ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.23 by jsr166, Sun Sep 11 04:25:00 2011 UTC vs.
Revision 1.79 by dl, Fri Nov 23 17:50:51 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10 > import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
13   import java.util.Collection;
# Line 19 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.ThreadLocalRandom;
25 + import java.util.concurrent.locks.LockSupport;
26 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 + import java.util.concurrent.atomic.AtomicReference;
28 +
29 + import java.io.Serializable;
30 +
31 + import java.util.Comparator;
32 + import java.util.Arrays;
33 + import java.util.Map;
34 + import java.util.Set;
35 + import java.util.Collection;
36 + import java.util.AbstractMap;
37 + import java.util.AbstractSet;
38 + import java.util.AbstractCollection;
39 + import java.util.Hashtable;
40 + import java.util.HashMap;
41 + import java.util.Iterator;
42 + import java.util.Enumeration;
43 + import java.util.ConcurrentModificationException;
44 + import java.util.NoSuchElementException;
45 + import java.util.concurrent.ConcurrentMap;
46 + import java.util.concurrent.ThreadLocalRandom;
47 + import java.util.concurrent.locks.LockSupport;
48 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
49 + import java.util.concurrent.atomic.AtomicReference;
50 +
51   import java.io.Serializable;
52  
53   /**
# Line 33 | Line 62 | import java.io.Serializable;
62   * interoperable with {@code Hashtable} in programs that rely on its
63   * thread safety but not on its synchronization details.
64   *
65 < * <p> Retrieval operations (including {@code get}) generally do not
65 > * <p>Retrieval operations (including {@code get}) generally do not
66   * block, so may overlap with update operations (including {@code put}
67   * and {@code remove}). Retrievals reflect the results of the most
68   * recently <em>completed</em> update operations holding upon their
69 < * onset.  For aggregate operations such as {@code putAll} and {@code
70 < * clear}, concurrent retrievals may reflect insertion or removal of
71 < * only some entries.  Similarly, Iterators and Enumerations return
72 < * elements reflecting the state of the hash table at some point at or
73 < * since the creation of the iterator/enumeration.  They do
74 < * <em>not</em> throw {@link ConcurrentModificationException}.
75 < * However, iterators are designed to be used by only one thread at a
76 < * time.  Bear in mind that the results of aggregate status methods
77 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
78 < * are typically useful only when a map is not undergoing concurrent
79 < * updates in other threads.  Otherwise the results of these methods
80 < * reflect transient states that may be adequate for monitoring
81 < * or estimation purposes, but not for program control.
69 > * onset. (More formally, an update operation for a given key bears a
70 > * <em>happens-before</em> relation with any (non-null) retrieval for
71 > * that key reporting the updated value.)  For aggregate operations
72 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
73 > * reflect insertion or removal of only some entries.  Similarly,
74 > * Iterators and Enumerations return elements reflecting the state of
75 > * the hash table at some point at or since the creation of the
76 > * iterator/enumeration.  They do <em>not</em> throw {@link
77 > * ConcurrentModificationException}.  However, iterators are designed
78 > * to be used by only one thread at a time.  Bear in mind that the
79 > * results of aggregate status methods including {@code size}, {@code
80 > * isEmpty}, and {@code containsValue} are typically useful only when
81 > * a map is not undergoing concurrent updates in other threads.
82 > * Otherwise the results of these methods reflect transient states
83 > * that may be adequate for monitoring or estimation purposes, but not
84 > * for program control.
85   *
86 < * <p> The table is dynamically expanded when there are too many
86 > * <p>The table is dynamically expanded when there are too many
87   * collisions (i.e., keys that have distinct hash codes but fall into
88   * the same slot modulo the table size), with the expected average
89 < * effect of maintaining roughly two bins per mapping. There may be
90 < * much variance around this average as mappings are added and
91 < * removed, but overall, this maintains a commonly accepted time/space
92 < * tradeoff for hash tables.  However, resizing this or any other kind
93 < * of hash table may be a relatively slow operation. When possible, it
94 < * is a good idea to provide a size estimate as an optional {@code
89 > * effect of maintaining roughly two bins per mapping (corresponding
90 > * to a 0.75 load factor threshold for resizing). There may be much
91 > * variance around this average as mappings are added and removed, but
92 > * overall, this maintains a commonly accepted time/space tradeoff for
93 > * hash tables.  However, resizing this or any other kind of hash
94 > * table may be a relatively slow operation. When possible, it is a
95 > * good idea to provide a size estimate as an optional {@code
96   * initialCapacity} constructor argument. An additional optional
97   * {@code loadFactor} constructor argument provides a further means of
98   * customizing initial table capacity by specifying the table density
# Line 68 | Line 101 | import java.io.Serializable;
101   * versions of this class, constructors may optionally specify an
102   * expected {@code concurrencyLevel} as an additional hint for
103   * internal sizing.  Note that using many keys with exactly the same
104 < * {@code hashCode{}} is a sure way to slow down performance of any
104 > * {@code hashCode()} is a sure way to slow down performance of any
105   * hash table.
106   *
107 + * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
108 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
109 + * (using {@link #keySet(Object)} when only keys are of interest, and the
110 + * mapped values are (perhaps transiently) not used or all take the
111 + * same mapping value.
112 + *
113 + * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 + * form of histogram or multiset) by using {@link LongAdder} values
115 + * and initializing via {@link #computeIfAbsent}. For example, to add
116 + * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117 + * can use {@code freqs.computeIfAbsent(k -> new
118 + * LongAdder()).increment();}
119 + *
120   * <p>This class and its views and iterators implement all of the
121   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
122   * interfaces.
123   *
124 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
124 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
125   * does <em>not</em> allow {@code null} to be used as a key or value.
126   *
127 + * <p>ConcurrentHashMapV8s support parallel operations using the {@link
128 + * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
129 + * are available in class {@link ForkJoinTasks}). These operations are
130 + * designed to be safely, and often sensibly, applied even with maps
131 + * that are being concurrently updated by other threads; for example,
132 + * when computing a snapshot summary of the values in a shared
133 + * registry.  There are three kinds of operation, each with four
134 + * forms, accepting functions with Keys, Values, Entries, and (Key,
135 + * Value) arguments and/or return values. (The first three forms are
136 + * also available via the {@link #keySet()}, {@link #values()} and
137 + * {@link #entrySet()} views). Because the elements of a
138 + * ConcurrentHashMapV8 are not ordered in any particular way, and may be
139 + * processed in different orders in different parallel executions, the
140 + * correctness of supplied functions should not depend on any
141 + * ordering, or on any other objects or values that may transiently
142 + * change while computation is in progress; and except for forEach
143 + * actions, should ideally be side-effect-free.
144 + *
145 + * <ul>
146 + * <li> forEach: Perform a given action on each element.
147 + * A variant form applies a given transformation on each element
148 + * before performing the action.</li>
149 + *
150 + * <li> search: Return the first available non-null result of
151 + * applying a given function on each element; skipping further
152 + * search when a result is found.</li>
153 + *
154 + * <li> reduce: Accumulate each element.  The supplied reduction
155 + * function cannot rely on ordering (more formally, it should be
156 + * both associative and commutative).  There are five variants:
157 + *
158 + * <ul>
159 + *
160 + * <li> Plain reductions. (There is not a form of this method for
161 + * (key, value) function arguments since there is no corresponding
162 + * return type.)</li>
163 + *
164 + * <li> Mapped reductions that accumulate the results of a given
165 + * function applied to each element.</li>
166 + *
167 + * <li> Reductions to scalar doubles, longs, and ints, using a
168 + * given basis value.</li>
169 + *
170 + * </li>
171 + * </ul>
172 + * </ul>
173 + *
174 + * <p>The concurrency properties of bulk operations follow
175 + * from those of ConcurrentHashMapV8: Any non-null result returned
176 + * from {@code get(key)} and related access methods bears a
177 + * happens-before relation with the associated insertion or
178 + * update.  The result of any bulk operation reflects the
179 + * composition of these per-element relations (but is not
180 + * necessarily atomic with respect to the map as a whole unless it
181 + * is somehow known to be quiescent).  Conversely, because keys
182 + * and values in the map are never null, null serves as a reliable
183 + * atomic indicator of the current lack of any result.  To
184 + * maintain this property, null serves as an implicit basis for
185 + * all non-scalar reduction operations. For the double, long, and
186 + * int versions, the basis should be one that, when combined with
187 + * any other value, returns that other value (more formally, it
188 + * should be the identity element for the reduction). Most common
189 + * reductions have these properties; for example, computing a sum
190 + * with basis 0 or a minimum with basis MAX_VALUE.
191 + *
192 + * <p>Search and transformation functions provided as arguments
193 + * should similarly return null to indicate the lack of any result
194 + * (in which case it is not used). In the case of mapped
195 + * reductions, this also enables transformations to serve as
196 + * filters, returning null (or, in the case of primitive
197 + * specializations, the identity basis) if the element should not
198 + * be combined. You can create compound transformations and
199 + * filterings by composing them yourself under this "null means
200 + * there is nothing there now" rule before using them in search or
201 + * reduce operations.
202 + *
203 + * <p>Methods accepting and/or returning Entry arguments maintain
204 + * key-value associations. They may be useful for example when
205 + * finding the key for the greatest value. Note that "plain" Entry
206 + * arguments can be supplied using {@code new
207 + * AbstractMap.SimpleEntry(k,v)}.
208 + *
209 + * <p>Bulk operations may complete abruptly, throwing an
210 + * exception encountered in the application of a supplied
211 + * function. Bear in mind when handling such exceptions that other
212 + * concurrently executing functions could also have thrown
213 + * exceptions, or would have done so if the first exception had
214 + * not occurred.
215 + *
216 + * <p>Parallel speedups for bulk operations compared to sequential
217 + * processing are common but not guaranteed.  Operations involving
218 + * brief functions on small maps may execute more slowly than
219 + * sequential loops if the underlying work to parallelize the
220 + * computation is more expensive than the computation itself.
221 + * Similarly, parallelization may not lead to much actual parallelism
222 + * if all processors are busy performing unrelated tasks.
223 + *
224 + * <p>All arguments to all task methods must be non-null.
225 + *
226 + * <p><em>jsr166e note: During transition, this class
227 + * uses nested functional interfaces with different names but the
228 + * same forms as those expected for JDK8.</em>
229 + *
230   * <p>This class is a member of the
231   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232   * Java Collections Framework</a>.
233   *
85 * <p><em>jsr166e note: This class is a candidate replacement for
86 * java.util.concurrent.ConcurrentHashMap.<em>
87 *
234   * @since 1.5
235   * @author Doug Lea
236   * @param <K> the type of keys maintained by this map
237   * @param <V> the type of mapped values
238   */
239   public class ConcurrentHashMapV8<K, V>
240 <        implements ConcurrentMap<K, V>, Serializable {
240 >    implements ConcurrentMap<K, V>, Serializable {
241      private static final long serialVersionUID = 7249069246763182397L;
242  
243      /**
244 <     * A function computing a mapping from the given key to a value,
245 <     * or {@code null} if there is no mapping. This is a place-holder
246 <     * for an upcoming JDK8 interface.
247 <     */
248 <    public static interface MappingFunction<K, V> {
249 <        /**
250 <         * Returns a value for the given key, or null if there is no
251 <         * mapping. If this function throws an (unchecked) exception,
252 <         * the exception is rethrown to its caller, and no mapping is
253 <         * recorded.  Because this function is invoked within
254 <         * atomicity control, the computation should be short and
255 <         * simple. The most common usage is to construct a new object
256 <         * serving as an initial mapped value.
244 >     * A partitionable iterator. A Spliterator can be traversed
245 >     * directly, but can also be partitioned (before traversal) by
246 >     * creating another Spliterator that covers a non-overlapping
247 >     * portion of the elements, and so may be amenable to parallel
248 >     * execution.
249 >     *
250 >     * <p>This interface exports a subset of expected JDK8
251 >     * functionality.
252 >     *
253 >     * <p>Sample usage: Here is one (of the several) ways to compute
254 >     * the sum of the values held in a map using the ForkJoin
255 >     * framework. As illustrated here, Spliterators are well suited to
256 >     * designs in which a task repeatedly splits off half its work
257 >     * into forked subtasks until small enough to process directly,
258 >     * and then joins these subtasks. Variants of this style can also
259 >     * be used in completion-based designs.
260 >     *
261 >     * <pre>
262 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 >     * // split as if have 8 * parallelism, for load balance
264 >     * int n = m.size();
265 >     * int p = aForkJoinPool.getParallelism() * 8;
266 >     * int split = (n < p)? n : p;
267 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 >     * // ...
269 >     * static class SumValues extends RecursiveTask<Long> {
270 >     *   final Spliterator<Long> s;
271 >     *   final int split;             // split while > 1
272 >     *   final SumValues nextJoin;    // records forked subtasks to join
273 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275 >     *   }
276 >     *   public Long compute() {
277 >     *     long sum = 0;
278 >     *     SumValues subtasks = null; // fork subtasks
279 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
280 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 >     *     while (s.hasNext())        // directly process remaining elements
282 >     *       sum += s.next();
283 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
284 >     *       sum += t.join();         // collect subtask results
285 >     *     return sum;
286 >     *   }
287 >     * }
288 >     * }</pre>
289 >     */
290 >    public static interface Spliterator<T> extends Iterator<T> {
291 >        /**
292 >         * Returns a Spliterator covering approximately half of the
293 >         * elements, guaranteed not to overlap with those subsequently
294 >         * returned by this Spliterator.  After invoking this method,
295 >         * the current Spliterator will <em>not</em> produce any of
296 >         * the elements of the returned Spliterator, but the two
297 >         * Spliterators together will produce all of the elements that
298 >         * would have been produced by this Spliterator had this
299 >         * method not been called. The exact number of elements
300 >         * produced by the returned Spliterator is not guaranteed, and
301 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
302 >         * false}) if this Spliterator cannot be further split.
303           *
304 <         * @param key the (non-null) key
305 <         * @return a value, or null if none
304 >         * @return a Spliterator covering approximately half of the
305 >         * elements
306 >         * @throws IllegalStateException if this Spliterator has
307 >         * already commenced traversing elements
308           */
309 <        V map(K key);
309 >        Spliterator<T> split();
310      }
311  
312 +
313      /*
314       * Overview:
315       *
316       * The primary design goal of this hash table is to maintain
317       * concurrent readability (typically method get(), but also
318       * iterators and related methods) while minimizing update
319 <     * contention.
319 >     * contention. Secondary goals are to keep space consumption about
320 >     * the same or better than java.util.HashMap, and to support high
321 >     * initial insertion rates on an empty table by many threads.
322       *
323       * Each key-value mapping is held in a Node.  Because Node fields
324       * can contain special values, they are defined using plain Object
# Line 129 | Line 326 | public class ConcurrentHashMapV8<K, V>
326       * work off Object types. And similarly, so do the internal
327       * methods of auxiliary iterator and view classes.  All public
328       * generic typed methods relay in/out of these internal methods,
329 <     * supplying null-checks and casts as needed.
329 >     * supplying null-checks and casts as needed. This also allows
330 >     * many of the public methods to be factored into a smaller number
331 >     * of internal methods (although sadly not so for the five
332 >     * variants of put-related operations). The validation-based
333 >     * approach explained below leads to a lot of code sprawl because
334 >     * retry-control precludes factoring into smaller methods.
335       *
336       * The table is lazily initialized to a power-of-two size upon the
337 <     * first insertion.  Each bin in the table contains a list of
338 <     * Nodes (most often, zero or one Node).  Table accesses require
339 <     * volatile/atomic reads, writes, and CASes.  Because there is no
340 <     * other way to arrange this without adding further indirections,
341 <     * we use intrinsics (sun.misc.Unsafe) operations.  The lists of
342 <     * nodes within bins are always accurately traversable under
343 <     * volatile reads, so long as lookups check hash code and
344 <     * non-nullness of value before checking key equality. (All valid
345 <     * hash codes are nonnegative. Negative values are reserved for
346 <     * special forwarding nodes; see below.)
337 >     * first insertion.  Each bin in the table normally contains a
338 >     * list of Nodes (most often, the list has only zero or one Node).
339 >     * Table accesses require volatile/atomic reads, writes, and
340 >     * CASes.  Because there is no other way to arrange this without
341 >     * adding further indirections, we use intrinsics
342 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
343 >     * are always accurately traversable under volatile reads, so long
344 >     * as lookups check hash code and non-nullness of value before
345 >     * checking key equality.
346 >     *
347 >     * We use the top two bits of Node hash fields for control
348 >     * purposes -- they are available anyway because of addressing
349 >     * constraints.  As explained further below, these top bits are
350 >     * used as follows:
351 >     *  00 - Normal
352 >     *  01 - Locked
353 >     *  11 - Locked and may have a thread waiting for lock
354 >     *  10 - Node is a forwarding node
355 >     *
356 >     * The lower 30 bits of each Node's hash field contain a
357 >     * transformation of the key's hash code, except for forwarding
358 >     * nodes, for which the lower bits are zero (and so always have
359 >     * hash field == MOVED).
360       *
361 <     * Insertion (via put or putIfAbsent) of the first node in an
361 >     * Insertion (via put or its variants) of the first node in an
362       * empty bin is performed by just CASing it to the bin.  This is
363 <     * on average by far the most common case for put operations.
364 <     * Other update operations (insert, delete, and replace) require
365 <     * locks.  We do not want to waste the space required to associate
366 <     * a distinct lock object with each bin, so instead use the first
367 <     * node of a bin list itself as a lock, using plain "synchronized"
368 <     * locks. These save space and we can live with block-structured
369 <     * lock/unlock operations. Using the first node of a list as a
370 <     * lock does not by itself suffice though. When a node is locked,
371 <     * any update must first validate that it is still the first node,
372 <     * and retry if not. Because new nodes are always appended to
373 <     * lists, once a node is first in a bin, it remains first until
374 <     * deleted or the bin becomes invalidated.  However, operations
375 <     * that only conditionally update can and sometimes do inspect
376 <     * nodes until the point of update. This is a converse of sorts to
377 <     * the lazy locking technique described by Herlihy & Shavit.
363 >     * by far the most common case for put operations under most
364 >     * key/hash distributions.  Other update operations (insert,
365 >     * delete, and replace) require locks.  We do not want to waste
366 >     * the space required to associate a distinct lock object with
367 >     * each bin, so instead use the first node of a bin list itself as
368 >     * a lock. Blocking support for these locks relies on the builtin
369 >     * "synchronized" monitors.  However, we also need a tryLock
370 >     * construction, so we overlay these by using bits of the Node
371 >     * hash field for lock control (see above), and so normally use
372 >     * builtin monitors only for blocking and signalling using
373 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
374 >     *
375 >     * Using the first node of a list as a lock does not by itself
376 >     * suffice though: When a node is locked, any update must first
377 >     * validate that it is still the first node after locking it, and
378 >     * retry if not. Because new nodes are always appended to lists,
379 >     * once a node is first in a bin, it remains first until deleted
380 >     * or the bin becomes invalidated (upon resizing).  However,
381 >     * operations that only conditionally update may inspect nodes
382 >     * until the point of update. This is a converse of sorts to the
383 >     * lazy locking technique described by Herlihy & Shavit.
384       *
385 <     * The main disadvantage of this approach is that most update
385 >     * The main disadvantage of per-bin locks is that other update
386       * operations on other nodes in a bin list protected by the same
387       * lock can stall, for example when user equals() or mapping
388 <     * functions take a long time.  However, statistically, this is
389 <     * not a common enough problem to outweigh the time/space overhead
390 <     * of alternatives: Under random hash codes, the frequency of
170 <     * nodes in bins follows a Poisson distribution
388 >     * functions take a long time.  However, statistically, under
389 >     * random hash codes, this is not a common problem.  Ideally, the
390 >     * frequency of nodes in bins follows a Poisson distribution
391       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
392       * parameter of about 0.5 on average, given the resizing threshold
393       * of 0.75, although with a large variance because of resizing
394       * granularity. Ignoring variance, the expected occurrences of
395       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
396 <     * first few values are:
396 >     * first values are:
397       *
398 <     * 0:    0.607
399 <     * 1:    0.303
400 <     * 2:    0.076
401 <     * 3:    0.012
402 <     * more: 0.002
398 >     * 0:    0.60653066
399 >     * 1:    0.30326533
400 >     * 2:    0.07581633
401 >     * 3:    0.01263606
402 >     * 4:    0.00157952
403 >     * 5:    0.00015795
404 >     * 6:    0.00001316
405 >     * 7:    0.00000094
406 >     * 8:    0.00000006
407 >     * more: less than 1 in ten million
408       *
409       * Lock contention probability for two threads accessing distinct
410 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
411 <     * performs hashCode randomization that improves the likelihood
412 <     * that these assumptions hold unless users define exactly the
413 <     * same value for too many hashCodes.
414 <     *
415 <     * The table is resized when occupancy exceeds a threshold.  Only
416 <     * a single thread performs the resize (using field "resizing", to
417 <     * arrange exclusion), but the table otherwise remains usable for
418 <     * reads and updates. Resizing proceeds by transferring bins, one
419 <     * by one, from the table to the next table.  Upon transfer, the
420 <     * old table bin contains only a special forwarding node (with
421 <     * negative hash field) that contains the next table as its
422 <     * key. On encountering a forwarding node, access and update
423 <     * operations restart, using the new table. To ensure concurrent
424 <     * readability of traversals, transfers must proceed from the last
425 <     * bin (table.length - 1) up towards the first.  Upon seeing a
426 <     * forwarding node, traversals (see class InternalIterator)
427 <     * arrange to move to the new table for the rest of the traversal
428 <     * without revisiting nodes.  This constrains bin transfers to a
429 <     * particular order, and so can block indefinitely waiting for the
430 <     * next lock, and other threads cannot help with the transfer.
431 <     * However, expected stalls are infrequent enough to not warrant
432 <     * the additional overhead of access and iteration schemes that
433 <     * could admit out-of-order or concurrent bin transfers.
434 <     *
435 <     * This traversal scheme also applies to partial traversals of
436 <     * ranges of bins (via an alternate InternalIterator constructor)
437 <     * to support partitioned aggregate operations (that are not
438 <     * otherwise implemented yet).  Also, read-only operations give up
439 <     * if ever forwarded to a null table, which provides support for
440 <     * shutdown-style clearing, which is also not currently
441 <     * implemented.
410 >     * elements is roughly 1 / (8 * #elements) under random hashes.
411 >     *
412 >     * Actual hash code distributions encountered in practice
413 >     * sometimes deviate significantly from uniform randomness.  This
414 >     * includes the case when N > (1<<30), so some keys MUST collide.
415 >     * Similarly for dumb or hostile usages in which multiple keys are
416 >     * designed to have identical hash codes. Also, although we guard
417 >     * against the worst effects of this (see method spread), sets of
418 >     * hashes may differ only in bits that do not impact their bin
419 >     * index for a given power-of-two mask.  So we use a secondary
420 >     * strategy that applies when the number of nodes in a bin exceeds
421 >     * a threshold, and at least one of the keys implements
422 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
423 >     * (a specialized form of red-black trees), bounding search time
424 >     * to O(log N).  Each search step in a TreeBin is around twice as
425 >     * slow as in a regular list, but given that N cannot exceed
426 >     * (1<<64) (before running out of addresses) this bounds search
427 >     * steps, lock hold times, etc, to reasonable constants (roughly
428 >     * 100 nodes inspected per operation worst case) so long as keys
429 >     * are Comparable (which is very common -- String, Long, etc).
430 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
431 >     * traversal pointers as regular nodes, so can be traversed in
432 >     * iterators in the same way.
433 >     *
434 >     * The table is resized when occupancy exceeds a percentage
435 >     * threshold (nominally, 0.75, but see below).  Only a single
436 >     * thread performs the resize (using field "sizeCtl", to arrange
437 >     * exclusion), but the table otherwise remains usable for reads
438 >     * and updates. Resizing proceeds by transferring bins, one by
439 >     * one, from the table to the next table.  Because we are using
440 >     * power-of-two expansion, the elements from each bin must either
441 >     * stay at same index, or move with a power of two offset. We
442 >     * eliminate unnecessary node creation by catching cases where old
443 >     * nodes can be reused because their next fields won't change.  On
444 >     * average, only about one-sixth of them need cloning when a table
445 >     * doubles. The nodes they replace will be garbage collectable as
446 >     * soon as they are no longer referenced by any reader thread that
447 >     * may be in the midst of concurrently traversing table.  Upon
448 >     * transfer, the old table bin contains only a special forwarding
449 >     * node (with hash field "MOVED") that contains the next table as
450 >     * its key. On encountering a forwarding node, access and update
451 >     * operations restart, using the new table.
452 >     *
453 >     * Each bin transfer requires its bin lock. However, unlike other
454 >     * cases, a transfer can skip a bin if it fails to acquire its
455 >     * lock, and revisit it later (unless it is a TreeBin). Method
456 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
457 >     * have been skipped because of failure to acquire a lock, and
458 >     * blocks only if none are available (i.e., only very rarely).
459 >     * The transfer operation must also ensure that all accessible
460 >     * bins in both the old and new table are usable by any traversal.
461 >     * When there are no lock acquisition failures, this is arranged
462 >     * simply by proceeding from the last bin (table.length - 1) up
463 >     * towards the first.  Upon seeing a forwarding node, traversals
464 >     * (see class Iter) arrange to move to the new table
465 >     * without revisiting nodes.  However, when any node is skipped
466 >     * during a transfer, all earlier table bins may have become
467 >     * visible, so are initialized with a reverse-forwarding node back
468 >     * to the old table until the new ones are established. (This
469 >     * sometimes requires transiently locking a forwarding node, which
470 >     * is possible under the above encoding.) These more expensive
471 >     * mechanics trigger only when necessary.
472 >     *
473 >     * The traversal scheme also applies to partial traversals of
474 >     * ranges of bins (via an alternate Traverser constructor)
475 >     * to support partitioned aggregate operations.  Also, read-only
476 >     * operations give up if ever forwarded to a null table, which
477 >     * provides support for shutdown-style clearing, which is also not
478 >     * currently implemented.
479       *
480       * Lazy table initialization minimizes footprint until first use,
481       * and also avoids resizings when the first operation is from a
482       * putAll, constructor with map argument, or deserialization.
483 <     * These cases attempt to override the targetCapacity used in
484 <     * growTable. These harmlessly fail to take effect in cases of
223 <     * races with other ongoing resizings. Uses of the threshold and
224 <     * targetCapacity during attempted initializations or resizings
225 <     * are racy but fall back on checks to preserve correctness.
483 >     * These cases attempt to override the initial capacity settings,
484 >     * but harmlessly fail to take effect in cases of races.
485       *
486       * The element count is maintained using a LongAdder, which avoids
487       * contention on updates but can encounter cache thrashing if read
488       * too frequently during concurrent access. To avoid reading so
489 <     * often, resizing is normally attempted only upon adding to a bin
490 <     * already holding two or more nodes. Under uniform hash
491 <     * distributions, the probability of this occurring at threshold
492 <     * is around 13%, meaning that only about 1 in 8 puts check
493 <     * threshold (and after resizing, many fewer do so). But this
494 <     * approximation has high variance for small table sizes, so we
495 <     * check on any collision for sizes <= 64.  Further, to increase
496 <     * the probability that a resize occurs soon enough, we offset the
497 <     * threshold (see THRESHOLD_OFFSET) by the expected number of puts
498 <     * between checks.
489 >     * often, resizing is attempted either when a bin lock is
490 >     * contended, or upon adding to a bin already holding two or more
491 >     * nodes (checked before adding in the xIfAbsent methods, after
492 >     * adding in others). Under uniform hash distributions, the
493 >     * probability of this occurring at threshold is around 13%,
494 >     * meaning that only about 1 in 8 puts check threshold (and after
495 >     * resizing, many fewer do so). But this approximation has high
496 >     * variance for small table sizes, so we check on any collision
497 >     * for sizes <= 64. The bulk putAll operation further reduces
498 >     * contention by only committing count updates upon these size
499 >     * checks.
500       *
501       * Maintaining API and serialization compatibility with previous
502       * versions of this class introduces several oddities. Mainly: We
503       * leave untouched but unused constructor arguments refering to
504 <     * concurrencyLevel. We also declare an unused "Segment" class
505 <     * that is instantiated in minimal form only when serializing.
504 >     * concurrencyLevel. We accept a loadFactor constructor argument,
505 >     * but apply it only to initial table capacity (which is the only
506 >     * time that we can guarantee to honor it.) We also declare an
507 >     * unused "Segment" class that is instantiated in minimal form
508 >     * only when serializing.
509       */
510  
511      /* ---------------- Constants -------------- */
# Line 250 | Line 513 | public class ConcurrentHashMapV8<K, V>
513      /**
514       * The largest possible table capacity.  This value must be
515       * exactly 1<<30 to stay within Java array allocation and indexing
516 <     * bounds for power of two table sizes.
516 >     * bounds for power of two table sizes, and is further required
517 >     * because the top two bits of 32bit hash fields are used for
518 >     * control purposes.
519       */
520      private static final int MAXIMUM_CAPACITY = 1 << 30;
521  
# Line 261 | Line 526 | public class ConcurrentHashMapV8<K, V>
526      private static final int DEFAULT_CAPACITY = 16;
527  
528      /**
529 <     * The load factor for this table. Overrides of this value in
530 <     * constructors affect only the initial table capacity.  The
266 <     * actual floating point value isn't normally used, because it is
267 <     * simpler to rely on the expression {@code n - (n >>> 2)} for the
268 <     * associated resizing threshold.
529 >     * The largest possible (non-power of two) array size.
530 >     * Needed by toArray and related methods.
531       */
532 <    private static final float LOAD_FACTOR = 0.75f;
532 >    static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
533  
534      /**
535 <     * The count value to offset thresholds to compensate for checking
536 <     * for the need to resize only when inserting into bins with two
275 <     * or more elements. See above for explanation.
535 >     * The default concurrency level for this table. Unused but
536 >     * defined for compatibility with previous versions of this class.
537       */
538 <    private static final int THRESHOLD_OFFSET = 8;
538 >    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
539  
540      /**
541 <     * The default concurrency level for this table. Unused except as
542 <     * a sizing hint, but defined for compatibility with previous
543 <     * versions of this class.
541 >     * The load factor for this table. Overrides of this value in
542 >     * constructors affect only the initial table capacity.  The
543 >     * actual floating point value isn't normally used -- it is
544 >     * simpler to use expressions such as {@code n - (n >>> 2)} for
545 >     * the associated resizing threshold.
546       */
547 <    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
285 <
286 <    /* ---------------- Nodes -------------- */
547 >    private static final float LOAD_FACTOR = 0.75f;
548  
549      /**
550 <     * Key-value entry. Note that this is never exported out as a
551 <     * user-visible Map.Entry. Nodes with a negative hash field are
552 <     * special, and do not contain user keys or values.  Otherwise,
292 <     * keys are never null, and null val fields indicate that a node
293 <     * is in the process of being deleted or created. For purposes of
294 <     * read-only access, a key may be read before a val, but can only
295 <     * be used after checking val.  (For an update operation, when a
296 <     * lock is held on a node, order doesn't matter.)
550 >     * The buffer size for skipped bins during transfers. The
551 >     * value is arbitrary but should be large enough to avoid
552 >     * most locking stalls during resizes.
553       */
554 <    static final class Node {
299 <        final int hash;
300 <        final Object key;
301 <        volatile Object val;
302 <        volatile Node next;
303 <
304 <        Node(int hash, Object key, Object val, Node next) {
305 <            this.hash = hash;
306 <            this.key = key;
307 <            this.val = val;
308 <            this.next = next;
309 <        }
310 <    }
554 >    private static final int TRANSFER_BUFFER_SIZE = 32;
555  
556      /**
557 <     * Sign bit of node hash value indicating to use table in node.key.
557 >     * The bin count threshold for using a tree rather than list for a
558 >     * bin.  The value reflects the approximate break-even point for
559 >     * using tree-based operations.
560       */
561 <    private static final int SIGN_BIT = 0x80000000;
561 >    private static final int TREE_THRESHOLD = 8;
562 >
563 >    /*
564 >     * Encodings for special uses of Node hash fields. See above for
565 >     * explanation.
566 >     */
567 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
568 >    static final int LOCKED    = 0x40000000; // set/tested only as a bit
569 >    static final int WAITING   = 0xc0000000; // both bits set/tested together
570 >    static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
571  
572      /* ---------------- Fields -------------- */
573  
# Line 322 | Line 577 | public class ConcurrentHashMapV8<K, V>
577       */
578      transient volatile Node[] table;
579  
580 <    /** The counter maintaining number of elements. */
580 >    /**
581 >     * The counter maintaining number of elements.
582 >     */
583      private transient final LongAdder counter;
584 <    /** Nonzero when table is being initialized or resized. Updated via CAS. */
585 <    private transient volatile int resizing;
586 <    /** The next element count value upon which to resize the table. */
587 <    private transient int threshold;
588 <    /** The target capacity; volatile to cover initialization races. */
589 <    private transient volatile int targetCapacity;
584 >
585 >    /**
586 >     * Table initialization and resizing control.  When negative, the
587 >     * table is being initialized or resized. Otherwise, when table is
588 >     * null, holds the initial table size to use upon creation, or 0
589 >     * for default. After initialization, holds the next element count
590 >     * value upon which to resize the table.
591 >     */
592 >    private transient volatile int sizeCtl;
593  
594      // views
595 <    private transient KeySet<K,V> keySet;
596 <    private transient Values<K,V> values;
597 <    private transient EntrySet<K,V> entrySet;
595 >    private transient KeySetView<K,V> keySet;
596 >    private transient ValuesView<K,V> values;
597 >    private transient EntrySetView<K,V> entrySet;
598  
599      /** For serialization compatibility. Null unless serialized; see below */
600      private Segment<K,V>[] segments;
# Line 353 | Line 613 | public class ConcurrentHashMapV8<K, V>
613       * inline assignments below.
614       */
615  
616 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
616 >    static final Node tabAt(Node[] tab, int i) { // used by Iter
617          return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
618      }
619  
# Line 365 | Line 625 | public class ConcurrentHashMapV8<K, V>
625          UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
626      }
627  
628 <    /* ----------------Table Initialization and Resizing -------------- */
628 >    /* ---------------- Nodes -------------- */
629  
630      /**
631 <     * Returns a power of two table size for the given desired capacity.
632 <     * See Hackers Delight, sec 3.2
631 >     * Key-value entry. Note that this is never exported out as a
632 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
633 >     * field of MOVED are special, and do not contain user keys or
634 >     * values.  Otherwise, keys are never null, and null val fields
635 >     * indicate that a node is in the process of being deleted or
636 >     * created. For purposes of read-only access, a key may be read
637 >     * before a val, but can only be used after checking val to be
638 >     * non-null.
639       */
640 <    private static final int tableSizeFor(int c) {
641 <        int n = c - 1;
642 <        n |= n >>> 1;
643 <        n |= n >>> 2;
644 <        n |= n >>> 4;
379 <        n |= n >>> 8;
380 <        n |= n >>> 16;
381 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
382 <    }
640 >    static class Node {
641 >        volatile int hash;
642 >        final Object key;
643 >        volatile Object val;
644 >        volatile Node next;
645  
646 <    /**
647 <     * If not already resizing, initializes or creates next table and
648 <     * transfers bins. Initial table size uses the capacity recorded
649 <     * in targetCapacity.  Rechecks occupancy after a transfer to see
650 <     * if another resize is already needed because resizings are
651 <     * lagging additions.
652 <     *
653 <     * @return current table
654 <     */
655 <    private final Node[] growTable() {
656 <        if (resizing == 0 &&
657 <            UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
658 <            try {
659 <                for (;;) {
660 <                    Node[] tab = table;
661 <                    int n, c, m;
662 <                    if (tab == null)
663 <                        n = (c = targetCapacity) > 0 ? c : DEFAULT_CAPACITY;
664 <                    else if ((m = tab.length) < MAXIMUM_CAPACITY &&
665 <                             counter.sum() >= (long)threshold)
666 <                        n = m << 1;
667 <                    else
668 <                        break;
669 <                    threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
670 <                    Node[] nextTab = new Node[n];
671 <                    if (tab != null)
672 <                        transfer(tab, nextTab,
673 <                                 new Node(SIGN_BIT, nextTab, null, null));
674 <                    table = nextTab;
675 <                    if (tab == null)
646 >        Node(int hash, Object key, Object val, Node next) {
647 >            this.hash = hash;
648 >            this.key = key;
649 >            this.val = val;
650 >            this.next = next;
651 >        }
652 >
653 >        /** CompareAndSet the hash field */
654 >        final boolean casHash(int cmp, int val) {
655 >            return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
656 >        }
657 >
658 >        /** The number of spins before blocking for a lock */
659 >        static final int MAX_SPINS =
660 >            Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
661 >
662 >        /**
663 >         * Spins a while if LOCKED bit set and this node is the first
664 >         * of its bin, and then sets WAITING bits on hash field and
665 >         * blocks (once) if they are still set.  It is OK for this
666 >         * method to return even if lock is not available upon exit,
667 >         * which enables these simple single-wait mechanics.
668 >         *
669 >         * The corresponding signalling operation is performed within
670 >         * callers: Upon detecting that WAITING has been set when
671 >         * unlocking lock (via a failed CAS from non-waiting LOCKED
672 >         * state), unlockers acquire the sync lock and perform a
673 >         * notifyAll.
674 >         *
675 >         * The initial sanity check on tab and bounds is not currently
676 >         * necessary in the only usages of this method, but enables
677 >         * use in other future contexts.
678 >         */
679 >        final void tryAwaitLock(Node[] tab, int i) {
680 >            if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682 >                int spins = MAX_SPINS, h;
683 >                while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684 >                    if (spins >= 0) {
685 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686 >                        if (r >= 0 && --spins == 0)
687 >                            Thread.yield();  // yield before block
688 >                    }
689 >                    else if (casHash(h, h | WAITING)) {
690 >                        synchronized (this) {
691 >                            if (tabAt(tab, i) == this &&
692 >                                (hash & WAITING) == WAITING) {
693 >                                try {
694 >                                    wait();
695 >                                } catch (InterruptedException ie) {
696 >                                    try {
697 >                                        Thread.currentThread().interrupt();
698 >                                    } catch (SecurityException ignore) {
699 >                                    }
700 >                                }
701 >                            }
702 >                            else
703 >                                notifyAll(); // possibly won race vs signaller
704 >                        }
705                          break;
706 +                    }
707                  }
416            } finally {
417                resizing = 0;
708              }
709          }
710 <        else if (table == null)
711 <            Thread.yield(); // lost initialization race; just spin
712 <        return table;
710 >
711 >        // Unsafe mechanics for casHash
712 >        private static final sun.misc.Unsafe UNSAFE;
713 >        private static final long hashOffset;
714 >
715 >        static {
716 >            try {
717 >                UNSAFE = getUnsafe();
718 >                Class<?> k = Node.class;
719 >                hashOffset = UNSAFE.objectFieldOffset
720 >                    (k.getDeclaredField("hash"));
721 >            } catch (Exception e) {
722 >                throw new Error(e);
723 >            }
724 >        }
725      }
726  
727 +    /* ---------------- TreeBins -------------- */
728 +
729      /**
730 <     * Reclassifies nodes in each bin to new table.  Because we are
731 <     * using power-of-two expansion, the elements from each bin must
732 <     * either stay at same index, or move with a power of two
733 <     * offset. We eliminate unnecessary node creation by catching
734 <     * cases where old nodes can be reused because their next fields
735 <     * won't change.  Statistically, only about one-sixth of them need
736 <     * cloning when a table doubles. The nodes they replace will be
737 <     * garbage collectable as soon as they are no longer referenced by
738 <     * any reader thread that may be in the midst of concurrently
739 <     * traversing table.
730 >     * Nodes for use in TreeBins
731 >     */
732 >    static final class TreeNode extends Node {
733 >        TreeNode parent;  // red-black tree links
734 >        TreeNode left;
735 >        TreeNode right;
736 >        TreeNode prev;    // needed to unlink next upon deletion
737 >        boolean red;
738 >
739 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740 >            super(hash, key, val, next);
741 >            this.parent = parent;
742 >        }
743 >    }
744 >
745 >    /**
746 >     * A specialized form of red-black tree for use in bins
747 >     * whose size exceeds a threshold.
748       *
749 <     * Transfers are done from the bottom up to preserve iterator
750 <     * traversability. On each step, the old bin is locked,
751 <     * moved/copied, and then replaced with a forwarding node.
749 >     * TreeBins use a special form of comparison for search and
750 >     * related operations (which is the main reason we cannot use
751 >     * existing collections such as TreeMaps). TreeBins contain
752 >     * Comparable elements, but may contain others, as well as
753 >     * elements that are Comparable but not necessarily Comparable<T>
754 >     * for the same T, so we cannot invoke compareTo among them. To
755 >     * handle this, the tree is ordered primarily by hash value, then
756 >     * by getClass().getName() order, and then by Comparator order
757 >     * among elements of the same class.  On lookup at a node, if
758 >     * elements are not comparable or compare as 0, both left and
759 >     * right children may need to be searched in the case of tied hash
760 >     * values. (This corresponds to the full list search that would be
761 >     * necessary if all elements were non-Comparable and had tied
762 >     * hashes.)  The red-black balancing code is updated from
763 >     * pre-jdk-collections
764 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766 >     * Algorithms" (CLR).
767 >     *
768 >     * TreeBins also maintain a separate locking discipline than
769 >     * regular bins. Because they are forwarded via special MOVED
770 >     * nodes at bin heads (which can never change once established),
771 >     * we cannot use those nodes as locks. Instead, TreeBin
772 >     * extends AbstractQueuedSynchronizer to support a simple form of
773 >     * read-write lock. For update operations and table validation,
774 >     * the exclusive form of lock behaves in the same way as bin-head
775 >     * locks. However, lookups use shared read-lock mechanics to allow
776 >     * multiple readers in the absence of writers.  Additionally,
777 >     * these lookups do not ever block: While the lock is not
778 >     * available, they proceed along the slow traversal path (via
779 >     * next-pointers) until the lock becomes available or the list is
780 >     * exhausted, whichever comes first. (These cases are not fast,
781 >     * but maximize aggregate expected throughput.)  The AQS mechanics
782 >     * for doing this are straightforward.  The lock state is held as
783 >     * AQS getState().  Read counts are negative; the write count (1)
784 >     * is positive.  There are no signalling preferences among readers
785 >     * and writers. Since we don't need to export full Lock API, we
786 >     * just override the minimal AQS methods and use them directly.
787       */
788 <    private static final void transfer(Node[] tab, Node[] nextTab, Node fwd) {
789 <        int n = tab.length;
790 <        Node ignore = nextTab[n + n - 1]; // force bounds check
791 <        for (int i = n - 1; i >= 0; --i) {
792 <            for (Node e;;) {
793 <                if ((e = tabAt(tab, i)) != null) {
794 <                    boolean validated = false;
795 <                    synchronized (e) {
796 <                        if (tabAt(tab, i) == e) {
797 <                            validated = true;
798 <                            Node lo = null, hi = null, lastRun = e;
799 <                            int runBit = e.hash & n;
800 <                            for (Node p = e.next; p != null; p = p.next) {
801 <                                int b = p.hash & n;
802 <                                if (b != runBit) {
803 <                                    runBit = b;
804 <                                    lastRun = p;
788 >    static final class TreeBin extends AbstractQueuedSynchronizer {
789 >        private static final long serialVersionUID = 2249069246763182397L;
790 >        transient TreeNode root;  // root of tree
791 >        transient TreeNode first; // head of next-pointer list
792 >
793 >        /* AQS overrides */
794 >        public final boolean isHeldExclusively() { return getState() > 0; }
795 >        public final boolean tryAcquire(int ignore) {
796 >            if (compareAndSetState(0, 1)) {
797 >                setExclusiveOwnerThread(Thread.currentThread());
798 >                return true;
799 >            }
800 >            return false;
801 >        }
802 >        public final boolean tryRelease(int ignore) {
803 >            setExclusiveOwnerThread(null);
804 >            setState(0);
805 >            return true;
806 >        }
807 >        public final int tryAcquireShared(int ignore) {
808 >            for (int c;;) {
809 >                if ((c = getState()) > 0)
810 >                    return -1;
811 >                if (compareAndSetState(c, c -1))
812 >                    return 1;
813 >            }
814 >        }
815 >        public final boolean tryReleaseShared(int ignore) {
816 >            int c;
817 >            do {} while (!compareAndSetState(c = getState(), c + 1));
818 >            return c == -1;
819 >        }
820 >
821 >        /** From CLR */
822 >        private void rotateLeft(TreeNode p) {
823 >            if (p != null) {
824 >                TreeNode r = p.right, pp, rl;
825 >                if ((rl = p.right = r.left) != null)
826 >                    rl.parent = p;
827 >                if ((pp = r.parent = p.parent) == null)
828 >                    root = r;
829 >                else if (pp.left == p)
830 >                    pp.left = r;
831 >                else
832 >                    pp.right = r;
833 >                r.left = p;
834 >                p.parent = r;
835 >            }
836 >        }
837 >
838 >        /** From CLR */
839 >        private void rotateRight(TreeNode p) {
840 >            if (p != null) {
841 >                TreeNode l = p.left, pp, lr;
842 >                if ((lr = p.left = l.right) != null)
843 >                    lr.parent = p;
844 >                if ((pp = l.parent = p.parent) == null)
845 >                    root = l;
846 >                else if (pp.right == p)
847 >                    pp.right = l;
848 >                else
849 >                    pp.left = l;
850 >                l.right = p;
851 >                p.parent = l;
852 >            }
853 >        }
854 >
855 >        /**
856 >         * Returns the TreeNode (or null if not found) for the given key
857 >         * starting at given root.
858 >         */
859 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
860 >            (int h, Object k, TreeNode p) {
861 >            Class<?> c = k.getClass();
862 >            while (p != null) {
863 >                int dir, ph;  Object pk; Class<?> pc;
864 >                if ((ph = p.hash) == h) {
865 >                    if ((pk = p.key) == k || k.equals(pk))
866 >                        return p;
867 >                    if (c != (pc = pk.getClass()) ||
868 >                        !(k instanceof Comparable) ||
869 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
871 >                        TreeNode r = null, s = null, pl, pr;
872 >                        if (dir >= 0) {
873 >                            if ((pl = p.left) != null && h <= pl.hash)
874 >                                s = pl;
875 >                        }
876 >                        else if ((pr = p.right) != null && h >= pr.hash)
877 >                            s = pr;
878 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
879 >                            return r;
880 >                    }
881 >                }
882 >                else
883 >                    dir = (h < ph) ? -1 : 1;
884 >                p = (dir > 0) ? p.right : p.left;
885 >            }
886 >            return null;
887 >        }
888 >
889 >        /**
890 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
891 >         * read-lock to call getTreeNode, but during failure to get
892 >         * lock, searches along next links.
893 >         */
894 >        final Object getValue(int h, Object k) {
895 >            Node r = null;
896 >            int c = getState(); // Must read lock state first
897 >            for (Node e = first; e != null; e = e.next) {
898 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
899 >                    try {
900 >                        r = getTreeNode(h, k, root);
901 >                    } finally {
902 >                        releaseShared(0);
903 >                    }
904 >                    break;
905 >                }
906 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
907 >                    r = e;
908 >                    break;
909 >                }
910 >                else
911 >                    c = getState();
912 >            }
913 >            return r == null ? null : r.val;
914 >        }
915 >
916 >        /**
917 >         * Finds or adds a node.
918 >         * @return null if added
919 >         */
920 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
921 >            (int h, Object k, Object v) {
922 >            Class<?> c = k.getClass();
923 >            TreeNode pp = root, p = null;
924 >            int dir = 0;
925 >            while (pp != null) { // find existing node or leaf to insert at
926 >                int ph;  Object pk; Class<?> pc;
927 >                p = pp;
928 >                if ((ph = p.hash) == h) {
929 >                    if ((pk = p.key) == k || k.equals(pk))
930 >                        return p;
931 >                    if (c != (pc = pk.getClass()) ||
932 >                        !(k instanceof Comparable) ||
933 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
934 >                        dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
935 >                        TreeNode r = null, s = null, pl, pr;
936 >                        if (dir >= 0) {
937 >                            if ((pl = p.left) != null && h <= pl.hash)
938 >                                s = pl;
939 >                        }
940 >                        else if ((pr = p.right) != null && h >= pr.hash)
941 >                            s = pr;
942 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
943 >                            return r;
944 >                    }
945 >                }
946 >                else
947 >                    dir = (h < ph) ? -1 : 1;
948 >                pp = (dir > 0) ? p.right : p.left;
949 >            }
950 >
951 >            TreeNode f = first;
952 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
953 >            if (p == null)
954 >                root = x;
955 >            else { // attach and rebalance; adapted from CLR
956 >                TreeNode xp, xpp;
957 >                if (f != null)
958 >                    f.prev = x;
959 >                if (dir <= 0)
960 >                    p.left = x;
961 >                else
962 >                    p.right = x;
963 >                x.red = true;
964 >                while (x != null && (xp = x.parent) != null && xp.red &&
965 >                       (xpp = xp.parent) != null) {
966 >                    TreeNode xppl = xpp.left;
967 >                    if (xp == xppl) {
968 >                        TreeNode y = xpp.right;
969 >                        if (y != null && y.red) {
970 >                            y.red = false;
971 >                            xp.red = false;
972 >                            xpp.red = true;
973 >                            x = xpp;
974 >                        }
975 >                        else {
976 >                            if (x == xp.right) {
977 >                                rotateLeft(x = xp);
978 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
979 >                            }
980 >                            if (xp != null) {
981 >                                xp.red = false;
982 >                                if (xpp != null) {
983 >                                    xpp.red = true;
984 >                                    rotateRight(xpp);
985                                  }
986                              }
987 <                            if (runBit == 0)
988 <                                lo = lastRun;
989 <                            else
990 <                                hi = lastRun;
991 <                            for (Node p = e; p != lastRun; p = p.next) {
992 <                                int ph = p.hash;
993 <                                Object pk = p.key, pv = p.val;
994 <                                if ((ph & n) == 0)
995 <                                    lo = new Node(ph, pk, pv, lo);
996 <                                else
997 <                                    hi = new Node(ph, pk, pv, hi);
987 >                        }
988 >                    }
989 >                    else {
990 >                        TreeNode y = xppl;
991 >                        if (y != null && y.red) {
992 >                            y.red = false;
993 >                            xp.red = false;
994 >                            xpp.red = true;
995 >                            x = xpp;
996 >                        }
997 >                        else {
998 >                            if (x == xp.left) {
999 >                                rotateRight(x = xp);
1000 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
1001 >                            }
1002 >                            if (xp != null) {
1003 >                                xp.red = false;
1004 >                                if (xpp != null) {
1005 >                                    xpp.red = true;
1006 >                                    rotateLeft(xpp);
1007 >                                }
1008                              }
472                            setTabAt(nextTab, i, lo);
473                            setTabAt(nextTab, i + n, hi);
474                            setTabAt(tab, i, fwd);
1009                          }
1010                      }
1011 <                    if (validated)
1011 >                }
1012 >                TreeNode r = root;
1013 >                if (r != null && r.red)
1014 >                    r.red = false;
1015 >            }
1016 >            return null;
1017 >        }
1018 >
1019 >        /**
1020 >         * Removes the given node, that must be present before this
1021 >         * call.  This is messier than typical red-black deletion code
1022 >         * because we cannot swap the contents of an interior node
1023 >         * with a leaf successor that is pinned by "next" pointers
1024 >         * that are accessible independently of lock. So instead we
1025 >         * swap the tree linkages.
1026 >         */
1027 >        final void deleteTreeNode(TreeNode p) {
1028 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1029 >            TreeNode pred = p.prev;
1030 >            if (pred == null)
1031 >                first = next;
1032 >            else
1033 >                pred.next = next;
1034 >            if (next != null)
1035 >                next.prev = pred;
1036 >            TreeNode replacement;
1037 >            TreeNode pl = p.left;
1038 >            TreeNode pr = p.right;
1039 >            if (pl != null && pr != null) {
1040 >                TreeNode s = pr, sl;
1041 >                while ((sl = s.left) != null) // find successor
1042 >                    s = sl;
1043 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1044 >                TreeNode sr = s.right;
1045 >                TreeNode pp = p.parent;
1046 >                if (s == pr) { // p was s's direct parent
1047 >                    p.parent = s;
1048 >                    s.right = p;
1049 >                }
1050 >                else {
1051 >                    TreeNode sp = s.parent;
1052 >                    if ((p.parent = sp) != null) {
1053 >                        if (s == sp.left)
1054 >                            sp.left = p;
1055 >                        else
1056 >                            sp.right = p;
1057 >                    }
1058 >                    if ((s.right = pr) != null)
1059 >                        pr.parent = s;
1060 >                }
1061 >                p.left = null;
1062 >                if ((p.right = sr) != null)
1063 >                    sr.parent = p;
1064 >                if ((s.left = pl) != null)
1065 >                    pl.parent = s;
1066 >                if ((s.parent = pp) == null)
1067 >                    root = s;
1068 >                else if (p == pp.left)
1069 >                    pp.left = s;
1070 >                else
1071 >                    pp.right = s;
1072 >                replacement = sr;
1073 >            }
1074 >            else
1075 >                replacement = (pl != null) ? pl : pr;
1076 >            TreeNode pp = p.parent;
1077 >            if (replacement == null) {
1078 >                if (pp == null) {
1079 >                    root = null;
1080 >                    return;
1081 >                }
1082 >                replacement = p;
1083 >            }
1084 >            else {
1085 >                replacement.parent = pp;
1086 >                if (pp == null)
1087 >                    root = replacement;
1088 >                else if (p == pp.left)
1089 >                    pp.left = replacement;
1090 >                else
1091 >                    pp.right = replacement;
1092 >                p.left = p.right = p.parent = null;
1093 >            }
1094 >            if (!p.red) { // rebalance, from CLR
1095 >                TreeNode x = replacement;
1096 >                while (x != null) {
1097 >                    TreeNode xp, xpl;
1098 >                    if (x.red || (xp = x.parent) == null) {
1099 >                        x.red = false;
1100                          break;
1101 +                    }
1102 +                    if (x == (xpl = xp.left)) {
1103 +                        TreeNode sib = xp.right;
1104 +                        if (sib != null && sib.red) {
1105 +                            sib.red = false;
1106 +                            xp.red = true;
1107 +                            rotateLeft(xp);
1108 +                            sib = (xp = x.parent) == null ? null : xp.right;
1109 +                        }
1110 +                        if (sib == null)
1111 +                            x = xp;
1112 +                        else {
1113 +                            TreeNode sl = sib.left, sr = sib.right;
1114 +                            if ((sr == null || !sr.red) &&
1115 +                                (sl == null || !sl.red)) {
1116 +                                sib.red = true;
1117 +                                x = xp;
1118 +                            }
1119 +                            else {
1120 +                                if (sr == null || !sr.red) {
1121 +                                    if (sl != null)
1122 +                                        sl.red = false;
1123 +                                    sib.red = true;
1124 +                                    rotateRight(sib);
1125 +                                    sib = (xp = x.parent) == null ? null : xp.right;
1126 +                                }
1127 +                                if (sib != null) {
1128 +                                    sib.red = (xp == null) ? false : xp.red;
1129 +                                    if ((sr = sib.right) != null)
1130 +                                        sr.red = false;
1131 +                                }
1132 +                                if (xp != null) {
1133 +                                    xp.red = false;
1134 +                                    rotateLeft(xp);
1135 +                                }
1136 +                                x = root;
1137 +                            }
1138 +                        }
1139 +                    }
1140 +                    else { // symmetric
1141 +                        TreeNode sib = xpl;
1142 +                        if (sib != null && sib.red) {
1143 +                            sib.red = false;
1144 +                            xp.red = true;
1145 +                            rotateRight(xp);
1146 +                            sib = (xp = x.parent) == null ? null : xp.left;
1147 +                        }
1148 +                        if (sib == null)
1149 +                            x = xp;
1150 +                        else {
1151 +                            TreeNode sl = sib.left, sr = sib.right;
1152 +                            if ((sl == null || !sl.red) &&
1153 +                                (sr == null || !sr.red)) {
1154 +                                sib.red = true;
1155 +                                x = xp;
1156 +                            }
1157 +                            else {
1158 +                                if (sl == null || !sl.red) {
1159 +                                    if (sr != null)
1160 +                                        sr.red = false;
1161 +                                    sib.red = true;
1162 +                                    rotateLeft(sib);
1163 +                                    sib = (xp = x.parent) == null ? null : xp.left;
1164 +                                }
1165 +                                if (sib != null) {
1166 +                                    sib.red = (xp == null) ? false : xp.red;
1167 +                                    if ((sl = sib.left) != null)
1168 +                                        sl.red = false;
1169 +                                }
1170 +                                if (xp != null) {
1171 +                                    xp.red = false;
1172 +                                    rotateRight(xp);
1173 +                                }
1174 +                                x = root;
1175 +                            }
1176 +                        }
1177 +                    }
1178                  }
1179 <                else if (casTabAt(tab, i, e, fwd))
1180 <                    break;
1179 >            }
1180 >            if (p == replacement && (pp = p.parent) != null) {
1181 >                if (p == pp.left) // detach pointers
1182 >                    pp.left = null;
1183 >                else if (p == pp.right)
1184 >                    pp.right = null;
1185 >                p.parent = null;
1186              }
1187          }
1188      }
1189  
1190 <    /* ---------------- Internal access and update methods -------------- */
1190 >    /* ---------------- Collision reduction methods -------------- */
1191  
1192      /**
1193 <     * Applies a supplemental hash function to a given hashCode, which
1194 <     * defends against poor quality hash functions.  The result must
1195 <     * be non-negative, and for reasonable performance must have good
1196 <     * avalanche properties; i.e., that each bit of the argument
1197 <     * affects each bit (except sign bit) of the result.
1193 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1194 >     * Because the table uses power-of-two masking, sets of hashes
1195 >     * that vary only in bits above the current mask will always
1196 >     * collide. (Among known examples are sets of Float keys holding
1197 >     * consecutive whole numbers in small tables.)  To counter this,
1198 >     * we apply a transform that spreads the impact of higher bits
1199 >     * downward. There is a tradeoff between speed, utility, and
1200 >     * quality of bit-spreading. Because many common sets of hashes
1201 >     * are already reasonably distributed across bits (so don't benefit
1202 >     * from spreading), and because we use trees to handle large sets
1203 >     * of collisions in bins, we don't need excessively high quality.
1204       */
1205      private static final int spread(int h) {
1206 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1207 <        h ^= h >>> 16;
498 <        h *= 0x85ebca6b;
499 <        h ^= h >>> 13;
500 <        h *= 0xc2b2ae35;
501 <        return (h >>> 16) ^ (h & 0x7fffffff); // mask out sign bit
1206 >        h ^= (h >>> 18) ^ (h >>> 12);
1207 >        return (h ^ (h >>> 10)) & HASH_BITS;
1208      }
1209  
1210 +    /**
1211 +     * Replaces a list bin with a tree bin. Call only when locked.
1212 +     * Fails to replace if the given key is non-comparable or table
1213 +     * is, or needs, resizing.
1214 +     */
1215 +    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1216 +        if ((key instanceof Comparable) &&
1217 +            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1218 +            TreeBin t = new TreeBin();
1219 +            for (Node e = tabAt(tab, index); e != null; e = e.next)
1220 +                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1221 +            setTabAt(tab, index, new Node(MOVED, t, null, null));
1222 +        }
1223 +    }
1224 +
1225 +    /* ---------------- Internal access and update methods -------------- */
1226 +
1227      /** Implementation for get and containsKey */
1228      private final Object internalGet(Object k) {
1229          int h = spread(k.hashCode());
1230          retry: for (Node[] tab = table; tab != null;) {
1231 <            Node e; Object ek, ev; int eh;  // locals to read fields once
1231 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1232              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1233 <                if ((eh = e.hash) == h) {
1234 <                    if ((ev = e.val) != null &&
1235 <                        ((ek = e.key) == k || k.equals(ek)))
1236 <                        return ev;
1237 <                }
1238 <                else if (eh < 0) {          // sign bit set
1239 <                    tab = (Node[])e.key;    // bin was moved during resize
517 <                    continue retry;
1233 >                if ((eh = e.hash) == MOVED) {
1234 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1235 >                        return ((TreeBin)ek).getValue(h, k);
1236 >                    else {                        // restart with new table
1237 >                        tab = (Node[])ek;
1238 >                        continue retry;
1239 >                    }
1240                  }
1241 +                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1242 +                         ((ek = e.key) == k || k.equals(ek)))
1243 +                    return ev;
1244              }
1245              break;
1246          }
1247          return null;
1248      }
1249  
1250 <    /** Implementation for put and putIfAbsent */
1251 <    private final Object internalPut(Object k, Object v, boolean replace) {
1250 >    /**
1251 >     * Implementation for the four public remove/replace methods:
1252 >     * Replaces node value with v, conditional upon match of cv if
1253 >     * non-null.  If resulting value is null, delete.
1254 >     */
1255 >    private final Object internalReplace(Object k, Object v, Object cv) {
1256          int h = spread(k.hashCode());
1257 <        Object oldVal = null;               // previous value or null if none
1257 >        Object oldVal = null;
1258          for (Node[] tab = table;;) {
1259 <            Node e; int i; Object ek, ev;
1259 >            Node f; int i, fh; Object fk;
1260 >            if (tab == null ||
1261 >                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1262 >                break;
1263 >            else if ((fh = f.hash) == MOVED) {
1264 >                if ((fk = f.key) instanceof TreeBin) {
1265 >                    TreeBin t = (TreeBin)fk;
1266 >                    boolean validated = false;
1267 >                    boolean deleted = false;
1268 >                    t.acquire(0);
1269 >                    try {
1270 >                        if (tabAt(tab, i) == f) {
1271 >                            validated = true;
1272 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1273 >                            if (p != null) {
1274 >                                Object pv = p.val;
1275 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1276 >                                    oldVal = pv;
1277 >                                    if ((p.val = v) == null) {
1278 >                                        deleted = true;
1279 >                                        t.deleteTreeNode(p);
1280 >                                    }
1281 >                                }
1282 >                            }
1283 >                        }
1284 >                    } finally {
1285 >                        t.release(0);
1286 >                    }
1287 >                    if (validated) {
1288 >                        if (deleted)
1289 >                            counter.add(-1L);
1290 >                        break;
1291 >                    }
1292 >                }
1293 >                else
1294 >                    tab = (Node[])fk;
1295 >            }
1296 >            else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1297 >                break;                          // rules out possible existence
1298 >            else if ((fh & LOCKED) != 0) {
1299 >                checkForResize();               // try resizing if can't get lock
1300 >                f.tryAwaitLock(tab, i);
1301 >            }
1302 >            else if (f.casHash(fh, fh | LOCKED)) {
1303 >                boolean validated = false;
1304 >                boolean deleted = false;
1305 >                try {
1306 >                    if (tabAt(tab, i) == f) {
1307 >                        validated = true;
1308 >                        for (Node e = f, pred = null;;) {
1309 >                            Object ek, ev;
1310 >                            if ((e.hash & HASH_BITS) == h &&
1311 >                                ((ev = e.val) != null) &&
1312 >                                ((ek = e.key) == k || k.equals(ek))) {
1313 >                                if (cv == null || cv == ev || cv.equals(ev)) {
1314 >                                    oldVal = ev;
1315 >                                    if ((e.val = v) == null) {
1316 >                                        deleted = true;
1317 >                                        Node en = e.next;
1318 >                                        if (pred != null)
1319 >                                            pred.next = en;
1320 >                                        else
1321 >                                            setTabAt(tab, i, en);
1322 >                                    }
1323 >                                }
1324 >                                break;
1325 >                            }
1326 >                            pred = e;
1327 >                            if ((e = e.next) == null)
1328 >                                break;
1329 >                        }
1330 >                    }
1331 >                } finally {
1332 >                    if (!f.casHash(fh | LOCKED, fh)) {
1333 >                        f.hash = fh;
1334 >                        synchronized (f) { f.notifyAll(); };
1335 >                    }
1336 >                }
1337 >                if (validated) {
1338 >                    if (deleted)
1339 >                        counter.add(-1L);
1340 >                    break;
1341 >                }
1342 >            }
1343 >        }
1344 >        return oldVal;
1345 >    }
1346 >
1347 >    /*
1348 >     * Internal versions of the six insertion methods, each a
1349 >     * little more complicated than the last. All have
1350 >     * the same basic structure as the first (internalPut):
1351 >     *  1. If table uninitialized, create
1352 >     *  2. If bin empty, try to CAS new node
1353 >     *  3. If bin stale, use new table
1354 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1355 >     *  5. Lock and validate; if valid, scan and add or update
1356 >     *
1357 >     * The others interweave other checks and/or alternative actions:
1358 >     *  * Plain put checks for and performs resize after insertion.
1359 >     *  * putIfAbsent prescans for mapping without lock (and fails to add
1360 >     *    if present), which also makes pre-emptive resize checks worthwhile.
1361 >     *  * computeIfAbsent extends form used in putIfAbsent with additional
1362 >     *    mechanics to deal with, calls, potential exceptions and null
1363 >     *    returns from function call.
1364 >     *  * compute uses the same function-call mechanics, but without
1365 >     *    the prescans
1366 >     *  * merge acts as putIfAbsent in the absent case, but invokes the
1367 >     *    update function if present
1368 >     *  * putAll attempts to pre-allocate enough table space
1369 >     *    and more lazily performs count updates and checks.
1370 >     *
1371 >     * Someday when details settle down a bit more, it might be worth
1372 >     * some factoring to reduce sprawl.
1373 >     */
1374 >
1375 >    /** Implementation for put */
1376 >    private final Object internalPut(Object k, Object v) {
1377 >        int h = spread(k.hashCode());
1378 >        int count = 0;
1379 >        for (Node[] tab = table;;) {
1380 >            int i; Node f; int fh; Object fk;
1381              if (tab == null)
1382 <                tab = growTable();
1383 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1382 >                tab = initTable();
1383 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1384                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1385                      break;                   // no lock when adding to empty bin
1386              }
1387 <            else if (e.hash < 0)             // resized -- restart with new table
1388 <                tab = (Node[])e.key;
1389 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1390 <                     ((ek = e.key) == k || k.equals(ek))) {
1391 <                if (tabAt(tab, i) == e) {    // inspect and validate 1st node
1392 <                    oldVal = ev;             // without lock for putIfAbsent
1393 <                    break;
1387 >            else if ((fh = f.hash) == MOVED) {
1388 >                if ((fk = f.key) instanceof TreeBin) {
1389 >                    TreeBin t = (TreeBin)fk;
1390 >                    Object oldVal = null;
1391 >                    t.acquire(0);
1392 >                    try {
1393 >                        if (tabAt(tab, i) == f) {
1394 >                            count = 2;
1395 >                            TreeNode p = t.putTreeNode(h, k, v);
1396 >                            if (p != null) {
1397 >                                oldVal = p.val;
1398 >                                p.val = v;
1399 >                            }
1400 >                        }
1401 >                    } finally {
1402 >                        t.release(0);
1403 >                    }
1404 >                    if (count != 0) {
1405 >                        if (oldVal != null)
1406 >                            return oldVal;
1407 >                        break;
1408 >                    }
1409                  }
1410 +                else
1411 +                    tab = (Node[])fk;
1412              }
1413 <            else {
1414 <                boolean validated = false;
1415 <                boolean checkSize = false;
1416 <                synchronized (e) {           // lock the 1st node of bin list
1417 <                    if (tabAt(tab, i) == e) {
1418 <                        validated = true;    // retry if 1st already deleted
1419 <                        for (Node first = e;;) {
1420 <                            if (e.hash == h &&
1421 <                                ((ek = e.key) == k || k.equals(ek)) &&
1422 <                                (ev = e.val) != null) {
1413 >            else if ((fh & LOCKED) != 0) {
1414 >                checkForResize();
1415 >                f.tryAwaitLock(tab, i);
1416 >            }
1417 >            else if (f.casHash(fh, fh | LOCKED)) {
1418 >                Object oldVal = null;
1419 >                try {                        // needed in case equals() throws
1420 >                    if (tabAt(tab, i) == f) {
1421 >                        count = 1;
1422 >                        for (Node e = f;; ++count) {
1423 >                            Object ek, ev;
1424 >                            if ((e.hash & HASH_BITS) == h &&
1425 >                                (ev = e.val) != null &&
1426 >                                ((ek = e.key) == k || k.equals(ek))) {
1427                                  oldVal = ev;
1428 <                                if (replace)
558 <                                    e.val = v;
1428 >                                e.val = v;
1429                                  break;
1430                              }
1431                              Node last = e;
1432                              if ((e = e.next) == null) {
1433                                  last.next = new Node(h, k, v, null);
1434 <                                if (last != first || tab.length <= 64)
1435 <                                    checkSize = true;
1434 >                                if (count >= TREE_THRESHOLD)
1435 >                                    replaceWithTreeBin(tab, i, k);
1436                                  break;
1437                              }
1438                          }
1439                      }
1440 +                } finally {                  // unlock and signal if needed
1441 +                    if (!f.casHash(fh | LOCKED, fh)) {
1442 +                        f.hash = fh;
1443 +                        synchronized (f) { f.notifyAll(); };
1444 +                    }
1445                  }
1446 <                if (validated) {
1447 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1448 <                        resizing == 0 && counter.sum() >= (long)threshold)
1449 <                        growTable();
1446 >                if (count != 0) {
1447 >                    if (oldVal != null)
1448 >                        return oldVal;
1449 >                    if (tab.length <= 64)
1450 >                        count = 2;
1451                      break;
1452                  }
1453              }
1454          }
1455 <        if (oldVal == null)
1456 <            counter.increment();             // update counter outside of locks
1457 <        return oldVal;
1455 >        counter.add(1L);
1456 >        if (count > 1)
1457 >            checkForResize();
1458 >        return null;
1459      }
1460  
1461 <    /**
1462 <     * Implementation for the four public remove/replace methods:
586 <     * Replaces node value with v, conditional upon match of cv if
587 <     * non-null.  If resulting value is null, delete.
588 <     */
589 <    private final Object internalReplace(Object k, Object v, Object cv) {
1461 >    /** Implementation for putIfAbsent */
1462 >    private final Object internalPutIfAbsent(Object k, Object v) {
1463          int h = spread(k.hashCode());
1464 +        int count = 0;
1465          for (Node[] tab = table;;) {
1466 <            Node e; int i;
1467 <            if (tab == null ||
1468 <                (e = tabAt(tab, i = (tab.length - 1) & h)) == null)
1469 <                return null;
1470 <            else if (e.hash < 0)
1471 <                tab = (Node[])e.key;
1466 >            int i; Node f; int fh; Object fk, fv;
1467 >            if (tab == null)
1468 >                tab = initTable();
1469 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1470 >                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1471 >                    break;
1472 >            }
1473 >            else if ((fh = f.hash) == MOVED) {
1474 >                if ((fk = f.key) instanceof TreeBin) {
1475 >                    TreeBin t = (TreeBin)fk;
1476 >                    Object oldVal = null;
1477 >                    t.acquire(0);
1478 >                    try {
1479 >                        if (tabAt(tab, i) == f) {
1480 >                            count = 2;
1481 >                            TreeNode p = t.putTreeNode(h, k, v);
1482 >                            if (p != null)
1483 >                                oldVal = p.val;
1484 >                        }
1485 >                    } finally {
1486 >                        t.release(0);
1487 >                    }
1488 >                    if (count != 0) {
1489 >                        if (oldVal != null)
1490 >                            return oldVal;
1491 >                        break;
1492 >                    }
1493 >                }
1494 >                else
1495 >                    tab = (Node[])fk;
1496 >            }
1497 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1498 >                     ((fk = f.key) == k || k.equals(fk)))
1499 >                return fv;
1500              else {
1501 <                Object oldVal = null;
1502 <                boolean validated = false;
1503 <                boolean deleted = false;
1504 <                synchronized (e) {
1505 <                    if (tabAt(tab, i) == e) {
1506 <                        validated = true;
1507 <                        Node pred = null;
1508 <                        do {
1509 <                            Object ek, ev;
1510 <                            if (e.hash == h &&
1511 <                                ((ek = e.key) == k || k.equals(ek)) &&
1512 <                                ((ev = e.val) != null)) {
1513 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1501 >                Node g = f.next;
1502 >                if (g != null) { // at least 2 nodes -- search and maybe resize
1503 >                    for (Node e = g;;) {
1504 >                        Object ek, ev;
1505 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1506 >                            ((ek = e.key) == k || k.equals(ek)))
1507 >                            return ev;
1508 >                        if ((e = e.next) == null) {
1509 >                            checkForResize();
1510 >                            break;
1511 >                        }
1512 >                    }
1513 >                }
1514 >                if (((fh = f.hash) & LOCKED) != 0) {
1515 >                    checkForResize();
1516 >                    f.tryAwaitLock(tab, i);
1517 >                }
1518 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1519 >                    Object oldVal = null;
1520 >                    try {
1521 >                        if (tabAt(tab, i) == f) {
1522 >                            count = 1;
1523 >                            for (Node e = f;; ++count) {
1524 >                                Object ek, ev;
1525 >                                if ((e.hash & HASH_BITS) == h &&
1526 >                                    (ev = e.val) != null &&
1527 >                                    ((ek = e.key) == k || k.equals(ek))) {
1528                                      oldVal = ev;
1529 <                                    if ((e.val = v) == null) {
1530 <                                        deleted = true;
1531 <                                        Node en = e.next;
1532 <                                        if (pred != null)
1533 <                                            pred.next = en;
1534 <                                        else
1535 <                                            setTabAt(tab, i, en);
1536 <                                    }
1529 >                                    break;
1530 >                                }
1531 >                                Node last = e;
1532 >                                if ((e = e.next) == null) {
1533 >                                    last.next = new Node(h, k, v, null);
1534 >                                    if (count >= TREE_THRESHOLD)
1535 >                                        replaceWithTreeBin(tab, i, k);
1536 >                                    break;
1537                                  }
622                                break;
1538                              }
1539 <                        } while ((e = (pred = e).next) != null);
1539 >                        }
1540 >                    } finally {
1541 >                        if (!f.casHash(fh | LOCKED, fh)) {
1542 >                            f.hash = fh;
1543 >                            synchronized (f) { f.notifyAll(); };
1544 >                        }
1545 >                    }
1546 >                    if (count != 0) {
1547 >                        if (oldVal != null)
1548 >                            return oldVal;
1549 >                        if (tab.length <= 64)
1550 >                            count = 2;
1551 >                        break;
1552                      }
626                }
627                if (validated) {
628                    if (deleted)
629                        counter.decrement();
630                    return oldVal;
1553                  }
1554              }
1555          }
1556 +        counter.add(1L);
1557 +        if (count > 1)
1558 +            checkForResize();
1559 +        return null;
1560      }
1561  
1562 <    /** Implementation for computeIfAbsent and compute. Like put, but messier. */
1563 <    @SuppressWarnings("unchecked")
1564 <    private final V internalCompute(K k,
639 <                                    MappingFunction<? super K, ? extends V> f,
640 <                                    boolean replace) {
1562 >    /** Implementation for computeIfAbsent */
1563 >    private final Object internalComputeIfAbsent(K k,
1564 >                                                 Fun<? super K, ?> mf) {
1565          int h = spread(k.hashCode());
1566 <        V val = null;
1567 <        boolean added = false;
1568 <        Node[] tab = table;
1569 <        outer:for (;;) {
646 <            Node e; int i; Object ek, ev;
1566 >        Object val = null;
1567 >        int count = 0;
1568 >        for (Node[] tab = table;;) {
1569 >            Node f; int i, fh; Object fk, fv;
1570              if (tab == null)
1571 <                tab = growTable();
1572 <            else if ((e = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1573 <                Node node = new Node(h, k, null, null);
1574 <                boolean validated = false;
1575 <                synchronized (node) {  // must lock while computing value
1576 <                    if (casTabAt(tab, i, null, node)) {
1577 <                        validated = true;
1578 <                        try {
1579 <                            val = f.map(k);
1580 <                            if (val != null) {
1581 <                                node.val = val;
1571 >                tab = initTable();
1572 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1573 >                Node node = new Node(fh = h | LOCKED, k, null, null);
1574 >                if (casTabAt(tab, i, null, node)) {
1575 >                    count = 1;
1576 >                    try {
1577 >                        if ((val = mf.apply(k)) != null)
1578 >                            node.val = val;
1579 >                    } finally {
1580 >                        if (val == null)
1581 >                            setTabAt(tab, i, null);
1582 >                        if (!node.casHash(fh, h)) {
1583 >                            node.hash = h;
1584 >                            synchronized (node) { node.notifyAll(); };
1585 >                        }
1586 >                    }
1587 >                }
1588 >                if (count != 0)
1589 >                    break;
1590 >            }
1591 >            else if ((fh = f.hash) == MOVED) {
1592 >                if ((fk = f.key) instanceof TreeBin) {
1593 >                    TreeBin t = (TreeBin)fk;
1594 >                    boolean added = false;
1595 >                    t.acquire(0);
1596 >                    try {
1597 >                        if (tabAt(tab, i) == f) {
1598 >                            count = 1;
1599 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1600 >                            if (p != null)
1601 >                                val = p.val;
1602 >                            else if ((val = mf.apply(k)) != null) {
1603                                  added = true;
1604 +                                count = 2;
1605 +                                t.putTreeNode(h, k, val);
1606                              }
661                        } finally {
662                            if (!added)
663                                setTabAt(tab, i, null);
1607                          }
1608 +                    } finally {
1609 +                        t.release(0);
1610 +                    }
1611 +                    if (count != 0) {
1612 +                        if (!added)
1613 +                            return val;
1614 +                        break;
1615                      }
1616                  }
1617 <                if (validated)
1618 <                    break;
1617 >                else
1618 >                    tab = (Node[])fk;
1619              }
1620 <            else if (e.hash < 0)
1621 <                tab = (Node[])e.key;
1622 <            else if (!replace && e.hash == h && (ev = e.val) != null &&
1623 <                     ((ek = e.key) == k || k.equals(ek))) {
1624 <                if (tabAt(tab, i) == e) {
1625 <                    val = (V)ev;
1620 >            else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1621 >                     ((fk = f.key) == k || k.equals(fk)))
1622 >                return fv;
1623 >            else {
1624 >                Node g = f.next;
1625 >                if (g != null) {
1626 >                    for (Node e = g;;) {
1627 >                        Object ek, ev;
1628 >                        if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1629 >                            ((ek = e.key) == k || k.equals(ek)))
1630 >                            return ev;
1631 >                        if ((e = e.next) == null) {
1632 >                            checkForResize();
1633 >                            break;
1634 >                        }
1635 >                    }
1636 >                }
1637 >                if (((fh = f.hash) & LOCKED) != 0) {
1638 >                    checkForResize();
1639 >                    f.tryAwaitLock(tab, i);
1640 >                }
1641 >                else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1642 >                    boolean added = false;
1643 >                    try {
1644 >                        if (tabAt(tab, i) == f) {
1645 >                            count = 1;
1646 >                            for (Node e = f;; ++count) {
1647 >                                Object ek, ev;
1648 >                                if ((e.hash & HASH_BITS) == h &&
1649 >                                    (ev = e.val) != null &&
1650 >                                    ((ek = e.key) == k || k.equals(ek))) {
1651 >                                    val = ev;
1652 >                                    break;
1653 >                                }
1654 >                                Node last = e;
1655 >                                if ((e = e.next) == null) {
1656 >                                    if ((val = mf.apply(k)) != null) {
1657 >                                        added = true;
1658 >                                        last.next = new Node(h, k, val, null);
1659 >                                        if (count >= TREE_THRESHOLD)
1660 >                                            replaceWithTreeBin(tab, i, k);
1661 >                                    }
1662 >                                    break;
1663 >                                }
1664 >                            }
1665 >                        }
1666 >                    } finally {
1667 >                        if (!f.casHash(fh | LOCKED, fh)) {
1668 >                            f.hash = fh;
1669 >                            synchronized (f) { f.notifyAll(); };
1670 >                        }
1671 >                    }
1672 >                    if (count != 0) {
1673 >                        if (!added)
1674 >                            return val;
1675 >                        if (tab.length <= 64)
1676 >                            count = 2;
1677 >                        break;
1678 >                    }
1679 >                }
1680 >            }
1681 >        }
1682 >        if (val != null) {
1683 >            counter.add(1L);
1684 >            if (count > 1)
1685 >                checkForResize();
1686 >        }
1687 >        return val;
1688 >    }
1689 >
1690 >    /** Implementation for compute */
1691 >    @SuppressWarnings("unchecked") private final Object internalCompute
1692 >        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1693 >        int h = spread(k.hashCode());
1694 >        Object val = null;
1695 >        int delta = 0;
1696 >        int count = 0;
1697 >        for (Node[] tab = table;;) {
1698 >            Node f; int i, fh; Object fk;
1699 >            if (tab == null)
1700 >                tab = initTable();
1701 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1702 >                if (onlyIfPresent)
1703                      break;
1704 +                Node node = new Node(fh = h | LOCKED, k, null, null);
1705 +                if (casTabAt(tab, i, null, node)) {
1706 +                    try {
1707 +                        count = 1;
1708 +                        if ((val = mf.apply(k, null)) != null) {
1709 +                            node.val = val;
1710 +                            delta = 1;
1711 +                        }
1712 +                    } finally {
1713 +                        if (delta == 0)
1714 +                            setTabAt(tab, i, null);
1715 +                        if (!node.casHash(fh, h)) {
1716 +                            node.hash = h;
1717 +                            synchronized (node) { node.notifyAll(); };
1718 +                        }
1719 +                    }
1720                  }
1721 +                if (count != 0)
1722 +                    break;
1723              }
1724 <            else if (Thread.holdsLock(e))
1725 <                throw new IllegalStateException("Recursive map computation");
1726 <            else {
1727 <                boolean validated = false;
1728 <                boolean checkSize = false;
1729 <                synchronized (e) {
1730 <                    if (tabAt(tab, i) == e) {
1731 <                        validated = true;
1732 <                        for (Node first = e;;) {
1733 <                            if (e.hash == h &&
1734 <                                ((ek = e.key) == k || k.equals(ek)) &&
1735 <                                ((ev = e.val) != null)) {
1736 <                                Object fv;
1737 <                                if (replace && (fv = f.map(k)) != null)
1738 <                                    ev = e.val = fv;
1739 <                                val = (V)ev;
1724 >            else if ((fh = f.hash) == MOVED) {
1725 >                if ((fk = f.key) instanceof TreeBin) {
1726 >                    TreeBin t = (TreeBin)fk;
1727 >                    t.acquire(0);
1728 >                    try {
1729 >                        if (tabAt(tab, i) == f) {
1730 >                            count = 1;
1731 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1732 >                            Object pv = (p == null) ? null : p.val;
1733 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1734 >                                if (p != null)
1735 >                                    p.val = val;
1736 >                                else {
1737 >                                    count = 2;
1738 >                                    delta = 1;
1739 >                                    t.putTreeNode(h, k, val);
1740 >                                }
1741 >                            }
1742 >                            else if (p != null) {
1743 >                                delta = -1;
1744 >                                t.deleteTreeNode(p);
1745 >                            }
1746 >                        }
1747 >                    } finally {
1748 >                        t.release(0);
1749 >                    }
1750 >                    if (count != 0)
1751 >                        break;
1752 >                }
1753 >                else
1754 >                    tab = (Node[])fk;
1755 >            }
1756 >            else if ((fh & LOCKED) != 0) {
1757 >                checkForResize();
1758 >                f.tryAwaitLock(tab, i);
1759 >            }
1760 >            else if (f.casHash(fh, fh | LOCKED)) {
1761 >                try {
1762 >                    if (tabAt(tab, i) == f) {
1763 >                        count = 1;
1764 >                        for (Node e = f, pred = null;; ++count) {
1765 >                            Object ek, ev;
1766 >                            if ((e.hash & HASH_BITS) == h &&
1767 >                                (ev = e.val) != null &&
1768 >                                ((ek = e.key) == k || k.equals(ek))) {
1769 >                                val = mf.apply(k, (V)ev);
1770 >                                if (val != null)
1771 >                                    e.val = val;
1772 >                                else {
1773 >                                    delta = -1;
1774 >                                    Node en = e.next;
1775 >                                    if (pred != null)
1776 >                                        pred.next = en;
1777 >                                    else
1778 >                                        setTabAt(tab, i, en);
1779 >                                }
1780                                  break;
1781                              }
1782 <                            Node last = e;
1782 >                            pred = e;
1783                              if ((e = e.next) == null) {
1784 <                                if ((val = f.map(k)) != null) {
1785 <                                    last.next = new Node(h, k, val, null);
1786 <                                    added = true;
1787 <                                    if (last != first || tab.length <= 64)
1788 <                                        checkSize = true;
1784 >                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1785 >                                    pred.next = new Node(h, k, val, null);
1786 >                                    delta = 1;
1787 >                                    if (count >= TREE_THRESHOLD)
1788 >                                        replaceWithTreeBin(tab, i, k);
1789                                  }
1790                                  break;
1791                              }
1792                          }
1793                      }
1794 +                } finally {
1795 +                    if (!f.casHash(fh | LOCKED, fh)) {
1796 +                        f.hash = fh;
1797 +                        synchronized (f) { f.notifyAll(); };
1798 +                    }
1799                  }
1800 <                if (validated) {
1801 <                    if (checkSize && tab.length < MAXIMUM_CAPACITY &&
1802 <                        resizing == 0 && counter.sum() >= (long)threshold)
713 <                        growTable();
1800 >                if (count != 0) {
1801 >                    if (tab.length <= 64)
1802 >                        count = 2;
1803                      break;
1804                  }
1805              }
1806          }
1807 <        if (added)
1808 <            counter.increment();
1807 >        if (delta != 0) {
1808 >            counter.add((long)delta);
1809 >            if (count > 1)
1810 >                checkForResize();
1811 >        }
1812          return val;
1813      }
1814  
1815 +    /** Implementation for merge */
1816 +    @SuppressWarnings("unchecked") private final Object internalMerge
1817 +        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1818 +        int h = spread(k.hashCode());
1819 +        Object val = null;
1820 +        int delta = 0;
1821 +        int count = 0;
1822 +        for (Node[] tab = table;;) {
1823 +            int i; Node f; int fh; Object fk, fv;
1824 +            if (tab == null)
1825 +                tab = initTable();
1826 +            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1827 +                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1828 +                    delta = 1;
1829 +                    val = v;
1830 +                    break;
1831 +                }
1832 +            }
1833 +            else if ((fh = f.hash) == MOVED) {
1834 +                if ((fk = f.key) instanceof TreeBin) {
1835 +                    TreeBin t = (TreeBin)fk;
1836 +                    t.acquire(0);
1837 +                    try {
1838 +                        if (tabAt(tab, i) == f) {
1839 +                            count = 1;
1840 +                            TreeNode p = t.getTreeNode(h, k, t.root);
1841 +                            val = (p == null) ? v : mf.apply((V)p.val, v);
1842 +                            if (val != null) {
1843 +                                if (p != null)
1844 +                                    p.val = val;
1845 +                                else {
1846 +                                    count = 2;
1847 +                                    delta = 1;
1848 +                                    t.putTreeNode(h, k, val);
1849 +                                }
1850 +                            }
1851 +                            else if (p != null) {
1852 +                                delta = -1;
1853 +                                t.deleteTreeNode(p);
1854 +                            }
1855 +                        }
1856 +                    } finally {
1857 +                        t.release(0);
1858 +                    }
1859 +                    if (count != 0)
1860 +                        break;
1861 +                }
1862 +                else
1863 +                    tab = (Node[])fk;
1864 +            }
1865 +            else if ((fh & LOCKED) != 0) {
1866 +                checkForResize();
1867 +                f.tryAwaitLock(tab, i);
1868 +            }
1869 +            else if (f.casHash(fh, fh | LOCKED)) {
1870 +                try {
1871 +                    if (tabAt(tab, i) == f) {
1872 +                        count = 1;
1873 +                        for (Node e = f, pred = null;; ++count) {
1874 +                            Object ek, ev;
1875 +                            if ((e.hash & HASH_BITS) == h &&
1876 +                                (ev = e.val) != null &&
1877 +                                ((ek = e.key) == k || k.equals(ek))) {
1878 +                                val = mf.apply(v, (V)ev);
1879 +                                if (val != null)
1880 +                                    e.val = val;
1881 +                                else {
1882 +                                    delta = -1;
1883 +                                    Node en = e.next;
1884 +                                    if (pred != null)
1885 +                                        pred.next = en;
1886 +                                    else
1887 +                                        setTabAt(tab, i, en);
1888 +                                }
1889 +                                break;
1890 +                            }
1891 +                            pred = e;
1892 +                            if ((e = e.next) == null) {
1893 +                                val = v;
1894 +                                pred.next = new Node(h, k, val, null);
1895 +                                delta = 1;
1896 +                                if (count >= TREE_THRESHOLD)
1897 +                                    replaceWithTreeBin(tab, i, k);
1898 +                                break;
1899 +                            }
1900 +                        }
1901 +                    }
1902 +                } finally {
1903 +                    if (!f.casHash(fh | LOCKED, fh)) {
1904 +                        f.hash = fh;
1905 +                        synchronized (f) { f.notifyAll(); };
1906 +                    }
1907 +                }
1908 +                if (count != 0) {
1909 +                    if (tab.length <= 64)
1910 +                        count = 2;
1911 +                    break;
1912 +                }
1913 +            }
1914 +        }
1915 +        if (delta != 0) {
1916 +            counter.add((long)delta);
1917 +            if (count > 1)
1918 +                checkForResize();
1919 +        }
1920 +        return val;
1921 +    }
1922 +
1923 +    /** Implementation for putAll */
1924 +    private final void internalPutAll(Map<?, ?> m) {
1925 +        tryPresize(m.size());
1926 +        long delta = 0L;     // number of uncommitted additions
1927 +        boolean npe = false; // to throw exception on exit for nulls
1928 +        try {                // to clean up counts on other exceptions
1929 +            for (Map.Entry<?, ?> entry : m.entrySet()) {
1930 +                Object k, v;
1931 +                if (entry == null || (k = entry.getKey()) == null ||
1932 +                    (v = entry.getValue()) == null) {
1933 +                    npe = true;
1934 +                    break;
1935 +                }
1936 +                int h = spread(k.hashCode());
1937 +                for (Node[] tab = table;;) {
1938 +                    int i; Node f; int fh; Object fk;
1939 +                    if (tab == null)
1940 +                        tab = initTable();
1941 +                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1942 +                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1943 +                            ++delta;
1944 +                            break;
1945 +                        }
1946 +                    }
1947 +                    else if ((fh = f.hash) == MOVED) {
1948 +                        if ((fk = f.key) instanceof TreeBin) {
1949 +                            TreeBin t = (TreeBin)fk;
1950 +                            boolean validated = false;
1951 +                            t.acquire(0);
1952 +                            try {
1953 +                                if (tabAt(tab, i) == f) {
1954 +                                    validated = true;
1955 +                                    TreeNode p = t.getTreeNode(h, k, t.root);
1956 +                                    if (p != null)
1957 +                                        p.val = v;
1958 +                                    else {
1959 +                                        t.putTreeNode(h, k, v);
1960 +                                        ++delta;
1961 +                                    }
1962 +                                }
1963 +                            } finally {
1964 +                                t.release(0);
1965 +                            }
1966 +                            if (validated)
1967 +                                break;
1968 +                        }
1969 +                        else
1970 +                            tab = (Node[])fk;
1971 +                    }
1972 +                    else if ((fh & LOCKED) != 0) {
1973 +                        counter.add(delta);
1974 +                        delta = 0L;
1975 +                        checkForResize();
1976 +                        f.tryAwaitLock(tab, i);
1977 +                    }
1978 +                    else if (f.casHash(fh, fh | LOCKED)) {
1979 +                        int count = 0;
1980 +                        try {
1981 +                            if (tabAt(tab, i) == f) {
1982 +                                count = 1;
1983 +                                for (Node e = f;; ++count) {
1984 +                                    Object ek, ev;
1985 +                                    if ((e.hash & HASH_BITS) == h &&
1986 +                                        (ev = e.val) != null &&
1987 +                                        ((ek = e.key) == k || k.equals(ek))) {
1988 +                                        e.val = v;
1989 +                                        break;
1990 +                                    }
1991 +                                    Node last = e;
1992 +                                    if ((e = e.next) == null) {
1993 +                                        ++delta;
1994 +                                        last.next = new Node(h, k, v, null);
1995 +                                        if (count >= TREE_THRESHOLD)
1996 +                                            replaceWithTreeBin(tab, i, k);
1997 +                                        break;
1998 +                                    }
1999 +                                }
2000 +                            }
2001 +                        } finally {
2002 +                            if (!f.casHash(fh | LOCKED, fh)) {
2003 +                                f.hash = fh;
2004 +                                synchronized (f) { f.notifyAll(); };
2005 +                            }
2006 +                        }
2007 +                        if (count != 0) {
2008 +                            if (count > 1) {
2009 +                                counter.add(delta);
2010 +                                delta = 0L;
2011 +                                checkForResize();
2012 +                            }
2013 +                            break;
2014 +                        }
2015 +                    }
2016 +                }
2017 +            }
2018 +        } finally {
2019 +            if (delta != 0)
2020 +                counter.add(delta);
2021 +        }
2022 +        if (npe)
2023 +            throw new NullPointerException();
2024 +    }
2025 +
2026 +    /* ---------------- Table Initialization and Resizing -------------- */
2027 +
2028      /**
2029 <     * Implementation for clear. Steps through each bin, removing all nodes.
2029 >     * Returns a power of two table size for the given desired capacity.
2030 >     * See Hackers Delight, sec 3.2
2031 >     */
2032 >    private static final int tableSizeFor(int c) {
2033 >        int n = c - 1;
2034 >        n |= n >>> 1;
2035 >        n |= n >>> 2;
2036 >        n |= n >>> 4;
2037 >        n |= n >>> 8;
2038 >        n |= n >>> 16;
2039 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2040 >    }
2041 >
2042 >    /**
2043 >     * Initializes table, using the size recorded in sizeCtl.
2044 >     */
2045 >    private final Node[] initTable() {
2046 >        Node[] tab; int sc;
2047 >        while ((tab = table) == null) {
2048 >            if ((sc = sizeCtl) < 0)
2049 >                Thread.yield(); // lost initialization race; just spin
2050 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2051 >                try {
2052 >                    if ((tab = table) == null) {
2053 >                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2054 >                        tab = table = new Node[n];
2055 >                        sc = n - (n >>> 2);
2056 >                    }
2057 >                } finally {
2058 >                    sizeCtl = sc;
2059 >                }
2060 >                break;
2061 >            }
2062 >        }
2063 >        return tab;
2064 >    }
2065 >
2066 >    /**
2067 >     * If table is too small and not already resizing, creates next
2068 >     * table and transfers bins.  Rechecks occupancy after a transfer
2069 >     * to see if another resize is already needed because resizings
2070 >     * are lagging additions.
2071 >     */
2072 >    private final void checkForResize() {
2073 >        Node[] tab; int n, sc;
2074 >        while ((tab = table) != null &&
2075 >               (n = tab.length) < MAXIMUM_CAPACITY &&
2076 >               (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
2077 >               UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2078 >            try {
2079 >                if (tab == table) {
2080 >                    table = rebuild(tab);
2081 >                    sc = (n << 1) - (n >>> 1);
2082 >                }
2083 >            } finally {
2084 >                sizeCtl = sc;
2085 >            }
2086 >        }
2087 >    }
2088 >
2089 >    /**
2090 >     * Tries to presize table to accommodate the given number of elements.
2091 >     *
2092 >     * @param size number of elements (doesn't need to be perfectly accurate)
2093 >     */
2094 >    private final void tryPresize(int size) {
2095 >        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2096 >            tableSizeFor(size + (size >>> 1) + 1);
2097 >        int sc;
2098 >        while ((sc = sizeCtl) >= 0) {
2099 >            Node[] tab = table; int n;
2100 >            if (tab == null || (n = tab.length) == 0) {
2101 >                n = (sc > c) ? sc : c;
2102 >                if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2103 >                    try {
2104 >                        if (table == tab) {
2105 >                            table = new Node[n];
2106 >                            sc = n - (n >>> 2);
2107 >                        }
2108 >                    } finally {
2109 >                        sizeCtl = sc;
2110 >                    }
2111 >                }
2112 >            }
2113 >            else if (c <= sc || n >= MAXIMUM_CAPACITY)
2114 >                break;
2115 >            else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
2116 >                try {
2117 >                    if (table == tab) {
2118 >                        table = rebuild(tab);
2119 >                        sc = (n << 1) - (n >>> 1);
2120 >                    }
2121 >                } finally {
2122 >                    sizeCtl = sc;
2123 >                }
2124 >            }
2125 >        }
2126 >    }
2127 >
2128 >    /*
2129 >     * Moves and/or copies the nodes in each bin to new table. See
2130 >     * above for explanation.
2131 >     *
2132 >     * @return the new table
2133 >     */
2134 >    private static final Node[] rebuild(Node[] tab) {
2135 >        int n = tab.length;
2136 >        Node[] nextTab = new Node[n << 1];
2137 >        Node fwd = new Node(MOVED, nextTab, null, null);
2138 >        int[] buffer = null;       // holds bins to revisit; null until needed
2139 >        Node rev = null;           // reverse forwarder; null until needed
2140 >        int nbuffered = 0;         // the number of bins in buffer list
2141 >        int bufferIndex = 0;       // buffer index of current buffered bin
2142 >        int bin = n - 1;           // current non-buffered bin or -1 if none
2143 >
2144 >        for (int i = bin;;) {      // start upwards sweep
2145 >            int fh; Node f;
2146 >            if ((f = tabAt(tab, i)) == null) {
2147 >                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2148 >                    if (!casTabAt(tab, i, f, fwd))
2149 >                        continue;
2150 >                }
2151 >                else {             // transiently use a locked forwarding node
2152 >                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2153 >                    if (!casTabAt(tab, i, f, g))
2154 >                        continue;
2155 >                    setTabAt(nextTab, i, null);
2156 >                    setTabAt(nextTab, i + n, null);
2157 >                    setTabAt(tab, i, fwd);
2158 >                    if (!g.casHash(MOVED|LOCKED, MOVED)) {
2159 >                        g.hash = MOVED;
2160 >                        synchronized (g) { g.notifyAll(); }
2161 >                    }
2162 >                }
2163 >            }
2164 >            else if ((fh = f.hash) == MOVED) {
2165 >                Object fk = f.key;
2166 >                if (fk instanceof TreeBin) {
2167 >                    TreeBin t = (TreeBin)fk;
2168 >                    boolean validated = false;
2169 >                    t.acquire(0);
2170 >                    try {
2171 >                        if (tabAt(tab, i) == f) {
2172 >                            validated = true;
2173 >                            splitTreeBin(nextTab, i, t);
2174 >                            setTabAt(tab, i, fwd);
2175 >                        }
2176 >                    } finally {
2177 >                        t.release(0);
2178 >                    }
2179 >                    if (!validated)
2180 >                        continue;
2181 >                }
2182 >            }
2183 >            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2184 >                boolean validated = false;
2185 >                try {              // split to lo and hi lists; copying as needed
2186 >                    if (tabAt(tab, i) == f) {
2187 >                        validated = true;
2188 >                        splitBin(nextTab, i, f);
2189 >                        setTabAt(tab, i, fwd);
2190 >                    }
2191 >                } finally {
2192 >                    if (!f.casHash(fh | LOCKED, fh)) {
2193 >                        f.hash = fh;
2194 >                        synchronized (f) { f.notifyAll(); };
2195 >                    }
2196 >                }
2197 >                if (!validated)
2198 >                    continue;
2199 >            }
2200 >            else {
2201 >                if (buffer == null) // initialize buffer for revisits
2202 >                    buffer = new int[TRANSFER_BUFFER_SIZE];
2203 >                if (bin < 0 && bufferIndex > 0) {
2204 >                    int j = buffer[--bufferIndex];
2205 >                    buffer[bufferIndex] = i;
2206 >                    i = j;         // swap with another bin
2207 >                    continue;
2208 >                }
2209 >                if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2210 >                    f.tryAwaitLock(tab, i);
2211 >                    continue;      // no other options -- block
2212 >                }
2213 >                if (rev == null)   // initialize reverse-forwarder
2214 >                    rev = new Node(MOVED, tab, null, null);
2215 >                if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2216 >                    continue;      // recheck before adding to list
2217 >                buffer[nbuffered++] = i;
2218 >                setTabAt(nextTab, i, rev);     // install place-holders
2219 >                setTabAt(nextTab, i + n, rev);
2220 >            }
2221 >
2222 >            if (bin > 0)
2223 >                i = --bin;
2224 >            else if (buffer != null && nbuffered > 0) {
2225 >                bin = -1;
2226 >                i = buffer[bufferIndex = --nbuffered];
2227 >            }
2228 >            else
2229 >                return nextTab;
2230 >        }
2231 >    }
2232 >
2233 >    /**
2234 >     * Splits a normal bin with list headed by e into lo and hi parts;
2235 >     * installs in given table.
2236 >     */
2237 >    private static void splitBin(Node[] nextTab, int i, Node e) {
2238 >        int bit = nextTab.length >>> 1; // bit to split on
2239 >        int runBit = e.hash & bit;
2240 >        Node lastRun = e, lo = null, hi = null;
2241 >        for (Node p = e.next; p != null; p = p.next) {
2242 >            int b = p.hash & bit;
2243 >            if (b != runBit) {
2244 >                runBit = b;
2245 >                lastRun = p;
2246 >            }
2247 >        }
2248 >        if (runBit == 0)
2249 >            lo = lastRun;
2250 >        else
2251 >            hi = lastRun;
2252 >        for (Node p = e; p != lastRun; p = p.next) {
2253 >            int ph = p.hash & HASH_BITS;
2254 >            Object pk = p.key, pv = p.val;
2255 >            if ((ph & bit) == 0)
2256 >                lo = new Node(ph, pk, pv, lo);
2257 >            else
2258 >                hi = new Node(ph, pk, pv, hi);
2259 >        }
2260 >        setTabAt(nextTab, i, lo);
2261 >        setTabAt(nextTab, i + bit, hi);
2262 >    }
2263 >
2264 >    /**
2265 >     * Splits a tree bin into lo and hi parts; installs in given table.
2266 >     */
2267 >    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2268 >        int bit = nextTab.length >>> 1;
2269 >        TreeBin lt = new TreeBin();
2270 >        TreeBin ht = new TreeBin();
2271 >        int lc = 0, hc = 0;
2272 >        for (Node e = t.first; e != null; e = e.next) {
2273 >            int h = e.hash & HASH_BITS;
2274 >            Object k = e.key, v = e.val;
2275 >            if ((h & bit) == 0) {
2276 >                ++lc;
2277 >                lt.putTreeNode(h, k, v);
2278 >            }
2279 >            else {
2280 >                ++hc;
2281 >                ht.putTreeNode(h, k, v);
2282 >            }
2283 >        }
2284 >        Node ln, hn; // throw away trees if too small
2285 >        if (lc <= (TREE_THRESHOLD >>> 1)) {
2286 >            ln = null;
2287 >            for (Node p = lt.first; p != null; p = p.next)
2288 >                ln = new Node(p.hash, p.key, p.val, ln);
2289 >        }
2290 >        else
2291 >            ln = new Node(MOVED, lt, null, null);
2292 >        setTabAt(nextTab, i, ln);
2293 >        if (hc <= (TREE_THRESHOLD >>> 1)) {
2294 >            hn = null;
2295 >            for (Node p = ht.first; p != null; p = p.next)
2296 >                hn = new Node(p.hash, p.key, p.val, hn);
2297 >        }
2298 >        else
2299 >            hn = new Node(MOVED, ht, null, null);
2300 >        setTabAt(nextTab, i + bit, hn);
2301 >    }
2302 >
2303 >    /**
2304 >     * Implementation for clear. Steps through each bin, removing all
2305 >     * nodes.
2306       */
2307      private final void internalClear() {
2308          long delta = 0L; // negative number of deletions
2309          int i = 0;
2310          Node[] tab = table;
2311          while (tab != null && i < tab.length) {
2312 <            Node e = tabAt(tab, i);
2313 <            if (e == null)
2312 >            int fh; Object fk;
2313 >            Node f = tabAt(tab, i);
2314 >            if (f == null)
2315                  ++i;
2316 <            else if (e.hash < 0)
2317 <                tab = (Node[])e.key;
2318 <            else {
2319 <                boolean validated = false;
2320 <                synchronized (e) {
2321 <                    if (tabAt(tab, i) == e) {
2322 <                        validated = true;
2323 <                        Node en;
2324 <                        do {
2325 <                            en = e.next;
2326 <                            if (e.val != null) { // currently always true
2316 >            else if ((fh = f.hash) == MOVED) {
2317 >                if ((fk = f.key) instanceof TreeBin) {
2318 >                    TreeBin t = (TreeBin)fk;
2319 >                    t.acquire(0);
2320 >                    try {
2321 >                        if (tabAt(tab, i) == f) {
2322 >                            for (Node p = t.first; p != null; p = p.next) {
2323 >                                if (p.val != null) { // (currently always true)
2324 >                                    p.val = null;
2325 >                                    --delta;
2326 >                                }
2327 >                            }
2328 >                            t.first = null;
2329 >                            t.root = null;
2330 >                            ++i;
2331 >                        }
2332 >                    } finally {
2333 >                        t.release(0);
2334 >                    }
2335 >                }
2336 >                else
2337 >                    tab = (Node[])fk;
2338 >            }
2339 >            else if ((fh & LOCKED) != 0) {
2340 >                counter.add(delta); // opportunistically update count
2341 >                delta = 0L;
2342 >                f.tryAwaitLock(tab, i);
2343 >            }
2344 >            else if (f.casHash(fh, fh | LOCKED)) {
2345 >                try {
2346 >                    if (tabAt(tab, i) == f) {
2347 >                        for (Node e = f; e != null; e = e.next) {
2348 >                            if (e.val != null) {  // (currently always true)
2349                                  e.val = null;
2350                                  --delta;
2351                              }
2352 <                        } while ((e = en) != null);
2352 >                        }
2353                          setTabAt(tab, i, null);
2354 +                        ++i;
2355 +                    }
2356 +                } finally {
2357 +                    if (!f.casHash(fh | LOCKED, fh)) {
2358 +                        f.hash = fh;
2359 +                        synchronized (f) { f.notifyAll(); };
2360                      }
2361                  }
752                if (validated)
753                    ++i;
2362              }
2363          }
2364 <        counter.add(delta);
2364 >        if (delta != 0)
2365 >            counter.add(delta);
2366      }
2367  
2368      /* ----------------Table Traversal -------------- */
2369  
2370      /**
2371       * Encapsulates traversal for methods such as containsValue; also
2372 <     * serves as a base class for other iterators.
2372 >     * serves as a base class for other iterators and bulk tasks.
2373       *
2374       * At each step, the iterator snapshots the key ("nextKey") and
2375       * value ("nextVal") of a valid node (i.e., one that, at point of
2376 <     * snapshot, has a nonnull user value). Because val fields can
2376 >     * snapshot, has a non-null user value). Because val fields can
2377       * change (including to null, indicating deletion), field nextVal
2378       * might not be accurate at point of use, but still maintains the
2379       * weak consistency property of holding a value that was once
2380 <     * valid.
2380 >     * valid. To support iterator.remove, the nextKey field is not
2381 >     * updated (nulled out) when the iterator cannot advance.
2382       *
2383       * Internal traversals directly access these fields, as in:
2384 <     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2384 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2385       *
2386 <     * Exported iterators (subclasses of ViewIterator) extract key,
2387 <     * value, or key-value pairs as return values of Iterator.next(),
2388 <     * and encapsulate the it.next check as hasNext();
2389 <     *
2390 <     * The iterator visits each valid node that was reachable upon
2391 <     * iterator construction once. It might miss some that were added
2392 <     * to a bin after the bin was visited, which is OK wrt consistency
2393 <     * guarantees. Maintaining this property in the face of possible
2394 <     * ongoing resizes requires a fair amount of bookkeeping state
2395 <     * that is difficult to optimize away amidst volatile accesses.
2396 <     * Even so, traversal maintains reasonable throughput.
2386 >     * Exported iterators must track whether the iterator has advanced
2387 >     * (in hasNext vs next) (by setting/checking/nulling field
2388 >     * nextVal), and then extract key, value, or key-value pairs as
2389 >     * return values of next().
2390 >     *
2391 >     * The iterator visits once each still-valid node that was
2392 >     * reachable upon iterator construction. It might miss some that
2393 >     * were added to a bin after the bin was visited, which is OK wrt
2394 >     * consistency guarantees. Maintaining this property in the face
2395 >     * of possible ongoing resizes requires a fair amount of
2396 >     * bookkeeping state that is difficult to optimize away amidst
2397 >     * volatile accesses.  Even so, traversal maintains reasonable
2398 >     * throughput.
2399       *
2400       * Normally, iteration proceeds bin-by-bin traversing lists.
2401       * However, if the table has been resized, then all future steps
# Line 793 | Line 2405 | public class ConcurrentHashMapV8<K, V>
2405       * across threads, iteration terminates if a bounds checks fails
2406       * for a table read.
2407       *
2408 <     * The range-based constructor enables creation of parallel
2409 <     * range-splitting traversals. (Not yet implemented.)
2408 >     * This class extends CountedCompleter to streamline parallel
2409 >     * iteration in bulk operations. This adds only a few fields of
2410 >     * space overhead, which is small enough in cases where it is not
2411 >     * needed to not worry about it.  Because CountedCompleter is
2412 >     * Serializable, but iterators need not be, we need to add warning
2413 >     * suppressions.
2414       */
2415 <    static class InternalIterator {
2415 >    @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2416 >        final ConcurrentHashMapV8<K, V> map;
2417          Node next;           // the next entry to use
801        Node last;           // the last entry used
2418          Object nextKey;      // cached key field of next
2419          Object nextVal;      // cached val field of next
2420          Node[] tab;          // current table; updated if resized
2421          int index;           // index of bin to use next
2422          int baseIndex;       // current index of initial table
2423 <        final int baseLimit; // index bound for initial table
2424 <        final int baseSize;  // initial table size
2423 >        int baseLimit;       // index bound for initial table
2424 >        int baseSize;        // initial table size
2425 >        int batch;           // split control
2426  
2427          /** Creates iterator for all entries in the table. */
2428 <        InternalIterator(Node[] tab) {
2429 <            this.tab = tab;
2430 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2431 <            index = baseIndex = 0;
2432 <            next = null;
2433 <            advance();
2434 <        }
2435 <
2436 <        /** Creates iterator for the given range of the table */
2437 <        InternalIterator(Node[] tab, int lo, int hi) {
2438 <            this.tab = tab;
2439 <            baseSize = (tab == null) ? 0 : tab.length;
2440 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
2441 <            index = baseIndex = lo;
2442 <            next = null;
2443 <            advance();
2444 <        }
2445 <
2446 <        /** Advances next. See above for explanation. */
2447 <        final void advance() {
2448 <            Node e = last = next;
2428 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2429 >            this.map = map;
2430 >        }
2431 >
2432 >        /** Creates iterator for split() methods and task constructors */
2433 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2434 >            super(it);
2435 >            this.batch = batch;
2436 >            if ((this.map = map) != null && it != null) { // split parent
2437 >                Node[] t;
2438 >                if ((t = it.tab) == null &&
2439 >                    (t = it.tab = map.table) != null)
2440 >                    it.baseLimit = it.baseSize = t.length;
2441 >                this.tab = t;
2442 >                this.baseSize = it.baseSize;
2443 >                int hi = this.baseLimit = it.baseLimit;
2444 >                it.baseLimit = this.index = this.baseIndex =
2445 >                    (hi + it.baseIndex + 1) >>> 1;
2446 >            }
2447 >        }
2448 >
2449 >        /**
2450 >         * Advances next; returns nextVal or null if terminated.
2451 >         * See above for explanation.
2452 >         */
2453 >        final Object advance() {
2454 >            Node e = next;
2455 >            Object ev = null;
2456              outer: do {
2457 <                if (e != null)                   // pass used or skipped node
2457 >                if (e != null)                  // advance past used/skipped node
2458                      e = e.next;
2459 <                while (e == null) {              // get to next non-null bin
2460 <                    Node[] t; int b, i, n;       // checks must use locals
2461 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2462 <                        (t = tab) == null || i >= (n = t.length))
2459 >                while (e == null) {             // get to next non-null bin
2460 >                    ConcurrentHashMapV8<K, V> m;
2461 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2462 >                    if ((t = tab) != null)
2463 >                        n = t.length;
2464 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2465 >                        n = baseLimit = baseSize = t.length;
2466 >                    else
2467 >                        break outer;
2468 >                    if ((b = baseIndex) >= baseLimit ||
2469 >                        (i = index) < 0 || i >= n)
2470                          break outer;
2471 <                    else if ((e = tabAt(t, i)) != null && e.hash < 0)
2472 <                        tab = (Node[])e.key;     // restarts due to null val
2473 <                    else                         // visit upper slots if present
2474 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2471 >                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2472 >                        if ((ek = e.key) instanceof TreeBin)
2473 >                            e = ((TreeBin)ek).first;
2474 >                        else {
2475 >                            tab = (Node[])ek;
2476 >                            continue;           // restarts due to null val
2477 >                        }
2478 >                    }                           // visit upper slots if present
2479 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2480                  }
2481                  nextKey = e.key;
2482 <            } while ((nextVal = e.val) == null); // skip deleted or special nodes
2482 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2483              next = e;
2484 +            return nextVal = ev;
2485 +        }
2486 +
2487 +        public final void remove() {
2488 +            Object k = nextKey;
2489 +            if (k == null && (advance() == null || (k = nextKey) == null))
2490 +                throw new IllegalStateException();
2491 +            map.internalReplace(k, null, null);
2492          }
2493 +
2494 +        public final boolean hasNext() {
2495 +            return nextVal != null || advance() != null;
2496 +        }
2497 +
2498 +        public final boolean hasMoreElements() { return hasNext(); }
2499 +
2500 +        public void compute() { } // default no-op CountedCompleter body
2501 +
2502 +        /**
2503 +         * Returns a batch value > 0 if this task should (and must) be
2504 +         * split, if so, adding to pending count, and in any case
2505 +         * updating batch value. The initial batch value is approx
2506 +         * exp2 of the number of times (minus one) to split task by
2507 +         * two before executing leaf action. This value is faster to
2508 +         * compute and more convenient to use as a guide to splitting
2509 +         * than is the depth, since it is used while dividing by two
2510 +         * anyway.
2511 +         */
2512 +        final int preSplit() {
2513 +            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2514 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2515 +                if ((t = tab) == null && (t = tab = m.table) != null)
2516 +                    baseLimit = baseSize = t.length;
2517 +                if (t != null) {
2518 +                    long n = m.counter.sum();
2519 +                    int par = ((pool = getPool()) == null) ?
2520 +                        ForkJoinPool.getCommonPoolParallelism() :
2521 +                        pool.getParallelism();
2522 +                    int sp = par << 3; // slack of 8
2523 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2524 +                }
2525 +            }
2526 +            b = (b <= 1 || baseIndex == baseLimit)? 0 : (b >>> 1);
2527 +            if ((batch = b) > 0)
2528 +                addToPendingCount(1);
2529 +            return b;
2530 +        }
2531 +
2532      }
2533  
2534      /* ---------------- Public operations -------------- */
2535  
2536      /**
2537 <     * Creates a new, empty map with the default initial table size (16),
2537 >     * Creates a new, empty map with the default initial table size (16).
2538       */
2539      public ConcurrentHashMapV8() {
2540          this.counter = new LongAdder();
858        this.targetCapacity = DEFAULT_CAPACITY;
2541      }
2542  
2543      /**
# Line 875 | Line 2557 | public class ConcurrentHashMapV8<K, V>
2557                     MAXIMUM_CAPACITY :
2558                     tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2559          this.counter = new LongAdder();
2560 <        this.targetCapacity = cap;
2560 >        this.sizeCtl = cap;
2561      }
2562  
2563      /**
# Line 885 | Line 2567 | public class ConcurrentHashMapV8<K, V>
2567       */
2568      public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2569          this.counter = new LongAdder();
2570 <        this.targetCapacity = DEFAULT_CAPACITY;
2571 <        putAll(m);
2570 >        this.sizeCtl = DEFAULT_CAPACITY;
2571 >        internalPutAll(m);
2572      }
2573  
2574      /**
# Line 933 | Line 2615 | public class ConcurrentHashMapV8<K, V>
2615          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2616              initialCapacity = concurrencyLevel;   // as estimated threads
2617          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2618 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
2619 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
2618 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2619 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2620          this.counter = new LongAdder();
2621 <        this.targetCapacity = cap;
2621 >        this.sizeCtl = cap;
2622 >    }
2623 >
2624 >    /**
2625 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2626 >     * from the given type to {@code Boolean.TRUE}.
2627 >     *
2628 >     * @return the new set
2629 >     */
2630 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2631 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2632 >                                      Boolean.TRUE);
2633 >    }
2634 >
2635 >    /**
2636 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2637 >     * from the given type to {@code Boolean.TRUE}.
2638 >     *
2639 >     * @param initialCapacity The implementation performs internal
2640 >     * sizing to accommodate this many elements.
2641 >     * @throws IllegalArgumentException if the initial capacity of
2642 >     * elements is negative
2643 >     * @return the new set
2644 >     */
2645 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2646 >        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2647 >                                      Boolean.TRUE);
2648      }
2649  
2650      /**
# Line 957 | Line 2665 | public class ConcurrentHashMapV8<K, V>
2665      }
2666  
2667      /**
2668 +     * Returns the number of mappings. This method should be used
2669 +     * instead of {@link #size} because a ConcurrentHashMapV8 may
2670 +     * contain more mappings than can be represented as an int. The
2671 +     * value returned is an estimate; the actual count may differ if
2672 +     * there are concurrent insertions or removals.
2673 +     *
2674 +     * @return the number of mappings
2675 +     */
2676 +    public long mappingCount() {
2677 +        long n = counter.sum();
2678 +        return (n < 0L) ? 0L : n; // ignore transient negative values
2679 +    }
2680 +
2681 +    /**
2682       * Returns the value to which the specified key is mapped,
2683       * or {@code null} if this map contains no mapping for the key.
2684       *
# Line 967 | Line 2689 | public class ConcurrentHashMapV8<K, V>
2689       *
2690       * @throws NullPointerException if the specified key is null
2691       */
2692 <    @SuppressWarnings("unchecked")
971 <    public V get(Object key) {
2692 >    @SuppressWarnings("unchecked") public V get(Object key) {
2693          if (key == null)
2694              throw new NullPointerException();
2695          return (V)internalGet(key);
2696      }
2697  
2698      /**
2699 +     * Returns the value to which the specified key is mapped,
2700 +     * or the given defaultValue if this map contains no mapping for the key.
2701 +     *
2702 +     * @param key the key
2703 +     * @param defaultValue the value to return if this map contains
2704 +     * no mapping for the given key
2705 +     * @return the mapping for the key, if present; else the defaultValue
2706 +     * @throws NullPointerException if the specified key is null
2707 +     */
2708 +    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2709 +        if (key == null)
2710 +            throw new NullPointerException();
2711 +        V v = (V) internalGet(key);
2712 +        return v == null ? defaultValue : v;
2713 +    }
2714 +
2715 +    /**
2716       * Tests if the specified object is a key in this table.
2717       *
2718       * @param  key   possible key
# Line 1003 | Line 2741 | public class ConcurrentHashMapV8<K, V>
2741          if (value == null)
2742              throw new NullPointerException();
2743          Object v;
2744 <        InternalIterator it = new InternalIterator(table);
2745 <        while (it.next != null) {
2746 <            if ((v = it.nextVal) == value || value.equals(v))
2744 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2745 >        while ((v = it.advance()) != null) {
2746 >            if (v == value || value.equals(v))
2747                  return true;
1010            it.advance();
2748          }
2749          return false;
2750      }
# Line 1035 | Line 2772 | public class ConcurrentHashMapV8<K, V>
2772       * Maps the specified key to the specified value in this table.
2773       * Neither the key nor the value can be null.
2774       *
2775 <     * <p> The value can be retrieved by calling the {@code get} method
2775 >     * <p>The value can be retrieved by calling the {@code get} method
2776       * with a key that is equal to the original key.
2777       *
2778       * @param key key with which the specified value is to be associated
# Line 1044 | Line 2781 | public class ConcurrentHashMapV8<K, V>
2781       *         {@code null} if there was no mapping for {@code key}
2782       * @throws NullPointerException if the specified key or value is null
2783       */
2784 <    @SuppressWarnings("unchecked")
1048 <    public V put(K key, V value) {
2784 >    @SuppressWarnings("unchecked") public V put(K key, V value) {
2785          if (key == null || value == null)
2786              throw new NullPointerException();
2787 <        return (V)internalPut(key, value, true);
2787 >        return (V)internalPut(key, value);
2788      }
2789  
2790      /**
# Line 1058 | Line 2794 | public class ConcurrentHashMapV8<K, V>
2794       *         or {@code null} if there was no mapping for the key
2795       * @throws NullPointerException if the specified key or value is null
2796       */
2797 <    @SuppressWarnings("unchecked")
1062 <    public V putIfAbsent(K key, V value) {
2797 >    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2798          if (key == null || value == null)
2799              throw new NullPointerException();
2800 <        return (V)internalPut(key, value, false);
2800 >        return (V)internalPutIfAbsent(key, value);
2801      }
2802  
2803      /**
# Line 1073 | Line 2808 | public class ConcurrentHashMapV8<K, V>
2808       * @param m mappings to be stored in this map
2809       */
2810      public void putAll(Map<? extends K, ? extends V> m) {
2811 <        if (m == null)
1077 <            throw new NullPointerException();
1078 <        /*
1079 <         * If uninitialized, try to adjust targetCapacity to
1080 <         * accommodate the given number of elements.
1081 <         */
1082 <        if (table == null) {
1083 <            int size = m.size();
1084 <            int cap = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1085 <                tableSizeFor(size + (size >>> 1) + 1);
1086 <            if (cap > targetCapacity)
1087 <                targetCapacity = cap;
1088 <        }
1089 <        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1090 <            put(e.getKey(), e.getValue());
2811 >        internalPutAll(m);
2812      }
2813  
2814      /**
2815       * If the specified key is not already associated with a value,
2816 <     * computes its value using the given mappingFunction, and if
2817 <     * non-null, enters it into the map.  This is equivalent to
2818 <     *  <pre> {@code
2816 >     * computes its value using the given mappingFunction and enters
2817 >     * it into the map unless null.  This is equivalent to
2818 >     * <pre> {@code
2819       * if (map.containsKey(key))
2820       *   return map.get(key);
2821 <     * value = mappingFunction.map(key);
2821 >     * value = mappingFunction.apply(key);
2822       * if (value != null)
2823       *   map.put(key, value);
2824       * return value;}</pre>
2825       *
2826 <     * except that the action is performed atomically.  Some attempted
2827 <     * update operations on this map by other threads may be blocked
2828 <     * while computation is in progress, so the computation should be
2829 <     * short and simple, and must not attempt to update any other
2830 <     * mappings of this Map. The most appropriate usage is to
2826 >     * except that the action is performed atomically.  If the
2827 >     * function returns {@code null} no mapping is recorded. If the
2828 >     * function itself throws an (unchecked) exception, the exception
2829 >     * is rethrown to its caller, and no mapping is recorded.  Some
2830 >     * attempted update operations on this map by other threads may be
2831 >     * blocked while computation is in progress, so the computation
2832 >     * should be short and simple, and must not attempt to update any
2833 >     * other mappings of this Map. The most appropriate usage is to
2834       * construct a new object serving as an initial mapped value, or
2835       * memoized result, as in:
2836 +     *
2837       *  <pre> {@code
2838 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2838 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2839       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2840       *
2841       * @param key key with which the specified value is to be associated
2842       * @param mappingFunction the function to compute a value
2843       * @return the current (existing or computed) value associated with
2844 <     *         the specified key, or {@code null} if the computation
1120 <     *         returned {@code null}
2844 >     *         the specified key, or null if the computed value is null
2845       * @throws NullPointerException if the specified key or mappingFunction
2846       *         is null
2847       * @throws IllegalStateException if the computation detectably
# Line 1126 | Line 2850 | public class ConcurrentHashMapV8<K, V>
2850       * @throws RuntimeException or Error if the mappingFunction does so,
2851       *         in which case the mapping is left unestablished
2852       */
2853 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2853 >    @SuppressWarnings("unchecked") public V computeIfAbsent
2854 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2855          if (key == null || mappingFunction == null)
2856              throw new NullPointerException();
2857 <        return internalCompute(key, mappingFunction, false);
2857 >        return (V)internalComputeIfAbsent(key, mappingFunction);
2858      }
2859  
2860      /**
2861 <     * Computes the value associated with the given key using the given
2862 <     * mappingFunction, and if non-null, enters it into the map.  This
1138 <     * is equivalent to
2861 >     * If the given key is present, computes a new mapping value given a key and
2862 >     * its current mapped value. This is equivalent to
2863       *  <pre> {@code
2864 <     * value = mappingFunction.map(key);
2865 <     * if (value != null)
2866 <     *   map.put(key, value);
2867 <     * else
2868 <     *   value = map.get(key);
2869 <     * return value;}</pre>
2864 >     *   if (map.containsKey(key)) {
2865 >     *     value = remappingFunction.apply(key, map.get(key));
2866 >     *     if (value != null)
2867 >     *       map.put(key, value);
2868 >     *     else
2869 >     *       map.remove(key);
2870 >     *   }
2871 >     * }</pre>
2872 >     *
2873 >     * except that the action is performed atomically.  If the
2874 >     * function returns {@code null}, the mapping is removed.  If the
2875 >     * function itself throws an (unchecked) exception, the exception
2876 >     * is rethrown to its caller, and the current mapping is left
2877 >     * unchanged.  Some attempted update operations on this map by
2878 >     * other threads may be blocked while computation is in progress,
2879 >     * so the computation should be short and simple, and must not
2880 >     * attempt to update any other mappings of this Map. For example,
2881 >     * to either create or append new messages to a value mapping:
2882       *
2883 <     * except that the action is performed atomically.  Some attempted
2884 <     * update operations on this map by other threads may be blocked
2885 <     * while computation is in progress, so the computation should be
2886 <     * short and simple, and must not attempt to update any other
2887 <     * mappings of this Map.
2883 >     * @param key key with which the specified value is to be associated
2884 >     * @param remappingFunction the function to compute a value
2885 >     * @return the new value associated with the specified key, or null if none
2886 >     * @throws NullPointerException if the specified key or remappingFunction
2887 >     *         is null
2888 >     * @throws IllegalStateException if the computation detectably
2889 >     *         attempts a recursive update to this map that would
2890 >     *         otherwise never complete
2891 >     * @throws RuntimeException or Error if the remappingFunction does so,
2892 >     *         in which case the mapping is unchanged
2893 >     */
2894 >    @SuppressWarnings("unchecked") public V computeIfPresent
2895 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2896 >        if (key == null || remappingFunction == null)
2897 >            throw new NullPointerException();
2898 >        return (V)internalCompute(key, true, remappingFunction);
2899 >    }
2900 >
2901 >    /**
2902 >     * Computes a new mapping value given a key and
2903 >     * its current mapped value (or {@code null} if there is no current
2904 >     * mapping). This is equivalent to
2905 >     *  <pre> {@code
2906 >     *   value = remappingFunction.apply(key, map.get(key));
2907 >     *   if (value != null)
2908 >     *     map.put(key, value);
2909 >     *   else
2910 >     *     map.remove(key);
2911 >     * }</pre>
2912 >     *
2913 >     * except that the action is performed atomically.  If the
2914 >     * function returns {@code null}, the mapping is removed.  If the
2915 >     * function itself throws an (unchecked) exception, the exception
2916 >     * is rethrown to its caller, and the current mapping is left
2917 >     * unchanged.  Some attempted update operations on this map by
2918 >     * other threads may be blocked while computation is in progress,
2919 >     * so the computation should be short and simple, and must not
2920 >     * attempt to update any other mappings of this Map. For example,
2921 >     * to either create or append new messages to a value mapping:
2922 >     *
2923 >     * <pre> {@code
2924 >     * Map<Key, String> map = ...;
2925 >     * final String msg = ...;
2926 >     * map.compute(key, new BiFun<Key, String, String>() {
2927 >     *   public String apply(Key k, String v) {
2928 >     *    return (v == null) ? msg : v + msg;});}}</pre>
2929       *
2930       * @param key key with which the specified value is to be associated
2931 <     * @param mappingFunction the function to compute a value
2932 <     * @return the current value associated with
2933 <     *         the specified key, or {@code null} if the computation
1157 <     *         returned {@code null} and the value was not otherwise present
1158 <     * @throws NullPointerException if the specified key or mappingFunction
2931 >     * @param remappingFunction the function to compute a value
2932 >     * @return the new value associated with the specified key, or null if none
2933 >     * @throws NullPointerException if the specified key or remappingFunction
2934       *         is null
2935       * @throws IllegalStateException if the computation detectably
2936       *         attempts a recursive update to this map that would
2937       *         otherwise never complete
2938 <     * @throws RuntimeException or Error if the mappingFunction does so,
2938 >     * @throws RuntimeException or Error if the remappingFunction does so,
2939       *         in which case the mapping is unchanged
2940       */
2941 <    public V compute(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2942 <        if (key == null || mappingFunction == null)
2941 >    @SuppressWarnings("unchecked") public V compute
2942 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2943 >        if (key == null || remappingFunction == null)
2944 >            throw new NullPointerException();
2945 >        return (V)internalCompute(key, false, remappingFunction);
2946 >    }
2947 >
2948 >    /**
2949 >     * If the specified key is not already associated
2950 >     * with a value, associate it with the given value.
2951 >     * Otherwise, replace the value with the results of
2952 >     * the given remapping function. This is equivalent to:
2953 >     *  <pre> {@code
2954 >     *   if (!map.containsKey(key))
2955 >     *     map.put(value);
2956 >     *   else {
2957 >     *     newValue = remappingFunction.apply(map.get(key), value);
2958 >     *     if (value != null)
2959 >     *       map.put(key, value);
2960 >     *     else
2961 >     *       map.remove(key);
2962 >     *   }
2963 >     * }</pre>
2964 >     * except that the action is performed atomically.  If the
2965 >     * function returns {@code null}, the mapping is removed.  If the
2966 >     * function itself throws an (unchecked) exception, the exception
2967 >     * is rethrown to its caller, and the current mapping is left
2968 >     * unchanged.  Some attempted update operations on this map by
2969 >     * other threads may be blocked while computation is in progress,
2970 >     * so the computation should be short and simple, and must not
2971 >     * attempt to update any other mappings of this Map.
2972 >     */
2973 >    @SuppressWarnings("unchecked") public V merge
2974 >        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2975 >        if (key == null || value == null || remappingFunction == null)
2976              throw new NullPointerException();
2977 <        return internalCompute(key, mappingFunction, true);
2977 >        return (V)internalMerge(key, value, remappingFunction);
2978      }
2979  
2980      /**
# Line 1178 | Line 2986 | public class ConcurrentHashMapV8<K, V>
2986       *         {@code null} if there was no mapping for {@code key}
2987       * @throws NullPointerException if the specified key is null
2988       */
2989 <    @SuppressWarnings("unchecked")
1182 <    public V remove(Object key) {
2989 >    @SuppressWarnings("unchecked") public V remove(Object key) {
2990          if (key == null)
2991              throw new NullPointerException();
2992          return (V)internalReplace(key, null, null);
# Line 1216 | Line 3023 | public class ConcurrentHashMapV8<K, V>
3023       *         or {@code null} if there was no mapping for the key
3024       * @throws NullPointerException if the specified key or value is null
3025       */
3026 <    @SuppressWarnings("unchecked")
1220 <    public V replace(K key, V value) {
3026 >    @SuppressWarnings("unchecked") public V replace(K key, V value) {
3027          if (key == null || value == null)
3028              throw new NullPointerException();
3029          return (V)internalReplace(key, value, null);
# Line 1233 | Line 3039 | public class ConcurrentHashMapV8<K, V>
3039      /**
3040       * Returns a {@link Set} view of the keys contained in this map.
3041       * The set is backed by the map, so changes to the map are
3042 <     * reflected in the set, and vice-versa.  The set supports element
1237 <     * removal, which removes the corresponding mapping from this map,
1238 <     * via the {@code Iterator.remove}, {@code Set.remove},
1239 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1240 <     * operations.  It does not support the {@code add} or
1241 <     * {@code addAll} operations.
3042 >     * reflected in the set, and vice-versa.
3043       *
3044 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1244 <     * that will never throw {@link ConcurrentModificationException},
1245 <     * and guarantees to traverse elements as they existed upon
1246 <     * construction of the iterator, and may (but is not guaranteed to)
1247 <     * reflect any modifications subsequent to construction.
3044 >     * @return the set view
3045       */
3046 <    public Set<K> keySet() {
3047 <        KeySet<K,V> ks = keySet;
3048 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
3046 >    public KeySetView<K,V> keySet() {
3047 >        KeySetView<K,V> ks = keySet;
3048 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3049 >    }
3050 >
3051 >    /**
3052 >     * Returns a {@link Set} view of the keys in this map, using the
3053 >     * given common mapped value for any additions (i.e., {@link
3054 >     * Collection#add} and {@link Collection#addAll}). This is of
3055 >     * course only appropriate if it is acceptable to use the same
3056 >     * value for all additions from this view.
3057 >     *
3058 >     * @param mappedValue the mapped value to use for any
3059 >     * additions.
3060 >     * @return the set view
3061 >     * @throws NullPointerException if the mappedValue is null
3062 >     */
3063 >    public KeySetView<K,V> keySet(V mappedValue) {
3064 >        if (mappedValue == null)
3065 >            throw new NullPointerException();
3066 >        return new KeySetView<K,V>(this, mappedValue);
3067      }
3068  
3069      /**
3070       * Returns a {@link Collection} view of the values contained in this map.
3071       * The collection is backed by the map, so changes to the map are
3072 <     * reflected in the collection, and vice-versa.  The collection
1258 <     * supports element removal, which removes the corresponding
1259 <     * mapping from this map, via the {@code Iterator.remove},
1260 <     * {@code Collection.remove}, {@code removeAll},
1261 <     * {@code retainAll}, and {@code clear} operations.  It does not
1262 <     * support the {@code add} or {@code addAll} operations.
1263 <     *
1264 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1265 <     * that will never throw {@link ConcurrentModificationException},
1266 <     * and guarantees to traverse elements as they existed upon
1267 <     * construction of the iterator, and may (but is not guaranteed to)
1268 <     * reflect any modifications subsequent to construction.
3072 >     * reflected in the collection, and vice-versa.
3073       */
3074 <    public Collection<V> values() {
3075 <        Values<K,V> vs = values;
3076 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
3074 >    public ValuesView<K,V> values() {
3075 >        ValuesView<K,V> vs = values;
3076 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3077      }
3078  
3079      /**
# Line 1289 | Line 3093 | public class ConcurrentHashMapV8<K, V>
3093       * reflect any modifications subsequent to construction.
3094       */
3095      public Set<Map.Entry<K,V>> entrySet() {
3096 <        EntrySet<K,V> es = entrySet;
3097 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
3096 >        EntrySetView<K,V> es = entrySet;
3097 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3098      }
3099  
3100      /**
# Line 1314 | Line 3118 | public class ConcurrentHashMapV8<K, V>
3118      }
3119  
3120      /**
3121 +     * Returns a partitionable iterator of the keys in this map.
3122 +     *
3123 +     * @return a partitionable iterator of the keys in this map
3124 +     */
3125 +    public Spliterator<K> keySpliterator() {
3126 +        return new KeyIterator<K,V>(this);
3127 +    }
3128 +
3129 +    /**
3130 +     * Returns a partitionable iterator of the values in this map.
3131 +     *
3132 +     * @return a partitionable iterator of the values in this map
3133 +     */
3134 +    public Spliterator<V> valueSpliterator() {
3135 +        return new ValueIterator<K,V>(this);
3136 +    }
3137 +
3138 +    /**
3139 +     * Returns a partitionable iterator of the entries in this map.
3140 +     *
3141 +     * @return a partitionable iterator of the entries in this map
3142 +     */
3143 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3144 +        return new EntryIterator<K,V>(this);
3145 +    }
3146 +
3147 +    /**
3148       * Returns the hash code value for this {@link Map}, i.e.,
3149       * the sum of, for each key-value pair in the map,
3150       * {@code key.hashCode() ^ value.hashCode()}.
# Line 1322 | Line 3153 | public class ConcurrentHashMapV8<K, V>
3153       */
3154      public int hashCode() {
3155          int h = 0;
3156 <        InternalIterator it = new InternalIterator(table);
3157 <        while (it.next != null) {
3158 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
3159 <            it.advance();
3156 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3157 >        Object v;
3158 >        while ((v = it.advance()) != null) {
3159 >            h += it.nextKey.hashCode() ^ v.hashCode();
3160          }
3161          return h;
3162      }
# Line 1342 | Line 3173 | public class ConcurrentHashMapV8<K, V>
3173       * @return a string representation of this map
3174       */
3175      public String toString() {
3176 <        InternalIterator it = new InternalIterator(table);
3176 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3177          StringBuilder sb = new StringBuilder();
3178          sb.append('{');
3179 <        if (it.next != null) {
3179 >        Object v;
3180 >        if ((v = it.advance()) != null) {
3181              for (;;) {
3182 <                Object k = it.nextKey, v = it.nextVal;
3182 >                Object k = it.nextKey;
3183                  sb.append(k == this ? "(this Map)" : k);
3184                  sb.append('=');
3185                  sb.append(v == this ? "(this Map)" : v);
3186 <                it.advance();
1355 <                if (it.next == null)
3186 >                if ((v = it.advance()) == null)
3187                      break;
3188                  sb.append(',').append(' ');
3189              }
# Line 1375 | Line 3206 | public class ConcurrentHashMapV8<K, V>
3206              if (!(o instanceof Map))
3207                  return false;
3208              Map<?,?> m = (Map<?,?>) o;
3209 <            InternalIterator it = new InternalIterator(table);
3210 <            while (it.next != null) {
3211 <                Object val = it.nextVal;
3209 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3210 >            Object val;
3211 >            while ((val = it.advance()) != null) {
3212                  Object v = m.get(it.nextKey);
3213                  if (v == null || (v != val && !v.equals(val)))
3214                      return false;
1384                it.advance();
3215              }
3216              for (Map.Entry<?,?> e : m.entrySet()) {
3217                  Object mk, mv, v;
# Line 1397 | Line 3227 | public class ConcurrentHashMapV8<K, V>
3227  
3228      /* ----------------Iterators -------------- */
3229  
3230 <    /**
3231 <     * Base class for key, value, and entry iterators.  Adds a map
3232 <     * reference to InternalIterator to support Iterator.remove.
3233 <     */
3234 <    static abstract class ViewIterator<K,V> extends InternalIterator {
1405 <        final ConcurrentHashMapV8<K, V> map;
1406 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1407 <            super(map.table);
1408 <            this.map = map;
3230 >    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3231 >        implements Spliterator<K>, Enumeration<K> {
3232 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3233 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3234 >            super(map, it, -1);
3235          }
3236 <
3237 <        public final void remove() {
1412 <            if (last == null)
3236 >        public KeyIterator<K,V> split() {
3237 >            if (nextKey != null)
3238                  throw new IllegalStateException();
3239 <            map.remove(last.key);
1415 <            last = null;
3239 >            return new KeyIterator<K,V>(map, this);
3240          }
3241 <
3242 <        public final boolean hasNext()         { return next != null; }
1419 <        public final boolean hasMoreElements() { return next != null; }
1420 <    }
1421 <
1422 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
1423 <        implements Iterator<K>, Enumeration<K> {
1424 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1425 <
1426 <        @SuppressWarnings("unchecked")
1427 <        public final K next() {
1428 <            if (next == null)
3241 >        @SuppressWarnings("unchecked") public final K next() {
3242 >            if (nextVal == null && advance() == null)
3243                  throw new NoSuchElementException();
3244              Object k = nextKey;
3245 <            advance();
3246 <            return (K)k;
3245 >            nextVal = null;
3246 >            return (K) k;
3247          }
3248  
3249          public final K nextElement() { return next(); }
3250      }
3251  
3252 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3253 <        implements Iterator<V>, Enumeration<V> {
3252 >    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3253 >        implements Spliterator<V>, Enumeration<V> {
3254          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3255 +        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3256 +            super(map, it, -1);
3257 +        }
3258 +        public ValueIterator<K,V> split() {
3259 +            if (nextKey != null)
3260 +                throw new IllegalStateException();
3261 +            return new ValueIterator<K,V>(map, this);
3262 +        }
3263  
3264 <        @SuppressWarnings("unchecked")
3265 <        public final V next() {
3266 <            if (next == null)
3264 >        @SuppressWarnings("unchecked") public final V next() {
3265 >            Object v;
3266 >            if ((v = nextVal) == null && (v = advance()) == null)
3267                  throw new NoSuchElementException();
3268 <            Object v = nextVal;
3269 <            advance();
1448 <            return (V)v;
3268 >            nextVal = null;
3269 >            return (V) v;
3270          }
3271  
3272          public final V nextElement() { return next(); }
3273      }
3274  
3275 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3276 <        implements Iterator<Map.Entry<K,V>> {
3275 >    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3276 >        implements Spliterator<Map.Entry<K,V>> {
3277          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3278 +        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3279 +            super(map, it, -1);
3280 +        }
3281 +        public EntryIterator<K,V> split() {
3282 +            if (nextKey != null)
3283 +                throw new IllegalStateException();
3284 +            return new EntryIterator<K,V>(map, this);
3285 +        }
3286  
3287 <        @SuppressWarnings("unchecked")
3288 <        public final Map.Entry<K,V> next() {
3289 <            if (next == null)
3287 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3288 >            Object v;
3289 >            if ((v = nextVal) == null && (v = advance()) == null)
3290                  throw new NoSuchElementException();
3291              Object k = nextKey;
3292 <            Object v = nextVal;
3293 <            advance();
1465 <            return new WriteThroughEntry<K,V>(map, (K)k, (V)v);
3292 >            nextVal = null;
3293 >            return new MapEntry<K,V>((K)k, (V)v, map);
3294          }
3295      }
3296  
3297      /**
3298 <     * Custom Entry class used by EntryIterator.next(), that relays
1471 <     * setValue changes to the underlying map.
3298 >     * Exported Entry for iterators
3299       */
3300 <    static final class WriteThroughEntry<K,V> implements Map.Entry<K, V> {
1474 <        final ConcurrentHashMapV8<K, V> map;
3300 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3301          final K key; // non-null
3302          V val;       // non-null
3303 <        WriteThroughEntry(ConcurrentHashMapV8<K, V> map, K key, V val) {
3304 <            this.map = map; this.key = key; this.val = val;
3303 >        final ConcurrentHashMapV8<K, V> map;
3304 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3305 >            this.key = key;
3306 >            this.val = val;
3307 >            this.map = map;
3308          }
1480
3309          public final K getKey()       { return key; }
3310          public final V getValue()     { return val; }
3311          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 1494 | Line 3322 | public class ConcurrentHashMapV8<K, V>
3322  
3323          /**
3324           * Sets our entry's value and writes through to the map. The
3325 <         * value to return is somewhat arbitrary here. Since a
3326 <         * WriteThroughEntry does not necessarily track asynchronous
3327 <         * changes, the most recent "previous" value could be
3328 <         * different from what we return (or could even have been
3329 <         * removed in which case the put will re-establish). We do not
1502 <         * and cannot guarantee more.
3325 >         * value to return is somewhat arbitrary here. Since we do not
3326 >         * necessarily track asynchronous changes, the most recent
3327 >         * "previous" value could be different from what we return (or
3328 >         * could even have been removed in which case the put will
3329 >         * re-establish). We do not and cannot guarantee more.
3330           */
3331          public final V setValue(V value) {
3332              if (value == null) throw new NullPointerException();
# Line 1510 | Line 3337 | public class ConcurrentHashMapV8<K, V>
3337          }
3338      }
3339  
3340 <    /* ----------------Views -------------- */
3341 <
3342 <    /*
1516 <     * These currently just extend java.util.AbstractX classes, but
1517 <     * may need a new custom base to support partitioned traversal.
3340 >    /**
3341 >     * Returns exportable snapshot entry for the given key and value
3342 >     * when write-through can't or shouldn't be used.
3343       */
3344 <
3345 <    static final class KeySet<K,V> extends AbstractSet<K> {
1521 <        final ConcurrentHashMapV8<K, V> map;
1522 <        KeySet(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1523 <
1524 <        public final int size()                 { return map.size(); }
1525 <        public final boolean isEmpty()          { return map.isEmpty(); }
1526 <        public final void clear()               { map.clear(); }
1527 <        public final boolean contains(Object o) { return map.containsKey(o); }
1528 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
1529 <        public final Iterator<K> iterator() {
1530 <            return new KeyIterator<K,V>(map);
1531 <        }
1532 <    }
1533 <
1534 <    static final class Values<K,V> extends AbstractCollection<V> {
1535 <        final ConcurrentHashMapV8<K, V> map;
1536 <        Values(ConcurrentHashMapV8<K, V> map)   { this.map = map; }
1537 <
1538 <        public final int size()                 { return map.size(); }
1539 <        public final boolean isEmpty()          { return map.isEmpty(); }
1540 <        public final void clear()               { map.clear(); }
1541 <        public final boolean contains(Object o) { return map.containsValue(o); }
1542 <        public final Iterator<V> iterator() {
1543 <            return new ValueIterator<K,V>(map);
1544 <        }
1545 <    }
1546 <
1547 <    static final class EntrySet<K,V> extends AbstractSet<Map.Entry<K,V>> {
1548 <        final ConcurrentHashMapV8<K, V> map;
1549 <        EntrySet(ConcurrentHashMapV8<K, V> map) { this.map = map; }
1550 <
1551 <        public final int size()                 { return map.size(); }
1552 <        public final boolean isEmpty()          { return map.isEmpty(); }
1553 <        public final void clear()               { map.clear(); }
1554 <        public final Iterator<Map.Entry<K,V>> iterator() {
1555 <            return new EntryIterator<K,V>(map);
1556 <        }
1557 <
1558 <        public final boolean contains(Object o) {
1559 <            Object k, v, r; Map.Entry<?,?> e;
1560 <            return ((o instanceof Map.Entry) &&
1561 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
1562 <                    (r = map.get(k)) != null &&
1563 <                    (v = e.getValue()) != null &&
1564 <                    (v == r || v.equals(r)));
1565 <        }
1566 <
1567 <        public final boolean remove(Object o) {
1568 <            Object k, v; Map.Entry<?,?> e;
1569 <            return ((o instanceof Map.Entry) &&
1570 <                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
1571 <                    (v = e.getValue()) != null &&
1572 <                    map.remove(k, v));
1573 <        }
3344 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3345 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3346      }
3347  
3348      /* ---------------- Serialization Support -------------- */
# Line 1594 | Line 3366 | public class ConcurrentHashMapV8<K, V>
3366       * for each key-value mapping, followed by a null pair.
3367       * The key-value mappings are emitted in no particular order.
3368       */
3369 <    @SuppressWarnings("unchecked")
3370 <    private void writeObject(java.io.ObjectOutputStream s)
1599 <            throws java.io.IOException {
3369 >    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3370 >        throws java.io.IOException {
3371          if (segments == null) { // for serialization compatibility
3372              segments = (Segment<K,V>[])
3373                  new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
# Line 1604 | Line 3375 | public class ConcurrentHashMapV8<K, V>
3375                  segments[i] = new Segment<K,V>(LOAD_FACTOR);
3376          }
3377          s.defaultWriteObject();
3378 <        InternalIterator it = new InternalIterator(table);
3379 <        while (it.next != null) {
3378 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3379 >        Object v;
3380 >        while ((v = it.advance()) != null) {
3381              s.writeObject(it.nextKey);
3382 <            s.writeObject(it.nextVal);
1611 <            it.advance();
3382 >            s.writeObject(v);
3383          }
3384          s.writeObject(null);
3385          s.writeObject(null);
# Line 1619 | Line 3390 | public class ConcurrentHashMapV8<K, V>
3390       * Reconstitutes the instance from a stream (that is, deserializes it).
3391       * @param s the stream
3392       */
3393 <    @SuppressWarnings("unchecked")
3394 <    private void readObject(java.io.ObjectInputStream s)
1624 <            throws java.io.IOException, ClassNotFoundException {
3393 >    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3394 >        throws java.io.IOException, ClassNotFoundException {
3395          s.defaultReadObject();
3396          this.segments = null; // unneeded
3397          // initialize transient final field
3398          UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
1629        this.targetCapacity = DEFAULT_CAPACITY;
3399  
3400          // Create all nodes, then place in table once size is known
3401          long size = 0L;
# Line 1635 | Line 3404 | public class ConcurrentHashMapV8<K, V>
3404              K k = (K) s.readObject();
3405              V v = (V) s.readObject();
3406              if (k != null && v != null) {
3407 <                p = new Node(spread(k.hashCode()), k, v, p);
3407 >                int h = spread(k.hashCode());
3408 >                p = new Node(h, k, v, p);
3409                  ++size;
3410              }
3411              else
# Line 1643 | Line 3413 | public class ConcurrentHashMapV8<K, V>
3413          }
3414          if (p != null) {
3415              boolean init = false;
3416 <            if (resizing == 0 &&
3417 <                UNSAFE.compareAndSwapInt(this, resizingOffset, 0, 1)) {
3416 >            int n;
3417 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3418 >                n = MAXIMUM_CAPACITY;
3419 >            else {
3420 >                int sz = (int)size;
3421 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
3422 >            }
3423 >            int sc = sizeCtl;
3424 >            boolean collide = false;
3425 >            if (n > sc &&
3426 >                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3427                  try {
3428                      if (table == null) {
3429                          init = true;
1651                        int n;
1652                        if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1653                            n = MAXIMUM_CAPACITY;
1654                        else {
1655                            int sz = (int)size;
1656                            n = tableSizeFor(sz + (sz >>> 1) + 1);
1657                        }
1658                        threshold = n - (n >>> 2) - THRESHOLD_OFFSET;
3430                          Node[] tab = new Node[n];
3431                          int mask = n - 1;
3432                          while (p != null) {
3433                              int j = p.hash & mask;
3434                              Node next = p.next;
3435 <                            p.next = tabAt(tab, j);
3435 >                            Node q = p.next = tabAt(tab, j);
3436                              setTabAt(tab, j, p);
3437 +                            if (!collide && q != null && q.hash == p.hash)
3438 +                                collide = true;
3439                              p = next;
3440                          }
3441                          table = tab;
3442                          counter.add(size);
3443 +                        sc = n - (n >>> 2);
3444                      }
3445                  } finally {
3446 <                    resizing = 0;
3446 >                    sizeCtl = sc;
3447 >                }
3448 >                if (collide) { // rescan and convert to TreeBins
3449 >                    Node[] tab = table;
3450 >                    for (int i = 0; i < tab.length; ++i) {
3451 >                        int c = 0;
3452 >                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3453 >                            if (++c > TREE_THRESHOLD &&
3454 >                                (e.key instanceof Comparable)) {
3455 >                                replaceWithTreeBin(tab, i, e.key);
3456 >                                break;
3457 >                            }
3458 >                        }
3459 >                    }
3460                  }
3461              }
3462              if (!init) { // Can only happen if unsafely published.
3463                  while (p != null) {
3464 <                    internalPut(p.key, p.val, true);
3464 >                    internalPut(p.key, p.val);
3465                      p = p.next;
3466                  }
3467              }
3468          }
3469      }
3470  
3471 +
3472 +    // -------------------------------------------------------
3473 +
3474 +    // Sams
3475 +    /** Interface describing a void action of one argument */
3476 +    public interface Action<A> { void apply(A a); }
3477 +    /** Interface describing a void action of two arguments */
3478 +    public interface BiAction<A,B> { void apply(A a, B b); }
3479 +    /** Interface describing a function of one argument */
3480 +    public interface Fun<A,T> { T apply(A a); }
3481 +    /** Interface describing a function of two arguments */
3482 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3483 +    /** Interface describing a function of no arguments */
3484 +    public interface Generator<T> { T apply(); }
3485 +    /** Interface describing a function mapping its argument to a double */
3486 +    public interface ObjectToDouble<A> { double apply(A a); }
3487 +    /** Interface describing a function mapping its argument to a long */
3488 +    public interface ObjectToLong<A> { long apply(A a); }
3489 +    /** Interface describing a function mapping its argument to an int */
3490 +    public interface ObjectToInt<A> {int apply(A a); }
3491 +    /** Interface describing a function mapping two arguments to a double */
3492 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3493 +    /** Interface describing a function mapping two arguments to a long */
3494 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3495 +    /** Interface describing a function mapping two arguments to an int */
3496 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3497 +    /** Interface describing a function mapping a double to a double */
3498 +    public interface DoubleToDouble { double apply(double a); }
3499 +    /** Interface describing a function mapping a long to a long */
3500 +    public interface LongToLong { long apply(long a); }
3501 +    /** Interface describing a function mapping an int to an int */
3502 +    public interface IntToInt { int apply(int a); }
3503 +    /** Interface describing a function mapping two doubles to a double */
3504 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3505 +    /** Interface describing a function mapping two longs to a long */
3506 +    public interface LongByLongToLong { long apply(long a, long b); }
3507 +    /** Interface describing a function mapping two ints to an int */
3508 +    public interface IntByIntToInt { int apply(int a, int b); }
3509 +
3510 +
3511 +    // -------------------------------------------------------
3512 +
3513 +    /**
3514 +     * Performs the given action for each (key, value).
3515 +     *
3516 +     * @param action the action
3517 +     */
3518 +    public void forEach(BiAction<K,V> action) {
3519 +        ForkJoinTasks.forEach
3520 +            (this, action).invoke();
3521 +    }
3522 +
3523 +    /**
3524 +     * Performs the given action for each non-null transformation
3525 +     * of each (key, value).
3526 +     *
3527 +     * @param transformer a function returning the transformation
3528 +     * for an element, or null of there is no transformation (in
3529 +     * which case the action is not applied).
3530 +     * @param action the action
3531 +     */
3532 +    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3533 +                            Action<U> action) {
3534 +        ForkJoinTasks.forEach
3535 +            (this, transformer, action).invoke();
3536 +    }
3537 +
3538 +    /**
3539 +     * Returns a non-null result from applying the given search
3540 +     * function on each (key, value), or null if none.  Upon
3541 +     * success, further element processing is suppressed and the
3542 +     * results of any other parallel invocations of the search
3543 +     * function are ignored.
3544 +     *
3545 +     * @param searchFunction a function returning a non-null
3546 +     * result on success, else null
3547 +     * @return a non-null result from applying the given search
3548 +     * function on each (key, value), or null if none
3549 +     */
3550 +    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3551 +        return ForkJoinTasks.search
3552 +            (this, searchFunction).invoke();
3553 +    }
3554 +
3555 +    /**
3556 +     * Returns the result of accumulating the given transformation
3557 +     * of all (key, value) pairs using the given reducer to
3558 +     * combine values, or null if none.
3559 +     *
3560 +     * @param transformer a function returning the transformation
3561 +     * for an element, or null of there is no transformation (in
3562 +     * which case it is not combined).
3563 +     * @param reducer a commutative associative combining function
3564 +     * @return the result of accumulating the given transformation
3565 +     * of all (key, value) pairs
3566 +     */
3567 +    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3568 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3569 +        return ForkJoinTasks.reduce
3570 +            (this, transformer, reducer).invoke();
3571 +    }
3572 +
3573 +    /**
3574 +     * Returns the result of accumulating the given transformation
3575 +     * of all (key, value) pairs using the given reducer to
3576 +     * combine values, and the given basis as an identity value.
3577 +     *
3578 +     * @param transformer a function returning the transformation
3579 +     * for an element
3580 +     * @param basis the identity (initial default value) for the reduction
3581 +     * @param reducer a commutative associative combining function
3582 +     * @return the result of accumulating the given transformation
3583 +     * of all (key, value) pairs
3584 +     */
3585 +    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3586 +                                 double basis,
3587 +                                 DoubleByDoubleToDouble reducer) {
3588 +        return ForkJoinTasks.reduceToDouble
3589 +            (this, transformer, basis, reducer).invoke();
3590 +    }
3591 +
3592 +    /**
3593 +     * Returns the result of accumulating the given transformation
3594 +     * of all (key, value) pairs using the given reducer to
3595 +     * combine values, and the given basis as an identity value.
3596 +     *
3597 +     * @param transformer a function returning the transformation
3598 +     * for an element
3599 +     * @param basis the identity (initial default value) for the reduction
3600 +     * @param reducer a commutative associative combining function
3601 +     * @return the result of accumulating the given transformation
3602 +     * of all (key, value) pairs
3603 +     */
3604 +    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3605 +                             long basis,
3606 +                             LongByLongToLong reducer) {
3607 +        return ForkJoinTasks.reduceToLong
3608 +            (this, transformer, basis, reducer).invoke();
3609 +    }
3610 +
3611 +    /**
3612 +     * Returns the result of accumulating the given transformation
3613 +     * of all (key, value) pairs using the given reducer to
3614 +     * combine values, and the given basis as an identity value.
3615 +     *
3616 +     * @param transformer a function returning the transformation
3617 +     * for an element
3618 +     * @param basis the identity (initial default value) for the reduction
3619 +     * @param reducer a commutative associative combining function
3620 +     * @return the result of accumulating the given transformation
3621 +     * of all (key, value) pairs
3622 +     */
3623 +    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3624 +                           int basis,
3625 +                           IntByIntToInt reducer) {
3626 +        return ForkJoinTasks.reduceToInt
3627 +            (this, transformer, basis, reducer).invoke();
3628 +    }
3629 +
3630 +    /**
3631 +     * Performs the given action for each key.
3632 +     *
3633 +     * @param action the action
3634 +     */
3635 +    public void forEachKey(Action<K> action) {
3636 +        ForkJoinTasks.forEachKey
3637 +            (this, action).invoke();
3638 +    }
3639 +
3640 +    /**
3641 +     * Performs the given action for each non-null transformation
3642 +     * of each key.
3643 +     *
3644 +     * @param transformer a function returning the transformation
3645 +     * for an element, or null of there is no transformation (in
3646 +     * which case the action is not applied).
3647 +     * @param action the action
3648 +     */
3649 +    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3650 +                               Action<U> action) {
3651 +        ForkJoinTasks.forEachKey
3652 +            (this, transformer, action).invoke();
3653 +    }
3654 +
3655 +    /**
3656 +     * Returns a non-null result from applying the given search
3657 +     * function on each key, or null if none. Upon success,
3658 +     * further element processing is suppressed and the results of
3659 +     * any other parallel invocations of the search function are
3660 +     * ignored.
3661 +     *
3662 +     * @param searchFunction a function returning a non-null
3663 +     * result on success, else null
3664 +     * @return a non-null result from applying the given search
3665 +     * function on each key, or null if none
3666 +     */
3667 +    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3668 +        return ForkJoinTasks.searchKeys
3669 +            (this, searchFunction).invoke();
3670 +    }
3671 +
3672 +    /**
3673 +     * Returns the result of accumulating all keys using the given
3674 +     * reducer to combine values, or null if none.
3675 +     *
3676 +     * @param reducer a commutative associative combining function
3677 +     * @return the result of accumulating all keys using the given
3678 +     * reducer to combine values, or null if none
3679 +     */
3680 +    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3681 +        return ForkJoinTasks.reduceKeys
3682 +            (this, reducer).invoke();
3683 +    }
3684 +
3685 +    /**
3686 +     * Returns the result of accumulating the given transformation
3687 +     * of all keys using the given reducer to combine values, or
3688 +     * null if none.
3689 +     *
3690 +     * @param transformer a function returning the transformation
3691 +     * for an element, or null of there is no transformation (in
3692 +     * which case it is not combined).
3693 +     * @param reducer a commutative associative combining function
3694 +     * @return the result of accumulating the given transformation
3695 +     * of all keys
3696 +     */
3697 +    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3698 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
3699 +        return ForkJoinTasks.reduceKeys
3700 +            (this, transformer, reducer).invoke();
3701 +    }
3702 +
3703 +    /**
3704 +     * Returns the result of accumulating the given transformation
3705 +     * of all keys using the given reducer to combine values, and
3706 +     * the given basis as an identity value.
3707 +     *
3708 +     * @param transformer a function returning the transformation
3709 +     * for an element
3710 +     * @param basis the identity (initial default value) for the reduction
3711 +     * @param reducer a commutative associative combining function
3712 +     * @return  the result of accumulating the given transformation
3713 +     * of all keys
3714 +     */
3715 +    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3716 +                                     double basis,
3717 +                                     DoubleByDoubleToDouble reducer) {
3718 +        return ForkJoinTasks.reduceKeysToDouble
3719 +            (this, transformer, basis, reducer).invoke();
3720 +    }
3721 +
3722 +    /**
3723 +     * Returns the result of accumulating the given transformation
3724 +     * of all keys using the given reducer to combine values, and
3725 +     * the given basis as an identity value.
3726 +     *
3727 +     * @param transformer a function returning the transformation
3728 +     * for an element
3729 +     * @param basis the identity (initial default value) for the reduction
3730 +     * @param reducer a commutative associative combining function
3731 +     * @return the result of accumulating the given transformation
3732 +     * of all keys
3733 +     */
3734 +    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3735 +                                 long basis,
3736 +                                 LongByLongToLong reducer) {
3737 +        return ForkJoinTasks.reduceKeysToLong
3738 +            (this, transformer, basis, reducer).invoke();
3739 +    }
3740 +
3741 +    /**
3742 +     * Returns the result of accumulating the given transformation
3743 +     * of all keys using the given reducer to combine values, and
3744 +     * the given basis as an identity value.
3745 +     *
3746 +     * @param transformer a function returning the transformation
3747 +     * for an element
3748 +     * @param basis the identity (initial default value) for the reduction
3749 +     * @param reducer a commutative associative combining function
3750 +     * @return the result of accumulating the given transformation
3751 +     * of all keys
3752 +     */
3753 +    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3754 +                               int basis,
3755 +                               IntByIntToInt reducer) {
3756 +        return ForkJoinTasks.reduceKeysToInt
3757 +            (this, transformer, basis, reducer).invoke();
3758 +    }
3759 +
3760 +    /**
3761 +     * Performs the given action for each value.
3762 +     *
3763 +     * @param action the action
3764 +     */
3765 +    public void forEachValue(Action<V> action) {
3766 +        ForkJoinTasks.forEachValue
3767 +            (this, action).invoke();
3768 +    }
3769 +
3770 +    /**
3771 +     * Performs the given action for each non-null transformation
3772 +     * of each value.
3773 +     *
3774 +     * @param transformer a function returning the transformation
3775 +     * for an element, or null of there is no transformation (in
3776 +     * which case the action is not applied).
3777 +     */
3778 +    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3779 +                                 Action<U> action) {
3780 +        ForkJoinTasks.forEachValue
3781 +            (this, transformer, action).invoke();
3782 +    }
3783 +
3784 +    /**
3785 +     * Returns a non-null result from applying the given search
3786 +     * function on each value, or null if none.  Upon success,
3787 +     * further element processing is suppressed and the results of
3788 +     * any other parallel invocations of the search function are
3789 +     * ignored.
3790 +     *
3791 +     * @param searchFunction a function returning a non-null
3792 +     * result on success, else null
3793 +     * @return a non-null result from applying the given search
3794 +     * function on each value, or null if none
3795 +     *
3796 +     */
3797 +    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3798 +        return ForkJoinTasks.searchValues
3799 +            (this, searchFunction).invoke();
3800 +    }
3801 +
3802 +    /**
3803 +     * Returns the result of accumulating all values using the
3804 +     * given reducer to combine values, or null if none.
3805 +     *
3806 +     * @param reducer a commutative associative combining function
3807 +     * @return  the result of accumulating all values
3808 +     */
3809 +    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3810 +        return ForkJoinTasks.reduceValues
3811 +            (this, reducer).invoke();
3812 +    }
3813 +
3814 +    /**
3815 +     * Returns the result of accumulating the given transformation
3816 +     * of all values using the given reducer to combine values, or
3817 +     * null if none.
3818 +     *
3819 +     * @param transformer a function returning the transformation
3820 +     * for an element, or null of there is no transformation (in
3821 +     * which case it is not combined).
3822 +     * @param reducer a commutative associative combining function
3823 +     * @return the result of accumulating the given transformation
3824 +     * of all values
3825 +     */
3826 +    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3827 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3828 +        return ForkJoinTasks.reduceValues
3829 +            (this, transformer, reducer).invoke();
3830 +    }
3831 +
3832 +    /**
3833 +     * Returns the result of accumulating the given transformation
3834 +     * of all values using the given reducer to combine values,
3835 +     * and the given basis as an identity value.
3836 +     *
3837 +     * @param transformer a function returning the transformation
3838 +     * for an element
3839 +     * @param basis the identity (initial default value) for the reduction
3840 +     * @param reducer a commutative associative combining function
3841 +     * @return the result of accumulating the given transformation
3842 +     * of all values
3843 +     */
3844 +    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3845 +                                       double basis,
3846 +                                       DoubleByDoubleToDouble reducer) {
3847 +        return ForkJoinTasks.reduceValuesToDouble
3848 +            (this, transformer, basis, reducer).invoke();
3849 +    }
3850 +
3851 +    /**
3852 +     * Returns the result of accumulating the given transformation
3853 +     * of all values using the given reducer to combine values,
3854 +     * and the given basis as an identity value.
3855 +     *
3856 +     * @param transformer a function returning the transformation
3857 +     * for an element
3858 +     * @param basis the identity (initial default value) for the reduction
3859 +     * @param reducer a commutative associative combining function
3860 +     * @return the result of accumulating the given transformation
3861 +     * of all values
3862 +     */
3863 +    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3864 +                                   long basis,
3865 +                                   LongByLongToLong reducer) {
3866 +        return ForkJoinTasks.reduceValuesToLong
3867 +            (this, transformer, basis, reducer).invoke();
3868 +    }
3869 +
3870 +    /**
3871 +     * Returns the result of accumulating the given transformation
3872 +     * of all values using the given reducer to combine values,
3873 +     * and the given basis as an identity value.
3874 +     *
3875 +     * @param transformer a function returning the transformation
3876 +     * for an element
3877 +     * @param basis the identity (initial default value) for the reduction
3878 +     * @param reducer a commutative associative combining function
3879 +     * @return the result of accumulating the given transformation
3880 +     * of all values
3881 +     */
3882 +    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3883 +                                 int basis,
3884 +                                 IntByIntToInt reducer) {
3885 +        return ForkJoinTasks.reduceValuesToInt
3886 +            (this, transformer, basis, reducer).invoke();
3887 +    }
3888 +
3889 +    /**
3890 +     * Performs the given action for each entry.
3891 +     *
3892 +     * @param action the action
3893 +     */
3894 +    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3895 +        ForkJoinTasks.forEachEntry
3896 +            (this, action).invoke();
3897 +    }
3898 +
3899 +    /**
3900 +     * Performs the given action for each non-null transformation
3901 +     * of each entry.
3902 +     *
3903 +     * @param transformer a function returning the transformation
3904 +     * for an element, or null of there is no transformation (in
3905 +     * which case the action is not applied).
3906 +     * @param action the action
3907 +     */
3908 +    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3909 +                                 Action<U> action) {
3910 +        ForkJoinTasks.forEachEntry
3911 +            (this, transformer, action).invoke();
3912 +    }
3913 +
3914 +    /**
3915 +     * Returns a non-null result from applying the given search
3916 +     * function on each entry, or null if none.  Upon success,
3917 +     * further element processing is suppressed and the results of
3918 +     * any other parallel invocations of the search function are
3919 +     * ignored.
3920 +     *
3921 +     * @param searchFunction a function returning a non-null
3922 +     * result on success, else null
3923 +     * @return a non-null result from applying the given search
3924 +     * function on each entry, or null if none
3925 +     */
3926 +    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3927 +        return ForkJoinTasks.searchEntries
3928 +            (this, searchFunction).invoke();
3929 +    }
3930 +
3931 +    /**
3932 +     * Returns the result of accumulating all entries using the
3933 +     * given reducer to combine values, or null if none.
3934 +     *
3935 +     * @param reducer a commutative associative combining function
3936 +     * @return the result of accumulating all entries
3937 +     */
3938 +    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3939 +        return ForkJoinTasks.reduceEntries
3940 +            (this, reducer).invoke();
3941 +    }
3942 +
3943 +    /**
3944 +     * Returns the result of accumulating the given transformation
3945 +     * of all entries using the given reducer to combine values,
3946 +     * or null if none.
3947 +     *
3948 +     * @param transformer a function returning the transformation
3949 +     * for an element, or null of there is no transformation (in
3950 +     * which case it is not combined).
3951 +     * @param reducer a commutative associative combining function
3952 +     * @return the result of accumulating the given transformation
3953 +     * of all entries
3954 +     */
3955 +    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3956 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
3957 +        return ForkJoinTasks.reduceEntries
3958 +            (this, transformer, reducer).invoke();
3959 +    }
3960 +
3961 +    /**
3962 +     * Returns the result of accumulating the given transformation
3963 +     * of all entries using the given reducer to combine values,
3964 +     * and the given basis as an identity value.
3965 +     *
3966 +     * @param transformer a function returning the transformation
3967 +     * for an element
3968 +     * @param basis the identity (initial default value) for the reduction
3969 +     * @param reducer a commutative associative combining function
3970 +     * @return the result of accumulating the given transformation
3971 +     * of all entries
3972 +     */
3973 +    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3974 +                                        double basis,
3975 +                                        DoubleByDoubleToDouble reducer) {
3976 +        return ForkJoinTasks.reduceEntriesToDouble
3977 +            (this, transformer, basis, reducer).invoke();
3978 +    }
3979 +
3980 +    /**
3981 +     * Returns the result of accumulating the given transformation
3982 +     * of all entries using the given reducer to combine values,
3983 +     * and the given basis as an identity value.
3984 +     *
3985 +     * @param transformer a function returning the transformation
3986 +     * for an element
3987 +     * @param basis the identity (initial default value) for the reduction
3988 +     * @param reducer a commutative associative combining function
3989 +     * @return  the result of accumulating the given transformation
3990 +     * of all entries
3991 +     */
3992 +    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3993 +                                    long basis,
3994 +                                    LongByLongToLong reducer) {
3995 +        return ForkJoinTasks.reduceEntriesToLong
3996 +            (this, transformer, basis, reducer).invoke();
3997 +    }
3998 +
3999 +    /**
4000 +     * Returns the result of accumulating the given transformation
4001 +     * of all entries using the given reducer to combine values,
4002 +     * and the given basis as an identity value.
4003 +     *
4004 +     * @param transformer a function returning the transformation
4005 +     * for an element
4006 +     * @param basis the identity (initial default value) for the reduction
4007 +     * @param reducer a commutative associative combining function
4008 +     * @return the result of accumulating the given transformation
4009 +     * of all entries
4010 +     */
4011 +    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4012 +                                  int basis,
4013 +                                  IntByIntToInt reducer) {
4014 +        return ForkJoinTasks.reduceEntriesToInt
4015 +            (this, transformer, basis, reducer).invoke();
4016 +    }
4017 +
4018 +    /* ----------------Views -------------- */
4019 +
4020 +    /**
4021 +     * Base class for views.
4022 +     */
4023 +    static abstract class CHMView<K, V> {
4024 +        final ConcurrentHashMapV8<K, V> map;
4025 +        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4026 +
4027 +        /**
4028 +         * Returns the map backing this view.
4029 +         *
4030 +         * @return the map backing this view
4031 +         */
4032 +        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4033 +
4034 +        public final int size()                 { return map.size(); }
4035 +        public final boolean isEmpty()          { return map.isEmpty(); }
4036 +        public final void clear()               { map.clear(); }
4037 +
4038 +        // implementations below rely on concrete classes supplying these
4039 +        abstract public Iterator<?> iterator();
4040 +        abstract public boolean contains(Object o);
4041 +        abstract public boolean remove(Object o);
4042 +
4043 +        private static final String oomeMsg = "Required array size too large";
4044 +
4045 +        public final Object[] toArray() {
4046 +            long sz = map.mappingCount();
4047 +            if (sz > (long)(MAX_ARRAY_SIZE))
4048 +                throw new OutOfMemoryError(oomeMsg);
4049 +            int n = (int)sz;
4050 +            Object[] r = new Object[n];
4051 +            int i = 0;
4052 +            Iterator<?> it = iterator();
4053 +            while (it.hasNext()) {
4054 +                if (i == n) {
4055 +                    if (n >= MAX_ARRAY_SIZE)
4056 +                        throw new OutOfMemoryError(oomeMsg);
4057 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4058 +                        n = MAX_ARRAY_SIZE;
4059 +                    else
4060 +                        n += (n >>> 1) + 1;
4061 +                    r = Arrays.copyOf(r, n);
4062 +                }
4063 +                r[i++] = it.next();
4064 +            }
4065 +            return (i == n) ? r : Arrays.copyOf(r, i);
4066 +        }
4067 +
4068 +        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4069 +            long sz = map.mappingCount();
4070 +            if (sz > (long)(MAX_ARRAY_SIZE))
4071 +                throw new OutOfMemoryError(oomeMsg);
4072 +            int m = (int)sz;
4073 +            T[] r = (a.length >= m) ? a :
4074 +                (T[])java.lang.reflect.Array
4075 +                .newInstance(a.getClass().getComponentType(), m);
4076 +            int n = r.length;
4077 +            int i = 0;
4078 +            Iterator<?> it = iterator();
4079 +            while (it.hasNext()) {
4080 +                if (i == n) {
4081 +                    if (n >= MAX_ARRAY_SIZE)
4082 +                        throw new OutOfMemoryError(oomeMsg);
4083 +                    if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4084 +                        n = MAX_ARRAY_SIZE;
4085 +                    else
4086 +                        n += (n >>> 1) + 1;
4087 +                    r = Arrays.copyOf(r, n);
4088 +                }
4089 +                r[i++] = (T)it.next();
4090 +            }
4091 +            if (a == r && i < n) {
4092 +                r[i] = null; // null-terminate
4093 +                return r;
4094 +            }
4095 +            return (i == n) ? r : Arrays.copyOf(r, i);
4096 +        }
4097 +
4098 +        public final int hashCode() {
4099 +            int h = 0;
4100 +            for (Iterator<?> it = iterator(); it.hasNext();)
4101 +                h += it.next().hashCode();
4102 +            return h;
4103 +        }
4104 +
4105 +        public final String toString() {
4106 +            StringBuilder sb = new StringBuilder();
4107 +            sb.append('[');
4108 +            Iterator<?> it = iterator();
4109 +            if (it.hasNext()) {
4110 +                for (;;) {
4111 +                    Object e = it.next();
4112 +                    sb.append(e == this ? "(this Collection)" : e);
4113 +                    if (!it.hasNext())
4114 +                        break;
4115 +                    sb.append(',').append(' ');
4116 +                }
4117 +            }
4118 +            return sb.append(']').toString();
4119 +        }
4120 +
4121 +        public final boolean containsAll(Collection<?> c) {
4122 +            if (c != this) {
4123 +                for (Iterator<?> it = c.iterator(); it.hasNext();) {
4124 +                    Object e = it.next();
4125 +                    if (e == null || !contains(e))
4126 +                        return false;
4127 +                }
4128 +            }
4129 +            return true;
4130 +        }
4131 +
4132 +        public final boolean removeAll(Collection<?> c) {
4133 +            boolean modified = false;
4134 +            for (Iterator<?> it = iterator(); it.hasNext();) {
4135 +                if (c.contains(it.next())) {
4136 +                    it.remove();
4137 +                    modified = true;
4138 +                }
4139 +            }
4140 +            return modified;
4141 +        }
4142 +
4143 +        public final boolean retainAll(Collection<?> c) {
4144 +            boolean modified = false;
4145 +            for (Iterator<?> it = iterator(); it.hasNext();) {
4146 +                if (!c.contains(it.next())) {
4147 +                    it.remove();
4148 +                    modified = true;
4149 +                }
4150 +            }
4151 +            return modified;
4152 +        }
4153 +
4154 +    }
4155 +
4156 +    /**
4157 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4158 +     * which additions may optionally be enabled by mapping to a
4159 +     * common value.  This class cannot be directly instantiated. See
4160 +     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4161 +     * {@link #newKeySet(int)}.
4162 +     */
4163 +    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4164 +        private static final long serialVersionUID = 7249069246763182397L;
4165 +        private final V value;
4166 +        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4167 +            super(map);
4168 +            this.value = value;
4169 +        }
4170 +
4171 +        /**
4172 +         * Returns the default mapped value for additions,
4173 +         * or {@code null} if additions are not supported.
4174 +         *
4175 +         * @return the default mapped value for additions, or {@code null}
4176 +         * if not supported.
4177 +         */
4178 +        public V getMappedValue() { return value; }
4179 +
4180 +        // implement Set API
4181 +
4182 +        public boolean contains(Object o) { return map.containsKey(o); }
4183 +        public boolean remove(Object o)   { return map.remove(o) != null; }
4184 +
4185 +        /**
4186 +         * Returns a "weakly consistent" iterator that will never
4187 +         * throw {@link ConcurrentModificationException}, and
4188 +         * guarantees to traverse elements as they existed upon
4189 +         * construction of the iterator, and may (but is not
4190 +         * guaranteed to) reflect any modifications subsequent to
4191 +         * construction.
4192 +         *
4193 +         * @return an iterator over the keys of this map
4194 +         */
4195 +        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4196 +        public boolean add(K e) {
4197 +            V v;
4198 +            if ((v = value) == null)
4199 +                throw new UnsupportedOperationException();
4200 +            if (e == null)
4201 +                throw new NullPointerException();
4202 +            return map.internalPutIfAbsent(e, v) == null;
4203 +        }
4204 +        public boolean addAll(Collection<? extends K> c) {
4205 +            boolean added = false;
4206 +            V v;
4207 +            if ((v = value) == null)
4208 +                throw new UnsupportedOperationException();
4209 +            for (K e : c) {
4210 +                if (e == null)
4211 +                    throw new NullPointerException();
4212 +                if (map.internalPutIfAbsent(e, v) == null)
4213 +                    added = true;
4214 +            }
4215 +            return added;
4216 +        }
4217 +        public boolean equals(Object o) {
4218 +            Set<?> c;
4219 +            return ((o instanceof Set) &&
4220 +                    ((c = (Set<?>)o) == this ||
4221 +                     (containsAll(c) && c.containsAll(this))));
4222 +        }
4223 +
4224 +        /**
4225 +         * Performs the given action for each key.
4226 +         *
4227 +         * @param action the action
4228 +         */
4229 +        public void forEach(Action<K> action) {
4230 +            ForkJoinTasks.forEachKey
4231 +                (map, action).invoke();
4232 +        }
4233 +
4234 +        /**
4235 +         * Performs the given action for each non-null transformation
4236 +         * of each key.
4237 +         *
4238 +         * @param transformer a function returning the transformation
4239 +         * for an element, or null of there is no transformation (in
4240 +         * which case the action is not applied).
4241 +         * @param action the action
4242 +         */
4243 +        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4244 +                                Action<U> action) {
4245 +            ForkJoinTasks.forEachKey
4246 +                (map, transformer, action).invoke();
4247 +        }
4248 +
4249 +        /**
4250 +         * Returns a non-null result from applying the given search
4251 +         * function on each key, or null if none. Upon success,
4252 +         * further element processing is suppressed and the results of
4253 +         * any other parallel invocations of the search function are
4254 +         * ignored.
4255 +         *
4256 +         * @param searchFunction a function returning a non-null
4257 +         * result on success, else null
4258 +         * @return a non-null result from applying the given search
4259 +         * function on each key, or null if none
4260 +         */
4261 +        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4262 +            return ForkJoinTasks.searchKeys
4263 +                (map, searchFunction).invoke();
4264 +        }
4265 +
4266 +        /**
4267 +         * Returns the result of accumulating all keys using the given
4268 +         * reducer to combine values, or null if none.
4269 +         *
4270 +         * @param reducer a commutative associative combining function
4271 +         * @return the result of accumulating all keys using the given
4272 +         * reducer to combine values, or null if none
4273 +         */
4274 +        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4275 +            return ForkJoinTasks.reduceKeys
4276 +                (map, reducer).invoke();
4277 +        }
4278 +
4279 +        /**
4280 +         * Returns the result of accumulating the given transformation
4281 +         * of all keys using the given reducer to combine values, and
4282 +         * the given basis as an identity value.
4283 +         *
4284 +         * @param transformer a function returning the transformation
4285 +         * for an element
4286 +         * @param basis the identity (initial default value) for the reduction
4287 +         * @param reducer a commutative associative combining function
4288 +         * @return  the result of accumulating the given transformation
4289 +         * of all keys
4290 +         */
4291 +        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4292 +                                     double basis,
4293 +                                     DoubleByDoubleToDouble reducer) {
4294 +            return ForkJoinTasks.reduceKeysToDouble
4295 +                (map, transformer, basis, reducer).invoke();
4296 +        }
4297 +
4298 +
4299 +        /**
4300 +         * Returns the result of accumulating the given transformation
4301 +         * of all keys using the given reducer to combine values, and
4302 +         * the given basis as an identity value.
4303 +         *
4304 +         * @param transformer a function returning the transformation
4305 +         * for an element
4306 +         * @param basis the identity (initial default value) for the reduction
4307 +         * @param reducer a commutative associative combining function
4308 +         * @return the result of accumulating the given transformation
4309 +         * of all keys
4310 +         */
4311 +        public long reduceToLong(ObjectToLong<? super K> transformer,
4312 +                                 long basis,
4313 +                                 LongByLongToLong reducer) {
4314 +            return ForkJoinTasks.reduceKeysToLong
4315 +                (map, transformer, basis, reducer).invoke();
4316 +        }
4317 +
4318 +        /**
4319 +         * Returns the result of accumulating the given transformation
4320 +         * of all keys using the given reducer to combine values, and
4321 +         * the given basis as an identity value.
4322 +         *
4323 +         * @param transformer a function returning the transformation
4324 +         * for an element
4325 +         * @param basis the identity (initial default value) for the reduction
4326 +         * @param reducer a commutative associative combining function
4327 +         * @return the result of accumulating the given transformation
4328 +         * of all keys
4329 +         */
4330 +        public int reduceToInt(ObjectToInt<? super K> transformer,
4331 +                               int basis,
4332 +                               IntByIntToInt reducer) {
4333 +            return ForkJoinTasks.reduceKeysToInt
4334 +                (map, transformer, basis, reducer).invoke();
4335 +        }
4336 +
4337 +    }
4338 +
4339 +    /**
4340 +     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4341 +     * values, in which additions are disabled. This class cannot be
4342 +     * directly instantiated. See {@link #values},
4343 +     *
4344 +     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4345 +     * that will never throw {@link ConcurrentModificationException},
4346 +     * and guarantees to traverse elements as they existed upon
4347 +     * construction of the iterator, and may (but is not guaranteed to)
4348 +     * reflect any modifications subsequent to construction.
4349 +     */
4350 +    public static final class ValuesView<K,V> extends CHMView<K,V>
4351 +        implements Collection<V> {
4352 +        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4353 +        public final boolean contains(Object o) { return map.containsValue(o); }
4354 +        public final boolean remove(Object o) {
4355 +            if (o != null) {
4356 +                Iterator<V> it = new ValueIterator<K,V>(map);
4357 +                while (it.hasNext()) {
4358 +                    if (o.equals(it.next())) {
4359 +                        it.remove();
4360 +                        return true;
4361 +                    }
4362 +                }
4363 +            }
4364 +            return false;
4365 +        }
4366 +
4367 +        /**
4368 +         * Returns a "weakly consistent" iterator that will never
4369 +         * throw {@link ConcurrentModificationException}, and
4370 +         * guarantees to traverse elements as they existed upon
4371 +         * construction of the iterator, and may (but is not
4372 +         * guaranteed to) reflect any modifications subsequent to
4373 +         * construction.
4374 +         *
4375 +         * @return an iterator over the values of this map
4376 +         */
4377 +        public final Iterator<V> iterator() {
4378 +            return new ValueIterator<K,V>(map);
4379 +        }
4380 +        public final boolean add(V e) {
4381 +            throw new UnsupportedOperationException();
4382 +        }
4383 +        public final boolean addAll(Collection<? extends V> c) {
4384 +            throw new UnsupportedOperationException();
4385 +        }
4386 +
4387 +        /**
4388 +         * Performs the given action for each value.
4389 +         *
4390 +         * @param action the action
4391 +         */
4392 +        public void forEach(Action<V> action) {
4393 +            ForkJoinTasks.forEachValue
4394 +                (map, action).invoke();
4395 +        }
4396 +
4397 +        /**
4398 +         * Performs the given action for each non-null transformation
4399 +         * of each value.
4400 +         *
4401 +         * @param transformer a function returning the transformation
4402 +         * for an element, or null of there is no transformation (in
4403 +         * which case the action is not applied).
4404 +         */
4405 +        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4406 +                                     Action<U> action) {
4407 +            ForkJoinTasks.forEachValue
4408 +                (map, transformer, action).invoke();
4409 +        }
4410 +
4411 +        /**
4412 +         * Returns a non-null result from applying the given search
4413 +         * function on each value, or null if none.  Upon success,
4414 +         * further element processing is suppressed and the results of
4415 +         * any other parallel invocations of the search function are
4416 +         * ignored.
4417 +         *
4418 +         * @param searchFunction a function returning a non-null
4419 +         * result on success, else null
4420 +         * @return a non-null result from applying the given search
4421 +         * function on each value, or null if none
4422 +         *
4423 +         */
4424 +        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4425 +            return ForkJoinTasks.searchValues
4426 +                (map, searchFunction).invoke();
4427 +        }
4428 +
4429 +        /**
4430 +         * Returns the result of accumulating all values using the
4431 +         * given reducer to combine values, or null if none.
4432 +         *
4433 +         * @param reducer a commutative associative combining function
4434 +         * @return  the result of accumulating all values
4435 +         */
4436 +        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4437 +            return ForkJoinTasks.reduceValues
4438 +                (map, reducer).invoke();
4439 +        }
4440 +
4441 +        /**
4442 +         * Returns the result of accumulating the given transformation
4443 +         * of all values using the given reducer to combine values, or
4444 +         * null if none.
4445 +         *
4446 +         * @param transformer a function returning the transformation
4447 +         * for an element, or null of there is no transformation (in
4448 +         * which case it is not combined).
4449 +         * @param reducer a commutative associative combining function
4450 +         * @return the result of accumulating the given transformation
4451 +         * of all values
4452 +         */
4453 +        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4454 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4455 +            return ForkJoinTasks.reduceValues
4456 +                (map, transformer, reducer).invoke();
4457 +        }
4458 +
4459 +        /**
4460 +         * Returns the result of accumulating the given transformation
4461 +         * of all values using the given reducer to combine values,
4462 +         * and the given basis as an identity value.
4463 +         *
4464 +         * @param transformer a function returning the transformation
4465 +         * for an element
4466 +         * @param basis the identity (initial default value) for the reduction
4467 +         * @param reducer a commutative associative combining function
4468 +         * @return the result of accumulating the given transformation
4469 +         * of all values
4470 +         */
4471 +        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4472 +                                     double basis,
4473 +                                     DoubleByDoubleToDouble reducer) {
4474 +            return ForkJoinTasks.reduceValuesToDouble
4475 +                (map, transformer, basis, reducer).invoke();
4476 +        }
4477 +
4478 +        /**
4479 +         * Returns the result of accumulating the given transformation
4480 +         * of all values using the given reducer to combine values,
4481 +         * and the given basis as an identity value.
4482 +         *
4483 +         * @param transformer a function returning the transformation
4484 +         * for an element
4485 +         * @param basis the identity (initial default value) for the reduction
4486 +         * @param reducer a commutative associative combining function
4487 +         * @return the result of accumulating the given transformation
4488 +         * of all values
4489 +         */
4490 +        public long reduceToLong(ObjectToLong<? super V> transformer,
4491 +                                 long basis,
4492 +                                 LongByLongToLong reducer) {
4493 +            return ForkJoinTasks.reduceValuesToLong
4494 +                (map, transformer, basis, reducer).invoke();
4495 +        }
4496 +
4497 +        /**
4498 +         * Returns the result of accumulating the given transformation
4499 +         * of all values using the given reducer to combine values,
4500 +         * and the given basis as an identity value.
4501 +         *
4502 +         * @param transformer a function returning the transformation
4503 +         * for an element
4504 +         * @param basis the identity (initial default value) for the reduction
4505 +         * @param reducer a commutative associative combining function
4506 +         * @return the result of accumulating the given transformation
4507 +         * of all values
4508 +         */
4509 +        public int reduceToInt(ObjectToInt<? super V> transformer,
4510 +                               int basis,
4511 +                               IntByIntToInt reducer) {
4512 +            return ForkJoinTasks.reduceValuesToInt
4513 +                (map, transformer, basis, reducer).invoke();
4514 +        }
4515 +
4516 +    }
4517 +
4518 +    /**
4519 +     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4520 +     * entries.  This class cannot be directly instantiated. See
4521 +     * {@link #entrySet}.
4522 +     */
4523 +    public static final class EntrySetView<K,V> extends CHMView<K,V>
4524 +        implements Set<Map.Entry<K,V>> {
4525 +        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4526 +        public final boolean contains(Object o) {
4527 +            Object k, v, r; Map.Entry<?,?> e;
4528 +            return ((o instanceof Map.Entry) &&
4529 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4530 +                    (r = map.get(k)) != null &&
4531 +                    (v = e.getValue()) != null &&
4532 +                    (v == r || v.equals(r)));
4533 +        }
4534 +        public final boolean remove(Object o) {
4535 +            Object k, v; Map.Entry<?,?> e;
4536 +            return ((o instanceof Map.Entry) &&
4537 +                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4538 +                    (v = e.getValue()) != null &&
4539 +                    map.remove(k, v));
4540 +        }
4541 +
4542 +        /**
4543 +         * Returns a "weakly consistent" iterator that will never
4544 +         * throw {@link ConcurrentModificationException}, and
4545 +         * guarantees to traverse elements as they existed upon
4546 +         * construction of the iterator, and may (but is not
4547 +         * guaranteed to) reflect any modifications subsequent to
4548 +         * construction.
4549 +         *
4550 +         * @return an iterator over the entries of this map
4551 +         */
4552 +        public final Iterator<Map.Entry<K,V>> iterator() {
4553 +            return new EntryIterator<K,V>(map);
4554 +        }
4555 +
4556 +        public final boolean add(Entry<K,V> e) {
4557 +            K key = e.getKey();
4558 +            V value = e.getValue();
4559 +            if (key == null || value == null)
4560 +                throw new NullPointerException();
4561 +            return map.internalPut(key, value) == null;
4562 +        }
4563 +        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4564 +            boolean added = false;
4565 +            for (Entry<K,V> e : c) {
4566 +                if (add(e))
4567 +                    added = true;
4568 +            }
4569 +            return added;
4570 +        }
4571 +        public boolean equals(Object o) {
4572 +            Set<?> c;
4573 +            return ((o instanceof Set) &&
4574 +                    ((c = (Set<?>)o) == this ||
4575 +                     (containsAll(c) && c.containsAll(this))));
4576 +        }
4577 +
4578 +        /**
4579 +         * Performs the given action for each entry.
4580 +         *
4581 +         * @param action the action
4582 +         */
4583 +        public void forEach(Action<Map.Entry<K,V>> action) {
4584 +            ForkJoinTasks.forEachEntry
4585 +                (map, action).invoke();
4586 +        }
4587 +
4588 +        /**
4589 +         * Performs the given action for each non-null transformation
4590 +         * of each entry.
4591 +         *
4592 +         * @param transformer a function returning the transformation
4593 +         * for an element, or null of there is no transformation (in
4594 +         * which case the action is not applied).
4595 +         * @param action the action
4596 +         */
4597 +        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4598 +                                Action<U> action) {
4599 +            ForkJoinTasks.forEachEntry
4600 +                (map, transformer, action).invoke();
4601 +        }
4602 +
4603 +        /**
4604 +         * Returns a non-null result from applying the given search
4605 +         * function on each entry, or null if none.  Upon success,
4606 +         * further element processing is suppressed and the results of
4607 +         * any other parallel invocations of the search function are
4608 +         * ignored.
4609 +         *
4610 +         * @param searchFunction a function returning a non-null
4611 +         * result on success, else null
4612 +         * @return a non-null result from applying the given search
4613 +         * function on each entry, or null if none
4614 +         */
4615 +        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4616 +            return ForkJoinTasks.searchEntries
4617 +                (map, searchFunction).invoke();
4618 +        }
4619 +
4620 +        /**
4621 +         * Returns the result of accumulating all entries using the
4622 +         * given reducer to combine values, or null if none.
4623 +         *
4624 +         * @param reducer a commutative associative combining function
4625 +         * @return the result of accumulating all entries
4626 +         */
4627 +        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4628 +            return ForkJoinTasks.reduceEntries
4629 +                (map, reducer).invoke();
4630 +        }
4631 +
4632 +        /**
4633 +         * Returns the result of accumulating the given transformation
4634 +         * of all entries using the given reducer to combine values,
4635 +         * or null if none.
4636 +         *
4637 +         * @param transformer a function returning the transformation
4638 +         * for an element, or null of there is no transformation (in
4639 +         * which case it is not combined).
4640 +         * @param reducer a commutative associative combining function
4641 +         * @return the result of accumulating the given transformation
4642 +         * of all entries
4643 +         */
4644 +        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4645 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4646 +            return ForkJoinTasks.reduceEntries
4647 +                (map, transformer, reducer).invoke();
4648 +        }
4649 +
4650 +        /**
4651 +         * Returns the result of accumulating the given transformation
4652 +         * of all entries using the given reducer to combine values,
4653 +         * and the given basis as an identity value.
4654 +         *
4655 +         * @param transformer a function returning the transformation
4656 +         * for an element
4657 +         * @param basis the identity (initial default value) for the reduction
4658 +         * @param reducer a commutative associative combining function
4659 +         * @return the result of accumulating the given transformation
4660 +         * of all entries
4661 +         */
4662 +        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4663 +                                     double basis,
4664 +                                     DoubleByDoubleToDouble reducer) {
4665 +            return ForkJoinTasks.reduceEntriesToDouble
4666 +                (map, transformer, basis, reducer).invoke();
4667 +        }
4668 +
4669 +        /**
4670 +         * Returns the result of accumulating the given transformation
4671 +         * of all entries using the given reducer to combine values,
4672 +         * and the given basis as an identity value.
4673 +         *
4674 +         * @param transformer a function returning the transformation
4675 +         * for an element
4676 +         * @param basis the identity (initial default value) for the reduction
4677 +         * @param reducer a commutative associative combining function
4678 +         * @return  the result of accumulating the given transformation
4679 +         * of all entries
4680 +         */
4681 +        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4682 +                                 long basis,
4683 +                                 LongByLongToLong reducer) {
4684 +            return ForkJoinTasks.reduceEntriesToLong
4685 +                (map, transformer, basis, reducer).invoke();
4686 +        }
4687 +
4688 +        /**
4689 +         * Returns the result of accumulating the given transformation
4690 +         * of all entries using the given reducer to combine values,
4691 +         * and the given basis as an identity value.
4692 +         *
4693 +         * @param transformer a function returning the transformation
4694 +         * for an element
4695 +         * @param basis the identity (initial default value) for the reduction
4696 +         * @param reducer a commutative associative combining function
4697 +         * @return the result of accumulating the given transformation
4698 +         * of all entries
4699 +         */
4700 +        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4701 +                               int basis,
4702 +                               IntByIntToInt reducer) {
4703 +            return ForkJoinTasks.reduceEntriesToInt
4704 +                (map, transformer, basis, reducer).invoke();
4705 +        }
4706 +
4707 +    }
4708 +
4709 +    // ---------------------------------------------------------------------
4710 +
4711 +    /**
4712 +     * Predefined tasks for performing bulk parallel operations on
4713 +     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4714 +     * for bulk operations. Each method has the same name, but returns
4715 +     * a task rather than invoking it. These methods may be useful in
4716 +     * custom applications such as submitting a task without waiting
4717 +     * for completion, using a custom pool, or combining with other
4718 +     * tasks.
4719 +     */
4720 +    public static class ForkJoinTasks {
4721 +        private ForkJoinTasks() {}
4722 +
4723 +        /**
4724 +         * Returns a task that when invoked, performs the given
4725 +         * action for each (key, value)
4726 +         *
4727 +         * @param map the map
4728 +         * @param action the action
4729 +         * @return the task
4730 +         */
4731 +        public static <K,V> ForkJoinTask<Void> forEach
4732 +            (ConcurrentHashMapV8<K,V> map,
4733 +             BiAction<K,V> action) {
4734 +            if (action == null) throw new NullPointerException();
4735 +            return new ForEachMappingTask<K,V>(map, null, -1, action);
4736 +        }
4737 +
4738 +        /**
4739 +         * Returns a task that when invoked, performs the given
4740 +         * action for each non-null transformation of each (key, value)
4741 +         *
4742 +         * @param map the map
4743 +         * @param transformer a function returning the transformation
4744 +         * for an element, or null if there is no transformation (in
4745 +         * which case the action is not applied)
4746 +         * @param action the action
4747 +         * @return the task
4748 +         */
4749 +        public static <K,V,U> ForkJoinTask<Void> forEach
4750 +            (ConcurrentHashMapV8<K,V> map,
4751 +             BiFun<? super K, ? super V, ? extends U> transformer,
4752 +             Action<U> action) {
4753 +            if (transformer == null || action == null)
4754 +                throw new NullPointerException();
4755 +            return new ForEachTransformedMappingTask<K,V,U>
4756 +                (map, null, -1, transformer, action);
4757 +        }
4758 +
4759 +        /**
4760 +         * Returns a task that when invoked, returns a non-null result
4761 +         * from applying the given search function on each (key,
4762 +         * value), or null if none. Upon success, further element
4763 +         * processing is suppressed and the results of any other
4764 +         * parallel invocations of the search function are ignored.
4765 +         *
4766 +         * @param map the map
4767 +         * @param searchFunction a function returning a non-null
4768 +         * result on success, else null
4769 +         * @return the task
4770 +         */
4771 +        public static <K,V,U> ForkJoinTask<U> search
4772 +            (ConcurrentHashMapV8<K,V> map,
4773 +             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4774 +            if (searchFunction == null) throw new NullPointerException();
4775 +            return new SearchMappingsTask<K,V,U>
4776 +                (map, null, -1, searchFunction,
4777 +                 new AtomicReference<U>());
4778 +        }
4779 +
4780 +        /**
4781 +         * Returns a task that when invoked, returns the result of
4782 +         * accumulating the given transformation of all (key, value) pairs
4783 +         * using the given reducer to combine values, or null if none.
4784 +         *
4785 +         * @param map the map
4786 +         * @param transformer a function returning the transformation
4787 +         * for an element, or null if there is no transformation (in
4788 +         * which case it is not combined).
4789 +         * @param reducer a commutative associative combining function
4790 +         * @return the task
4791 +         */
4792 +        public static <K,V,U> ForkJoinTask<U> reduce
4793 +            (ConcurrentHashMapV8<K,V> map,
4794 +             BiFun<? super K, ? super V, ? extends U> transformer,
4795 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4796 +            if (transformer == null || reducer == null)
4797 +                throw new NullPointerException();
4798 +            return new MapReduceMappingsTask<K,V,U>
4799 +                (map, null, -1, null, transformer, reducer);
4800 +        }
4801 +
4802 +        /**
4803 +         * Returns a task that when invoked, returns the result of
4804 +         * accumulating the given transformation of all (key, value) pairs
4805 +         * using the given reducer to combine values, and the given
4806 +         * basis as an identity value.
4807 +         *
4808 +         * @param map the map
4809 +         * @param transformer a function returning the transformation
4810 +         * for an element
4811 +         * @param basis the identity (initial default value) for the reduction
4812 +         * @param reducer a commutative associative combining function
4813 +         * @return the task
4814 +         */
4815 +        public static <K,V> ForkJoinTask<Double> reduceToDouble
4816 +            (ConcurrentHashMapV8<K,V> map,
4817 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
4818 +             double basis,
4819 +             DoubleByDoubleToDouble reducer) {
4820 +            if (transformer == null || reducer == null)
4821 +                throw new NullPointerException();
4822 +            return new MapReduceMappingsToDoubleTask<K,V>
4823 +                (map, null, -1, null, transformer, basis, reducer);
4824 +        }
4825 +
4826 +        /**
4827 +         * Returns a task that when invoked, returns the result of
4828 +         * accumulating the given transformation of all (key, value) pairs
4829 +         * using the given reducer to combine values, and the given
4830 +         * basis as an identity value.
4831 +         *
4832 +         * @param map the map
4833 +         * @param transformer a function returning the transformation
4834 +         * for an element
4835 +         * @param basis the identity (initial default value) for the reduction
4836 +         * @param reducer a commutative associative combining function
4837 +         * @return the task
4838 +         */
4839 +        public static <K,V> ForkJoinTask<Long> reduceToLong
4840 +            (ConcurrentHashMapV8<K,V> map,
4841 +             ObjectByObjectToLong<? super K, ? super V> transformer,
4842 +             long basis,
4843 +             LongByLongToLong reducer) {
4844 +            if (transformer == null || reducer == null)
4845 +                throw new NullPointerException();
4846 +            return new MapReduceMappingsToLongTask<K,V>
4847 +                (map, null, -1, null, transformer, basis, reducer);
4848 +        }
4849 +
4850 +        /**
4851 +         * Returns a task that when invoked, returns the result of
4852 +         * accumulating the given transformation of all (key, value) pairs
4853 +         * using the given reducer to combine values, and the given
4854 +         * basis as an identity value.
4855 +         *
4856 +         * @param transformer a function returning the transformation
4857 +         * for an element
4858 +         * @param basis the identity (initial default value) for the reduction
4859 +         * @param reducer a commutative associative combining function
4860 +         * @return the task
4861 +         */
4862 +        public static <K,V> ForkJoinTask<Integer> reduceToInt
4863 +            (ConcurrentHashMapV8<K,V> map,
4864 +             ObjectByObjectToInt<? super K, ? super V> transformer,
4865 +             int basis,
4866 +             IntByIntToInt reducer) {
4867 +            if (transformer == null || reducer == null)
4868 +                throw new NullPointerException();
4869 +            return new MapReduceMappingsToIntTask<K,V>
4870 +                (map, null, -1, null, transformer, basis, reducer);
4871 +        }
4872 +
4873 +        /**
4874 +         * Returns a task that when invoked, performs the given action
4875 +         * for each key.
4876 +         *
4877 +         * @param map the map
4878 +         * @param action the action
4879 +         * @return the task
4880 +         */
4881 +        public static <K,V> ForkJoinTask<Void> forEachKey
4882 +            (ConcurrentHashMapV8<K,V> map,
4883 +             Action<K> action) {
4884 +            if (action == null) throw new NullPointerException();
4885 +            return new ForEachKeyTask<K,V>(map, null, -1, action);
4886 +        }
4887 +
4888 +        /**
4889 +         * Returns a task that when invoked, performs the given action
4890 +         * for each non-null transformation of each key.
4891 +         *
4892 +         * @param map the map
4893 +         * @param transformer a function returning the transformation
4894 +         * for an element, or null if there is no transformation (in
4895 +         * which case the action is not applied)
4896 +         * @param action the action
4897 +         * @return the task
4898 +         */
4899 +        public static <K,V,U> ForkJoinTask<Void> forEachKey
4900 +            (ConcurrentHashMapV8<K,V> map,
4901 +             Fun<? super K, ? extends U> transformer,
4902 +             Action<U> action) {
4903 +            if (transformer == null || action == null)
4904 +                throw new NullPointerException();
4905 +            return new ForEachTransformedKeyTask<K,V,U>
4906 +                (map, null, -1, transformer, action);
4907 +        }
4908 +
4909 +        /**
4910 +         * Returns a task that when invoked, returns a non-null result
4911 +         * from applying the given search function on each key, or
4912 +         * null if none.  Upon success, further element processing is
4913 +         * suppressed and the results of any other parallel
4914 +         * invocations of the search function are ignored.
4915 +         *
4916 +         * @param map the map
4917 +         * @param searchFunction a function returning a non-null
4918 +         * result on success, else null
4919 +         * @return the task
4920 +         */
4921 +        public static <K,V,U> ForkJoinTask<U> searchKeys
4922 +            (ConcurrentHashMapV8<K,V> map,
4923 +             Fun<? super K, ? extends U> searchFunction) {
4924 +            if (searchFunction == null) throw new NullPointerException();
4925 +            return new SearchKeysTask<K,V,U>
4926 +                (map, null, -1, searchFunction,
4927 +                 new AtomicReference<U>());
4928 +        }
4929 +
4930 +        /**
4931 +         * Returns a task that when invoked, returns the result of
4932 +         * accumulating all keys using the given reducer to combine
4933 +         * values, or null if none.
4934 +         *
4935 +         * @param map the map
4936 +         * @param reducer a commutative associative combining function
4937 +         * @return the task
4938 +         */
4939 +        public static <K,V> ForkJoinTask<K> reduceKeys
4940 +            (ConcurrentHashMapV8<K,V> map,
4941 +             BiFun<? super K, ? super K, ? extends K> reducer) {
4942 +            if (reducer == null) throw new NullPointerException();
4943 +            return new ReduceKeysTask<K,V>
4944 +                (map, null, -1, null, reducer);
4945 +        }
4946 +
4947 +        /**
4948 +         * Returns a task that when invoked, returns the result of
4949 +         * accumulating the given transformation of all keys using the given
4950 +         * reducer to combine values, or null if none.
4951 +         *
4952 +         * @param map the map
4953 +         * @param transformer a function returning the transformation
4954 +         * for an element, or null if there is no transformation (in
4955 +         * which case it is not combined).
4956 +         * @param reducer a commutative associative combining function
4957 +         * @return the task
4958 +         */
4959 +        public static <K,V,U> ForkJoinTask<U> reduceKeys
4960 +            (ConcurrentHashMapV8<K,V> map,
4961 +             Fun<? super K, ? extends U> transformer,
4962 +             BiFun<? super U, ? super U, ? extends U> reducer) {
4963 +            if (transformer == null || reducer == null)
4964 +                throw new NullPointerException();
4965 +            return new MapReduceKeysTask<K,V,U>
4966 +                (map, null, -1, null, transformer, reducer);
4967 +        }
4968 +
4969 +        /**
4970 +         * Returns a task that when invoked, returns the result of
4971 +         * accumulating the given transformation of all keys using the given
4972 +         * reducer to combine values, and the given basis as an
4973 +         * identity value.
4974 +         *
4975 +         * @param map the map
4976 +         * @param transformer a function returning the transformation
4977 +         * for an element
4978 +         * @param basis the identity (initial default value) for the reduction
4979 +         * @param reducer a commutative associative combining function
4980 +         * @return the task
4981 +         */
4982 +        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4983 +            (ConcurrentHashMapV8<K,V> map,
4984 +             ObjectToDouble<? super K> transformer,
4985 +             double basis,
4986 +             DoubleByDoubleToDouble reducer) {
4987 +            if (transformer == null || reducer == null)
4988 +                throw new NullPointerException();
4989 +            return new MapReduceKeysToDoubleTask<K,V>
4990 +                (map, null, -1, null, transformer, basis, reducer);
4991 +        }
4992 +
4993 +        /**
4994 +         * Returns a task that when invoked, returns the result of
4995 +         * accumulating the given transformation of all keys using the given
4996 +         * reducer to combine values, and the given basis as an
4997 +         * identity value.
4998 +         *
4999 +         * @param map the map
5000 +         * @param transformer a function returning the transformation
5001 +         * for an element
5002 +         * @param basis the identity (initial default value) for the reduction
5003 +         * @param reducer a commutative associative combining function
5004 +         * @return the task
5005 +         */
5006 +        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5007 +            (ConcurrentHashMapV8<K,V> map,
5008 +             ObjectToLong<? super K> transformer,
5009 +             long basis,
5010 +             LongByLongToLong reducer) {
5011 +            if (transformer == null || reducer == null)
5012 +                throw new NullPointerException();
5013 +            return new MapReduceKeysToLongTask<K,V>
5014 +                (map, null, -1, null, transformer, basis, reducer);
5015 +        }
5016 +
5017 +        /**
5018 +         * Returns a task that when invoked, returns the result of
5019 +         * accumulating the given transformation of all keys using the given
5020 +         * reducer to combine values, and the given basis as an
5021 +         * identity value.
5022 +         *
5023 +         * @param map the map
5024 +         * @param transformer a function returning the transformation
5025 +         * for an element
5026 +         * @param basis the identity (initial default value) for the reduction
5027 +         * @param reducer a commutative associative combining function
5028 +         * @return the task
5029 +         */
5030 +        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5031 +            (ConcurrentHashMapV8<K,V> map,
5032 +             ObjectToInt<? super K> transformer,
5033 +             int basis,
5034 +             IntByIntToInt reducer) {
5035 +            if (transformer == null || reducer == null)
5036 +                throw new NullPointerException();
5037 +            return new MapReduceKeysToIntTask<K,V>
5038 +                (map, null, -1, null, transformer, basis, reducer);
5039 +        }
5040 +
5041 +        /**
5042 +         * Returns a task that when invoked, performs the given action
5043 +         * for each value.
5044 +         *
5045 +         * @param map the map
5046 +         * @param action the action
5047 +         */
5048 +        public static <K,V> ForkJoinTask<Void> forEachValue
5049 +            (ConcurrentHashMapV8<K,V> map,
5050 +             Action<V> action) {
5051 +            if (action == null) throw new NullPointerException();
5052 +            return new ForEachValueTask<K,V>(map, null, -1, action);
5053 +        }
5054 +
5055 +        /**
5056 +         * Returns a task that when invoked, performs the given action
5057 +         * for each non-null transformation of each value.
5058 +         *
5059 +         * @param map the map
5060 +         * @param transformer a function returning the transformation
5061 +         * for an element, or null if there is no transformation (in
5062 +         * which case the action is not applied)
5063 +         * @param action the action
5064 +         */
5065 +        public static <K,V,U> ForkJoinTask<Void> forEachValue
5066 +            (ConcurrentHashMapV8<K,V> map,
5067 +             Fun<? super V, ? extends U> transformer,
5068 +             Action<U> action) {
5069 +            if (transformer == null || action == null)
5070 +                throw new NullPointerException();
5071 +            return new ForEachTransformedValueTask<K,V,U>
5072 +                (map, null, -1, transformer, action);
5073 +        }
5074 +
5075 +        /**
5076 +         * Returns a task that when invoked, returns a non-null result
5077 +         * from applying the given search function on each value, or
5078 +         * null if none.  Upon success, further element processing is
5079 +         * suppressed and the results of any other parallel
5080 +         * invocations of the search function are ignored.
5081 +         *
5082 +         * @param map the map
5083 +         * @param searchFunction a function returning a non-null
5084 +         * result on success, else null
5085 +         * @return the task
5086 +         */
5087 +        public static <K,V,U> ForkJoinTask<U> searchValues
5088 +            (ConcurrentHashMapV8<K,V> map,
5089 +             Fun<? super V, ? extends U> searchFunction) {
5090 +            if (searchFunction == null) throw new NullPointerException();
5091 +            return new SearchValuesTask<K,V,U>
5092 +                (map, null, -1, searchFunction,
5093 +                 new AtomicReference<U>());
5094 +        }
5095 +
5096 +        /**
5097 +         * Returns a task that when invoked, returns the result of
5098 +         * accumulating all values using the given reducer to combine
5099 +         * values, or null if none.
5100 +         *
5101 +         * @param map the map
5102 +         * @param reducer a commutative associative combining function
5103 +         * @return the task
5104 +         */
5105 +        public static <K,V> ForkJoinTask<V> reduceValues
5106 +            (ConcurrentHashMapV8<K,V> map,
5107 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5108 +            if (reducer == null) throw new NullPointerException();
5109 +            return new ReduceValuesTask<K,V>
5110 +                (map, null, -1, null, reducer);
5111 +        }
5112 +
5113 +        /**
5114 +         * Returns a task that when invoked, returns the result of
5115 +         * accumulating the given transformation of all values using the
5116 +         * given reducer to combine values, or null if none.
5117 +         *
5118 +         * @param map the map
5119 +         * @param transformer a function returning the transformation
5120 +         * for an element, or null if there is no transformation (in
5121 +         * which case it is not combined).
5122 +         * @param reducer a commutative associative combining function
5123 +         * @return the task
5124 +         */
5125 +        public static <K,V,U> ForkJoinTask<U> reduceValues
5126 +            (ConcurrentHashMapV8<K,V> map,
5127 +             Fun<? super V, ? extends U> transformer,
5128 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5129 +            if (transformer == null || reducer == null)
5130 +                throw new NullPointerException();
5131 +            return new MapReduceValuesTask<K,V,U>
5132 +                (map, null, -1, null, transformer, reducer);
5133 +        }
5134 +
5135 +        /**
5136 +         * Returns a task that when invoked, returns the result of
5137 +         * accumulating the given transformation of all values using the
5138 +         * given reducer to combine values, and the given basis as an
5139 +         * identity value.
5140 +         *
5141 +         * @param map the map
5142 +         * @param transformer a function returning the transformation
5143 +         * for an element
5144 +         * @param basis the identity (initial default value) for the reduction
5145 +         * @param reducer a commutative associative combining function
5146 +         * @return the task
5147 +         */
5148 +        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5149 +            (ConcurrentHashMapV8<K,V> map,
5150 +             ObjectToDouble<? super V> transformer,
5151 +             double basis,
5152 +             DoubleByDoubleToDouble reducer) {
5153 +            if (transformer == null || reducer == null)
5154 +                throw new NullPointerException();
5155 +            return new MapReduceValuesToDoubleTask<K,V>
5156 +                (map, null, -1, null, transformer, basis, reducer);
5157 +        }
5158 +
5159 +        /**
5160 +         * Returns a task that when invoked, returns the result of
5161 +         * accumulating the given transformation of all values using the
5162 +         * given reducer to combine values, and the given basis as an
5163 +         * identity value.
5164 +         *
5165 +         * @param map the map
5166 +         * @param transformer a function returning the transformation
5167 +         * for an element
5168 +         * @param basis the identity (initial default value) for the reduction
5169 +         * @param reducer a commutative associative combining function
5170 +         * @return the task
5171 +         */
5172 +        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5173 +            (ConcurrentHashMapV8<K,V> map,
5174 +             ObjectToLong<? super V> transformer,
5175 +             long basis,
5176 +             LongByLongToLong reducer) {
5177 +            if (transformer == null || reducer == null)
5178 +                throw new NullPointerException();
5179 +            return new MapReduceValuesToLongTask<K,V>
5180 +                (map, null, -1, null, transformer, basis, reducer);
5181 +        }
5182 +
5183 +        /**
5184 +         * Returns a task that when invoked, returns the result of
5185 +         * accumulating the given transformation of all values using the
5186 +         * given reducer to combine values, and the given basis as an
5187 +         * identity value.
5188 +         *
5189 +         * @param map the map
5190 +         * @param transformer a function returning the transformation
5191 +         * for an element
5192 +         * @param basis the identity (initial default value) for the reduction
5193 +         * @param reducer a commutative associative combining function
5194 +         * @return the task
5195 +         */
5196 +        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5197 +            (ConcurrentHashMapV8<K,V> map,
5198 +             ObjectToInt<? super V> transformer,
5199 +             int basis,
5200 +             IntByIntToInt reducer) {
5201 +            if (transformer == null || reducer == null)
5202 +                throw new NullPointerException();
5203 +            return new MapReduceValuesToIntTask<K,V>
5204 +                (map, null, -1, null, transformer, basis, reducer);
5205 +        }
5206 +
5207 +        /**
5208 +         * Returns a task that when invoked, perform the given action
5209 +         * for each entry.
5210 +         *
5211 +         * @param map the map
5212 +         * @param action the action
5213 +         */
5214 +        public static <K,V> ForkJoinTask<Void> forEachEntry
5215 +            (ConcurrentHashMapV8<K,V> map,
5216 +             Action<Map.Entry<K,V>> action) {
5217 +            if (action == null) throw new NullPointerException();
5218 +            return new ForEachEntryTask<K,V>(map, null, -1, action);
5219 +        }
5220 +
5221 +        /**
5222 +         * Returns a task that when invoked, perform the given action
5223 +         * for each non-null transformation of each entry.
5224 +         *
5225 +         * @param map the map
5226 +         * @param transformer a function returning the transformation
5227 +         * for an element, or null if there is no transformation (in
5228 +         * which case the action is not applied)
5229 +         * @param action the action
5230 +         */
5231 +        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5232 +            (ConcurrentHashMapV8<K,V> map,
5233 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5234 +             Action<U> action) {
5235 +            if (transformer == null || action == null)
5236 +                throw new NullPointerException();
5237 +            return new ForEachTransformedEntryTask<K,V,U>
5238 +                (map, null, -1, transformer, action);
5239 +        }
5240 +
5241 +        /**
5242 +         * Returns a task that when invoked, returns a non-null result
5243 +         * from applying the given search function on each entry, or
5244 +         * null if none.  Upon success, further element processing is
5245 +         * suppressed and the results of any other parallel
5246 +         * invocations of the search function are ignored.
5247 +         *
5248 +         * @param map the map
5249 +         * @param searchFunction a function returning a non-null
5250 +         * result on success, else null
5251 +         * @return the task
5252 +         */
5253 +        public static <K,V,U> ForkJoinTask<U> searchEntries
5254 +            (ConcurrentHashMapV8<K,V> map,
5255 +             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5256 +            if (searchFunction == null) throw new NullPointerException();
5257 +            return new SearchEntriesTask<K,V,U>
5258 +                (map, null, -1, searchFunction,
5259 +                 new AtomicReference<U>());
5260 +        }
5261 +
5262 +        /**
5263 +         * Returns a task that when invoked, returns the result of
5264 +         * accumulating all entries using the given reducer to combine
5265 +         * values, or null if none.
5266 +         *
5267 +         * @param map the map
5268 +         * @param reducer a commutative associative combining function
5269 +         * @return the task
5270 +         */
5271 +        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5272 +            (ConcurrentHashMapV8<K,V> map,
5273 +             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5274 +            if (reducer == null) throw new NullPointerException();
5275 +            return new ReduceEntriesTask<K,V>
5276 +                (map, null, -1, null, reducer);
5277 +        }
5278 +
5279 +        /**
5280 +         * Returns a task that when invoked, returns the result of
5281 +         * accumulating the given transformation of all entries using the
5282 +         * given reducer to combine values, or null if none.
5283 +         *
5284 +         * @param map the map
5285 +         * @param transformer a function returning the transformation
5286 +         * for an element, or null if there is no transformation (in
5287 +         * which case it is not combined).
5288 +         * @param reducer a commutative associative combining function
5289 +         * @return the task
5290 +         */
5291 +        public static <K,V,U> ForkJoinTask<U> reduceEntries
5292 +            (ConcurrentHashMapV8<K,V> map,
5293 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5294 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5295 +            if (transformer == null || reducer == null)
5296 +                throw new NullPointerException();
5297 +            return new MapReduceEntriesTask<K,V,U>
5298 +                (map, null, -1, null, transformer, reducer);
5299 +        }
5300 +
5301 +        /**
5302 +         * Returns a task that when invoked, returns the result of
5303 +         * accumulating the given transformation of all entries using the
5304 +         * given reducer to combine values, and the given basis as an
5305 +         * identity value.
5306 +         *
5307 +         * @param map the map
5308 +         * @param transformer a function returning the transformation
5309 +         * for an element
5310 +         * @param basis the identity (initial default value) for the reduction
5311 +         * @param reducer a commutative associative combining function
5312 +         * @return the task
5313 +         */
5314 +        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5315 +            (ConcurrentHashMapV8<K,V> map,
5316 +             ObjectToDouble<Map.Entry<K,V>> transformer,
5317 +             double basis,
5318 +             DoubleByDoubleToDouble reducer) {
5319 +            if (transformer == null || reducer == null)
5320 +                throw new NullPointerException();
5321 +            return new MapReduceEntriesToDoubleTask<K,V>
5322 +                (map, null, -1, null, transformer, basis, reducer);
5323 +        }
5324 +
5325 +        /**
5326 +         * Returns a task that when invoked, returns the result of
5327 +         * accumulating the given transformation of all entries using the
5328 +         * given reducer to combine values, and the given basis as an
5329 +         * identity value.
5330 +         *
5331 +         * @param map the map
5332 +         * @param transformer a function returning the transformation
5333 +         * for an element
5334 +         * @param basis the identity (initial default value) for the reduction
5335 +         * @param reducer a commutative associative combining function
5336 +         * @return the task
5337 +         */
5338 +        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5339 +            (ConcurrentHashMapV8<K,V> map,
5340 +             ObjectToLong<Map.Entry<K,V>> transformer,
5341 +             long basis,
5342 +             LongByLongToLong reducer) {
5343 +            if (transformer == null || reducer == null)
5344 +                throw new NullPointerException();
5345 +            return new MapReduceEntriesToLongTask<K,V>
5346 +                (map, null, -1, null, transformer, basis, reducer);
5347 +        }
5348 +
5349 +        /**
5350 +         * Returns a task that when invoked, returns the result of
5351 +         * accumulating the given transformation of all entries using the
5352 +         * given reducer to combine values, and the given basis as an
5353 +         * identity value.
5354 +         *
5355 +         * @param map the map
5356 +         * @param transformer a function returning the transformation
5357 +         * for an element
5358 +         * @param basis the identity (initial default value) for the reduction
5359 +         * @param reducer a commutative associative combining function
5360 +         * @return the task
5361 +         */
5362 +        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5363 +            (ConcurrentHashMapV8<K,V> map,
5364 +             ObjectToInt<Map.Entry<K,V>> transformer,
5365 +             int basis,
5366 +             IntByIntToInt reducer) {
5367 +            if (transformer == null || reducer == null)
5368 +                throw new NullPointerException();
5369 +            return new MapReduceEntriesToIntTask<K,V>
5370 +                (map, null, -1, null, transformer, basis, reducer);
5371 +        }
5372 +    }
5373 +
5374 +    // -------------------------------------------------------
5375 +
5376 +    /*
5377 +     * Task classes. Coded in a regular but ugly format/style to
5378 +     * simplify checks that each variant differs in the right way from
5379 +     * others.
5380 +     */
5381 +
5382 +    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5383 +        extends Traverser<K,V,Void> {
5384 +        final Action<K> action;
5385 +        ForEachKeyTask
5386 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5387 +             Action<K> action) {
5388 +            super(m, p, b);
5389 +            this.action = action;
5390 +        }
5391 +        @SuppressWarnings("unchecked") public final void compute() {
5392 +            final Action<K> action;
5393 +            if ((action = this.action) == null)
5394 +                throw new NullPointerException();
5395 +            for (int b; (b = preSplit()) > 0;)
5396 +                new ForEachKeyTask<K,V>(map, this, b, action).fork();
5397 +            while (advance() != null)
5398 +                action.apply((K)nextKey);
5399 +            propagateCompletion();
5400 +        }
5401 +    }
5402 +
5403 +    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5404 +        extends Traverser<K,V,Void> {
5405 +        final Action<V> action;
5406 +        ForEachValueTask
5407 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5408 +             Action<V> action) {
5409 +            super(m, p, b);
5410 +            this.action = action;
5411 +        }
5412 +        @SuppressWarnings("unchecked") public final void compute() {
5413 +            final Action<V> action;
5414 +            if ((action = this.action) == null)
5415 +                throw new NullPointerException();
5416 +            for (int b; (b = preSplit()) > 0;)
5417 +                new ForEachValueTask<K,V>(map, this, b, action).fork();
5418 +            Object v;
5419 +            while ((v = advance()) != null)
5420 +                action.apply((V)v);
5421 +            propagateCompletion();
5422 +        }
5423 +    }
5424 +
5425 +    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5426 +        extends Traverser<K,V,Void> {
5427 +        final Action<Entry<K,V>> action;
5428 +        ForEachEntryTask
5429 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5430 +             Action<Entry<K,V>> action) {
5431 +            super(m, p, b);
5432 +            this.action = action;
5433 +        }
5434 +        @SuppressWarnings("unchecked") public final void compute() {
5435 +            final Action<Entry<K,V>> action;
5436 +            if ((action = this.action) == null)
5437 +                throw new NullPointerException();
5438 +            for (int b; (b = preSplit()) > 0;)
5439 +                new ForEachEntryTask<K,V>(map, this, b, action).fork();
5440 +            Object v;
5441 +            while ((v = advance()) != null)
5442 +                action.apply(entryFor((K)nextKey, (V)v));
5443 +            propagateCompletion();
5444 +        }
5445 +    }
5446 +
5447 +    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5448 +        extends Traverser<K,V,Void> {
5449 +        final BiAction<K,V> action;
5450 +        ForEachMappingTask
5451 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5452 +             BiAction<K,V> action) {
5453 +            super(m, p, b);
5454 +            this.action = action;
5455 +        }
5456 +        @SuppressWarnings("unchecked") public final void compute() {
5457 +            final BiAction<K,V> action;
5458 +            if ((action = this.action) == null)
5459 +                throw new NullPointerException();
5460 +            for (int b; (b = preSplit()) > 0;)
5461 +                new ForEachMappingTask<K,V>(map, this, b, action).fork();
5462 +            Object v;
5463 +            while ((v = advance()) != null)
5464 +                action.apply((K)nextKey, (V)v);
5465 +            propagateCompletion();
5466 +        }
5467 +    }
5468 +
5469 +    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5470 +        extends Traverser<K,V,Void> {
5471 +        final Fun<? super K, ? extends U> transformer;
5472 +        final Action<U> action;
5473 +        ForEachTransformedKeyTask
5474 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5475 +             Fun<? super K, ? extends U> transformer, Action<U> action) {
5476 +            super(m, p, b);
5477 +            this.transformer = transformer; this.action = action;
5478 +        }
5479 +        @SuppressWarnings("unchecked") public final void compute() {
5480 +            final Fun<? super K, ? extends U> transformer;
5481 +            final Action<U> action;
5482 +            if ((transformer = this.transformer) == null ||
5483 +                (action = this.action) == null)
5484 +                throw new NullPointerException();
5485 +            for (int b; (b = preSplit()) > 0;)
5486 +                new ForEachTransformedKeyTask<K,V,U>
5487 +                     (map, this, b, transformer, action).fork();
5488 +            U u;
5489 +            while (advance() != null) {
5490 +                if ((u = transformer.apply((K)nextKey)) != null)
5491 +                    action.apply(u);
5492 +            }
5493 +            propagateCompletion();
5494 +        }
5495 +    }
5496 +
5497 +    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5498 +        extends Traverser<K,V,Void> {
5499 +        final Fun<? super V, ? extends U> transformer;
5500 +        final Action<U> action;
5501 +        ForEachTransformedValueTask
5502 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5503 +             Fun<? super V, ? extends U> transformer, Action<U> action) {
5504 +            super(m, p, b);
5505 +            this.transformer = transformer; this.action = action;
5506 +        }
5507 +        @SuppressWarnings("unchecked") public final void compute() {
5508 +            final Fun<? super V, ? extends U> transformer;
5509 +            final Action<U> action;
5510 +            if ((transformer = this.transformer) == null ||
5511 +                (action = this.action) == null)
5512 +                throw new NullPointerException();
5513 +            for (int b; (b = preSplit()) > 0;)
5514 +                new ForEachTransformedValueTask<K,V,U>
5515 +                    (map, this, b, transformer, action).fork();
5516 +            Object v; U u;
5517 +            while ((v = advance()) != null) {
5518 +                if ((u = transformer.apply((V)v)) != null)
5519 +                    action.apply(u);
5520 +            }
5521 +            propagateCompletion();
5522 +        }
5523 +    }
5524 +
5525 +    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5526 +        extends Traverser<K,V,Void> {
5527 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5528 +        final Action<U> action;
5529 +        ForEachTransformedEntryTask
5530 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5531 +             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5532 +            super(m, p, b);
5533 +            this.transformer = transformer; this.action = action;
5534 +        }
5535 +        @SuppressWarnings("unchecked") public final void compute() {
5536 +            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5537 +            final Action<U> action;
5538 +            if ((transformer = this.transformer) == null ||
5539 +                (action = this.action) == null)
5540 +                throw new NullPointerException();
5541 +            for (int b; (b = preSplit()) > 0;)
5542 +                new ForEachTransformedEntryTask<K,V,U>
5543 +                    (map, this, b, transformer, action).fork();
5544 +            Object v; U u;
5545 +            while ((v = advance()) != null) {
5546 +                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5547 +                    action.apply(u);
5548 +            }
5549 +            propagateCompletion();
5550 +        }
5551 +    }
5552 +
5553 +    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5554 +        extends Traverser<K,V,Void> {
5555 +        final BiFun<? super K, ? super V, ? extends U> transformer;
5556 +        final Action<U> action;
5557 +        ForEachTransformedMappingTask
5558 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5559 +             BiFun<? super K, ? super V, ? extends U> transformer,
5560 +             Action<U> action) {
5561 +            super(m, p, b);
5562 +            this.transformer = transformer; this.action = action;
5563 +        }
5564 +        @SuppressWarnings("unchecked") public final void compute() {
5565 +            final BiFun<? super K, ? super V, ? extends U> transformer;
5566 +            final Action<U> action;
5567 +            if ((transformer = this.transformer) == null ||
5568 +                (action = this.action) == null)
5569 +                throw new NullPointerException();
5570 +            for (int b; (b = preSplit()) > 0;)
5571 +                new ForEachTransformedMappingTask<K,V,U>
5572 +                    (map, this, b, transformer, action).fork();
5573 +            Object v; U u;
5574 +            while ((v = advance()) != null) {
5575 +                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5576 +                    action.apply(u);
5577 +            }
5578 +            propagateCompletion();
5579 +        }
5580 +    }
5581 +
5582 +    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5583 +        extends Traverser<K,V,U> {
5584 +        final Fun<? super K, ? extends U> searchFunction;
5585 +        final AtomicReference<U> result;
5586 +        SearchKeysTask
5587 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5588 +             Fun<? super K, ? extends U> searchFunction,
5589 +             AtomicReference<U> result) {
5590 +            super(m, p, b);
5591 +            this.searchFunction = searchFunction; this.result = result;
5592 +        }
5593 +        public final U getRawResult() { return result.get(); }
5594 +        @SuppressWarnings("unchecked") public final void compute() {
5595 +            final Fun<? super K, ? extends U> searchFunction;
5596 +            final AtomicReference<U> result;
5597 +            if ((searchFunction = this.searchFunction) == null ||
5598 +                (result = this.result) == null)
5599 +                throw new NullPointerException();
5600 +            for (int b;;) {
5601 +                if (result.get() != null)
5602 +                    return;
5603 +                if ((b = preSplit()) <= 0)
5604 +                    break;
5605 +                new SearchKeysTask<K,V,U>
5606 +                    (map, this, b, searchFunction, result).fork();
5607 +            }
5608 +            while (result.get() == null) {
5609 +                U u;
5610 +                if (advance() == null) {
5611 +                    propagateCompletion();
5612 +                    break;
5613 +                }
5614 +                if ((u = searchFunction.apply((K)nextKey)) != null) {
5615 +                    if (result.compareAndSet(null, u))
5616 +                        quietlyCompleteRoot();
5617 +                    break;
5618 +                }
5619 +            }
5620 +        }
5621 +    }
5622 +
5623 +    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5624 +        extends Traverser<K,V,U> {
5625 +        final Fun<? super V, ? extends U> searchFunction;
5626 +        final AtomicReference<U> result;
5627 +        SearchValuesTask
5628 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5629 +             Fun<? super V, ? extends U> searchFunction,
5630 +             AtomicReference<U> result) {
5631 +            super(m, p, b);
5632 +            this.searchFunction = searchFunction; this.result = result;
5633 +        }
5634 +        public final U getRawResult() { return result.get(); }
5635 +        @SuppressWarnings("unchecked") public final void compute() {
5636 +            final Fun<? super V, ? extends U> searchFunction;
5637 +            final AtomicReference<U> result;
5638 +            if ((searchFunction = this.searchFunction) == null ||
5639 +                (result = this.result) == null)
5640 +                throw new NullPointerException();
5641 +            for (int b;;) {
5642 +                if (result.get() != null)
5643 +                    return;
5644 +                if ((b = preSplit()) <= 0)
5645 +                    break;
5646 +                new SearchValuesTask<K,V,U>
5647 +                    (map, this, b, searchFunction, result).fork();
5648 +            }
5649 +            while (result.get() == null) {
5650 +                Object v; U u;
5651 +                if ((v = advance()) == null) {
5652 +                    propagateCompletion();
5653 +                    break;
5654 +                }
5655 +                if ((u = searchFunction.apply((V)v)) != null) {
5656 +                    if (result.compareAndSet(null, u))
5657 +                        quietlyCompleteRoot();
5658 +                    break;
5659 +                }
5660 +            }
5661 +        }
5662 +    }
5663 +
5664 +    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5665 +        extends Traverser<K,V,U> {
5666 +        final Fun<Entry<K,V>, ? extends U> searchFunction;
5667 +        final AtomicReference<U> result;
5668 +        SearchEntriesTask
5669 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5670 +             Fun<Entry<K,V>, ? extends U> searchFunction,
5671 +             AtomicReference<U> result) {
5672 +            super(m, p, b);
5673 +            this.searchFunction = searchFunction; this.result = result;
5674 +        }
5675 +        public final U getRawResult() { return result.get(); }
5676 +        @SuppressWarnings("unchecked") public final void compute() {
5677 +            final Fun<Entry<K,V>, ? extends U> searchFunction;
5678 +            final AtomicReference<U> result;
5679 +            if ((searchFunction = this.searchFunction) == null ||
5680 +                (result = this.result) == null)
5681 +                throw new NullPointerException();
5682 +            for (int b;;) {
5683 +                if (result.get() != null)
5684 +                    return;
5685 +                if ((b = preSplit()) <= 0)
5686 +                    break;
5687 +                new SearchEntriesTask<K,V,U>
5688 +                    (map, this, b, searchFunction, result).fork();
5689 +            }
5690 +            while (result.get() == null) {
5691 +                Object v; U u;
5692 +                if ((v = advance()) == null) {
5693 +                    propagateCompletion();
5694 +                    break;
5695 +                }
5696 +                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5697 +                    if (result.compareAndSet(null, u))
5698 +                        quietlyCompleteRoot();
5699 +                    return;
5700 +                }
5701 +            }
5702 +        }
5703 +    }
5704 +
5705 +    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5706 +        extends Traverser<K,V,U> {
5707 +        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5708 +        final AtomicReference<U> result;
5709 +        SearchMappingsTask
5710 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5711 +             BiFun<? super K, ? super V, ? extends U> searchFunction,
5712 +             AtomicReference<U> result) {
5713 +            super(m, p, b);
5714 +            this.searchFunction = searchFunction; this.result = result;
5715 +        }
5716 +        public final U getRawResult() { return result.get(); }
5717 +        @SuppressWarnings("unchecked") public final void compute() {
5718 +            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5719 +            final AtomicReference<U> result;
5720 +            if ((searchFunction = this.searchFunction) == null ||
5721 +                (result = this.result) == null)
5722 +                throw new NullPointerException();
5723 +            for (int b;;) {
5724 +                if (result.get() != null)
5725 +                    return;
5726 +                if ((b = preSplit()) <= 0)
5727 +                    break;
5728 +                new SearchMappingsTask<K,V,U>
5729 +                    (map, this, b, searchFunction, result).fork();
5730 +            }
5731 +            while (result.get() == null) {
5732 +                Object v; U u;
5733 +                if ((v = advance()) == null) {
5734 +                    propagateCompletion();
5735 +                    break;
5736 +                }
5737 +                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5738 +                    if (result.compareAndSet(null, u))
5739 +                        quietlyCompleteRoot();
5740 +                    break;
5741 +                }
5742 +            }
5743 +        }
5744 +    }
5745 +
5746 +    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5747 +        extends Traverser<K,V,K> {
5748 +        final BiFun<? super K, ? super K, ? extends K> reducer;
5749 +        K result;
5750 +        ReduceKeysTask<K,V> rights, nextRight;
5751 +        ReduceKeysTask
5752 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5753 +             ReduceKeysTask<K,V> nextRight,
5754 +             BiFun<? super K, ? super K, ? extends K> reducer) {
5755 +            super(m, p, b); this.nextRight = nextRight;
5756 +            this.reducer = reducer;
5757 +        }
5758 +        public final K getRawResult() { return result; }
5759 +        @SuppressWarnings("unchecked") public final void compute() {
5760 +            final BiFun<? super K, ? super K, ? extends K> reducer =
5761 +                this.reducer;
5762 +            if (reducer == null)
5763 +                throw new NullPointerException();
5764 +            for (int b; (b = preSplit()) > 0;)
5765 +                (rights = new ReduceKeysTask<K,V>
5766 +                 (map, this, b, rights, reducer)).fork();
5767 +            K r = null;
5768 +            while (advance() != null) {
5769 +                K u = (K)nextKey;
5770 +                r = (r == null) ? u : reducer.apply(r, u);
5771 +            }
5772 +            result = r;
5773 +            CountedCompleter<?> c;
5774 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5775 +                ReduceKeysTask<K,V>
5776 +                    t = (ReduceKeysTask<K,V>)c,
5777 +                    s = t.rights;
5778 +                while (s != null) {
5779 +                    K tr, sr;
5780 +                    if ((sr = s.result) != null)
5781 +                        t.result = (((tr = t.result) == null) ? sr :
5782 +                                    reducer.apply(tr, sr));
5783 +                    s = t.rights = s.nextRight;
5784 +                }
5785 +            }
5786 +        }
5787 +    }
5788 +
5789 +    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5790 +        extends Traverser<K,V,V> {
5791 +        final BiFun<? super V, ? super V, ? extends V> reducer;
5792 +        V result;
5793 +        ReduceValuesTask<K,V> rights, nextRight;
5794 +        ReduceValuesTask
5795 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5796 +             ReduceValuesTask<K,V> nextRight,
5797 +             BiFun<? super V, ? super V, ? extends V> reducer) {
5798 +            super(m, p, b); this.nextRight = nextRight;
5799 +            this.reducer = reducer;
5800 +        }
5801 +        public final V getRawResult() { return result; }
5802 +        @SuppressWarnings("unchecked") public final void compute() {
5803 +            final BiFun<? super V, ? super V, ? extends V> reducer =
5804 +                this.reducer;
5805 +            if (reducer == null)
5806 +                throw new NullPointerException();
5807 +            for (int b; (b = preSplit()) > 0;)
5808 +                (rights = new ReduceValuesTask<K,V>
5809 +                 (map, this, b, rights, reducer)).fork();
5810 +            V r = null;
5811 +            Object v;
5812 +            while ((v = advance()) != null) {
5813 +                V u = (V)v;
5814 +                r = (r == null) ? u : reducer.apply(r, u);
5815 +            }
5816 +            result = r;
5817 +            CountedCompleter<?> c;
5818 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5819 +                ReduceValuesTask<K,V>
5820 +                    t = (ReduceValuesTask<K,V>)c,
5821 +                    s = t.rights;
5822 +                while (s != null) {
5823 +                    V tr, sr;
5824 +                    if ((sr = s.result) != null)
5825 +                        t.result = (((tr = t.result) == null) ? sr :
5826 +                                    reducer.apply(tr, sr));
5827 +                    s = t.rights = s.nextRight;
5828 +                }
5829 +            }
5830 +        }
5831 +    }
5832 +
5833 +    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5834 +        extends Traverser<K,V,Map.Entry<K,V>> {
5835 +        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5836 +        Map.Entry<K,V> result;
5837 +        ReduceEntriesTask<K,V> rights, nextRight;
5838 +        ReduceEntriesTask
5839 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5840 +             ReduceEntriesTask<K,V> nextRight,
5841 +             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5842 +            super(m, p, b); this.nextRight = nextRight;
5843 +            this.reducer = reducer;
5844 +        }
5845 +        public final Map.Entry<K,V> getRawResult() { return result; }
5846 +        @SuppressWarnings("unchecked") public final void compute() {
5847 +            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5848 +                this.reducer;
5849 +            if (reducer == null)
5850 +                throw new NullPointerException();
5851 +            for (int b; (b = preSplit()) > 0;)
5852 +                (rights = new ReduceEntriesTask<K,V>
5853 +                 (map, this, b, rights, reducer)).fork();
5854 +            Map.Entry<K,V> r = null;
5855 +            Object v;
5856 +            while ((v = advance()) != null) {
5857 +                Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5858 +                r = (r == null) ? u : reducer.apply(r, u);
5859 +            }
5860 +            result = r;
5861 +            CountedCompleter<?> c;
5862 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5863 +                ReduceEntriesTask<K,V>
5864 +                    t = (ReduceEntriesTask<K,V>)c,
5865 +                    s = t.rights;
5866 +                while (s != null) {
5867 +                    Map.Entry<K,V> tr, sr;
5868 +                    if ((sr = s.result) != null)
5869 +                        t.result = (((tr = t.result) == null) ? sr :
5870 +                                    reducer.apply(tr, sr));
5871 +                    s = t.rights = s.nextRight;
5872 +                }
5873 +            }
5874 +        }
5875 +    }
5876 +
5877 +    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5878 +        extends Traverser<K,V,U> {
5879 +        final Fun<? super K, ? extends U> transformer;
5880 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5881 +        U result;
5882 +        MapReduceKeysTask<K,V,U> rights, nextRight;
5883 +        MapReduceKeysTask
5884 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5885 +             MapReduceKeysTask<K,V,U> nextRight,
5886 +             Fun<? super K, ? extends U> transformer,
5887 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5888 +            super(m, p, b); this.nextRight = nextRight;
5889 +            this.transformer = transformer;
5890 +            this.reducer = reducer;
5891 +        }
5892 +        public final U getRawResult() { return result; }
5893 +        @SuppressWarnings("unchecked") public final void compute() {
5894 +            final Fun<? super K, ? extends U> transformer =
5895 +                this.transformer;
5896 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5897 +                this.reducer;
5898 +            if (transformer == null || reducer == null)
5899 +                throw new NullPointerException();
5900 +            for (int b; (b = preSplit()) > 0;)
5901 +                (rights = new MapReduceKeysTask<K,V,U>
5902 +                 (map, this, b, rights, transformer, reducer)).fork();
5903 +            U r = null, u;
5904 +            while (advance() != null) {
5905 +                if ((u = transformer.apply((K)nextKey)) != null)
5906 +                    r = (r == null) ? u : reducer.apply(r, u);
5907 +            }
5908 +            result = r;
5909 +            CountedCompleter<?> c;
5910 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5911 +                MapReduceKeysTask<K,V,U>
5912 +                    t = (MapReduceKeysTask<K,V,U>)c,
5913 +                    s = t.rights;
5914 +                while (s != null) {
5915 +                    U tr, sr;
5916 +                    if ((sr = s.result) != null)
5917 +                        t.result = (((tr = t.result) == null) ? sr :
5918 +                                    reducer.apply(tr, sr));
5919 +                    s = t.rights = s.nextRight;
5920 +                }
5921 +            }
5922 +        }
5923 +    }
5924 +
5925 +    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5926 +        extends Traverser<K,V,U> {
5927 +        final Fun<? super V, ? extends U> transformer;
5928 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5929 +        U result;
5930 +        MapReduceValuesTask<K,V,U> rights, nextRight;
5931 +        MapReduceValuesTask
5932 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5933 +             MapReduceValuesTask<K,V,U> nextRight,
5934 +             Fun<? super V, ? extends U> transformer,
5935 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5936 +            super(m, p, b); this.nextRight = nextRight;
5937 +            this.transformer = transformer;
5938 +            this.reducer = reducer;
5939 +        }
5940 +        public final U getRawResult() { return result; }
5941 +        @SuppressWarnings("unchecked") public final void compute() {
5942 +            final Fun<? super V, ? extends U> transformer =
5943 +                this.transformer;
5944 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5945 +                this.reducer;
5946 +            if (transformer == null || reducer == null)
5947 +                throw new NullPointerException();
5948 +            for (int b; (b = preSplit()) > 0;)
5949 +                (rights = new MapReduceValuesTask<K,V,U>
5950 +                 (map, this, b, rights, transformer, reducer)).fork();
5951 +            U r = null, u;
5952 +            Object v;
5953 +            while ((v = advance()) != null) {
5954 +                if ((u = transformer.apply((V)v)) != null)
5955 +                    r = (r == null) ? u : reducer.apply(r, u);
5956 +            }
5957 +            result = r;
5958 +            CountedCompleter<?> c;
5959 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5960 +                MapReduceValuesTask<K,V,U>
5961 +                    t = (MapReduceValuesTask<K,V,U>)c,
5962 +                    s = t.rights;
5963 +                while (s != null) {
5964 +                    U tr, sr;
5965 +                    if ((sr = s.result) != null)
5966 +                        t.result = (((tr = t.result) == null) ? sr :
5967 +                                    reducer.apply(tr, sr));
5968 +                    s = t.rights = s.nextRight;
5969 +                }
5970 +            }
5971 +        }
5972 +    }
5973 +
5974 +    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5975 +        extends Traverser<K,V,U> {
5976 +        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5977 +        final BiFun<? super U, ? super U, ? extends U> reducer;
5978 +        U result;
5979 +        MapReduceEntriesTask<K,V,U> rights, nextRight;
5980 +        MapReduceEntriesTask
5981 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5982 +             MapReduceEntriesTask<K,V,U> nextRight,
5983 +             Fun<Map.Entry<K,V>, ? extends U> transformer,
5984 +             BiFun<? super U, ? super U, ? extends U> reducer) {
5985 +            super(m, p, b); this.nextRight = nextRight;
5986 +            this.transformer = transformer;
5987 +            this.reducer = reducer;
5988 +        }
5989 +        public final U getRawResult() { return result; }
5990 +        @SuppressWarnings("unchecked") public final void compute() {
5991 +            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5992 +                this.transformer;
5993 +            final BiFun<? super U, ? super U, ? extends U> reducer =
5994 +                this.reducer;
5995 +            if (transformer == null || reducer == null)
5996 +                throw new NullPointerException();
5997 +            for (int b; (b = preSplit()) > 0;)
5998 +                (rights = new MapReduceEntriesTask<K,V,U>
5999 +                 (map, this, b, rights, transformer, reducer)).fork();
6000 +            U r = null, u;
6001 +            Object v;
6002 +            while ((v = advance()) != null) {
6003 +                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6004 +                    r = (r == null) ? u : reducer.apply(r, u);
6005 +            }
6006 +            result = r;
6007 +            CountedCompleter<?> c;
6008 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6009 +                MapReduceEntriesTask<K,V,U>
6010 +                    t = (MapReduceEntriesTask<K,V,U>)c,
6011 +                    s = t.rights;
6012 +                while (s != null) {
6013 +                    U tr, sr;
6014 +                    if ((sr = s.result) != null)
6015 +                        t.result = (((tr = t.result) == null) ? sr :
6016 +                                    reducer.apply(tr, sr));
6017 +                    s = t.rights = s.nextRight;
6018 +                }
6019 +            }
6020 +        }
6021 +    }
6022 +
6023 +    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6024 +        extends Traverser<K,V,U> {
6025 +        final BiFun<? super K, ? super V, ? extends U> transformer;
6026 +        final BiFun<? super U, ? super U, ? extends U> reducer;
6027 +        U result;
6028 +        MapReduceMappingsTask<K,V,U> rights, nextRight;
6029 +        MapReduceMappingsTask
6030 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6031 +             MapReduceMappingsTask<K,V,U> nextRight,
6032 +             BiFun<? super K, ? super V, ? extends U> transformer,
6033 +             BiFun<? super U, ? super U, ? extends U> reducer) {
6034 +            super(m, p, b); this.nextRight = nextRight;
6035 +            this.transformer = transformer;
6036 +            this.reducer = reducer;
6037 +        }
6038 +        public final U getRawResult() { return result; }
6039 +        @SuppressWarnings("unchecked") public final void compute() {
6040 +            final BiFun<? super K, ? super V, ? extends U> transformer =
6041 +                this.transformer;
6042 +            final BiFun<? super U, ? super U, ? extends U> reducer =
6043 +                this.reducer;
6044 +            if (transformer == null || reducer == null)
6045 +                throw new NullPointerException();
6046 +            for (int b; (b = preSplit()) > 0;)
6047 +                (rights = new MapReduceMappingsTask<K,V,U>
6048 +                 (map, this, b, rights, transformer, reducer)).fork();
6049 +            U r = null, u;
6050 +            Object v;
6051 +            while ((v = advance()) != null) {
6052 +                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6053 +                    r = (r == null) ? u : reducer.apply(r, u);
6054 +            }
6055 +            result = r;
6056 +            CountedCompleter<?> c;
6057 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6058 +                MapReduceMappingsTask<K,V,U>
6059 +                    t = (MapReduceMappingsTask<K,V,U>)c,
6060 +                    s = t.rights;
6061 +                while (s != null) {
6062 +                    U tr, sr;
6063 +                    if ((sr = s.result) != null)
6064 +                        t.result = (((tr = t.result) == null) ? sr :
6065 +                                    reducer.apply(tr, sr));
6066 +                    s = t.rights = s.nextRight;
6067 +                }
6068 +            }
6069 +        }
6070 +    }
6071 +
6072 +    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6073 +        extends Traverser<K,V,Double> {
6074 +        final ObjectToDouble<? super K> transformer;
6075 +        final DoubleByDoubleToDouble reducer;
6076 +        final double basis;
6077 +        double result;
6078 +        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6079 +        MapReduceKeysToDoubleTask
6080 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6081 +             MapReduceKeysToDoubleTask<K,V> nextRight,
6082 +             ObjectToDouble<? super K> transformer,
6083 +             double basis,
6084 +             DoubleByDoubleToDouble reducer) {
6085 +            super(m, p, b); this.nextRight = nextRight;
6086 +            this.transformer = transformer;
6087 +            this.basis = basis; this.reducer = reducer;
6088 +        }
6089 +        public final Double getRawResult() { return result; }
6090 +        @SuppressWarnings("unchecked") public final void compute() {
6091 +            final ObjectToDouble<? super K> transformer =
6092 +                this.transformer;
6093 +            final DoubleByDoubleToDouble reducer = this.reducer;
6094 +            if (transformer == null || reducer == null)
6095 +                throw new NullPointerException();
6096 +            double r = this.basis;
6097 +            for (int b; (b = preSplit()) > 0;)
6098 +                (rights = new MapReduceKeysToDoubleTask<K,V>
6099 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6100 +            while (advance() != null)
6101 +                r = reducer.apply(r, transformer.apply((K)nextKey));
6102 +            result = r;
6103 +            CountedCompleter<?> c;
6104 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6105 +                MapReduceKeysToDoubleTask<K,V>
6106 +                    t = (MapReduceKeysToDoubleTask<K,V>)c,
6107 +                    s = t.rights;
6108 +                while (s != null) {
6109 +                    t.result = reducer.apply(t.result, s.result);
6110 +                    s = t.rights = s.nextRight;
6111 +                }
6112 +            }
6113 +        }
6114 +    }
6115 +
6116 +    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6117 +        extends Traverser<K,V,Double> {
6118 +        final ObjectToDouble<? super V> transformer;
6119 +        final DoubleByDoubleToDouble reducer;
6120 +        final double basis;
6121 +        double result;
6122 +        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6123 +        MapReduceValuesToDoubleTask
6124 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6125 +             MapReduceValuesToDoubleTask<K,V> nextRight,
6126 +             ObjectToDouble<? super V> transformer,
6127 +             double basis,
6128 +             DoubleByDoubleToDouble reducer) {
6129 +            super(m, p, b); this.nextRight = nextRight;
6130 +            this.transformer = transformer;
6131 +            this.basis = basis; this.reducer = reducer;
6132 +        }
6133 +        public final Double getRawResult() { return result; }
6134 +        @SuppressWarnings("unchecked") public final void compute() {
6135 +            final ObjectToDouble<? super V> transformer =
6136 +                this.transformer;
6137 +            final DoubleByDoubleToDouble reducer = this.reducer;
6138 +            if (transformer == null || reducer == null)
6139 +                throw new NullPointerException();
6140 +            double r = this.basis;
6141 +            for (int b; (b = preSplit()) > 0;)
6142 +                (rights = new MapReduceValuesToDoubleTask<K,V>
6143 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6144 +            Object v;
6145 +            while ((v = advance()) != null)
6146 +                r = reducer.apply(r, transformer.apply((V)v));
6147 +            result = r;
6148 +            CountedCompleter<?> c;
6149 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6150 +                MapReduceValuesToDoubleTask<K,V>
6151 +                    t = (MapReduceValuesToDoubleTask<K,V>)c,
6152 +                    s = t.rights;
6153 +                while (s != null) {
6154 +                    t.result = reducer.apply(t.result, s.result);
6155 +                    s = t.rights = s.nextRight;
6156 +                }
6157 +            }
6158 +        }
6159 +    }
6160 +
6161 +    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6162 +        extends Traverser<K,V,Double> {
6163 +        final ObjectToDouble<Map.Entry<K,V>> transformer;
6164 +        final DoubleByDoubleToDouble reducer;
6165 +        final double basis;
6166 +        double result;
6167 +        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6168 +        MapReduceEntriesToDoubleTask
6169 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6170 +             MapReduceEntriesToDoubleTask<K,V> nextRight,
6171 +             ObjectToDouble<Map.Entry<K,V>> transformer,
6172 +             double basis,
6173 +             DoubleByDoubleToDouble reducer) {
6174 +            super(m, p, b); this.nextRight = nextRight;
6175 +            this.transformer = transformer;
6176 +            this.basis = basis; this.reducer = reducer;
6177 +        }
6178 +        public final Double getRawResult() { return result; }
6179 +        @SuppressWarnings("unchecked") public final void compute() {
6180 +            final ObjectToDouble<Map.Entry<K,V>> transformer =
6181 +                this.transformer;
6182 +            final DoubleByDoubleToDouble reducer = this.reducer;
6183 +            if (transformer == null || reducer == null)
6184 +                throw new NullPointerException();
6185 +            double r = this.basis;
6186 +            for (int b; (b = preSplit()) > 0;)
6187 +                (rights = new MapReduceEntriesToDoubleTask<K,V>
6188 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6189 +            Object v;
6190 +            while ((v = advance()) != null)
6191 +                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6192 +            result = r;
6193 +            CountedCompleter<?> c;
6194 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6195 +                MapReduceEntriesToDoubleTask<K,V>
6196 +                    t = (MapReduceEntriesToDoubleTask<K,V>)c,
6197 +                    s = t.rights;
6198 +                while (s != null) {
6199 +                    t.result = reducer.apply(t.result, s.result);
6200 +                    s = t.rights = s.nextRight;
6201 +                }
6202 +            }
6203 +        }
6204 +    }
6205 +
6206 +    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6207 +        extends Traverser<K,V,Double> {
6208 +        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6209 +        final DoubleByDoubleToDouble reducer;
6210 +        final double basis;
6211 +        double result;
6212 +        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6213 +        MapReduceMappingsToDoubleTask
6214 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6215 +             MapReduceMappingsToDoubleTask<K,V> nextRight,
6216 +             ObjectByObjectToDouble<? super K, ? super V> transformer,
6217 +             double basis,
6218 +             DoubleByDoubleToDouble reducer) {
6219 +            super(m, p, b); this.nextRight = nextRight;
6220 +            this.transformer = transformer;
6221 +            this.basis = basis; this.reducer = reducer;
6222 +        }
6223 +        public final Double getRawResult() { return result; }
6224 +        @SuppressWarnings("unchecked") public final void compute() {
6225 +            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6226 +                this.transformer;
6227 +            final DoubleByDoubleToDouble reducer = this.reducer;
6228 +            if (transformer == null || reducer == null)
6229 +                throw new NullPointerException();
6230 +            double r = this.basis;
6231 +            for (int b; (b = preSplit()) > 0;)
6232 +                (rights = new MapReduceMappingsToDoubleTask<K,V>
6233 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6234 +            Object v;
6235 +            while ((v = advance()) != null)
6236 +                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6237 +            result = r;
6238 +            CountedCompleter<?> c;
6239 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6240 +                MapReduceMappingsToDoubleTask<K,V>
6241 +                    t = (MapReduceMappingsToDoubleTask<K,V>)c,
6242 +                    s = t.rights;
6243 +                while (s != null) {
6244 +                    t.result = reducer.apply(t.result, s.result);
6245 +                    s = t.rights = s.nextRight;
6246 +                }
6247 +            }
6248 +        }
6249 +    }
6250 +
6251 +    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6252 +        extends Traverser<K,V,Long> {
6253 +        final ObjectToLong<? super K> transformer;
6254 +        final LongByLongToLong reducer;
6255 +        final long basis;
6256 +        long result;
6257 +        MapReduceKeysToLongTask<K,V> rights, nextRight;
6258 +        MapReduceKeysToLongTask
6259 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6260 +             MapReduceKeysToLongTask<K,V> nextRight,
6261 +             ObjectToLong<? super K> transformer,
6262 +             long basis,
6263 +             LongByLongToLong reducer) {
6264 +            super(m, p, b); this.nextRight = nextRight;
6265 +            this.transformer = transformer;
6266 +            this.basis = basis; this.reducer = reducer;
6267 +        }
6268 +        public final Long getRawResult() { return result; }
6269 +        @SuppressWarnings("unchecked") public final void compute() {
6270 +            final ObjectToLong<? super K> transformer =
6271 +                this.transformer;
6272 +            final LongByLongToLong reducer = this.reducer;
6273 +            if (transformer == null || reducer == null)
6274 +                throw new NullPointerException();
6275 +            long r = this.basis;
6276 +            for (int b; (b = preSplit()) > 0;)
6277 +                (rights = new MapReduceKeysToLongTask<K,V>
6278 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6279 +            while (advance() != null)
6280 +                r = reducer.apply(r, transformer.apply((K)nextKey));
6281 +            result = r;
6282 +            CountedCompleter<?> c;
6283 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6284 +                MapReduceKeysToLongTask<K,V>
6285 +                    t = (MapReduceKeysToLongTask<K,V>)c,
6286 +                    s = t.rights;
6287 +                while (s != null) {
6288 +                    t.result = reducer.apply(t.result, s.result);
6289 +                    s = t.rights = s.nextRight;
6290 +                }
6291 +            }
6292 +        }
6293 +    }
6294 +
6295 +    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6296 +        extends Traverser<K,V,Long> {
6297 +        final ObjectToLong<? super V> transformer;
6298 +        final LongByLongToLong reducer;
6299 +        final long basis;
6300 +        long result;
6301 +        MapReduceValuesToLongTask<K,V> rights, nextRight;
6302 +        MapReduceValuesToLongTask
6303 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6304 +             MapReduceValuesToLongTask<K,V> nextRight,
6305 +             ObjectToLong<? super V> transformer,
6306 +             long basis,
6307 +             LongByLongToLong reducer) {
6308 +            super(m, p, b); this.nextRight = nextRight;
6309 +            this.transformer = transformer;
6310 +            this.basis = basis; this.reducer = reducer;
6311 +        }
6312 +        public final Long getRawResult() { return result; }
6313 +        @SuppressWarnings("unchecked") public final void compute() {
6314 +            final ObjectToLong<? super V> transformer =
6315 +                this.transformer;
6316 +            final LongByLongToLong reducer = this.reducer;
6317 +            if (transformer == null || reducer == null)
6318 +                throw new NullPointerException();
6319 +            long r = this.basis;
6320 +            for (int b; (b = preSplit()) > 0;)
6321 +                (rights = new MapReduceValuesToLongTask<K,V>
6322 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6323 +            Object v;
6324 +            while ((v = advance()) != null)
6325 +                r = reducer.apply(r, transformer.apply((V)v));
6326 +            result = r;
6327 +            CountedCompleter<?> c;
6328 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6329 +                MapReduceValuesToLongTask<K,V>
6330 +                    t = (MapReduceValuesToLongTask<K,V>)c,
6331 +                    s = t.rights;
6332 +                while (s != null) {
6333 +                    t.result = reducer.apply(t.result, s.result);
6334 +                    s = t.rights = s.nextRight;
6335 +                }
6336 +            }
6337 +        }
6338 +    }
6339 +
6340 +    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6341 +        extends Traverser<K,V,Long> {
6342 +        final ObjectToLong<Map.Entry<K,V>> transformer;
6343 +        final LongByLongToLong reducer;
6344 +        final long basis;
6345 +        long result;
6346 +        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6347 +        MapReduceEntriesToLongTask
6348 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6349 +             MapReduceEntriesToLongTask<K,V> nextRight,
6350 +             ObjectToLong<Map.Entry<K,V>> transformer,
6351 +             long basis,
6352 +             LongByLongToLong reducer) {
6353 +            super(m, p, b); this.nextRight = nextRight;
6354 +            this.transformer = transformer;
6355 +            this.basis = basis; this.reducer = reducer;
6356 +        }
6357 +        public final Long getRawResult() { return result; }
6358 +        @SuppressWarnings("unchecked") public final void compute() {
6359 +            final ObjectToLong<Map.Entry<K,V>> transformer =
6360 +                this.transformer;
6361 +            final LongByLongToLong reducer = this.reducer;
6362 +            if (transformer == null || reducer == null)
6363 +                throw new NullPointerException();
6364 +            long r = this.basis;
6365 +            for (int b; (b = preSplit()) > 0;)
6366 +                (rights = new MapReduceEntriesToLongTask<K,V>
6367 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6368 +            Object v;
6369 +            while ((v = advance()) != null)
6370 +                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6371 +            result = r;
6372 +            CountedCompleter<?> c;
6373 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6374 +                MapReduceEntriesToLongTask<K,V>
6375 +                    t = (MapReduceEntriesToLongTask<K,V>)c,
6376 +                    s = t.rights;
6377 +                while (s != null) {
6378 +                    t.result = reducer.apply(t.result, s.result);
6379 +                    s = t.rights = s.nextRight;
6380 +                }
6381 +            }
6382 +        }
6383 +    }
6384 +
6385 +    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6386 +        extends Traverser<K,V,Long> {
6387 +        final ObjectByObjectToLong<? super K, ? super V> transformer;
6388 +        final LongByLongToLong reducer;
6389 +        final long basis;
6390 +        long result;
6391 +        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6392 +        MapReduceMappingsToLongTask
6393 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6394 +             MapReduceMappingsToLongTask<K,V> nextRight,
6395 +             ObjectByObjectToLong<? super K, ? super V> transformer,
6396 +             long basis,
6397 +             LongByLongToLong reducer) {
6398 +            super(m, p, b); this.nextRight = nextRight;
6399 +            this.transformer = transformer;
6400 +            this.basis = basis; this.reducer = reducer;
6401 +        }
6402 +        public final Long getRawResult() { return result; }
6403 +        @SuppressWarnings("unchecked") public final void compute() {
6404 +            final ObjectByObjectToLong<? super K, ? super V> transformer =
6405 +                this.transformer;
6406 +            final LongByLongToLong reducer = this.reducer;
6407 +            if (transformer == null || reducer == null)
6408 +                throw new NullPointerException();
6409 +            long r = this.basis;
6410 +            for (int b; (b = preSplit()) > 0;)
6411 +                (rights = new MapReduceMappingsToLongTask<K,V>
6412 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6413 +            Object v;
6414 +            while ((v = advance()) != null)
6415 +                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6416 +            result = r;
6417 +            CountedCompleter<?> c;
6418 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6419 +                MapReduceMappingsToLongTask<K,V>
6420 +                    t = (MapReduceMappingsToLongTask<K,V>)c,
6421 +                    s = t.rights;
6422 +                while (s != null) {
6423 +                    t.result = reducer.apply(t.result, s.result);
6424 +                    s = t.rights = s.nextRight;
6425 +                }
6426 +            }
6427 +        }
6428 +    }
6429 +
6430 +    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6431 +        extends Traverser<K,V,Integer> {
6432 +        final ObjectToInt<? super K> transformer;
6433 +        final IntByIntToInt reducer;
6434 +        final int basis;
6435 +        int result;
6436 +        MapReduceKeysToIntTask<K,V> rights, nextRight;
6437 +        MapReduceKeysToIntTask
6438 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6439 +             MapReduceKeysToIntTask<K,V> nextRight,
6440 +             ObjectToInt<? super K> transformer,
6441 +             int basis,
6442 +             IntByIntToInt reducer) {
6443 +            super(m, p, b); this.nextRight = nextRight;
6444 +            this.transformer = transformer;
6445 +            this.basis = basis; this.reducer = reducer;
6446 +        }
6447 +        public final Integer getRawResult() { return result; }
6448 +        @SuppressWarnings("unchecked") public final void compute() {
6449 +            final ObjectToInt<? super K> transformer =
6450 +                this.transformer;
6451 +            final IntByIntToInt reducer = this.reducer;
6452 +            if (transformer == null || reducer == null)
6453 +                throw new NullPointerException();
6454 +            int r = this.basis;
6455 +            for (int b; (b = preSplit()) > 0;)
6456 +                (rights = new MapReduceKeysToIntTask<K,V>
6457 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6458 +            while (advance() != null)
6459 +                r = reducer.apply(r, transformer.apply((K)nextKey));
6460 +            result = r;
6461 +            CountedCompleter<?> c;
6462 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6463 +                MapReduceKeysToIntTask<K,V>
6464 +                    t = (MapReduceKeysToIntTask<K,V>)c,
6465 +                    s = t.rights;
6466 +                while (s != null) {
6467 +                    t.result = reducer.apply(t.result, s.result);
6468 +                    s = t.rights = s.nextRight;
6469 +                }
6470 +            }
6471 +        }
6472 +    }
6473 +
6474 +    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6475 +        extends Traverser<K,V,Integer> {
6476 +        final ObjectToInt<? super V> transformer;
6477 +        final IntByIntToInt reducer;
6478 +        final int basis;
6479 +        int result;
6480 +        MapReduceValuesToIntTask<K,V> rights, nextRight;
6481 +        MapReduceValuesToIntTask
6482 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6483 +             MapReduceValuesToIntTask<K,V> nextRight,
6484 +             ObjectToInt<? super V> transformer,
6485 +             int basis,
6486 +             IntByIntToInt reducer) {
6487 +            super(m, p, b); this.nextRight = nextRight;
6488 +            this.transformer = transformer;
6489 +            this.basis = basis; this.reducer = reducer;
6490 +        }
6491 +        public final Integer getRawResult() { return result; }
6492 +        @SuppressWarnings("unchecked") public final void compute() {
6493 +            final ObjectToInt<? super V> transformer =
6494 +                this.transformer;
6495 +            final IntByIntToInt reducer = this.reducer;
6496 +            if (transformer == null || reducer == null)
6497 +                throw new NullPointerException();
6498 +            int r = this.basis;
6499 +            for (int b; (b = preSplit()) > 0;)
6500 +                (rights = new MapReduceValuesToIntTask<K,V>
6501 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6502 +            Object v;
6503 +            while ((v = advance()) != null)
6504 +                r = reducer.apply(r, transformer.apply((V)v));
6505 +            result = r;
6506 +            CountedCompleter<?> c;
6507 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6508 +                MapReduceValuesToIntTask<K,V>
6509 +                    t = (MapReduceValuesToIntTask<K,V>)c,
6510 +                    s = t.rights;
6511 +                while (s != null) {
6512 +                    t.result = reducer.apply(t.result, s.result);
6513 +                    s = t.rights = s.nextRight;
6514 +                }
6515 +            }
6516 +        }
6517 +    }
6518 +
6519 +    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6520 +        extends Traverser<K,V,Integer> {
6521 +        final ObjectToInt<Map.Entry<K,V>> transformer;
6522 +        final IntByIntToInt reducer;
6523 +        final int basis;
6524 +        int result;
6525 +        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6526 +        MapReduceEntriesToIntTask
6527 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6528 +             MapReduceEntriesToIntTask<K,V> nextRight,
6529 +             ObjectToInt<Map.Entry<K,V>> transformer,
6530 +             int basis,
6531 +             IntByIntToInt reducer) {
6532 +            super(m, p, b); this.nextRight = nextRight;
6533 +            this.transformer = transformer;
6534 +            this.basis = basis; this.reducer = reducer;
6535 +        }
6536 +        public final Integer getRawResult() { return result; }
6537 +        @SuppressWarnings("unchecked") public final void compute() {
6538 +            final ObjectToInt<Map.Entry<K,V>> transformer =
6539 +                this.transformer;
6540 +            final IntByIntToInt reducer = this.reducer;
6541 +            if (transformer == null || reducer == null)
6542 +                throw new NullPointerException();
6543 +            int r = this.basis;
6544 +            for (int b; (b = preSplit()) > 0;)
6545 +                (rights = new MapReduceEntriesToIntTask<K,V>
6546 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6547 +            Object v;
6548 +            while ((v = advance()) != null)
6549 +                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6550 +            result = r;
6551 +            CountedCompleter<?> c;
6552 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6553 +                MapReduceEntriesToIntTask<K,V>
6554 +                    t = (MapReduceEntriesToIntTask<K,V>)c,
6555 +                    s = t.rights;
6556 +                while (s != null) {
6557 +                    t.result = reducer.apply(t.result, s.result);
6558 +                    s = t.rights = s.nextRight;
6559 +                }
6560 +            }
6561 +        }
6562 +    }
6563 +
6564 +    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6565 +        extends Traverser<K,V,Integer> {
6566 +        final ObjectByObjectToInt<? super K, ? super V> transformer;
6567 +        final IntByIntToInt reducer;
6568 +        final int basis;
6569 +        int result;
6570 +        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6571 +        MapReduceMappingsToIntTask
6572 +            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6573 +             MapReduceMappingsToIntTask<K,V> nextRight,
6574 +             ObjectByObjectToInt<? super K, ? super V> transformer,
6575 +             int basis,
6576 +             IntByIntToInt reducer) {
6577 +            super(m, p, b); this.nextRight = nextRight;
6578 +            this.transformer = transformer;
6579 +            this.basis = basis; this.reducer = reducer;
6580 +        }
6581 +        public final Integer getRawResult() { return result; }
6582 +        @SuppressWarnings("unchecked") public final void compute() {
6583 +            final ObjectByObjectToInt<? super K, ? super V> transformer =
6584 +                this.transformer;
6585 +            final IntByIntToInt reducer = this.reducer;
6586 +            if (transformer == null || reducer == null)
6587 +                throw new NullPointerException();
6588 +            int r = this.basis;
6589 +            for (int b; (b = preSplit()) > 0;)
6590 +                (rights = new MapReduceMappingsToIntTask<K,V>
6591 +                 (map, this, b, rights, transformer, r, reducer)).fork();
6592 +            Object v;
6593 +            while ((v = advance()) != null)
6594 +                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6595 +            result = r;
6596 +            CountedCompleter<?> c;
6597 +            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6598 +                MapReduceMappingsToIntTask<K,V>
6599 +                    t = (MapReduceMappingsToIntTask<K,V>)c,
6600 +                    s = t.rights;
6601 +                while (s != null) {
6602 +                    t.result = reducer.apply(t.result, s.result);
6603 +                    s = t.rights = s.nextRight;
6604 +                }
6605 +            }
6606 +        }
6607 +    }
6608 +
6609      // Unsafe mechanics
6610      private static final sun.misc.Unsafe UNSAFE;
6611      private static final long counterOffset;
6612 <    private static final long resizingOffset;
6612 >    private static final long sizeCtlOffset;
6613      private static final long ABASE;
6614      private static final int ASHIFT;
6615  
# Line 1695 | Line 6620 | public class ConcurrentHashMapV8<K, V>
6620              Class<?> k = ConcurrentHashMapV8.class;
6621              counterOffset = UNSAFE.objectFieldOffset
6622                  (k.getDeclaredField("counter"));
6623 <            resizingOffset = UNSAFE.objectFieldOffset
6624 <                (k.getDeclaredField("resizing"));
6623 >            sizeCtlOffset = UNSAFE.objectFieldOffset
6624 >                (k.getDeclaredField("sizeCtl"));
6625              Class<?> sc = Node[].class;
6626              ABASE = UNSAFE.arrayBaseOffset(sc);
6627              ss = UNSAFE.arrayIndexScale(sc);
# Line 1735 | Line 6660 | public class ConcurrentHashMapV8<K, V>
6660              }
6661          }
6662      }
1738
6663   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines