcurrentHashMapV8<K, V>
2427       * @param key key with which the specified value is to be associated
2428       * @param mappingFunction the function to compute a value
2429       * @return the current (existing or computed) value associated with
2430 <     *         the specified key, or {@code null} if the computation
2431 <     *         returned {@code null}
2432 <     * @throws NullPointerException if the specified key or mappingFunction
1122 <     *         is null
2430 >     *         the specified key.
2431 >     * @throws NullPointerException if the specified key, mappingFunction,
2432 >     *         or computed value is null
2433       * @throws IllegalStateException if the computation detectably
2434       *         attempts a recursive update to this map that would
2435       *         otherwise never complete
2436       * @throws RuntimeException or Error if the mappingFunction does so,
2437       *         in which case the mapping is left unestablished
2438       */
2439 +    @SuppressWarnings("unchecked")
2440      public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2441          if (key == null || mappingFunction == null)
2442              throw new NullPointerException();
2443 <        return internalCompute(key, mappingFunction, false);
2443 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2444      }
2445  
2446      /**
2447 <     * Computes the value associated with the given key using the given
2448 <     * mappingFunction, and if non-null, enters it into the map.  This
2449 <     * is equivalent to
2447 >     * Computes and enters a new mapping value given a key and
2448 >     * its current mapped value (or {@code null} if there is no current
2449 >     * mapping). This is equivalent to
2450       *  <pre> {@code
2451 <     * value = mappingFunction.map(key);
2452 <     * if (value != null)
1142 <     *   map.put(key, value);
1143 <     * else
1144 <     *   value = map.get(key);
1145 <     * return value;}</pre>
2451 >     *  map.put(key, remappingFunction.remap(key, map.get(key));
2452 >     * }</pre>
2453       *
2454 <     * except that the action is performed atomically.  Some attempted
2454 >     * except that the action is performed atomically.  If the
2455 >     * function returns {@code null} (in which case a {@code
2456 >     * NullPointerException} is thrown), or the function itself throws
2457 >     * an (unchecked) exception, the exception is rethrown to its
2458 >     * caller, and current mapping is left unchanged.  Some attempted
2459       * update operations on this map by other threads may be blocked
2460       * while computation is in progress, so the computation should be
2461       * short and simple, and must not attempt to update any other
2462 <     * mappings of this Map.
2462 >     * mappings of this Map. For example, to either create or
2463 >     * append new messages to a value mapping:
2464 >     *
2465 >     * <pre> {@code
2466 >     * Map<Key, String> map = ...;
2467 >     * final String msg = ...;
2468 >     * map.compute(key, new RemappingFunction<Key, String>() {
2469 >     *   public String remap(Key k, String v) {
2470 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2471       *
2472       * @param key key with which the specified value is to be associated
2473 <     * @param mappingFunction the function to compute a value
2474 <     * @return the current value associated with
2475 <     *         the specified key, or {@code null} if the computation
2476 <     *         returned {@code null} and the value was not otherwise present
2477 <     * @throws NullPointerException if the specified key or mappingFunction
1159 <     *         is null
2473 >     * @param remappingFunction the function to compute a value
2474 >     * @return the new value associated with
2475 >     *         the specified key.
2476 >     * @throws NullPointerException if the specified key or remappingFunction
2477 >     *         or computed value is null
2478       * @throws IllegalStateException if the computation detectably
2479       *         attempts a recursive update to this map that would
2480       *         otherwise never complete
2481 <     * @throws RuntimeException or Error if the mappingFunction does so,
2481 >     * @throws RuntimeException or Error if the remappingFunction does so,
2482       *         in which case the mapping is unchanged
2483       */
2484 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2485 <        if (key == null || mappingFunction == null)
2484 >    @SuppressWarnings("unchecked")
2485 >    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2486 >        if (key == null || remappingFunction == null)
2487              throw new NullPointerException();
2488 <        return internalCompute(key, mappingFunction, true);
2488 >        return (V)internalCompute(key, remappingFunction);
2489      }
2490  
2491      /**
# Line 1462 | Line 2781 | public class ConcurrentHashMapV8<K, V>
2781              Object k = nextKey;
2782              Object v = nextVal;
2783              advance();
2784 <            return new WriteThroughEntry<K,V>(map, (K)k, (V)v);
2784 >            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
2785 >        }
2786 >    }
2787 >
2788 >    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2789 >        implements Iterator<Map.Entry<K,V>> {
2790 >        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
2791 >
2792 >        @SuppressWarnings("unchecked")
2793 >        public final Map.Entry<K,V> next() {
2794 >            if (next == null)
2795 >                throw new NoSuchElementException();
2796 >            Object k = nextKey;
2797 >            Object v = nextVal;
2798 >            advance();
2799 >            return new SnapshotEntry<K,V>((K)k, (V)v);
2800          }
2801      }
2802  
2803      /**
2804 <     * Custom Entry class used by EntryIterator.next(), that relays
1471 <     * setValue changes to the underlying map.
2804 >     * Base of writeThrough and Snapshot entry classes
2805       */
2806 <    static final class WriteThroughEntry<K,V> implements Map.Entry<K, V> {
1474 <        final ConcurrentHashMapV8<K, V> map;
2806 >    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
2807          final K key; // non-null
2808          V val;       // non-null
2809 <        WriteThroughEntry(ConcurrentHashMapV8<K, V> map, K key, V val) {
1478 <            this.map = map; this.key = key; this.val = val;
1479 <        }
1480 <
2809 >        MapEntry(K key, V val)        { this.key = key; this.val = val; }
2810          public final K getKey()       { return key; }
2811          public final V getValue()     { return val; }
2812          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 1492 | Line 2821 | public class ConcurrentHashMapV8<K, V>
2821                      (v == val || v.equals(val)));
2822          }
2823  
2824 +        public abstract V setValue(V value);
2825 +    }
2826 +
2827 +    /**
2828 +     * Entry used by EntryIterator.next(), that relays setValue
2829 +     * changes to the underlying map.
2830 +     */
2831 +    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2832 +        implements Map.Entry<K, V> {
2833 +        final ConcurrentHashMapV8<K, V> map;
2834 +        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2835 +            super(key, val);
2836 +            this.map = map;
2837 +        }
2838 +
2839          /**
2840           * Sets our entry's value and writes through to the map. The
2841           * value to return is somewhat arbitrary here. Since a
# Line 1510 | Line 2854 | public class ConcurrentHashMapV8<K, V>
2854          }
2855      }
2856  
2857 +    /**
2858 +     * Internal version of entry, that doesn't write though changes
2859 +     */
2860 +    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
2861 +        implements Map.Entry<K, V> {
2862 +        SnapshotEntry(K key, V val) { super(key, val); }
2863 +        public final V setValue(V value) { // only locally update
2864 +            if (value == null) throw new NullPointerException();
2865 +            V v = val;
2866 +            val = value;
2867 +            return v;
2868 +        }
2869 +    }
2870 +
2871      /* ----------------Views -------------- */
2872  
2873 <    /*
2874 <     * These currently just extend java.util.AbstractX classes, but
2875 <     * may need a new custom base to support partitioned traversal.
2873 >    /**
2874 >     * Base class for views. This is done mainly to allow adding
2875 >     * customized parallel traversals (not yet implemented.)
2876       */
2877 <
1520 <    static final class KeySet<K,V> extends AbstractSet<K> {
2877 >    static abstract class MapView<K, V> {
2878          final ConcurrentHashMapV8<K, V> map;
2879 <        KeySet(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1523 <
2879 >        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
2880          public final int size()                 { return map.size(); }
2881          public final boolean isEmpty()          { return map.isEmpty(); }
2882          public final void clear()               { map.clear(); }
2883 +
2884 +        // implementations below rely on concrete classes supplying these
2885 +        abstract Iterator<?> iter();
2886 +        abstract public boolean contains(Object o);
2887 +        abstract public boolean remove(Object o);
2888 +
2889 +        private static final String oomeMsg = "Required array size too large";
2890 +
2891 +        public final Object[] toArray() {
2892 +            long sz = map.longSize();
2893 +            if (sz > (long)(MAX_ARRAY_SIZE))
2894 +                throw new OutOfMemoryError(oomeMsg);
2895 +            int n = (int)sz;
2896 +            Object[] r = new Object[n];
2897 +            int i = 0;
2898 +            Iterator<?> it = iter();
2899 +            while (it.hasNext()) {
2900 +                if (i == n) {
2901 +                    if (n >= MAX_ARRAY_SIZE)
2902 +                        throw new OutOfMemoryError(oomeMsg);
2903 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2904 +                        n = MAX_ARRAY_SIZE;
2905 +                    else
2906 +                        n += (n >>> 1) + 1;
2907 +                    r = Arrays.copyOf(r, n);
2908 +                }
2909 +                r[i++] = it.next();
2910 +            }
2911 +            return (i == n) ? r : Arrays.copyOf(r, i);
2912 +        }
2913 +
2914 +        @SuppressWarnings("unchecked")
2915 +        public final <T> T[] toArray(T[] a) {
2916 +            long sz = map.longSize();
2917 +            if (sz > (long)(MAX_ARRAY_SIZE))
2918 +                throw new OutOfMemoryError(oomeMsg);
2919 +            int m = (int)sz;
2920 +            T[] r = (a.length >= m) ? a :
2921 +                (T[])java.lang.reflect.Array
2922 +                .newInstance(a.getClass().getComponentType(), m);
2923 +            int n = r.length;
2924 +            int i = 0;
2925 +            Iterator<?> it = iter();
2926 +            while (it.hasNext()) {
2927 +                if (i == n) {
2928 +                    if (n >= MAX_ARRAY_SIZE)
2929 +                        throw new OutOfMemoryError(oomeMsg);
2930 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
2931 +                        n = MAX_ARRAY_SIZE;
2932 +                    else
2933 +                        n += (n >>> 1) + 1;
2934 +                    r = Arrays.copyOf(r, n);
2935 +                }
2936 +                r[i++] = (T)it.next();
2937 +            }
2938 +            if (a == r && i < n) {
2939 +                r[i] = null; // null-terminate
2940 +                return r;
2941 +            }
2942 +            return (i == n) ? r : Arrays.copyOf(r, i);
2943 +        }
2944 +
2945 +        public final int hashCode() {
2946 +            int h = 0;
2947 +            for (Iterator<?> it = iter(); it.hasNext();)
2948 +                h += it.next().hashCode();
2949 +            return h;
2950 +        }
2951 +
2952 +        public final String toString() {
2953 +            StringBuilder sb = new StringBuilder();
2954 +            sb.append('[');
2955 +            Iterator<?> it = iter();
2956 +            if (it.hasNext()) {
2957 +                for (;;) {
2958 +                    Object e = it.next();
2959 +                    sb.append(e == this ? "(this Collection)" : e);
2960 +                    if (!it.hasNext())
2961 +                        break;
2962 +                    sb.append(',').append(' ');
2963 +                }
2964 +            }
2965 +            return sb.append(']').toString();
2966 +        }
2967 +
2968 +        public final boolean containsAll(Collection<?> c) {
2969 +            if (c != this) {
2970 +                for (Iterator<?> it = c.iterator(); it.hasNext();) {
2971 +                    Object e = it.next();
2972 +                    if (e == null || !contains(e))
2973 +                        return false;
2974 +                }
2975 +            }
2976 +            return true;
2977 +        }
2978 +
2979 +        public final boolean removeAll(Collection<?> c) {
2980 +            boolean modified = false;
2981 +            for (Iterator<?> it = iter(); it.hasNext();) {
2982 +                if (c.contains(it.next())) {
2983 +                    it.remove();
2984 +                    modified = true;
2985 +                }
2986 +            }
2987 +            return modified;
2988 +        }
2989 +
2990 +        public final boolean retainAll(Collection<?> c) {
2991 +            boolean modified = false;
2992 +            for (Iterator<?> it = iter(); it.hasNext();) {
2993 +                if (!c.contains(it.next())) {
2994 +                    it.remove();
2995 +                    modified = true;
2996 +                }
2997 +            }
2998 +            return modified;
2999 +        }
3000 +
3001 +    }
3002 +
3003 +    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
3004 +        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
3005          public final boolean contains(Object o) { return map.containsKey(o); }
3006          public final boolean remove(Object o)   { return map.remove(o) != null; }
3007 +
3008          public final Iterator<K> iterator() {
3009              return new KeyIterator<K,V>(map);
3010          }
3011 +        final Iterator<?> iter() {
3012 +            return new KeyIterator<K,V>(map);
3013 +        }
3014 +        public final boolean add(K e) {
3015 +            throw new UnsupportedOperationException();
3016 +        }
3017 +        public final boolean addAll(Collection<? extends K> c) {
3018 +            throw new UnsupportedOperationException();
3019 +        }
3020 +        public boolean equals(Object o) {
3021 +            Set<?> c;
3022 +            return ((o instanceof Set) &&
3023 +                    ((c = (Set<?>)o) == this ||
3024 +                     (containsAll(c) && c.containsAll(this))));
3025 +        }
3026      }
3027  
3028 <    static final class Values<K,V> extends AbstractCollection<V> {
3029 <        final ConcurrentHashMapV8<K, V> map;
3030 <        Values(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1537 <
1538 <        public final int size()                 { return map.size(); }
1539 <        public final boolean isEmpty()          { return map.isEmpty(); }
1540 <        public final void clear()               { map.clear(); }
3028 >    static final class Values<K,V> extends MapView<K,V>
3029 >        implements Collection<V> {
3030 >        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
3031          public final boolean contains(Object o) { return map.containsValue(o); }
3032 +
3033 +        public final boolean remove(Object o) {
3034 +            if (o != null) {
3035 +                Iterator<V> it = new ValueIterator<K,V>(map);
3036 +                while (it.hasNext()) {
3037 +                    if (o.equals(it.next())) {
3038 +                        it.remove();
3039 +                        return true;
3040 +                    }
3041 +                }
3042 +            }
3043 +            return false;
3044 +        }
3045          public final Iterator<V> iterator() {
3046              return new ValueIterator<K,V>(map);
3047          }
3048 +        final Iterator<?> iter() {
3049 +            return new ValueIterator<K,V>(map);
3050 +        }
3051 +        public final boolean add(V e) {
3052 +            throw new UnsupportedOperationException();
3053 +        }
3054 +        public final boolean addAll(Collection<? extends V> c) {
3055 +            throw new UnsupportedOperationException();
3056 +        }
3057      }
3058  
3059 <    static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
3060 <        final ConcurrentHashMapV8<K, V> map;
3061 <        EntrySet(ConcurrentHashMapV8<K, V> map) { this.map = map; }
1550 <
1551 <        public final int size()                 { return map.size(); }
1552 <        public final boolean isEmpty()          { return map.isEmpty(); }
1553 <        public final void clear()               { map.clear(); }
1554 <        public final Iterator<Map.Entry<K,V>> iterator() {
1555 <            return new EntryIterator<K,V>(map);
1556 <        }
3059 >    static final class EntrySet<K,V> extends MapView<K,V>
3060 >        implements Set<Map.Entry<K,V>> {
3061 >        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3062  
3063          public final boolean contains(Object o) {
3064              Object k, v, r; Map.Entry<?,?> e;
# Line 1571 | Line 3076 | public class ConcurrentHashMapV8<K, V>
3076                      (v = e.getValue()) != null &&
3077                      map.remove(k, v));
3078          }
3079 +
3080 +        public final Iterator<Map.Entry<K,V>> iterator() {
3081 +            return new EntryIterator<K,V>(map);
3082 +        }
3083 +        final Iterator<?> iter() {
3084 +            return new SnapshotEntryIterator<K,V>(map);
3085 +        }
3086 +        public final boolean add(Entry<K,V> e) {
3087 +            throw new UnsupportedOperationException();
3088 +        }
3089 +        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3090 +            throw new UnsupportedOperationException();
3091 +        }
3092 +        public boolean equals(Object o) {
3093 +            Set<?> c;
3094 +            return ((o instanceof Set) &&
3095 +                    ((c = (Set<?>)o) == this ||
3096 +                     (containsAll(c) && c.containsAll(this))));
3097 +        }
3098      }
3099  
3100      /* ---------------- Serialization Support -------------- */
# Line 1626 | Line 3150 | public class ConcurrentHashMapV8<K, V>
3150          this.segments = null; // unneeded
3151          // initialize transient final field
3152          UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
1629        this.targetCapacity = DEFAULT_CAPACITY;
3153  
3154          // Create all nodes, then place in table once size is known
3155          long size = 0L;
# Line 1635 | Line 3158 | public class ConcurrentHashMapV8<K, V>
3158              K k = (K) s.readObject();
3159              V v = (V) s.readObject();
3160              if (k != null && v != null) {
3161 <                p = new Node(spread(k.hashCode()), k, v, p);
3161 >                int h = spread(k.hashCode());
3162 >                p = new Node(h, k, v, p);
3163                  ++size;
3164              }
3165              else
# Line 1643 | Line 3167 | public class ConcurrentHashMapV8<K, V>
3167          }
3168          if (p != null) {
3169              boolean init = false;
3170 <            if (resizing == 0 &&
3171 <                UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
3170 >            int n;
3171 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3172 >                n = MAXIMUM_CAPACITY;
3173 >            else {
3174 >                int sz = (int)size;
3175 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3176 >            }
3177 >            int sc = sizeCtl;
3178 >            boolean collide = false;
3179 >            if (n > sc &&
3180 >                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3181                  try {
3182                      if (table == null) {
3183                          init = true;
1651                        int n;
1652                        if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1653                            n = MAXIMUM_CAPACITY;
1654                        else {
1655                            int sz = (int)size;
1656                            n = tableSizeFor(sz + (sz >>> 1) + 1);
1657                        }
1658                        threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
3184                          Node[] tab = new Node[n];
3185                          int mask = n - 1;
3186                          while (p != null) {
3187                              int j = p.hash & mask;
3188                              Node next = p.next;
3189 <                            p.next = tabAt(tab, j);
3189 >                            Node q = p.next = tabAt(tab, j);
3190                              setTabAt(tab, j, p);
3191 +                            if (!collide && q != null && q.hash == p.hash)
3192 +                                collide = true;
3193                              p = next;
3194                          }
3195                          table = tab;
3196                          counter.add(size);
3197 +                        sc = n - (n >>> 2);
3198                      }
3199                  } finally {
3200 <                    resizing = 0;
3200 >                    sizeCtl = sc;
3201 >                }
3202 >                if (collide) { // rescan and convert to TreeBins
3203 >                    Node[] tab = table;
3204 >                    for (int i = 0; i < tab.length; ++i) {
3205 >                        int c = 0;
3206 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3207 >                            if (++c > TREE_THRESHOLD &&
3208 >                                (e.key instanceof Comparable)) {
3209 >                                replaceWithTreeBin(tab, i, e.key);
3210 >                                break;
3211 >                            }
3212 >                        }
3213 >                    }
3214                  }
3215              }
3216              if (!init) { // Can only happen if unsafely published.
3217                  while (p != null) {
3218 <                    internalPut(p.key, p.val, true);
3218 >                    internalPut(p.key, p.val);
3219                      p = p.next;
3220                  }
3221              }
3222 +
3223          }
3224      }
3225  
3226      // Unsafe mechanics
3227      private static final sun.misc.Unsafe UNSAFE;
3228      private static final long counterOffset;
3229 <    private static final long resizingOffset;
3229 >    private static final long sizeCtlOffset;
3230      private static final long ABASE;
3231      private static final int ASHIFT;
3232  
# Line 1695 | Line 3237 | public class ConcurrentHashMapV8<K, V>
3237              Class<?> k = ConcurrentHashMapV8.class;
3238              counterOffset = UNSAFE.objectFieldOffset
3239                  (k.getDeclaredField("counter"));
3240 <            resizingOffset = UNSAFE.objectFieldOffset
3241 <                (k.getDeclaredField("resizing"));
3240 >            sizeCtlOffset = UNSAFE.objectFieldOffset
3241 >                (k.getDeclaredField("sizeCtl"));
3242              Class<?> sc = Node[].class;
3243              ABASE = UNSAFE.arrayBaseOffset(sc);
3244              ss = UNSAFE.arrayIndexScale(sc);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines