ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.7 by jsr166, Tue Aug 30 13:41:59 2011 UTC vs.
Revision 1.112 by dl, Sat Jul 20 16:50:04 2013 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
9 < import java.util.Map;
10 < import java.util.Set;
11 < import java.util.Collection;
8 >
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15   import java.util.AbstractMap;
16 < import java.util.AbstractSet;
17 < import java.util.AbstractCollection;
18 < import java.util.Hashtable;
16 > import java.util.Arrays;
17 > import java.util.Collection;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
19 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
28 < import java.io.Serializable;
28 > import java.util.concurrent.atomic.AtomicReference;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 33 | Line 42 | import java.io.Serializable;
42   * interoperable with {@code Hashtable} in programs that rely on its
43   * thread safety but not on its synchronization details.
44   *
45 < * <p> Retrieval operations (including {@code get}) generally do not
45 > * <p>Retrieval operations (including {@code get}) generally do not
46   * block, so may overlap with update operations (including {@code put}
47   * and {@code remove}). Retrievals reflect the results of the most
48   * recently <em>completed</em> update operations holding upon their
49 < * onset.  For aggregate operations such as {@code putAll} and {@code
50 < * clear}, concurrent retrievals may reflect insertion or removal of
51 < * only some entries.  Similarly, Iterators and Enumerations return
52 < * elements reflecting the state of the hash table at some point at or
53 < * since the creation of the iterator/enumeration.  They do
54 < * <em>not</em> throw {@link ConcurrentModificationException}.
55 < * However, iterators are designed to be used by only one thread at a
56 < * time.  Bear in mind that the results of aggregate status methods
57 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
58 < * are typically useful only when a map is not undergoing concurrent
59 < * updates in other threads.  Otherwise the results of these methods
60 < * reflect transient states that may be adequate for monitoring
61 < * purposes, but not for program control.
62 < *
63 < * <p> Resizing this or any other kind of hash table is a relatively
64 < * slow operation, so, when possible, it is a good idea to provide
65 < * estimates of expected table sizes in constructors. Also, for
66 < * compatibility with previous versions of this class, constructors
67 < * may optionally specify an expected {@code concurrencyLevel} as an
68 < * additional hint for internal sizing.
49 > * onset. (More formally, an update operation for a given key bears a
50 > * <em>happens-before</em> relation with any (non-null) retrieval for
51 > * that key reporting the updated value.)  For aggregate operations
52 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
53 > * reflect insertion or removal of only some entries.  Similarly,
54 > * Iterators and Enumerations return elements reflecting the state of
55 > * the hash table at some point at or since the creation of the
56 > * iterator/enumeration.  They do <em>not</em> throw {@link
57 > * ConcurrentModificationException}.  However, iterators are designed
58 > * to be used by only one thread at a time.  Bear in mind that the
59 > * results of aggregate status methods including {@code size}, {@code
60 > * isEmpty}, and {@code containsValue} are typically useful only when
61 > * a map is not undergoing concurrent updates in other threads.
62 > * Otherwise the results of these methods reflect transient states
63 > * that may be adequate for monitoring or estimation purposes, but not
64 > * for program control.
65 > *
66 > * <p>The table is dynamically expanded when there are too many
67 > * collisions (i.e., keys that have distinct hash codes but fall into
68 > * the same slot modulo the table size), with the expected average
69 > * effect of maintaining roughly two bins per mapping (corresponding
70 > * to a 0.75 load factor threshold for resizing). There may be much
71 > * variance around this average as mappings are added and removed, but
72 > * overall, this maintains a commonly accepted time/space tradeoff for
73 > * hash tables.  However, resizing this or any other kind of hash
74 > * table may be a relatively slow operation. When possible, it is a
75 > * good idea to provide a size estimate as an optional {@code
76 > * initialCapacity} constructor argument. An additional optional
77 > * {@code loadFactor} constructor argument provides a further means of
78 > * customizing initial table capacity by specifying the table density
79 > * to be used in calculating the amount of space to allocate for the
80 > * given number of elements.  Also, for compatibility with previous
81 > * versions of this class, constructors may optionally specify an
82 > * expected {@code concurrencyLevel} as an additional hint for
83 > * internal sizing.  Note that using many keys with exactly the same
84 > * {@code hashCode()} is a sure way to slow down performance of any
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87 > *
88 > * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 > * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 > * (using {@link #keySet(Object)} when only keys are of interest, and the
91 > * mapped values are (perhaps transiently) not used or all take the
92 > * same mapping value.
93   *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
97   *
98 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
98 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 + * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 + * operations that are designed
103 + * to be safely, and often sensibly, applied even with maps that are
104 + * being concurrently updated by other threads; for example, when
105 + * computing a snapshot summary of the values in a shared registry.
106 + * There are three kinds of operation, each with four forms, accepting
107 + * functions with Keys, Values, Entries, and (Key, Value) arguments
108 + * and/or return values. Because the elements of a ConcurrentHashMapV8
109 + * are not ordered in any particular way, and may be processed in
110 + * different orders in different parallel executions, the correctness
111 + * of supplied functions should not depend on any ordering, or on any
112 + * other objects or values that may transiently change while
113 + * computation is in progress; and except for forEach actions, should
114 + * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 + * objects do not support method {@code setValue}.
116 + *
117 + * <ul>
118 + * <li> forEach: Perform a given action on each element.
119 + * A variant form applies a given transformation on each element
120 + * before performing the action.</li>
121 + *
122 + * <li> search: Return the first available non-null result of
123 + * applying a given function on each element; skipping further
124 + * search when a result is found.</li>
125 + *
126 + * <li> reduce: Accumulate each element.  The supplied reduction
127 + * function cannot rely on ordering (more formally, it should be
128 + * both associative and commutative).  There are five variants:
129 + *
130 + * <ul>
131 + *
132 + * <li> Plain reductions. (There is not a form of this method for
133 + * (key, value) function arguments since there is no corresponding
134 + * return type.)</li>
135 + *
136 + * <li> Mapped reductions that accumulate the results of a given
137 + * function applied to each element.</li>
138 + *
139 + * <li> Reductions to scalar doubles, longs, and ints, using a
140 + * given basis value.</li>
141 + *
142 + * </ul>
143 + * </li>
144 + * </ul>
145 + *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157 + * <p>The concurrency properties of bulk operations follow
158 + * from those of ConcurrentHashMapV8: Any non-null result returned
159 + * from {@code get(key)} and related access methods bears a
160 + * happens-before relation with the associated insertion or
161 + * update.  The result of any bulk operation reflects the
162 + * composition of these per-element relations (but is not
163 + * necessarily atomic with respect to the map as a whole unless it
164 + * is somehow known to be quiescent).  Conversely, because keys
165 + * and values in the map are never null, null serves as a reliable
166 + * atomic indicator of the current lack of any result.  To
167 + * maintain this property, null serves as an implicit basis for
168 + * all non-scalar reduction operations. For the double, long, and
169 + * int versions, the basis should be one that, when combined with
170 + * any other value, returns that other value (more formally, it
171 + * should be the identity element for the reduction). Most common
172 + * reductions have these properties; for example, computing a sum
173 + * with basis 0 or a minimum with basis MAX_VALUE.
174 + *
175 + * <p>Search and transformation functions provided as arguments
176 + * should similarly return null to indicate the lack of any result
177 + * (in which case it is not used). In the case of mapped
178 + * reductions, this also enables transformations to serve as
179 + * filters, returning null (or, in the case of primitive
180 + * specializations, the identity basis) if the element should not
181 + * be combined. You can create compound transformations and
182 + * filterings by composing them yourself under this "null means
183 + * there is nothing there now" rule before using them in search or
184 + * reduce operations.
185 + *
186 + * <p>Methods accepting and/or returning Entry arguments maintain
187 + * key-value associations. They may be useful for example when
188 + * finding the key for the greatest value. Note that "plain" Entry
189 + * arguments can be supplied using {@code new
190 + * AbstractMap.SimpleEntry(k,v)}.
191 + *
192 + * <p>Bulk operations may complete abruptly, throwing an
193 + * exception encountered in the application of a supplied
194 + * function. Bear in mind when handling such exceptions that other
195 + * concurrently executing functions could also have thrown
196 + * exceptions, or would have done so if the first exception had
197 + * not occurred.
198 + *
199 + * <p>Speedups for parallel compared to sequential forms are common
200 + * but not guaranteed.  Parallel operations involving brief functions
201 + * on small maps may execute more slowly than sequential forms if the
202 + * underlying work to parallelize the computation is more expensive
203 + * than the computation itself.  Similarly, parallelization may not
204 + * lead to much actual parallelism if all processors are busy
205 + * performing unrelated tasks.
206 + *
207 + * <p>All arguments to all task methods must be non-null.
208 + *
209 + * <p><em>jsr166e note: During transition, this class
210 + * uses nested functional interfaces with different names but the
211 + * same forms as those expected for JDK8.</em>
212 + *
213   * <p>This class is a member of the
214   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215   * Java Collections Framework</a>.
216   *
72 * <p><em>jsr166e note: This class is a candidate replacement for
73 * java.util.concurrent.ConcurrentHashMap.<em>
74 *
217   * @since 1.5
218   * @author Doug Lea
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <        implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A function computing a mapping from the given key to a value,
228 <     *  or <code>null</code> if there is no mapping. This is a
229 <     * place-holder for an upcoming JDK8 interface.
230 <     */
231 <    public static interface MappingFunction<K, V> {
232 <        /**
233 <         * Returns a value for the given key, or null if there is no
234 <         * mapping. If this function throws an (unchecked) exception,
235 <         * the exception is rethrown to its caller, and no mapping is
236 <         * recorded.  Because this function is invoked within
95 <         * atomicity control, the computation should be short and
96 <         * simple. The most common usage is to construct a new object
97 <         * serving as an initial mapped value.
98 <         *
99 <         * @param key the (non-null) key
100 <         * @return a value, or null if none
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230 >     */
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232 >        /**
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237           */
238 <        V map(K key);
239 <    }
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242 >         */
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249 >    }
250 >
251 >    // Sams
252 >    /** Interface describing a void action of one argument */
253 >    public interface Action<A> { void apply(A a); }
254 >    /** Interface describing a void action of two arguments */
255 >    public interface BiAction<A,B> { void apply(A a, B b); }
256 >    /** Interface describing a function of one argument */
257 >    public interface Fun<A,T> { T apply(A a); }
258 >    /** Interface describing a function of two arguments */
259 >    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 >    /** Interface describing a function mapping its argument to a double */
261 >    public interface ObjectToDouble<A> { double apply(A a); }
262 >    /** Interface describing a function mapping its argument to a long */
263 >    public interface ObjectToLong<A> { long apply(A a); }
264 >    /** Interface describing a function mapping its argument to an int */
265 >    public interface ObjectToInt<A> {int apply(A a); }
266 >    /** Interface describing a function mapping two arguments to a double */
267 >    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 >    /** Interface describing a function mapping two arguments to a long */
269 >    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 >    /** Interface describing a function mapping two arguments to an int */
271 >    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 >    /** Interface describing a function mapping two doubles to a double */
273 >    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 >    /** Interface describing a function mapping two longs to a long */
275 >    public interface LongByLongToLong { long apply(long a, long b); }
276 >    /** Interface describing a function mapping two ints to an int */
277 >    public interface IntByIntToInt { int apply(int a, int b); }
278  
279      /*
280       * Overview:
# Line 108 | Line 282 | public class ConcurrentHashMapV8<K, V>
282       * The primary design goal of this hash table is to maintain
283       * concurrent readability (typically method get(), but also
284       * iterators and related methods) while minimizing update
285 <     * contention.
286 <     *
287 <     * Each key-value mapping is held in a Node.  Because Node fields
288 <     * can contain special values, they are defined using plain Object
289 <     * types. Similarly in turn, all internal methods that use them
290 <     * work off Object types. All public generic-typed methods relay
291 <     * in/out of these internal methods, supplying casts as needed.
285 >     * contention. Secondary goals are to keep space consumption about
286 >     * the same or better than java.util.HashMap, and to support high
287 >     * initial insertion rates on an empty table by many threads.
288 >     *
289 >     * This map usually acts as a binned (bucketed) hash table.  Each
290 >     * key-value mapping is held in a Node.  Most nodes are instances
291 >     * of the basic Node class with hash, key, value, and next
292 >     * fields. However, various subclasses exist: TreeNodes are
293 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
294 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 >     * of bins during resizing. ReservationNodes are used as
296 >     * placeholders while establishing values in computeIfAbsent and
297 >     * related methods.  The types TreeBin, ForwardingNode, and
298 >     * ReservationNode do not hold normal user keys, values, or
299 >     * hashes, and are readily distinguishable during search etc
300 >     * because they have negative hash fields and null key and value
301 >     * fields. (These special nodes are either uncommon or transient,
302 >     * so the impact of carrying around some unused fields is
303 >     * insignificant.)
304       *
305       * The table is lazily initialized to a power-of-two size upon the
306 <     * first insertion.  Each bin in the table contains a (typically
307 <     * short) list of Nodes.  Table accesses require volatile/atomic
308 <     * reads, writes, and CASes.  Because there is no other way to
309 <     * arrange this without adding further indirections, we use
310 <     * intrinsics (sun.misc.Unsafe) operations.  The lists of nodes
311 <     * within bins are always accurately traversable under volatile
312 <     * reads, so long as lookups check hash code and non-nullness of
313 <     * key and value before checking key equality. (All valid hash
314 <     * codes are nonnegative. Negative values are reserved for special
315 <     * forwarding nodes; see below.)
316 <     *
317 <     * A bin may be locked during update (insert, delete, and replace)
318 <     * operations.  We do not want to waste the space required to
319 <     * associate a distinct lock object with each bin, so instead use
320 <     * the first node of a bin list itself as a lock, using builtin
321 <     * "synchronized" locks. These save space and we can live with
322 <     * only plain block-structured lock/unlock operations. Using the
323 <     * first node of a list as a lock does not by itself suffice
324 <     * though: When a node is locked, any update must first validate
325 <     * that it is still the first node, and retry if not. (Because new
326 <     * nodes are always appended to lists, once a node is first in a
327 <     * bin, it remains first until deleted or the bin becomes
328 <     * invalidated.)  However, update operations can and usually do
329 <     * still traverse the bin until the point of update, which helps
330 <     * reduce cache misses on retries.  This is a converse of sorts to
331 <     * the lazy locking technique described by Herlihy & Shavit. If
332 <     * there is no existing node during a put operation, then one can
333 <     * be CAS'ed in (without need for lock except in computeIfAbsent);
334 <     * the CAS serves as validation. This is on average the most
335 <     * common case for put operations -- under random hash codes, the
336 <     * distribution of nodes in bins follows a Poisson distribution
337 <     * (see http://en.wikipedia.org/wiki/Poisson_distribution) with a
338 <     * parameter of 0.5 on average under the default loadFactor of
339 <     * 0.75.  The expected number of locks covering different elements
340 <     * (i.e., bins with 2 or more nodes) is approximately 10% at
341 <     * steady state under default settings.  Lock contention
342 <     * probability for two threads accessing arbitrary distinct
343 <     * elements is, roughly, 1 / (8 * #elements).
344 <     *
345 <     * The table is resized when occupancy exceeds a threshold.  Only
346 <     * a single thread performs the resize (using field "resizing", to
347 <     * arrange exclusion), but the table otherwise remains usable for
348 <     * both reads and updates. Resizing proceeds by transferring bins,
349 <     * one by one, from the table to the next table.  Upon transfer,
350 <     * the old table bin contains only a special forwarding node (with
351 <     * negative hash code ("MOVED")) that contains the next table as
352 <     * its key. On encountering a forwarding node, access and update
353 <     * operations restart, using the new table. To ensure concurrent
354 <     * readability of traversals, transfers must proceed from the last
355 <     * bin (table.length - 1) up towards the first.  Any traversal
356 <     * starting from the first bin can then arrange to move to the new
357 <     * table for the rest of the traversal without revisiting nodes.
358 <     * This constrains bin transfers to a particular order, and so can
359 <     * block indefinitely waiting for the next lock, and other threads
360 <     * cannot help with the transfer. However, expected stalls are
361 <     * infrequent enough to not warrant the additional overhead and
362 <     * complexity of access and iteration schemes that could admit
363 <     * out-of-order or concurrent bin transfers.
364 <     *
365 <     * A similar traversal scheme (not yet implemented) can apply to
366 <     * partial traversals during partitioned aggregate operations.
367 <     * Also, read-only operations give up if ever forwarded to a null
368 <     * table, which provides support for shutdown-style clearing,
369 <     * which is also not currently implemented.
370 <     *
371 <     * The element count is maintained using a LongAdder, which avoids
372 <     * contention on updates but can encounter cache thrashing if read
373 <     * too frequently during concurrent updates. To avoid reading so
374 <     * often, resizing is normally attempted only upon adding to a bin
375 <     * already holding two or more nodes. Under the default threshold
376 <     * (0.75), and uniform hash distributions, the probability of this
377 <     * occurring at threshold is around 13%, meaning that only about 1
378 <     * in 8 puts check threshold (and after resizing, many fewer do
379 <     * so). But this approximation has high variance for small table
380 <     * sizes, so we check on any collision for sizes <= 64.  Further,
381 <     * to increase the probability that a resize occurs soon enough, we
382 <     * offset the threshold (see THRESHOLD_OFFSET) by the expected
383 <     * number of puts between checks. This is currently set to 8, in
384 <     * accord with the default load factor. In practice, this is
385 <     * rarely overridden, and in any case is close enough to other
386 <     * plausible values not to waste dynamic probability computation
387 <     * for more precision.
306 >     * first insertion.  Each bin in the table normally contains a
307 >     * list of Nodes (most often, the list has only zero or one Node).
308 >     * Table accesses require volatile/atomic reads, writes, and
309 >     * CASes.  Because there is no other way to arrange this without
310 >     * adding further indirections, we use intrinsics
311 >     * (sun.misc.Unsafe) operations.
312 >     *
313 >     * We use the top (sign) bit of Node hash fields for control
314 >     * purposes -- it is available anyway because of addressing
315 >     * constraints.  Nodes with negative hash fields are specially
316 >     * handled or ignored in map methods.
317 >     *
318 >     * Insertion (via put or its variants) of the first node in an
319 >     * empty bin is performed by just CASing it to the bin.  This is
320 >     * by far the most common case for put operations under most
321 >     * key/hash distributions.  Other update operations (insert,
322 >     * delete, and replace) require locks.  We do not want to waste
323 >     * the space required to associate a distinct lock object with
324 >     * each bin, so instead use the first node of a bin list itself as
325 >     * a lock. Locking support for these locks relies on builtin
326 >     * "synchronized" monitors.
327 >     *
328 >     * Using the first node of a list as a lock does not by itself
329 >     * suffice though: When a node is locked, any update must first
330 >     * validate that it is still the first node after locking it, and
331 >     * retry if not. Because new nodes are always appended to lists,
332 >     * once a node is first in a bin, it remains first until deleted
333 >     * or the bin becomes invalidated (upon resizing).
334 >     *
335 >     * The main disadvantage of per-bin locks is that other update
336 >     * operations on other nodes in a bin list protected by the same
337 >     * lock can stall, for example when user equals() or mapping
338 >     * functions take a long time.  However, statistically, under
339 >     * random hash codes, this is not a common problem.  Ideally, the
340 >     * frequency of nodes in bins follows a Poisson distribution
341 >     * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 >     * parameter of about 0.5 on average, given the resizing threshold
343 >     * of 0.75, although with a large variance because of resizing
344 >     * granularity. Ignoring variance, the expected occurrences of
345 >     * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
346 >     * first values are:
347 >     *
348 >     * 0:    0.60653066
349 >     * 1:    0.30326533
350 >     * 2:    0.07581633
351 >     * 3:    0.01263606
352 >     * 4:    0.00157952
353 >     * 5:    0.00015795
354 >     * 6:    0.00001316
355 >     * 7:    0.00000094
356 >     * 8:    0.00000006
357 >     * more: less than 1 in ten million
358 >     *
359 >     * Lock contention probability for two threads accessing distinct
360 >     * elements is roughly 1 / (8 * #elements) under random hashes.
361 >     *
362 >     * Actual hash code distributions encountered in practice
363 >     * sometimes deviate significantly from uniform randomness.  This
364 >     * includes the case when N > (1<<30), so some keys MUST collide.
365 >     * Similarly for dumb or hostile usages in which multiple keys are
366 >     * designed to have identical hash codes or ones that differs only
367 >     * in masked-out high bits. So we use a secondary strategy that
368 >     * applies when the number of nodes in a bin exceeds a
369 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
370 >     * specialized form of red-black trees), bounding search time to
371 >     * O(log N).  Each search step in a TreeBin is at least twice as
372 >     * slow as in a regular list, but given that N cannot exceed
373 >     * (1<<64) (before running out of addresses) this bounds search
374 >     * steps, lock hold times, etc, to reasonable constants (roughly
375 >     * 100 nodes inspected per operation worst case) so long as keys
376 >     * are Comparable (which is very common -- String, Long, etc).
377 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
378 >     * traversal pointers as regular nodes, so can be traversed in
379 >     * iterators in the same way.
380 >     *
381 >     * The table is resized when occupancy exceeds a percentage
382 >     * threshold (nominally, 0.75, but see below).  Any thread
383 >     * noticing an overfull bin may assist in resizing after the
384 >     * initiating thread allocates and sets up the replacement
385 >     * array. However, rather than stalling, these other threads may
386 >     * proceed with insertions etc.  The use of TreeBins shields us
387 >     * from the worst case effects of overfilling while resizes are in
388 >     * progress.  Resizing proceeds by transferring bins, one by one,
389 >     * from the table to the next table. To enable concurrency, the
390 >     * next table must be (incrementally) prefilled with place-holders
391 >     * serving as reverse forwarders to the old table.  Because we are
392 >     * using power-of-two expansion, the elements from each bin must
393 >     * either stay at same index, or move with a power of two
394 >     * offset. We eliminate unnecessary node creation by catching
395 >     * cases where old nodes can be reused because their next fields
396 >     * won't change.  On average, only about one-sixth of them need
397 >     * cloning when a table doubles. The nodes they replace will be
398 >     * garbage collectable as soon as they are no longer referenced by
399 >     * any reader thread that may be in the midst of concurrently
400 >     * traversing table.  Upon transfer, the old table bin contains
401 >     * only a special forwarding node (with hash field "MOVED") that
402 >     * contains the next table as its key. On encountering a
403 >     * forwarding node, access and update operations restart, using
404 >     * the new table.
405 >     *
406 >     * Each bin transfer requires its bin lock, which can stall
407 >     * waiting for locks while resizing. However, because other
408 >     * threads can join in and help resize rather than contend for
409 >     * locks, average aggregate waits become shorter as resizing
410 >     * progresses.  The transfer operation must also ensure that all
411 >     * accessible bins in both the old and new table are usable by any
412 >     * traversal.  This is arranged by proceeding from the last bin
413 >     * (table.length - 1) up towards the first.  Upon seeing a
414 >     * forwarding node, traversals (see class Traverser) arrange to
415 >     * move to the new table without revisiting nodes.  However, to
416 >     * ensure that no intervening nodes are skipped, bin splitting can
417 >     * only begin after the associated reverse-forwarders are in
418 >     * place.
419 >     *
420 >     * The traversal scheme also applies to partial traversals of
421 >     * ranges of bins (via an alternate Traverser constructor)
422 >     * to support partitioned aggregate operations.  Also, read-only
423 >     * operations give up if ever forwarded to a null table, which
424 >     * provides support for shutdown-style clearing, which is also not
425 >     * currently implemented.
426 >     *
427 >     * Lazy table initialization minimizes footprint until first use,
428 >     * and also avoids resizings when the first operation is from a
429 >     * putAll, constructor with map argument, or deserialization.
430 >     * These cases attempt to override the initial capacity settings,
431 >     * but harmlessly fail to take effect in cases of races.
432 >     *
433 >     * The element count is maintained using a specialization of
434 >     * LongAdder. We need to incorporate a specialization rather than
435 >     * just use a LongAdder in order to access implicit
436 >     * contention-sensing that leads to creation of multiple
437 >     * CounterCells.  The counter mechanics avoid contention on
438 >     * updates but can encounter cache thrashing if read too
439 >     * frequently during concurrent access. To avoid reading so often,
440 >     * resizing under contention is attempted only upon adding to a
441 >     * bin already holding two or more nodes. Under uniform hash
442 >     * distributions, the probability of this occurring at threshold
443 >     * is around 13%, meaning that only about 1 in 8 puts check
444 >     * threshold (and after resizing, many fewer do so).
445 >     *
446 >     * TreeBins use a special form of comparison for search and
447 >     * related operations (which is the main reason we cannot use
448 >     * existing collections such as TreeMaps). TreeBins contain
449 >     * Comparable elements, but may contain others, as well as
450 >     * elements that are Comparable but not necessarily Comparable for
451 >     * the same T, so we cannot invoke compareTo among them. To handle
452 >     * this, the tree is ordered primarily by hash value, then by
453 >     * Comparable.compareTo order if applicable.  On lookup at a node,
454 >     * if elements are not comparable or compare as 0 then both left
455 >     * and right children may need to be searched in the case of tied
456 >     * hash values. (This corresponds to the full list search that
457 >     * would be necessary if all elements were non-Comparable and had
458 >     * tied hashes.) On insertion, to keep a total ordering (or as
459 >     * close as is required here) across rebalancings, we compare
460 >     * classes and identityHashCodes as tie-breakers. The red-black
461 >     * balancing code is updated from pre-jdk-collections
462 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
463 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
464 >     * Algorithms" (CLR).
465 >     *
466 >     * TreeBins also require an additional locking mechanism.  While
467 >     * list traversal is always possible by readers even during
468 >     * updates, tree traversal is not, mainly because of tree-rotations
469 >     * that may change the root node and/or its linkages.  TreeBins
470 >     * include a simple read-write lock mechanism parasitic on the
471 >     * main bin-synchronization strategy: Structural adjustments
472 >     * associated with an insertion or removal are already bin-locked
473 >     * (and so cannot conflict with other writers) but must wait for
474 >     * ongoing readers to finish. Since there can be only one such
475 >     * waiter, we use a simple scheme using a single "waiter" field to
476 >     * block writers.  However, readers need never block.  If the root
477 >     * lock is held, they proceed along the slow traversal path (via
478 >     * next-pointers) until the lock becomes available or the list is
479 >     * exhausted, whichever comes first. These cases are not fast, but
480 >     * maximize aggregate expected throughput.
481 >     *
482 >     * Maintaining API and serialization compatibility with previous
483 >     * versions of this class introduces several oddities. Mainly: We
484 >     * leave untouched but unused constructor arguments refering to
485 >     * concurrencyLevel. We accept a loadFactor constructor argument,
486 >     * but apply it only to initial table capacity (which is the only
487 >     * time that we can guarantee to honor it.) We also declare an
488 >     * unused "Segment" class that is instantiated in minimal form
489 >     * only when serializing.
490 >     *
491 >     * Also, solely for compatibility with previous versions of this
492 >     * class, it extends AbstractMap, even though all of its methods
493 >     * are overridden, so it is just useless baggage.
494 >     *
495 >     * This file is organized to make things a little easier to follow
496 >     * while reading than they might otherwise: First the main static
497 >     * declarations and utilities, then fields, then main public
498 >     * methods (with a few factorings of multiple public methods into
499 >     * internal ones), then sizing methods, trees, traversers, and
500 >     * bulk operations.
501       */
502  
503      /* ---------------- Constants -------------- */
504  
505      /**
506 <     * The smallest allowed table capacity.  Must be a power of 2, at
507 <     * least 2.
506 >     * The largest possible table capacity.  This value must be
507 >     * exactly 1<<30 to stay within Java array allocation and indexing
508 >     * bounds for power of two table sizes, and is further required
509 >     * because the top two bits of 32bit hash fields are used for
510 >     * control purposes.
511       */
512 <    static final int MINIMUM_CAPACITY = 2;
512 >    private static final int MAXIMUM_CAPACITY = 1 << 30;
513  
514      /**
515 <     * The largest allowed table capacity.  Must be a power of 2, at
516 <     * most 1<<30.
515 >     * The default initial table capacity.  Must be a power of 2
516 >     * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
517       */
518 <    static final int MAXIMUM_CAPACITY = 1 << 30;
518 >    private static final int DEFAULT_CAPACITY = 16;
519  
520      /**
521 <     * The default initial table capacity.  Must be a power of 2, at
522 <     * least MINIMUM_CAPACITY and at most MAXIMUM_CAPACITY
521 >     * The largest possible (non-power of two) array size.
522 >     * Needed by toArray and related methods.
523       */
524 <    static final int DEFAULT_CAPACITY = 16;
524 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
525  
526      /**
527 <     * The default load factor for this table, used when not otherwise
528 <     * specified in a constructor.
527 >     * The default concurrency level for this table. Unused but
528 >     * defined for compatibility with previous versions of this class.
529       */
530 <    static final float DEFAULT_LOAD_FACTOR = 0.75f;
530 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
531  
532      /**
533 <     * The default concurrency level for this table. Unused, but
534 <     * defined for compatibility with previous versions of this class.
533 >     * The load factor for this table. Overrides of this value in
534 >     * constructors affect only the initial table capacity.  The
535 >     * actual floating point value isn't normally used -- it is
536 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
537 >     * the associated resizing threshold.
538 >     */
539 >    private static final float LOAD_FACTOR = 0.75f;
540 >
541 >    /**
542 >     * The bin count threshold for using a tree rather than list for a
543 >     * bin.  Bins are converted to trees when adding an element to a
544 >     * bin with at least this many nodes. The value must be greater
545 >     * than 2, and should be at least 8 to mesh with assumptions in
546 >     * tree removal about conversion back to plain bins upon
547 >     * shrinkage.
548       */
549 <    static final int DEFAULT_CONCURRENCY_LEVEL = 16;
549 >    static final int TREEIFY_THRESHOLD = 8;
550  
551      /**
552 <     * The count value to offset thresholds to compensate for checking
553 <     * for resizing only when inserting into bins with two or more
554 <     * elements. See above for explanation.
552 >     * The bin count threshold for untreeifying a (split) bin during a
553 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
554 >     * most 6 to mesh with shrinkage detection under removal.
555       */
556 <    static final int THRESHOLD_OFFSET = 8;
556 >    static final int UNTREEIFY_THRESHOLD = 6;
557  
558      /**
559 <     * Special node hash value indicating to use table in node.key
560 <     * Must be negative.
559 >     * The smallest table capacity for which bins may be treeified.
560 >     * (Otherwise the table is resized if too many nodes in a bin.)
561 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
562 >     * conflicts between resizing and treeification thresholds.
563       */
564 <    static final int MOVED = -1;
564 >    static final int MIN_TREEIFY_CAPACITY = 64;
565 >
566 >    /**
567 >     * Minimum number of rebinnings per transfer step. Ranges are
568 >     * subdivided to allow multiple resizer threads.  This value
569 >     * serves as a lower bound to avoid resizers encountering
570 >     * excessive memory contention.  The value should be at least
571 >     * DEFAULT_CAPACITY.
572 >     */
573 >    private static final int MIN_TRANSFER_STRIDE = 16;
574 >
575 >    /*
576 >     * Encodings for Node hash fields. See above for explanation.
577 >     */
578 >    static final int MOVED     = -1; // hash for forwarding nodes
579 >    static final int TREEBIN   = -2; // hash for roots of trees
580 >    static final int RESERVED  = -3; // hash for transient reservations
581 >    static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
582 >
583 >    /** Number of CPUS, to place bounds on some sizings */
584 >    static final int NCPU = Runtime.getRuntime().availableProcessors();
585 >
586 >    /** For serialization compatibility. */
587 >    private static final ObjectStreamField[] serialPersistentFields = {
588 >        new ObjectStreamField("segments", Segment[].class),
589 >        new ObjectStreamField("segmentMask", Integer.TYPE),
590 >        new ObjectStreamField("segmentShift", Integer.TYPE)
591 >    };
592 >
593 >    /* ---------------- Nodes -------------- */
594 >
595 >    /**
596 >     * Key-value entry.  This class is never exported out as a
597 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
598 >     * MapEntry below), but can be used for read-only traversals used
599 >     * in bulk tasks.  Subclasses of Node with a negative hash field
600 >     * are special, and contain null keys and values (but are never
601 >     * exported).  Otherwise, keys and vals are never null.
602 >     */
603 >    static class Node<K,V> implements Map.Entry<K,V> {
604 >        final int hash;
605 >        final K key;
606 >        volatile V val;
607 >        volatile Node<K,V> next;
608 >
609 >        Node(int hash, K key, V val, Node<K,V> next) {
610 >            this.hash = hash;
611 >            this.key = key;
612 >            this.val = val;
613 >            this.next = next;
614 >        }
615 >
616 >        public final K getKey()       { return key; }
617 >        public final V getValue()     { return val; }
618 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
619 >        public final String toString(){ return key + "=" + val; }
620 >        public final V setValue(V value) {
621 >            throw new UnsupportedOperationException();
622 >        }
623 >
624 >        public final boolean equals(Object o) {
625 >            Object k, v, u; Map.Entry<?,?> e;
626 >            return ((o instanceof Map.Entry) &&
627 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 >                    (v = e.getValue()) != null &&
629 >                    (k == key || k.equals(key)) &&
630 >                    (v == (u = val) || v.equals(u)));
631 >        }
632 >
633 >        /**
634 >         * Virtualized support for map.get(); overridden in subclasses.
635 >         */
636 >        Node<K,V> find(int h, Object k) {
637 >            Node<K,V> e = this;
638 >            if (k != null) {
639 >                do {
640 >                    K ek;
641 >                    if (e.hash == h &&
642 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 >                        return e;
644 >                } while ((e = e.next) != null);
645 >            }
646 >            return null;
647 >        }
648 >    }
649 >
650 >    /* ---------------- Static utilities -------------- */
651 >
652 >    /**
653 >     * Spreads (XORs) higher bits of hash to lower and also forces top
654 >     * bit to 0. Because the table uses power-of-two masking, sets of
655 >     * hashes that vary only in bits above the current mask will
656 >     * always collide. (Among known examples are sets of Float keys
657 >     * holding consecutive whole numbers in small tables.)  So we
658 >     * apply a transform that spreads the impact of higher bits
659 >     * downward. There is a tradeoff between speed, utility, and
660 >     * quality of bit-spreading. Because many common sets of hashes
661 >     * are already reasonably distributed (so don't benefit from
662 >     * spreading), and because we use trees to handle large sets of
663 >     * collisions in bins, we just XOR some shifted bits in the
664 >     * cheapest possible way to reduce systematic lossage, as well as
665 >     * to incorporate impact of the highest bits that would otherwise
666 >     * never be used in index calculations because of table bounds.
667 >     */
668 >    static final int spread(int h) {
669 >        return (h ^ (h >>> 16)) & HASH_BITS;
670 >    }
671 >
672 >    /**
673 >     * Returns a power of two table size for the given desired capacity.
674 >     * See Hackers Delight, sec 3.2
675 >     */
676 >    private static final int tableSizeFor(int c) {
677 >        int n = c - 1;
678 >        n |= n >>> 1;
679 >        n |= n >>> 2;
680 >        n |= n >>> 4;
681 >        n |= n >>> 8;
682 >        n |= n >>> 16;
683 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684 >    }
685 >
686 >    /**
687 >     * Returns x's Class if it is of the form "class C implements
688 >     * Comparable<C>", else null.
689 >     */
690 >    static Class<?> comparableClassFor(Object x) {
691 >        if (x instanceof Comparable) {
692 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 >            if ((c = x.getClass()) == String.class) // bypass checks
694 >                return c;
695 >            if ((ts = c.getGenericInterfaces()) != null) {
696 >                for (int i = 0; i < ts.length; ++i) {
697 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
698 >                        ((p = (ParameterizedType)t).getRawType() ==
699 >                         Comparable.class) &&
700 >                        (as = p.getActualTypeArguments()) != null &&
701 >                        as.length == 1 && as[0] == c) // type arg is c
702 >                        return c;
703 >                }
704 >            }
705 >        }
706 >        return null;
707 >    }
708 >
709 >    /**
710 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 >     * class), else 0.
712 >     */
713 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 >    static int compareComparables(Class<?> kc, Object k, Object x) {
715 >        return (x == null || x.getClass() != kc ? 0 :
716 >                ((Comparable)k).compareTo(x));
717 >    }
718 >
719 >    /* ---------------- Table element access -------------- */
720 >
721 >    /*
722 >     * Volatile access methods are used for table elements as well as
723 >     * elements of in-progress next table while resizing.  All uses of
724 >     * the tab arguments must be null checked by callers.  All callers
725 >     * also paranoically precheck that tab's length is not zero (or an
726 >     * equivalent check), thus ensuring that any index argument taking
727 >     * the form of a hash value anded with (length - 1) is a valid
728 >     * index.  Note that, to be correct wrt arbitrary concurrency
729 >     * errors by users, these checks must operate on local variables,
730 >     * which accounts for some odd-looking inline assignments below.
731 >     * Note that calls to setTabAt always occur within locked regions,
732 >     * and so in principle require only release ordering, not need
733 >     * full volatile semantics, but are currently coded as volatile
734 >     * writes to be conservative.
735 >     */
736 >
737 >    @SuppressWarnings("unchecked")
738 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
739 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
740 >    }
741 >
742 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
743 >                                        Node<K,V> c, Node<K,V> v) {
744 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
745 >    }
746 >
747 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
748 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
749 >    }
750  
751      /* ---------------- Fields -------------- */
752  
753      /**
754       * The array of bins. Lazily initialized upon first insertion.
755 <     * Size is always a power of two. Accessed directly by inner
756 <     * classes.
755 >     * Size is always a power of two. Accessed directly by iterators.
756 >     */
757 >    transient volatile Node<K,V>[] table;
758 >
759 >    /**
760 >     * The next table to use; non-null only while resizing.
761 >     */
762 >    private transient volatile Node<K,V>[] nextTable;
763 >
764 >    /**
765 >     * Base counter value, used mainly when there is no contention,
766 >     * but also as a fallback during table initialization
767 >     * races. Updated via CAS.
768       */
769 <    transient volatile Node[] table;
769 >    private transient volatile long baseCount;
770  
771 <    /** The counter maintaining number of elements. */
772 <    private transient final LongAdder counter;
773 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
774 <    private transient volatile int resizing;
775 <    /** The target load factor for the table. */
776 <    private transient float loadFactor;
777 <    /** The next element count value upon which to resize the table. */
778 <    private transient int threshold;
779 <    /** The initial capacity of the table. */
780 <    private transient int initCap;
771 >    /**
772 >     * Table initialization and resizing control.  When negative, the
773 >     * table is being initialized or resized: -1 for initialization,
774 >     * else -(1 + the number of active resizing threads).  Otherwise,
775 >     * when table is null, holds the initial table size to use upon
776 >     * creation, or 0 for default. After initialization, holds the
777 >     * next element count value upon which to resize the table.
778 >     */
779 >    private transient volatile int sizeCtl;
780 >
781 >    /**
782 >     * The next table index (plus one) to split while resizing.
783 >     */
784 >    private transient volatile int transferIndex;
785 >
786 >    /**
787 >     * The least available table index to split while resizing.
788 >     */
789 >    private transient volatile int transferOrigin;
790 >
791 >    /**
792 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
793 >     */
794 >    private transient volatile int cellsBusy;
795 >
796 >    /**
797 >     * Table of counter cells. When non-null, size is a power of 2.
798 >     */
799 >    private transient volatile CounterCell[] counterCells;
800  
801      // views
802 <    transient Set<K> keySet;
803 <    transient Set<Map.Entry<K,V>> entrySet;
804 <    transient Collection<V> values;
802 >    private transient KeySetView<K,V> keySet;
803 >    private transient ValuesView<K,V> values;
804 >    private transient EntrySetView<K,V> entrySet;
805  
806 <    /** For serialization compatibility. Null unless serialized; see below */
807 <    Segment<K,V>[] segments;
806 >
807 >    /* ---------------- Public operations -------------- */
808  
809      /**
810 <     * Applies a supplemental hash function to a given hashCode, which
279 <     * defends against poor quality hash functions.  The result must
280 <     * be non-negative, and for reasonable performance must have good
281 <     * avalanche properties; i.e., that each bit of the argument
282 <     * affects each bit (except sign bit) of the result.
810 >     * Creates a new, empty map with the default initial table size (16).
811       */
812 <    private static final int spread(int h) {
285 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
286 <        h ^= h >>> 16;
287 <        h *= 0x85ebca6b;
288 <        h ^= h >>> 13;
289 <        h *= 0xc2b2ae35;
290 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
812 >    public ConcurrentHashMapV8() {
813      }
814  
815      /**
816 <     * Key-value entry. Note that this is never exported out as a
817 <     * user-visible Map.Entry.
816 >     * Creates a new, empty map with an initial table size
817 >     * accommodating the specified number of elements without the need
818 >     * to dynamically resize.
819 >     *
820 >     * @param initialCapacity The implementation performs internal
821 >     * sizing to accommodate this many elements.
822 >     * @throws IllegalArgumentException if the initial capacity of
823 >     * elements is negative
824       */
825 <    static final class Node {
826 <        final int hash;
827 <        final Object key;
828 <        volatile Object val;
829 <        volatile Node next;
825 >    public ConcurrentHashMapV8(int initialCapacity) {
826 >        if (initialCapacity < 0)
827 >            throw new IllegalArgumentException();
828 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
829 >                   MAXIMUM_CAPACITY :
830 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
831 >        this.sizeCtl = cap;
832 >    }
833  
834 <        Node(int hash, Object key, Object val, Node next) {
835 <            this.hash = hash;
836 <            this.key = key;
837 <            this.val = val;
838 <            this.next = next;
839 <        }
834 >    /**
835 >     * Creates a new map with the same mappings as the given map.
836 >     *
837 >     * @param m the map
838 >     */
839 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
840 >        this.sizeCtl = DEFAULT_CAPACITY;
841 >        putAll(m);
842      }
843  
844 <    /*
845 <     * Volatile access methods are used for table elements as well as
846 <     * elements of in-progress next table while resizing.  Uses in
847 <     * access and update methods are null checked by callers, and
848 <     * implicitly bounds-checked, relying on the invariants that tab
849 <     * arrays have non-zero size, and all indices are masked with
850 <     * (tab.length - 1) which is never negative and always less than
851 <     * length. The "relaxed" non-volatile forms are used only during
852 <     * table initialization. The only other usage is in
853 <     * HashIterator.advance, which performs explicit checks.
844 >    /**
845 >     * Creates a new, empty map with an initial table size based on
846 >     * the given number of elements ({@code initialCapacity}) and
847 >     * initial table density ({@code loadFactor}).
848 >     *
849 >     * @param initialCapacity the initial capacity. The implementation
850 >     * performs internal sizing to accommodate this many elements,
851 >     * given the specified load factor.
852 >     * @param loadFactor the load factor (table density) for
853 >     * establishing the initial table size
854 >     * @throws IllegalArgumentException if the initial capacity of
855 >     * elements is negative or the load factor is nonpositive
856 >     *
857 >     * @since 1.6
858 >     */
859 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
860 >        this(initialCapacity, loadFactor, 1);
861 >    }
862 >
863 >    /**
864 >     * Creates a new, empty map with an initial table size based on
865 >     * the given number of elements ({@code initialCapacity}), table
866 >     * density ({@code loadFactor}), and number of concurrently
867 >     * updating threads ({@code concurrencyLevel}).
868 >     *
869 >     * @param initialCapacity the initial capacity. The implementation
870 >     * performs internal sizing to accommodate this many elements,
871 >     * given the specified load factor.
872 >     * @param loadFactor the load factor (table density) for
873 >     * establishing the initial table size
874 >     * @param concurrencyLevel the estimated number of concurrently
875 >     * updating threads. The implementation may use this value as
876 >     * a sizing hint.
877 >     * @throws IllegalArgumentException if the initial capacity is
878 >     * negative or the load factor or concurrencyLevel are
879 >     * nonpositive
880       */
881 +    public ConcurrentHashMapV8(int initialCapacity,
882 +                             float loadFactor, int concurrencyLevel) {
883 +        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
884 +            throw new IllegalArgumentException();
885 +        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
886 +            initialCapacity = concurrencyLevel;   // as estimated threads
887 +        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
888 +        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
889 +            MAXIMUM_CAPACITY : tableSizeFor((int)size);
890 +        this.sizeCtl = cap;
891 +    }
892 +
893 +    // Original (since JDK1.2) Map methods
894  
895 <    static final Node tabAt(Node[] tab, int i) { // used in HashIterator
896 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
895 >    /**
896 >     * {@inheritDoc}
897 >     */
898 >    public int size() {
899 >        long n = sumCount();
900 >        return ((n < 0L) ? 0 :
901 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
902 >                (int)n);
903 >    }
904 >
905 >    /**
906 >     * {@inheritDoc}
907 >     */
908 >    public boolean isEmpty() {
909 >        return sumCount() <= 0L; // ignore transient negative values
910 >    }
911 >
912 >    /**
913 >     * Returns the value to which the specified key is mapped,
914 >     * or {@code null} if this map contains no mapping for the key.
915 >     *
916 >     * <p>More formally, if this map contains a mapping from a key
917 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
918 >     * then this method returns {@code v}; otherwise it returns
919 >     * {@code null}.  (There can be at most one such mapping.)
920 >     *
921 >     * @throws NullPointerException if the specified key is null
922 >     */
923 >    public V get(Object key) {
924 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
925 >        int h = spread(key.hashCode());
926 >        if ((tab = table) != null && (n = tab.length) > 0 &&
927 >            (e = tabAt(tab, (n - 1) & h)) != null) {
928 >            if ((eh = e.hash) == h) {
929 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
930 >                    return e.val;
931 >            }
932 >            else if (eh < 0)
933 >                return (p = e.find(h, key)) != null ? p.val : null;
934 >            while ((e = e.next) != null) {
935 >                if (e.hash == h &&
936 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
937 >                    return e.val;
938 >            }
939 >        }
940 >        return null;
941 >    }
942 >
943 >    /**
944 >     * Tests if the specified object is a key in this table.
945 >     *
946 >     * @param  key possible key
947 >     * @return {@code true} if and only if the specified object
948 >     *         is a key in this table, as determined by the
949 >     *         {@code equals} method; {@code false} otherwise
950 >     * @throws NullPointerException if the specified key is null
951 >     */
952 >    public boolean containsKey(Object key) {
953 >        return get(key) != null;
954      }
955  
956 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
957 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
956 >    /**
957 >     * Returns {@code true} if this map maps one or more keys to the
958 >     * specified value. Note: This method may require a full traversal
959 >     * of the map, and is much slower than method {@code containsKey}.
960 >     *
961 >     * @param value value whose presence in this map is to be tested
962 >     * @return {@code true} if this map maps one or more keys to the
963 >     *         specified value
964 >     * @throws NullPointerException if the specified value is null
965 >     */
966 >    public boolean containsValue(Object value) {
967 >        if (value == null)
968 >            throw new NullPointerException();
969 >        Node<K,V>[] t;
970 >        if ((t = table) != null) {
971 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
972 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
973 >                V v;
974 >                if ((v = p.val) == value || (v != null && value.equals(v)))
975 >                    return true;
976 >            }
977 >        }
978 >        return false;
979      }
980  
981 <    private static final void setTabAt(Node[] tab, int i, Node v) {
982 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
981 >    /**
982 >     * Maps the specified key to the specified value in this table.
983 >     * Neither the key nor the value can be null.
984 >     *
985 >     * <p>The value can be retrieved by calling the {@code get} method
986 >     * with a key that is equal to the original key.
987 >     *
988 >     * @param key key with which the specified value is to be associated
989 >     * @param value value to be associated with the specified key
990 >     * @return the previous value associated with {@code key}, or
991 >     *         {@code null} if there was no mapping for {@code key}
992 >     * @throws NullPointerException if the specified key or value is null
993 >     */
994 >    public V put(K key, V value) {
995 >        return putVal(key, value, false);
996      }
997  
998 <    private static final Node relaxedTabAt(Node[] tab, int i) {
999 <        return (Node)UNSAFE.getObject(tab, ((long)i<<ASHIFT)+ABASE);
998 >    /** Implementation for put and putIfAbsent */
999 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1000 >        if (key == null || value == null) throw new NullPointerException();
1001 >        int hash = spread(key.hashCode());
1002 >        int binCount = 0;
1003 >        for (Node<K,V>[] tab = table;;) {
1004 >            Node<K,V> f; int n, i, fh;
1005 >            if (tab == null || (n = tab.length) == 0)
1006 >                tab = initTable();
1007 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1008 >                if (casTabAt(tab, i, null,
1009 >                             new Node<K,V>(hash, key, value, null)))
1010 >                    break;                   // no lock when adding to empty bin
1011 >            }
1012 >            else if ((fh = f.hash) == MOVED)
1013 >                tab = helpTransfer(tab, f);
1014 >            else {
1015 >                V oldVal = null;
1016 >                synchronized (f) {
1017 >                    if (tabAt(tab, i) == f) {
1018 >                        if (fh >= 0) {
1019 >                            binCount = 1;
1020 >                            for (Node<K,V> e = f;; ++binCount) {
1021 >                                K ek;
1022 >                                if (e.hash == hash &&
1023 >                                    ((ek = e.key) == key ||
1024 >                                     (ek != null && key.equals(ek)))) {
1025 >                                    oldVal = e.val;
1026 >                                    if (!onlyIfAbsent)
1027 >                                        e.val = value;
1028 >                                    break;
1029 >                                }
1030 >                                Node<K,V> pred = e;
1031 >                                if ((e = e.next) == null) {
1032 >                                    pred.next = new Node<K,V>(hash, key,
1033 >                                                              value, null);
1034 >                                    break;
1035 >                                }
1036 >                            }
1037 >                        }
1038 >                        else if (f instanceof TreeBin) {
1039 >                            Node<K,V> p;
1040 >                            binCount = 2;
1041 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1042 >                                                           value)) != null) {
1043 >                                oldVal = p.val;
1044 >                                if (!onlyIfAbsent)
1045 >                                    p.val = value;
1046 >                            }
1047 >                        }
1048 >                    }
1049 >                }
1050 >                if (binCount != 0) {
1051 >                    if (binCount >= TREEIFY_THRESHOLD)
1052 >                        treeifyBin(tab, i);
1053 >                    if (oldVal != null)
1054 >                        return oldVal;
1055 >                    break;
1056 >                }
1057 >            }
1058 >        }
1059 >        addCount(1L, binCount);
1060 >        return null;
1061      }
1062  
1063 <    private static final void relaxedSetTabAt(Node[] tab, int i, Node v) {
1064 <        UNSAFE.putObject(tab, ((long)i<<ASHIFT)+ABASE, v);
1063 >    /**
1064 >     * Copies all of the mappings from the specified map to this one.
1065 >     * These mappings replace any mappings that this map had for any of the
1066 >     * keys currently in the specified map.
1067 >     *
1068 >     * @param m mappings to be stored in this map
1069 >     */
1070 >    public void putAll(Map<? extends K, ? extends V> m) {
1071 >        tryPresize(m.size());
1072 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1073 >            putVal(e.getKey(), e.getValue(), false);
1074      }
1075  
1076 <    /* ---------------- Access and update operations -------------- */
1076 >    /**
1077 >     * Removes the key (and its corresponding value) from this map.
1078 >     * This method does nothing if the key is not in the map.
1079 >     *
1080 >     * @param  key the key that needs to be removed
1081 >     * @return the previous value associated with {@code key}, or
1082 >     *         {@code null} if there was no mapping for {@code key}
1083 >     * @throws NullPointerException if the specified key is null
1084 >     */
1085 >    public V remove(Object key) {
1086 >        return replaceNode(key, null, null);
1087 >    }
1088  
1089 <    /** Implementation for get and containsKey **/
1090 <    private final Object internalGet(Object k) {
1091 <        int h = spread(k.hashCode());
1092 <        Node[] tab = table;
1093 <        retry: while (tab != null) {
1094 <            Node e = tabAt(tab, (tab.length - 1) & h);
1095 <            while (e != null) {
1096 <                int eh = e.hash;
1097 <                if (eh == h) {
1098 <                    Object ek = e.key, ev = e.val;
1099 <                    if (ev != null && ek != null && (k == ek || k.equals(ek)))
1100 <                        return ev;
1089 >    /**
1090 >     * Implementation for the four public remove/replace methods:
1091 >     * Replaces node value with v, conditional upon match of cv if
1092 >     * non-null.  If resulting value is null, delete.
1093 >     */
1094 >    final V replaceNode(Object key, V value, Object cv) {
1095 >        int hash = spread(key.hashCode());
1096 >        for (Node<K,V>[] tab = table;;) {
1097 >            Node<K,V> f; int n, i, fh;
1098 >            if (tab == null || (n = tab.length) == 0 ||
1099 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1100 >                break;
1101 >            else if ((fh = f.hash) == MOVED)
1102 >                tab = helpTransfer(tab, f);
1103 >            else {
1104 >                V oldVal = null;
1105 >                boolean validated = false;
1106 >                synchronized (f) {
1107 >                    if (tabAt(tab, i) == f) {
1108 >                        if (fh >= 0) {
1109 >                            validated = true;
1110 >                            for (Node<K,V> e = f, pred = null;;) {
1111 >                                K ek;
1112 >                                if (e.hash == hash &&
1113 >                                    ((ek = e.key) == key ||
1114 >                                     (ek != null && key.equals(ek)))) {
1115 >                                    V ev = e.val;
1116 >                                    if (cv == null || cv == ev ||
1117 >                                        (ev != null && cv.equals(ev))) {
1118 >                                        oldVal = ev;
1119 >                                        if (value != null)
1120 >                                            e.val = value;
1121 >                                        else if (pred != null)
1122 >                                            pred.next = e.next;
1123 >                                        else
1124 >                                            setTabAt(tab, i, e.next);
1125 >                                    }
1126 >                                    break;
1127 >                                }
1128 >                                pred = e;
1129 >                                if ((e = e.next) == null)
1130 >                                    break;
1131 >                            }
1132 >                        }
1133 >                        else if (f instanceof TreeBin) {
1134 >                            validated = true;
1135 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1136 >                            TreeNode<K,V> r, p;
1137 >                            if ((r = t.root) != null &&
1138 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1139 >                                V pv = p.val;
1140 >                                if (cv == null || cv == pv ||
1141 >                                    (pv != null && cv.equals(pv))) {
1142 >                                    oldVal = pv;
1143 >                                    if (value != null)
1144 >                                        p.val = value;
1145 >                                    else if (t.removeTreeNode(p))
1146 >                                        setTabAt(tab, i, untreeify(t.first));
1147 >                                }
1148 >                            }
1149 >                        }
1150 >                    }
1151                  }
1152 <                else if (eh < 0) { // bin was moved during resize
1153 <                    tab = (Node[])e.key;
1154 <                    continue retry;
1152 >                if (validated) {
1153 >                    if (oldVal != null) {
1154 >                        if (value == null)
1155 >                            addCount(-1L, -1);
1156 >                        return oldVal;
1157 >                    }
1158 >                    break;
1159                  }
362                e = e.next;
1160              }
364            break;
1161          }
1162          return null;
1163      }
1164  
1165 <    /** Implementation for put and putIfAbsent **/
1166 <    private final Object internalPut(Object k, Object v, boolean replace) {
1167 <        int h = spread(k.hashCode());
1168 <        Object oldVal = null;  // the previous value or null if none
1169 <        Node[] tab = table;
1165 >    /**
1166 >     * Removes all of the mappings from this map.
1167 >     */
1168 >    public void clear() {
1169 >        long delta = 0L; // negative number of deletions
1170 >        int i = 0;
1171 >        Node<K,V>[] tab = table;
1172 >        while (tab != null && i < tab.length) {
1173 >            int fh;
1174 >            Node<K,V> f = tabAt(tab, i);
1175 >            if (f == null)
1176 >                ++i;
1177 >            else if ((fh = f.hash) == MOVED) {
1178 >                tab = helpTransfer(tab, f);
1179 >                i = 0; // restart
1180 >            }
1181 >            else {
1182 >                synchronized (f) {
1183 >                    if (tabAt(tab, i) == f) {
1184 >                        Node<K,V> p = (fh >= 0 ? f :
1185 >                                       (f instanceof TreeBin) ?
1186 >                                       ((TreeBin<K,V>)f).first : null);
1187 >                        while (p != null) {
1188 >                            --delta;
1189 >                            p = p.next;
1190 >                        }
1191 >                        setTabAt(tab, i++, null);
1192 >                    }
1193 >                }
1194 >            }
1195 >        }
1196 >        if (delta != 0L)
1197 >            addCount(delta, -1);
1198 >    }
1199 >
1200 >    /**
1201 >     * Returns a {@link Set} view of the keys contained in this map.
1202 >     * The set is backed by the map, so changes to the map are
1203 >     * reflected in the set, and vice-versa. The set supports element
1204 >     * removal, which removes the corresponding mapping from this map,
1205 >     * via the {@code Iterator.remove}, {@code Set.remove},
1206 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1207 >     * operations.  It does not support the {@code add} or
1208 >     * {@code addAll} operations.
1209 >     *
1210 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 >     * that will never throw {@link ConcurrentModificationException},
1212 >     * and guarantees to traverse elements as they existed upon
1213 >     * construction of the iterator, and may (but is not guaranteed to)
1214 >     * reflect any modifications subsequent to construction.
1215 >     *
1216 >     * @return the set view
1217 >     */
1218 >    public KeySetView<K,V> keySet() {
1219 >        KeySetView<K,V> ks;
1220 >        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1221 >    }
1222 >
1223 >    /**
1224 >     * Returns a {@link Collection} view of the values contained in this map.
1225 >     * The collection is backed by the map, so changes to the map are
1226 >     * reflected in the collection, and vice-versa.  The collection
1227 >     * supports element removal, which removes the corresponding
1228 >     * mapping from this map, via the {@code Iterator.remove},
1229 >     * {@code Collection.remove}, {@code removeAll},
1230 >     * {@code retainAll}, and {@code clear} operations.  It does not
1231 >     * support the {@code add} or {@code addAll} operations.
1232 >     *
1233 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1234 >     * that will never throw {@link ConcurrentModificationException},
1235 >     * and guarantees to traverse elements as they existed upon
1236 >     * construction of the iterator, and may (but is not guaranteed to)
1237 >     * reflect any modifications subsequent to construction.
1238 >     *
1239 >     * @return the collection view
1240 >     */
1241 >    public Collection<V> values() {
1242 >        ValuesView<K,V> vs;
1243 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1244 >    }
1245 >
1246 >    /**
1247 >     * Returns a {@link Set} view of the mappings contained in this map.
1248 >     * The set is backed by the map, so changes to the map are
1249 >     * reflected in the set, and vice-versa.  The set supports element
1250 >     * removal, which removes the corresponding mapping from the map,
1251 >     * via the {@code Iterator.remove}, {@code Set.remove},
1252 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1253 >     * operations.
1254 >     *
1255 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1256 >     * that will never throw {@link ConcurrentModificationException},
1257 >     * and guarantees to traverse elements as they existed upon
1258 >     * construction of the iterator, and may (but is not guaranteed to)
1259 >     * reflect any modifications subsequent to construction.
1260 >     *
1261 >     * @return the set view
1262 >     */
1263 >    public Set<Map.Entry<K,V>> entrySet() {
1264 >        EntrySetView<K,V> es;
1265 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1266 >    }
1267 >
1268 >    /**
1269 >     * Returns the hash code value for this {@link Map}, i.e.,
1270 >     * the sum of, for each key-value pair in the map,
1271 >     * {@code key.hashCode() ^ value.hashCode()}.
1272 >     *
1273 >     * @return the hash code value for this map
1274 >     */
1275 >    public int hashCode() {
1276 >        int h = 0;
1277 >        Node<K,V>[] t;
1278 >        if ((t = table) != null) {
1279 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1280 >            for (Node<K,V> p; (p = it.advance()) != null; )
1281 >                h += p.key.hashCode() ^ p.val.hashCode();
1282 >        }
1283 >        return h;
1284 >    }
1285 >
1286 >    /**
1287 >     * Returns a string representation of this map.  The string
1288 >     * representation consists of a list of key-value mappings (in no
1289 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1290 >     * mappings are separated by the characters {@code ", "} (comma
1291 >     * and space).  Each key-value mapping is rendered as the key
1292 >     * followed by an equals sign ("{@code =}") followed by the
1293 >     * associated value.
1294 >     *
1295 >     * @return a string representation of this map
1296 >     */
1297 >    public String toString() {
1298 >        Node<K,V>[] t;
1299 >        int f = (t = table) == null ? 0 : t.length;
1300 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301 >        StringBuilder sb = new StringBuilder();
1302 >        sb.append('{');
1303 >        Node<K,V> p;
1304 >        if ((p = it.advance()) != null) {
1305 >            for (;;) {
1306 >                K k = p.key;
1307 >                V v = p.val;
1308 >                sb.append(k == this ? "(this Map)" : k);
1309 >                sb.append('=');
1310 >                sb.append(v == this ? "(this Map)" : v);
1311 >                if ((p = it.advance()) == null)
1312 >                    break;
1313 >                sb.append(',').append(' ');
1314 >            }
1315 >        }
1316 >        return sb.append('}').toString();
1317 >    }
1318 >
1319 >    /**
1320 >     * Compares the specified object with this map for equality.
1321 >     * Returns {@code true} if the given object is a map with the same
1322 >     * mappings as this map.  This operation may return misleading
1323 >     * results if either map is concurrently modified during execution
1324 >     * of this method.
1325 >     *
1326 >     * @param o object to be compared for equality with this map
1327 >     * @return {@code true} if the specified object is equal to this map
1328 >     */
1329 >    public boolean equals(Object o) {
1330 >        if (o != this) {
1331 >            if (!(o instanceof Map))
1332 >                return false;
1333 >            Map<?,?> m = (Map<?,?>) o;
1334 >            Node<K,V>[] t;
1335 >            int f = (t = table) == null ? 0 : t.length;
1336 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1337 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1338 >                V val = p.val;
1339 >                Object v = m.get(p.key);
1340 >                if (v == null || (v != val && !v.equals(val)))
1341 >                    return false;
1342 >            }
1343 >            for (Map.Entry<?,?> e : m.entrySet()) {
1344 >                Object mk, mv, v;
1345 >                if ((mk = e.getKey()) == null ||
1346 >                    (mv = e.getValue()) == null ||
1347 >                    (v = get(mk)) == null ||
1348 >                    (mv != v && !mv.equals(v)))
1349 >                    return false;
1350 >            }
1351 >        }
1352 >        return true;
1353 >    }
1354 >
1355 >    /**
1356 >     * Stripped-down version of helper class used in previous version,
1357 >     * declared for the sake of serialization compatibility
1358 >     */
1359 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1360 >        private static final long serialVersionUID = 2249069246763182397L;
1361 >        final float loadFactor;
1362 >        Segment(float lf) { this.loadFactor = lf; }
1363 >    }
1364 >
1365 >    /**
1366 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1367 >     * stream (i.e., serializes it).
1368 >     * @param s the stream
1369 >     * @serialData
1370 >     * the key (Object) and value (Object)
1371 >     * for each key-value mapping, followed by a null pair.
1372 >     * The key-value mappings are emitted in no particular order.
1373 >     */
1374 >    private void writeObject(java.io.ObjectOutputStream s)
1375 >        throws java.io.IOException {
1376 >        // For serialization compatibility
1377 >        // Emulate segment calculation from previous version of this class
1378 >        int sshift = 0;
1379 >        int ssize = 1;
1380 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381 >            ++sshift;
1382 >            ssize <<= 1;
1383 >        }
1384 >        int segmentShift = 32 - sshift;
1385 >        int segmentMask = ssize - 1;
1386 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1387 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1388 >        for (int i = 0; i < segments.length; ++i)
1389 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1390 >        s.putFields().put("segments", segments);
1391 >        s.putFields().put("segmentShift", segmentShift);
1392 >        s.putFields().put("segmentMask", segmentMask);
1393 >        s.writeFields();
1394 >
1395 >        Node<K,V>[] t;
1396 >        if ((t = table) != null) {
1397 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1398 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1399 >                s.writeObject(p.key);
1400 >                s.writeObject(p.val);
1401 >            }
1402 >        }
1403 >        s.writeObject(null);
1404 >        s.writeObject(null);
1405 >        segments = null; // throw away
1406 >    }
1407 >
1408 >    /**
1409 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1410 >     * @param s the stream
1411 >     */
1412 >    private void readObject(java.io.ObjectInputStream s)
1413 >        throws java.io.IOException, ClassNotFoundException {
1414 >        /*
1415 >         * To improve performance in typical cases, we create nodes
1416 >         * while reading, then place in table once size is known.
1417 >         * However, we must also validate uniqueness and deal with
1418 >         * overpopulated bins while doing so, which requires
1419 >         * specialized versions of putVal mechanics.
1420 >         */
1421 >        sizeCtl = -1; // force exclusion for table construction
1422 >        s.defaultReadObject();
1423 >        long size = 0L;
1424 >        Node<K,V> p = null;
1425          for (;;) {
1426 <            Node e; int i;
1427 <            if (tab == null)
1428 <                tab = grow(0);
1429 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1430 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1426 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1427 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1428 >            if (k != null && v != null) {
1429 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1430 >                ++size;
1431 >            }
1432 >            else
1433 >                break;
1434 >        }
1435 >        if (size == 0L)
1436 >            sizeCtl = 0;
1437 >        else {
1438 >            int n;
1439 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1440 >                n = MAXIMUM_CAPACITY;
1441 >            else {
1442 >                int sz = (int)size;
1443 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1444 >            }
1445 >            @SuppressWarnings({"rawtypes","unchecked"})
1446 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1447 >            int mask = n - 1;
1448 >            long added = 0L;
1449 >            while (p != null) {
1450 >                boolean insertAtFront;
1451 >                Node<K,V> next = p.next, first;
1452 >                int h = p.hash, j = h & mask;
1453 >                if ((first = tabAt(tab, j)) == null)
1454 >                    insertAtFront = true;
1455 >                else {
1456 >                    K k = p.key;
1457 >                    if (first.hash < 0) {
1458 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1459 >                        if (t.putTreeVal(h, k, p.val) == null)
1460 >                            ++added;
1461 >                        insertAtFront = false;
1462 >                    }
1463 >                    else {
1464 >                        int binCount = 0;
1465 >                        insertAtFront = true;
1466 >                        Node<K,V> q; K qk;
1467 >                        for (q = first; q != null; q = q.next) {
1468 >                            if (q.hash == h &&
1469 >                                ((qk = q.key) == k ||
1470 >                                 (qk != null && k.equals(qk)))) {
1471 >                                insertAtFront = false;
1472 >                                break;
1473 >                            }
1474 >                            ++binCount;
1475 >                        }
1476 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1477 >                            insertAtFront = false;
1478 >                            ++added;
1479 >                            p.next = first;
1480 >                            TreeNode<K,V> hd = null, tl = null;
1481 >                            for (q = p; q != null; q = q.next) {
1482 >                                TreeNode<K,V> t = new TreeNode<K,V>
1483 >                                    (q.hash, q.key, q.val, null, null);
1484 >                                if ((t.prev = tl) == null)
1485 >                                    hd = t;
1486 >                                else
1487 >                                    tl.next = t;
1488 >                                tl = t;
1489 >                            }
1490 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1491 >                        }
1492 >                    }
1493 >                }
1494 >                if (insertAtFront) {
1495 >                    ++added;
1496 >                    p.next = first;
1497 >                    setTabAt(tab, j, p);
1498 >                }
1499 >                p = next;
1500 >            }
1501 >            table = tab;
1502 >            sizeCtl = n - (n >>> 2);
1503 >            baseCount = added;
1504 >        }
1505 >    }
1506 >
1507 >    // ConcurrentMap methods
1508 >
1509 >    /**
1510 >     * {@inheritDoc}
1511 >     *
1512 >     * @return the previous value associated with the specified key,
1513 >     *         or {@code null} if there was no mapping for the key
1514 >     * @throws NullPointerException if the specified key or value is null
1515 >     */
1516 >    public V putIfAbsent(K key, V value) {
1517 >        return putVal(key, value, true);
1518 >    }
1519 >
1520 >    /**
1521 >     * {@inheritDoc}
1522 >     *
1523 >     * @throws NullPointerException if the specified key is null
1524 >     */
1525 >    public boolean remove(Object key, Object value) {
1526 >        if (key == null)
1527 >            throw new NullPointerException();
1528 >        return value != null && replaceNode(key, null, value) != null;
1529 >    }
1530 >
1531 >    /**
1532 >     * {@inheritDoc}
1533 >     *
1534 >     * @throws NullPointerException if any of the arguments are null
1535 >     */
1536 >    public boolean replace(K key, V oldValue, V newValue) {
1537 >        if (key == null || oldValue == null || newValue == null)
1538 >            throw new NullPointerException();
1539 >        return replaceNode(key, newValue, oldValue) != null;
1540 >    }
1541 >
1542 >    /**
1543 >     * {@inheritDoc}
1544 >     *
1545 >     * @return the previous value associated with the specified key,
1546 >     *         or {@code null} if there was no mapping for the key
1547 >     * @throws NullPointerException if the specified key or value is null
1548 >     */
1549 >    public V replace(K key, V value) {
1550 >        if (key == null || value == null)
1551 >            throw new NullPointerException();
1552 >        return replaceNode(key, value, null);
1553 >    }
1554 >
1555 >    // Overrides of JDK8+ Map extension method defaults
1556 >
1557 >    /**
1558 >     * Returns the value to which the specified key is mapped, or the
1559 >     * given default value if this map contains no mapping for the
1560 >     * key.
1561 >     *
1562 >     * @param key the key whose associated value is to be returned
1563 >     * @param defaultValue the value to return if this map contains
1564 >     * no mapping for the given key
1565 >     * @return the mapping for the key, if present; else the default value
1566 >     * @throws NullPointerException if the specified key is null
1567 >     */
1568 >    public V getOrDefault(Object key, V defaultValue) {
1569 >        V v;
1570 >        return (v = get(key)) == null ? defaultValue : v;
1571 >    }
1572 >
1573 >    public void forEach(BiAction<? super K, ? super V> action) {
1574 >        if (action == null) throw new NullPointerException();
1575 >        Node<K,V>[] t;
1576 >        if ((t = table) != null) {
1577 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 >                action.apply(p.key, p.val);
1580 >            }
1581 >        }
1582 >    }
1583 >
1584 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1585 >        if (function == null) throw new NullPointerException();
1586 >        Node<K,V>[] t;
1587 >        if ((t = table) != null) {
1588 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1589 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1590 >                V oldValue = p.val;
1591 >                for (K key = p.key;;) {
1592 >                    V newValue = function.apply(key, oldValue);
1593 >                    if (newValue == null)
1594 >                        throw new NullPointerException();
1595 >                    if (replaceNode(key, newValue, oldValue) != null ||
1596 >                        (oldValue = get(key)) == null)
1597 >                        break;
1598 >                }
1599 >            }
1600 >        }
1601 >    }
1602 >
1603 >    /**
1604 >     * If the specified key is not already associated with a value,
1605 >     * attempts to compute its value using the given mapping function
1606 >     * and enters it into this map unless {@code null}.  The entire
1607 >     * method invocation is performed atomically, so the function is
1608 >     * applied at most once per key.  Some attempted update operations
1609 >     * on this map by other threads may be blocked while computation
1610 >     * is in progress, so the computation should be short and simple,
1611 >     * and must not attempt to update any other mappings of this map.
1612 >     *
1613 >     * @param key key with which the specified value is to be associated
1614 >     * @param mappingFunction the function to compute a value
1615 >     * @return the current (existing or computed) value associated with
1616 >     *         the specified key, or null if the computed value is null
1617 >     * @throws NullPointerException if the specified key or mappingFunction
1618 >     *         is null
1619 >     * @throws IllegalStateException if the computation detectably
1620 >     *         attempts a recursive update to this map that would
1621 >     *         otherwise never complete
1622 >     * @throws RuntimeException or Error if the mappingFunction does so,
1623 >     *         in which case the mapping is left unestablished
1624 >     */
1625 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1626 >        if (key == null || mappingFunction == null)
1627 >            throw new NullPointerException();
1628 >        int h = spread(key.hashCode());
1629 >        V val = null;
1630 >        int binCount = 0;
1631 >        for (Node<K,V>[] tab = table;;) {
1632 >            Node<K,V> f; int n, i, fh;
1633 >            if (tab == null || (n = tab.length) == 0)
1634 >                tab = initTable();
1635 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1636 >                Node<K,V> r = new ReservationNode<K,V>();
1637 >                synchronized (r) {
1638 >                    if (casTabAt(tab, i, null, r)) {
1639 >                        binCount = 1;
1640 >                        Node<K,V> node = null;
1641 >                        try {
1642 >                            if ((val = mappingFunction.apply(key)) != null)
1643 >                                node = new Node<K,V>(h, key, val, null);
1644 >                        } finally {
1645 >                            setTabAt(tab, i, node);
1646 >                        }
1647 >                    }
1648 >                }
1649 >                if (binCount != 0)
1650                      break;
1651              }
1652 <            else if (e.hash < 0)
1653 <                tab = (Node[])e.key;
1652 >            else if ((fh = f.hash) == MOVED)
1653 >                tab = helpTransfer(tab, f);
1654              else {
1655 <                boolean validated = false;
1656 <                boolean checkSize = false;
1657 <                synchronized (e) {
1658 <                    Node first = e;
1659 <                    for (;;) {
1660 <                        Object ek, ev;
1661 <                        if ((ev = e.val) == null)
1662 <                            break;
1663 <                        if (e.hash == h && (ek = e.key) != null &&
1664 <                            (k == ek || k.equals(ek))) {
1665 <                            if (tabAt(tab, i) == first) {
1666 <                                validated = true;
1667 <                                oldVal = ev;
1668 <                                if (replace)
1669 <                                    e.val = v;
1655 >                boolean added = false;
1656 >                synchronized (f) {
1657 >                    if (tabAt(tab, i) == f) {
1658 >                        if (fh >= 0) {
1659 >                            binCount = 1;
1660 >                            for (Node<K,V> e = f;; ++binCount) {
1661 >                                K ek; V ev;
1662 >                                if (e.hash == h &&
1663 >                                    ((ek = e.key) == key ||
1664 >                                     (ek != null && key.equals(ek)))) {
1665 >                                    val = e.val;
1666 >                                    break;
1667 >                                }
1668 >                                Node<K,V> pred = e;
1669 >                                if ((e = e.next) == null) {
1670 >                                    if ((val = mappingFunction.apply(key)) != null) {
1671 >                                        added = true;
1672 >                                        pred.next = new Node<K,V>(h, key, val, null);
1673 >                                    }
1674 >                                    break;
1675 >                                }
1676                              }
401                            break;
1677                          }
1678 <                        Node last = e;
1679 <                        if ((e = e.next) == null) {
1680 <                            if (tabAt(tab, i) == first) {
1681 <                                validated = true;
1682 <                                last.next = new Node(h, k, v, null);
1683 <                                if (last != first || tab.length <= 64)
1684 <                                    checkSize = true;
1678 >                        else if (f instanceof TreeBin) {
1679 >                            binCount = 2;
1680 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1681 >                            TreeNode<K,V> r, p;
1682 >                            if ((r = t.root) != null &&
1683 >                                (p = r.findTreeNode(h, key, null)) != null)
1684 >                                val = p.val;
1685 >                            else if ((val = mappingFunction.apply(key)) != null) {
1686 >                                added = true;
1687 >                                t.putTreeVal(h, key, val);
1688                              }
411                            break;
1689                          }
1690                      }
1691                  }
1692 <                if (validated) {
1693 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1694 <                        resizing == 0 && counter.sum() >= threshold)
1695 <                        grow(0);
1692 >                if (binCount != 0) {
1693 >                    if (binCount >= TREEIFY_THRESHOLD)
1694 >                        treeifyBin(tab, i);
1695 >                    if (!added)
1696 >                        return val;
1697                      break;
1698                  }
1699              }
1700          }
1701 <        if (oldVal == null)
1702 <            counter.increment();
1703 <        return oldVal;
1701 >        if (val != null)
1702 >            addCount(1L, binCount);
1703 >        return val;
1704      }
1705  
1706      /**
1707 <     * Covers the four public remove/replace methods: Replaces node
1708 <     * value with v, conditional upon match of cv if non-null.  If
1709 <     * resulting value is null, delete.
1710 <     */
1711 <    private final Object internalReplace(Object k, Object v, Object cv) {
1712 <        int h = spread(k.hashCode());
1713 <        Object oldVal = null;
1714 <        Node e; int i;
1715 <        Node[] tab = table;
1716 <        while (tab != null &&
1717 <               (e = tabAt(tab, i = (tab.length - 1) & h)) != null) {
1718 <            if (e.hash < 0)
1719 <                tab = (Node[])e.key;
1707 >     * If the value for the specified key is present, attempts to
1708 >     * compute a new mapping given the key and its current mapped
1709 >     * value.  The entire method invocation is performed atomically.
1710 >     * Some attempted update operations on this map by other threads
1711 >     * may be blocked while computation is in progress, so the
1712 >     * computation should be short and simple, and must not attempt to
1713 >     * update any other mappings of this map.
1714 >     *
1715 >     * @param key key with which a value may be associated
1716 >     * @param remappingFunction the function to compute a value
1717 >     * @return the new value associated with the specified key, or null if none
1718 >     * @throws NullPointerException if the specified key or remappingFunction
1719 >     *         is null
1720 >     * @throws IllegalStateException if the computation detectably
1721 >     *         attempts a recursive update to this map that would
1722 >     *         otherwise never complete
1723 >     * @throws RuntimeException or Error if the remappingFunction does so,
1724 >     *         in which case the mapping is unchanged
1725 >     */
1726 >    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1727 >        if (key == null || remappingFunction == null)
1728 >            throw new NullPointerException();
1729 >        int h = spread(key.hashCode());
1730 >        V val = null;
1731 >        int delta = 0;
1732 >        int binCount = 0;
1733 >        for (Node<K,V>[] tab = table;;) {
1734 >            Node<K,V> f; int n, i, fh;
1735 >            if (tab == null || (n = tab.length) == 0)
1736 >                tab = initTable();
1737 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1738 >                break;
1739 >            else if ((fh = f.hash) == MOVED)
1740 >                tab = helpTransfer(tab, f);
1741              else {
1742 <                boolean validated = false;
1743 <                boolean deleted = false;
1744 <                synchronized (e) {
1745 <                    Node pred = null;
1746 <                    Node first = e;
1747 <                    for (;;) {
1748 <                        Object ek, ev;
1749 <                        if ((ev = e.val) == null)
1750 <                            break;
1751 <                        if (e.hash == h && (ek = e.key) != null &&
1752 <                            (k == ek || k.equals(ek))) {
1753 <                            if (tabAt(tab, i) == first) {
1754 <                                validated = true;
1755 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1756 <                                    oldVal = ev;
458 <                                    if ((e.val = v) == null) {
459 <                                        deleted = true;
460 <                                        Node en = e.next;
1742 >                synchronized (f) {
1743 >                    if (tabAt(tab, i) == f) {
1744 >                        if (fh >= 0) {
1745 >                            binCount = 1;
1746 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1747 >                                K ek;
1748 >                                if (e.hash == h &&
1749 >                                    ((ek = e.key) == key ||
1750 >                                     (ek != null && key.equals(ek)))) {
1751 >                                    val = remappingFunction.apply(key, e.val);
1752 >                                    if (val != null)
1753 >                                        e.val = val;
1754 >                                    else {
1755 >                                        delta = -1;
1756 >                                        Node<K,V> en = e.next;
1757                                          if (pred != null)
1758                                              pred.next = en;
1759                                          else
1760                                              setTabAt(tab, i, en);
1761                                      }
1762 +                                    break;
1763                                  }
1764 +                                pred = e;
1765 +                                if ((e = e.next) == null)
1766 +                                    break;
1767                              }
468                            break;
1768                          }
1769 <                        pred = e;
1770 <                        if ((e = e.next) == null) {
1771 <                            if (tabAt(tab, i) == first)
1772 <                                validated = true;
1773 <                            break;
1769 >                        else if (f instanceof TreeBin) {
1770 >                            binCount = 2;
1771 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1772 >                            TreeNode<K,V> r, p;
1773 >                            if ((r = t.root) != null &&
1774 >                                (p = r.findTreeNode(h, key, null)) != null) {
1775 >                                val = remappingFunction.apply(key, p.val);
1776 >                                if (val != null)
1777 >                                    p.val = val;
1778 >                                else {
1779 >                                    delta = -1;
1780 >                                    if (t.removeTreeNode(p))
1781 >                                        setTabAt(tab, i, untreeify(t.first));
1782 >                                }
1783 >                            }
1784                          }
1785                      }
1786                  }
1787 <                if (validated) {
479 <                    if (deleted)
480 <                        counter.decrement();
1787 >                if (binCount != 0)
1788                      break;
482                }
1789              }
1790          }
1791 <        return oldVal;
1791 >        if (delta != 0)
1792 >            addCount((long)delta, binCount);
1793 >        return val;
1794      }
1795  
1796 <    /** Implementation for computeIfAbsent and compute */
1797 <    @SuppressWarnings("unchecked")
1798 <    private final V internalCompute(K k,
1799 <                                    MappingFunction<? super K, ? extends V> f,
1800 <                                    boolean replace) {
1801 <        int h = spread(k.hashCode());
1796 >    /**
1797 >     * Attempts to compute a mapping for the specified key and its
1798 >     * current mapped value (or {@code null} if there is no current
1799 >     * mapping). The entire method invocation is performed atomically.
1800 >     * Some attempted update operations on this map by other threads
1801 >     * may be blocked while computation is in progress, so the
1802 >     * computation should be short and simple, and must not attempt to
1803 >     * update any other mappings of this Map.
1804 >     *
1805 >     * @param key key with which the specified value is to be associated
1806 >     * @param remappingFunction the function to compute a value
1807 >     * @return the new value associated with the specified key, or null if none
1808 >     * @throws NullPointerException if the specified key or remappingFunction
1809 >     *         is null
1810 >     * @throws IllegalStateException if the computation detectably
1811 >     *         attempts a recursive update to this map that would
1812 >     *         otherwise never complete
1813 >     * @throws RuntimeException or Error if the remappingFunction does so,
1814 >     *         in which case the mapping is unchanged
1815 >     */
1816 >    public V compute(K key,
1817 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1818 >        if (key == null || remappingFunction == null)
1819 >            throw new NullPointerException();
1820 >        int h = spread(key.hashCode());
1821          V val = null;
1822 <        boolean added = false;
1823 <        boolean validated = false;
1824 <        Node[] tab = table;
1825 <        do {
1826 <            Node e; int i;
1827 <            if (tab == null)
1828 <                tab = grow(0);
1829 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1830 <                Node node = new Node(h, k, null, null);
1831 <                synchronized (node) {
1832 <                    if (casTabAt(tab, i, null, node)) {
1833 <                        validated = true;
1822 >        int delta = 0;
1823 >        int binCount = 0;
1824 >        for (Node<K,V>[] tab = table;;) {
1825 >            Node<K,V> f; int n, i, fh;
1826 >            if (tab == null || (n = tab.length) == 0)
1827 >                tab = initTable();
1828 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1829 >                Node<K,V> r = new ReservationNode<K,V>();
1830 >                synchronized (r) {
1831 >                    if (casTabAt(tab, i, null, r)) {
1832 >                        binCount = 1;
1833 >                        Node<K,V> node = null;
1834                          try {
1835 <                            val = f.map(k);
1836 <                            if (val != null) {
1837 <                                node.val = val;
511 <                                added = true;
1835 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1836 >                                delta = 1;
1837 >                                node = new Node<K,V>(h, key, val, null);
1838                              }
1839                          } finally {
1840 <                            if (!added)
515 <                                setTabAt(tab, i, null);
1840 >                            setTabAt(tab, i, node);
1841                          }
1842                      }
1843                  }
1844 +                if (binCount != 0)
1845 +                    break;
1846              }
1847 <            else if (e.hash < 0)
1848 <                tab = (Node[])e.key;
522 <            else if (Thread.holdsLock(e))
523 <                throw new IllegalStateException("Recursive map computation");
1847 >            else if ((fh = f.hash) == MOVED)
1848 >                tab = helpTransfer(tab, f);
1849              else {
1850 <                boolean checkSize = false;
1851 <                synchronized (e) {
1852 <                    Node first = e;
1853 <                    for (;;) {
1854 <                        Object ek, ev;
1855 <                        if ((ev = e.val) == null)
1856 <                            break;
1857 <                        if (e.hash == h && (ek = e.key) != null &&
1858 <                            (k == ek || k.equals(ek))) {
1859 <                            if (tabAt(tab, i) == first) {
1860 <                                validated = true;
1861 <                                if (replace && (ev = f.map(k)) != null)
1862 <                                    e.val = ev;
1863 <                                val = (V)ev;
1850 >                synchronized (f) {
1851 >                    if (tabAt(tab, i) == f) {
1852 >                        if (fh >= 0) {
1853 >                            binCount = 1;
1854 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1855 >                                K ek;
1856 >                                if (e.hash == h &&
1857 >                                    ((ek = e.key) == key ||
1858 >                                     (ek != null && key.equals(ek)))) {
1859 >                                    val = remappingFunction.apply(key, e.val);
1860 >                                    if (val != null)
1861 >                                        e.val = val;
1862 >                                    else {
1863 >                                        delta = -1;
1864 >                                        Node<K,V> en = e.next;
1865 >                                        if (pred != null)
1866 >                                            pred.next = en;
1867 >                                        else
1868 >                                            setTabAt(tab, i, en);
1869 >                                    }
1870 >                                    break;
1871 >                                }
1872 >                                pred = e;
1873 >                                if ((e = e.next) == null) {
1874 >                                    val = remappingFunction.apply(key, null);
1875 >                                    if (val != null) {
1876 >                                        delta = 1;
1877 >                                        pred.next =
1878 >                                            new Node<K,V>(h, key, val, null);
1879 >                                    }
1880 >                                    break;
1881 >                                }
1882                              }
540                            break;
1883                          }
1884 <                        Node last = e;
1885 <                        if ((e = e.next) == null) {
1886 <                            if (tabAt(tab, i) == first) {
1887 <                                validated = true;
1888 <                                if ((val = f.map(k)) != null) {
1889 <                                    last.next = new Node(h, k, val, null);
1890 <                                    added = true;
1891 <                                    if (last != first || tab.length <= 64)
1892 <                                        checkSize = true;
1884 >                        else if (f instanceof TreeBin) {
1885 >                            binCount = 1;
1886 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1887 >                            TreeNode<K,V> r, p;
1888 >                            if ((r = t.root) != null)
1889 >                                p = r.findTreeNode(h, key, null);
1890 >                            else
1891 >                                p = null;
1892 >                            V pv = (p == null) ? null : p.val;
1893 >                            val = remappingFunction.apply(key, pv);
1894 >                            if (val != null) {
1895 >                                if (p != null)
1896 >                                    p.val = val;
1897 >                                else {
1898 >                                    delta = 1;
1899 >                                    t.putTreeVal(h, key, val);
1900                                  }
1901                              }
1902 <                            break;
1902 >                            else if (p != null) {
1903 >                                delta = -1;
1904 >                                if (t.removeTreeNode(p))
1905 >                                    setTabAt(tab, i, untreeify(t.first));
1906 >                            }
1907                          }
1908                      }
1909                  }
1910 <                if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1911 <                    resizing == 0 && counter.sum() >= threshold)
1912 <                    grow(0);
1913 <            }
1914 <        } while (!validated);
1915 <        if (added)
1916 <            counter.increment();
1910 >                if (binCount != 0) {
1911 >                    if (binCount >= TREEIFY_THRESHOLD)
1912 >                        treeifyBin(tab, i);
1913 >                    break;
1914 >                }
1915 >            }
1916 >        }
1917 >        if (delta != 0)
1918 >            addCount((long)delta, binCount);
1919          return val;
1920      }
1921  
1922 <    /*
1923 <     * Reclassifies nodes in each bin to new table.  Because we are
1924 <     * using power-of-two expansion, the elements from each bin must
1925 <     * either stay at same index, or move with a power of two
1926 <     * offset. We eliminate unnecessary node creation by catching
1927 <     * cases where old nodes can be reused because their next fields
1928 <     * won't change.  Statistically, at the default threshold, only
1929 <     * about one-sixth of them need cloning when a table doubles. The
1930 <     * nodes they replace will be garbage collectable as soon as they
1931 <     * are no longer referenced by any reader thread that may be in
1932 <     * the midst of concurrently traversing table.
1933 <     *
1934 <     * Transfers are done from the bottom up to preserve iterator
1935 <     * traversability. On each step, the old bin is locked,
1936 <     * moved/copied, and then replaced with a forwarding node.
1937 <     */
1938 <    private static final void transfer(Node[] tab, Node[] nextTab) {
1939 <        int n = tab.length;
1940 <        int mask = nextTab.length - 1;
1941 <        Node fwd = new Node(MOVED, nextTab, null, null);
1942 <        for (int i = n - 1; i >= 0; --i) {
1943 <            for (Node e;;) {
1944 <                if ((e = tabAt(tab, i)) == null) {
1945 <                    if (casTabAt(tab, i, e, fwd))
1946 <                        break;
1922 >    /**
1923 >     * If the specified key is not already associated with a
1924 >     * (non-null) value, associates it with the given value.
1925 >     * Otherwise, replaces the value with the results of the given
1926 >     * remapping function, or removes if {@code null}. The entire
1927 >     * method invocation is performed atomically.  Some attempted
1928 >     * update operations on this map by other threads may be blocked
1929 >     * while computation is in progress, so the computation should be
1930 >     * short and simple, and must not attempt to update any other
1931 >     * mappings of this Map.
1932 >     *
1933 >     * @param key key with which the specified value is to be associated
1934 >     * @param value the value to use if absent
1935 >     * @param remappingFunction the function to recompute a value if present
1936 >     * @return the new value associated with the specified key, or null if none
1937 >     * @throws NullPointerException if the specified key or the
1938 >     *         remappingFunction is null
1939 >     * @throws RuntimeException or Error if the remappingFunction does so,
1940 >     *         in which case the mapping is unchanged
1941 >     */
1942 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1943 >        if (key == null || value == null || remappingFunction == null)
1944 >            throw new NullPointerException();
1945 >        int h = spread(key.hashCode());
1946 >        V val = null;
1947 >        int delta = 0;
1948 >        int binCount = 0;
1949 >        for (Node<K,V>[] tab = table;;) {
1950 >            Node<K,V> f; int n, i, fh;
1951 >            if (tab == null || (n = tab.length) == 0)
1952 >                tab = initTable();
1953 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1954 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1955 >                    delta = 1;
1956 >                    val = value;
1957 >                    break;
1958                  }
1959 <                else {
1960 <                    boolean validated = false;
1961 <                    synchronized (e) {
1962 <                        int idx = e.hash & mask;
1963 <                        Node lastRun = e;
1964 <                        for (Node p = e.next; p != null; p = p.next) {
1965 <                            int j = p.hash & mask;
1966 <                            if (j != idx) {
1967 <                                idx = j;
1968 <                                lastRun = p;
1959 >            }
1960 >            else if ((fh = f.hash) == MOVED)
1961 >                tab = helpTransfer(tab, f);
1962 >            else {
1963 >                synchronized (f) {
1964 >                    if (tabAt(tab, i) == f) {
1965 >                        if (fh >= 0) {
1966 >                            binCount = 1;
1967 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1968 >                                K ek;
1969 >                                if (e.hash == h &&
1970 >                                    ((ek = e.key) == key ||
1971 >                                     (ek != null && key.equals(ek)))) {
1972 >                                    val = remappingFunction.apply(e.val, value);
1973 >                                    if (val != null)
1974 >                                        e.val = val;
1975 >                                    else {
1976 >                                        delta = -1;
1977 >                                        Node<K,V> en = e.next;
1978 >                                        if (pred != null)
1979 >                                            pred.next = en;
1980 >                                        else
1981 >                                            setTabAt(tab, i, en);
1982 >                                    }
1983 >                                    break;
1984 >                                }
1985 >                                pred = e;
1986 >                                if ((e = e.next) == null) {
1987 >                                    delta = 1;
1988 >                                    val = value;
1989 >                                    pred.next =
1990 >                                        new Node<K,V>(h, key, val, null);
1991 >                                    break;
1992 >                                }
1993                              }
1994                          }
1995 <                        if (tabAt(tab, i) == e) {
1996 <                            validated = true;
1997 <                            relaxedSetTabAt(nextTab, idx, lastRun);
1998 <                            for (Node p = e; p != lastRun; p = p.next) {
1999 <                                int h = p.hash;
2000 <                                int j = h & mask;
2001 <                                Node r = relaxedTabAt(nextTab, j);
2002 <                                relaxedSetTabAt(nextTab, j,
2003 <                                                new Node(h, p.key, p.val, r));
1995 >                        else if (f instanceof TreeBin) {
1996 >                            binCount = 2;
1997 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1998 >                            TreeNode<K,V> r = t.root;
1999 >                            TreeNode<K,V> p = (r == null) ? null :
2000 >                                r.findTreeNode(h, key, null);
2001 >                            val = (p == null) ? value :
2002 >                                remappingFunction.apply(p.val, value);
2003 >                            if (val != null) {
2004 >                                if (p != null)
2005 >                                    p.val = val;
2006 >                                else {
2007 >                                    delta = 1;
2008 >                                    t.putTreeVal(h, key, val);
2009 >                                }
2010 >                            }
2011 >                            else if (p != null) {
2012 >                                delta = -1;
2013 >                                if (t.removeTreeNode(p))
2014 >                                    setTabAt(tab, i, untreeify(t.first));
2015                              }
615                            setTabAt(tab, i, fwd);
2016                          }
2017                      }
2018 <                    if (validated)
2019 <                        break;
2018 >                }
2019 >                if (binCount != 0) {
2020 >                    if (binCount >= TREEIFY_THRESHOLD)
2021 >                        treeifyBin(tab, i);
2022 >                    break;
2023                  }
2024              }
2025          }
2026 +        if (delta != 0)
2027 +            addCount((long)delta, binCount);
2028 +        return val;
2029      }
2030  
2031 +    // Hashtable legacy methods
2032 +
2033      /**
2034 <     * If not already resizing, initializes or creates next table and
2035 <     * transfers bins. Rechecks occupancy after a transfer to see if
2036 <     * another resize is already needed because resizings are lagging
2037 <     * additions.
2038 <     *
2039 <     * @param sizeHint overridden capacity target (nonzero only from putAll)
2040 <     * @return current table
2041 <     */
2042 <    private final Node[] grow(int sizeHint) {
2043 <        if (resizing == 0 &&
2044 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
2045 <            try {
2034 >     * Legacy method testing if some key maps into the specified value
2035 >     * in this table.  This method is identical in functionality to
2036 >     * {@link #containsValue(Object)}, and exists solely to ensure
2037 >     * full compatibility with class {@link java.util.Hashtable},
2038 >     * which supported this method prior to introduction of the
2039 >     * Java Collections framework.
2040 >     *
2041 >     * @param  value a value to search for
2042 >     * @return {@code true} if and only if some key maps to the
2043 >     *         {@code value} argument in this table as
2044 >     *         determined by the {@code equals} method;
2045 >     *         {@code false} otherwise
2046 >     * @throws NullPointerException if the specified value is null
2047 >     */
2048 >    @Deprecated public boolean contains(Object value) {
2049 >        return containsValue(value);
2050 >    }
2051 >
2052 >    /**
2053 >     * Returns an enumeration of the keys in this table.
2054 >     *
2055 >     * @return an enumeration of the keys in this table
2056 >     * @see #keySet()
2057 >     */
2058 >    public Enumeration<K> keys() {
2059 >        Node<K,V>[] t;
2060 >        int f = (t = table) == null ? 0 : t.length;
2061 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2062 >    }
2063 >
2064 >    /**
2065 >     * Returns an enumeration of the values in this table.
2066 >     *
2067 >     * @return an enumeration of the values in this table
2068 >     * @see #values()
2069 >     */
2070 >    public Enumeration<V> elements() {
2071 >        Node<K,V>[] t;
2072 >        int f = (t = table) == null ? 0 : t.length;
2073 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2074 >    }
2075 >
2076 >    // ConcurrentHashMapV8-only methods
2077 >
2078 >    /**
2079 >     * Returns the number of mappings. This method should be used
2080 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2081 >     * contain more mappings than can be represented as an int. The
2082 >     * value returned is an estimate; the actual count may differ if
2083 >     * there are concurrent insertions or removals.
2084 >     *
2085 >     * @return the number of mappings
2086 >     * @since 1.8
2087 >     */
2088 >    public long mappingCount() {
2089 >        long n = sumCount();
2090 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2091 >    }
2092 >
2093 >    /**
2094 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2095 >     * from the given type to {@code Boolean.TRUE}.
2096 >     *
2097 >     * @return the new set
2098 >     * @since 1.8
2099 >     */
2100 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2101 >        return new KeySetView<K,Boolean>
2102 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2103 >    }
2104 >
2105 >    /**
2106 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2107 >     * from the given type to {@code Boolean.TRUE}.
2108 >     *
2109 >     * @param initialCapacity The implementation performs internal
2110 >     * sizing to accommodate this many elements.
2111 >     * @return the new set
2112 >     * @throws IllegalArgumentException if the initial capacity of
2113 >     * elements is negative
2114 >     * @since 1.8
2115 >     */
2116 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2117 >        return new KeySetView<K,Boolean>
2118 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2119 >    }
2120 >
2121 >    /**
2122 >     * Returns a {@link Set} view of the keys in this map, using the
2123 >     * given common mapped value for any additions (i.e., {@link
2124 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2125 >     * This is of course only appropriate if it is acceptable to use
2126 >     * the same value for all additions from this view.
2127 >     *
2128 >     * @param mappedValue the mapped value to use for any additions
2129 >     * @return the set view
2130 >     * @throws NullPointerException if the mappedValue is null
2131 >     */
2132 >    public KeySetView<K,V> keySet(V mappedValue) {
2133 >        if (mappedValue == null)
2134 >            throw new NullPointerException();
2135 >        return new KeySetView<K,V>(this, mappedValue);
2136 >    }
2137 >
2138 >    /* ---------------- Special Nodes -------------- */
2139 >
2140 >    /**
2141 >     * A node inserted at head of bins during transfer operations.
2142 >     */
2143 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2144 >        final Node<K,V>[] nextTable;
2145 >        ForwardingNode(Node<K,V>[] tab) {
2146 >            super(MOVED, null, null, null);
2147 >            this.nextTable = tab;
2148 >        }
2149 >
2150 >        Node<K,V> find(int h, Object k) {
2151 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2152 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2153 >                Node<K,V> e; int n;
2154 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2155 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2156 >                    return null;
2157                  for (;;) {
2158 <                    int cap, n;
2159 <                    Node[] tab = table;
2160 <                    if (tab == null) {
2161 <                        int c = initCap;
2162 <                        if (c < sizeHint)
2163 <                            c = sizeHint;
2164 <                        if (c == DEFAULT_CAPACITY)
2165 <                            cap = c;
647 <                        else if (c >= MAXIMUM_CAPACITY)
648 <                            cap = MAXIMUM_CAPACITY;
649 <                        else {
650 <                            cap = MINIMUM_CAPACITY;
651 <                            while (cap < c)
652 <                                cap <<= 1;
2158 >                    int eh; K ek;
2159 >                    if ((eh = e.hash) == h &&
2160 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2161 >                        return e;
2162 >                    if (eh < 0) {
2163 >                        if (e instanceof ForwardingNode) {
2164 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2165 >                            continue outer;
2166                          }
2167 +                        else
2168 +                            return e.find(h, k);
2169                      }
2170 <                    else if ((n = tab.length) < MAXIMUM_CAPACITY &&
2171 <                             (sizeHint <= 0 || n < sizeHint))
2172 <                        cap = n << 1;
2173 <                    else
2174 <                        break;
2175 <                    threshold = (int)(cap * loadFactor) - THRESHOLD_OFFSET;
2176 <                    Node[] nextTab = new Node[cap];
2177 <                    if (tab != null)
2178 <                        transfer(tab, nextTab);
2179 <                    table = nextTab;
2180 <                    if (tab == null || cap >= MAXIMUM_CAPACITY ||
2181 <                        (sizeHint > 0 && cap >= sizeHint) ||
2182 <                        counter.sum() < threshold)
2170 >                    if ((e = e.next) == null)
2171 >                        return null;
2172 >                }
2173 >            }
2174 >        }
2175 >    }
2176 >
2177 >    /**
2178 >     * A place-holder node used in computeIfAbsent and compute
2179 >     */
2180 >    static final class ReservationNode<K,V> extends Node<K,V> {
2181 >        ReservationNode() {
2182 >            super(RESERVED, null, null, null);
2183 >        }
2184 >
2185 >        Node<K,V> find(int h, Object k) {
2186 >            return null;
2187 >        }
2188 >    }
2189 >
2190 >    /* ---------------- Table Initialization and Resizing -------------- */
2191 >
2192 >    /**
2193 >     * Initializes table, using the size recorded in sizeCtl.
2194 >     */
2195 >    private final Node<K,V>[] initTable() {
2196 >        Node<K,V>[] tab; int sc;
2197 >        while ((tab = table) == null || tab.length == 0) {
2198 >            if ((sc = sizeCtl) < 0)
2199 >                Thread.yield(); // lost initialization race; just spin
2200 >            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2201 >                try {
2202 >                    if ((tab = table) == null || tab.length == 0) {
2203 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2204 >                        @SuppressWarnings({"rawtypes","unchecked"})
2205 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2206 >                        table = tab = nt;
2207 >                        sc = n - (n >>> 2);
2208 >                    }
2209 >                } finally {
2210 >                    sizeCtl = sc;
2211 >                }
2212 >                break;
2213 >            }
2214 >        }
2215 >        return tab;
2216 >    }
2217 >
2218 >    /**
2219 >     * Adds to count, and if table is too small and not already
2220 >     * resizing, initiates transfer. If already resizing, helps
2221 >     * perform transfer if work is available.  Rechecks occupancy
2222 >     * after a transfer to see if another resize is already needed
2223 >     * because resizings are lagging additions.
2224 >     *
2225 >     * @param x the count to add
2226 >     * @param check if <0, don't check resize, if <= 1 only check if uncontended
2227 >     */
2228 >    private final void addCount(long x, int check) {
2229 >        CounterCell[] as; long b, s;
2230 >        if ((as = counterCells) != null ||
2231 >            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2232 >            CounterHashCode hc; CounterCell a; long v; int m;
2233 >            boolean uncontended = true;
2234 >            if ((hc = threadCounterHashCode.get()) == null ||
2235 >                as == null || (m = as.length - 1) < 0 ||
2236 >                (a = as[m & hc.code]) == null ||
2237 >                !(uncontended =
2238 >                  U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2239 >                fullAddCount(x, hc, uncontended);
2240 >                return;
2241 >            }
2242 >            if (check <= 1)
2243 >                return;
2244 >            s = sumCount();
2245 >        }
2246 >        if (check >= 0) {
2247 >            Node<K,V>[] tab, nt; int sc;
2248 >            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2249 >                   tab.length < MAXIMUM_CAPACITY) {
2250 >                if (sc < 0) {
2251 >                    if (sc == -1 || transferIndex <= transferOrigin ||
2252 >                        (nt = nextTable) == null)
2253                          break;
2254 +                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2255 +                        transfer(tab, nt);
2256                  }
2257 <            } finally {
2258 <                resizing = 0;
2257 >                else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2258 >                    transfer(tab, null);
2259 >                s = sumCount();
2260              }
2261          }
2262 <        else if (table == null)
2263 <            Thread.yield(); // lost initialization race; just spin
2262 >    }
2263 >
2264 >    /**
2265 >     * Helps transfer if a resize is in progress.
2266 >     */
2267 >    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2268 >        Node<K,V>[] nextTab; int sc;
2269 >        if ((f instanceof ForwardingNode) &&
2270 >            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2271 >            if (nextTab == nextTable && tab == table &&
2272 >                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2273 >                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2274 >                transfer(tab, nextTab);
2275 >            return nextTab;
2276 >        }
2277          return table;
2278      }
2279  
2280      /**
2281 <     * Implementation for putAll and constructor with Map
2282 <     * argument. Tries to first override initial capacity or grow
2283 <     * based on map size to pre-allocate table space.
2281 >     * Tries to presize table to accommodate the given number of elements.
2282 >     *
2283 >     * @param size number of elements (doesn't need to be perfectly accurate)
2284       */
2285 <    private final void internalPutAll(Map<? extends K, ? extends V> m) {
2286 <        int s = m.size();
2287 <        grow((s >= (MAXIMUM_CAPACITY >>> 1)) ? s : s + (s >>> 1));
2288 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
2289 <            Object k = e.getKey();
2290 <            Object v = e.getValue();
2291 <            if (k == null || v == null)
2292 <                throw new NullPointerException();
2293 <            internalPut(k, v, true);
2285 >    private final void tryPresize(int size) {
2286 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2287 >            tableSizeFor(size + (size >>> 1) + 1);
2288 >        int sc;
2289 >        while ((sc = sizeCtl) >= 0) {
2290 >            Node<K,V>[] tab = table; int n;
2291 >            if (tab == null || (n = tab.length) == 0) {
2292 >                n = (sc > c) ? sc : c;
2293 >                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2294 >                    try {
2295 >                        if (table == tab) {
2296 >                            @SuppressWarnings({"rawtypes","unchecked"})
2297 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2298 >                            table = nt;
2299 >                            sc = n - (n >>> 2);
2300 >                        }
2301 >                    } finally {
2302 >                        sizeCtl = sc;
2303 >                    }
2304 >                }
2305 >            }
2306 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2307 >                break;
2308 >            else if (tab == table &&
2309 >                     U.compareAndSwapInt(this, SIZECTL, sc, -2))
2310 >                transfer(tab, null);
2311          }
2312      }
2313  
2314      /**
2315 <     * Implementation for clear. Steps through each bin, removing all nodes.
2315 >     * Moves and/or copies the nodes in each bin to new table. See
2316 >     * above for explanation.
2317       */
2318 <    private final void internalClear() {
2319 <        long deletions = 0L;
2320 <        int i = 0;
2321 <        Node[] tab = table;
2322 <        while (tab != null && i < tab.length) {
2323 <            Node e = tabAt(tab, i);
2324 <            if (e == null)
2325 <                ++i;
2326 <            else if (e.hash < 0)
2327 <                tab = (Node[])e.key;
2318 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2319 >        int n = tab.length, stride;
2320 >        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2321 >            stride = MIN_TRANSFER_STRIDE; // subdivide range
2322 >        if (nextTab == null) {            // initiating
2323 >            try {
2324 >                @SuppressWarnings({"rawtypes","unchecked"})
2325 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2326 >                nextTab = nt;
2327 >            } catch (Throwable ex) {      // try to cope with OOME
2328 >                sizeCtl = Integer.MAX_VALUE;
2329 >                return;
2330 >            }
2331 >            nextTable = nextTab;
2332 >            transferOrigin = n;
2333 >            transferIndex = n;
2334 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2335 >            for (int k = n; k > 0;) {    // progressively reveal ready slots
2336 >                int nextk = (k > stride) ? k - stride : 0;
2337 >                for (int m = nextk; m < k; ++m)
2338 >                    nextTab[m] = rev;
2339 >                for (int m = n + nextk; m < n + k; ++m)
2340 >                    nextTab[m] = rev;
2341 >                U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2342 >            }
2343 >        }
2344 >        int nextn = nextTab.length;
2345 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2346 >        boolean advance = true;
2347 >        boolean finishing = false; // to ensure sweep before committing nextTab
2348 >        for (int i = 0, bound = 0;;) {
2349 >            int nextIndex, nextBound, fh; Node<K,V> f;
2350 >            while (advance) {
2351 >                if (--i >= bound || finishing)
2352 >                    advance = false;
2353 >                else if ((nextIndex = transferIndex) <= transferOrigin) {
2354 >                    i = -1;
2355 >                    advance = false;
2356 >                }
2357 >                else if (U.compareAndSwapInt
2358 >                         (this, TRANSFERINDEX, nextIndex,
2359 >                          nextBound = (nextIndex > stride ?
2360 >                                       nextIndex - stride : 0))) {
2361 >                    bound = nextBound;
2362 >                    i = nextIndex - 1;
2363 >                    advance = false;
2364 >                }
2365 >            }
2366 >            if (i < 0 || i >= n || i + n >= nextn) {
2367 >                if (finishing) {
2368 >                    nextTable = null;
2369 >                    table = nextTab;
2370 >                    sizeCtl = (n << 1) - (n >>> 1);
2371 >                    return;
2372 >                }
2373 >                for (int sc;;) {
2374 >                    if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2375 >                        if (sc != -1)
2376 >                            return;
2377 >                        finishing = advance = true;
2378 >                        i = n; // recheck before commit
2379 >                        break;
2380 >                    }
2381 >                }
2382 >            }
2383 >            else if ((f = tabAt(tab, i)) == null) {
2384 >                if (casTabAt(tab, i, null, fwd)) {
2385 >                    setTabAt(nextTab, i, null);
2386 >                    setTabAt(nextTab, i + n, null);
2387 >                    advance = true;
2388 >                }
2389 >            }
2390 >            else if ((fh = f.hash) == MOVED)
2391 >                advance = true; // already processed
2392              else {
2393 <                boolean validated = false;
2394 <                synchronized (e) {
2395 <                    if (tabAt(tab, i) == e) {
2396 <                        validated = true;
2397 <                        do {
2398 <                            if (e.val != null) {
2399 <                                e.val = null;
2400 <                                ++deletions;
2393 >                synchronized (f) {
2394 >                    if (tabAt(tab, i) == f) {
2395 >                        Node<K,V> ln, hn;
2396 >                        if (fh >= 0) {
2397 >                            int runBit = fh & n;
2398 >                            Node<K,V> lastRun = f;
2399 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2400 >                                int b = p.hash & n;
2401 >                                if (b != runBit) {
2402 >                                    runBit = b;
2403 >                                    lastRun = p;
2404 >                                }
2405                              }
2406 <                        } while ((e = e.next) != null);
2407 <                        setTabAt(tab, i, null);
2406 >                            if (runBit == 0) {
2407 >                                ln = lastRun;
2408 >                                hn = null;
2409 >                            }
2410 >                            else {
2411 >                                hn = lastRun;
2412 >                                ln = null;
2413 >                            }
2414 >                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2415 >                                int ph = p.hash; K pk = p.key; V pv = p.val;
2416 >                                if ((ph & n) == 0)
2417 >                                    ln = new Node<K,V>(ph, pk, pv, ln);
2418 >                                else
2419 >                                    hn = new Node<K,V>(ph, pk, pv, hn);
2420 >                            }
2421 >                            setTabAt(nextTab, i, ln);
2422 >                            setTabAt(nextTab, i + n, hn);
2423 >                            setTabAt(tab, i, fwd);
2424 >                            advance = true;
2425 >                        }
2426 >                        else if (f instanceof TreeBin) {
2427 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2428 >                            TreeNode<K,V> lo = null, loTail = null;
2429 >                            TreeNode<K,V> hi = null, hiTail = null;
2430 >                            int lc = 0, hc = 0;
2431 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2432 >                                int h = e.hash;
2433 >                                TreeNode<K,V> p = new TreeNode<K,V>
2434 >                                    (h, e.key, e.val, null, null);
2435 >                                if ((h & n) == 0) {
2436 >                                    if ((p.prev = loTail) == null)
2437 >                                        lo = p;
2438 >                                    else
2439 >                                        loTail.next = p;
2440 >                                    loTail = p;
2441 >                                    ++lc;
2442 >                                }
2443 >                                else {
2444 >                                    if ((p.prev = hiTail) == null)
2445 >                                        hi = p;
2446 >                                    else
2447 >                                        hiTail.next = p;
2448 >                                    hiTail = p;
2449 >                                    ++hc;
2450 >                                }
2451 >                            }
2452 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2453 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2454 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2455 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2456 >                            setTabAt(nextTab, i, ln);
2457 >                            setTabAt(nextTab, i + n, hn);
2458 >                            setTabAt(tab, i, fwd);
2459 >                            advance = true;
2460 >                        }
2461                      }
2462                  }
2463 <                if (validated) {
2464 <                    ++i;
2465 <                    if (deletions > THRESHOLD_OFFSET) { // bound lag in counts
2466 <                        counter.add(-deletions);
2467 <                        deletions = 0L;
2463 >            }
2464 >        }
2465 >    }
2466 >
2467 >    /* ---------------- Conversion from/to TreeBins -------------- */
2468 >
2469 >    /**
2470 >     * Replaces all linked nodes in bin at given index unless table is
2471 >     * too small, in which case resizes instead.
2472 >     */
2473 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2474 >        Node<K,V> b; int n, sc;
2475 >        if (tab != null) {
2476 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2477 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2478 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2479 >                    transfer(tab, null);
2480 >            }
2481 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2482 >                synchronized (b) {
2483 >                    if (tabAt(tab, index) == b) {
2484 >                        TreeNode<K,V> hd = null, tl = null;
2485 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2486 >                            TreeNode<K,V> p =
2487 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2488 >                                                  null, null);
2489 >                            if ((p.prev = tl) == null)
2490 >                                hd = p;
2491 >                            else
2492 >                                tl.next = p;
2493 >                            tl = p;
2494 >                        }
2495 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2496                      }
2497                  }
2498              }
2499          }
732        if (deletions != 0L)
733            counter.add(-deletions);
2500      }
2501  
2502      /**
2503 <     * Base class for key, value, and entry iterators, plus internal
738 <     * implementations of public traversal-based methods, to avoid
739 <     * duplicating traversal code.
2503 >     * Returns a list on non-TreeNodes replacing those in given list.
2504       */
2505 <    class HashIterator {
2506 <        private Node next;          // the next entry to return
2507 <        private Node[] tab;         // current table; updated if resized
2508 <        private Node lastReturned;  // the last entry returned, for remove
2509 <        private Object nextVal;     // cached value of next
2510 <        private int index;          // index of bin to use next
2511 <        private int baseIndex;      // current index of initial table
2512 <        private final int baseSize; // initial table size
2505 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2506 >        Node<K,V> hd = null, tl = null;
2507 >        for (Node<K,V> q = b; q != null; q = q.next) {
2508 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2509 >            if (tl == null)
2510 >                hd = p;
2511 >            else
2512 >                tl.next = p;
2513 >            tl = p;
2514 >        }
2515 >        return hd;
2516 >    }
2517  
2518 <        HashIterator() {
2519 <            Node[] t = tab = table;
2520 <            if (t == null)
2521 <                baseSize = 0;
2522 <            else {
2523 <                baseSize = t.length;
2524 <                advance(null);
2525 <            }
2518 >    /* ---------------- TreeNodes -------------- */
2519 >
2520 >    /**
2521 >     * Nodes for use in TreeBins
2522 >     */
2523 >    static final class TreeNode<K,V> extends Node<K,V> {
2524 >        TreeNode<K,V> parent;  // red-black tree links
2525 >        TreeNode<K,V> left;
2526 >        TreeNode<K,V> right;
2527 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2528 >        boolean red;
2529 >
2530 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2531 >                 TreeNode<K,V> parent) {
2532 >            super(hash, key, val, next);
2533 >            this.parent = parent;
2534          }
2535  
2536 <        public final boolean hasNext()         { return next != null; }
2537 <        public final boolean hasMoreElements() { return next != null; }
2536 >        Node<K,V> find(int h, Object k) {
2537 >            return findTreeNode(h, k, null);
2538 >        }
2539  
2540          /**
2541 <         * Advances next.  Normally, iteration proceeds bin-by-bin
2542 <         * traversing lists.  However, if the table has been resized,
766 <         * then all future steps must traverse both the bin at the
767 <         * current index as well as at (index + baseSize); and so on
768 <         * for further resizings. To paranoically cope with potential
769 <         * (improper) sharing of iterators across threads, table reads
770 <         * are bounds-checked.
2541 >         * Returns the TreeNode (or null if not found) for the given key
2542 >         * starting at given root.
2543           */
2544 <        final void advance(Node e) {
2545 <            for (;;) {
2546 <                Node[] t; int i; // for bounds checks
2547 <                if (e != null) {
2548 <                    Object ek = e.key, ev = e.val;
2549 <                    if (ev != null && ek != null) {
2550 <                        nextVal = ev;
2551 <                        next = e;
2552 <                        break;
2553 <                    }
2554 <                    e = e.next;
2555 <                }
2556 <                else if (baseIndex < baseSize && (t = tab) != null &&
2557 <                         t.length > (i = index) && i >= 0) {
2558 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2559 <                        tab = (Node[])e.key;
2560 <                        e = null;
2561 <                    }
2562 <                    else if (i + baseSize < t.length)
2563 <                        index += baseSize;    // visit forwarded upper slots
2544 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2545 >            if (k != null) {
2546 >                TreeNode<K,V> p = this;
2547 >                do  {
2548 >                    int ph, dir; K pk; TreeNode<K,V> q;
2549 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2550 >                    if ((ph = p.hash) > h)
2551 >                        p = pl;
2552 >                    else if (ph < h)
2553 >                        p = pr;
2554 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2555 >                        return p;
2556 >                    else if (pl == null)
2557 >                        p = pr;
2558 >                    else if (pr == null)
2559 >                        p = pl;
2560 >                    else if ((kc != null ||
2561 >                              (kc = comparableClassFor(k)) != null) &&
2562 >                             (dir = compareComparables(kc, k, pk)) != 0)
2563 >                        p = (dir < 0) ? pl : pr;
2564 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2565 >                        return q;
2566                      else
2567 <                        index = ++baseIndex;
2567 >                        p = pl;
2568 >                } while (p != null);
2569 >            }
2570 >            return null;
2571 >        }
2572 >    }
2573 >
2574 >    /* ---------------- TreeBins -------------- */
2575 >
2576 >    /**
2577 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2578 >     * keys or values, but instead point to list of TreeNodes and
2579 >     * their root. They also maintain a parasitic read-write lock
2580 >     * forcing writers (who hold bin lock) to wait for readers (who do
2581 >     * not) to complete before tree restructuring operations.
2582 >     */
2583 >    static final class TreeBin<K,V> extends Node<K,V> {
2584 >        TreeNode<K,V> root;
2585 >        volatile TreeNode<K,V> first;
2586 >        volatile Thread waiter;
2587 >        volatile int lockState;
2588 >        // values for lockState
2589 >        static final int WRITER = 1; // set while holding write lock
2590 >        static final int WAITER = 2; // set when waiting for write lock
2591 >        static final int READER = 4; // increment value for setting read lock
2592 >
2593 >        /**
2594 >         * Tie-breaking utility for ordering insertions when equal
2595 >         * hashCodes and non-comparable. We don't require a total
2596 >         * order, just a consistent insertion rule to maintain
2597 >         * equivalence across rebalancings. Tie-breaking further than
2598 >         * necessary simplifies testing a bit.
2599 >         */
2600 >        static int tieBreakOrder(Object a, Object b) {
2601 >            int d;
2602 >            if (a == null || b == null ||
2603 >                (d = a.getClass().getName().
2604 >                 compareTo(b.getClass().getName())) == 0)
2605 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2606 >                     -1 : 1);
2607 >            return d;
2608 >        }
2609 >
2610 >        /**
2611 >         * Creates bin with initial set of nodes headed by b.
2612 >         */
2613 >        TreeBin(TreeNode<K,V> b) {
2614 >            super(TREEBIN, null, null, null);
2615 >            this.first = b;
2616 >            TreeNode<K,V> r = null;
2617 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2618 >                next = (TreeNode<K,V>)x.next;
2619 >                x.left = x.right = null;
2620 >                if (r == null) {
2621 >                    x.parent = null;
2622 >                    x.red = false;
2623 >                    r = x;
2624                  }
2625                  else {
2626 <                    next = null;
2627 <                    break;
2626 >                    K k = x.key;
2627 >                    int h = x.hash;
2628 >                    Class<?> kc = null;
2629 >                    for (TreeNode<K,V> p = r;;) {
2630 >                        int dir, ph;
2631 >                        K pk = p.key;
2632 >                        if ((ph = p.hash) > h)
2633 >                            dir = -1;
2634 >                        else if (ph < h)
2635 >                            dir = 1;
2636 >                        else if ((kc == null &&
2637 >                                  (kc = comparableClassFor(k)) == null) ||
2638 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2639 >                            dir = tieBreakOrder(k, pk);
2640 >                            TreeNode<K,V> xp = p;
2641 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2642 >                            x.parent = xp;
2643 >                            if (dir <= 0)
2644 >                                xp.left = x;
2645 >                            else
2646 >                                xp.right = x;
2647 >                            r = balanceInsertion(r, x);
2648 >                            break;
2649 >                        }
2650 >                    }
2651                  }
2652              }
2653 +            this.root = r;
2654 +            assert checkInvariants(root);
2655          }
2656  
2657 <        final Object nextKey() {
2658 <            Node e = next;
2659 <            if (e == null)
2660 <                throw new NoSuchElementException();
2661 <            Object k = e.key;
2662 <            advance((lastReturned = e).next);
808 <            return k;
2657 >        /**
2658 >         * Acquires write lock for tree restructuring.
2659 >         */
2660 >        private final void lockRoot() {
2661 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2662 >                contendedLock(); // offload to separate method
2663          }
2664  
2665 <        final Object nextValue() {
2666 <            Node e = next;
2667 <            if (e == null)
2668 <                throw new NoSuchElementException();
2669 <            Object v = nextVal;
816 <            advance((lastReturned = e).next);
817 <            return v;
2665 >        /**
2666 >         * Releases write lock for tree restructuring.
2667 >         */
2668 >        private final void unlockRoot() {
2669 >            lockState = 0;
2670          }
2671  
2672 <        final WriteThroughEntry nextEntry() {
2673 <            Node e = next;
2674 <            if (e == null)
2675 <                throw new NoSuchElementException();
2676 <            WriteThroughEntry entry =
2677 <                new WriteThroughEntry(e.key, nextVal);
2678 <            advance((lastReturned = e).next);
2679 <            return entry;
2672 >        /**
2673 >         * Possibly blocks awaiting root lock.
2674 >         */
2675 >        private final void contendedLock() {
2676 >            boolean waiting = false;
2677 >            for (int s;;) {
2678 >                if (((s = lockState) & WRITER) == 0) {
2679 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2680 >                        if (waiting)
2681 >                            waiter = null;
2682 >                        return;
2683 >                    }
2684 >                }
2685 >                else if ((s | WAITER) == 0) {
2686 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2687 >                        waiting = true;
2688 >                        waiter = Thread.currentThread();
2689 >                    }
2690 >                }
2691 >                else if (waiting)
2692 >                    LockSupport.park(this);
2693 >            }
2694          }
2695  
2696 <        public final void remove() {
2697 <            if (lastReturned == null)
2698 <                throw new IllegalStateException();
2699 <            ConcurrentHashMapV8.this.remove(lastReturned.key);
2700 <            lastReturned = null;
2696 >        /**
2697 >         * Returns matching node or null if none. Tries to search
2698 >         * using tree comparisons from root, but continues linear
2699 >         * search when lock not available.
2700 >         */
2701 > final Node<K,V> find(int h, Object k) {
2702 >            if (k != null) {
2703 >                for (Node<K,V> e = first; e != null; e = e.next) {
2704 >                    int s; K ek;
2705 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2706 >                        if (e.hash == h &&
2707 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2708 >                            return e;
2709 >                    }
2710 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2711 >                                                 s + READER)) {
2712 >                        TreeNode<K,V> r, p;
2713 >                        try {
2714 >                            p = ((r = root) == null ? null :
2715 >                                 r.findTreeNode(h, k, null));
2716 >                        } finally {
2717 >                            Thread w;
2718 >                            int ls;
2719 >                            do {} while (!U.compareAndSwapInt
2720 >                                         (this, LOCKSTATE,
2721 >                                          ls = lockState, ls - READER));
2722 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2723 >                                LockSupport.unpark(w);
2724 >                        }
2725 >                        return p;
2726 >                    }
2727 >                }
2728 >            }
2729 >            return null;
2730          }
2731  
2732 <        /** Helper for serialization */
2733 <        final void writeEntries(java.io.ObjectOutputStream s)
2734 <            throws java.io.IOException {
2735 <            Node e;
2736 <            while ((e = next) != null) {
2737 <                s.writeObject(e.key);
2738 <                s.writeObject(nextVal);
2739 <                advance(e.next);
2732 >        /**
2733 >         * Finds or adds a node.
2734 >         * @return null if added
2735 >         */
2736 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2737 >            Class<?> kc = null;
2738 >            boolean searched = false;
2739 >            for (TreeNode<K,V> p = root;;) {
2740 >                int dir, ph; K pk;
2741 >                if (p == null) {
2742 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2743 >                    break;
2744 >                }
2745 >                else if ((ph = p.hash) > h)
2746 >                    dir = -1;
2747 >                else if (ph < h)
2748 >                    dir = 1;
2749 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2750 >                    return p;
2751 >                else if ((kc == null &&
2752 >                          (kc = comparableClassFor(k)) == null) ||
2753 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2754 >                    if (!searched) {
2755 >                        TreeNode<K,V> q, ch;
2756 >                        searched = true;
2757 >                        if (((ch = p.left) != null &&
2758 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2759 >                            ((ch = p.right) != null &&
2760 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2761 >                            return q;
2762 >                    }
2763 >                    dir = tieBreakOrder(k, pk);
2764 >                }
2765 >
2766 >                TreeNode<K,V> xp = p;
2767 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2768 >                    TreeNode<K,V> x, f = first;
2769 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2770 >                    if (f != null)
2771 >                        f.prev = x;
2772 >                    if (dir <= 0)
2773 >                        xp.left = x;
2774 >                    else
2775 >                        xp.right = x;
2776 >                    if (!xp.red)
2777 >                        x.red = true;
2778 >                    else {
2779 >                        lockRoot();
2780 >                        try {
2781 >                            root = balanceInsertion(root, x);
2782 >                        } finally {
2783 >                            unlockRoot();
2784 >                        }
2785 >                    }
2786 >                    break;
2787 >                }
2788              }
2789 +            assert checkInvariants(root);
2790 +            return null;
2791          }
2792  
2793 <        /** Helper for containsValue */
2794 <        final boolean containsVal(Object value) {
2795 <            if (value != null) {
2796 <                Node e;
2797 <                while ((e = next) != null) {
2798 <                    Object v = nextVal;
2799 <                    if (value == v || value.equals(v))
2800 <                        return true;
2801 <                    advance(e.next);
2793 >        /**
2794 >         * Removes the given node, that must be present before this
2795 >         * call.  This is messier than typical red-black deletion code
2796 >         * because we cannot swap the contents of an interior node
2797 >         * with a leaf successor that is pinned by "next" pointers
2798 >         * that are accessible independently of lock. So instead we
2799 >         * swap the tree linkages.
2800 >         *
2801 >         * @return true if now too small, so should be untreeified
2802 >         */
2803 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2804 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2805 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2806 >            TreeNode<K,V> r, rl;
2807 >            if (pred == null)
2808 >                first = next;
2809 >            else
2810 >                pred.next = next;
2811 >            if (next != null)
2812 >                next.prev = pred;
2813 >            if (first == null) {
2814 >                root = null;
2815 >                return true;
2816 >            }
2817 >            if ((r = root) == null || r.right == null || // too small
2818 >                (rl = r.left) == null || rl.left == null)
2819 >                return true;
2820 >            lockRoot();
2821 >            try {
2822 >                TreeNode<K,V> replacement;
2823 >                TreeNode<K,V> pl = p.left;
2824 >                TreeNode<K,V> pr = p.right;
2825 >                if (pl != null && pr != null) {
2826 >                    TreeNode<K,V> s = pr, sl;
2827 >                    while ((sl = s.left) != null) // find successor
2828 >                        s = sl;
2829 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2830 >                    TreeNode<K,V> sr = s.right;
2831 >                    TreeNode<K,V> pp = p.parent;
2832 >                    if (s == pr) { // p was s's direct parent
2833 >                        p.parent = s;
2834 >                        s.right = p;
2835 >                    }
2836 >                    else {
2837 >                        TreeNode<K,V> sp = s.parent;
2838 >                        if ((p.parent = sp) != null) {
2839 >                            if (s == sp.left)
2840 >                                sp.left = p;
2841 >                            else
2842 >                                sp.right = p;
2843 >                        }
2844 >                        if ((s.right = pr) != null)
2845 >                            pr.parent = s;
2846 >                    }
2847 >                    p.left = null;
2848 >                    if ((p.right = sr) != null)
2849 >                        sr.parent = p;
2850 >                    if ((s.left = pl) != null)
2851 >                        pl.parent = s;
2852 >                    if ((s.parent = pp) == null)
2853 >                        r = s;
2854 >                    else if (p == pp.left)
2855 >                        pp.left = s;
2856 >                    else
2857 >                        pp.right = s;
2858 >                    if (sr != null)
2859 >                        replacement = sr;
2860 >                    else
2861 >                        replacement = p;
2862 >                }
2863 >                else if (pl != null)
2864 >                    replacement = pl;
2865 >                else if (pr != null)
2866 >                    replacement = pr;
2867 >                else
2868 >                    replacement = p;
2869 >                if (replacement != p) {
2870 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2871 >                    if (pp == null)
2872 >                        r = replacement;
2873 >                    else if (p == pp.left)
2874 >                        pp.left = replacement;
2875 >                    else
2876 >                        pp.right = replacement;
2877 >                    p.left = p.right = p.parent = null;
2878                  }
2879 +
2880 +                root = (p.red) ? r : balanceDeletion(r, replacement);
2881 +
2882 +                if (p == replacement) {  // detach pointers
2883 +                    TreeNode<K,V> pp;
2884 +                    if ((pp = p.parent) != null) {
2885 +                        if (p == pp.left)
2886 +                            pp.left = null;
2887 +                        else if (p == pp.right)
2888 +                            pp.right = null;
2889 +                        p.parent = null;
2890 +                    }
2891 +                }
2892 +            } finally {
2893 +                unlockRoot();
2894              }
2895 +            assert checkInvariants(root);
2896              return false;
2897          }
2898  
2899 <        /** Helper for Map.hashCode */
2900 <        final int mapHashCode() {
2901 <            int h = 0;
2902 <            Node e;
2903 <            while ((e = next) != null) {
2904 <                h += e.key.hashCode() ^ nextVal.hashCode();
2905 <                advance(e.next);
2899 >        /* ------------------------------------------------------------ */
2900 >        // Red-black tree methods, all adapted from CLR
2901 >
2902 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2903 >                                              TreeNode<K,V> p) {
2904 >            TreeNode<K,V> r, pp, rl;
2905 >            if (p != null && (r = p.right) != null) {
2906 >                if ((rl = p.right = r.left) != null)
2907 >                    rl.parent = p;
2908 >                if ((pp = r.parent = p.parent) == null)
2909 >                    (root = r).red = false;
2910 >                else if (pp.left == p)
2911 >                    pp.left = r;
2912 >                else
2913 >                    pp.right = r;
2914 >                r.left = p;
2915 >                p.parent = r;
2916              }
2917 <            return h;
2917 >            return root;
2918          }
2919  
2920 <        /** Helper for Map.toString */
2921 <        final String mapToString() {
2922 <            Node e = next;
2923 <            if (e == null)
2924 <                return "{}";
2925 <            StringBuilder sb = new StringBuilder();
2926 <            sb.append('{');
2927 <            for (;;) {
2928 <                sb.append(e.key   == this ? "(this Map)" : e.key);
2929 <                sb.append('=');
883 <                sb.append(nextVal == this ? "(this Map)" : nextVal);
884 <                advance(e.next);
885 <                if ((e = next) != null)
886 <                    sb.append(',').append(' ');
2920 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2921 >                                               TreeNode<K,V> p) {
2922 >            TreeNode<K,V> l, pp, lr;
2923 >            if (p != null && (l = p.left) != null) {
2924 >                if ((lr = p.left = l.right) != null)
2925 >                    lr.parent = p;
2926 >                if ((pp = l.parent = p.parent) == null)
2927 >                    (root = l).red = false;
2928 >                else if (pp.right == p)
2929 >                    pp.right = l;
2930                  else
2931 <                    return sb.append('}').toString();
2931 >                    pp.left = l;
2932 >                l.right = p;
2933 >                p.parent = l;
2934 >            }
2935 >            return root;
2936 >        }
2937 >
2938 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2939 >                                                    TreeNode<K,V> x) {
2940 >            x.red = true;
2941 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2942 >                if ((xp = x.parent) == null) {
2943 >                    x.red = false;
2944 >                    return x;
2945 >                }
2946 >                else if (!xp.red || (xpp = xp.parent) == null)
2947 >                    return root;
2948 >                if (xp == (xppl = xpp.left)) {
2949 >                    if ((xppr = xpp.right) != null && xppr.red) {
2950 >                        xppr.red = false;
2951 >                        xp.red = false;
2952 >                        xpp.red = true;
2953 >                        x = xpp;
2954 >                    }
2955 >                    else {
2956 >                        if (x == xp.right) {
2957 >                            root = rotateLeft(root, x = xp);
2958 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2959 >                        }
2960 >                        if (xp != null) {
2961 >                            xp.red = false;
2962 >                            if (xpp != null) {
2963 >                                xpp.red = true;
2964 >                                root = rotateRight(root, xpp);
2965 >                            }
2966 >                        }
2967 >                    }
2968 >                }
2969 >                else {
2970 >                    if (xppl != null && xppl.red) {
2971 >                        xppl.red = false;
2972 >                        xp.red = false;
2973 >                        xpp.red = true;
2974 >                        x = xpp;
2975 >                    }
2976 >                    else {
2977 >                        if (x == xp.left) {
2978 >                            root = rotateRight(root, x = xp);
2979 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2980 >                        }
2981 >                        if (xp != null) {
2982 >                            xp.red = false;
2983 >                            if (xpp != null) {
2984 >                                xpp.red = true;
2985 >                                root = rotateLeft(root, xpp);
2986 >                            }
2987 >                        }
2988 >                    }
2989 >                }
2990 >            }
2991 >        }
2992 >
2993 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2994 >                                                   TreeNode<K,V> x) {
2995 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2996 >                if (x == null || x == root)
2997 >                    return root;
2998 >                else if ((xp = x.parent) == null) {
2999 >                    x.red = false;
3000 >                    return x;
3001 >                }
3002 >                else if (x.red) {
3003 >                    x.red = false;
3004 >                    return root;
3005 >                }
3006 >                else if ((xpl = xp.left) == x) {
3007 >                    if ((xpr = xp.right) != null && xpr.red) {
3008 >                        xpr.red = false;
3009 >                        xp.red = true;
3010 >                        root = rotateLeft(root, xp);
3011 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3012 >                    }
3013 >                    if (xpr == null)
3014 >                        x = xp;
3015 >                    else {
3016 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3017 >                        if ((sr == null || !sr.red) &&
3018 >                            (sl == null || !sl.red)) {
3019 >                            xpr.red = true;
3020 >                            x = xp;
3021 >                        }
3022 >                        else {
3023 >                            if (sr == null || !sr.red) {
3024 >                                if (sl != null)
3025 >                                    sl.red = false;
3026 >                                xpr.red = true;
3027 >                                root = rotateRight(root, xpr);
3028 >                                xpr = (xp = x.parent) == null ?
3029 >                                    null : xp.right;
3030 >                            }
3031 >                            if (xpr != null) {
3032 >                                xpr.red = (xp == null) ? false : xp.red;
3033 >                                if ((sr = xpr.right) != null)
3034 >                                    sr.red = false;
3035 >                            }
3036 >                            if (xp != null) {
3037 >                                xp.red = false;
3038 >                                root = rotateLeft(root, xp);
3039 >                            }
3040 >                            x = root;
3041 >                        }
3042 >                    }
3043 >                }
3044 >                else { // symmetric
3045 >                    if (xpl != null && xpl.red) {
3046 >                        xpl.red = false;
3047 >                        xp.red = true;
3048 >                        root = rotateRight(root, xp);
3049 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3050 >                    }
3051 >                    if (xpl == null)
3052 >                        x = xp;
3053 >                    else {
3054 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3055 >                        if ((sl == null || !sl.red) &&
3056 >                            (sr == null || !sr.red)) {
3057 >                            xpl.red = true;
3058 >                            x = xp;
3059 >                        }
3060 >                        else {
3061 >                            if (sl == null || !sl.red) {
3062 >                                if (sr != null)
3063 >                                    sr.red = false;
3064 >                                xpl.red = true;
3065 >                                root = rotateLeft(root, xpl);
3066 >                                xpl = (xp = x.parent) == null ?
3067 >                                    null : xp.left;
3068 >                            }
3069 >                            if (xpl != null) {
3070 >                                xpl.red = (xp == null) ? false : xp.red;
3071 >                                if ((sl = xpl.left) != null)
3072 >                                    sl.red = false;
3073 >                            }
3074 >                            if (xp != null) {
3075 >                                xp.red = false;
3076 >                                root = rotateRight(root, xp);
3077 >                            }
3078 >                            x = root;
3079 >                        }
3080 >                    }
3081 >                }
3082 >            }
3083 >        }
3084 >
3085 >        /**
3086 >         * Recursive invariant check
3087 >         */
3088 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3089 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3090 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3091 >            if (tb != null && tb.next != t)
3092 >                return false;
3093 >            if (tn != null && tn.prev != t)
3094 >                return false;
3095 >            if (tp != null && t != tp.left && t != tp.right)
3096 >                return false;
3097 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3098 >                return false;
3099 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3100 >                return false;
3101 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3102 >                return false;
3103 >            if (tl != null && !checkInvariants(tl))
3104 >                return false;
3105 >            if (tr != null && !checkInvariants(tr))
3106 >                return false;
3107 >            return true;
3108 >        }
3109 >
3110 >        private static final sun.misc.Unsafe U;
3111 >        private static final long LOCKSTATE;
3112 >        static {
3113 >            try {
3114 >                U = getUnsafe();
3115 >                Class<?> k = TreeBin.class;
3116 >                LOCKSTATE = U.objectFieldOffset
3117 >                    (k.getDeclaredField("lockState"));
3118 >            } catch (Exception e) {
3119 >                throw new Error(e);
3120              }
3121          }
3122      }
3123  
3124 <    /* ---------------- Public operations -------------- */
3124 >    /* ----------------Table Traversal -------------- */
3125  
3126      /**
3127 <     * Creates a new, empty map with the specified initial
3128 <     * capacity, load factor and concurrency level.
3127 >     * Encapsulates traversal for methods such as containsValue; also
3128 >     * serves as a base class for other iterators and spliterators.
3129       *
3130 <     * @param initialCapacity the initial capacity. The implementation
3131 <     * performs internal sizing to accommodate this many elements.
3132 <     * @param loadFactor  the load factor threshold, used to control resizing.
3133 <     * Resizing may be performed when the average number of elements per
3134 <     * bin exceeds this threshold.
3135 <     * @param concurrencyLevel the estimated number of concurrently
3136 <     * updating threads. The implementation may use this value as
3137 <     * a sizing hint.
3138 <     * @throws IllegalArgumentException if the initial capacity is
3139 <     * negative or the load factor or concurrencyLevel are
3140 <     * nonpositive.
3141 <     */
3142 <    public ConcurrentHashMapV8(int initialCapacity,
3143 <                             float loadFactor, int concurrencyLevel) {
3144 <        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
3145 <            throw new IllegalArgumentException();
3146 <        this.initCap = initialCapacity;
3147 <        this.loadFactor = loadFactor;
3148 <        this.counter = new LongAdder();
3130 >     * Method advance visits once each still-valid node that was
3131 >     * reachable upon iterator construction. It might miss some that
3132 >     * were added to a bin after the bin was visited, which is OK wrt
3133 >     * consistency guarantees. Maintaining this property in the face
3134 >     * of possible ongoing resizes requires a fair amount of
3135 >     * bookkeeping state that is difficult to optimize away amidst
3136 >     * volatile accesses.  Even so, traversal maintains reasonable
3137 >     * throughput.
3138 >     *
3139 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3140 >     * However, if the table has been resized, then all future steps
3141 >     * must traverse both the bin at the current index as well as at
3142 >     * (index + baseSize); and so on for further resizings. To
3143 >     * paranoically cope with potential sharing by users of iterators
3144 >     * across threads, iteration terminates if a bounds checks fails
3145 >     * for a table read.
3146 >     */
3147 >    static class Traverser<K,V> {
3148 >        Node<K,V>[] tab;        // current table; updated if resized
3149 >        Node<K,V> next;         // the next entry to use
3150 >        int index;              // index of bin to use next
3151 >        int baseIndex;          // current index of initial table
3152 >        int baseLimit;          // index bound for initial table
3153 >        final int baseSize;     // initial table size
3154 >
3155 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3156 >            this.tab = tab;
3157 >            this.baseSize = size;
3158 >            this.baseIndex = this.index = index;
3159 >            this.baseLimit = limit;
3160 >            this.next = null;
3161 >        }
3162 >
3163 >        /**
3164 >         * Advances if possible, returning next valid node, or null if none.
3165 >         */
3166 >        final Node<K,V> advance() {
3167 >            Node<K,V> e;
3168 >            if ((e = next) != null)
3169 >                e = e.next;
3170 >            for (;;) {
3171 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3172 >                if (e != null)
3173 >                    return next = e;
3174 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3175 >                    (n = t.length) <= (i = index) || i < 0)
3176 >                    return next = null;
3177 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3178 >                    if (e instanceof ForwardingNode) {
3179 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3180 >                        e = null;
3181 >                        continue;
3182 >                    }
3183 >                    else if (e instanceof TreeBin)
3184 >                        e = ((TreeBin<K,V>)e).first;
3185 >                    else
3186 >                        e = null;
3187 >                }
3188 >                if ((index += baseSize) >= n)
3189 >                    index = ++baseIndex;    // visit upper slots if present
3190 >            }
3191 >        }
3192      }
3193  
3194      /**
3195 <     * Creates a new, empty map with the specified initial capacity
3196 <     * and load factor and with the default concurrencyLevel (16).
923 <     *
924 <     * @param initialCapacity The implementation performs internal
925 <     * sizing to accommodate this many elements.
926 <     * @param loadFactor  the load factor threshold, used to control resizing.
927 <     * Resizing may be performed when the average number of elements per
928 <     * bin exceeds this threshold.
929 <     * @throws IllegalArgumentException if the initial capacity of
930 <     * elements is negative or the load factor is nonpositive
931 <     *
932 <     * @since 1.6
3195 >     * Base of key, value, and entry Iterators. Adds fields to
3196 >     * Traverser to support iterator.remove.
3197       */
3198 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
3199 <        this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
3198 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3199 >        final ConcurrentHashMapV8<K,V> map;
3200 >        Node<K,V> lastReturned;
3201 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3202 >                    ConcurrentHashMapV8<K,V> map) {
3203 >            super(tab, size, index, limit);
3204 >            this.map = map;
3205 >            advance();
3206 >        }
3207 >
3208 >        public final boolean hasNext() { return next != null; }
3209 >        public final boolean hasMoreElements() { return next != null; }
3210 >
3211 >        public final void remove() {
3212 >            Node<K,V> p;
3213 >            if ((p = lastReturned) == null)
3214 >                throw new IllegalStateException();
3215 >            lastReturned = null;
3216 >            map.replaceNode(p.key, null, null);
3217 >        }
3218 >    }
3219 >
3220 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3221 >        implements Iterator<K>, Enumeration<K> {
3222 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3223 >                    ConcurrentHashMapV8<K,V> map) {
3224 >            super(tab, index, size, limit, map);
3225 >        }
3226 >
3227 >        public final K next() {
3228 >            Node<K,V> p;
3229 >            if ((p = next) == null)
3230 >                throw new NoSuchElementException();
3231 >            K k = p.key;
3232 >            lastReturned = p;
3233 >            advance();
3234 >            return k;
3235 >        }
3236 >
3237 >        public final K nextElement() { return next(); }
3238 >    }
3239 >
3240 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3241 >        implements Iterator<V>, Enumeration<V> {
3242 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3243 >                      ConcurrentHashMapV8<K,V> map) {
3244 >            super(tab, index, size, limit, map);
3245 >        }
3246 >
3247 >        public final V next() {
3248 >            Node<K,V> p;
3249 >            if ((p = next) == null)
3250 >                throw new NoSuchElementException();
3251 >            V v = p.val;
3252 >            lastReturned = p;
3253 >            advance();
3254 >            return v;
3255 >        }
3256 >
3257 >        public final V nextElement() { return next(); }
3258 >    }
3259 >
3260 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3261 >        implements Iterator<Map.Entry<K,V>> {
3262 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3263 >                      ConcurrentHashMapV8<K,V> map) {
3264 >            super(tab, index, size, limit, map);
3265 >        }
3266 >
3267 >        public final Map.Entry<K,V> next() {
3268 >            Node<K,V> p;
3269 >            if ((p = next) == null)
3270 >                throw new NoSuchElementException();
3271 >            K k = p.key;
3272 >            V v = p.val;
3273 >            lastReturned = p;
3274 >            advance();
3275 >            return new MapEntry<K,V>(k, v, map);
3276 >        }
3277      }
3278  
3279      /**
3280 <     * Creates a new, empty map with the specified initial capacity,
940 <     * and with default load factor (0.75) and concurrencyLevel (16).
941 <     *
942 <     * @param initialCapacity the initial capacity. The implementation
943 <     * performs internal sizing to accommodate this many elements.
944 <     * @throws IllegalArgumentException if the initial capacity of
945 <     * elements is negative.
3280 >     * Exported Entry for EntryIterator
3281       */
3282 <    public ConcurrentHashMapV8(int initialCapacity) {
3283 <        this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3282 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3283 >        final K key; // non-null
3284 >        V val;       // non-null
3285 >        final ConcurrentHashMapV8<K,V> map;
3286 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3287 >            this.key = key;
3288 >            this.val = val;
3289 >            this.map = map;
3290 >        }
3291 >        public K getKey()        { return key; }
3292 >        public V getValue()      { return val; }
3293 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3294 >        public String toString() { return key + "=" + val; }
3295 >
3296 >        public boolean equals(Object o) {
3297 >            Object k, v; Map.Entry<?,?> e;
3298 >            return ((o instanceof Map.Entry) &&
3299 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3300 >                    (v = e.getValue()) != null &&
3301 >                    (k == key || k.equals(key)) &&
3302 >                    (v == val || v.equals(val)));
3303 >        }
3304 >
3305 >        /**
3306 >         * Sets our entry's value and writes through to the map. The
3307 >         * value to return is somewhat arbitrary here. Since we do not
3308 >         * necessarily track asynchronous changes, the most recent
3309 >         * "previous" value could be different from what we return (or
3310 >         * could even have been removed, in which case the put will
3311 >         * re-establish). We do not and cannot guarantee more.
3312 >         */
3313 >        public V setValue(V value) {
3314 >            if (value == null) throw new NullPointerException();
3315 >            V v = val;
3316 >            val = value;
3317 >            map.put(key, value);
3318 >            return v;
3319 >        }
3320      }
3321  
3322 +    static final class KeySpliterator<K,V> extends Traverser<K,V>
3323 +        implements ConcurrentHashMapSpliterator<K> {
3324 +        long est;               // size estimate
3325 +        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3326 +                       long est) {
3327 +            super(tab, size, index, limit);
3328 +            this.est = est;
3329 +        }
3330 +
3331 +        public ConcurrentHashMapSpliterator<K> trySplit() {
3332 +            int i, f, h;
3333 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3334 +                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3335 +                                        f, est >>>= 1);
3336 +        }
3337 +
3338 +        public void forEachRemaining(Action<? super K> action) {
3339 +            if (action == null) throw new NullPointerException();
3340 +            for (Node<K,V> p; (p = advance()) != null;)
3341 +                action.apply(p.key);
3342 +        }
3343 +
3344 +        public boolean tryAdvance(Action<? super K> action) {
3345 +            if (action == null) throw new NullPointerException();
3346 +            Node<K,V> p;
3347 +            if ((p = advance()) == null)
3348 +                return false;
3349 +            action.apply(p.key);
3350 +            return true;
3351 +        }
3352 +
3353 +        public long estimateSize() { return est; }
3354 +
3355 +    }
3356 +
3357 +    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3358 +        implements ConcurrentHashMapSpliterator<V> {
3359 +        long est;               // size estimate
3360 +        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3361 +                         long est) {
3362 +            super(tab, size, index, limit);
3363 +            this.est = est;
3364 +        }
3365 +
3366 +        public ConcurrentHashMapSpliterator<V> trySplit() {
3367 +            int i, f, h;
3368 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3369 +                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3370 +                                          f, est >>>= 1);
3371 +        }
3372 +
3373 +        public void forEachRemaining(Action<? super V> action) {
3374 +            if (action == null) throw new NullPointerException();
3375 +            for (Node<K,V> p; (p = advance()) != null;)
3376 +                action.apply(p.val);
3377 +        }
3378 +
3379 +        public boolean tryAdvance(Action<? super V> action) {
3380 +            if (action == null) throw new NullPointerException();
3381 +            Node<K,V> p;
3382 +            if ((p = advance()) == null)
3383 +                return false;
3384 +            action.apply(p.val);
3385 +            return true;
3386 +        }
3387 +
3388 +        public long estimateSize() { return est; }
3389 +
3390 +    }
3391 +
3392 +    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3393 +        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3394 +        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3395 +        long est;               // size estimate
3396 +        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3397 +                         long est, ConcurrentHashMapV8<K,V> map) {
3398 +            super(tab, size, index, limit);
3399 +            this.map = map;
3400 +            this.est = est;
3401 +        }
3402 +
3403 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3404 +            int i, f, h;
3405 +            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3406 +                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3407 +                                          f, est >>>= 1, map);
3408 +        }
3409 +
3410 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3411 +            if (action == null) throw new NullPointerException();
3412 +            for (Node<K,V> p; (p = advance()) != null; )
3413 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3414 +        }
3415 +
3416 +        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3417 +            if (action == null) throw new NullPointerException();
3418 +            Node<K,V> p;
3419 +            if ((p = advance()) == null)
3420 +                return false;
3421 +            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3422 +            return true;
3423 +        }
3424 +
3425 +        public long estimateSize() { return est; }
3426 +
3427 +    }
3428 +
3429 +    // Parallel bulk operations
3430 +
3431      /**
3432 <     * Creates a new, empty map with a default initial capacity (16),
3433 <     * load factor (0.75) and concurrencyLevel (16).
3432 >     * Computes initial batch value for bulk tasks. The returned value
3433 >     * is approximately exp2 of the number of times (minus one) to
3434 >     * split task by two before executing leaf action. This value is
3435 >     * faster to compute and more convenient to use as a guide to
3436 >     * splitting than is the depth, since it is used while dividing by
3437 >     * two anyway.
3438       */
3439 <    public ConcurrentHashMapV8() {
3440 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3439 >    final int batchFor(long b) {
3440 >        long n;
3441 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3442 >            return 0;
3443 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3444 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3445      }
3446  
3447      /**
3448 <     * Creates a new map with the same mappings as the given map.
961 <     * The map is created with a capacity of 1.5 times the number
962 <     * of mappings in the given map or 16 (whichever is greater),
963 <     * and a default load factor (0.75) and concurrencyLevel (16).
3448 >     * Performs the given action for each (key, value).
3449       *
3450 <     * @param m the map
3450 >     * @param parallelismThreshold the (estimated) number of elements
3451 >     * needed for this operation to be executed in parallel
3452 >     * @param action the action
3453 >     * @since 1.8
3454       */
3455 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
3456 <        this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
3457 <        if (m == null)
3458 <            throw new NullPointerException();
3459 <        internalPutAll(m);
3455 >    public void forEach(long parallelismThreshold,
3456 >                        BiAction<? super K,? super V> action) {
3457 >        if (action == null) throw new NullPointerException();
3458 >        new ForEachMappingTask<K,V>
3459 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3460 >             action).invoke();
3461      }
3462  
3463      /**
3464 <     * Returns {@code true} if this map contains no key-value mappings.
3464 >     * Performs the given action for each non-null transformation
3465 >     * of each (key, value).
3466       *
3467 <     * @return {@code true} if this map contains no key-value mappings
3467 >     * @param parallelismThreshold the (estimated) number of elements
3468 >     * needed for this operation to be executed in parallel
3469 >     * @param transformer a function returning the transformation
3470 >     * for an element, or null if there is no transformation (in
3471 >     * which case the action is not applied)
3472 >     * @param action the action
3473 >     * @since 1.8
3474       */
3475 <    public boolean isEmpty() {
3476 <        return counter.sum() <= 0L; // ignore transient negative values
3475 >    public <U> void forEach(long parallelismThreshold,
3476 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3477 >                            Action<? super U> action) {
3478 >        if (transformer == null || action == null)
3479 >            throw new NullPointerException();
3480 >        new ForEachTransformedMappingTask<K,V,U>
3481 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3482 >             transformer, action).invoke();
3483      }
3484  
3485      /**
3486 <     * Returns the number of key-value mappings in this map.  If the
3487 <     * map contains more than {@code Integer.MAX_VALUE} elements, returns
3488 <     * {@code Integer.MAX_VALUE}.
3489 <     *
3490 <     * @return the number of key-value mappings in this map
3491 <     */
3492 <    public int size() {
3493 <        long n = counter.sum();
3494 <        return ((n >>> 31) == 0) ? (int)n : (n < 0L) ? 0 : Integer.MAX_VALUE;
3486 >     * Returns a non-null result from applying the given search
3487 >     * function on each (key, value), or null if none.  Upon
3488 >     * success, further element processing is suppressed and the
3489 >     * results of any other parallel invocations of the search
3490 >     * function are ignored.
3491 >     *
3492 >     * @param parallelismThreshold the (estimated) number of elements
3493 >     * needed for this operation to be executed in parallel
3494 >     * @param searchFunction a function returning a non-null
3495 >     * result on success, else null
3496 >     * @return a non-null result from applying the given search
3497 >     * function on each (key, value), or null if none
3498 >     * @since 1.8
3499 >     */
3500 >    public <U> U search(long parallelismThreshold,
3501 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3502 >        if (searchFunction == null) throw new NullPointerException();
3503 >        return new SearchMappingsTask<K,V,U>
3504 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3505 >             searchFunction, new AtomicReference<U>()).invoke();
3506      }
3507  
3508      /**
3509 <     * Returns the value to which the specified key is mapped,
3510 <     * or {@code null} if this map contains no mapping for the key.
3511 <     *
3512 <     * <p>More formally, if this map contains a mapping from a key
3513 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
3514 <     * then this method returns {@code v}; otherwise it returns
3515 <     * {@code null}.  (There can be at most one such mapping.)
3516 <     *
3517 <     * @throws NullPointerException if the specified key is null
3518 <     */
3519 <    @SuppressWarnings("unchecked")
3520 <    public V get(Object key) {
3521 <        if (key == null)
3509 >     * Returns the result of accumulating the given transformation
3510 >     * of all (key, value) pairs using the given reducer to
3511 >     * combine values, or null if none.
3512 >     *
3513 >     * @param parallelismThreshold the (estimated) number of elements
3514 >     * needed for this operation to be executed in parallel
3515 >     * @param transformer a function returning the transformation
3516 >     * for an element, or null if there is no transformation (in
3517 >     * which case it is not combined)
3518 >     * @param reducer a commutative associative combining function
3519 >     * @return the result of accumulating the given transformation
3520 >     * of all (key, value) pairs
3521 >     * @since 1.8
3522 >     */
3523 >    public <U> U reduce(long parallelismThreshold,
3524 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3525 >                        BiFun<? super U, ? super U, ? extends U> reducer) {
3526 >        if (transformer == null || reducer == null)
3527              throw new NullPointerException();
3528 <        return (V)internalGet(key);
3528 >        return new MapReduceMappingsTask<K,V,U>
3529 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3530 >             null, transformer, reducer).invoke();
3531      }
3532  
3533      /**
3534 <     * Tests if the specified object is a key in this table.
3535 <     *
3536 <     * @param  key   possible key
3537 <     * @return {@code true} if and only if the specified object
3538 <     *         is a key in this table, as determined by the
3539 <     *         {@code equals} method; {@code false} otherwise.
3540 <     * @throws NullPointerException if the specified key is null
3541 <     */
3542 <    public boolean containsKey(Object key) {
3543 <        if (key == null)
3534 >     * Returns the result of accumulating the given transformation
3535 >     * of all (key, value) pairs using the given reducer to
3536 >     * combine values, and the given basis as an identity value.
3537 >     *
3538 >     * @param parallelismThreshold the (estimated) number of elements
3539 >     * needed for this operation to be executed in parallel
3540 >     * @param transformer a function returning the transformation
3541 >     * for an element
3542 >     * @param basis the identity (initial default value) for the reduction
3543 >     * @param reducer a commutative associative combining function
3544 >     * @return the result of accumulating the given transformation
3545 >     * of all (key, value) pairs
3546 >     * @since 1.8
3547 >     */
3548 >    public double reduceToDouble(long parallelismThreshold,
3549 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3550 >                                 double basis,
3551 >                                 DoubleByDoubleToDouble reducer) {
3552 >        if (transformer == null || reducer == null)
3553              throw new NullPointerException();
3554 <        return internalGet(key) != null;
3554 >        return new MapReduceMappingsToDoubleTask<K,V>
3555 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3556 >             null, transformer, basis, reducer).invoke();
3557      }
3558  
3559      /**
3560 <     * Returns {@code true} if this map maps one or more keys to the
3561 <     * specified value. Note: This method requires a full internal
3562 <     * traversal of the hash table, and so is much slower than
3563 <     * method {@code containsKey}.
3564 <     *
3565 <     * @param value value whose presence in this map is to be tested
3566 <     * @return {@code true} if this map maps one or more keys to the
3567 <     *         specified value
3568 <     * @throws NullPointerException if the specified value is null
3569 <     */
3570 <    public boolean containsValue(Object value) {
3571 <        if (value == null)
3560 >     * Returns the result of accumulating the given transformation
3561 >     * of all (key, value) pairs using the given reducer to
3562 >     * combine values, and the given basis as an identity value.
3563 >     *
3564 >     * @param parallelismThreshold the (estimated) number of elements
3565 >     * needed for this operation to be executed in parallel
3566 >     * @param transformer a function returning the transformation
3567 >     * for an element
3568 >     * @param basis the identity (initial default value) for the reduction
3569 >     * @param reducer a commutative associative combining function
3570 >     * @return the result of accumulating the given transformation
3571 >     * of all (key, value) pairs
3572 >     * @since 1.8
3573 >     */
3574 >    public long reduceToLong(long parallelismThreshold,
3575 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3576 >                             long basis,
3577 >                             LongByLongToLong reducer) {
3578 >        if (transformer == null || reducer == null)
3579              throw new NullPointerException();
3580 <        return new HashIterator().containsVal(value);
3580 >        return new MapReduceMappingsToLongTask<K,V>
3581 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3582 >             null, transformer, basis, reducer).invoke();
3583      }
3584  
3585      /**
3586 <     * Legacy method testing if some key maps into the specified value
3587 <     * in this table.  This method is identical in functionality to
3588 <     * {@link #containsValue}, and exists solely to ensure
3589 <     * full compatibility with class {@link java.util.Hashtable},
3590 <     * which supported this method prior to introduction of the
3591 <     * Java Collections framework.
3592 <     *
3593 <     * @param  value a value to search for
3594 <     * @return {@code true} if and only if some key maps to the
3595 <     *         {@code value} argument in this table as
3596 <     *         determined by the {@code equals} method;
3597 <     *         {@code false} otherwise
3598 <     * @throws NullPointerException if the specified value is null
3599 <     */
3600 <    public boolean contains(Object value) {
3601 <        return containsValue(value);
3586 >     * Returns the result of accumulating the given transformation
3587 >     * of all (key, value) pairs using the given reducer to
3588 >     * combine values, and the given basis as an identity value.
3589 >     *
3590 >     * @param parallelismThreshold the (estimated) number of elements
3591 >     * needed for this operation to be executed in parallel
3592 >     * @param transformer a function returning the transformation
3593 >     * for an element
3594 >     * @param basis the identity (initial default value) for the reduction
3595 >     * @param reducer a commutative associative combining function
3596 >     * @return the result of accumulating the given transformation
3597 >     * of all (key, value) pairs
3598 >     * @since 1.8
3599 >     */
3600 >    public int reduceToInt(long parallelismThreshold,
3601 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3602 >                           int basis,
3603 >                           IntByIntToInt reducer) {
3604 >        if (transformer == null || reducer == null)
3605 >            throw new NullPointerException();
3606 >        return new MapReduceMappingsToIntTask<K,V>
3607 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3608 >             null, transformer, basis, reducer).invoke();
3609      }
3610  
3611      /**
3612 <     * Maps the specified key to the specified value in this table.
1066 <     * Neither the key nor the value can be null.
3612 >     * Performs the given action for each key.
3613       *
3614 <     * <p> The value can be retrieved by calling the {@code get} method
3615 <     * with a key that is equal to the original key.
3616 <     *
3617 <     * @param key key with which the specified value is to be associated
1072 <     * @param value value to be associated with the specified key
1073 <     * @return the previous value associated with {@code key}, or
1074 <     *         {@code null} if there was no mapping for {@code key}
1075 <     * @throws NullPointerException if the specified key or value is null
3614 >     * @param parallelismThreshold the (estimated) number of elements
3615 >     * needed for this operation to be executed in parallel
3616 >     * @param action the action
3617 >     * @since 1.8
3618       */
3619 <    @SuppressWarnings("unchecked")
3620 <    public V put(K key, V value) {
3621 <        if (key == null || value == null)
3622 <            throw new NullPointerException();
3623 <        return (V)internalPut(key, value, true);
3619 >    public void forEachKey(long parallelismThreshold,
3620 >                           Action<? super K> action) {
3621 >        if (action == null) throw new NullPointerException();
3622 >        new ForEachKeyTask<K,V>
3623 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3624 >             action).invoke();
3625      }
3626  
3627      /**
3628 <     * {@inheritDoc}
3628 >     * Performs the given action for each non-null transformation
3629 >     * of each key.
3630       *
3631 <     * @return the previous value associated with the specified key,
3632 <     *         or {@code null} if there was no mapping for the key
3633 <     * @throws NullPointerException if the specified key or value is null
3631 >     * @param parallelismThreshold the (estimated) number of elements
3632 >     * needed for this operation to be executed in parallel
3633 >     * @param transformer a function returning the transformation
3634 >     * for an element, or null if there is no transformation (in
3635 >     * which case the action is not applied)
3636 >     * @param action the action
3637 >     * @since 1.8
3638       */
3639 <    @SuppressWarnings("unchecked")
3640 <    public V putIfAbsent(K key, V value) {
3641 <        if (key == null || value == null)
3639 >    public <U> void forEachKey(long parallelismThreshold,
3640 >                               Fun<? super K, ? extends U> transformer,
3641 >                               Action<? super U> action) {
3642 >        if (transformer == null || action == null)
3643 >            throw new NullPointerException();
3644 >        new ForEachTransformedKeyTask<K,V,U>
3645 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3646 >             transformer, action).invoke();
3647 >    }
3648 >
3649 >    /**
3650 >     * Returns a non-null result from applying the given search
3651 >     * function on each key, or null if none. Upon success,
3652 >     * further element processing is suppressed and the results of
3653 >     * any other parallel invocations of the search function are
3654 >     * ignored.
3655 >     *
3656 >     * @param parallelismThreshold the (estimated) number of elements
3657 >     * needed for this operation to be executed in parallel
3658 >     * @param searchFunction a function returning a non-null
3659 >     * result on success, else null
3660 >     * @return a non-null result from applying the given search
3661 >     * function on each key, or null if none
3662 >     * @since 1.8
3663 >     */
3664 >    public <U> U searchKeys(long parallelismThreshold,
3665 >                            Fun<? super K, ? extends U> searchFunction) {
3666 >        if (searchFunction == null) throw new NullPointerException();
3667 >        return new SearchKeysTask<K,V,U>
3668 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3669 >             searchFunction, new AtomicReference<U>()).invoke();
3670 >    }
3671 >
3672 >    /**
3673 >     * Returns the result of accumulating all keys using the given
3674 >     * reducer to combine values, or null if none.
3675 >     *
3676 >     * @param parallelismThreshold the (estimated) number of elements
3677 >     * needed for this operation to be executed in parallel
3678 >     * @param reducer a commutative associative combining function
3679 >     * @return the result of accumulating all keys using the given
3680 >     * reducer to combine values, or null if none
3681 >     * @since 1.8
3682 >     */
3683 >    public K reduceKeys(long parallelismThreshold,
3684 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3685 >        if (reducer == null) throw new NullPointerException();
3686 >        return new ReduceKeysTask<K,V>
3687 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3688 >             null, reducer).invoke();
3689 >    }
3690 >
3691 >    /**
3692 >     * Returns the result of accumulating the given transformation
3693 >     * of all keys using the given reducer to combine values, or
3694 >     * null if none.
3695 >     *
3696 >     * @param parallelismThreshold the (estimated) number of elements
3697 >     * needed for this operation to be executed in parallel
3698 >     * @param transformer a function returning the transformation
3699 >     * for an element, or null if there is no transformation (in
3700 >     * which case it is not combined)
3701 >     * @param reducer a commutative associative combining function
3702 >     * @return the result of accumulating the given transformation
3703 >     * of all keys
3704 >     * @since 1.8
3705 >     */
3706 >    public <U> U reduceKeys(long parallelismThreshold,
3707 >                            Fun<? super K, ? extends U> transformer,
3708 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3709 >        if (transformer == null || reducer == null)
3710              throw new NullPointerException();
3711 <        return (V)internalPut(key, value, false);
3711 >        return new MapReduceKeysTask<K,V,U>
3712 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3713 >             null, transformer, reducer).invoke();
3714      }
3715  
3716      /**
3717 <     * Copies all of the mappings from the specified map to this one.
3718 <     * These mappings replace any mappings that this map had for any of the
3719 <     * keys currently in the specified map.
3720 <     *
3721 <     * @param m mappings to be stored in this map
3722 <     */
3723 <    public void putAll(Map<? extends K, ? extends V> m) {
3724 <        if (m == null)
3717 >     * Returns the result of accumulating the given transformation
3718 >     * of all keys using the given reducer to combine values, and
3719 >     * the given basis as an identity value.
3720 >     *
3721 >     * @param parallelismThreshold the (estimated) number of elements
3722 >     * needed for this operation to be executed in parallel
3723 >     * @param transformer a function returning the transformation
3724 >     * for an element
3725 >     * @param basis the identity (initial default value) for the reduction
3726 >     * @param reducer a commutative associative combining function
3727 >     * @return the result of accumulating the given transformation
3728 >     * of all keys
3729 >     * @since 1.8
3730 >     */
3731 >    public double reduceKeysToDouble(long parallelismThreshold,
3732 >                                     ObjectToDouble<? super K> transformer,
3733 >                                     double basis,
3734 >                                     DoubleByDoubleToDouble reducer) {
3735 >        if (transformer == null || reducer == null)
3736              throw new NullPointerException();
3737 <        internalPutAll(m);
3737 >        return new MapReduceKeysToDoubleTask<K,V>
3738 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3739 >             null, transformer, basis, reducer).invoke();
3740      }
3741  
3742      /**
3743 <     * If the specified key is not already associated with a value,
3744 <     * computes its value using the given mappingFunction, and if
3745 <     * non-null, enters it into the map.  This is equivalent to
3746 <     *
3747 <     * <pre>
3748 <     *   if (map.containsKey(key))
3749 <     *       return map.get(key);
3750 <     *   value = mappingFunction.map(key);
3751 <     *   if (value != null)
3752 <     *      map.put(key, value);
3753 <     *   return value;
3754 <     * </pre>
3755 <     *
3756 <     * except that the action is performed atomically.  Some attempted
3757 <     * update operations on this map by other threads may be blocked
3758 <     * while computation is in progress, so the computation should be
3759 <     * short and simple, and must not attempt to update any other
3760 <     * mappings of this Map. The most appropriate usage is to
3761 <     * construct a new object serving as an initial mapped value, or
1131 <     * memoized result, as in:
1132 <     * <pre>{@code
1133 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
1134 <     *   public V map(K k) { return new Value(f(k)); }};
1135 <     * }</pre>
1136 <     *
1137 <     * @param key key with which the specified value is to be associated
1138 <     * @param mappingFunction the function to compute a value
1139 <     * @return the current (existing or computed) value associated with
1140 <     *         the specified key, or {@code null} if the computation
1141 <     *         returned {@code null}.
1142 <     * @throws NullPointerException if the specified key or mappingFunction
1143 <     *         is null,
1144 <     * @throws IllegalStateException if the computation detectably
1145 <     *         attempts a recursive update to this map that would
1146 <     *         otherwise never complete.
1147 <     * @throws RuntimeException or Error if the mappingFunction does so,
1148 <     *         in which case the mapping is left unestablished.
1149 <     */
1150 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1151 <        if (key == null || mappingFunction == null)
3743 >     * Returns the result of accumulating the given transformation
3744 >     * of all keys using the given reducer to combine values, and
3745 >     * the given basis as an identity value.
3746 >     *
3747 >     * @param parallelismThreshold the (estimated) number of elements
3748 >     * needed for this operation to be executed in parallel
3749 >     * @param transformer a function returning the transformation
3750 >     * for an element
3751 >     * @param basis the identity (initial default value) for the reduction
3752 >     * @param reducer a commutative associative combining function
3753 >     * @return the result of accumulating the given transformation
3754 >     * of all keys
3755 >     * @since 1.8
3756 >     */
3757 >    public long reduceKeysToLong(long parallelismThreshold,
3758 >                                 ObjectToLong<? super K> transformer,
3759 >                                 long basis,
3760 >                                 LongByLongToLong reducer) {
3761 >        if (transformer == null || reducer == null)
3762              throw new NullPointerException();
3763 <        return internalCompute(key, mappingFunction, false);
3763 >        return new MapReduceKeysToLongTask<K,V>
3764 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3765 >             null, transformer, basis, reducer).invoke();
3766      }
3767  
3768      /**
3769 <     * Computes the value associated with the given key using the given
3770 <     * mappingFunction, and if non-null, enters it into the map.  This
3771 <     * is equivalent to
3772 <     *
3773 <     * <pre>
3774 <     *   value = mappingFunction.map(key);
3775 <     *   if (value != null)
3776 <     *      map.put(key, value);
3777 <     *   else
3778 <     *      value = map.get(key);
3779 <     *   return value;
3780 <     * </pre>
3781 <     *
3782 <     * except that the action is performed atomically.  Some attempted
3783 <     * update operations on this map by other threads may be blocked
3784 <     * while computation is in progress, so the computation should be
3785 <     * short and simple, and must not attempt to update any other
3786 <     * mappings of this Map.
3787 <     *
1176 <     * @param key key with which the specified value is to be associated
1177 <     * @param mappingFunction the function to compute a value
1178 <     * @return the current value associated with
1179 <     *         the specified key, or {@code null} if the computation
1180 <     *         returned {@code null} and the value was not otherwise present.
1181 <     * @throws NullPointerException if the specified key or mappingFunction
1182 <     *         is null,
1183 <     * @throws IllegalStateException if the computation detectably
1184 <     *         attempts a recursive update to this map that would
1185 <     *         otherwise never complete.
1186 <     * @throws RuntimeException or Error if the mappingFunction does so,
1187 <     *         in which case the mapping is unchanged.
1188 <     */
1189 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
1190 <        if (key == null || mappingFunction == null)
3769 >     * Returns the result of accumulating the given transformation
3770 >     * of all keys using the given reducer to combine values, and
3771 >     * the given basis as an identity value.
3772 >     *
3773 >     * @param parallelismThreshold the (estimated) number of elements
3774 >     * needed for this operation to be executed in parallel
3775 >     * @param transformer a function returning the transformation
3776 >     * for an element
3777 >     * @param basis the identity (initial default value) for the reduction
3778 >     * @param reducer a commutative associative combining function
3779 >     * @return the result of accumulating the given transformation
3780 >     * of all keys
3781 >     * @since 1.8
3782 >     */
3783 >    public int reduceKeysToInt(long parallelismThreshold,
3784 >                               ObjectToInt<? super K> transformer,
3785 >                               int basis,
3786 >                               IntByIntToInt reducer) {
3787 >        if (transformer == null || reducer == null)
3788              throw new NullPointerException();
3789 <        return internalCompute(key, mappingFunction, true);
3789 >        return new MapReduceKeysToIntTask<K,V>
3790 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3791 >             null, transformer, basis, reducer).invoke();
3792      }
3793  
3794      /**
3795 <     * Removes the key (and its corresponding value) from this map.
1197 <     * This method does nothing if the key is not in the map.
3795 >     * Performs the given action for each value.
3796       *
3797 <     * @param  key the key that needs to be removed
3798 <     * @return the previous value associated with {@code key}, or
3799 <     *         {@code null} if there was no mapping for {@code key}
3800 <     * @throws NullPointerException if the specified key is null
3797 >     * @param parallelismThreshold the (estimated) number of elements
3798 >     * needed for this operation to be executed in parallel
3799 >     * @param action the action
3800 >     * @since 1.8
3801       */
3802 <    @SuppressWarnings("unchecked")
3803 <    public V remove(Object key) {
3804 <        if (key == null)
3802 >    public void forEachValue(long parallelismThreshold,
3803 >                             Action<? super V> action) {
3804 >        if (action == null)
3805              throw new NullPointerException();
3806 <        return (V)internalReplace(key, null, null);
3806 >        new ForEachValueTask<K,V>
3807 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3808 >             action).invoke();
3809      }
3810  
3811      /**
3812 <     * {@inheritDoc}
3813 <     *
3814 <     * @throws NullPointerException if the specified key is null
3815 <     */
3816 <    public boolean remove(Object key, Object value) {
3817 <        if (key == null)
3812 >     * Performs the given action for each non-null transformation
3813 >     * of each value.
3814 >     *
3815 >     * @param parallelismThreshold the (estimated) number of elements
3816 >     * needed for this operation to be executed in parallel
3817 >     * @param transformer a function returning the transformation
3818 >     * for an element, or null if there is no transformation (in
3819 >     * which case the action is not applied)
3820 >     * @param action the action
3821 >     * @since 1.8
3822 >     */
3823 >    public <U> void forEachValue(long parallelismThreshold,
3824 >                                 Fun<? super V, ? extends U> transformer,
3825 >                                 Action<? super U> action) {
3826 >        if (transformer == null || action == null)
3827              throw new NullPointerException();
3828 <        if (value == null)
3829 <            return false;
3830 <        return internalReplace(key, null, value) != null;
3828 >        new ForEachTransformedValueTask<K,V,U>
3829 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3830 >             transformer, action).invoke();
3831 >    }
3832 >
3833 >    /**
3834 >     * Returns a non-null result from applying the given search
3835 >     * function on each value, or null if none.  Upon success,
3836 >     * further element processing is suppressed and the results of
3837 >     * any other parallel invocations of the search function are
3838 >     * ignored.
3839 >     *
3840 >     * @param parallelismThreshold the (estimated) number of elements
3841 >     * needed for this operation to be executed in parallel
3842 >     * @param searchFunction a function returning a non-null
3843 >     * result on success, else null
3844 >     * @return a non-null result from applying the given search
3845 >     * function on each value, or null if none
3846 >     * @since 1.8
3847 >     */
3848 >    public <U> U searchValues(long parallelismThreshold,
3849 >                              Fun<? super V, ? extends U> searchFunction) {
3850 >        if (searchFunction == null) throw new NullPointerException();
3851 >        return new SearchValuesTask<K,V,U>
3852 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 >             searchFunction, new AtomicReference<U>()).invoke();
3854 >    }
3855 >
3856 >    /**
3857 >     * Returns the result of accumulating all values using the
3858 >     * given reducer to combine values, or null if none.
3859 >     *
3860 >     * @param parallelismThreshold the (estimated) number of elements
3861 >     * needed for this operation to be executed in parallel
3862 >     * @param reducer a commutative associative combining function
3863 >     * @return the result of accumulating all values
3864 >     * @since 1.8
3865 >     */
3866 >    public V reduceValues(long parallelismThreshold,
3867 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3868 >        if (reducer == null) throw new NullPointerException();
3869 >        return new ReduceValuesTask<K,V>
3870 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3871 >             null, reducer).invoke();
3872 >    }
3873 >
3874 >    /**
3875 >     * Returns the result of accumulating the given transformation
3876 >     * of all values using the given reducer to combine values, or
3877 >     * null if none.
3878 >     *
3879 >     * @param parallelismThreshold the (estimated) number of elements
3880 >     * needed for this operation to be executed in parallel
3881 >     * @param transformer a function returning the transformation
3882 >     * for an element, or null if there is no transformation (in
3883 >     * which case it is not combined)
3884 >     * @param reducer a commutative associative combining function
3885 >     * @return the result of accumulating the given transformation
3886 >     * of all values
3887 >     * @since 1.8
3888 >     */
3889 >    public <U> U reduceValues(long parallelismThreshold,
3890 >                              Fun<? super V, ? extends U> transformer,
3891 >                              BiFun<? super U, ? super U, ? extends U> reducer) {
3892 >        if (transformer == null || reducer == null)
3893 >            throw new NullPointerException();
3894 >        return new MapReduceValuesTask<K,V,U>
3895 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3896 >             null, transformer, reducer).invoke();
3897      }
3898  
3899      /**
3900 <     * {@inheritDoc}
3901 <     *
3902 <     * @throws NullPointerException if any of the arguments are null
3903 <     */
3904 <    public boolean replace(K key, V oldValue, V newValue) {
3905 <        if (key == null || oldValue == null || newValue == null)
3900 >     * Returns the result of accumulating the given transformation
3901 >     * of all values using the given reducer to combine values,
3902 >     * and the given basis as an identity value.
3903 >     *
3904 >     * @param parallelismThreshold the (estimated) number of elements
3905 >     * needed for this operation to be executed in parallel
3906 >     * @param transformer a function returning the transformation
3907 >     * for an element
3908 >     * @param basis the identity (initial default value) for the reduction
3909 >     * @param reducer a commutative associative combining function
3910 >     * @return the result of accumulating the given transformation
3911 >     * of all values
3912 >     * @since 1.8
3913 >     */
3914 >    public double reduceValuesToDouble(long parallelismThreshold,
3915 >                                       ObjectToDouble<? super V> transformer,
3916 >                                       double basis,
3917 >                                       DoubleByDoubleToDouble reducer) {
3918 >        if (transformer == null || reducer == null)
3919              throw new NullPointerException();
3920 <        return internalReplace(key, newValue, oldValue) != null;
3920 >        return new MapReduceValuesToDoubleTask<K,V>
3921 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3922 >             null, transformer, basis, reducer).invoke();
3923      }
3924  
3925      /**
3926 <     * {@inheritDoc}
3927 <     *
3928 <     * @return the previous value associated with the specified key,
3929 <     *         or {@code null} if there was no mapping for the key
3930 <     * @throws NullPointerException if the specified key or value is null
3931 <     */
3932 <    @SuppressWarnings("unchecked")
3933 <    public V replace(K key, V value) {
3934 <        if (key == null || value == null)
3926 >     * Returns the result of accumulating the given transformation
3927 >     * of all values using the given reducer to combine values,
3928 >     * and the given basis as an identity value.
3929 >     *
3930 >     * @param parallelismThreshold the (estimated) number of elements
3931 >     * needed for this operation to be executed in parallel
3932 >     * @param transformer a function returning the transformation
3933 >     * for an element
3934 >     * @param basis the identity (initial default value) for the reduction
3935 >     * @param reducer a commutative associative combining function
3936 >     * @return the result of accumulating the given transformation
3937 >     * of all values
3938 >     * @since 1.8
3939 >     */
3940 >    public long reduceValuesToLong(long parallelismThreshold,
3941 >                                   ObjectToLong<? super V> transformer,
3942 >                                   long basis,
3943 >                                   LongByLongToLong reducer) {
3944 >        if (transformer == null || reducer == null)
3945              throw new NullPointerException();
3946 <        return (V)internalReplace(key, value, null);
3946 >        return new MapReduceValuesToLongTask<K,V>
3947 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3948 >             null, transformer, basis, reducer).invoke();
3949      }
3950  
3951      /**
3952 <     * Removes all of the mappings from this map.
3953 <     */
3954 <    public void clear() {
3955 <        internalClear();
3952 >     * Returns the result of accumulating the given transformation
3953 >     * of all values using the given reducer to combine values,
3954 >     * and the given basis as an identity value.
3955 >     *
3956 >     * @param parallelismThreshold the (estimated) number of elements
3957 >     * needed for this operation to be executed in parallel
3958 >     * @param transformer a function returning the transformation
3959 >     * for an element
3960 >     * @param basis the identity (initial default value) for the reduction
3961 >     * @param reducer a commutative associative combining function
3962 >     * @return the result of accumulating the given transformation
3963 >     * of all values
3964 >     * @since 1.8
3965 >     */
3966 >    public int reduceValuesToInt(long parallelismThreshold,
3967 >                                 ObjectToInt<? super V> transformer,
3968 >                                 int basis,
3969 >                                 IntByIntToInt reducer) {
3970 >        if (transformer == null || reducer == null)
3971 >            throw new NullPointerException();
3972 >        return new MapReduceValuesToIntTask<K,V>
3973 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3974 >             null, transformer, basis, reducer).invoke();
3975      }
3976  
3977      /**
3978 <     * Returns a {@link Set} view of the keys contained in this map.
1258 <     * The set is backed by the map, so changes to the map are
1259 <     * reflected in the set, and vice-versa.  The set supports element
1260 <     * removal, which removes the corresponding mapping from this map,
1261 <     * via the {@code Iterator.remove}, {@code Set.remove},
1262 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1263 <     * operations.  It does not support the {@code add} or
1264 <     * {@code addAll} operations.
3978 >     * Performs the given action for each entry.
3979       *
3980 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3981 <     * that will never throw {@link ConcurrentModificationException},
3982 <     * and guarantees to traverse elements as they existed upon
3983 <     * construction of the iterator, and may (but is not guaranteed to)
1270 <     * reflect any modifications subsequent to construction.
3980 >     * @param parallelismThreshold the (estimated) number of elements
3981 >     * needed for this operation to be executed in parallel
3982 >     * @param action the action
3983 >     * @since 1.8
3984       */
3985 <    public Set<K> keySet() {
3986 <        Set<K> ks = keySet;
3987 <        return (ks != null) ? ks : (keySet = new KeySet());
3985 >    public void forEachEntry(long parallelismThreshold,
3986 >                             Action<? super Map.Entry<K,V>> action) {
3987 >        if (action == null) throw new NullPointerException();
3988 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3989 >                                  action).invoke();
3990      }
3991  
3992      /**
3993 <     * Returns a {@link Collection} view of the values contained in this map.
3994 <     * The collection is backed by the map, so changes to the map are
1280 <     * reflected in the collection, and vice-versa.  The collection
1281 <     * supports element removal, which removes the corresponding
1282 <     * mapping from this map, via the {@code Iterator.remove},
1283 <     * {@code Collection.remove}, {@code removeAll},
1284 <     * {@code retainAll}, and {@code clear} operations.  It does not
1285 <     * support the {@code add} or {@code addAll} operations.
3993 >     * Performs the given action for each non-null transformation
3994 >     * of each entry.
3995       *
3996 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
3997 <     * that will never throw {@link ConcurrentModificationException},
3998 <     * and guarantees to traverse elements as they existed upon
3999 <     * construction of the iterator, and may (but is not guaranteed to)
4000 <     * reflect any modifications subsequent to construction.
3996 >     * @param parallelismThreshold the (estimated) number of elements
3997 >     * needed for this operation to be executed in parallel
3998 >     * @param transformer a function returning the transformation
3999 >     * for an element, or null if there is no transformation (in
4000 >     * which case the action is not applied)
4001 >     * @param action the action
4002 >     * @since 1.8
4003       */
4004 <    public Collection<V> values() {
4005 <        Collection<V> vs = values;
4006 <        return (vs != null) ? vs : (values = new Values());
4004 >    public <U> void forEachEntry(long parallelismThreshold,
4005 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4006 >                                 Action<? super U> action) {
4007 >        if (transformer == null || action == null)
4008 >            throw new NullPointerException();
4009 >        new ForEachTransformedEntryTask<K,V,U>
4010 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4011 >             transformer, action).invoke();
4012 >    }
4013 >
4014 >    /**
4015 >     * Returns a non-null result from applying the given search
4016 >     * function on each entry, or null if none.  Upon success,
4017 >     * further element processing is suppressed and the results of
4018 >     * any other parallel invocations of the search function are
4019 >     * ignored.
4020 >     *
4021 >     * @param parallelismThreshold the (estimated) number of elements
4022 >     * needed for this operation to be executed in parallel
4023 >     * @param searchFunction a function returning a non-null
4024 >     * result on success, else null
4025 >     * @return a non-null result from applying the given search
4026 >     * function on each entry, or null if none
4027 >     * @since 1.8
4028 >     */
4029 >    public <U> U searchEntries(long parallelismThreshold,
4030 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4031 >        if (searchFunction == null) throw new NullPointerException();
4032 >        return new SearchEntriesTask<K,V,U>
4033 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4034 >             searchFunction, new AtomicReference<U>()).invoke();
4035 >    }
4036 >
4037 >    /**
4038 >     * Returns the result of accumulating all entries using the
4039 >     * given reducer to combine values, or null if none.
4040 >     *
4041 >     * @param parallelismThreshold the (estimated) number of elements
4042 >     * needed for this operation to be executed in parallel
4043 >     * @param reducer a commutative associative combining function
4044 >     * @return the result of accumulating all entries
4045 >     * @since 1.8
4046 >     */
4047 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4048 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4049 >        if (reducer == null) throw new NullPointerException();
4050 >        return new ReduceEntriesTask<K,V>
4051 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4052 >             null, reducer).invoke();
4053 >    }
4054 >
4055 >    /**
4056 >     * Returns the result of accumulating the given transformation
4057 >     * of all entries using the given reducer to combine values,
4058 >     * or null if none.
4059 >     *
4060 >     * @param parallelismThreshold the (estimated) number of elements
4061 >     * needed for this operation to be executed in parallel
4062 >     * @param transformer a function returning the transformation
4063 >     * for an element, or null if there is no transformation (in
4064 >     * which case it is not combined)
4065 >     * @param reducer a commutative associative combining function
4066 >     * @return the result of accumulating the given transformation
4067 >     * of all entries
4068 >     * @since 1.8
4069 >     */
4070 >    public <U> U reduceEntries(long parallelismThreshold,
4071 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4072 >                               BiFun<? super U, ? super U, ? extends U> reducer) {
4073 >        if (transformer == null || reducer == null)
4074 >            throw new NullPointerException();
4075 >        return new MapReduceEntriesTask<K,V,U>
4076 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4077 >             null, transformer, reducer).invoke();
4078      }
4079  
4080      /**
4081 <     * Returns a {@link Set} view of the mappings contained in this map.
4082 <     * The set is backed by the map, so changes to the map are
4083 <     * reflected in the set, and vice-versa.  The set supports element
4084 <     * removal, which removes the corresponding mapping from the map,
4085 <     * via the {@code Iterator.remove}, {@code Set.remove},
4086 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
4087 <     * operations.  It does not support the {@code add} or
4088 <     * {@code addAll} operations.
4089 <     *
4090 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4091 <     * that will never throw {@link ConcurrentModificationException},
4092 <     * and guarantees to traverse elements as they existed upon
4093 <     * construction of the iterator, and may (but is not guaranteed to)
4094 <     * reflect any modifications subsequent to construction.
4095 <     */
4096 <    public Set<Map.Entry<K,V>> entrySet() {
4097 <        Set<Map.Entry<K,V>> es = entrySet;
4098 <        return (es != null) ? es : (entrySet = new EntrySet());
4081 >     * Returns the result of accumulating the given transformation
4082 >     * of all entries using the given reducer to combine values,
4083 >     * and the given basis as an identity value.
4084 >     *
4085 >     * @param parallelismThreshold the (estimated) number of elements
4086 >     * needed for this operation to be executed in parallel
4087 >     * @param transformer a function returning the transformation
4088 >     * for an element
4089 >     * @param basis the identity (initial default value) for the reduction
4090 >     * @param reducer a commutative associative combining function
4091 >     * @return the result of accumulating the given transformation
4092 >     * of all entries
4093 >     * @since 1.8
4094 >     */
4095 >    public double reduceEntriesToDouble(long parallelismThreshold,
4096 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4097 >                                        double basis,
4098 >                                        DoubleByDoubleToDouble reducer) {
4099 >        if (transformer == null || reducer == null)
4100 >            throw new NullPointerException();
4101 >        return new MapReduceEntriesToDoubleTask<K,V>
4102 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4103 >             null, transformer, basis, reducer).invoke();
4104      }
4105  
4106      /**
4107 <     * Returns an enumeration of the keys in this table.
4108 <     *
4109 <     * @return an enumeration of the keys in this table
4110 <     * @see #keySet()
4111 <     */
4112 <    public Enumeration<K> keys() {
4113 <        return new KeyIterator();
4107 >     * Returns the result of accumulating the given transformation
4108 >     * of all entries using the given reducer to combine values,
4109 >     * and the given basis as an identity value.
4110 >     *
4111 >     * @param parallelismThreshold the (estimated) number of elements
4112 >     * needed for this operation to be executed in parallel
4113 >     * @param transformer a function returning the transformation
4114 >     * for an element
4115 >     * @param basis the identity (initial default value) for the reduction
4116 >     * @param reducer a commutative associative combining function
4117 >     * @return the result of accumulating the given transformation
4118 >     * of all entries
4119 >     * @since 1.8
4120 >     */
4121 >    public long reduceEntriesToLong(long parallelismThreshold,
4122 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4123 >                                    long basis,
4124 >                                    LongByLongToLong reducer) {
4125 >        if (transformer == null || reducer == null)
4126 >            throw new NullPointerException();
4127 >        return new MapReduceEntriesToLongTask<K,V>
4128 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4129 >             null, transformer, basis, reducer).invoke();
4130      }
4131  
4132      /**
4133 <     * Returns an enumeration of the values in this table.
4134 <     *
4135 <     * @return an enumeration of the values in this table
4136 <     * @see #values()
4137 <     */
4138 <    public Enumeration<V> elements() {
4139 <        return new ValueIterator();
4133 >     * Returns the result of accumulating the given transformation
4134 >     * of all entries using the given reducer to combine values,
4135 >     * and the given basis as an identity value.
4136 >     *
4137 >     * @param parallelismThreshold the (estimated) number of elements
4138 >     * needed for this operation to be executed in parallel
4139 >     * @param transformer a function returning the transformation
4140 >     * for an element
4141 >     * @param basis the identity (initial default value) for the reduction
4142 >     * @param reducer a commutative associative combining function
4143 >     * @return the result of accumulating the given transformation
4144 >     * of all entries
4145 >     * @since 1.8
4146 >     */
4147 >    public int reduceEntriesToInt(long parallelismThreshold,
4148 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4149 >                                  int basis,
4150 >                                  IntByIntToInt reducer) {
4151 >        if (transformer == null || reducer == null)
4152 >            throw new NullPointerException();
4153 >        return new MapReduceEntriesToIntTask<K,V>
4154 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4155 >             null, transformer, basis, reducer).invoke();
4156      }
4157  
4158 +
4159 +    /* ----------------Views -------------- */
4160 +
4161      /**
4162 <     * Returns the hash code value for this {@link Map}, i.e.,
1341 <     * the sum of, for each key-value pair in the map,
1342 <     * {@code key.hashCode() ^ value.hashCode()}.
1343 <     *
1344 <     * @return the hash code value for this map
4162 >     * Base class for views.
4163       */
4164 <    public int hashCode() {
4165 <        return new HashIterator().mapHashCode();
4164 >    abstract static class CollectionView<K,V,E>
4165 >        implements Collection<E>, java.io.Serializable {
4166 >        private static final long serialVersionUID = 7249069246763182397L;
4167 >        final ConcurrentHashMapV8<K,V> map;
4168 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4169 >
4170 >        /**
4171 >         * Returns the map backing this view.
4172 >         *
4173 >         * @return the map backing this view
4174 >         */
4175 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4176 >
4177 >        /**
4178 >         * Removes all of the elements from this view, by removing all
4179 >         * the mappings from the map backing this view.
4180 >         */
4181 >        public final void clear()      { map.clear(); }
4182 >        public final int size()        { return map.size(); }
4183 >        public final boolean isEmpty() { return map.isEmpty(); }
4184 >
4185 >        // implementations below rely on concrete classes supplying these
4186 >        // abstract methods
4187 >        /**
4188 >         * Returns a "weakly consistent" iterator that will never
4189 >         * throw {@link ConcurrentModificationException}, and
4190 >         * guarantees to traverse elements as they existed upon
4191 >         * construction of the iterator, and may (but is not
4192 >         * guaranteed to) reflect any modifications subsequent to
4193 >         * construction.
4194 >         */
4195 >        public abstract Iterator<E> iterator();
4196 >        public abstract boolean contains(Object o);
4197 >        public abstract boolean remove(Object o);
4198 >
4199 >        private static final String oomeMsg = "Required array size too large";
4200 >
4201 >        public final Object[] toArray() {
4202 >            long sz = map.mappingCount();
4203 >            if (sz > MAX_ARRAY_SIZE)
4204 >                throw new OutOfMemoryError(oomeMsg);
4205 >            int n = (int)sz;
4206 >            Object[] r = new Object[n];
4207 >            int i = 0;
4208 >            for (E e : this) {
4209 >                if (i == n) {
4210 >                    if (n >= MAX_ARRAY_SIZE)
4211 >                        throw new OutOfMemoryError(oomeMsg);
4212 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4213 >                        n = MAX_ARRAY_SIZE;
4214 >                    else
4215 >                        n += (n >>> 1) + 1;
4216 >                    r = Arrays.copyOf(r, n);
4217 >                }
4218 >                r[i++] = e;
4219 >            }
4220 >            return (i == n) ? r : Arrays.copyOf(r, i);
4221 >        }
4222 >
4223 >        @SuppressWarnings("unchecked")
4224 >        public final <T> T[] toArray(T[] a) {
4225 >            long sz = map.mappingCount();
4226 >            if (sz > MAX_ARRAY_SIZE)
4227 >                throw new OutOfMemoryError(oomeMsg);
4228 >            int m = (int)sz;
4229 >            T[] r = (a.length >= m) ? a :
4230 >                (T[])java.lang.reflect.Array
4231 >                .newInstance(a.getClass().getComponentType(), m);
4232 >            int n = r.length;
4233 >            int i = 0;
4234 >            for (E e : this) {
4235 >                if (i == n) {
4236 >                    if (n >= MAX_ARRAY_SIZE)
4237 >                        throw new OutOfMemoryError(oomeMsg);
4238 >                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4239 >                        n = MAX_ARRAY_SIZE;
4240 >                    else
4241 >                        n += (n >>> 1) + 1;
4242 >                    r = Arrays.copyOf(r, n);
4243 >                }
4244 >                r[i++] = (T)e;
4245 >            }
4246 >            if (a == r && i < n) {
4247 >                r[i] = null; // null-terminate
4248 >                return r;
4249 >            }
4250 >            return (i == n) ? r : Arrays.copyOf(r, i);
4251 >        }
4252 >
4253 >        /**
4254 >         * Returns a string representation of this collection.
4255 >         * The string representation consists of the string representations
4256 >         * of the collection's elements in the order they are returned by
4257 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4258 >         * Adjacent elements are separated by the characters {@code ", "}
4259 >         * (comma and space).  Elements are converted to strings as by
4260 >         * {@link String#valueOf(Object)}.
4261 >         *
4262 >         * @return a string representation of this collection
4263 >         */
4264 >        public final String toString() {
4265 >            StringBuilder sb = new StringBuilder();
4266 >            sb.append('[');
4267 >            Iterator<E> it = iterator();
4268 >            if (it.hasNext()) {
4269 >                for (;;) {
4270 >                    Object e = it.next();
4271 >                    sb.append(e == this ? "(this Collection)" : e);
4272 >                    if (!it.hasNext())
4273 >                        break;
4274 >                    sb.append(',').append(' ');
4275 >                }
4276 >            }
4277 >            return sb.append(']').toString();
4278 >        }
4279 >
4280 >        public final boolean containsAll(Collection<?> c) {
4281 >            if (c != this) {
4282 >                for (Object e : c) {
4283 >                    if (e == null || !contains(e))
4284 >                        return false;
4285 >                }
4286 >            }
4287 >            return true;
4288 >        }
4289 >
4290 >        public final boolean removeAll(Collection<?> c) {
4291 >            boolean modified = false;
4292 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4293 >                if (c.contains(it.next())) {
4294 >                    it.remove();
4295 >                    modified = true;
4296 >                }
4297 >            }
4298 >            return modified;
4299 >        }
4300 >
4301 >        public final boolean retainAll(Collection<?> c) {
4302 >            boolean modified = false;
4303 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4304 >                if (!c.contains(it.next())) {
4305 >                    it.remove();
4306 >                    modified = true;
4307 >                }
4308 >            }
4309 >            return modified;
4310 >        }
4311 >
4312      }
4313  
4314      /**
4315 <     * Returns a string representation of this map.  The string
4316 <     * representation consists of a list of key-value mappings (in no
4317 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
4318 <     * mappings are separated by the characters {@code ", "} (comma
4319 <     * and space).  Each key-value mapping is rendered as the key
4320 <     * followed by an equals sign ("{@code =}") followed by the
4321 <     * associated value.
4315 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4316 >     * which additions may optionally be enabled by mapping to a
4317 >     * common value.  This class cannot be directly instantiated.
4318 >     * See {@link #keySet() keySet()},
4319 >     * {@link #keySet(Object) keySet(V)},
4320 >     * {@link #newKeySet() newKeySet()},
4321 >     * {@link #newKeySet(int) newKeySet(int)}.
4322       *
4323 <     * @return a string representation of this map
4323 >     * @since 1.8
4324       */
4325 <    public String toString() {
4326 <        return new HashIterator().mapToString();
4325 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4326 >        implements Set<K>, java.io.Serializable {
4327 >        private static final long serialVersionUID = 7249069246763182397L;
4328 >        private final V value;
4329 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4330 >            super(map);
4331 >            this.value = value;
4332 >        }
4333 >
4334 >        /**
4335 >         * Returns the default mapped value for additions,
4336 >         * or {@code null} if additions are not supported.
4337 >         *
4338 >         * @return the default mapped value for additions, or {@code null}
4339 >         * if not supported
4340 >         */
4341 >        public V getMappedValue() { return value; }
4342 >
4343 >        /**
4344 >         * {@inheritDoc}
4345 >         * @throws NullPointerException if the specified key is null
4346 >         */
4347 >        public boolean contains(Object o) { return map.containsKey(o); }
4348 >
4349 >        /**
4350 >         * Removes the key from this map view, by removing the key (and its
4351 >         * corresponding value) from the backing map.  This method does
4352 >         * nothing if the key is not in the map.
4353 >         *
4354 >         * @param  o the key to be removed from the backing map
4355 >         * @return {@code true} if the backing map contained the specified key
4356 >         * @throws NullPointerException if the specified key is null
4357 >         */
4358 >        public boolean remove(Object o) { return map.remove(o) != null; }
4359 >
4360 >        /**
4361 >         * @return an iterator over the keys of the backing map
4362 >         */
4363 >        public Iterator<K> iterator() {
4364 >            Node<K,V>[] t;
4365 >            ConcurrentHashMapV8<K,V> m = map;
4366 >            int f = (t = m.table) == null ? 0 : t.length;
4367 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4368 >        }
4369 >
4370 >        /**
4371 >         * Adds the specified key to this set view by mapping the key to
4372 >         * the default mapped value in the backing map, if defined.
4373 >         *
4374 >         * @param e key to be added
4375 >         * @return {@code true} if this set changed as a result of the call
4376 >         * @throws NullPointerException if the specified key is null
4377 >         * @throws UnsupportedOperationException if no default mapped value
4378 >         * for additions was provided
4379 >         */
4380 >        public boolean add(K e) {
4381 >            V v;
4382 >            if ((v = value) == null)
4383 >                throw new UnsupportedOperationException();
4384 >            return map.putVal(e, v, true) == null;
4385 >        }
4386 >
4387 >        /**
4388 >         * Adds all of the elements in the specified collection to this set,
4389 >         * as if by calling {@link #add} on each one.
4390 >         *
4391 >         * @param c the elements to be inserted into this set
4392 >         * @return {@code true} if this set changed as a result of the call
4393 >         * @throws NullPointerException if the collection or any of its
4394 >         * elements are {@code null}
4395 >         * @throws UnsupportedOperationException if no default mapped value
4396 >         * for additions was provided
4397 >         */
4398 >        public boolean addAll(Collection<? extends K> c) {
4399 >            boolean added = false;
4400 >            V v;
4401 >            if ((v = value) == null)
4402 >                throw new UnsupportedOperationException();
4403 >            for (K e : c) {
4404 >                if (map.putVal(e, v, true) == null)
4405 >                    added = true;
4406 >            }
4407 >            return added;
4408 >        }
4409 >
4410 >        public int hashCode() {
4411 >            int h = 0;
4412 >            for (K e : this)
4413 >                h += e.hashCode();
4414 >            return h;
4415 >        }
4416 >
4417 >        public boolean equals(Object o) {
4418 >            Set<?> c;
4419 >            return ((o instanceof Set) &&
4420 >                    ((c = (Set<?>)o) == this ||
4421 >                     (containsAll(c) && c.containsAll(this))));
4422 >        }
4423 >
4424 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4425 >            Node<K,V>[] t;
4426 >            ConcurrentHashMapV8<K,V> m = map;
4427 >            long n = m.sumCount();
4428 >            int f = (t = m.table) == null ? 0 : t.length;
4429 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4430 >        }
4431 >
4432 >        public void forEach(Action<? super K> action) {
4433 >            if (action == null) throw new NullPointerException();
4434 >            Node<K,V>[] t;
4435 >            if ((t = map.table) != null) {
4436 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4437 >                for (Node<K,V> p; (p = it.advance()) != null; )
4438 >                    action.apply(p.key);
4439 >            }
4440 >        }
4441      }
4442  
4443      /**
4444 <     * Compares the specified object with this map for equality.
4445 <     * Returns {@code true} if the given object is a map with the same
4446 <     * mappings as this map.  This operation may return misleading
1369 <     * results if either map is concurrently modified during execution
1370 <     * of this method.
1371 <     *
1372 <     * @param o object to be compared for equality with this map
1373 <     * @return {@code true} if the specified object is equal to this map
4444 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4445 >     * values, in which additions are disabled. This class cannot be
4446 >     * directly instantiated. See {@link #values()}.
4447       */
4448 <    public boolean equals(Object o) {
4449 <        if (o == this)
4450 <            return true;
4451 <        if (!(o instanceof Map))
4452 <            return false;
4453 <        Map<?,?> m = (Map<?,?>) o;
4454 <        try {
4455 <            for (Map.Entry<K,V> e : this.entrySet())
4456 <                if (! e.getValue().equals(m.get(e.getKey())))
4457 <                    return false;
4458 <            for (Map.Entry<?,?> e : m.entrySet()) {
4459 <                Object k = e.getKey();
4460 <                Object v = e.getValue();
4461 <                if (k == null || v == null || !v.equals(get(k)))
4462 <                    return false;
4448 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4449 >        implements Collection<V>, java.io.Serializable {
4450 >        private static final long serialVersionUID = 2249069246763182397L;
4451 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4452 >        public final boolean contains(Object o) {
4453 >            return map.containsValue(o);
4454 >        }
4455 >
4456 >        public final boolean remove(Object o) {
4457 >            if (o != null) {
4458 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4459 >                    if (o.equals(it.next())) {
4460 >                        it.remove();
4461 >                        return true;
4462 >                    }
4463 >                }
4464              }
1391            return true;
1392        } catch (ClassCastException unused) {
1393            return false;
1394        } catch (NullPointerException unused) {
4465              return false;
4466          }
4467 +
4468 +        public final Iterator<V> iterator() {
4469 +            ConcurrentHashMapV8<K,V> m = map;
4470 +            Node<K,V>[] t;
4471 +            int f = (t = m.table) == null ? 0 : t.length;
4472 +            return new ValueIterator<K,V>(t, f, 0, f, m);
4473 +        }
4474 +
4475 +        public final boolean add(V e) {
4476 +            throw new UnsupportedOperationException();
4477 +        }
4478 +        public final boolean addAll(Collection<? extends V> c) {
4479 +            throw new UnsupportedOperationException();
4480 +        }
4481 +
4482 +        public ConcurrentHashMapSpliterator<V> spliterator() {
4483 +            Node<K,V>[] t;
4484 +            ConcurrentHashMapV8<K,V> m = map;
4485 +            long n = m.sumCount();
4486 +            int f = (t = m.table) == null ? 0 : t.length;
4487 +            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4488 +        }
4489 +
4490 +        public void forEach(Action<? super V> action) {
4491 +            if (action == null) throw new NullPointerException();
4492 +            Node<K,V>[] t;
4493 +            if ((t = map.table) != null) {
4494 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4495 +                for (Node<K,V> p; (p = it.advance()) != null; )
4496 +                    action.apply(p.val);
4497 +            }
4498 +        }
4499      }
4500  
4501      /**
4502 <     * Custom Entry class used by EntryIterator.next(), that relays
4503 <     * setValue changes to the underlying map.
4502 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4503 >     * entries.  This class cannot be directly instantiated. See
4504 >     * {@link #entrySet()}.
4505       */
4506 <    final class WriteThroughEntry extends AbstractMap.SimpleEntry<K,V> {
4507 <        @SuppressWarnings("unchecked")
4508 <        WriteThroughEntry(Object k, Object v) {
4509 <            super((K)k, (V)v);
4506 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4507 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4508 >        private static final long serialVersionUID = 2249069246763182397L;
4509 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4510 >
4511 >        public boolean contains(Object o) {
4512 >            Object k, v, r; Map.Entry<?,?> e;
4513 >            return ((o instanceof Map.Entry) &&
4514 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4515 >                    (r = map.get(k)) != null &&
4516 >                    (v = e.getValue()) != null &&
4517 >                    (v == r || v.equals(r)));
4518 >        }
4519 >
4520 >        public boolean remove(Object o) {
4521 >            Object k, v; Map.Entry<?,?> e;
4522 >            return ((o instanceof Map.Entry) &&
4523 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4524 >                    (v = e.getValue()) != null &&
4525 >                    map.remove(k, v));
4526          }
4527  
4528          /**
4529 <         * Sets our entry's value and writes through to the map. The
1411 <         * value to return is somewhat arbitrary here. Since a
1412 <         * WriteThroughEntry does not necessarily track asynchronous
1413 <         * changes, the most recent "previous" value could be
1414 <         * different from what we return (or could even have been
1415 <         * removed in which case the put will re-establish). We do not
1416 <         * and cannot guarantee more.
4529 >         * @return an iterator over the entries of the backing map
4530           */
4531 <        public V setValue(V value) {
4532 <            if (value == null) throw new NullPointerException();
4533 <            V v = super.setValue(value);
4534 <            ConcurrentHashMapV8.this.put(getKey(), value);
4535 <            return v;
4531 >        public Iterator<Map.Entry<K,V>> iterator() {
4532 >            ConcurrentHashMapV8<K,V> m = map;
4533 >            Node<K,V>[] t;
4534 >            int f = (t = m.table) == null ? 0 : t.length;
4535 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4536 >        }
4537 >
4538 >        public boolean add(Entry<K,V> e) {
4539 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4540          }
4541 +
4542 +        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4543 +            boolean added = false;
4544 +            for (Entry<K,V> e : c) {
4545 +                if (add(e))
4546 +                    added = true;
4547 +            }
4548 +            return added;
4549 +        }
4550 +
4551 +        public final int hashCode() {
4552 +            int h = 0;
4553 +            Node<K,V>[] t;
4554 +            if ((t = map.table) != null) {
4555 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4556 +                for (Node<K,V> p; (p = it.advance()) != null; ) {
4557 +                    h += p.hashCode();
4558 +                }
4559 +            }
4560 +            return h;
4561 +        }
4562 +
4563 +        public final boolean equals(Object o) {
4564 +            Set<?> c;
4565 +            return ((o instanceof Set) &&
4566 +                    ((c = (Set<?>)o) == this ||
4567 +                     (containsAll(c) && c.containsAll(this))));
4568 +        }
4569 +
4570 +        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4571 +            Node<K,V>[] t;
4572 +            ConcurrentHashMapV8<K,V> m = map;
4573 +            long n = m.sumCount();
4574 +            int f = (t = m.table) == null ? 0 : t.length;
4575 +            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4576 +        }
4577 +
4578 +        public void forEach(Action<? super Map.Entry<K,V>> action) {
4579 +            if (action == null) throw new NullPointerException();
4580 +            Node<K,V>[] t;
4581 +            if ((t = map.table) != null) {
4582 +                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 +                for (Node<K,V> p; (p = it.advance()) != null; )
4584 +                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4585 +            }
4586 +        }
4587 +
4588      }
4589  
4590 <    final class KeyIterator extends HashIterator
4591 <        implements Iterator<K>, Enumeration<K> {
4592 <        @SuppressWarnings("unchecked")
4593 <        public final K next()        { return (K)super.nextKey(); }
4594 <        @SuppressWarnings("unchecked")
4595 <        public final K nextElement() { return (K)super.nextKey(); }
4590 >    // -------------------------------------------------------
4591 >
4592 >    /**
4593 >     * Base class for bulk tasks. Repeats some fields and code from
4594 >     * class Traverser, because we need to subclass CountedCompleter.
4595 >     */
4596 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4597 >        Node<K,V>[] tab;        // same as Traverser
4598 >        Node<K,V> next;
4599 >        int index;
4600 >        int baseIndex;
4601 >        int baseLimit;
4602 >        final int baseSize;
4603 >        int batch;              // split control
4604 >
4605 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4606 >            super(par);
4607 >            this.batch = b;
4608 >            this.index = this.baseIndex = i;
4609 >            if ((this.tab = t) == null)
4610 >                this.baseSize = this.baseLimit = 0;
4611 >            else if (par == null)
4612 >                this.baseSize = this.baseLimit = t.length;
4613 >            else {
4614 >                this.baseLimit = f;
4615 >                this.baseSize = par.baseSize;
4616 >            }
4617 >        }
4618 >
4619 >        /**
4620 >         * Same as Traverser version
4621 >         */
4622 >        final Node<K,V> advance() {
4623 >            Node<K,V> e;
4624 >            if ((e = next) != null)
4625 >                e = e.next;
4626 >            for (;;) {
4627 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4628 >                if (e != null)
4629 >                    return next = e;
4630 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4631 >                    (n = t.length) <= (i = index) || i < 0)
4632 >                    return next = null;
4633 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4634 >                    if (e instanceof ForwardingNode) {
4635 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4636 >                        e = null;
4637 >                        continue;
4638 >                    }
4639 >                    else if (e instanceof TreeBin)
4640 >                        e = ((TreeBin<K,V>)e).first;
4641 >                    else
4642 >                        e = null;
4643 >                }
4644 >                if ((index += baseSize) >= n)
4645 >                    index = ++baseIndex;    // visit upper slots if present
4646 >            }
4647 >        }
4648      }
4649  
4650 <    final class ValueIterator extends HashIterator
4651 <        implements Iterator<V>, Enumeration<V> {
4652 <        @SuppressWarnings("unchecked")
4653 <        public final V next()        { return (V)super.nextValue(); }
4654 <        @SuppressWarnings("unchecked")
4655 <        public final V nextElement() { return (V)super.nextValue(); }
4650 >    /*
4651 >     * Task classes. Coded in a regular but ugly format/style to
4652 >     * simplify checks that each variant differs in the right way from
4653 >     * others. The null screenings exist because compilers cannot tell
4654 >     * that we've already null-checked task arguments, so we force
4655 >     * simplest hoisted bypass to help avoid convoluted traps.
4656 >     */
4657 >    @SuppressWarnings("serial")
4658 >    static final class ForEachKeyTask<K,V>
4659 >        extends BulkTask<K,V,Void> {
4660 >        final Action<? super K> action;
4661 >        ForEachKeyTask
4662 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4663 >             Action<? super K> action) {
4664 >            super(p, b, i, f, t);
4665 >            this.action = action;
4666 >        }
4667 >        public final void compute() {
4668 >            final Action<? super K> action;
4669 >            if ((action = this.action) != null) {
4670 >                for (int i = baseIndex, f, h; batch > 0 &&
4671 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4672 >                    addToPendingCount(1);
4673 >                    new ForEachKeyTask<K,V>
4674 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4675 >                         action).fork();
4676 >                }
4677 >                for (Node<K,V> p; (p = advance()) != null;)
4678 >                    action.apply(p.key);
4679 >                propagateCompletion();
4680 >            }
4681 >        }
4682      }
4683  
4684 <    final class EntryIterator extends HashIterator
4685 <        implements Iterator<Entry<K,V>> {
4686 <        public final Map.Entry<K,V> next() { return super.nextEntry(); }
4684 >    @SuppressWarnings("serial")
4685 >    static final class ForEachValueTask<K,V>
4686 >        extends BulkTask<K,V,Void> {
4687 >        final Action<? super V> action;
4688 >        ForEachValueTask
4689 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4690 >             Action<? super V> action) {
4691 >            super(p, b, i, f, t);
4692 >            this.action = action;
4693 >        }
4694 >        public final void compute() {
4695 >            final Action<? super V> action;
4696 >            if ((action = this.action) != null) {
4697 >                for (int i = baseIndex, f, h; batch > 0 &&
4698 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4699 >                    addToPendingCount(1);
4700 >                    new ForEachValueTask<K,V>
4701 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4702 >                         action).fork();
4703 >                }
4704 >                for (Node<K,V> p; (p = advance()) != null;)
4705 >                    action.apply(p.val);
4706 >                propagateCompletion();
4707 >            }
4708 >        }
4709      }
4710  
4711 <    final class KeySet extends AbstractSet<K> {
4712 <        public int size() {
4713 <            return ConcurrentHashMapV8.this.size();
4711 >    @SuppressWarnings("serial")
4712 >    static final class ForEachEntryTask<K,V>
4713 >        extends BulkTask<K,V,Void> {
4714 >        final Action<? super Entry<K,V>> action;
4715 >        ForEachEntryTask
4716 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4717 >             Action<? super Entry<K,V>> action) {
4718 >            super(p, b, i, f, t);
4719 >            this.action = action;
4720 >        }
4721 >        public final void compute() {
4722 >            final Action<? super Entry<K,V>> action;
4723 >            if ((action = this.action) != null) {
4724 >                for (int i = baseIndex, f, h; batch > 0 &&
4725 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4726 >                    addToPendingCount(1);
4727 >                    new ForEachEntryTask<K,V>
4728 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4729 >                         action).fork();
4730 >                }
4731 >                for (Node<K,V> p; (p = advance()) != null; )
4732 >                    action.apply(p);
4733 >                propagateCompletion();
4734 >            }
4735          }
4736 <        public boolean isEmpty() {
4737 <            return ConcurrentHashMapV8.this.isEmpty();
4736 >    }
4737 >
4738 >    @SuppressWarnings("serial")
4739 >    static final class ForEachMappingTask<K,V>
4740 >        extends BulkTask<K,V,Void> {
4741 >        final BiAction<? super K, ? super V> action;
4742 >        ForEachMappingTask
4743 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4744 >             BiAction<? super K,? super V> action) {
4745 >            super(p, b, i, f, t);
4746 >            this.action = action;
4747 >        }
4748 >        public final void compute() {
4749 >            final BiAction<? super K, ? super V> action;
4750 >            if ((action = this.action) != null) {
4751 >                for (int i = baseIndex, f, h; batch > 0 &&
4752 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753 >                    addToPendingCount(1);
4754 >                    new ForEachMappingTask<K,V>
4755 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4756 >                         action).fork();
4757 >                }
4758 >                for (Node<K,V> p; (p = advance()) != null; )
4759 >                    action.apply(p.key, p.val);
4760 >                propagateCompletion();
4761 >            }
4762          }
4763 <        public void clear() {
4764 <            ConcurrentHashMapV8.this.clear();
4763 >    }
4764 >
4765 >    @SuppressWarnings("serial")
4766 >    static final class ForEachTransformedKeyTask<K,V,U>
4767 >        extends BulkTask<K,V,Void> {
4768 >        final Fun<? super K, ? extends U> transformer;
4769 >        final Action<? super U> action;
4770 >        ForEachTransformedKeyTask
4771 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4772 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4773 >            super(p, b, i, f, t);
4774 >            this.transformer = transformer; this.action = action;
4775 >        }
4776 >        public final void compute() {
4777 >            final Fun<? super K, ? extends U> transformer;
4778 >            final Action<? super U> action;
4779 >            if ((transformer = this.transformer) != null &&
4780 >                (action = this.action) != null) {
4781 >                for (int i = baseIndex, f, h; batch > 0 &&
4782 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4783 >                    addToPendingCount(1);
4784 >                    new ForEachTransformedKeyTask<K,V,U>
4785 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4786 >                         transformer, action).fork();
4787 >                }
4788 >                for (Node<K,V> p; (p = advance()) != null; ) {
4789 >                    U u;
4790 >                    if ((u = transformer.apply(p.key)) != null)
4791 >                        action.apply(u);
4792 >                }
4793 >                propagateCompletion();
4794 >            }
4795          }
4796 <        public Iterator<K> iterator() {
4797 <            return new KeyIterator();
4796 >    }
4797 >
4798 >    @SuppressWarnings("serial")
4799 >    static final class ForEachTransformedValueTask<K,V,U>
4800 >        extends BulkTask<K,V,Void> {
4801 >        final Fun<? super V, ? extends U> transformer;
4802 >        final Action<? super U> action;
4803 >        ForEachTransformedValueTask
4804 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4806 >            super(p, b, i, f, t);
4807 >            this.transformer = transformer; this.action = action;
4808 >        }
4809 >        public final void compute() {
4810 >            final Fun<? super V, ? extends U> transformer;
4811 >            final Action<? super U> action;
4812 >            if ((transformer = this.transformer) != null &&
4813 >                (action = this.action) != null) {
4814 >                for (int i = baseIndex, f, h; batch > 0 &&
4815 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4816 >                    addToPendingCount(1);
4817 >                    new ForEachTransformedValueTask<K,V,U>
4818 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4819 >                         transformer, action).fork();
4820 >                }
4821 >                for (Node<K,V> p; (p = advance()) != null; ) {
4822 >                    U u;
4823 >                    if ((u = transformer.apply(p.val)) != null)
4824 >                        action.apply(u);
4825 >                }
4826 >                propagateCompletion();
4827 >            }
4828          }
4829 <        public boolean contains(Object o) {
4830 <            return ConcurrentHashMapV8.this.containsKey(o);
4829 >    }
4830 >
4831 >    @SuppressWarnings("serial")
4832 >    static final class ForEachTransformedEntryTask<K,V,U>
4833 >        extends BulkTask<K,V,Void> {
4834 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
4835 >        final Action<? super U> action;
4836 >        ForEachTransformedEntryTask
4837 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4838 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4839 >            super(p, b, i, f, t);
4840 >            this.transformer = transformer; this.action = action;
4841 >        }
4842 >        public final void compute() {
4843 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
4844 >            final Action<? super U> action;
4845 >            if ((transformer = this.transformer) != null &&
4846 >                (action = this.action) != null) {
4847 >                for (int i = baseIndex, f, h; batch > 0 &&
4848 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4849 >                    addToPendingCount(1);
4850 >                    new ForEachTransformedEntryTask<K,V,U>
4851 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4852 >                         transformer, action).fork();
4853 >                }
4854 >                for (Node<K,V> p; (p = advance()) != null; ) {
4855 >                    U u;
4856 >                    if ((u = transformer.apply(p)) != null)
4857 >                        action.apply(u);
4858 >                }
4859 >                propagateCompletion();
4860 >            }
4861          }
4862 <        public boolean remove(Object o) {
4863 <            return ConcurrentHashMapV8.this.remove(o) != null;
4862 >    }
4863 >
4864 >    @SuppressWarnings("serial")
4865 >    static final class ForEachTransformedMappingTask<K,V,U>
4866 >        extends BulkTask<K,V,Void> {
4867 >        final BiFun<? super K, ? super V, ? extends U> transformer;
4868 >        final Action<? super U> action;
4869 >        ForEachTransformedMappingTask
4870 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4871 >             BiFun<? super K, ? super V, ? extends U> transformer,
4872 >             Action<? super U> action) {
4873 >            super(p, b, i, f, t);
4874 >            this.transformer = transformer; this.action = action;
4875 >        }
4876 >        public final void compute() {
4877 >            final BiFun<? super K, ? super V, ? extends U> transformer;
4878 >            final Action<? super U> action;
4879 >            if ((transformer = this.transformer) != null &&
4880 >                (action = this.action) != null) {
4881 >                for (int i = baseIndex, f, h; batch > 0 &&
4882 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4883 >                    addToPendingCount(1);
4884 >                    new ForEachTransformedMappingTask<K,V,U>
4885 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4886 >                         transformer, action).fork();
4887 >                }
4888 >                for (Node<K,V> p; (p = advance()) != null; ) {
4889 >                    U u;
4890 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4891 >                        action.apply(u);
4892 >                }
4893 >                propagateCompletion();
4894 >            }
4895 >        }
4896 >    }
4897 >
4898 >    @SuppressWarnings("serial")
4899 >    static final class SearchKeysTask<K,V,U>
4900 >        extends BulkTask<K,V,U> {
4901 >        final Fun<? super K, ? extends U> searchFunction;
4902 >        final AtomicReference<U> result;
4903 >        SearchKeysTask
4904 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4905 >             Fun<? super K, ? extends U> searchFunction,
4906 >             AtomicReference<U> result) {
4907 >            super(p, b, i, f, t);
4908 >            this.searchFunction = searchFunction; this.result = result;
4909 >        }
4910 >        public final U getRawResult() { return result.get(); }
4911 >        public final void compute() {
4912 >            final Fun<? super K, ? extends U> searchFunction;
4913 >            final AtomicReference<U> result;
4914 >            if ((searchFunction = this.searchFunction) != null &&
4915 >                (result = this.result) != null) {
4916 >                for (int i = baseIndex, f, h; batch > 0 &&
4917 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4918 >                    if (result.get() != null)
4919 >                        return;
4920 >                    addToPendingCount(1);
4921 >                    new SearchKeysTask<K,V,U>
4922 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4923 >                         searchFunction, result).fork();
4924 >                }
4925 >                while (result.get() == null) {
4926 >                    U u;
4927 >                    Node<K,V> p;
4928 >                    if ((p = advance()) == null) {
4929 >                        propagateCompletion();
4930 >                        break;
4931 >                    }
4932 >                    if ((u = searchFunction.apply(p.key)) != null) {
4933 >                        if (result.compareAndSet(null, u))
4934 >                            quietlyCompleteRoot();
4935 >                        break;
4936 >                    }
4937 >                }
4938 >            }
4939 >        }
4940 >    }
4941 >
4942 >    @SuppressWarnings("serial")
4943 >    static final class SearchValuesTask<K,V,U>
4944 >        extends BulkTask<K,V,U> {
4945 >        final Fun<? super V, ? extends U> searchFunction;
4946 >        final AtomicReference<U> result;
4947 >        SearchValuesTask
4948 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4949 >             Fun<? super V, ? extends U> searchFunction,
4950 >             AtomicReference<U> result) {
4951 >            super(p, b, i, f, t);
4952 >            this.searchFunction = searchFunction; this.result = result;
4953 >        }
4954 >        public final U getRawResult() { return result.get(); }
4955 >        public final void compute() {
4956 >            final Fun<? super V, ? extends U> searchFunction;
4957 >            final AtomicReference<U> result;
4958 >            if ((searchFunction = this.searchFunction) != null &&
4959 >                (result = this.result) != null) {
4960 >                for (int i = baseIndex, f, h; batch > 0 &&
4961 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4962 >                    if (result.get() != null)
4963 >                        return;
4964 >                    addToPendingCount(1);
4965 >                    new SearchValuesTask<K,V,U>
4966 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4967 >                         searchFunction, result).fork();
4968 >                }
4969 >                while (result.get() == null) {
4970 >                    U u;
4971 >                    Node<K,V> p;
4972 >                    if ((p = advance()) == null) {
4973 >                        propagateCompletion();
4974 >                        break;
4975 >                    }
4976 >                    if ((u = searchFunction.apply(p.val)) != null) {
4977 >                        if (result.compareAndSet(null, u))
4978 >                            quietlyCompleteRoot();
4979 >                        break;
4980 >                    }
4981 >                }
4982 >            }
4983          }
4984      }
4985  
4986 <    final class Values extends AbstractCollection<V> {
4987 <        public int size() {
4988 <            return ConcurrentHashMapV8.this.size();
4986 >    @SuppressWarnings("serial")
4987 >    static final class SearchEntriesTask<K,V,U>
4988 >        extends BulkTask<K,V,U> {
4989 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
4990 >        final AtomicReference<U> result;
4991 >        SearchEntriesTask
4992 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993 >             Fun<Entry<K,V>, ? extends U> searchFunction,
4994 >             AtomicReference<U> result) {
4995 >            super(p, b, i, f, t);
4996 >            this.searchFunction = searchFunction; this.result = result;
4997 >        }
4998 >        public final U getRawResult() { return result.get(); }
4999 >        public final void compute() {
5000 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5001 >            final AtomicReference<U> result;
5002 >            if ((searchFunction = this.searchFunction) != null &&
5003 >                (result = this.result) != null) {
5004 >                for (int i = baseIndex, f, h; batch > 0 &&
5005 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006 >                    if (result.get() != null)
5007 >                        return;
5008 >                    addToPendingCount(1);
5009 >                    new SearchEntriesTask<K,V,U>
5010 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5011 >                         searchFunction, result).fork();
5012 >                }
5013 >                while (result.get() == null) {
5014 >                    U u;
5015 >                    Node<K,V> p;
5016 >                    if ((p = advance()) == null) {
5017 >                        propagateCompletion();
5018 >                        break;
5019 >                    }
5020 >                    if ((u = searchFunction.apply(p)) != null) {
5021 >                        if (result.compareAndSet(null, u))
5022 >                            quietlyCompleteRoot();
5023 >                        return;
5024 >                    }
5025 >                }
5026 >            }
5027          }
5028 <        public boolean isEmpty() {
5029 <            return ConcurrentHashMapV8.this.isEmpty();
5028 >    }
5029 >
5030 >    @SuppressWarnings("serial")
5031 >    static final class SearchMappingsTask<K,V,U>
5032 >        extends BulkTask<K,V,U> {
5033 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5034 >        final AtomicReference<U> result;
5035 >        SearchMappingsTask
5036 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5038 >             AtomicReference<U> result) {
5039 >            super(p, b, i, f, t);
5040 >            this.searchFunction = searchFunction; this.result = result;
5041 >        }
5042 >        public final U getRawResult() { return result.get(); }
5043 >        public final void compute() {
5044 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5045 >            final AtomicReference<U> result;
5046 >            if ((searchFunction = this.searchFunction) != null &&
5047 >                (result = this.result) != null) {
5048 >                for (int i = baseIndex, f, h; batch > 0 &&
5049 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050 >                    if (result.get() != null)
5051 >                        return;
5052 >                    addToPendingCount(1);
5053 >                    new SearchMappingsTask<K,V,U>
5054 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5055 >                         searchFunction, result).fork();
5056 >                }
5057 >                while (result.get() == null) {
5058 >                    U u;
5059 >                    Node<K,V> p;
5060 >                    if ((p = advance()) == null) {
5061 >                        propagateCompletion();
5062 >                        break;
5063 >                    }
5064 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5065 >                        if (result.compareAndSet(null, u))
5066 >                            quietlyCompleteRoot();
5067 >                        break;
5068 >                    }
5069 >                }
5070 >            }
5071          }
5072 <        public void clear() {
5073 <            ConcurrentHashMapV8.this.clear();
5072 >    }
5073 >
5074 >    @SuppressWarnings("serial")
5075 >    static final class ReduceKeysTask<K,V>
5076 >        extends BulkTask<K,V,K> {
5077 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5078 >        K result;
5079 >        ReduceKeysTask<K,V> rights, nextRight;
5080 >        ReduceKeysTask
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082 >             ReduceKeysTask<K,V> nextRight,
5083 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5084 >            super(p, b, i, f, t); this.nextRight = nextRight;
5085 >            this.reducer = reducer;
5086 >        }
5087 >        public final K getRawResult() { return result; }
5088 >        public final void compute() {
5089 >            final BiFun<? super K, ? super K, ? extends K> reducer;
5090 >            if ((reducer = this.reducer) != null) {
5091 >                for (int i = baseIndex, f, h; batch > 0 &&
5092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 >                    addToPendingCount(1);
5094 >                    (rights = new ReduceKeysTask<K,V>
5095 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5096 >                      rights, reducer)).fork();
5097 >                }
5098 >                K r = null;
5099 >                for (Node<K,V> p; (p = advance()) != null; ) {
5100 >                    K u = p.key;
5101 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5102 >                }
5103 >                result = r;
5104 >                CountedCompleter<?> c;
5105 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5106 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5107 >                        t = (ReduceKeysTask<K,V>)c,
5108 >                        s = t.rights;
5109 >                    while (s != null) {
5110 >                        K tr, sr;
5111 >                        if ((sr = s.result) != null)
5112 >                            t.result = (((tr = t.result) == null) ? sr :
5113 >                                        reducer.apply(tr, sr));
5114 >                        s = t.rights = s.nextRight;
5115 >                    }
5116 >                }
5117 >            }
5118          }
5119 <        public Iterator<V> iterator() {
5120 <            return new ValueIterator();
5119 >    }
5120 >
5121 >    @SuppressWarnings("serial")
5122 >    static final class ReduceValuesTask<K,V>
5123 >        extends BulkTask<K,V,V> {
5124 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5125 >        V result;
5126 >        ReduceValuesTask<K,V> rights, nextRight;
5127 >        ReduceValuesTask
5128 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129 >             ReduceValuesTask<K,V> nextRight,
5130 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5131 >            super(p, b, i, f, t); this.nextRight = nextRight;
5132 >            this.reducer = reducer;
5133 >        }
5134 >        public final V getRawResult() { return result; }
5135 >        public final void compute() {
5136 >            final BiFun<? super V, ? super V, ? extends V> reducer;
5137 >            if ((reducer = this.reducer) != null) {
5138 >                for (int i = baseIndex, f, h; batch > 0 &&
5139 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 >                    addToPendingCount(1);
5141 >                    (rights = new ReduceValuesTask<K,V>
5142 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                      rights, reducer)).fork();
5144 >                }
5145 >                V r = null;
5146 >                for (Node<K,V> p; (p = advance()) != null; ) {
5147 >                    V v = p.val;
5148 >                    r = (r == null) ? v : reducer.apply(r, v);
5149 >                }
5150 >                result = r;
5151 >                CountedCompleter<?> c;
5152 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5153 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5154 >                        t = (ReduceValuesTask<K,V>)c,
5155 >                        s = t.rights;
5156 >                    while (s != null) {
5157 >                        V tr, sr;
5158 >                        if ((sr = s.result) != null)
5159 >                            t.result = (((tr = t.result) == null) ? sr :
5160 >                                        reducer.apply(tr, sr));
5161 >                        s = t.rights = s.nextRight;
5162 >                    }
5163 >                }
5164 >            }
5165          }
5166 <        public boolean contains(Object o) {
5167 <            return ConcurrentHashMapV8.this.containsValue(o);
5166 >    }
5167 >
5168 >    @SuppressWarnings("serial")
5169 >    static final class ReduceEntriesTask<K,V>
5170 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5171 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5172 >        Map.Entry<K,V> result;
5173 >        ReduceEntriesTask<K,V> rights, nextRight;
5174 >        ReduceEntriesTask
5175 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 >             ReduceEntriesTask<K,V> nextRight,
5177 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5178 >            super(p, b, i, f, t); this.nextRight = nextRight;
5179 >            this.reducer = reducer;
5180 >        }
5181 >        public final Map.Entry<K,V> getRawResult() { return result; }
5182 >        public final void compute() {
5183 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5184 >            if ((reducer = this.reducer) != null) {
5185 >                for (int i = baseIndex, f, h; batch > 0 &&
5186 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 >                    addToPendingCount(1);
5188 >                    (rights = new ReduceEntriesTask<K,V>
5189 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5190 >                      rights, reducer)).fork();
5191 >                }
5192 >                Map.Entry<K,V> r = null;
5193 >                for (Node<K,V> p; (p = advance()) != null; )
5194 >                    r = (r == null) ? p : reducer.apply(r, p);
5195 >                result = r;
5196 >                CountedCompleter<?> c;
5197 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5198 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5199 >                        t = (ReduceEntriesTask<K,V>)c,
5200 >                        s = t.rights;
5201 >                    while (s != null) {
5202 >                        Map.Entry<K,V> tr, sr;
5203 >                        if ((sr = s.result) != null)
5204 >                            t.result = (((tr = t.result) == null) ? sr :
5205 >                                        reducer.apply(tr, sr));
5206 >                        s = t.rights = s.nextRight;
5207 >                    }
5208 >                }
5209 >            }
5210 >        }
5211 >    }
5212 >
5213 >    @SuppressWarnings("serial")
5214 >    static final class MapReduceKeysTask<K,V,U>
5215 >        extends BulkTask<K,V,U> {
5216 >        final Fun<? super K, ? extends U> transformer;
5217 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5218 >        U result;
5219 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5220 >        MapReduceKeysTask
5221 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5222 >             MapReduceKeysTask<K,V,U> nextRight,
5223 >             Fun<? super K, ? extends U> transformer,
5224 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5225 >            super(p, b, i, f, t); this.nextRight = nextRight;
5226 >            this.transformer = transformer;
5227 >            this.reducer = reducer;
5228 >        }
5229 >        public final U getRawResult() { return result; }
5230 >        public final void compute() {
5231 >            final Fun<? super K, ? extends U> transformer;
5232 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5233 >            if ((transformer = this.transformer) != null &&
5234 >                (reducer = this.reducer) != null) {
5235 >                for (int i = baseIndex, f, h; batch > 0 &&
5236 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5237 >                    addToPendingCount(1);
5238 >                    (rights = new MapReduceKeysTask<K,V,U>
5239 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5240 >                      rights, transformer, reducer)).fork();
5241 >                }
5242 >                U r = null;
5243 >                for (Node<K,V> p; (p = advance()) != null; ) {
5244 >                    U u;
5245 >                    if ((u = transformer.apply(p.key)) != null)
5246 >                        r = (r == null) ? u : reducer.apply(r, u);
5247 >                }
5248 >                result = r;
5249 >                CountedCompleter<?> c;
5250 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5251 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5252 >                        t = (MapReduceKeysTask<K,V,U>)c,
5253 >                        s = t.rights;
5254 >                    while (s != null) {
5255 >                        U tr, sr;
5256 >                        if ((sr = s.result) != null)
5257 >                            t.result = (((tr = t.result) == null) ? sr :
5258 >                                        reducer.apply(tr, sr));
5259 >                        s = t.rights = s.nextRight;
5260 >                    }
5261 >                }
5262 >            }
5263 >        }
5264 >    }
5265 >
5266 >    @SuppressWarnings("serial")
5267 >    static final class MapReduceValuesTask<K,V,U>
5268 >        extends BulkTask<K,V,U> {
5269 >        final Fun<? super V, ? extends U> transformer;
5270 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5271 >        U result;
5272 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5273 >        MapReduceValuesTask
5274 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5275 >             MapReduceValuesTask<K,V,U> nextRight,
5276 >             Fun<? super V, ? extends U> transformer,
5277 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5278 >            super(p, b, i, f, t); this.nextRight = nextRight;
5279 >            this.transformer = transformer;
5280 >            this.reducer = reducer;
5281 >        }
5282 >        public final U getRawResult() { return result; }
5283 >        public final void compute() {
5284 >            final Fun<? super V, ? extends U> transformer;
5285 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5286 >            if ((transformer = this.transformer) != null &&
5287 >                (reducer = this.reducer) != null) {
5288 >                for (int i = baseIndex, f, h; batch > 0 &&
5289 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290 >                    addToPendingCount(1);
5291 >                    (rights = new MapReduceValuesTask<K,V,U>
5292 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5293 >                      rights, transformer, reducer)).fork();
5294 >                }
5295 >                U r = null;
5296 >                for (Node<K,V> p; (p = advance()) != null; ) {
5297 >                    U u;
5298 >                    if ((u = transformer.apply(p.val)) != null)
5299 >                        r = (r == null) ? u : reducer.apply(r, u);
5300 >                }
5301 >                result = r;
5302 >                CountedCompleter<?> c;
5303 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5304 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5305 >                        t = (MapReduceValuesTask<K,V,U>)c,
5306 >                        s = t.rights;
5307 >                    while (s != null) {
5308 >                        U tr, sr;
5309 >                        if ((sr = s.result) != null)
5310 >                            t.result = (((tr = t.result) == null) ? sr :
5311 >                                        reducer.apply(tr, sr));
5312 >                        s = t.rights = s.nextRight;
5313 >                    }
5314 >                }
5315 >            }
5316          }
5317      }
5318  
5319 <    final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
5320 <        public int size() {
5321 <            return ConcurrentHashMapV8.this.size();
5319 >    @SuppressWarnings("serial")
5320 >    static final class MapReduceEntriesTask<K,V,U>
5321 >        extends BulkTask<K,V,U> {
5322 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5323 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5324 >        U result;
5325 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5326 >        MapReduceEntriesTask
5327 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5328 >             MapReduceEntriesTask<K,V,U> nextRight,
5329 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5330 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5331 >            super(p, b, i, f, t); this.nextRight = nextRight;
5332 >            this.transformer = transformer;
5333 >            this.reducer = reducer;
5334 >        }
5335 >        public final U getRawResult() { return result; }
5336 >        public final void compute() {
5337 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5338 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5339 >            if ((transformer = this.transformer) != null &&
5340 >                (reducer = this.reducer) != null) {
5341 >                for (int i = baseIndex, f, h; batch > 0 &&
5342 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343 >                    addToPendingCount(1);
5344 >                    (rights = new MapReduceEntriesTask<K,V,U>
5345 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5346 >                      rights, transformer, reducer)).fork();
5347 >                }
5348 >                U r = null;
5349 >                for (Node<K,V> p; (p = advance()) != null; ) {
5350 >                    U u;
5351 >                    if ((u = transformer.apply(p)) != null)
5352 >                        r = (r == null) ? u : reducer.apply(r, u);
5353 >                }
5354 >                result = r;
5355 >                CountedCompleter<?> c;
5356 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5357 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5358 >                        t = (MapReduceEntriesTask<K,V,U>)c,
5359 >                        s = t.rights;
5360 >                    while (s != null) {
5361 >                        U tr, sr;
5362 >                        if ((sr = s.result) != null)
5363 >                            t.result = (((tr = t.result) == null) ? sr :
5364 >                                        reducer.apply(tr, sr));
5365 >                        s = t.rights = s.nextRight;
5366 >                    }
5367 >                }
5368 >            }
5369          }
5370 <        public boolean isEmpty() {
5371 <            return ConcurrentHashMapV8.this.isEmpty();
5370 >    }
5371 >
5372 >    @SuppressWarnings("serial")
5373 >    static final class MapReduceMappingsTask<K,V,U>
5374 >        extends BulkTask<K,V,U> {
5375 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5376 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5377 >        U result;
5378 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
5379 >        MapReduceMappingsTask
5380 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5381 >             MapReduceMappingsTask<K,V,U> nextRight,
5382 >             BiFun<? super K, ? super V, ? extends U> transformer,
5383 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5384 >            super(p, b, i, f, t); this.nextRight = nextRight;
5385 >            this.transformer = transformer;
5386 >            this.reducer = reducer;
5387 >        }
5388 >        public final U getRawResult() { return result; }
5389 >        public final void compute() {
5390 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5391 >            final BiFun<? super U, ? super U, ? extends U> reducer;
5392 >            if ((transformer = this.transformer) != null &&
5393 >                (reducer = this.reducer) != null) {
5394 >                for (int i = baseIndex, f, h; batch > 0 &&
5395 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5396 >                    addToPendingCount(1);
5397 >                    (rights = new MapReduceMappingsTask<K,V,U>
5398 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5399 >                      rights, transformer, reducer)).fork();
5400 >                }
5401 >                U r = null;
5402 >                for (Node<K,V> p; (p = advance()) != null; ) {
5403 >                    U u;
5404 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5405 >                        r = (r == null) ? u : reducer.apply(r, u);
5406 >                }
5407 >                result = r;
5408 >                CountedCompleter<?> c;
5409 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5410 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5411 >                        t = (MapReduceMappingsTask<K,V,U>)c,
5412 >                        s = t.rights;
5413 >                    while (s != null) {
5414 >                        U tr, sr;
5415 >                        if ((sr = s.result) != null)
5416 >                            t.result = (((tr = t.result) == null) ? sr :
5417 >                                        reducer.apply(tr, sr));
5418 >                        s = t.rights = s.nextRight;
5419 >                    }
5420 >                }
5421 >            }
5422          }
5423 <        public void clear() {
5424 <            ConcurrentHashMapV8.this.clear();
5423 >    }
5424 >
5425 >    @SuppressWarnings("serial")
5426 >    static final class MapReduceKeysToDoubleTask<K,V>
5427 >        extends BulkTask<K,V,Double> {
5428 >        final ObjectToDouble<? super K> transformer;
5429 >        final DoubleByDoubleToDouble reducer;
5430 >        final double basis;
5431 >        double result;
5432 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5433 >        MapReduceKeysToDoubleTask
5434 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5435 >             MapReduceKeysToDoubleTask<K,V> nextRight,
5436 >             ObjectToDouble<? super K> transformer,
5437 >             double basis,
5438 >             DoubleByDoubleToDouble reducer) {
5439 >            super(p, b, i, f, t); this.nextRight = nextRight;
5440 >            this.transformer = transformer;
5441 >            this.basis = basis; this.reducer = reducer;
5442 >        }
5443 >        public final Double getRawResult() { return result; }
5444 >        public final void compute() {
5445 >            final ObjectToDouble<? super K> transformer;
5446 >            final DoubleByDoubleToDouble reducer;
5447 >            if ((transformer = this.transformer) != null &&
5448 >                (reducer = this.reducer) != null) {
5449 >                double r = this.basis;
5450 >                for (int i = baseIndex, f, h; batch > 0 &&
5451 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5452 >                    addToPendingCount(1);
5453 >                    (rights = new MapReduceKeysToDoubleTask<K,V>
5454 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5455 >                      rights, transformer, r, reducer)).fork();
5456 >                }
5457 >                for (Node<K,V> p; (p = advance()) != null; )
5458 >                    r = reducer.apply(r, transformer.apply(p.key));
5459 >                result = r;
5460 >                CountedCompleter<?> c;
5461 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5462 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5463 >                        t = (MapReduceKeysToDoubleTask<K,V>)c,
5464 >                        s = t.rights;
5465 >                    while (s != null) {
5466 >                        t.result = reducer.apply(t.result, s.result);
5467 >                        s = t.rights = s.nextRight;
5468 >                    }
5469 >                }
5470 >            }
5471          }
5472 <        public Iterator<Map.Entry<K,V>> iterator() {
5473 <            return new EntryIterator();
5472 >    }
5473 >
5474 >    @SuppressWarnings("serial")
5475 >    static final class MapReduceValuesToDoubleTask<K,V>
5476 >        extends BulkTask<K,V,Double> {
5477 >        final ObjectToDouble<? super V> transformer;
5478 >        final DoubleByDoubleToDouble reducer;
5479 >        final double basis;
5480 >        double result;
5481 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5482 >        MapReduceValuesToDoubleTask
5483 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5484 >             MapReduceValuesToDoubleTask<K,V> nextRight,
5485 >             ObjectToDouble<? super V> transformer,
5486 >             double basis,
5487 >             DoubleByDoubleToDouble reducer) {
5488 >            super(p, b, i, f, t); this.nextRight = nextRight;
5489 >            this.transformer = transformer;
5490 >            this.basis = basis; this.reducer = reducer;
5491 >        }
5492 >        public final Double getRawResult() { return result; }
5493 >        public final void compute() {
5494 >            final ObjectToDouble<? super V> transformer;
5495 >            final DoubleByDoubleToDouble reducer;
5496 >            if ((transformer = this.transformer) != null &&
5497 >                (reducer = this.reducer) != null) {
5498 >                double r = this.basis;
5499 >                for (int i = baseIndex, f, h; batch > 0 &&
5500 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5501 >                    addToPendingCount(1);
5502 >                    (rights = new MapReduceValuesToDoubleTask<K,V>
5503 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5504 >                      rights, transformer, r, reducer)).fork();
5505 >                }
5506 >                for (Node<K,V> p; (p = advance()) != null; )
5507 >                    r = reducer.apply(r, transformer.apply(p.val));
5508 >                result = r;
5509 >                CountedCompleter<?> c;
5510 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5511 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5512 >                        t = (MapReduceValuesToDoubleTask<K,V>)c,
5513 >                        s = t.rights;
5514 >                    while (s != null) {
5515 >                        t.result = reducer.apply(t.result, s.result);
5516 >                        s = t.rights = s.nextRight;
5517 >                    }
5518 >                }
5519 >            }
5520          }
5521 <        public boolean contains(Object o) {
5522 <            if (!(o instanceof Map.Entry))
5523 <                return false;
5524 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5525 <            V v = ConcurrentHashMapV8.this.get(e.getKey());
5526 <            return v != null && v.equals(e.getValue());
5521 >    }
5522 >
5523 >    @SuppressWarnings("serial")
5524 >    static final class MapReduceEntriesToDoubleTask<K,V>
5525 >        extends BulkTask<K,V,Double> {
5526 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
5527 >        final DoubleByDoubleToDouble reducer;
5528 >        final double basis;
5529 >        double result;
5530 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5531 >        MapReduceEntriesToDoubleTask
5532 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5533 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
5534 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5535 >             double basis,
5536 >             DoubleByDoubleToDouble reducer) {
5537 >            super(p, b, i, f, t); this.nextRight = nextRight;
5538 >            this.transformer = transformer;
5539 >            this.basis = basis; this.reducer = reducer;
5540 >        }
5541 >        public final Double getRawResult() { return result; }
5542 >        public final void compute() {
5543 >            final ObjectToDouble<Map.Entry<K,V>> transformer;
5544 >            final DoubleByDoubleToDouble reducer;
5545 >            if ((transformer = this.transformer) != null &&
5546 >                (reducer = this.reducer) != null) {
5547 >                double r = this.basis;
5548 >                for (int i = baseIndex, f, h; batch > 0 &&
5549 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5550 >                    addToPendingCount(1);
5551 >                    (rights = new MapReduceEntriesToDoubleTask<K,V>
5552 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5553 >                      rights, transformer, r, reducer)).fork();
5554 >                }
5555 >                for (Node<K,V> p; (p = advance()) != null; )
5556 >                    r = reducer.apply(r, transformer.apply(p));
5557 >                result = r;
5558 >                CountedCompleter<?> c;
5559 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5560 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5561 >                        t = (MapReduceEntriesToDoubleTask<K,V>)c,
5562 >                        s = t.rights;
5563 >                    while (s != null) {
5564 >                        t.result = reducer.apply(t.result, s.result);
5565 >                        s = t.rights = s.nextRight;
5566 >                    }
5567 >                }
5568 >            }
5569          }
5570 <        public boolean remove(Object o) {
5571 <            if (!(o instanceof Map.Entry))
5572 <                return false;
5573 <            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
5574 <            return ConcurrentHashMapV8.this.remove(e.getKey(), e.getValue());
5570 >    }
5571 >
5572 >    @SuppressWarnings("serial")
5573 >    static final class MapReduceMappingsToDoubleTask<K,V>
5574 >        extends BulkTask<K,V,Double> {
5575 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
5576 >        final DoubleByDoubleToDouble reducer;
5577 >        final double basis;
5578 >        double result;
5579 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5580 >        MapReduceMappingsToDoubleTask
5581 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5582 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
5583 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
5584 >             double basis,
5585 >             DoubleByDoubleToDouble reducer) {
5586 >            super(p, b, i, f, t); this.nextRight = nextRight;
5587 >            this.transformer = transformer;
5588 >            this.basis = basis; this.reducer = reducer;
5589 >        }
5590 >        public final Double getRawResult() { return result; }
5591 >        public final void compute() {
5592 >            final ObjectByObjectToDouble<? super K, ? super V> transformer;
5593 >            final DoubleByDoubleToDouble reducer;
5594 >            if ((transformer = this.transformer) != null &&
5595 >                (reducer = this.reducer) != null) {
5596 >                double r = this.basis;
5597 >                for (int i = baseIndex, f, h; batch > 0 &&
5598 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5599 >                    addToPendingCount(1);
5600 >                    (rights = new MapReduceMappingsToDoubleTask<K,V>
5601 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5602 >                      rights, transformer, r, reducer)).fork();
5603 >                }
5604 >                for (Node<K,V> p; (p = advance()) != null; )
5605 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5606 >                result = r;
5607 >                CountedCompleter<?> c;
5608 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5609 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5610 >                        t = (MapReduceMappingsToDoubleTask<K,V>)c,
5611 >                        s = t.rights;
5612 >                    while (s != null) {
5613 >                        t.result = reducer.apply(t.result, s.result);
5614 >                        s = t.rights = s.nextRight;
5615 >                    }
5616 >                }
5617 >            }
5618 >        }
5619 >    }
5620 >
5621 >    @SuppressWarnings("serial")
5622 >    static final class MapReduceKeysToLongTask<K,V>
5623 >        extends BulkTask<K,V,Long> {
5624 >        final ObjectToLong<? super K> transformer;
5625 >        final LongByLongToLong reducer;
5626 >        final long basis;
5627 >        long result;
5628 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
5629 >        MapReduceKeysToLongTask
5630 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5631 >             MapReduceKeysToLongTask<K,V> nextRight,
5632 >             ObjectToLong<? super K> transformer,
5633 >             long basis,
5634 >             LongByLongToLong reducer) {
5635 >            super(p, b, i, f, t); this.nextRight = nextRight;
5636 >            this.transformer = transformer;
5637 >            this.basis = basis; this.reducer = reducer;
5638 >        }
5639 >        public final Long getRawResult() { return result; }
5640 >        public final void compute() {
5641 >            final ObjectToLong<? super K> transformer;
5642 >            final LongByLongToLong reducer;
5643 >            if ((transformer = this.transformer) != null &&
5644 >                (reducer = this.reducer) != null) {
5645 >                long r = this.basis;
5646 >                for (int i = baseIndex, f, h; batch > 0 &&
5647 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5648 >                    addToPendingCount(1);
5649 >                    (rights = new MapReduceKeysToLongTask<K,V>
5650 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5651 >                      rights, transformer, r, reducer)).fork();
5652 >                }
5653 >                for (Node<K,V> p; (p = advance()) != null; )
5654 >                    r = reducer.apply(r, transformer.apply(p.key));
5655 >                result = r;
5656 >                CountedCompleter<?> c;
5657 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5658 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5659 >                        t = (MapReduceKeysToLongTask<K,V>)c,
5660 >                        s = t.rights;
5661 >                    while (s != null) {
5662 >                        t.result = reducer.apply(t.result, s.result);
5663 >                        s = t.rights = s.nextRight;
5664 >                    }
5665 >                }
5666 >            }
5667 >        }
5668 >    }
5669 >
5670 >    @SuppressWarnings("serial")
5671 >    static final class MapReduceValuesToLongTask<K,V>
5672 >        extends BulkTask<K,V,Long> {
5673 >        final ObjectToLong<? super V> transformer;
5674 >        final LongByLongToLong reducer;
5675 >        final long basis;
5676 >        long result;
5677 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
5678 >        MapReduceValuesToLongTask
5679 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5680 >             MapReduceValuesToLongTask<K,V> nextRight,
5681 >             ObjectToLong<? super V> transformer,
5682 >             long basis,
5683 >             LongByLongToLong reducer) {
5684 >            super(p, b, i, f, t); this.nextRight = nextRight;
5685 >            this.transformer = transformer;
5686 >            this.basis = basis; this.reducer = reducer;
5687 >        }
5688 >        public final Long getRawResult() { return result; }
5689 >        public final void compute() {
5690 >            final ObjectToLong<? super V> transformer;
5691 >            final LongByLongToLong reducer;
5692 >            if ((transformer = this.transformer) != null &&
5693 >                (reducer = this.reducer) != null) {
5694 >                long r = this.basis;
5695 >                for (int i = baseIndex, f, h; batch > 0 &&
5696 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5697 >                    addToPendingCount(1);
5698 >                    (rights = new MapReduceValuesToLongTask<K,V>
5699 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5700 >                      rights, transformer, r, reducer)).fork();
5701 >                }
5702 >                for (Node<K,V> p; (p = advance()) != null; )
5703 >                    r = reducer.apply(r, transformer.apply(p.val));
5704 >                result = r;
5705 >                CountedCompleter<?> c;
5706 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5707 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5708 >                        t = (MapReduceValuesToLongTask<K,V>)c,
5709 >                        s = t.rights;
5710 >                    while (s != null) {
5711 >                        t.result = reducer.apply(t.result, s.result);
5712 >                        s = t.rights = s.nextRight;
5713 >                    }
5714 >                }
5715 >            }
5716          }
5717      }
5718  
5719 <    /* ---------------- Serialization Support -------------- */
5719 >    @SuppressWarnings("serial")
5720 >    static final class MapReduceEntriesToLongTask<K,V>
5721 >        extends BulkTask<K,V,Long> {
5722 >        final ObjectToLong<Map.Entry<K,V>> transformer;
5723 >        final LongByLongToLong reducer;
5724 >        final long basis;
5725 >        long result;
5726 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
5727 >        MapReduceEntriesToLongTask
5728 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5729 >             MapReduceEntriesToLongTask<K,V> nextRight,
5730 >             ObjectToLong<Map.Entry<K,V>> transformer,
5731 >             long basis,
5732 >             LongByLongToLong reducer) {
5733 >            super(p, b, i, f, t); this.nextRight = nextRight;
5734 >            this.transformer = transformer;
5735 >            this.basis = basis; this.reducer = reducer;
5736 >        }
5737 >        public final Long getRawResult() { return result; }
5738 >        public final void compute() {
5739 >            final ObjectToLong<Map.Entry<K,V>> transformer;
5740 >            final LongByLongToLong reducer;
5741 >            if ((transformer = this.transformer) != null &&
5742 >                (reducer = this.reducer) != null) {
5743 >                long r = this.basis;
5744 >                for (int i = baseIndex, f, h; batch > 0 &&
5745 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5746 >                    addToPendingCount(1);
5747 >                    (rights = new MapReduceEntriesToLongTask<K,V>
5748 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5749 >                      rights, transformer, r, reducer)).fork();
5750 >                }
5751 >                for (Node<K,V> p; (p = advance()) != null; )
5752 >                    r = reducer.apply(r, transformer.apply(p));
5753 >                result = r;
5754 >                CountedCompleter<?> c;
5755 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5757 >                        t = (MapReduceEntriesToLongTask<K,V>)c,
5758 >                        s = t.rights;
5759 >                    while (s != null) {
5760 >                        t.result = reducer.apply(t.result, s.result);
5761 >                        s = t.rights = s.nextRight;
5762 >                    }
5763 >                }
5764 >            }
5765 >        }
5766 >    }
5767 >
5768 >    @SuppressWarnings("serial")
5769 >    static final class MapReduceMappingsToLongTask<K,V>
5770 >        extends BulkTask<K,V,Long> {
5771 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
5772 >        final LongByLongToLong reducer;
5773 >        final long basis;
5774 >        long result;
5775 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
5776 >        MapReduceMappingsToLongTask
5777 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5778 >             MapReduceMappingsToLongTask<K,V> nextRight,
5779 >             ObjectByObjectToLong<? super K, ? super V> transformer,
5780 >             long basis,
5781 >             LongByLongToLong reducer) {
5782 >            super(p, b, i, f, t); this.nextRight = nextRight;
5783 >            this.transformer = transformer;
5784 >            this.basis = basis; this.reducer = reducer;
5785 >        }
5786 >        public final Long getRawResult() { return result; }
5787 >        public final void compute() {
5788 >            final ObjectByObjectToLong<? super K, ? super V> transformer;
5789 >            final LongByLongToLong reducer;
5790 >            if ((transformer = this.transformer) != null &&
5791 >                (reducer = this.reducer) != null) {
5792 >                long r = this.basis;
5793 >                for (int i = baseIndex, f, h; batch > 0 &&
5794 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5795 >                    addToPendingCount(1);
5796 >                    (rights = new MapReduceMappingsToLongTask<K,V>
5797 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5798 >                      rights, transformer, r, reducer)).fork();
5799 >                }
5800 >                for (Node<K,V> p; (p = advance()) != null; )
5801 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5802 >                result = r;
5803 >                CountedCompleter<?> c;
5804 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5805 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5806 >                        t = (MapReduceMappingsToLongTask<K,V>)c,
5807 >                        s = t.rights;
5808 >                    while (s != null) {
5809 >                        t.result = reducer.apply(t.result, s.result);
5810 >                        s = t.rights = s.nextRight;
5811 >                    }
5812 >                }
5813 >            }
5814 >        }
5815 >    }
5816 >
5817 >    @SuppressWarnings("serial")
5818 >    static final class MapReduceKeysToIntTask<K,V>
5819 >        extends BulkTask<K,V,Integer> {
5820 >        final ObjectToInt<? super K> transformer;
5821 >        final IntByIntToInt reducer;
5822 >        final int basis;
5823 >        int result;
5824 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
5825 >        MapReduceKeysToIntTask
5826 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5827 >             MapReduceKeysToIntTask<K,V> nextRight,
5828 >             ObjectToInt<? super K> transformer,
5829 >             int basis,
5830 >             IntByIntToInt reducer) {
5831 >            super(p, b, i, f, t); this.nextRight = nextRight;
5832 >            this.transformer = transformer;
5833 >            this.basis = basis; this.reducer = reducer;
5834 >        }
5835 >        public final Integer getRawResult() { return result; }
5836 >        public final void compute() {
5837 >            final ObjectToInt<? super K> transformer;
5838 >            final IntByIntToInt reducer;
5839 >            if ((transformer = this.transformer) != null &&
5840 >                (reducer = this.reducer) != null) {
5841 >                int r = this.basis;
5842 >                for (int i = baseIndex, f, h; batch > 0 &&
5843 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5844 >                    addToPendingCount(1);
5845 >                    (rights = new MapReduceKeysToIntTask<K,V>
5846 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5847 >                      rights, transformer, r, reducer)).fork();
5848 >                }
5849 >                for (Node<K,V> p; (p = advance()) != null; )
5850 >                    r = reducer.apply(r, transformer.apply(p.key));
5851 >                result = r;
5852 >                CountedCompleter<?> c;
5853 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5855 >                        t = (MapReduceKeysToIntTask<K,V>)c,
5856 >                        s = t.rights;
5857 >                    while (s != null) {
5858 >                        t.result = reducer.apply(t.result, s.result);
5859 >                        s = t.rights = s.nextRight;
5860 >                    }
5861 >                }
5862 >            }
5863 >        }
5864 >    }
5865 >
5866 >    @SuppressWarnings("serial")
5867 >    static final class MapReduceValuesToIntTask<K,V>
5868 >        extends BulkTask<K,V,Integer> {
5869 >        final ObjectToInt<? super V> transformer;
5870 >        final IntByIntToInt reducer;
5871 >        final int basis;
5872 >        int result;
5873 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
5874 >        MapReduceValuesToIntTask
5875 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876 >             MapReduceValuesToIntTask<K,V> nextRight,
5877 >             ObjectToInt<? super V> transformer,
5878 >             int basis,
5879 >             IntByIntToInt reducer) {
5880 >            super(p, b, i, f, t); this.nextRight = nextRight;
5881 >            this.transformer = transformer;
5882 >            this.basis = basis; this.reducer = reducer;
5883 >        }
5884 >        public final Integer getRawResult() { return result; }
5885 >        public final void compute() {
5886 >            final ObjectToInt<? super V> transformer;
5887 >            final IntByIntToInt reducer;
5888 >            if ((transformer = this.transformer) != null &&
5889 >                (reducer = this.reducer) != null) {
5890 >                int r = this.basis;
5891 >                for (int i = baseIndex, f, h; batch > 0 &&
5892 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893 >                    addToPendingCount(1);
5894 >                    (rights = new MapReduceValuesToIntTask<K,V>
5895 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5896 >                      rights, transformer, r, reducer)).fork();
5897 >                }
5898 >                for (Node<K,V> p; (p = advance()) != null; )
5899 >                    r = reducer.apply(r, transformer.apply(p.val));
5900 >                result = r;
5901 >                CountedCompleter<?> c;
5902 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5904 >                        t = (MapReduceValuesToIntTask<K,V>)c,
5905 >                        s = t.rights;
5906 >                    while (s != null) {
5907 >                        t.result = reducer.apply(t.result, s.result);
5908 >                        s = t.rights = s.nextRight;
5909 >                    }
5910 >                }
5911 >            }
5912 >        }
5913 >    }
5914 >
5915 >    @SuppressWarnings("serial")
5916 >    static final class MapReduceEntriesToIntTask<K,V>
5917 >        extends BulkTask<K,V,Integer> {
5918 >        final ObjectToInt<Map.Entry<K,V>> transformer;
5919 >        final IntByIntToInt reducer;
5920 >        final int basis;
5921 >        int result;
5922 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
5923 >        MapReduceEntriesToIntTask
5924 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5925 >             MapReduceEntriesToIntTask<K,V> nextRight,
5926 >             ObjectToInt<Map.Entry<K,V>> transformer,
5927 >             int basis,
5928 >             IntByIntToInt reducer) {
5929 >            super(p, b, i, f, t); this.nextRight = nextRight;
5930 >            this.transformer = transformer;
5931 >            this.basis = basis; this.reducer = reducer;
5932 >        }
5933 >        public final Integer getRawResult() { return result; }
5934 >        public final void compute() {
5935 >            final ObjectToInt<Map.Entry<K,V>> transformer;
5936 >            final IntByIntToInt reducer;
5937 >            if ((transformer = this.transformer) != null &&
5938 >                (reducer = this.reducer) != null) {
5939 >                int r = this.basis;
5940 >                for (int i = baseIndex, f, h; batch > 0 &&
5941 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5942 >                    addToPendingCount(1);
5943 >                    (rights = new MapReduceEntriesToIntTask<K,V>
5944 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5945 >                      rights, transformer, r, reducer)).fork();
5946 >                }
5947 >                for (Node<K,V> p; (p = advance()) != null; )
5948 >                    r = reducer.apply(r, transformer.apply(p));
5949 >                result = r;
5950 >                CountedCompleter<?> c;
5951 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
5952 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5953 >                        t = (MapReduceEntriesToIntTask<K,V>)c,
5954 >                        s = t.rights;
5955 >                    while (s != null) {
5956 >                        t.result = reducer.apply(t.result, s.result);
5957 >                        s = t.rights = s.nextRight;
5958 >                    }
5959 >                }
5960 >            }
5961 >        }
5962 >    }
5963 >
5964 >    @SuppressWarnings("serial")
5965 >    static final class MapReduceMappingsToIntTask<K,V>
5966 >        extends BulkTask<K,V,Integer> {
5967 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
5968 >        final IntByIntToInt reducer;
5969 >        final int basis;
5970 >        int result;
5971 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
5972 >        MapReduceMappingsToIntTask
5973 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5974 >             MapReduceMappingsToIntTask<K,V> nextRight,
5975 >             ObjectByObjectToInt<? super K, ? super V> transformer,
5976 >             int basis,
5977 >             IntByIntToInt reducer) {
5978 >            super(p, b, i, f, t); this.nextRight = nextRight;
5979 >            this.transformer = transformer;
5980 >            this.basis = basis; this.reducer = reducer;
5981 >        }
5982 >        public final Integer getRawResult() { return result; }
5983 >        public final void compute() {
5984 >            final ObjectByObjectToInt<? super K, ? super V> transformer;
5985 >            final IntByIntToInt reducer;
5986 >            if ((transformer = this.transformer) != null &&
5987 >                (reducer = this.reducer) != null) {
5988 >                int r = this.basis;
5989 >                for (int i = baseIndex, f, h; batch > 0 &&
5990 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5991 >                    addToPendingCount(1);
5992 >                    (rights = new MapReduceMappingsToIntTask<K,V>
5993 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5994 >                      rights, transformer, r, reducer)).fork();
5995 >                }
5996 >                for (Node<K,V> p; (p = advance()) != null; )
5997 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5998 >                result = r;
5999 >                CountedCompleter<?> c;
6000 >                for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6002 >                        t = (MapReduceMappingsToIntTask<K,V>)c,
6003 >                        s = t.rights;
6004 >                    while (s != null) {
6005 >                        t.result = reducer.apply(t.result, s.result);
6006 >                        s = t.rights = s.nextRight;
6007 >                    }
6008 >                }
6009 >            }
6010 >        }
6011 >    }
6012 >
6013 >    /* ---------------- Counters -------------- */
6014 >
6015 >    // Adapted from LongAdder and Striped64.
6016 >    // See their internal docs for explanation.
6017 >
6018 >    // A padded cell for distributing counts
6019 >    static final class CounterCell {
6020 >        volatile long p0, p1, p2, p3, p4, p5, p6;
6021 >        volatile long value;
6022 >        volatile long q0, q1, q2, q3, q4, q5, q6;
6023 >        CounterCell(long x) { value = x; }
6024 >    }
6025  
6026      /**
6027 <     * Helper class used in previous version, declared for the sake of
6028 <     * serialization compatibility
6027 >     * Holder for the thread-local hash code determining which
6028 >     * CounterCell to use. The code is initialized via the
6029 >     * counterHashCodeGenerator, but may be moved upon collisions.
6030       */
6031 <    static class Segment<K,V> extends java.util.concurrent.locks.ReentrantLock
6032 <        implements Serializable {
1522 <        private static final long serialVersionUID = 2249069246763182397L;
1523 <        final float loadFactor;
1524 <        Segment(float lf) { this.loadFactor = lf; }
6031 >    static final class CounterHashCode {
6032 >        int code;
6033      }
6034  
6035      /**
6036 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1529 <     * stream (i.e., serializes it).
1530 <     * @param s the stream
1531 <     * @serialData
1532 <     * the key (Object) and value (Object)
1533 <     * for each key-value mapping, followed by a null pair.
1534 <     * The key-value mappings are emitted in no particular order.
6036 >     * Generates initial value for per-thread CounterHashCodes.
6037       */
6038 <    @SuppressWarnings("unchecked")
1537 <    private void writeObject(java.io.ObjectOutputStream s)
1538 <            throws java.io.IOException {
1539 <        if (segments == null) { // for serialization compatibility
1540 <            segments = (Segment<K,V>[])
1541 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1542 <            for (int i = 0; i < segments.length; ++i)
1543 <                segments[i] = new Segment<K,V>(loadFactor);
1544 <        }
1545 <        s.defaultWriteObject();
1546 <        new HashIterator().writeEntries(s);
1547 <        s.writeObject(null);
1548 <        s.writeObject(null);
1549 <        segments = null; // throw away
1550 <    }
6038 >    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6039  
6040      /**
6041 <     * Reconstitutes the  instance from a
6042 <     * stream (i.e., deserializes it).
1555 <     * @param s the stream
6041 >     * Increment for counterHashCodeGenerator. See class ThreadLocal
6042 >     * for explanation.
6043       */
6044 <    @SuppressWarnings("unchecked")
6045 <    private void readObject(java.io.ObjectInputStream s)
6046 <            throws java.io.IOException, ClassNotFoundException {
6047 <        s.defaultReadObject();
6048 <        // find load factor in a segment, if one exists
6049 <        if (segments != null && segments.length != 0)
6050 <            this.loadFactor = segments[0].loadFactor;
6051 <        else
1565 <            this.loadFactor = DEFAULT_LOAD_FACTOR;
1566 <        this.initCap = DEFAULT_CAPACITY;
1567 <        LongAdder ct = new LongAdder(); // force final field write
1568 <        UNSAFE.putObjectVolatile(this, counterOffset, ct);
1569 <        this.segments = null; // unneeded
6044 >    static final int SEED_INCREMENT = 0x61c88647;
6045 >
6046 >    /**
6047 >     * Per-thread counter hash codes. Shared across all instances.
6048 >     */
6049 >    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6050 >        new ThreadLocal<CounterHashCode>();
6051 >
6052  
6053 <        // Read the keys and values, and put the mappings in the table
6053 >    final long sumCount() {
6054 >        CounterCell[] as = counterCells; CounterCell a;
6055 >        long sum = baseCount;
6056 >        if (as != null) {
6057 >            for (int i = 0; i < as.length; ++i) {
6058 >                if ((a = as[i]) != null)
6059 >                    sum += a.value;
6060 >            }
6061 >        }
6062 >        return sum;
6063 >    }
6064 >
6065 >    // See LongAdder version for explanation
6066 >    private final void fullAddCount(long x, CounterHashCode hc,
6067 >                                    boolean wasUncontended) {
6068 >        int h;
6069 >        if (hc == null) {
6070 >            hc = new CounterHashCode();
6071 >            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6072 >            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6073 >            threadCounterHashCode.set(hc);
6074 >        }
6075 >        else
6076 >            h = hc.code;
6077 >        boolean collide = false;                // True if last slot nonempty
6078          for (;;) {
6079 <            K key = (K) s.readObject();
6080 <            V value = (V) s.readObject();
6081 <            if (key == null)
6082 <                break;
6083 <            put(key, value);
6079 >            CounterCell[] as; CounterCell a; int n; long v;
6080 >            if ((as = counterCells) != null && (n = as.length) > 0) {
6081 >                if ((a = as[(n - 1) & h]) == null) {
6082 >                    if (cellsBusy == 0) {            // Try to attach new Cell
6083 >                        CounterCell r = new CounterCell(x); // Optimistic create
6084 >                        if (cellsBusy == 0 &&
6085 >                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 >                            boolean created = false;
6087 >                            try {               // Recheck under lock
6088 >                                CounterCell[] rs; int m, j;
6089 >                                if ((rs = counterCells) != null &&
6090 >                                    (m = rs.length) > 0 &&
6091 >                                    rs[j = (m - 1) & h] == null) {
6092 >                                    rs[j] = r;
6093 >                                    created = true;
6094 >                                }
6095 >                            } finally {
6096 >                                cellsBusy = 0;
6097 >                            }
6098 >                            if (created)
6099 >                                break;
6100 >                            continue;           // Slot is now non-empty
6101 >                        }
6102 >                    }
6103 >                    collide = false;
6104 >                }
6105 >                else if (!wasUncontended)       // CAS already known to fail
6106 >                    wasUncontended = true;      // Continue after rehash
6107 >                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6108 >                    break;
6109 >                else if (counterCells != as || n >= NCPU)
6110 >                    collide = false;            // At max size or stale
6111 >                else if (!collide)
6112 >                    collide = true;
6113 >                else if (cellsBusy == 0 &&
6114 >                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6115 >                    try {
6116 >                        if (counterCells == as) {// Expand table unless stale
6117 >                            CounterCell[] rs = new CounterCell[n << 1];
6118 >                            for (int i = 0; i < n; ++i)
6119 >                                rs[i] = as[i];
6120 >                            counterCells = rs;
6121 >                        }
6122 >                    } finally {
6123 >                        cellsBusy = 0;
6124 >                    }
6125 >                    collide = false;
6126 >                    continue;                   // Retry with expanded table
6127 >                }
6128 >                h ^= h << 13;                   // Rehash
6129 >                h ^= h >>> 17;
6130 >                h ^= h << 5;
6131 >            }
6132 >            else if (cellsBusy == 0 && counterCells == as &&
6133 >                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6134 >                boolean init = false;
6135 >                try {                           // Initialize table
6136 >                    if (counterCells == as) {
6137 >                        CounterCell[] rs = new CounterCell[2];
6138 >                        rs[h & 1] = new CounterCell(x);
6139 >                        counterCells = rs;
6140 >                        init = true;
6141 >                    }
6142 >                } finally {
6143 >                    cellsBusy = 0;
6144 >                }
6145 >                if (init)
6146 >                    break;
6147 >            }
6148 >            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6149 >                break;                          // Fall back on using base
6150          }
6151 +        hc.code = h;                            // Record index for next time
6152      }
6153  
6154      // Unsafe mechanics
6155 <    private static final sun.misc.Unsafe UNSAFE;
6156 <    private static final long counterOffset;
6157 <    private static final long resizingOffset;
6155 >    private static final sun.misc.Unsafe U;
6156 >    private static final long SIZECTL;
6157 >    private static final long TRANSFERINDEX;
6158 >    private static final long TRANSFERORIGIN;
6159 >    private static final long BASECOUNT;
6160 >    private static final long CELLSBUSY;
6161 >    private static final long CELLVALUE;
6162      private static final long ABASE;
6163      private static final int ASHIFT;
6164  
6165      static {
1589        int ss;
6166          try {
6167 <            UNSAFE = getUnsafe();
6167 >            U = getUnsafe();
6168              Class<?> k = ConcurrentHashMapV8.class;
6169 <            counterOffset = UNSAFE.objectFieldOffset
6170 <                (k.getDeclaredField("counter"));
6171 <            resizingOffset = UNSAFE.objectFieldOffset
6172 <                (k.getDeclaredField("resizing"));
6173 <            Class<?> sc = Node[].class;
6174 <            ABASE = UNSAFE.arrayBaseOffset(sc);
6175 <            ss = UNSAFE.arrayIndexScale(sc);
6169 >            SIZECTL = U.objectFieldOffset
6170 >                (k.getDeclaredField("sizeCtl"));
6171 >            TRANSFERINDEX = U.objectFieldOffset
6172 >                (k.getDeclaredField("transferIndex"));
6173 >            TRANSFERORIGIN = U.objectFieldOffset
6174 >                (k.getDeclaredField("transferOrigin"));
6175 >            BASECOUNT = U.objectFieldOffset
6176 >                (k.getDeclaredField("baseCount"));
6177 >            CELLSBUSY = U.objectFieldOffset
6178 >                (k.getDeclaredField("cellsBusy"));
6179 >            Class<?> ck = CounterCell.class;
6180 >            CELLVALUE = U.objectFieldOffset
6181 >                (ck.getDeclaredField("value"));
6182 >            Class<?> ak = Node[].class;
6183 >            ABASE = U.arrayBaseOffset(ak);
6184 >            int scale = U.arrayIndexScale(ak);
6185 >            if ((scale & (scale - 1)) != 0)
6186 >                throw new Error("data type scale not a power of two");
6187 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6188          } catch (Exception e) {
6189              throw new Error(e);
6190          }
1603        if ((ss & (ss-1)) != 0)
1604            throw new Error("data type scale not a power of two");
1605        ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6191      }
6192  
6193      /**
# Line 1615 | Line 6200 | public class ConcurrentHashMapV8<K, V>
6200      private static sun.misc.Unsafe getUnsafe() {
6201          try {
6202              return sun.misc.Unsafe.getUnsafe();
6203 <        } catch (SecurityException se) {
6204 <            try {
6205 <                return java.security.AccessController.doPrivileged
6206 <                    (new java.security
6207 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6208 <                        public sun.misc.Unsafe run() throws Exception {
6209 <                            java.lang.reflect.Field f = sun.misc
6210 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6211 <                            f.setAccessible(true);
6212 <                            return (sun.misc.Unsafe) f.get(null);
6213 <                        }});
6214 <            } catch (java.security.PrivilegedActionException e) {
6215 <                throw new RuntimeException("Could not initialize intrinsics",
6216 <                                           e.getCause());
6217 <            }
6203 >        } catch (SecurityException tryReflectionInstead) {}
6204 >        try {
6205 >            return java.security.AccessController.doPrivileged
6206 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6207 >                public sun.misc.Unsafe run() throws Exception {
6208 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6209 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6210 >                        f.setAccessible(true);
6211 >                        Object x = f.get(null);
6212 >                        if (k.isInstance(x))
6213 >                            return k.cast(x);
6214 >                    }
6215 >                    throw new NoSuchFieldError("the Unsafe");
6216 >                }});
6217 >        } catch (java.security.PrivilegedActionException e) {
6218 >            throw new RuntimeException("Could not initialize intrinsics",
6219 >                                       e.getCause());
6220          }
6221      }
1635
6222   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines