ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.31 by jsr166, Tue Oct 25 20:26:37 2011 UTC vs.
Revision 1.81 by dl, Sat Dec 8 14:10:38 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166e;
8 < import jsr166e.LongAdder;
8 >
9 > import java.util.Comparator;
10   import java.util.Arrays;
11   import java.util.Map;
12   import java.util.Set;
# Line 20 | Line 21 | import java.util.Enumeration;
21   import java.util.ConcurrentModificationException;
22   import java.util.NoSuchElementException;
23   import java.util.concurrent.ConcurrentMap;
24 + import java.util.concurrent.ThreadLocalRandom;
25   import java.util.concurrent.locks.LockSupport;
26 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
27 + import java.util.concurrent.atomic.AtomicReference;
28 +
29 + import java.io.Serializable;
30 +
31 + import java.util.Comparator;
32 + import java.util.Arrays;
33 + import java.util.Map;
34 + import java.util.Set;
35 + import java.util.Collection;
36 + import java.util.AbstractMap;
37 + import java.util.AbstractSet;
38 + import java.util.AbstractCollection;
39 + import java.util.Hashtable;
40 + import java.util.HashMap;
41 + import java.util.Iterator;
42 + import java.util.Enumeration;
43 + import java.util.ConcurrentModificationException;
44 + import java.util.NoSuchElementException;
45 + import java.util.concurrent.ConcurrentMap;
46 + import java.util.concurrent.ThreadLocalRandom;
47 + import java.util.concurrent.locks.LockSupport;
48 + import java.util.concurrent.locks.AbstractQueuedSynchronizer;
49 + import java.util.concurrent.atomic.AtomicReference;
50 +
51   import java.io.Serializable;
52  
53   /**
# Line 35 | Line 62 | import java.io.Serializable;
62   * interoperable with {@code Hashtable} in programs that rely on its
63   * thread safety but not on its synchronization details.
64   *
65 < * <p> Retrieval operations (including {@code get}) generally do not
65 > * <p>Retrieval operations (including {@code get}) generally do not
66   * block, so may overlap with update operations (including {@code put}
67   * and {@code remove}). Retrievals reflect the results of the most
68   * recently <em>completed</em> update operations holding upon their
69 < * onset.  For aggregate operations such as {@code putAll} and {@code
70 < * clear}, concurrent retrievals may reflect insertion or removal of
71 < * only some entries.  Similarly, Iterators and Enumerations return
72 < * elements reflecting the state of the hash table at some point at or
73 < * since the creation of the iterator/enumeration.  They do
74 < * <em>not</em> throw {@link ConcurrentModificationException}.
75 < * However, iterators are designed to be used by only one thread at a
76 < * time.  Bear in mind that the results of aggregate status methods
77 < * including {@code size}, {@code isEmpty}, and {@code containsValue}
78 < * are typically useful only when a map is not undergoing concurrent
79 < * updates in other threads.  Otherwise the results of these methods
80 < * reflect transient states that may be adequate for monitoring
81 < * or estimation purposes, but not for program control.
69 > * onset. (More formally, an update operation for a given key bears a
70 > * <em>happens-before</em> relation with any (non-null) retrieval for
71 > * that key reporting the updated value.)  For aggregate operations
72 > * such as {@code putAll} and {@code clear}, concurrent retrievals may
73 > * reflect insertion or removal of only some entries.  Similarly,
74 > * Iterators and Enumerations return elements reflecting the state of
75 > * the hash table at some point at or since the creation of the
76 > * iterator/enumeration.  They do <em>not</em> throw {@link
77 > * ConcurrentModificationException}.  However, iterators are designed
78 > * to be used by only one thread at a time.  Bear in mind that the
79 > * results of aggregate status methods including {@code size}, {@code
80 > * isEmpty}, and {@code containsValue} are typically useful only when
81 > * a map is not undergoing concurrent updates in other threads.
82 > * Otherwise the results of these methods reflect transient states
83 > * that may be adequate for monitoring or estimation purposes, but not
84 > * for program control.
85   *
86 < * <p> The table is dynamically expanded when there are too many
86 > * <p>The table is dynamically expanded when there are too many
87   * collisions (i.e., keys that have distinct hash codes but fall into
88   * the same slot modulo the table size), with the expected average
89   * effect of maintaining roughly two bins per mapping (corresponding
# Line 74 | Line 104 | import java.io.Serializable;
104   * {@code hashCode()} is a sure way to slow down performance of any
105   * hash table.
106   *
107 + * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
108 + * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
109 + * (using {@link #keySet(Object)} when only keys are of interest, and the
110 + * mapped values are (perhaps transiently) not used or all take the
111 + * same mapping value.
112 + *
113 + * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
114 + * form of histogram or multiset) by using {@link LongAdder} values
115 + * and initializing via {@link #computeIfAbsent}. For example, to add
116 + * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
117 + * can use {@code freqs.computeIfAbsent(k -> new
118 + * LongAdder()).increment();}
119 + *
120   * <p>This class and its views and iterators implement all of the
121   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
122   * interfaces.
123   *
124 < * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
124 > * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
125   * does <em>not</em> allow {@code null} to be used as a key or value.
126   *
127 + * <p>ConcurrentHashMapV8s support parallel operations using the {@link
128 + * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
129 + * are available in class {@link ForkJoinTasks}). These operations are
130 + * designed to be safely, and often sensibly, applied even with maps
131 + * that are being concurrently updated by other threads; for example,
132 + * when computing a snapshot summary of the values in a shared
133 + * registry.  There are three kinds of operation, each with four
134 + * forms, accepting functions with Keys, Values, Entries, and (Key,
135 + * Value) arguments and/or return values. (The first three forms are
136 + * also available via the {@link #keySet()}, {@link #values()} and
137 + * {@link #entrySet()} views). Because the elements of a
138 + * ConcurrentHashMapV8 are not ordered in any particular way, and may be
139 + * processed in different orders in different parallel executions, the
140 + * correctness of supplied functions should not depend on any
141 + * ordering, or on any other objects or values that may transiently
142 + * change while computation is in progress; and except for forEach
143 + * actions, should ideally be side-effect-free.
144 + *
145 + * <ul>
146 + * <li> forEach: Perform a given action on each element.
147 + * A variant form applies a given transformation on each element
148 + * before performing the action.</li>
149 + *
150 + * <li> search: Return the first available non-null result of
151 + * applying a given function on each element; skipping further
152 + * search when a result is found.</li>
153 + *
154 + * <li> reduce: Accumulate each element.  The supplied reduction
155 + * function cannot rely on ordering (more formally, it should be
156 + * both associative and commutative).  There are five variants:
157 + *
158 + * <ul>
159 + *
160 + * <li> Plain reductions. (There is not a form of this method for
161 + * (key, value) function arguments since there is no corresponding
162 + * return type.)</li>
163 + *
164 + * <li> Mapped reductions that accumulate the results of a given
165 + * function applied to each element.</li>
166 + *
167 + * <li> Reductions to scalar doubles, longs, and ints, using a
168 + * given basis value.</li>
169 + *
170 + * </li>
171 + * </ul>
172 + * </ul>
173 + *
174 + * <p>The concurrency properties of bulk operations follow
175 + * from those of ConcurrentHashMapV8: Any non-null result returned
176 + * from {@code get(key)} and related access methods bears a
177 + * happens-before relation with the associated insertion or
178 + * update.  The result of any bulk operation reflects the
179 + * composition of these per-element relations (but is not
180 + * necessarily atomic with respect to the map as a whole unless it
181 + * is somehow known to be quiescent).  Conversely, because keys
182 + * and values in the map are never null, null serves as a reliable
183 + * atomic indicator of the current lack of any result.  To
184 + * maintain this property, null serves as an implicit basis for
185 + * all non-scalar reduction operations. For the double, long, and
186 + * int versions, the basis should be one that, when combined with
187 + * any other value, returns that other value (more formally, it
188 + * should be the identity element for the reduction). Most common
189 + * reductions have these properties; for example, computing a sum
190 + * with basis 0 or a minimum with basis MAX_VALUE.
191 + *
192 + * <p>Search and transformation functions provided as arguments
193 + * should similarly return null to indicate the lack of any result
194 + * (in which case it is not used). In the case of mapped
195 + * reductions, this also enables transformations to serve as
196 + * filters, returning null (or, in the case of primitive
197 + * specializations, the identity basis) if the element should not
198 + * be combined. You can create compound transformations and
199 + * filterings by composing them yourself under this "null means
200 + * there is nothing there now" rule before using them in search or
201 + * reduce operations.
202 + *
203 + * <p>Methods accepting and/or returning Entry arguments maintain
204 + * key-value associations. They may be useful for example when
205 + * finding the key for the greatest value. Note that "plain" Entry
206 + * arguments can be supplied using {@code new
207 + * AbstractMap.SimpleEntry(k,v)}.
208 + *
209 + * <p>Bulk operations may complete abruptly, throwing an
210 + * exception encountered in the application of a supplied
211 + * function. Bear in mind when handling such exceptions that other
212 + * concurrently executing functions could also have thrown
213 + * exceptions, or would have done so if the first exception had
214 + * not occurred.
215 + *
216 + * <p>Parallel speedups for bulk operations compared to sequential
217 + * processing are common but not guaranteed.  Operations involving
218 + * brief functions on small maps may execute more slowly than
219 + * sequential loops if the underlying work to parallelize the
220 + * computation is more expensive than the computation itself.
221 + * Similarly, parallelization may not lead to much actual parallelism
222 + * if all processors are busy performing unrelated tasks.
223 + *
224 + * <p>All arguments to all task methods must be non-null.
225 + *
226 + * <p><em>jsr166e note: During transition, this class
227 + * uses nested functional interfaces with different names but the
228 + * same forms as those expected for JDK8.</em>
229 + *
230   * <p>This class is a member of the
231   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
232   * Java Collections Framework</a>.
233   *
88 * <p><em>jsr166e note: This class is a candidate replacement for
89 * java.util.concurrent.ConcurrentHashMap.<em>
90 *
234   * @since 1.5
235   * @author Doug Lea
236   * @param <K> the type of keys maintained by this map
237   * @param <V> the type of mapped values
238   */
239   public class ConcurrentHashMapV8<K, V>
240 <        implements ConcurrentMap<K, V>, Serializable {
240 >    implements ConcurrentMap<K, V>, Serializable {
241      private static final long serialVersionUID = 7249069246763182397L;
242  
243      /**
244 <     * A function computing a mapping from the given key to a value.
245 <     * This is a place-holder for an upcoming JDK8 interface.
244 >     * A partitionable iterator. A Spliterator can be traversed
245 >     * directly, but can also be partitioned (before traversal) by
246 >     * creating another Spliterator that covers a non-overlapping
247 >     * portion of the elements, and so may be amenable to parallel
248 >     * execution.
249 >     *
250 >     * <p>This interface exports a subset of expected JDK8
251 >     * functionality.
252 >     *
253 >     * <p>Sample usage: Here is one (of the several) ways to compute
254 >     * the sum of the values held in a map using the ForkJoin
255 >     * framework. As illustrated here, Spliterators are well suited to
256 >     * designs in which a task repeatedly splits off half its work
257 >     * into forked subtasks until small enough to process directly,
258 >     * and then joins these subtasks. Variants of this style can also
259 >     * be used in completion-based designs.
260 >     *
261 >     * <pre>
262 >     * {@code ConcurrentHashMapV8<String, Long> m = ...
263 >     * // split as if have 8 * parallelism, for load balance
264 >     * int n = m.size();
265 >     * int p = aForkJoinPool.getParallelism() * 8;
266 >     * int split = (n < p)? n : p;
267 >     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
268 >     * // ...
269 >     * static class SumValues extends RecursiveTask<Long> {
270 >     *   final Spliterator<Long> s;
271 >     *   final int split;             // split while > 1
272 >     *   final SumValues nextJoin;    // records forked subtasks to join
273 >     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
274 >     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
275 >     *   }
276 >     *   public Long compute() {
277 >     *     long sum = 0;
278 >     *     SumValues subtasks = null; // fork subtasks
279 >     *     for (int s = split >>> 1; s > 0; s >>>= 1)
280 >     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
281 >     *     while (s.hasNext())        // directly process remaining elements
282 >     *       sum += s.next();
283 >     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
284 >     *       sum += t.join();         // collect subtask results
285 >     *     return sum;
286 >     *   }
287 >     * }
288 >     * }</pre>
289       */
290 <    public static interface MappingFunction<K, V> {
290 >    public static interface Spliterator<T> extends Iterator<T> {
291          /**
292 <         * Returns a non-null value for the given key.
292 >         * Returns a Spliterator covering approximately half of the
293 >         * elements, guaranteed not to overlap with those subsequently
294 >         * returned by this Spliterator.  After invoking this method,
295 >         * the current Spliterator will <em>not</em> produce any of
296 >         * the elements of the returned Spliterator, but the two
297 >         * Spliterators together will produce all of the elements that
298 >         * would have been produced by this Spliterator had this
299 >         * method not been called. The exact number of elements
300 >         * produced by the returned Spliterator is not guaranteed, and
301 >         * may be zero (i.e., with {@code hasNext()} reporting {@code
302 >         * false}) if this Spliterator cannot be further split.
303           *
304 <         * @param key the (non-null) key
305 <         * @return a non-null value
304 >         * @return a Spliterator covering approximately half of the
305 >         * elements
306 >         * @throws IllegalStateException if this Spliterator has
307 >         * already commenced traversing elements
308           */
309 <        V map(K key);
309 >        Spliterator<T> split();
310      }
311  
114    /**
115     * A function computing a new mapping given a key and its current
116     * mapped value (or {@code null} if there is no current
117     * mapping). This is a place-holder for an upcoming JDK8
118     * interface.
119     */
120    public static interface RemappingFunction<K, V> {
121        /**
122         * Returns a new value given a key and its current value.
123         *
124         * @param key the (non-null) key
125         * @param value the current value, or null if there is no mapping
126         * @return a non-null value
127         */
128        V remap(K key, V value);
129    }
312  
313      /*
314       * Overview:
# Line 147 | Line 329 | public class ConcurrentHashMapV8<K, V>
329       * supplying null-checks and casts as needed. This also allows
330       * many of the public methods to be factored into a smaller number
331       * of internal methods (although sadly not so for the five
332 <     * sprawling variants of put-related operations).
332 >     * variants of put-related operations). The validation-based
333 >     * approach explained below leads to a lot of code sprawl because
334 >     * retry-control precludes factoring into smaller methods.
335       *
336       * The table is lazily initialized to a power-of-two size upon the
337 <     * first insertion.  Each bin in the table contains a list of
338 <     * Nodes (most often, the list has only zero or one Node).  Table
339 <     * accesses require volatile/atomic reads, writes, and CASes.
340 <     * Because there is no other way to arrange this without adding
341 <     * further indirections, we use intrinsics (sun.misc.Unsafe)
342 <     * operations.  The lists of nodes within bins are always
343 <     * accurately traversable under volatile reads, so long as lookups
344 <     * check hash code and non-nullness of value before checking key
345 <     * equality.
337 >     * first insertion.  Each bin in the table normally contains a
338 >     * list of Nodes (most often, the list has only zero or one Node).
339 >     * Table accesses require volatile/atomic reads, writes, and
340 >     * CASes.  Because there is no other way to arrange this without
341 >     * adding further indirections, we use intrinsics
342 >     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
343 >     * are always accurately traversable under volatile reads, so long
344 >     * as lookups check hash code and non-nullness of value before
345 >     * checking key equality.
346       *
347       * We use the top two bits of Node hash fields for control
348       * purposes -- they are available anyway because of addressing
# Line 170 | Line 354 | public class ConcurrentHashMapV8<K, V>
354       *  10 - Node is a forwarding node
355       *
356       * The lower 30 bits of each Node's hash field contain a
357 <     * transformation (for better randomization -- method "spread") of
358 <     * the key's hash code, except for forwarding nodes, for which the
359 <     * lower bits are zero (and so always have hash field == MOVED).
357 >     * transformation of the key's hash code, except for forwarding
358 >     * nodes, for which the lower bits are zero (and so always have
359 >     * hash field == MOVED).
360       *
361       * Insertion (via put or its variants) of the first node in an
362       * empty bin is performed by just CASing it to the bin.  This is
363 <     * by far the most common case for put operations.  Other update
364 <     * operations (insert, delete, and replace) require locks.  We do
365 <     * not want to waste the space required to associate a distinct
366 <     * lock object with each bin, so instead use the first node of a
367 <     * bin list itself as a lock. Blocking support for these locks
368 <     * relies on the builtin "synchronized" monitors.  However, we
369 <     * also need a tryLock construction, so we overlay these by using
370 <     * bits of the Node hash field for lock control (see above), and
371 <     * so normally use builtin monitors only for blocking and
372 <     * signalling using wait/notifyAll constructions. See
373 <     * Node.tryAwaitLock.
363 >     * by far the most common case for put operations under most
364 >     * key/hash distributions.  Other update operations (insert,
365 >     * delete, and replace) require locks.  We do not want to waste
366 >     * the space required to associate a distinct lock object with
367 >     * each bin, so instead use the first node of a bin list itself as
368 >     * a lock. Blocking support for these locks relies on the builtin
369 >     * "synchronized" monitors.  However, we also need a tryLock
370 >     * construction, so we overlay these by using bits of the Node
371 >     * hash field for lock control (see above), and so normally use
372 >     * builtin monitors only for blocking and signalling using
373 >     * wait/notifyAll constructions. See Node.tryAwaitLock.
374       *
375       * Using the first node of a list as a lock does not by itself
376       * suffice though: When a node is locked, any update must first
# Line 201 | Line 385 | public class ConcurrentHashMapV8<K, V>
385       * The main disadvantage of per-bin locks is that other update
386       * operations on other nodes in a bin list protected by the same
387       * lock can stall, for example when user equals() or mapping
388 <     * functions take a long time.  However, statistically, this is
389 <     * not a common enough problem to outweigh the time/space overhead
390 <     * of alternatives: Under random hash codes, the frequency of
207 <     * nodes in bins follows a Poisson distribution
388 >     * functions take a long time.  However, statistically, under
389 >     * random hash codes, this is not a common problem.  Ideally, the
390 >     * frequency of nodes in bins follows a Poisson distribution
391       * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
392       * parameter of about 0.5 on average, given the resizing threshold
393       * of 0.75, although with a large variance because of resizing
394       * granularity. Ignoring variance, the expected occurrences of
395       * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
396 <     * first few values are:
396 >     * first values are:
397       *
398 <     * 0:    0.607
399 <     * 1:    0.303
400 <     * 2:    0.076
401 <     * 3:    0.012
402 <     * more: 0.002
398 >     * 0:    0.60653066
399 >     * 1:    0.30326533
400 >     * 2:    0.07581633
401 >     * 3:    0.01263606
402 >     * 4:    0.00157952
403 >     * 5:    0.00015795
404 >     * 6:    0.00001316
405 >     * 7:    0.00000094
406 >     * 8:    0.00000006
407 >     * more: less than 1 in ten million
408       *
409       * Lock contention probability for two threads accessing distinct
410 <     * elements is roughly 1 / (8 * #elements).  Function "spread"
411 <     * performs hashCode randomization that improves the likelihood
412 <     * that these assumptions hold unless users define exactly the
413 <     * same value for too many hashCodes.
410 >     * elements is roughly 1 / (8 * #elements) under random hashes.
411 >     *
412 >     * Actual hash code distributions encountered in practice
413 >     * sometimes deviate significantly from uniform randomness.  This
414 >     * includes the case when N > (1<<30), so some keys MUST collide.
415 >     * Similarly for dumb or hostile usages in which multiple keys are
416 >     * designed to have identical hash codes. Also, although we guard
417 >     * against the worst effects of this (see method spread), sets of
418 >     * hashes may differ only in bits that do not impact their bin
419 >     * index for a given power-of-two mask.  So we use a secondary
420 >     * strategy that applies when the number of nodes in a bin exceeds
421 >     * a threshold, and at least one of the keys implements
422 >     * Comparable.  These TreeBins use a balanced tree to hold nodes
423 >     * (a specialized form of red-black trees), bounding search time
424 >     * to O(log N).  Each search step in a TreeBin is around twice as
425 >     * slow as in a regular list, but given that N cannot exceed
426 >     * (1<<64) (before running out of addresses) this bounds search
427 >     * steps, lock hold times, etc, to reasonable constants (roughly
428 >     * 100 nodes inspected per operation worst case) so long as keys
429 >     * are Comparable (which is very common -- String, Long, etc).
430 >     * TreeBin nodes (TreeNodes) also maintain the same "next"
431 >     * traversal pointers as regular nodes, so can be traversed in
432 >     * iterators in the same way.
433       *
434 <     * The table is resized when occupancy exceeds an occupancy
434 >     * The table is resized when occupancy exceeds a percentage
435       * threshold (nominally, 0.75, but see below).  Only a single
436       * thread performs the resize (using field "sizeCtl", to arrange
437       * exclusion), but the table otherwise remains usable for reads
# Line 245 | Line 452 | public class ConcurrentHashMapV8<K, V>
452       *
453       * Each bin transfer requires its bin lock. However, unlike other
454       * cases, a transfer can skip a bin if it fails to acquire its
455 <     * lock, and revisit it later. Method rebuild maintains a buffer
456 <     * of TRANSFER_BUFFER_SIZE bins that have been skipped because of
457 <     * failure to acquire a lock, and blocks only if none are
458 <     * available (i.e., only very rarely).  The transfer operation
459 <     * must also ensure that all accessible bins in both the old and
460 <     * new table are usable by any traversal.  When there are no lock
461 <     * acquisition failures, this is arranged simply by proceeding
462 <     * from the last bin (table.length - 1) up towards the first.
463 <     * Upon seeing a forwarding node, traversals (see class
464 <     * InternalIterator) arrange to move to the new table without
465 <     * revisiting nodes.  However, when any node is skipped during a
466 <     * transfer, all earlier table bins may have become visible, so
467 <     * are initialized with a reverse-forwarding node back to the old
468 <     * table until the new ones are established. (This sometimes
469 <     * requires transiently locking a forwarding node, which is
470 <     * possible under the above encoding.) These more expensive
455 >     * lock, and revisit it later (unless it is a TreeBin). Method
456 >     * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
457 >     * have been skipped because of failure to acquire a lock, and
458 >     * blocks only if none are available (i.e., only very rarely).
459 >     * The transfer operation must also ensure that all accessible
460 >     * bins in both the old and new table are usable by any traversal.
461 >     * When there are no lock acquisition failures, this is arranged
462 >     * simply by proceeding from the last bin (table.length - 1) up
463 >     * towards the first.  Upon seeing a forwarding node, traversals
464 >     * (see class Iter) arrange to move to the new table
465 >     * without revisiting nodes.  However, when any node is skipped
466 >     * during a transfer, all earlier table bins may have become
467 >     * visible, so are initialized with a reverse-forwarding node back
468 >     * to the old table until the new ones are established. (This
469 >     * sometimes requires transiently locking a forwarding node, which
470 >     * is possible under the above encoding.) These more expensive
471       * mechanics trigger only when necessary.
472       *
473       * The traversal scheme also applies to partial traversals of
474 <     * ranges of bins (via an alternate InternalIterator constructor)
475 <     * to support partitioned aggregate operations (that are not
476 <     * otherwise implemented yet).  Also, read-only operations give up
477 <     * if ever forwarded to a null table, which provides support for
478 <     * shutdown-style clearing, which is also not currently
272 <     * implemented.
474 >     * ranges of bins (via an alternate Traverser constructor)
475 >     * to support partitioned aggregate operations.  Also, read-only
476 >     * operations give up if ever forwarded to a null table, which
477 >     * provides support for shutdown-style clearing, which is also not
478 >     * currently implemented.
479       *
480       * Lazy table initialization minimizes footprint until first use,
481       * and also avoids resizings when the first operation is from a
# Line 347 | Line 553 | public class ConcurrentHashMapV8<K, V>
553       */
554      private static final int TRANSFER_BUFFER_SIZE = 32;
555  
556 +    /**
557 +     * The bin count threshold for using a tree rather than list for a
558 +     * bin.  The value reflects the approximate break-even point for
559 +     * using tree-based operations.
560 +     */
561 +    private static final int TREE_THRESHOLD = 8;
562 +
563      /*
564       * Encodings for special uses of Node hash fields. See above for
565       * explanation.
566       */
567 <    static final int MOVED     = 0x80000000; // hash field for fowarding nodes
567 >    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
568      static final int LOCKED    = 0x40000000; // set/tested only as a bit
569      static final int WAITING   = 0xc0000000; // both bits set/tested together
570      static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
# Line 379 | Line 592 | public class ConcurrentHashMapV8<K, V>
592      private transient volatile int sizeCtl;
593  
594      // views
595 <    private transient KeySet<K,V> keySet;
596 <    private transient Values<K,V> values;
597 <    private transient EntrySet<K,V> entrySet;
595 >    private transient KeySetView<K,V> keySet;
596 >    private transient ValuesView<K,V> values;
597 >    private transient EntrySetView<K,V> entrySet;
598  
599      /** For serialization compatibility. Null unless serialized; see below */
600      private Segment<K,V>[] segments;
601  
602 +    /* ---------------- Table element access -------------- */
603 +
604 +    /*
605 +     * Volatile access methods are used for table elements as well as
606 +     * elements of in-progress next table while resizing.  Uses are
607 +     * null checked by callers, and implicitly bounds-checked, relying
608 +     * on the invariants that tab arrays have non-zero size, and all
609 +     * indices are masked with (tab.length - 1) which is never
610 +     * negative and always less than length. Note that, to be correct
611 +     * wrt arbitrary concurrency errors by users, bounds checks must
612 +     * operate on local variables, which accounts for some odd-looking
613 +     * inline assignments below.
614 +     */
615 +
616 +    static final Node tabAt(Node[] tab, int i) { // used by Iter
617 +        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
618 +    }
619 +
620 +    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
621 +        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
622 +    }
623 +
624 +    private static final void setTabAt(Node[] tab, int i, Node v) {
625 +        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
626 +    }
627 +
628      /* ---------------- Nodes -------------- */
629  
630      /**
631       * Key-value entry. Note that this is never exported out as a
632 <     * user-visible Map.Entry (see WriteThroughEntry and SnapshotEntry
633 <     * below). Nodes with a hash field of MOVED are special, and do
634 <     * not contain user keys or values.  Otherwise, keys are never
635 <     * null, and null val fields indicate that a node is in the
636 <     * process of being deleted or created. For purposes of read-only
637 <     * access, a key may be read before a val, but can only be used
638 <     * after checking val to be non-null.
632 >     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
633 >     * field of MOVED are special, and do not contain user keys or
634 >     * values.  Otherwise, keys are never null, and null val fields
635 >     * indicate that a node is in the process of being deleted or
636 >     * created. For purposes of read-only access, a key may be read
637 >     * before a val, but can only be used after checking val to be
638 >     * non-null.
639       */
640 <    static final class Node {
640 >    static class Node {
641          volatile int hash;
642          final Object key;
643          volatile Object val;
# Line 432 | Line 671 | public class ConcurrentHashMapV8<K, V>
671           * unlocking lock (via a failed CAS from non-waiting LOCKED
672           * state), unlockers acquire the sync lock and perform a
673           * notifyAll.
674 +         *
675 +         * The initial sanity check on tab and bounds is not currently
676 +         * necessary in the only usages of this method, but enables
677 +         * use in other future contexts.
678           */
679          final void tryAwaitLock(Node[] tab, int i) {
680 <            if (tab != null && i >= 0 && i < tab.length) { // bounds check
680 >            if (tab != null && i >= 0 && i < tab.length) { // sanity check
681 >                int r = ThreadLocalRandom.current().nextInt(); // randomize spins
682                  int spins = MAX_SPINS, h;
683                  while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
684                      if (spins >= 0) {
685 <                        if (--spins == MAX_SPINS >>> 1)
686 <                            Thread.yield();  // heuristically yield mid-way
685 >                        r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
686 >                        if (r >= 0 && --spins == 0)
687 >                            Thread.yield();  // yield before block
688                      }
689                      else if (casHash(h, h | WAITING)) {
690                          synchronized (this) {
# Line 448 | Line 693 | public class ConcurrentHashMapV8<K, V>
693                                  try {
694                                      wait();
695                                  } catch (InterruptedException ie) {
696 <                                    Thread.currentThread().interrupt();
696 >                                    try {
697 >                                        Thread.currentThread().interrupt();
698 >                                    } catch (SecurityException ignore) {
699 >                                    }
700                                  }
701                              }
702                              else
# Line 476 | Line 724 | public class ConcurrentHashMapV8<K, V>
724          }
725      }
726  
727 <    /* ---------------- Table element access -------------- */
727 >    /* ---------------- TreeBins -------------- */
728  
729 <    /*
730 <     * Volatile access methods are used for table elements as well as
483 <     * elements of in-progress next table while resizing.  Uses are
484 <     * null checked by callers, and implicitly bounds-checked, relying
485 <     * on the invariants that tab arrays have non-zero size, and all
486 <     * indices are masked with (tab.length - 1) which is never
487 <     * negative and always less than length. Note that, to be correct
488 <     * wrt arbitrary concurrency errors by users, bounds checks must
489 <     * operate on local variables, which accounts for some odd-looking
490 <     * inline assignments below.
729 >    /**
730 >     * Nodes for use in TreeBins
731       */
732 <
733 <    static final Node tabAt(Node[] tab, int i) { // used by InternalIterator
734 <        return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
732 >    static final class TreeNode extends Node {
733 >        TreeNode parent;  // red-black tree links
734 >        TreeNode left;
735 >        TreeNode right;
736 >        TreeNode prev;    // needed to unlink next upon deletion
737 >        boolean red;
738 >
739 >        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
740 >            super(hash, key, val, next);
741 >            this.parent = parent;
742 >        }
743      }
744  
745 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
746 <        return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
747 <    }
745 >    /**
746 >     * A specialized form of red-black tree for use in bins
747 >     * whose size exceeds a threshold.
748 >     *
749 >     * TreeBins use a special form of comparison for search and
750 >     * related operations (which is the main reason we cannot use
751 >     * existing collections such as TreeMaps). TreeBins contain
752 >     * Comparable elements, but may contain others, as well as
753 >     * elements that are Comparable but not necessarily Comparable<T>
754 >     * for the same T, so we cannot invoke compareTo among them. To
755 >     * handle this, the tree is ordered primarily by hash value, then
756 >     * by getClass().getName() order, and then by Comparator order
757 >     * among elements of the same class.  On lookup at a node, if
758 >     * elements are not comparable or compare as 0, both left and
759 >     * right children may need to be searched in the case of tied hash
760 >     * values. (This corresponds to the full list search that would be
761 >     * necessary if all elements were non-Comparable and had tied
762 >     * hashes.)  The red-black balancing code is updated from
763 >     * pre-jdk-collections
764 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
765 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
766 >     * Algorithms" (CLR).
767 >     *
768 >     * TreeBins also maintain a separate locking discipline than
769 >     * regular bins. Because they are forwarded via special MOVED
770 >     * nodes at bin heads (which can never change once established),
771 >     * we cannot use those nodes as locks. Instead, TreeBin
772 >     * extends AbstractQueuedSynchronizer to support a simple form of
773 >     * read-write lock. For update operations and table validation,
774 >     * the exclusive form of lock behaves in the same way as bin-head
775 >     * locks. However, lookups use shared read-lock mechanics to allow
776 >     * multiple readers in the absence of writers.  Additionally,
777 >     * these lookups do not ever block: While the lock is not
778 >     * available, they proceed along the slow traversal path (via
779 >     * next-pointers) until the lock becomes available or the list is
780 >     * exhausted, whichever comes first. (These cases are not fast,
781 >     * but maximize aggregate expected throughput.)  The AQS mechanics
782 >     * for doing this are straightforward.  The lock state is held as
783 >     * AQS getState().  Read counts are negative; the write count (1)
784 >     * is positive.  There are no signalling preferences among readers
785 >     * and writers. Since we don't need to export full Lock API, we
786 >     * just override the minimal AQS methods and use them directly.
787 >     */
788 >    static final class TreeBin extends AbstractQueuedSynchronizer {
789 >        private static final long serialVersionUID = 2249069246763182397L;
790 >        transient TreeNode root;  // root of tree
791 >        transient TreeNode first; // head of next-pointer list
792  
793 <    private static final void setTabAt(Node[] tab, int i, Node v) {
794 <        UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
795 <    }
793 >        /* AQS overrides */
794 >        public final boolean isHeldExclusively() { return getState() > 0; }
795 >        public final boolean tryAcquire(int ignore) {
796 >            if (compareAndSetState(0, 1)) {
797 >                setExclusiveOwnerThread(Thread.currentThread());
798 >                return true;
799 >            }
800 >            return false;
801 >        }
802 >        public final boolean tryRelease(int ignore) {
803 >            setExclusiveOwnerThread(null);
804 >            setState(0);
805 >            return true;
806 >        }
807 >        public final int tryAcquireShared(int ignore) {
808 >            for (int c;;) {
809 >                if ((c = getState()) > 0)
810 >                    return -1;
811 >                if (compareAndSetState(c, c -1))
812 >                    return 1;
813 >            }
814 >        }
815 >        public final boolean tryReleaseShared(int ignore) {
816 >            int c;
817 >            do {} while (!compareAndSetState(c = getState(), c + 1));
818 >            return c == -1;
819 >        }
820 >
821 >        /** From CLR */
822 >        private void rotateLeft(TreeNode p) {
823 >            if (p != null) {
824 >                TreeNode r = p.right, pp, rl;
825 >                if ((rl = p.right = r.left) != null)
826 >                    rl.parent = p;
827 >                if ((pp = r.parent = p.parent) == null)
828 >                    root = r;
829 >                else if (pp.left == p)
830 >                    pp.left = r;
831 >                else
832 >                    pp.right = r;
833 >                r.left = p;
834 >                p.parent = r;
835 >            }
836 >        }
837  
838 <    /* ---------------- Internal access and update methods -------------- */
838 >        /** From CLR */
839 >        private void rotateRight(TreeNode p) {
840 >            if (p != null) {
841 >                TreeNode l = p.left, pp, lr;
842 >                if ((lr = p.left = l.right) != null)
843 >                    lr.parent = p;
844 >                if ((pp = l.parent = p.parent) == null)
845 >                    root = l;
846 >                else if (pp.right == p)
847 >                    pp.right = l;
848 >                else
849 >                    pp.left = l;
850 >                l.right = p;
851 >                p.parent = l;
852 >            }
853 >        }
854  
855 <    /**
856 <     * Applies a supplemental hash function to a given hashCode, which
857 <     * defends against poor quality hash functions.  The result must
858 <     * be have the top 2 bits clear. For reasonable performance, this
859 <     * function must have good avalanche properties; i.e., that each
860 <     * bit of the argument affects each bit of the result. (Although
861 <     * we don't care about the unused top 2 bits.)
855 >        /**
856 >         * Returns the TreeNode (or null if not found) for the given key
857 >         * starting at given root.
858 >         */
859 >        @SuppressWarnings("unchecked") final TreeNode getTreeNode
860 >            (int h, Object k, TreeNode p) {
861 >            Class<?> c = k.getClass();
862 >            while (p != null) {
863 >                int dir, ph;  Object pk; Class<?> pc;
864 >                if ((ph = p.hash) == h) {
865 >                    if ((pk = p.key) == k || k.equals(pk))
866 >                        return p;
867 >                    if (c != (pc = pk.getClass()) ||
868 >                        !(k instanceof Comparable) ||
869 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
870 >                        if ((dir = (c == pc) ? 0 :
871 >                             c.getName().compareTo(pc.getName())) == 0) {
872 >                            TreeNode r = null, pl, pr; // check both sides
873 >                            if ((pr = p.right) != null && h >= pr.hash &&
874 >                                (r = getTreeNode(h, k, pr)) != null)
875 >                                return r;
876 >                            else if ((pl = p.left) != null && h <= pl.hash)
877 >                                dir = -1;
878 >                            else // nothing there
879 >                                return null;
880 >                        }
881 >                    }
882 >                }
883 >                else
884 >                    dir = (h < ph) ? -1 : 1;
885 >                p = (dir > 0) ? p.right : p.left;
886 >            }
887 >            return null;
888 >        }
889 >
890 >        /**
891 >         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
892 >         * read-lock to call getTreeNode, but during failure to get
893 >         * lock, searches along next links.
894 >         */
895 >        final Object getValue(int h, Object k) {
896 >            Node r = null;
897 >            int c = getState(); // Must read lock state first
898 >            for (Node e = first; e != null; e = e.next) {
899 >                if (c <= 0 && compareAndSetState(c, c - 1)) {
900 >                    try {
901 >                        r = getTreeNode(h, k, root);
902 >                    } finally {
903 >                        releaseShared(0);
904 >                    }
905 >                    break;
906 >                }
907 >                else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
908 >                    r = e;
909 >                    break;
910 >                }
911 >                else
912 >                    c = getState();
913 >            }
914 >            return r == null ? null : r.val;
915 >        }
916 >
917 >        /**
918 >         * Finds or adds a node.
919 >         * @return null if added
920 >         */
921 >        @SuppressWarnings("unchecked") final TreeNode putTreeNode
922 >            (int h, Object k, Object v) {
923 >            Class<?> c = k.getClass();
924 >            TreeNode pp = root, p = null;
925 >            int dir = 0;
926 >            while (pp != null) { // find existing node or leaf to insert at
927 >                int ph;  Object pk; Class<?> pc;
928 >                p = pp;
929 >                if ((ph = p.hash) == h) {
930 >                    if ((pk = p.key) == k || k.equals(pk))
931 >                        return p;
932 >                    if (c != (pc = pk.getClass()) ||
933 >                        !(k instanceof Comparable) ||
934 >                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
935 >                        TreeNode s = null, r = null, pr;
936 >                        if ((dir = (c == pc) ? 0 :
937 >                             c.getName().compareTo(pc.getName())) == 0) {
938 >                            if ((pr = p.right) != null && h >= pr.hash &&
939 >                                (r = getTreeNode(h, k, pr)) != null)
940 >                                return r;
941 >                            else // continue left
942 >                                dir = -1;
943 >                        }
944 >                        else if ((pr = p.right) != null && h >= pr.hash)
945 >                            s = pr;
946 >                        if (s != null && (r = getTreeNode(h, k, s)) != null)
947 >                            return r;
948 >                    }
949 >                }
950 >                else
951 >                    dir = (h < ph) ? -1 : 1;
952 >                pp = (dir > 0) ? p.right : p.left;
953 >            }
954 >
955 >            TreeNode f = first;
956 >            TreeNode x = first = new TreeNode(h, k, v, f, p);
957 >            if (p == null)
958 >                root = x;
959 >            else { // attach and rebalance; adapted from CLR
960 >                TreeNode xp, xpp;
961 >                if (f != null)
962 >                    f.prev = x;
963 >                if (dir <= 0)
964 >                    p.left = x;
965 >                else
966 >                    p.right = x;
967 >                x.red = true;
968 >                while (x != null && (xp = x.parent) != null && xp.red &&
969 >                       (xpp = xp.parent) != null) {
970 >                    TreeNode xppl = xpp.left;
971 >                    if (xp == xppl) {
972 >                        TreeNode y = xpp.right;
973 >                        if (y != null && y.red) {
974 >                            y.red = false;
975 >                            xp.red = false;
976 >                            xpp.red = true;
977 >                            x = xpp;
978 >                        }
979 >                        else {
980 >                            if (x == xp.right) {
981 >                                rotateLeft(x = xp);
982 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
983 >                            }
984 >                            if (xp != null) {
985 >                                xp.red = false;
986 >                                if (xpp != null) {
987 >                                    xpp.red = true;
988 >                                    rotateRight(xpp);
989 >                                }
990 >                            }
991 >                        }
992 >                    }
993 >                    else {
994 >                        TreeNode y = xppl;
995 >                        if (y != null && y.red) {
996 >                            y.red = false;
997 >                            xp.red = false;
998 >                            xpp.red = true;
999 >                            x = xpp;
1000 >                        }
1001 >                        else {
1002 >                            if (x == xp.left) {
1003 >                                rotateRight(x = xp);
1004 >                                xpp = (xp = x.parent) == null ? null : xp.parent;
1005 >                            }
1006 >                            if (xp != null) {
1007 >                                xp.red = false;
1008 >                                if (xpp != null) {
1009 >                                    xpp.red = true;
1010 >                                    rotateLeft(xpp);
1011 >                                }
1012 >                            }
1013 >                        }
1014 >                    }
1015 >                }
1016 >                TreeNode r = root;
1017 >                if (r != null && r.red)
1018 >                    r.red = false;
1019 >            }
1020 >            return null;
1021 >        }
1022 >
1023 >        /**
1024 >         * Removes the given node, that must be present before this
1025 >         * call.  This is messier than typical red-black deletion code
1026 >         * because we cannot swap the contents of an interior node
1027 >         * with a leaf successor that is pinned by "next" pointers
1028 >         * that are accessible independently of lock. So instead we
1029 >         * swap the tree linkages.
1030 >         */
1031 >        final void deleteTreeNode(TreeNode p) {
1032 >            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
1033 >            TreeNode pred = p.prev;
1034 >            if (pred == null)
1035 >                first = next;
1036 >            else
1037 >                pred.next = next;
1038 >            if (next != null)
1039 >                next.prev = pred;
1040 >            TreeNode replacement;
1041 >            TreeNode pl = p.left;
1042 >            TreeNode pr = p.right;
1043 >            if (pl != null && pr != null) {
1044 >                TreeNode s = pr, sl;
1045 >                while ((sl = s.left) != null) // find successor
1046 >                    s = sl;
1047 >                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1048 >                TreeNode sr = s.right;
1049 >                TreeNode pp = p.parent;
1050 >                if (s == pr) { // p was s's direct parent
1051 >                    p.parent = s;
1052 >                    s.right = p;
1053 >                }
1054 >                else {
1055 >                    TreeNode sp = s.parent;
1056 >                    if ((p.parent = sp) != null) {
1057 >                        if (s == sp.left)
1058 >                            sp.left = p;
1059 >                        else
1060 >                            sp.right = p;
1061 >                    }
1062 >                    if ((s.right = pr) != null)
1063 >                        pr.parent = s;
1064 >                }
1065 >                p.left = null;
1066 >                if ((p.right = sr) != null)
1067 >                    sr.parent = p;
1068 >                if ((s.left = pl) != null)
1069 >                    pl.parent = s;
1070 >                if ((s.parent = pp) == null)
1071 >                    root = s;
1072 >                else if (p == pp.left)
1073 >                    pp.left = s;
1074 >                else
1075 >                    pp.right = s;
1076 >                replacement = sr;
1077 >            }
1078 >            else
1079 >                replacement = (pl != null) ? pl : pr;
1080 >            TreeNode pp = p.parent;
1081 >            if (replacement == null) {
1082 >                if (pp == null) {
1083 >                    root = null;
1084 >                    return;
1085 >                }
1086 >                replacement = p;
1087 >            }
1088 >            else {
1089 >                replacement.parent = pp;
1090 >                if (pp == null)
1091 >                    root = replacement;
1092 >                else if (p == pp.left)
1093 >                    pp.left = replacement;
1094 >                else
1095 >                    pp.right = replacement;
1096 >                p.left = p.right = p.parent = null;
1097 >            }
1098 >            if (!p.red) { // rebalance, from CLR
1099 >                TreeNode x = replacement;
1100 >                while (x != null) {
1101 >                    TreeNode xp, xpl;
1102 >                    if (x.red || (xp = x.parent) == null) {
1103 >                        x.red = false;
1104 >                        break;
1105 >                    }
1106 >                    if (x == (xpl = xp.left)) {
1107 >                        TreeNode sib = xp.right;
1108 >                        if (sib != null && sib.red) {
1109 >                            sib.red = false;
1110 >                            xp.red = true;
1111 >                            rotateLeft(xp);
1112 >                            sib = (xp = x.parent) == null ? null : xp.right;
1113 >                        }
1114 >                        if (sib == null)
1115 >                            x = xp;
1116 >                        else {
1117 >                            TreeNode sl = sib.left, sr = sib.right;
1118 >                            if ((sr == null || !sr.red) &&
1119 >                                (sl == null || !sl.red)) {
1120 >                                sib.red = true;
1121 >                                x = xp;
1122 >                            }
1123 >                            else {
1124 >                                if (sr == null || !sr.red) {
1125 >                                    if (sl != null)
1126 >                                        sl.red = false;
1127 >                                    sib.red = true;
1128 >                                    rotateRight(sib);
1129 >                                    sib = (xp = x.parent) == null ? null : xp.right;
1130 >                                }
1131 >                                if (sib != null) {
1132 >                                    sib.red = (xp == null) ? false : xp.red;
1133 >                                    if ((sr = sib.right) != null)
1134 >                                        sr.red = false;
1135 >                                }
1136 >                                if (xp != null) {
1137 >                                    xp.red = false;
1138 >                                    rotateLeft(xp);
1139 >                                }
1140 >                                x = root;
1141 >                            }
1142 >                        }
1143 >                    }
1144 >                    else { // symmetric
1145 >                        TreeNode sib = xpl;
1146 >                        if (sib != null && sib.red) {
1147 >                            sib.red = false;
1148 >                            xp.red = true;
1149 >                            rotateRight(xp);
1150 >                            sib = (xp = x.parent) == null ? null : xp.left;
1151 >                        }
1152 >                        if (sib == null)
1153 >                            x = xp;
1154 >                        else {
1155 >                            TreeNode sl = sib.left, sr = sib.right;
1156 >                            if ((sl == null || !sl.red) &&
1157 >                                (sr == null || !sr.red)) {
1158 >                                sib.red = true;
1159 >                                x = xp;
1160 >                            }
1161 >                            else {
1162 >                                if (sl == null || !sl.red) {
1163 >                                    if (sr != null)
1164 >                                        sr.red = false;
1165 >                                    sib.red = true;
1166 >                                    rotateLeft(sib);
1167 >                                    sib = (xp = x.parent) == null ? null : xp.left;
1168 >                                }
1169 >                                if (sib != null) {
1170 >                                    sib.red = (xp == null) ? false : xp.red;
1171 >                                    if ((sl = sib.left) != null)
1172 >                                        sl.red = false;
1173 >                                }
1174 >                                if (xp != null) {
1175 >                                    xp.red = false;
1176 >                                    rotateRight(xp);
1177 >                                }
1178 >                                x = root;
1179 >                            }
1180 >                        }
1181 >                    }
1182 >                }
1183 >            }
1184 >            if (p == replacement && (pp = p.parent) != null) {
1185 >                if (p == pp.left) // detach pointers
1186 >                    pp.left = null;
1187 >                else if (p == pp.right)
1188 >                    pp.right = null;
1189 >                p.parent = null;
1190 >            }
1191 >        }
1192 >    }
1193 >
1194 >    /* ---------------- Collision reduction methods -------------- */
1195 >
1196 >    /**
1197 >     * Spreads higher bits to lower, and also forces top 2 bits to 0.
1198 >     * Because the table uses power-of-two masking, sets of hashes
1199 >     * that vary only in bits above the current mask will always
1200 >     * collide. (Among known examples are sets of Float keys holding
1201 >     * consecutive whole numbers in small tables.)  To counter this,
1202 >     * we apply a transform that spreads the impact of higher bits
1203 >     * downward. There is a tradeoff between speed, utility, and
1204 >     * quality of bit-spreading. Because many common sets of hashes
1205 >     * are already reasonably distributed across bits (so don't benefit
1206 >     * from spreading), and because we use trees to handle large sets
1207 >     * of collisions in bins, we don't need excessively high quality.
1208       */
1209      private static final int spread(int h) {
1210 <        // Apply base step of MurmurHash; see http://code.google.com/p/smhasher/
1211 <        // Despite two multiplies, this is often faster than others
1212 <        // with comparable bit-spread properties.
1213 <        h ^= h >>> 16;
1214 <        h *= 0x85ebca6b;
1215 <        h ^= h >>> 13;
1216 <        h *= 0xc2b2ae35;
1217 <        return ((h >>> 16) ^ h) & HASH_BITS; // mask out top bits
1210 >        h ^= (h >>> 18) ^ (h >>> 12);
1211 >        return (h ^ (h >>> 10)) & HASH_BITS;
1212 >    }
1213 >
1214 >    /**
1215 >     * Replaces a list bin with a tree bin. Call only when locked.
1216 >     * Fails to replace if the given key is non-comparable or table
1217 >     * is, or needs, resizing.
1218 >     */
1219 >    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1220 >        if ((key instanceof Comparable) &&
1221 >            (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1222 >            TreeBin t = new TreeBin();
1223 >            for (Node e = tabAt(tab, index); e != null; e = e.next)
1224 >                t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1225 >            setTabAt(tab, index, new Node(MOVED, t, null, null));
1226 >        }
1227      }
1228  
1229 +    /* ---------------- Internal access and update methods -------------- */
1230 +
1231      /** Implementation for get and containsKey */
1232      private final Object internalGet(Object k) {
1233          int h = spread(k.hashCode());
1234          retry: for (Node[] tab = table; tab != null;) {
1235 <            Node e; Object ek, ev; int eh;    // locals to read fields once
1235 >            Node e, p; Object ek, ev; int eh;      // locals to read fields once
1236              for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1237                  if ((eh = e.hash) == MOVED) {
1238 <                    tab = (Node[])e.key;      // restart with new table
1239 <                    continue retry;
1238 >                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1239 >                        return ((TreeBin)ek).getValue(h, k);
1240 >                    else {                        // restart with new table
1241 >                        tab = (Node[])ek;
1242 >                        continue retry;
1243 >                    }
1244                  }
1245 <                if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1246 <                    ((ek = e.key) == k || k.equals(ek)))
1245 >                else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1246 >                         ((ek = e.key) == k || k.equals(ek)))
1247                      return ev;
1248              }
1249              break;
# Line 551 | Line 1260 | public class ConcurrentHashMapV8<K, V>
1260          int h = spread(k.hashCode());
1261          Object oldVal = null;
1262          for (Node[] tab = table;;) {
1263 <            Node f; int i, fh;
1263 >            Node f; int i, fh; Object fk;
1264              if (tab == null ||
1265                  (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1266                  break;
1267 <            else if ((fh = f.hash) == MOVED)
1268 <                tab = (Node[])f.key;
1267 >            else if ((fh = f.hash) == MOVED) {
1268 >                if ((fk = f.key) instanceof TreeBin) {
1269 >                    TreeBin t = (TreeBin)fk;
1270 >                    boolean validated = false;
1271 >                    boolean deleted = false;
1272 >                    t.acquire(0);
1273 >                    try {
1274 >                        if (tabAt(tab, i) == f) {
1275 >                            validated = true;
1276 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1277 >                            if (p != null) {
1278 >                                Object pv = p.val;
1279 >                                if (cv == null || cv == pv || cv.equals(pv)) {
1280 >                                    oldVal = pv;
1281 >                                    if ((p.val = v) == null) {
1282 >                                        deleted = true;
1283 >                                        t.deleteTreeNode(p);
1284 >                                    }
1285 >                                }
1286 >                            }
1287 >                        }
1288 >                    } finally {
1289 >                        t.release(0);
1290 >                    }
1291 >                    if (validated) {
1292 >                        if (deleted)
1293 >                            counter.add(-1L);
1294 >                        break;
1295 >                    }
1296 >                }
1297 >                else
1298 >                    tab = (Node[])fk;
1299 >            }
1300              else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1301                  break;                          // rules out possible existence
1302              else if ((fh & LOCKED) != 0) {
# Line 609 | Line 1349 | public class ConcurrentHashMapV8<K, V>
1349      }
1350  
1351      /*
1352 <     * Internal versions of the five insertion methods, each a
1352 >     * Internal versions of the six insertion methods, each a
1353       * little more complicated than the last. All have
1354       * the same basic structure as the first (internalPut):
1355       *  1. If table uninitialized, create
1356       *  2. If bin empty, try to CAS new node
1357       *  3. If bin stale, use new table
1358 <     *  4. Lock and validate; if valid, scan and add or update
1358 >     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1359 >     *  5. Lock and validate; if valid, scan and add or update
1360       *
1361       * The others interweave other checks and/or alternative actions:
1362       *  * Plain put checks for and performs resize after insertion.
# Line 626 | Line 1367 | public class ConcurrentHashMapV8<K, V>
1367       *    returns from function call.
1368       *  * compute uses the same function-call mechanics, but without
1369       *    the prescans
1370 +     *  * merge acts as putIfAbsent in the absent case, but invokes the
1371 +     *    update function if present
1372       *  * putAll attempts to pre-allocate enough table space
1373       *    and more lazily performs count updates and checks.
1374       *
# Line 636 | Line 1379 | public class ConcurrentHashMapV8<K, V>
1379      /** Implementation for put */
1380      private final Object internalPut(Object k, Object v) {
1381          int h = spread(k.hashCode());
1382 <        boolean checkSize = false;
1382 >        int count = 0;
1383          for (Node[] tab = table;;) {
1384 <            int i; Node f; int fh;
1384 >            int i; Node f; int fh; Object fk;
1385              if (tab == null)
1386                  tab = initTable();
1387              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1388                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1389                      break;                   // no lock when adding to empty bin
1390              }
1391 <            else if ((fh = f.hash) == MOVED)
1392 <                tab = (Node[])f.key;
1391 >            else if ((fh = f.hash) == MOVED) {
1392 >                if ((fk = f.key) instanceof TreeBin) {
1393 >                    TreeBin t = (TreeBin)fk;
1394 >                    Object oldVal = null;
1395 >                    t.acquire(0);
1396 >                    try {
1397 >                        if (tabAt(tab, i) == f) {
1398 >                            count = 2;
1399 >                            TreeNode p = t.putTreeNode(h, k, v);
1400 >                            if (p != null) {
1401 >                                oldVal = p.val;
1402 >                                p.val = v;
1403 >                            }
1404 >                        }
1405 >                    } finally {
1406 >                        t.release(0);
1407 >                    }
1408 >                    if (count != 0) {
1409 >                        if (oldVal != null)
1410 >                            return oldVal;
1411 >                        break;
1412 >                    }
1413 >                }
1414 >                else
1415 >                    tab = (Node[])fk;
1416 >            }
1417              else if ((fh & LOCKED) != 0) {
1418                  checkForResize();
1419                  f.tryAwaitLock(tab, i);
1420              }
1421              else if (f.casHash(fh, fh | LOCKED)) {
1422                  Object oldVal = null;
656                boolean validated = false;
1423                  try {                        // needed in case equals() throws
1424                      if (tabAt(tab, i) == f) {
1425 <                        validated = true;    // retry if 1st already deleted
1426 <                        for (Node e = f;;) {
1425 >                        count = 1;
1426 >                        for (Node e = f;; ++count) {
1427                              Object ek, ev;
1428                              if ((e.hash & HASH_BITS) == h &&
1429                                  (ev = e.val) != null &&
# Line 669 | Line 1435 | public class ConcurrentHashMapV8<K, V>
1435                              Node last = e;
1436                              if ((e = e.next) == null) {
1437                                  last.next = new Node(h, k, v, null);
1438 <                                if (last != f || tab.length <= 64)
1439 <                                    checkSize = true;
1438 >                                if (count >= TREE_THRESHOLD)
1439 >                                    replaceWithTreeBin(tab, i, k);
1440                                  break;
1441                              }
1442                          }
# Line 681 | Line 1447 | public class ConcurrentHashMapV8<K, V>
1447                          synchronized (f) { f.notifyAll(); };
1448                      }
1449                  }
1450 <                if (validated) {
1450 >                if (count != 0) {
1451                      if (oldVal != null)
1452                          return oldVal;
1453 +                    if (tab.length <= 64)
1454 +                        count = 2;
1455                      break;
1456                  }
1457              }
1458          }
1459          counter.add(1L);
1460 <        if (checkSize)
1460 >        if (count > 1)
1461              checkForResize();
1462          return null;
1463      }
# Line 697 | Line 1465 | public class ConcurrentHashMapV8<K, V>
1465      /** Implementation for putIfAbsent */
1466      private final Object internalPutIfAbsent(Object k, Object v) {
1467          int h = spread(k.hashCode());
1468 +        int count = 0;
1469          for (Node[] tab = table;;) {
1470              int i; Node f; int fh; Object fk, fv;
1471              if (tab == null)
# Line 705 | Line 1474 | public class ConcurrentHashMapV8<K, V>
1474                  if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1475                      break;
1476              }
1477 <            else if ((fh = f.hash) == MOVED)
1478 <                tab = (Node[])f.key;
1477 >            else if ((fh = f.hash) == MOVED) {
1478 >                if ((fk = f.key) instanceof TreeBin) {
1479 >                    TreeBin t = (TreeBin)fk;
1480 >                    Object oldVal = null;
1481 >                    t.acquire(0);
1482 >                    try {
1483 >                        if (tabAt(tab, i) == f) {
1484 >                            count = 2;
1485 >                            TreeNode p = t.putTreeNode(h, k, v);
1486 >                            if (p != null)
1487 >                                oldVal = p.val;
1488 >                        }
1489 >                    } finally {
1490 >                        t.release(0);
1491 >                    }
1492 >                    if (count != 0) {
1493 >                        if (oldVal != null)
1494 >                            return oldVal;
1495 >                        break;
1496 >                    }
1497 >                }
1498 >                else
1499 >                    tab = (Node[])fk;
1500 >            }
1501              else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1502                       ((fk = f.key) == k || k.equals(fk)))
1503                  return fv;
# Line 730 | Line 1521 | public class ConcurrentHashMapV8<K, V>
1521                  }
1522                  else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1523                      Object oldVal = null;
733                    boolean validated = false;
1524                      try {
1525                          if (tabAt(tab, i) == f) {
1526 <                            validated = true;
1527 <                            for (Node e = f;;) {
1526 >                            count = 1;
1527 >                            for (Node e = f;; ++count) {
1528                                  Object ek, ev;
1529                                  if ((e.hash & HASH_BITS) == h &&
1530                                      (ev = e.val) != null &&
# Line 745 | Line 1535 | public class ConcurrentHashMapV8<K, V>
1535                                  Node last = e;
1536                                  if ((e = e.next) == null) {
1537                                      last.next = new Node(h, k, v, null);
1538 +                                    if (count >= TREE_THRESHOLD)
1539 +                                        replaceWithTreeBin(tab, i, k);
1540                                      break;
1541                                  }
1542                              }
# Line 755 | Line 1547 | public class ConcurrentHashMapV8<K, V>
1547                              synchronized (f) { f.notifyAll(); };
1548                          }
1549                      }
1550 <                    if (validated) {
1550 >                    if (count != 0) {
1551                          if (oldVal != null)
1552                              return oldVal;
1553 +                        if (tab.length <= 64)
1554 +                            count = 2;
1555                          break;
1556                      }
1557                  }
1558              }
1559          }
1560          counter.add(1L);
1561 +        if (count > 1)
1562 +            checkForResize();
1563          return null;
1564      }
1565  
1566      /** Implementation for computeIfAbsent */
1567      private final Object internalComputeIfAbsent(K k,
1568 <                                                 MappingFunction<? super K, ?> mf) {
1568 >                                                 Fun<? super K, ?> mf) {
1569          int h = spread(k.hashCode());
1570          Object val = null;
1571 +        int count = 0;
1572          for (Node[] tab = table;;) {
1573              Node f; int i, fh; Object fk, fv;
1574              if (tab == null)
1575                  tab = initTable();
1576              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1577                  Node node = new Node(fh = h | LOCKED, k, null, null);
781                boolean validated = false;
1578                  if (casTabAt(tab, i, null, node)) {
1579 <                    validated = true;
1579 >                    count = 1;
1580                      try {
1581 <                        if ((val = mf.map(k)) != null)
1581 >                        if ((val = mf.apply(k)) != null)
1582                              node.val = val;
1583                      } finally {
1584                          if (val == null)
# Line 793 | Line 1589 | public class ConcurrentHashMapV8<K, V>
1589                          }
1590                      }
1591                  }
1592 <                if (validated)
1592 >                if (count != 0)
1593                      break;
1594              }
1595 <            else if ((fh = f.hash) == MOVED)
1596 <                tab = (Node[])f.key;
1595 >            else if ((fh = f.hash) == MOVED) {
1596 >                if ((fk = f.key) instanceof TreeBin) {
1597 >                    TreeBin t = (TreeBin)fk;
1598 >                    boolean added = false;
1599 >                    t.acquire(0);
1600 >                    try {
1601 >                        if (tabAt(tab, i) == f) {
1602 >                            count = 1;
1603 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1604 >                            if (p != null)
1605 >                                val = p.val;
1606 >                            else if ((val = mf.apply(k)) != null) {
1607 >                                added = true;
1608 >                                count = 2;
1609 >                                t.putTreeNode(h, k, val);
1610 >                            }
1611 >                        }
1612 >                    } finally {
1613 >                        t.release(0);
1614 >                    }
1615 >                    if (count != 0) {
1616 >                        if (!added)
1617 >                            return val;
1618 >                        break;
1619 >                    }
1620 >                }
1621 >                else
1622 >                    tab = (Node[])fk;
1623 >            }
1624              else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1625                       ((fk = f.key) == k || k.equals(fk)))
1626                  return fv;
# Line 820 | Line 1643 | public class ConcurrentHashMapV8<K, V>
1643                      f.tryAwaitLock(tab, i);
1644                  }
1645                  else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1646 <                    boolean validated = false;
1646 >                    boolean added = false;
1647                      try {
1648                          if (tabAt(tab, i) == f) {
1649 <                            validated = true;
1650 <                            for (Node e = f;;) {
1649 >                            count = 1;
1650 >                            for (Node e = f;; ++count) {
1651                                  Object ek, ev;
1652                                  if ((e.hash & HASH_BITS) == h &&
1653                                      (ev = e.val) != null &&
# Line 834 | Line 1657 | public class ConcurrentHashMapV8<K, V>
1657                                  }
1658                                  Node last = e;
1659                                  if ((e = e.next) == null) {
1660 <                                    if ((val = mf.map(k)) != null)
1660 >                                    if ((val = mf.apply(k)) != null) {
1661 >                                        added = true;
1662                                          last.next = new Node(h, k, val, null);
1663 +                                        if (count >= TREE_THRESHOLD)
1664 +                                            replaceWithTreeBin(tab, i, k);
1665 +                                    }
1666                                      break;
1667                                  }
1668                              }
# Line 846 | Line 1673 | public class ConcurrentHashMapV8<K, V>
1673                              synchronized (f) { f.notifyAll(); };
1674                          }
1675                      }
1676 <                    if (validated)
1676 >                    if (count != 0) {
1677 >                        if (!added)
1678 >                            return val;
1679 >                        if (tab.length <= 64)
1680 >                            count = 2;
1681                          break;
1682 +                    }
1683                  }
1684              }
1685          }
1686 <        if (val == null)
1687 <            throw new NullPointerException();
1688 <        counter.add(1L);
1686 >        if (val != null) {
1687 >            counter.add(1L);
1688 >            if (count > 1)
1689 >                checkForResize();
1690 >        }
1691          return val;
1692      }
1693  
1694      /** Implementation for compute */
1695 <    @SuppressWarnings("unchecked")
1696 <    private final Object internalCompute(K k,
863 <                                         RemappingFunction<? super K, V> mf) {
1695 >    @SuppressWarnings("unchecked") private final Object internalCompute
1696 >        (K k, boolean onlyIfPresent, BiFun<? super K, ? super V, ? extends V> mf) {
1697          int h = spread(k.hashCode());
1698          Object val = null;
1699 <        boolean added = false;
1700 <        boolean checkSize = false;
1699 >        int delta = 0;
1700 >        int count = 0;
1701          for (Node[] tab = table;;) {
1702 <            Node f; int i, fh;
1702 >            Node f; int i, fh; Object fk;
1703              if (tab == null)
1704                  tab = initTable();
1705              else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1706 +                if (onlyIfPresent)
1707 +                    break;
1708                  Node node = new Node(fh = h | LOCKED, k, null, null);
874                boolean validated = false;
1709                  if (casTabAt(tab, i, null, node)) {
876                    validated = true;
1710                      try {
1711 <                        if ((val = mf.remap(k, null)) != null) {
1711 >                        count = 1;
1712 >                        if ((val = mf.apply(k, null)) != null) {
1713                              node.val = val;
1714 <                            added = true;
1714 >                            delta = 1;
1715                          }
1716                      } finally {
1717 <                        if (!added)
1717 >                        if (delta == 0)
1718                              setTabAt(tab, i, null);
1719                          if (!node.casHash(fh, h)) {
1720                              node.hash = h;
# Line 888 | Line 1722 | public class ConcurrentHashMapV8<K, V>
1722                          }
1723                      }
1724                  }
1725 <                if (validated)
1725 >                if (count != 0)
1726                      break;
1727              }
1728 <            else if ((fh = f.hash) == MOVED)
1729 <                tab = (Node[])f.key;
1728 >            else if ((fh = f.hash) == MOVED) {
1729 >                if ((fk = f.key) instanceof TreeBin) {
1730 >                    TreeBin t = (TreeBin)fk;
1731 >                    t.acquire(0);
1732 >                    try {
1733 >                        if (tabAt(tab, i) == f) {
1734 >                            count = 1;
1735 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1736 >                            Object pv = (p == null) ? null : p.val;
1737 >                            if ((val = mf.apply(k, (V)pv)) != null) {
1738 >                                if (p != null)
1739 >                                    p.val = val;
1740 >                                else {
1741 >                                    count = 2;
1742 >                                    delta = 1;
1743 >                                    t.putTreeNode(h, k, val);
1744 >                                }
1745 >                            }
1746 >                            else if (p != null) {
1747 >                                delta = -1;
1748 >                                t.deleteTreeNode(p);
1749 >                            }
1750 >                        }
1751 >                    } finally {
1752 >                        t.release(0);
1753 >                    }
1754 >                    if (count != 0)
1755 >                        break;
1756 >                }
1757 >                else
1758 >                    tab = (Node[])fk;
1759 >            }
1760              else if ((fh & LOCKED) != 0) {
1761                  checkForResize();
1762                  f.tryAwaitLock(tab, i);
1763              }
1764              else if (f.casHash(fh, fh | LOCKED)) {
901                boolean validated = false;
1765                  try {
1766                      if (tabAt(tab, i) == f) {
1767 <                        validated = true;
1768 <                        for (Node e = f;;) {
1767 >                        count = 1;
1768 >                        for (Node e = f, pred = null;; ++count) {
1769                              Object ek, ev;
1770                              if ((e.hash & HASH_BITS) == h &&
1771                                  (ev = e.val) != null &&
1772                                  ((ek = e.key) == k || k.equals(ek))) {
1773 <                                val = mf.remap(k, (V)ev);
1773 >                                val = mf.apply(k, (V)ev);
1774                                  if (val != null)
1775                                      e.val = val;
1776 +                                else {
1777 +                                    delta = -1;
1778 +                                    Node en = e.next;
1779 +                                    if (pred != null)
1780 +                                        pred.next = en;
1781 +                                    else
1782 +                                        setTabAt(tab, i, en);
1783 +                                }
1784                                  break;
1785                              }
1786 <                            Node last = e;
1786 >                            pred = e;
1787                              if ((e = e.next) == null) {
1788 <                                if ((val = mf.remap(k, null)) != null) {
1789 <                                    last.next = new Node(h, k, val, null);
1790 <                                    added = true;
1791 <                                    if (last != f || tab.length <= 64)
1792 <                                        checkSize = true;
1788 >                                if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1789 >                                    pred.next = new Node(h, k, val, null);
1790 >                                    delta = 1;
1791 >                                    if (count >= TREE_THRESHOLD)
1792 >                                        replaceWithTreeBin(tab, i, k);
1793                                  }
1794                                  break;
1795                              }
# Line 930 | Line 1801 | public class ConcurrentHashMapV8<K, V>
1801                          synchronized (f) { f.notifyAll(); };
1802                      }
1803                  }
1804 <                if (validated)
1804 >                if (count != 0) {
1805 >                    if (tab.length <= 64)
1806 >                        count = 2;
1807                      break;
1808 +                }
1809              }
1810          }
1811 <        if (val == null)
1812 <            throw new NullPointerException();
1813 <        if (added) {
1814 <            counter.add(1L);
1815 <            if (checkSize)
1811 >        if (delta != 0) {
1812 >            counter.add((long)delta);
1813 >            if (count > 1)
1814 >                checkForResize();
1815 >        }
1816 >        return val;
1817 >    }
1818 >
1819 >    /** Implementation for merge */
1820 >    @SuppressWarnings("unchecked") private final Object internalMerge
1821 >        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1822 >        int h = spread(k.hashCode());
1823 >        Object val = null;
1824 >        int delta = 0;
1825 >        int count = 0;
1826 >        for (Node[] tab = table;;) {
1827 >            int i; Node f; int fh; Object fk, fv;
1828 >            if (tab == null)
1829 >                tab = initTable();
1830 >            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1831 >                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1832 >                    delta = 1;
1833 >                    val = v;
1834 >                    break;
1835 >                }
1836 >            }
1837 >            else if ((fh = f.hash) == MOVED) {
1838 >                if ((fk = f.key) instanceof TreeBin) {
1839 >                    TreeBin t = (TreeBin)fk;
1840 >                    t.acquire(0);
1841 >                    try {
1842 >                        if (tabAt(tab, i) == f) {
1843 >                            count = 1;
1844 >                            TreeNode p = t.getTreeNode(h, k, t.root);
1845 >                            val = (p == null) ? v : mf.apply((V)p.val, v);
1846 >                            if (val != null) {
1847 >                                if (p != null)
1848 >                                    p.val = val;
1849 >                                else {
1850 >                                    count = 2;
1851 >                                    delta = 1;
1852 >                                    t.putTreeNode(h, k, val);
1853 >                                }
1854 >                            }
1855 >                            else if (p != null) {
1856 >                                delta = -1;
1857 >                                t.deleteTreeNode(p);
1858 >                            }
1859 >                        }
1860 >                    } finally {
1861 >                        t.release(0);
1862 >                    }
1863 >                    if (count != 0)
1864 >                        break;
1865 >                }
1866 >                else
1867 >                    tab = (Node[])fk;
1868 >            }
1869 >            else if ((fh & LOCKED) != 0) {
1870 >                checkForResize();
1871 >                f.tryAwaitLock(tab, i);
1872 >            }
1873 >            else if (f.casHash(fh, fh | LOCKED)) {
1874 >                try {
1875 >                    if (tabAt(tab, i) == f) {
1876 >                        count = 1;
1877 >                        for (Node e = f, pred = null;; ++count) {
1878 >                            Object ek, ev;
1879 >                            if ((e.hash & HASH_BITS) == h &&
1880 >                                (ev = e.val) != null &&
1881 >                                ((ek = e.key) == k || k.equals(ek))) {
1882 >                                val = mf.apply(v, (V)ev);
1883 >                                if (val != null)
1884 >                                    e.val = val;
1885 >                                else {
1886 >                                    delta = -1;
1887 >                                    Node en = e.next;
1888 >                                    if (pred != null)
1889 >                                        pred.next = en;
1890 >                                    else
1891 >                                        setTabAt(tab, i, en);
1892 >                                }
1893 >                                break;
1894 >                            }
1895 >                            pred = e;
1896 >                            if ((e = e.next) == null) {
1897 >                                val = v;
1898 >                                pred.next = new Node(h, k, val, null);
1899 >                                delta = 1;
1900 >                                if (count >= TREE_THRESHOLD)
1901 >                                    replaceWithTreeBin(tab, i, k);
1902 >                                break;
1903 >                            }
1904 >                        }
1905 >                    }
1906 >                } finally {
1907 >                    if (!f.casHash(fh | LOCKED, fh)) {
1908 >                        f.hash = fh;
1909 >                        synchronized (f) { f.notifyAll(); };
1910 >                    }
1911 >                }
1912 >                if (count != 0) {
1913 >                    if (tab.length <= 64)
1914 >                        count = 2;
1915 >                    break;
1916 >                }
1917 >            }
1918 >        }
1919 >        if (delta != 0) {
1920 >            counter.add((long)delta);
1921 >            if (count > 1)
1922                  checkForResize();
1923          }
1924          return val;
# Line 959 | Line 1939 | public class ConcurrentHashMapV8<K, V>
1939                  }
1940                  int h = spread(k.hashCode());
1941                  for (Node[] tab = table;;) {
1942 <                    int i; Node f; int fh;
1942 >                    int i; Node f; int fh; Object fk;
1943                      if (tab == null)
1944                          tab = initTable();
1945                      else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
# Line 968 | Line 1948 | public class ConcurrentHashMapV8<K, V>
1948                              break;
1949                          }
1950                      }
1951 <                    else if ((fh = f.hash) == MOVED)
1952 <                        tab = (Node[])f.key;
1951 >                    else if ((fh = f.hash) == MOVED) {
1952 >                        if ((fk = f.key) instanceof TreeBin) {
1953 >                            TreeBin t = (TreeBin)fk;
1954 >                            boolean validated = false;
1955 >                            t.acquire(0);
1956 >                            try {
1957 >                                if (tabAt(tab, i) == f) {
1958 >                                    validated = true;
1959 >                                    TreeNode p = t.getTreeNode(h, k, t.root);
1960 >                                    if (p != null)
1961 >                                        p.val = v;
1962 >                                    else {
1963 >                                        t.putTreeNode(h, k, v);
1964 >                                        ++delta;
1965 >                                    }
1966 >                                }
1967 >                            } finally {
1968 >                                t.release(0);
1969 >                            }
1970 >                            if (validated)
1971 >                                break;
1972 >                        }
1973 >                        else
1974 >                            tab = (Node[])fk;
1975 >                    }
1976                      else if ((fh & LOCKED) != 0) {
1977                          counter.add(delta);
1978                          delta = 0L;
# Line 977 | Line 1980 | public class ConcurrentHashMapV8<K, V>
1980                          f.tryAwaitLock(tab, i);
1981                      }
1982                      else if (f.casHash(fh, fh | LOCKED)) {
1983 <                        boolean validated = false;
981 <                        boolean tooLong = false;
1983 >                        int count = 0;
1984                          try {
1985                              if (tabAt(tab, i) == f) {
1986 <                                validated = true;
1987 <                                for (Node e = f;;) {
1986 >                                count = 1;
1987 >                                for (Node e = f;; ++count) {
1988                                      Object ek, ev;
1989                                      if ((e.hash & HASH_BITS) == h &&
1990                                          (ev = e.val) != null &&
# Line 994 | Line 1996 | public class ConcurrentHashMapV8<K, V>
1996                                      if ((e = e.next) == null) {
1997                                          ++delta;
1998                                          last.next = new Node(h, k, v, null);
1999 +                                        if (count >= TREE_THRESHOLD)
2000 +                                            replaceWithTreeBin(tab, i, k);
2001                                          break;
2002                                      }
999                                    tooLong = true;
2003                                  }
2004                              }
2005                          } finally {
# Line 1005 | Line 2008 | public class ConcurrentHashMapV8<K, V>
2008                                  synchronized (f) { f.notifyAll(); };
2009                              }
2010                          }
2011 <                        if (validated) {
2012 <                            if (tooLong) {
2011 >                        if (count != 0) {
2012 >                            if (count > 1) {
2013                                  counter.add(delta);
2014                                  delta = 0L;
2015                                  checkForResize();
# Line 1145 | Line 2148 | public class ConcurrentHashMapV8<K, V>
2148          for (int i = bin;;) {      // start upwards sweep
2149              int fh; Node f;
2150              if ((f = tabAt(tab, i)) == null) {
2151 <                if (bin >= 0) {    // no lock needed (or available)
2151 >                if (bin >= 0) {    // Unbuffered; no lock needed (or available)
2152                      if (!casTabAt(tab, i, f, fwd))
2153                          continue;
2154                  }
2155                  else {             // transiently use a locked forwarding node
2156 <                    Node g =  new Node(MOVED|LOCKED, nextTab, null, null);
2156 >                    Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2157                      if (!casTabAt(tab, i, f, g))
2158                          continue;
2159                      setTabAt(nextTab, i, null);
# Line 1162 | Line 2165 | public class ConcurrentHashMapV8<K, V>
2165                      }
2166                  }
2167              }
2168 <            else if (((fh = f.hash) & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2168 >            else if ((fh = f.hash) == MOVED) {
2169 >                Object fk = f.key;
2170 >                if (fk instanceof TreeBin) {
2171 >                    TreeBin t = (TreeBin)fk;
2172 >                    boolean validated = false;
2173 >                    t.acquire(0);
2174 >                    try {
2175 >                        if (tabAt(tab, i) == f) {
2176 >                            validated = true;
2177 >                            splitTreeBin(nextTab, i, t);
2178 >                            setTabAt(tab, i, fwd);
2179 >                        }
2180 >                    } finally {
2181 >                        t.release(0);
2182 >                    }
2183 >                    if (!validated)
2184 >                        continue;
2185 >                }
2186 >            }
2187 >            else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2188                  boolean validated = false;
2189                  try {              // split to lo and hi lists; copying as needed
2190                      if (tabAt(tab, i) == f) {
2191                          validated = true;
2192 <                        Node e = f, lastRun = f;
1171 <                        Node lo = null, hi = null;
1172 <                        int runBit = e.hash & n;
1173 <                        for (Node p = e.next; p != null; p = p.next) {
1174 <                            int b = p.hash & n;
1175 <                            if (b != runBit) {
1176 <                                runBit = b;
1177 <                                lastRun = p;
1178 <                            }
1179 <                        }
1180 <                        if (runBit == 0)
1181 <                            lo = lastRun;
1182 <                        else
1183 <                            hi = lastRun;
1184 <                        for (Node p = e; p != lastRun; p = p.next) {
1185 <                            int ph = p.hash & HASH_BITS;
1186 <                            Object pk = p.key, pv = p.val;
1187 <                            if ((ph & n) == 0)
1188 <                                lo = new Node(ph, pk, pv, lo);
1189 <                            else
1190 <                                hi = new Node(ph, pk, pv, hi);
1191 <                        }
1192 <                        setTabAt(nextTab, i, lo);
1193 <                        setTabAt(nextTab, i + n, hi);
2192 >                        splitBin(nextTab, i, f);
2193                          setTabAt(tab, i, fwd);
2194                      }
2195                  } finally {
# Line 1236 | Line 2235 | public class ConcurrentHashMapV8<K, V>
2235      }
2236  
2237      /**
2238 +     * Splits a normal bin with list headed by e into lo and hi parts;
2239 +     * installs in given table.
2240 +     */
2241 +    private static void splitBin(Node[] nextTab, int i, Node e) {
2242 +        int bit = nextTab.length >>> 1; // bit to split on
2243 +        int runBit = e.hash & bit;
2244 +        Node lastRun = e, lo = null, hi = null;
2245 +        for (Node p = e.next; p != null; p = p.next) {
2246 +            int b = p.hash & bit;
2247 +            if (b != runBit) {
2248 +                runBit = b;
2249 +                lastRun = p;
2250 +            }
2251 +        }
2252 +        if (runBit == 0)
2253 +            lo = lastRun;
2254 +        else
2255 +            hi = lastRun;
2256 +        for (Node p = e; p != lastRun; p = p.next) {
2257 +            int ph = p.hash & HASH_BITS;
2258 +            Object pk = p.key, pv = p.val;
2259 +            if ((ph & bit) == 0)
2260 +                lo = new Node(ph, pk, pv, lo);
2261 +            else
2262 +                hi = new Node(ph, pk, pv, hi);
2263 +        }
2264 +        setTabAt(nextTab, i, lo);
2265 +        setTabAt(nextTab, i + bit, hi);
2266 +    }
2267 +
2268 +    /**
2269 +     * Splits a tree bin into lo and hi parts; installs in given table.
2270 +     */
2271 +    private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2272 +        int bit = nextTab.length >>> 1;
2273 +        TreeBin lt = new TreeBin();
2274 +        TreeBin ht = new TreeBin();
2275 +        int lc = 0, hc = 0;
2276 +        for (Node e = t.first; e != null; e = e.next) {
2277 +            int h = e.hash & HASH_BITS;
2278 +            Object k = e.key, v = e.val;
2279 +            if ((h & bit) == 0) {
2280 +                ++lc;
2281 +                lt.putTreeNode(h, k, v);
2282 +            }
2283 +            else {
2284 +                ++hc;
2285 +                ht.putTreeNode(h, k, v);
2286 +            }
2287 +        }
2288 +        Node ln, hn; // throw away trees if too small
2289 +        if (lc <= (TREE_THRESHOLD >>> 1)) {
2290 +            ln = null;
2291 +            for (Node p = lt.first; p != null; p = p.next)
2292 +                ln = new Node(p.hash, p.key, p.val, ln);
2293 +        }
2294 +        else
2295 +            ln = new Node(MOVED, lt, null, null);
2296 +        setTabAt(nextTab, i, ln);
2297 +        if (hc <= (TREE_THRESHOLD >>> 1)) {
2298 +            hn = null;
2299 +            for (Node p = ht.first; p != null; p = p.next)
2300 +                hn = new Node(p.hash, p.key, p.val, hn);
2301 +        }
2302 +        else
2303 +            hn = new Node(MOVED, ht, null, null);
2304 +        setTabAt(nextTab, i + bit, hn);
2305 +    }
2306 +
2307 +    /**
2308       * Implementation for clear. Steps through each bin, removing all
2309       * nodes.
2310       */
# Line 1244 | Line 2313 | public class ConcurrentHashMapV8<K, V>
2313          int i = 0;
2314          Node[] tab = table;
2315          while (tab != null && i < tab.length) {
2316 <            int fh;
2316 >            int fh; Object fk;
2317              Node f = tabAt(tab, i);
2318              if (f == null)
2319                  ++i;
2320 <            else if ((fh = f.hash) == MOVED)
2321 <                tab = (Node[])f.key;
2320 >            else if ((fh = f.hash) == MOVED) {
2321 >                if ((fk = f.key) instanceof TreeBin) {
2322 >                    TreeBin t = (TreeBin)fk;
2323 >                    t.acquire(0);
2324 >                    try {
2325 >                        if (tabAt(tab, i) == f) {
2326 >                            for (Node p = t.first; p != null; p = p.next) {
2327 >                                if (p.val != null) { // (currently always true)
2328 >                                    p.val = null;
2329 >                                    --delta;
2330 >                                }
2331 >                            }
2332 >                            t.first = null;
2333 >                            t.root = null;
2334 >                            ++i;
2335 >                        }
2336 >                    } finally {
2337 >                        t.release(0);
2338 >                    }
2339 >                }
2340 >                else
2341 >                    tab = (Node[])fk;
2342 >            }
2343              else if ((fh & LOCKED) != 0) {
2344                  counter.add(delta); // opportunistically update count
2345                  delta = 0L;
2346                  f.tryAwaitLock(tab, i);
2347              }
2348              else if (f.casHash(fh, fh | LOCKED)) {
1259                boolean validated = false;
2349                  try {
2350                      if (tabAt(tab, i) == f) {
1262                        validated = true;
2351                          for (Node e = f; e != null; e = e.next) {
2352 <                            if (e.val != null) { // currently always true
2352 >                            if (e.val != null) {  // (currently always true)
2353                                  e.val = null;
2354                                  --delta;
2355                              }
2356                          }
2357                          setTabAt(tab, i, null);
2358 +                        ++i;
2359                      }
2360                  } finally {
2361                      if (!f.casHash(fh | LOCKED, fh)) {
# Line 1274 | Line 2363 | public class ConcurrentHashMapV8<K, V>
2363                          synchronized (f) { f.notifyAll(); };
2364                      }
2365                  }
1277                if (validated)
1278                    ++i;
2366              }
2367          }
2368          if (delta != 0)
2369              counter.add(delta);
2370      }
2371  
1285
2372      /* ----------------Table Traversal -------------- */
2373  
2374      /**
2375       * Encapsulates traversal for methods such as containsValue; also
2376 <     * serves as a base class for other iterators.
2376 >     * serves as a base class for other iterators and bulk tasks.
2377       *
2378       * At each step, the iterator snapshots the key ("nextKey") and
2379       * value ("nextVal") of a valid node (i.e., one that, at point of
2380 <     * snapshot, has a nonnull user value). Because val fields can
2380 >     * snapshot, has a non-null user value). Because val fields can
2381       * change (including to null, indicating deletion), field nextVal
2382       * might not be accurate at point of use, but still maintains the
2383       * weak consistency property of holding a value that was once
2384 <     * valid.
2384 >     * valid. To support iterator.remove, the nextKey field is not
2385 >     * updated (nulled out) when the iterator cannot advance.
2386       *
2387       * Internal traversals directly access these fields, as in:
2388 <     * {@code while (it.next != null) { process(it.nextKey); it.advance(); }}
2388 >     * {@code while (it.advance() != null) { process(it.nextKey); }}
2389       *
2390 <     * Exported iterators (subclasses of ViewIterator) extract key,
2391 <     * value, or key-value pairs as return values of Iterator.next(),
2392 <     * and encapsulate the it.next check as hasNext();
2390 >     * Exported iterators must track whether the iterator has advanced
2391 >     * (in hasNext vs next) (by setting/checking/nulling field
2392 >     * nextVal), and then extract key, value, or key-value pairs as
2393 >     * return values of next().
2394       *
2395       * The iterator visits once each still-valid node that was
2396       * reachable upon iterator construction. It might miss some that
# Line 1321 | Line 2409 | public class ConcurrentHashMapV8<K, V>
2409       * across threads, iteration terminates if a bounds checks fails
2410       * for a table read.
2411       *
2412 <     * The range-based constructor enables creation of parallel
2413 <     * range-splitting traversals. (Not yet implemented.)
2412 >     * This class extends CountedCompleter to streamline parallel
2413 >     * iteration in bulk operations. This adds only a few fields of
2414 >     * space overhead, which is small enough in cases where it is not
2415 >     * needed to not worry about it.  Because CountedCompleter is
2416 >     * Serializable, but iterators need not be, we need to add warning
2417 >     * suppressions.
2418       */
2419 <    static class InternalIterator {
2419 >    @SuppressWarnings("serial") static class Traverser<K,V,R> extends CountedCompleter<R> {
2420 >        final ConcurrentHashMapV8<K, V> map;
2421          Node next;           // the next entry to use
1329        Node last;           // the last entry used
2422          Object nextKey;      // cached key field of next
2423          Object nextVal;      // cached val field of next
2424          Node[] tab;          // current table; updated if resized
2425          int index;           // index of bin to use next
2426          int baseIndex;       // current index of initial table
2427 <        final int baseLimit; // index bound for initial table
2428 <        final int baseSize;  // initial table size
2427 >        int baseLimit;       // index bound for initial table
2428 >        int baseSize;        // initial table size
2429 >        int batch;           // split control
2430  
2431          /** Creates iterator for all entries in the table. */
2432 <        InternalIterator(Node[] tab) {
2433 <            this.tab = tab;
2434 <            baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2435 <            index = baseIndex = 0;
2436 <            next = null;
2437 <            advance();
2438 <        }
2439 <
2440 <        /** Creates iterator for the given range of the table */
2441 <        InternalIterator(Node[] tab, int lo, int hi) {
2442 <            this.tab = tab;
2443 <            baseSize = (tab == null) ? 0 : tab.length;
2444 <            baseLimit = (hi <= baseSize) ? hi : baseSize;
2445 <            index = baseIndex = (lo >= 0) ? lo : 0;
2446 <            next = null;
2447 <            advance();
2448 <        }
2449 <
2450 <        /** Advances next. See above for explanation. */
2451 <        final void advance() {
2452 <            Node e = last = next;
2432 >        Traverser(ConcurrentHashMapV8<K, V> map) {
2433 >            this.map = map;
2434 >        }
2435 >
2436 >        /** Creates iterator for split() methods and task constructors */
2437 >        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2438 >            super(it);
2439 >            this.batch = batch;
2440 >            if ((this.map = map) != null && it != null) { // split parent
2441 >                Node[] t;
2442 >                if ((t = it.tab) == null &&
2443 >                    (t = it.tab = map.table) != null)
2444 >                    it.baseLimit = it.baseSize = t.length;
2445 >                this.tab = t;
2446 >                this.baseSize = it.baseSize;
2447 >                int hi = this.baseLimit = it.baseLimit;
2448 >                it.baseLimit = this.index = this.baseIndex =
2449 >                    (hi + it.baseIndex + 1) >>> 1;
2450 >            }
2451 >        }
2452 >
2453 >        /**
2454 >         * Advances next; returns nextVal or null if terminated.
2455 >         * See above for explanation.
2456 >         */
2457 >        final Object advance() {
2458 >            Node e = next;
2459 >            Object ev = null;
2460              outer: do {
2461                  if (e != null)                  // advance past used/skipped node
2462                      e = e.next;
2463                  while (e == null) {             // get to next non-null bin
2464 <                    Node[] t; int b, i, n;      // checks must use locals
2465 <                    if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2466 <                        (t = tab) == null || i >= (n = t.length))
2464 >                    ConcurrentHashMapV8<K, V> m;
2465 >                    Node[] t; int b, i, n; Object ek; // checks must use locals
2466 >                    if ((t = tab) != null)
2467 >                        n = t.length;
2468 >                    else if ((m = map) != null && (t = tab = m.table) != null)
2469 >                        n = baseLimit = baseSize = t.length;
2470 >                    else
2471 >                        break outer;
2472 >                    if ((b = baseIndex) >= baseLimit ||
2473 >                        (i = index) < 0 || i >= n)
2474                          break outer;
2475 <                    else if ((e = tabAt(t, i)) != null && e.hash == MOVED)
2476 <                        tab = (Node[])e.key;    // restarts due to null val
2477 <                    else                        // visit upper slots if present
2478 <                        index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2475 >                    if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2476 >                        if ((ek = e.key) instanceof TreeBin)
2477 >                            e = ((TreeBin)ek).first;
2478 >                        else {
2479 >                            tab = (Node[])ek;
2480 >                            continue;           // restarts due to null val
2481 >                        }
2482 >                    }                           // visit upper slots if present
2483 >                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2484                  }
2485                  nextKey = e.key;
2486 <            } while ((nextVal = e.val) == null);// skip deleted or special nodes
2486 >            } while ((ev = e.val) == null);    // skip deleted or special nodes
2487              next = e;
2488 +            return nextVal = ev;
2489 +        }
2490 +
2491 +        public final void remove() {
2492 +            Object k = nextKey;
2493 +            if (k == null && (advance() == null || (k = nextKey) == null))
2494 +                throw new IllegalStateException();
2495 +            map.internalReplace(k, null, null);
2496 +        }
2497 +
2498 +        public final boolean hasNext() {
2499 +            return nextVal != null || advance() != null;
2500 +        }
2501 +
2502 +        public final boolean hasMoreElements() { return hasNext(); }
2503 +
2504 +        public void compute() { } // default no-op CountedCompleter body
2505 +
2506 +        /**
2507 +         * Returns a batch value > 0 if this task should (and must) be
2508 +         * split, if so, adding to pending count, and in any case
2509 +         * updating batch value. The initial batch value is approx
2510 +         * exp2 of the number of times (minus one) to split task by
2511 +         * two before executing leaf action. This value is faster to
2512 +         * compute and more convenient to use as a guide to splitting
2513 +         * than is the depth, since it is used while dividing by two
2514 +         * anyway.
2515 +         */
2516 +        final int preSplit() {
2517 +            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2518 +            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2519 +                if ((t = tab) == null && (t = tab = m.table) != null)
2520 +                    baseLimit = baseSize = t.length;
2521 +                if (t != null) {
2522 +                    long n = m.counter.sum();
2523 +                    int par = ((pool = getPool()) == null) ?
2524 +                        ForkJoinPool.getCommonPoolParallelism() :
2525 +                        pool.getParallelism();
2526 +                    int sp = par << 3; // slack of 8
2527 +                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2528 +                }
2529 +            }
2530 +            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2531 +            if ((batch = b) > 0)
2532 +                addToPendingCount(1);
2533 +            return b;
2534          }
2535 +
2536      }
2537  
2538      /* ---------------- Public operations -------------- */
2539  
2540      /**
2541 <     * Creates a new, empty map with the default initial table size (16),
2541 >     * Creates a new, empty map with the default initial table size (16).
2542       */
2543      public ConcurrentHashMapV8() {
2544          this.counter = new LongAdder();
# Line 1460 | Line 2619 | public class ConcurrentHashMapV8<K, V>
2619          if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2620              initialCapacity = concurrencyLevel;   // as estimated threads
2621          long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2622 <        int cap =  ((size >= (long)MAXIMUM_CAPACITY) ?
2623 <                    MAXIMUM_CAPACITY: tableSizeFor((int)size));
2622 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2623 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2624          this.counter = new LongAdder();
2625          this.sizeCtl = cap;
2626      }
2627  
2628      /**
2629 +     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2630 +     * from the given type to {@code Boolean.TRUE}.
2631 +     *
2632 +     * @return the new set
2633 +     */
2634 +    public static <K> KeySetView<K,Boolean> newKeySet() {
2635 +        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2636 +                                      Boolean.TRUE);
2637 +    }
2638 +
2639 +    /**
2640 +     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2641 +     * from the given type to {@code Boolean.TRUE}.
2642 +     *
2643 +     * @param initialCapacity The implementation performs internal
2644 +     * sizing to accommodate this many elements.
2645 +     * @throws IllegalArgumentException if the initial capacity of
2646 +     * elements is negative
2647 +     * @return the new set
2648 +     */
2649 +    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2650 +        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(initialCapacity),
2651 +                                      Boolean.TRUE);
2652 +    }
2653 +
2654 +    /**
2655       * {@inheritDoc}
2656       */
2657      public boolean isEmpty() {
# Line 1483 | Line 2668 | public class ConcurrentHashMapV8<K, V>
2668                  (int)n);
2669      }
2670  
2671 <    final long longSize() { // accurate version of size needed for views
2671 >    /**
2672 >     * Returns the number of mappings. This method should be used
2673 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2674 >     * contain more mappings than can be represented as an int. The
2675 >     * value returned is an estimate; the actual count may differ if
2676 >     * there are concurrent insertions or removals.
2677 >     *
2678 >     * @return the number of mappings
2679 >     */
2680 >    public long mappingCount() {
2681          long n = counter.sum();
2682 <        return (n < 0L) ? 0L : n;
2682 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2683      }
2684  
2685      /**
# Line 1499 | Line 2693 | public class ConcurrentHashMapV8<K, V>
2693       *
2694       * @throws NullPointerException if the specified key is null
2695       */
2696 <    @SuppressWarnings("unchecked")
1503 <    public V get(Object key) {
2696 >    @SuppressWarnings("unchecked") public V get(Object key) {
2697          if (key == null)
2698              throw new NullPointerException();
2699          return (V)internalGet(key);
2700      }
2701  
2702      /**
2703 +     * Returns the value to which the specified key is mapped,
2704 +     * or the given defaultValue if this map contains no mapping for the key.
2705 +     *
2706 +     * @param key the key
2707 +     * @param defaultValue the value to return if this map contains
2708 +     * no mapping for the given key
2709 +     * @return the mapping for the key, if present; else the defaultValue
2710 +     * @throws NullPointerException if the specified key is null
2711 +     */
2712 +    @SuppressWarnings("unchecked") public V getValueOrDefault(Object key, V defaultValue) {
2713 +        if (key == null)
2714 +            throw new NullPointerException();
2715 +        V v = (V) internalGet(key);
2716 +        return v == null ? defaultValue : v;
2717 +    }
2718 +
2719 +    /**
2720       * Tests if the specified object is a key in this table.
2721       *
2722       * @param  key   possible key
# Line 1535 | Line 2745 | public class ConcurrentHashMapV8<K, V>
2745          if (value == null)
2746              throw new NullPointerException();
2747          Object v;
2748 <        InternalIterator it = new InternalIterator(table);
2749 <        while (it.next != null) {
2750 <            if ((v = it.nextVal) == value || value.equals(v))
2748 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2749 >        while ((v = it.advance()) != null) {
2750 >            if (v == value || value.equals(v))
2751                  return true;
1542            it.advance();
2752          }
2753          return false;
2754      }
# Line 1567 | Line 2776 | public class ConcurrentHashMapV8<K, V>
2776       * Maps the specified key to the specified value in this table.
2777       * Neither the key nor the value can be null.
2778       *
2779 <     * <p> The value can be retrieved by calling the {@code get} method
2779 >     * <p>The value can be retrieved by calling the {@code get} method
2780       * with a key that is equal to the original key.
2781       *
2782       * @param key key with which the specified value is to be associated
# Line 1576 | Line 2785 | public class ConcurrentHashMapV8<K, V>
2785       *         {@code null} if there was no mapping for {@code key}
2786       * @throws NullPointerException if the specified key or value is null
2787       */
2788 <    @SuppressWarnings("unchecked")
1580 <    public V put(K key, V value) {
2788 >    @SuppressWarnings("unchecked") public V put(K key, V value) {
2789          if (key == null || value == null)
2790              throw new NullPointerException();
2791          return (V)internalPut(key, value);
# Line 1590 | Line 2798 | public class ConcurrentHashMapV8<K, V>
2798       *         or {@code null} if there was no mapping for the key
2799       * @throws NullPointerException if the specified key or value is null
2800       */
2801 <    @SuppressWarnings("unchecked")
1594 <    public V putIfAbsent(K key, V value) {
2801 >    @SuppressWarnings("unchecked") public V putIfAbsent(K key, V value) {
2802          if (key == null || value == null)
2803              throw new NullPointerException();
2804          return (V)internalPutIfAbsent(key, value);
# Line 1610 | Line 2817 | public class ConcurrentHashMapV8<K, V>
2817  
2818      /**
2819       * If the specified key is not already associated with a value,
2820 <     * computes its value using the given mappingFunction and
2821 <     * enters it into the map.  This is equivalent to
2820 >     * computes its value using the given mappingFunction and enters
2821 >     * it into the map unless null.  This is equivalent to
2822       * <pre> {@code
2823       * if (map.containsKey(key))
2824       *   return map.get(key);
2825 <     * value = mappingFunction.map(key);
2826 <     * map.put(key, value);
2825 >     * value = mappingFunction.apply(key);
2826 >     * if (value != null)
2827 >     *   map.put(key, value);
2828       * return value;}</pre>
2829       *
2830       * except that the action is performed atomically.  If the
2831 <     * function returns {@code null} (in which case a {@code
2832 <     * NullPointerException} is thrown), or the function itself throws
2833 <     * an (unchecked) exception, the exception is rethrown to its
2834 <     * caller, and no mapping is recorded.  Some attempted update
2835 <     * operations on this map by other threads may be blocked while
2836 <     * computation is in progress, so the computation should be short
2837 <     * and simple, and must not attempt to update any other mappings
2838 <     * of this Map. The most appropriate usage is to construct a new
2839 <     * object serving as an initial mapped value, or memoized result,
1632 <     * as in:
2831 >     * function returns {@code null} no mapping is recorded. If the
2832 >     * function itself throws an (unchecked) exception, the exception
2833 >     * is rethrown to its caller, and no mapping is recorded.  Some
2834 >     * attempted update operations on this map by other threads may be
2835 >     * blocked while computation is in progress, so the computation
2836 >     * should be short and simple, and must not attempt to update any
2837 >     * other mappings of this Map. The most appropriate usage is to
2838 >     * construct a new object serving as an initial mapped value, or
2839 >     * memoized result, as in:
2840       *
2841       *  <pre> {@code
2842 <     * map.computeIfAbsent(key, new MappingFunction<K, V>() {
2842 >     * map.computeIfAbsent(key, new Fun<K, V>() {
2843       *   public V map(K k) { return new Value(f(k)); }});}</pre>
2844       *
2845       * @param key key with which the specified value is to be associated
2846       * @param mappingFunction the function to compute a value
2847       * @return the current (existing or computed) value associated with
2848 <     *         the specified key.
2849 <     * @throws NullPointerException if the specified key, mappingFunction,
2850 <     *         or computed value is null
2848 >     *         the specified key, or null if the computed value is null
2849 >     * @throws NullPointerException if the specified key or mappingFunction
2850 >     *         is null
2851       * @throws IllegalStateException if the computation detectably
2852       *         attempts a recursive update to this map that would
2853       *         otherwise never complete
2854       * @throws RuntimeException or Error if the mappingFunction does so,
2855       *         in which case the mapping is left unestablished
2856       */
2857 <    @SuppressWarnings("unchecked")
2858 <    public V computeIfAbsent(K key, MappingFunction<? super K, ? extends V> mappingFunction) {
2857 >    @SuppressWarnings("unchecked") public V computeIfAbsent
2858 >        (K key, Fun<? super K, ? extends V> mappingFunction) {
2859          if (key == null || mappingFunction == null)
2860              throw new NullPointerException();
2861          return (V)internalComputeIfAbsent(key, mappingFunction);
2862      }
2863  
2864      /**
2865 <     * Computes and enters a new mapping value given a key and
2865 >     * If the given key is present, computes a new mapping value given a key and
2866 >     * its current mapped value. This is equivalent to
2867 >     *  <pre> {@code
2868 >     *   if (map.containsKey(key)) {
2869 >     *     value = remappingFunction.apply(key, map.get(key));
2870 >     *     if (value != null)
2871 >     *       map.put(key, value);
2872 >     *     else
2873 >     *       map.remove(key);
2874 >     *   }
2875 >     * }</pre>
2876 >     *
2877 >     * except that the action is performed atomically.  If the
2878 >     * function returns {@code null}, the mapping is removed.  If the
2879 >     * function itself throws an (unchecked) exception, the exception
2880 >     * is rethrown to its caller, and the current mapping is left
2881 >     * unchanged.  Some attempted update operations on this map by
2882 >     * other threads may be blocked while computation is in progress,
2883 >     * so the computation should be short and simple, and must not
2884 >     * attempt to update any other mappings of this Map. For example,
2885 >     * to either create or append new messages to a value mapping:
2886 >     *
2887 >     * @param key key with which the specified value is to be associated
2888 >     * @param remappingFunction the function to compute a value
2889 >     * @return the new value associated with the specified key, or null if none
2890 >     * @throws NullPointerException if the specified key or remappingFunction
2891 >     *         is null
2892 >     * @throws IllegalStateException if the computation detectably
2893 >     *         attempts a recursive update to this map that would
2894 >     *         otherwise never complete
2895 >     * @throws RuntimeException or Error if the remappingFunction does so,
2896 >     *         in which case the mapping is unchanged
2897 >     */
2898 >    @SuppressWarnings("unchecked") public V computeIfPresent
2899 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2900 >        if (key == null || remappingFunction == null)
2901 >            throw new NullPointerException();
2902 >        return (V)internalCompute(key, true, remappingFunction);
2903 >    }
2904 >
2905 >    /**
2906 >     * Computes a new mapping value given a key and
2907       * its current mapped value (or {@code null} if there is no current
2908       * mapping). This is equivalent to
2909       *  <pre> {@code
2910 <     *  map.put(key, remappingFunction.remap(key, map.get(key));
2910 >     *   value = remappingFunction.apply(key, map.get(key));
2911 >     *   if (value != null)
2912 >     *     map.put(key, value);
2913 >     *   else
2914 >     *     map.remove(key);
2915       * }</pre>
2916       *
2917       * except that the action is performed atomically.  If the
2918 <     * function returns {@code null} (in which case a {@code
2919 <     * NullPointerException} is thrown), or the function itself throws
2920 <     * an (unchecked) exception, the exception is rethrown to its
2921 <     * caller, and current mapping is left unchanged.  Some attempted
2922 <     * update operations on this map by other threads may be blocked
2923 <     * while computation is in progress, so the computation should be
2924 <     * short and simple, and must not attempt to update any other
2925 <     * mappings of this Map. For example, to either create or
1674 <     * append new messages to a value mapping:
2918 >     * function returns {@code null}, the mapping is removed.  If the
2919 >     * function itself throws an (unchecked) exception, the exception
2920 >     * is rethrown to its caller, and the current mapping is left
2921 >     * unchanged.  Some attempted update operations on this map by
2922 >     * other threads may be blocked while computation is in progress,
2923 >     * so the computation should be short and simple, and must not
2924 >     * attempt to update any other mappings of this Map. For example,
2925 >     * to either create or append new messages to a value mapping:
2926       *
2927       * <pre> {@code
2928       * Map<Key, String> map = ...;
2929       * final String msg = ...;
2930 <     * map.compute(key, new RemappingFunction<Key, String>() {
2931 <     *   public String remap(Key k, String v) {
2930 >     * map.compute(key, new BiFun<Key, String, String>() {
2931 >     *   public String apply(Key k, String v) {
2932       *    return (v == null) ? msg : v + msg;});}}</pre>
2933       *
2934       * @param key key with which the specified value is to be associated
2935       * @param remappingFunction the function to compute a value
2936 <     * @return the new value associated with
1686 <     *         the specified key.
2936 >     * @return the new value associated with the specified key, or null if none
2937       * @throws NullPointerException if the specified key or remappingFunction
2938 <     *         or computed value is null
2938 >     *         is null
2939       * @throws IllegalStateException if the computation detectably
2940       *         attempts a recursive update to this map that would
2941       *         otherwise never complete
2942       * @throws RuntimeException or Error if the remappingFunction does so,
2943       *         in which case the mapping is unchanged
2944       */
2945 <    @SuppressWarnings("unchecked")
2946 <    public V compute(K key, RemappingFunction<? super K, V> remappingFunction) {
2945 >    @SuppressWarnings("unchecked") public V compute
2946 >        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2947          if (key == null || remappingFunction == null)
2948              throw new NullPointerException();
2949 <        return (V)internalCompute(key, remappingFunction);
2949 >        return (V)internalCompute(key, false, remappingFunction);
2950 >    }
2951 >
2952 >    /**
2953 >     * If the specified key is not already associated
2954 >     * with a value, associate it with the given value.
2955 >     * Otherwise, replace the value with the results of
2956 >     * the given remapping function. This is equivalent to:
2957 >     *  <pre> {@code
2958 >     *   if (!map.containsKey(key))
2959 >     *     map.put(value);
2960 >     *   else {
2961 >     *     newValue = remappingFunction.apply(map.get(key), value);
2962 >     *     if (value != null)
2963 >     *       map.put(key, value);
2964 >     *     else
2965 >     *       map.remove(key);
2966 >     *   }
2967 >     * }</pre>
2968 >     * except that the action is performed atomically.  If the
2969 >     * function returns {@code null}, the mapping is removed.  If the
2970 >     * function itself throws an (unchecked) exception, the exception
2971 >     * is rethrown to its caller, and the current mapping is left
2972 >     * unchanged.  Some attempted update operations on this map by
2973 >     * other threads may be blocked while computation is in progress,
2974 >     * so the computation should be short and simple, and must not
2975 >     * attempt to update any other mappings of this Map.
2976 >     */
2977 >    @SuppressWarnings("unchecked") public V merge
2978 >        (K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2979 >        if (key == null || value == null || remappingFunction == null)
2980 >            throw new NullPointerException();
2981 >        return (V)internalMerge(key, value, remappingFunction);
2982      }
2983  
2984      /**
# Line 1708 | Line 2990 | public class ConcurrentHashMapV8<K, V>
2990       *         {@code null} if there was no mapping for {@code key}
2991       * @throws NullPointerException if the specified key is null
2992       */
2993 <    @SuppressWarnings("unchecked")
1712 <    public V remove(Object key) {
2993 >    @SuppressWarnings("unchecked") public V remove(Object key) {
2994          if (key == null)
2995              throw new NullPointerException();
2996          return (V)internalReplace(key, null, null);
# Line 1746 | Line 3027 | public class ConcurrentHashMapV8<K, V>
3027       *         or {@code null} if there was no mapping for the key
3028       * @throws NullPointerException if the specified key or value is null
3029       */
3030 <    @SuppressWarnings("unchecked")
1750 <    public V replace(K key, V value) {
3030 >    @SuppressWarnings("unchecked") public V replace(K key, V value) {
3031          if (key == null || value == null)
3032              throw new NullPointerException();
3033          return (V)internalReplace(key, value, null);
# Line 1763 | Line 3043 | public class ConcurrentHashMapV8<K, V>
3043      /**
3044       * Returns a {@link Set} view of the keys contained in this map.
3045       * The set is backed by the map, so changes to the map are
3046 <     * reflected in the set, and vice-versa.  The set supports element
1767 <     * removal, which removes the corresponding mapping from this map,
1768 <     * via the {@code Iterator.remove}, {@code Set.remove},
1769 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
1770 <     * operations.  It does not support the {@code add} or
1771 <     * {@code addAll} operations.
3046 >     * reflected in the set, and vice-versa.
3047       *
3048 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1774 <     * that will never throw {@link ConcurrentModificationException},
1775 <     * and guarantees to traverse elements as they existed upon
1776 <     * construction of the iterator, and may (but is not guaranteed to)
1777 <     * reflect any modifications subsequent to construction.
3048 >     * @return the set view
3049       */
3050 <    public Set<K> keySet() {
3051 <        KeySet<K,V> ks = keySet;
3052 <        return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
3050 >    public KeySetView<K,V> keySet() {
3051 >        KeySetView<K,V> ks = keySet;
3052 >        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
3053 >    }
3054 >
3055 >    /**
3056 >     * Returns a {@link Set} view of the keys in this map, using the
3057 >     * given common mapped value for any additions (i.e., {@link
3058 >     * Collection#add} and {@link Collection#addAll}). This is of
3059 >     * course only appropriate if it is acceptable to use the same
3060 >     * value for all additions from this view.
3061 >     *
3062 >     * @param mappedValue the mapped value to use for any
3063 >     * additions.
3064 >     * @return the set view
3065 >     * @throws NullPointerException if the mappedValue is null
3066 >     */
3067 >    public KeySetView<K,V> keySet(V mappedValue) {
3068 >        if (mappedValue == null)
3069 >            throw new NullPointerException();
3070 >        return new KeySetView<K,V>(this, mappedValue);
3071      }
3072  
3073      /**
3074       * Returns a {@link Collection} view of the values contained in this map.
3075       * The collection is backed by the map, so changes to the map are
3076 <     * reflected in the collection, and vice-versa.  The collection
1788 <     * supports element removal, which removes the corresponding
1789 <     * mapping from this map, via the {@code Iterator.remove},
1790 <     * {@code Collection.remove}, {@code removeAll},
1791 <     * {@code retainAll}, and {@code clear} operations.  It does not
1792 <     * support the {@code add} or {@code addAll} operations.
1793 <     *
1794 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1795 <     * that will never throw {@link ConcurrentModificationException},
1796 <     * and guarantees to traverse elements as they existed upon
1797 <     * construction of the iterator, and may (but is not guaranteed to)
1798 <     * reflect any modifications subsequent to construction.
3076 >     * reflected in the collection, and vice-versa.
3077       */
3078 <    public Collection<V> values() {
3079 <        Values<K,V> vs = values;
3080 <        return (vs != null) ? vs : (values = new Values<K,V>(this));
3078 >    public ValuesView<K,V> values() {
3079 >        ValuesView<K,V> vs = values;
3080 >        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
3081      }
3082  
3083      /**
# Line 1819 | Line 3097 | public class ConcurrentHashMapV8<K, V>
3097       * reflect any modifications subsequent to construction.
3098       */
3099      public Set<Map.Entry<K,V>> entrySet() {
3100 <        EntrySet<K,V> es = entrySet;
3101 <        return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
3100 >        EntrySetView<K,V> es = entrySet;
3101 >        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
3102      }
3103  
3104      /**
# Line 1844 | Line 3122 | public class ConcurrentHashMapV8<K, V>
3122      }
3123  
3124      /**
3125 +     * Returns a partitionable iterator of the keys in this map.
3126 +     *
3127 +     * @return a partitionable iterator of the keys in this map
3128 +     */
3129 +    public Spliterator<K> keySpliterator() {
3130 +        return new KeyIterator<K,V>(this);
3131 +    }
3132 +
3133 +    /**
3134 +     * Returns a partitionable iterator of the values in this map.
3135 +     *
3136 +     * @return a partitionable iterator of the values in this map
3137 +     */
3138 +    public Spliterator<V> valueSpliterator() {
3139 +        return new ValueIterator<K,V>(this);
3140 +    }
3141 +
3142 +    /**
3143 +     * Returns a partitionable iterator of the entries in this map.
3144 +     *
3145 +     * @return a partitionable iterator of the entries in this map
3146 +     */
3147 +    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3148 +        return new EntryIterator<K,V>(this);
3149 +    }
3150 +
3151 +    /**
3152       * Returns the hash code value for this {@link Map}, i.e.,
3153       * the sum of, for each key-value pair in the map,
3154       * {@code key.hashCode() ^ value.hashCode()}.
# Line 1852 | Line 3157 | public class ConcurrentHashMapV8<K, V>
3157       */
3158      public int hashCode() {
3159          int h = 0;
3160 <        InternalIterator it = new InternalIterator(table);
3161 <        while (it.next != null) {
3162 <            h += it.nextKey.hashCode() ^ it.nextVal.hashCode();
3163 <            it.advance();
3160 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3161 >        Object v;
3162 >        while ((v = it.advance()) != null) {
3163 >            h += it.nextKey.hashCode() ^ v.hashCode();
3164          }
3165          return h;
3166      }
# Line 1872 | Line 3177 | public class ConcurrentHashMapV8<K, V>
3177       * @return a string representation of this map
3178       */
3179      public String toString() {
3180 <        InternalIterator it = new InternalIterator(table);
3180 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3181          StringBuilder sb = new StringBuilder();
3182          sb.append('{');
3183 <        if (it.next != null) {
3183 >        Object v;
3184 >        if ((v = it.advance()) != null) {
3185              for (;;) {
3186 <                Object k = it.nextKey, v = it.nextVal;
3186 >                Object k = it.nextKey;
3187                  sb.append(k == this ? "(this Map)" : k);
3188                  sb.append('=');
3189                  sb.append(v == this ? "(this Map)" : v);
3190 <                it.advance();
1885 <                if (it.next == null)
3190 >                if ((v = it.advance()) == null)
3191                      break;
3192                  sb.append(',').append(' ');
3193              }
# Line 1905 | Line 3210 | public class ConcurrentHashMapV8<K, V>
3210              if (!(o instanceof Map))
3211                  return false;
3212              Map<?,?> m = (Map<?,?>) o;
3213 <            InternalIterator it = new InternalIterator(table);
3214 <            while (it.next != null) {
3215 <                Object val = it.nextVal;
3213 >            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3214 >            Object val;
3215 >            while ((val = it.advance()) != null) {
3216                  Object v = m.get(it.nextKey);
3217                  if (v == null || (v != val && !v.equals(val)))
3218                      return false;
1914                it.advance();
3219              }
3220              for (Map.Entry<?,?> e : m.entrySet()) {
3221                  Object mk, mv, v;
# Line 1927 | Line 3231 | public class ConcurrentHashMapV8<K, V>
3231  
3232      /* ----------------Iterators -------------- */
3233  
3234 <    /**
3235 <     * Base class for key, value, and entry iterators.  Adds a map
3236 <     * reference to InternalIterator to support Iterator.remove.
3237 <     */
3238 <    static abstract class ViewIterator<K,V> extends InternalIterator {
1935 <        final ConcurrentHashMapV8<K, V> map;
1936 <        ViewIterator(ConcurrentHashMapV8<K, V> map) {
1937 <            super(map.table);
1938 <            this.map = map;
3234 >    @SuppressWarnings("serial") static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3235 >        implements Spliterator<K>, Enumeration<K> {
3236 >        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3237 >        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3238 >            super(map, it, -1);
3239          }
3240 <
3241 <        public final void remove() {
1942 <            if (last == null)
3240 >        public KeyIterator<K,V> split() {
3241 >            if (nextKey != null)
3242                  throw new IllegalStateException();
3243 <            map.remove(last.key);
1945 <            last = null;
3243 >            return new KeyIterator<K,V>(map, this);
3244          }
3245 <
3246 <        public final boolean hasNext()         { return next != null; }
1949 <        public final boolean hasMoreElements() { return next != null; }
1950 <    }
1951 <
1952 <    static final class KeyIterator<K,V> extends ViewIterator<K,V>
1953 <        implements Iterator<K>, Enumeration<K> {
1954 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
1955 <
1956 <        @SuppressWarnings("unchecked")
1957 <        public final K next() {
1958 <            if (next == null)
3245 >        @SuppressWarnings("unchecked") public final K next() {
3246 >            if (nextVal == null && advance() == null)
3247                  throw new NoSuchElementException();
3248              Object k = nextKey;
3249 <            advance();
3250 <            return (K)k;
3249 >            nextVal = null;
3250 >            return (K) k;
3251          }
3252  
3253          public final K nextElement() { return next(); }
3254      }
3255  
3256 <    static final class ValueIterator<K,V> extends ViewIterator<K,V>
3257 <        implements Iterator<V>, Enumeration<V> {
3256 >    @SuppressWarnings("serial") static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3257 >        implements Spliterator<V>, Enumeration<V> {
3258          ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3259 +        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3260 +            super(map, it, -1);
3261 +        }
3262 +        public ValueIterator<K,V> split() {
3263 +            if (nextKey != null)
3264 +                throw new IllegalStateException();
3265 +            return new ValueIterator<K,V>(map, this);
3266 +        }
3267  
3268 <        @SuppressWarnings("unchecked")
3269 <        public final V next() {
3270 <            if (next == null)
3268 >        @SuppressWarnings("unchecked") public final V next() {
3269 >            Object v;
3270 >            if ((v = nextVal) == null && (v = advance()) == null)
3271                  throw new NoSuchElementException();
3272 <            Object v = nextVal;
3273 <            advance();
1978 <            return (V)v;
3272 >            nextVal = null;
3273 >            return (V) v;
3274          }
3275  
3276          public final V nextElement() { return next(); }
3277      }
3278  
3279 <    static final class EntryIterator<K,V> extends ViewIterator<K,V>
3280 <        implements Iterator<Map.Entry<K,V>> {
3279 >    @SuppressWarnings("serial") static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3280 >        implements Spliterator<Map.Entry<K,V>> {
3281          EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3282 <
3283 <        @SuppressWarnings("unchecked")
3284 <        public final Map.Entry<K,V> next() {
3285 <            if (next == null)
3286 <                throw new NoSuchElementException();
3287 <            Object k = nextKey;
3288 <            Object v = nextVal;
1994 <            advance();
1995 <            return new WriteThroughEntry<K,V>((K)k, (V)v, map);
3282 >        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3283 >            super(map, it, -1);
3284 >        }
3285 >        public EntryIterator<K,V> split() {
3286 >            if (nextKey != null)
3287 >                throw new IllegalStateException();
3288 >            return new EntryIterator<K,V>(map, this);
3289          }
1997    }
1998
1999    static final class SnapshotEntryIterator<K,V> extends ViewIterator<K,V>
2000        implements Iterator<Map.Entry<K,V>> {
2001        SnapshotEntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3290  
3291 <        @SuppressWarnings("unchecked")
3292 <        public final Map.Entry<K,V> next() {
3293 <            if (next == null)
3291 >        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3292 >            Object v;
3293 >            if ((v = nextVal) == null && (v = advance()) == null)
3294                  throw new NoSuchElementException();
3295              Object k = nextKey;
3296 <            Object v = nextVal;
3297 <            advance();
2010 <            return new SnapshotEntry<K,V>((K)k, (V)v);
3296 >            nextVal = null;
3297 >            return new MapEntry<K,V>((K)k, (V)v, map);
3298          }
3299      }
3300  
3301      /**
3302 <     * Base of writeThrough and Snapshot entry classes
3302 >     * Exported Entry for iterators
3303       */
3304 <    static abstract class MapEntry<K,V> implements Map.Entry<K, V> {
3304 >    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3305          final K key; // non-null
3306          V val;       // non-null
3307 <        MapEntry(K key, V val)        { this.key = key; this.val = val; }
3307 >        final ConcurrentHashMapV8<K, V> map;
3308 >        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3309 >            this.key = key;
3310 >            this.val = val;
3311 >            this.map = map;
3312 >        }
3313          public final K getKey()       { return key; }
3314          public final V getValue()     { return val; }
3315          public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
# Line 2032 | Line 3324 | public class ConcurrentHashMapV8<K, V>
3324                      (v == val || v.equals(val)));
3325          }
3326  
2035        public abstract V setValue(V value);
2036    }
2037
2038    /**
2039     * Entry used by EntryIterator.next(), that relays setValue
2040     * changes to the underlying map.
2041     */
2042    static final class WriteThroughEntry<K,V> extends MapEntry<K,V>
2043        implements Map.Entry<K, V> {
2044        final ConcurrentHashMapV8<K, V> map;
2045        WriteThroughEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
2046            super(key, val);
2047            this.map = map;
2048        }
2049
3327          /**
3328           * Sets our entry's value and writes through to the map. The
3329 <         * value to return is somewhat arbitrary here. Since a
3330 <         * WriteThroughEntry does not necessarily track asynchronous
3331 <         * changes, the most recent "previous" value could be
3332 <         * different from what we return (or could even have been
3333 <         * removed in which case the put will re-establish). We do not
2057 <         * and cannot guarantee more.
3329 >         * value to return is somewhat arbitrary here. Since we do not
3330 >         * necessarily track asynchronous changes, the most recent
3331 >         * "previous" value could be different from what we return (or
3332 >         * could even have been removed in which case the put will
3333 >         * re-establish). We do not and cannot guarantee more.
3334           */
3335          public final V setValue(V value) {
3336              if (value == null) throw new NullPointerException();
# Line 2066 | Line 3342 | public class ConcurrentHashMapV8<K, V>
3342      }
3343  
3344      /**
3345 <     * Internal version of entry, that doesn't write though changes
3345 >     * Returns exportable snapshot entry for the given key and value
3346 >     * when write-through can't or shouldn't be used.
3347       */
3348 <    static final class SnapshotEntry<K,V> extends MapEntry<K,V>
3349 <        implements Map.Entry<K, V> {
3350 <        SnapshotEntry(K key, V val) { super(key, val); }
3351 <        public final V setValue(V value) { // only locally update
3352 <            if (value == null) throw new NullPointerException();
3353 <            V v = val;
3354 <            val = value;
3355 <            return v;
3348 >    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3349 >        return new AbstractMap.SimpleEntry<K,V>(k, v);
3350 >    }
3351 >
3352 >    /* ---------------- Serialization Support -------------- */
3353 >
3354 >    /**
3355 >     * Stripped-down version of helper class used in previous version,
3356 >     * declared for the sake of serialization compatibility
3357 >     */
3358 >    static class Segment<K,V> implements Serializable {
3359 >        private static final long serialVersionUID = 2249069246763182397L;
3360 >        final float loadFactor;
3361 >        Segment(float lf) { this.loadFactor = lf; }
3362 >    }
3363 >
3364 >    /**
3365 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3366 >     * stream (i.e., serializes it).
3367 >     * @param s the stream
3368 >     * @serialData
3369 >     * the key (Object) and value (Object)
3370 >     * for each key-value mapping, followed by a null pair.
3371 >     * The key-value mappings are emitted in no particular order.
3372 >     */
3373 >    @SuppressWarnings("unchecked") private void writeObject(java.io.ObjectOutputStream s)
3374 >        throws java.io.IOException {
3375 >        if (segments == null) { // for serialization compatibility
3376 >            segments = (Segment<K,V>[])
3377 >                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3378 >            for (int i = 0; i < segments.length; ++i)
3379 >                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3380 >        }
3381 >        s.defaultWriteObject();
3382 >        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3383 >        Object v;
3384 >        while ((v = it.advance()) != null) {
3385 >            s.writeObject(it.nextKey);
3386 >            s.writeObject(v);
3387          }
3388 +        s.writeObject(null);
3389 +        s.writeObject(null);
3390 +        segments = null; // throw away
3391 +    }
3392 +
3393 +    /**
3394 +     * Reconstitutes the instance from a stream (that is, deserializes it).
3395 +     * @param s the stream
3396 +     */
3397 +    @SuppressWarnings("unchecked") private void readObject(java.io.ObjectInputStream s)
3398 +        throws java.io.IOException, ClassNotFoundException {
3399 +        s.defaultReadObject();
3400 +        this.segments = null; // unneeded
3401 +        // initialize transient final field
3402 +        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3403 +
3404 +        // Create all nodes, then place in table once size is known
3405 +        long size = 0L;
3406 +        Node p = null;
3407 +        for (;;) {
3408 +            K k = (K) s.readObject();
3409 +            V v = (V) s.readObject();
3410 +            if (k != null && v != null) {
3411 +                int h = spread(k.hashCode());
3412 +                p = new Node(h, k, v, p);
3413 +                ++size;
3414 +            }
3415 +            else
3416 +                break;
3417 +        }
3418 +        if (p != null) {
3419 +            boolean init = false;
3420 +            int n;
3421 +            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3422 +                n = MAXIMUM_CAPACITY;
3423 +            else {
3424 +                int sz = (int)size;
3425 +                n = tableSizeFor(sz + (sz >>> 1) + 1);
3426 +            }
3427 +            int sc = sizeCtl;
3428 +            boolean collide = false;
3429 +            if (n > sc &&
3430 +                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3431 +                try {
3432 +                    if (table == null) {
3433 +                        init = true;
3434 +                        Node[] tab = new Node[n];
3435 +                        int mask = n - 1;
3436 +                        while (p != null) {
3437 +                            int j = p.hash & mask;
3438 +                            Node next = p.next;
3439 +                            Node q = p.next = tabAt(tab, j);
3440 +                            setTabAt(tab, j, p);
3441 +                            if (!collide && q != null && q.hash == p.hash)
3442 +                                collide = true;
3443 +                            p = next;
3444 +                        }
3445 +                        table = tab;
3446 +                        counter.add(size);
3447 +                        sc = n - (n >>> 2);
3448 +                    }
3449 +                } finally {
3450 +                    sizeCtl = sc;
3451 +                }
3452 +                if (collide) { // rescan and convert to TreeBins
3453 +                    Node[] tab = table;
3454 +                    for (int i = 0; i < tab.length; ++i) {
3455 +                        int c = 0;
3456 +                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3457 +                            if (++c > TREE_THRESHOLD &&
3458 +                                (e.key instanceof Comparable)) {
3459 +                                replaceWithTreeBin(tab, i, e.key);
3460 +                                break;
3461 +                            }
3462 +                        }
3463 +                    }
3464 +                }
3465 +            }
3466 +            if (!init) { // Can only happen if unsafely published.
3467 +                while (p != null) {
3468 +                    internalPut(p.key, p.val);
3469 +                    p = p.next;
3470 +                }
3471 +            }
3472 +        }
3473 +    }
3474 +
3475 +
3476 +    // -------------------------------------------------------
3477 +
3478 +    // Sams
3479 +    /** Interface describing a void action of one argument */
3480 +    public interface Action<A> { void apply(A a); }
3481 +    /** Interface describing a void action of two arguments */
3482 +    public interface BiAction<A,B> { void apply(A a, B b); }
3483 +    /** Interface describing a function of one argument */
3484 +    public interface Fun<A,T> { T apply(A a); }
3485 +    /** Interface describing a function of two arguments */
3486 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
3487 +    /** Interface describing a function of no arguments */
3488 +    public interface Generator<T> { T apply(); }
3489 +    /** Interface describing a function mapping its argument to a double */
3490 +    public interface ObjectToDouble<A> { double apply(A a); }
3491 +    /** Interface describing a function mapping its argument to a long */
3492 +    public interface ObjectToLong<A> { long apply(A a); }
3493 +    /** Interface describing a function mapping its argument to an int */
3494 +    public interface ObjectToInt<A> {int apply(A a); }
3495 +    /** Interface describing a function mapping two arguments to a double */
3496 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3497 +    /** Interface describing a function mapping two arguments to a long */
3498 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3499 +    /** Interface describing a function mapping two arguments to an int */
3500 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3501 +    /** Interface describing a function mapping a double to a double */
3502 +    public interface DoubleToDouble { double apply(double a); }
3503 +    /** Interface describing a function mapping a long to a long */
3504 +    public interface LongToLong { long apply(long a); }
3505 +    /** Interface describing a function mapping an int to an int */
3506 +    public interface IntToInt { int apply(int a); }
3507 +    /** Interface describing a function mapping two doubles to a double */
3508 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3509 +    /** Interface describing a function mapping two longs to a long */
3510 +    public interface LongByLongToLong { long apply(long a, long b); }
3511 +    /** Interface describing a function mapping two ints to an int */
3512 +    public interface IntByIntToInt { int apply(int a, int b); }
3513 +
3514 +
3515 +    // -------------------------------------------------------
3516 +
3517 +    /**
3518 +     * Performs the given action for each (key, value).
3519 +     *
3520 +     * @param action the action
3521 +     */
3522 +    public void forEach(BiAction<K,V> action) {
3523 +        ForkJoinTasks.forEach
3524 +            (this, action).invoke();
3525 +    }
3526 +
3527 +    /**
3528 +     * Performs the given action for each non-null transformation
3529 +     * of each (key, value).
3530 +     *
3531 +     * @param transformer a function returning the transformation
3532 +     * for an element, or null of there is no transformation (in
3533 +     * which case the action is not applied).
3534 +     * @param action the action
3535 +     */
3536 +    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3537 +                            Action<U> action) {
3538 +        ForkJoinTasks.forEach
3539 +            (this, transformer, action).invoke();
3540 +    }
3541 +
3542 +    /**
3543 +     * Returns a non-null result from applying the given search
3544 +     * function on each (key, value), or null if none.  Upon
3545 +     * success, further element processing is suppressed and the
3546 +     * results of any other parallel invocations of the search
3547 +     * function are ignored.
3548 +     *
3549 +     * @param searchFunction a function returning a non-null
3550 +     * result on success, else null
3551 +     * @return a non-null result from applying the given search
3552 +     * function on each (key, value), or null if none
3553 +     */
3554 +    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3555 +        return ForkJoinTasks.search
3556 +            (this, searchFunction).invoke();
3557 +    }
3558 +
3559 +    /**
3560 +     * Returns the result of accumulating the given transformation
3561 +     * of all (key, value) pairs using the given reducer to
3562 +     * combine values, or null if none.
3563 +     *
3564 +     * @param transformer a function returning the transformation
3565 +     * for an element, or null of there is no transformation (in
3566 +     * which case it is not combined).
3567 +     * @param reducer a commutative associative combining function
3568 +     * @return the result of accumulating the given transformation
3569 +     * of all (key, value) pairs
3570 +     */
3571 +    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3572 +                        BiFun<? super U, ? super U, ? extends U> reducer) {
3573 +        return ForkJoinTasks.reduce
3574 +            (this, transformer, reducer).invoke();
3575 +    }
3576 +
3577 +    /**
3578 +     * Returns the result of accumulating the given transformation
3579 +     * of all (key, value) pairs using the given reducer to
3580 +     * combine values, and the given basis as an identity value.
3581 +     *
3582 +     * @param transformer a function returning the transformation
3583 +     * for an element
3584 +     * @param basis the identity (initial default value) for the reduction
3585 +     * @param reducer a commutative associative combining function
3586 +     * @return the result of accumulating the given transformation
3587 +     * of all (key, value) pairs
3588 +     */
3589 +    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3590 +                                 double basis,
3591 +                                 DoubleByDoubleToDouble reducer) {
3592 +        return ForkJoinTasks.reduceToDouble
3593 +            (this, transformer, basis, reducer).invoke();
3594 +    }
3595 +
3596 +    /**
3597 +     * Returns the result of accumulating the given transformation
3598 +     * of all (key, value) pairs using the given reducer to
3599 +     * combine values, and the given basis as an identity value.
3600 +     *
3601 +     * @param transformer a function returning the transformation
3602 +     * for an element
3603 +     * @param basis the identity (initial default value) for the reduction
3604 +     * @param reducer a commutative associative combining function
3605 +     * @return the result of accumulating the given transformation
3606 +     * of all (key, value) pairs
3607 +     */
3608 +    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3609 +                             long basis,
3610 +                             LongByLongToLong reducer) {
3611 +        return ForkJoinTasks.reduceToLong
3612 +            (this, transformer, basis, reducer).invoke();
3613 +    }
3614 +
3615 +    /**
3616 +     * Returns the result of accumulating the given transformation
3617 +     * of all (key, value) pairs using the given reducer to
3618 +     * combine values, and the given basis as an identity value.
3619 +     *
3620 +     * @param transformer a function returning the transformation
3621 +     * for an element
3622 +     * @param basis the identity (initial default value) for the reduction
3623 +     * @param reducer a commutative associative combining function
3624 +     * @return the result of accumulating the given transformation
3625 +     * of all (key, value) pairs
3626 +     */
3627 +    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3628 +                           int basis,
3629 +                           IntByIntToInt reducer) {
3630 +        return ForkJoinTasks.reduceToInt
3631 +            (this, transformer, basis, reducer).invoke();
3632 +    }
3633 +
3634 +    /**
3635 +     * Performs the given action for each key.
3636 +     *
3637 +     * @param action the action
3638 +     */
3639 +    public void forEachKey(Action<K> action) {
3640 +        ForkJoinTasks.forEachKey
3641 +            (this, action).invoke();
3642 +    }
3643 +
3644 +    /**
3645 +     * Performs the given action for each non-null transformation
3646 +     * of each key.
3647 +     *
3648 +     * @param transformer a function returning the transformation
3649 +     * for an element, or null of there is no transformation (in
3650 +     * which case the action is not applied).
3651 +     * @param action the action
3652 +     */
3653 +    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3654 +                               Action<U> action) {
3655 +        ForkJoinTasks.forEachKey
3656 +            (this, transformer, action).invoke();
3657 +    }
3658 +
3659 +    /**
3660 +     * Returns a non-null result from applying the given search
3661 +     * function on each key, or null if none. Upon success,
3662 +     * further element processing is suppressed and the results of
3663 +     * any other parallel invocations of the search function are
3664 +     * ignored.
3665 +     *
3666 +     * @param searchFunction a function returning a non-null
3667 +     * result on success, else null
3668 +     * @return a non-null result from applying the given search
3669 +     * function on each key, or null if none
3670 +     */
3671 +    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3672 +        return ForkJoinTasks.searchKeys
3673 +            (this, searchFunction).invoke();
3674 +    }
3675 +
3676 +    /**
3677 +     * Returns the result of accumulating all keys using the given
3678 +     * reducer to combine values, or null if none.
3679 +     *
3680 +     * @param reducer a commutative associative combining function
3681 +     * @return the result of accumulating all keys using the given
3682 +     * reducer to combine values, or null if none
3683 +     */
3684 +    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3685 +        return ForkJoinTasks.reduceKeys
3686 +            (this, reducer).invoke();
3687 +    }
3688 +
3689 +    /**
3690 +     * Returns the result of accumulating the given transformation
3691 +     * of all keys using the given reducer to combine values, or
3692 +     * null if none.
3693 +     *
3694 +     * @param transformer a function returning the transformation
3695 +     * for an element, or null of there is no transformation (in
3696 +     * which case it is not combined).
3697 +     * @param reducer a commutative associative combining function
3698 +     * @return the result of accumulating the given transformation
3699 +     * of all keys
3700 +     */
3701 +    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3702 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
3703 +        return ForkJoinTasks.reduceKeys
3704 +            (this, transformer, reducer).invoke();
3705 +    }
3706 +
3707 +    /**
3708 +     * Returns the result of accumulating the given transformation
3709 +     * of all keys using the given reducer to combine values, and
3710 +     * the given basis as an identity value.
3711 +     *
3712 +     * @param transformer a function returning the transformation
3713 +     * for an element
3714 +     * @param basis the identity (initial default value) for the reduction
3715 +     * @param reducer a commutative associative combining function
3716 +     * @return  the result of accumulating the given transformation
3717 +     * of all keys
3718 +     */
3719 +    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3720 +                                     double basis,
3721 +                                     DoubleByDoubleToDouble reducer) {
3722 +        return ForkJoinTasks.reduceKeysToDouble
3723 +            (this, transformer, basis, reducer).invoke();
3724 +    }
3725 +
3726 +    /**
3727 +     * Returns the result of accumulating the given transformation
3728 +     * of all keys using the given reducer to combine values, and
3729 +     * the given basis as an identity value.
3730 +     *
3731 +     * @param transformer a function returning the transformation
3732 +     * for an element
3733 +     * @param basis the identity (initial default value) for the reduction
3734 +     * @param reducer a commutative associative combining function
3735 +     * @return the result of accumulating the given transformation
3736 +     * of all keys
3737 +     */
3738 +    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3739 +                                 long basis,
3740 +                                 LongByLongToLong reducer) {
3741 +        return ForkJoinTasks.reduceKeysToLong
3742 +            (this, transformer, basis, reducer).invoke();
3743 +    }
3744 +
3745 +    /**
3746 +     * Returns the result of accumulating the given transformation
3747 +     * of all keys using the given reducer to combine values, and
3748 +     * the given basis as an identity value.
3749 +     *
3750 +     * @param transformer a function returning the transformation
3751 +     * for an element
3752 +     * @param basis the identity (initial default value) for the reduction
3753 +     * @param reducer a commutative associative combining function
3754 +     * @return the result of accumulating the given transformation
3755 +     * of all keys
3756 +     */
3757 +    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3758 +                               int basis,
3759 +                               IntByIntToInt reducer) {
3760 +        return ForkJoinTasks.reduceKeysToInt
3761 +            (this, transformer, basis, reducer).invoke();
3762 +    }
3763 +
3764 +    /**
3765 +     * Performs the given action for each value.
3766 +     *
3767 +     * @param action the action
3768 +     */
3769 +    public void forEachValue(Action<V> action) {
3770 +        ForkJoinTasks.forEachValue
3771 +            (this, action).invoke();
3772 +    }
3773 +
3774 +    /**
3775 +     * Performs the given action for each non-null transformation
3776 +     * of each value.
3777 +     *
3778 +     * @param transformer a function returning the transformation
3779 +     * for an element, or null of there is no transformation (in
3780 +     * which case the action is not applied).
3781 +     */
3782 +    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3783 +                                 Action<U> action) {
3784 +        ForkJoinTasks.forEachValue
3785 +            (this, transformer, action).invoke();
3786 +    }
3787 +
3788 +    /**
3789 +     * Returns a non-null result from applying the given search
3790 +     * function on each value, or null if none.  Upon success,
3791 +     * further element processing is suppressed and the results of
3792 +     * any other parallel invocations of the search function are
3793 +     * ignored.
3794 +     *
3795 +     * @param searchFunction a function returning a non-null
3796 +     * result on success, else null
3797 +     * @return a non-null result from applying the given search
3798 +     * function on each value, or null if none
3799 +     *
3800 +     */
3801 +    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3802 +        return ForkJoinTasks.searchValues
3803 +            (this, searchFunction).invoke();
3804 +    }
3805 +
3806 +    /**
3807 +     * Returns the result of accumulating all values using the
3808 +     * given reducer to combine values, or null if none.
3809 +     *
3810 +     * @param reducer a commutative associative combining function
3811 +     * @return  the result of accumulating all values
3812 +     */
3813 +    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3814 +        return ForkJoinTasks.reduceValues
3815 +            (this, reducer).invoke();
3816 +    }
3817 +
3818 +    /**
3819 +     * Returns the result of accumulating the given transformation
3820 +     * of all values using the given reducer to combine values, or
3821 +     * null if none.
3822 +     *
3823 +     * @param transformer a function returning the transformation
3824 +     * for an element, or null of there is no transformation (in
3825 +     * which case it is not combined).
3826 +     * @param reducer a commutative associative combining function
3827 +     * @return the result of accumulating the given transformation
3828 +     * of all values
3829 +     */
3830 +    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3831 +                              BiFun<? super U, ? super U, ? extends U> reducer) {
3832 +        return ForkJoinTasks.reduceValues
3833 +            (this, transformer, reducer).invoke();
3834 +    }
3835 +
3836 +    /**
3837 +     * Returns the result of accumulating the given transformation
3838 +     * of all values using the given reducer to combine values,
3839 +     * and the given basis as an identity value.
3840 +     *
3841 +     * @param transformer a function returning the transformation
3842 +     * for an element
3843 +     * @param basis the identity (initial default value) for the reduction
3844 +     * @param reducer a commutative associative combining function
3845 +     * @return the result of accumulating the given transformation
3846 +     * of all values
3847 +     */
3848 +    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3849 +                                       double basis,
3850 +                                       DoubleByDoubleToDouble reducer) {
3851 +        return ForkJoinTasks.reduceValuesToDouble
3852 +            (this, transformer, basis, reducer).invoke();
3853 +    }
3854 +
3855 +    /**
3856 +     * Returns the result of accumulating the given transformation
3857 +     * of all values using the given reducer to combine values,
3858 +     * and the given basis as an identity value.
3859 +     *
3860 +     * @param transformer a function returning the transformation
3861 +     * for an element
3862 +     * @param basis the identity (initial default value) for the reduction
3863 +     * @param reducer a commutative associative combining function
3864 +     * @return the result of accumulating the given transformation
3865 +     * of all values
3866 +     */
3867 +    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3868 +                                   long basis,
3869 +                                   LongByLongToLong reducer) {
3870 +        return ForkJoinTasks.reduceValuesToLong
3871 +            (this, transformer, basis, reducer).invoke();
3872 +    }
3873 +
3874 +    /**
3875 +     * Returns the result of accumulating the given transformation
3876 +     * of all values using the given reducer to combine values,
3877 +     * and the given basis as an identity value.
3878 +     *
3879 +     * @param transformer a function returning the transformation
3880 +     * for an element
3881 +     * @param basis the identity (initial default value) for the reduction
3882 +     * @param reducer a commutative associative combining function
3883 +     * @return the result of accumulating the given transformation
3884 +     * of all values
3885 +     */
3886 +    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3887 +                                 int basis,
3888 +                                 IntByIntToInt reducer) {
3889 +        return ForkJoinTasks.reduceValuesToInt
3890 +            (this, transformer, basis, reducer).invoke();
3891 +    }
3892 +
3893 +    /**
3894 +     * Performs the given action for each entry.
3895 +     *
3896 +     * @param action the action
3897 +     */
3898 +    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3899 +        ForkJoinTasks.forEachEntry
3900 +            (this, action).invoke();
3901 +    }
3902 +
3903 +    /**
3904 +     * Performs the given action for each non-null transformation
3905 +     * of each entry.
3906 +     *
3907 +     * @param transformer a function returning the transformation
3908 +     * for an element, or null of there is no transformation (in
3909 +     * which case the action is not applied).
3910 +     * @param action the action
3911 +     */
3912 +    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
3913 +                                 Action<U> action) {
3914 +        ForkJoinTasks.forEachEntry
3915 +            (this, transformer, action).invoke();
3916 +    }
3917 +
3918 +    /**
3919 +     * Returns a non-null result from applying the given search
3920 +     * function on each entry, or null if none.  Upon success,
3921 +     * further element processing is suppressed and the results of
3922 +     * any other parallel invocations of the search function are
3923 +     * ignored.
3924 +     *
3925 +     * @param searchFunction a function returning a non-null
3926 +     * result on success, else null
3927 +     * @return a non-null result from applying the given search
3928 +     * function on each entry, or null if none
3929 +     */
3930 +    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
3931 +        return ForkJoinTasks.searchEntries
3932 +            (this, searchFunction).invoke();
3933 +    }
3934 +
3935 +    /**
3936 +     * Returns the result of accumulating all entries using the
3937 +     * given reducer to combine values, or null if none.
3938 +     *
3939 +     * @param reducer a commutative associative combining function
3940 +     * @return the result of accumulating all entries
3941 +     */
3942 +    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
3943 +        return ForkJoinTasks.reduceEntries
3944 +            (this, reducer).invoke();
3945 +    }
3946 +
3947 +    /**
3948 +     * Returns the result of accumulating the given transformation
3949 +     * of all entries using the given reducer to combine values,
3950 +     * or null if none.
3951 +     *
3952 +     * @param transformer a function returning the transformation
3953 +     * for an element, or null of there is no transformation (in
3954 +     * which case it is not combined).
3955 +     * @param reducer a commutative associative combining function
3956 +     * @return the result of accumulating the given transformation
3957 +     * of all entries
3958 +     */
3959 +    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
3960 +                               BiFun<? super U, ? super U, ? extends U> reducer) {
3961 +        return ForkJoinTasks.reduceEntries
3962 +            (this, transformer, reducer).invoke();
3963 +    }
3964 +
3965 +    /**
3966 +     * Returns the result of accumulating the given transformation
3967 +     * of all entries using the given reducer to combine values,
3968 +     * and the given basis as an identity value.
3969 +     *
3970 +     * @param transformer a function returning the transformation
3971 +     * for an element
3972 +     * @param basis the identity (initial default value) for the reduction
3973 +     * @param reducer a commutative associative combining function
3974 +     * @return the result of accumulating the given transformation
3975 +     * of all entries
3976 +     */
3977 +    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
3978 +                                        double basis,
3979 +                                        DoubleByDoubleToDouble reducer) {
3980 +        return ForkJoinTasks.reduceEntriesToDouble
3981 +            (this, transformer, basis, reducer).invoke();
3982 +    }
3983 +
3984 +    /**
3985 +     * Returns the result of accumulating the given transformation
3986 +     * of all entries using the given reducer to combine values,
3987 +     * and the given basis as an identity value.
3988 +     *
3989 +     * @param transformer a function returning the transformation
3990 +     * for an element
3991 +     * @param basis the identity (initial default value) for the reduction
3992 +     * @param reducer a commutative associative combining function
3993 +     * @return  the result of accumulating the given transformation
3994 +     * of all entries
3995 +     */
3996 +    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
3997 +                                    long basis,
3998 +                                    LongByLongToLong reducer) {
3999 +        return ForkJoinTasks.reduceEntriesToLong
4000 +            (this, transformer, basis, reducer).invoke();
4001 +    }
4002 +
4003 +    /**
4004 +     * Returns the result of accumulating the given transformation
4005 +     * of all entries using the given reducer to combine values,
4006 +     * and the given basis as an identity value.
4007 +     *
4008 +     * @param transformer a function returning the transformation
4009 +     * for an element
4010 +     * @param basis the identity (initial default value) for the reduction
4011 +     * @param reducer a commutative associative combining function
4012 +     * @return the result of accumulating the given transformation
4013 +     * of all entries
4014 +     */
4015 +    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4016 +                                  int basis,
4017 +                                  IntByIntToInt reducer) {
4018 +        return ForkJoinTasks.reduceEntriesToInt
4019 +            (this, transformer, basis, reducer).invoke();
4020      }
4021  
4022      /* ----------------Views -------------- */
4023  
4024      /**
4025 <     * Base class for views. This is done mainly to allow adding
2086 <     * customized parallel traversals (not yet implemented.)
4025 >     * Base class for views.
4026       */
4027 <    static abstract class MapView<K, V> {
4027 >    static abstract class CHMView<K, V> {
4028          final ConcurrentHashMapV8<K, V> map;
4029 <        MapView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4029 >        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4030 >
4031 >        /**
4032 >         * Returns the map backing this view.
4033 >         *
4034 >         * @return the map backing this view
4035 >         */
4036 >        public ConcurrentHashMapV8<K,V> getMap() { return map; }
4037 >
4038          public final int size()                 { return map.size(); }
4039          public final boolean isEmpty()          { return map.isEmpty(); }
4040          public final void clear()               { map.clear(); }
4041  
4042          // implementations below rely on concrete classes supplying these
4043 <        abstract Iterator<?> iter();
4043 >        abstract public Iterator<?> iterator();
4044          abstract public boolean contains(Object o);
4045          abstract public boolean remove(Object o);
4046  
4047          private static final String oomeMsg = "Required array size too large";
4048  
4049          public final Object[] toArray() {
4050 <            long sz = map.longSize();
4050 >            long sz = map.mappingCount();
4051              if (sz > (long)(MAX_ARRAY_SIZE))
4052                  throw new OutOfMemoryError(oomeMsg);
4053              int n = (int)sz;
4054              Object[] r = new Object[n];
4055              int i = 0;
4056 <            Iterator<?> it = iter();
4056 >            Iterator<?> it = iterator();
4057              while (it.hasNext()) {
4058                  if (i == n) {
4059                      if (n >= MAX_ARRAY_SIZE)
# Line 2122 | Line 4069 | public class ConcurrentHashMapV8<K, V>
4069              return (i == n) ? r : Arrays.copyOf(r, i);
4070          }
4071  
4072 <        @SuppressWarnings("unchecked")
4073 <        public final <T> T[] toArray(T[] a) {
2127 <            long sz = map.longSize();
4072 >        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4073 >            long sz = map.mappingCount();
4074              if (sz > (long)(MAX_ARRAY_SIZE))
4075                  throw new OutOfMemoryError(oomeMsg);
4076              int m = (int)sz;
# Line 2133 | Line 4079 | public class ConcurrentHashMapV8<K, V>
4079                  .newInstance(a.getClass().getComponentType(), m);
4080              int n = r.length;
4081              int i = 0;
4082 <            Iterator<?> it = iter();
4082 >            Iterator<?> it = iterator();
4083              while (it.hasNext()) {
4084                  if (i == n) {
4085                      if (n >= MAX_ARRAY_SIZE)
# Line 2155 | Line 4101 | public class ConcurrentHashMapV8<K, V>
4101  
4102          public final int hashCode() {
4103              int h = 0;
4104 <            for (Iterator<?> it = iter(); it.hasNext();)
4104 >            for (Iterator<?> it = iterator(); it.hasNext();)
4105                  h += it.next().hashCode();
4106              return h;
4107          }
# Line 2163 | Line 4109 | public class ConcurrentHashMapV8<K, V>
4109          public final String toString() {
4110              StringBuilder sb = new StringBuilder();
4111              sb.append('[');
4112 <            Iterator<?> it = iter();
4112 >            Iterator<?> it = iterator();
4113              if (it.hasNext()) {
4114                  for (;;) {
4115                      Object e = it.next();
# Line 2187 | Line 4133 | public class ConcurrentHashMapV8<K, V>
4133              return true;
4134          }
4135  
4136 <        public final boolean removeAll(Collection c) {
4136 >        public final boolean removeAll(Collection<?> c) {
4137              boolean modified = false;
4138 <            for (Iterator<?> it = iter(); it.hasNext();) {
4138 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4139                  if (c.contains(it.next())) {
4140                      it.remove();
4141                      modified = true;
# Line 2200 | Line 4146 | public class ConcurrentHashMapV8<K, V>
4146  
4147          public final boolean retainAll(Collection<?> c) {
4148              boolean modified = false;
4149 <            for (Iterator<?> it = iter(); it.hasNext();) {
4149 >            for (Iterator<?> it = iterator(); it.hasNext();) {
4150                  if (!c.contains(it.next())) {
4151                      it.remove();
4152                      modified = true;
# Line 2211 | Line 4157 | public class ConcurrentHashMapV8<K, V>
4157  
4158      }
4159  
4160 <    static final class KeySet<K,V> extends MapView<K,V> implements Set<K> {
4161 <        KeySet(ConcurrentHashMapV8<K, V> map)   { super(map); }
4162 <        public final boolean contains(Object o) { return map.containsKey(o); }
4163 <        public final boolean remove(Object o)   { return map.remove(o) != null; }
4164 <
4165 <        public final Iterator<K> iterator() {
4166 <            return new KeyIterator<K,V>(map);
4167 <        }
4168 <        final Iterator<?> iter() {
4169 <            return new KeyIterator<K,V>(map);
4170 <        }
4171 <        public final boolean add(K e) {
4172 <            throw new UnsupportedOperationException();
4160 >    /**
4161 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4162 >     * which additions may optionally be enabled by mapping to a
4163 >     * common value.  This class cannot be directly instantiated. See
4164 >     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4165 >     * {@link #newKeySet(int)}.
4166 >     */
4167 >    public static class KeySetView<K,V> extends CHMView<K,V> implements Set<K>, java.io.Serializable {
4168 >        private static final long serialVersionUID = 7249069246763182397L;
4169 >        private final V value;
4170 >        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4171 >            super(map);
4172 >            this.value = value;
4173          }
4174 <        public final boolean addAll(Collection<? extends K> c) {
4175 <            throw new UnsupportedOperationException();
4174 >
4175 >        /**
4176 >         * Returns the default mapped value for additions,
4177 >         * or {@code null} if additions are not supported.
4178 >         *
4179 >         * @return the default mapped value for additions, or {@code null}
4180 >         * if not supported.
4181 >         */
4182 >        public V getMappedValue() { return value; }
4183 >
4184 >        // implement Set API
4185 >
4186 >        public boolean contains(Object o) { return map.containsKey(o); }
4187 >        public boolean remove(Object o)   { return map.remove(o) != null; }
4188 >
4189 >        /**
4190 >         * Returns a "weakly consistent" iterator that will never
4191 >         * throw {@link ConcurrentModificationException}, and
4192 >         * guarantees to traverse elements as they existed upon
4193 >         * construction of the iterator, and may (but is not
4194 >         * guaranteed to) reflect any modifications subsequent to
4195 >         * construction.
4196 >         *
4197 >         * @return an iterator over the keys of this map
4198 >         */
4199 >        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4200 >        public boolean add(K e) {
4201 >            V v;
4202 >            if ((v = value) == null)
4203 >                throw new UnsupportedOperationException();
4204 >            if (e == null)
4205 >                throw new NullPointerException();
4206 >            return map.internalPutIfAbsent(e, v) == null;
4207 >        }
4208 >        public boolean addAll(Collection<? extends K> c) {
4209 >            boolean added = false;
4210 >            V v;
4211 >            if ((v = value) == null)
4212 >                throw new UnsupportedOperationException();
4213 >            for (K e : c) {
4214 >                if (e == null)
4215 >                    throw new NullPointerException();
4216 >                if (map.internalPutIfAbsent(e, v) == null)
4217 >                    added = true;
4218 >            }
4219 >            return added;
4220          }
4221          public boolean equals(Object o) {
4222              Set<?> c;
# Line 2234 | Line 4224 | public class ConcurrentHashMapV8<K, V>
4224                      ((c = (Set<?>)o) == this ||
4225                       (containsAll(c) && c.containsAll(this))));
4226          }
4227 +
4228 +        /**
4229 +         * Performs the given action for each key.
4230 +         *
4231 +         * @param action the action
4232 +         */
4233 +        public void forEach(Action<K> action) {
4234 +            ForkJoinTasks.forEachKey
4235 +                (map, action).invoke();
4236 +        }
4237 +
4238 +        /**
4239 +         * Performs the given action for each non-null transformation
4240 +         * of each key.
4241 +         *
4242 +         * @param transformer a function returning the transformation
4243 +         * for an element, or null of there is no transformation (in
4244 +         * which case the action is not applied).
4245 +         * @param action the action
4246 +         */
4247 +        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4248 +                                Action<U> action) {
4249 +            ForkJoinTasks.forEachKey
4250 +                (map, transformer, action).invoke();
4251 +        }
4252 +
4253 +        /**
4254 +         * Returns a non-null result from applying the given search
4255 +         * function on each key, or null if none. Upon success,
4256 +         * further element processing is suppressed and the results of
4257 +         * any other parallel invocations of the search function are
4258 +         * ignored.
4259 +         *
4260 +         * @param searchFunction a function returning a non-null
4261 +         * result on success, else null
4262 +         * @return a non-null result from applying the given search
4263 +         * function on each key, or null if none
4264 +         */
4265 +        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4266 +            return ForkJoinTasks.searchKeys
4267 +                (map, searchFunction).invoke();
4268 +        }
4269 +
4270 +        /**
4271 +         * Returns the result of accumulating all keys using the given
4272 +         * reducer to combine values, or null if none.
4273 +         *
4274 +         * @param reducer a commutative associative combining function
4275 +         * @return the result of accumulating all keys using the given
4276 +         * reducer to combine values, or null if none
4277 +         */
4278 +        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4279 +            return ForkJoinTasks.reduceKeys
4280 +                (map, reducer).invoke();
4281 +        }
4282 +
4283 +        /**
4284 +         * Returns the result of accumulating the given transformation
4285 +         * of all keys using the given reducer to combine values, and
4286 +         * the given basis as an identity value.
4287 +         *
4288 +         * @param transformer a function returning the transformation
4289 +         * for an element
4290 +         * @param basis the identity (initial default value) for the reduction
4291 +         * @param reducer a commutative associative combining function
4292 +         * @return  the result of accumulating the given transformation
4293 +         * of all keys
4294 +         */
4295 +        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4296 +                                     double basis,
4297 +                                     DoubleByDoubleToDouble reducer) {
4298 +            return ForkJoinTasks.reduceKeysToDouble
4299 +                (map, transformer, basis, reducer).invoke();
4300 +        }
4301 +
4302 +
4303 +        /**
4304 +         * Returns the result of accumulating the given transformation
4305 +         * of all keys using the given reducer to combine values, and
4306 +         * the given basis as an identity value.
4307 +         *
4308 +         * @param transformer a function returning the transformation
4309 +         * for an element
4310 +         * @param basis the identity (initial default value) for the reduction
4311 +         * @param reducer a commutative associative combining function
4312 +         * @return the result of accumulating the given transformation
4313 +         * of all keys
4314 +         */
4315 +        public long reduceToLong(ObjectToLong<? super K> transformer,
4316 +                                 long basis,
4317 +                                 LongByLongToLong reducer) {
4318 +            return ForkJoinTasks.reduceKeysToLong
4319 +                (map, transformer, basis, reducer).invoke();
4320 +        }
4321 +
4322 +        /**
4323 +         * Returns the result of accumulating the given transformation
4324 +         * of all keys using the given reducer to combine values, and
4325 +         * the given basis as an identity value.
4326 +         *
4327 +         * @param transformer a function returning the transformation
4328 +         * for an element
4329 +         * @param basis the identity (initial default value) for the reduction
4330 +         * @param reducer a commutative associative combining function
4331 +         * @return the result of accumulating the given transformation
4332 +         * of all keys
4333 +         */
4334 +        public int reduceToInt(ObjectToInt<? super K> transformer,
4335 +                               int basis,
4336 +                               IntByIntToInt reducer) {
4337 +            return ForkJoinTasks.reduceKeysToInt
4338 +                (map, transformer, basis, reducer).invoke();
4339 +        }
4340 +
4341      }
4342  
4343 <    static final class Values<K,V> extends MapView<K,V>
4344 <        implements Collection<V>  {
4345 <        Values(ConcurrentHashMapV8<K, V> map)   { super(map); }
4343 >    /**
4344 >     * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4345 >     * values, in which additions are disabled. This class cannot be
4346 >     * directly instantiated. See {@link #values},
4347 >     *
4348 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4349 >     * that will never throw {@link ConcurrentModificationException},
4350 >     * and guarantees to traverse elements as they existed upon
4351 >     * construction of the iterator, and may (but is not guaranteed to)
4352 >     * reflect any modifications subsequent to construction.
4353 >     */
4354 >    public static final class ValuesView<K,V> extends CHMView<K,V>
4355 >        implements Collection<V> {
4356 >        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4357          public final boolean contains(Object o) { return map.containsValue(o); }
2243
4358          public final boolean remove(Object o) {
4359              if (o != null) {
4360                  Iterator<V> it = new ValueIterator<K,V>(map);
# Line 2253 | Line 4367 | public class ConcurrentHashMapV8<K, V>
4367              }
4368              return false;
4369          }
4370 +
4371 +        /**
4372 +         * Returns a "weakly consistent" iterator that will never
4373 +         * throw {@link ConcurrentModificationException}, and
4374 +         * guarantees to traverse elements as they existed upon
4375 +         * construction of the iterator, and may (but is not
4376 +         * guaranteed to) reflect any modifications subsequent to
4377 +         * construction.
4378 +         *
4379 +         * @return an iterator over the values of this map
4380 +         */
4381          public final Iterator<V> iterator() {
4382              return new ValueIterator<K,V>(map);
4383          }
2259        final Iterator<?> iter() {
2260            return new ValueIterator<K,V>(map);
2261        }
4384          public final boolean add(V e) {
4385              throw new UnsupportedOperationException();
4386          }
4387          public final boolean addAll(Collection<? extends V> c) {
4388              throw new UnsupportedOperationException();
4389          }
4390 +
4391 +        /**
4392 +         * Performs the given action for each value.
4393 +         *
4394 +         * @param action the action
4395 +         */
4396 +        public void forEach(Action<V> action) {
4397 +            ForkJoinTasks.forEachValue
4398 +                (map, action).invoke();
4399 +        }
4400 +
4401 +        /**
4402 +         * Performs the given action for each non-null transformation
4403 +         * of each value.
4404 +         *
4405 +         * @param transformer a function returning the transformation
4406 +         * for an element, or null of there is no transformation (in
4407 +         * which case the action is not applied).
4408 +         */
4409 +        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4410 +                                     Action<U> action) {
4411 +            ForkJoinTasks.forEachValue
4412 +                (map, transformer, action).invoke();
4413 +        }
4414 +
4415 +        /**
4416 +         * Returns a non-null result from applying the given search
4417 +         * function on each value, or null if none.  Upon success,
4418 +         * further element processing is suppressed and the results of
4419 +         * any other parallel invocations of the search function are
4420 +         * ignored.
4421 +         *
4422 +         * @param searchFunction a function returning a non-null
4423 +         * result on success, else null
4424 +         * @return a non-null result from applying the given search
4425 +         * function on each value, or null if none
4426 +         *
4427 +         */
4428 +        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4429 +            return ForkJoinTasks.searchValues
4430 +                (map, searchFunction).invoke();
4431 +        }
4432 +
4433 +        /**
4434 +         * Returns the result of accumulating all values using the
4435 +         * given reducer to combine values, or null if none.
4436 +         *
4437 +         * @param reducer a commutative associative combining function
4438 +         * @return  the result of accumulating all values
4439 +         */
4440 +        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4441 +            return ForkJoinTasks.reduceValues
4442 +                (map, reducer).invoke();
4443 +        }
4444 +
4445 +        /**
4446 +         * Returns the result of accumulating the given transformation
4447 +         * of all values using the given reducer to combine values, or
4448 +         * null if none.
4449 +         *
4450 +         * @param transformer a function returning the transformation
4451 +         * for an element, or null of there is no transformation (in
4452 +         * which case it is not combined).
4453 +         * @param reducer a commutative associative combining function
4454 +         * @return the result of accumulating the given transformation
4455 +         * of all values
4456 +         */
4457 +        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4458 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4459 +            return ForkJoinTasks.reduceValues
4460 +                (map, transformer, reducer).invoke();
4461 +        }
4462 +
4463 +        /**
4464 +         * Returns the result of accumulating the given transformation
4465 +         * of all values using the given reducer to combine values,
4466 +         * and the given basis as an identity value.
4467 +         *
4468 +         * @param transformer a function returning the transformation
4469 +         * for an element
4470 +         * @param basis the identity (initial default value) for the reduction
4471 +         * @param reducer a commutative associative combining function
4472 +         * @return the result of accumulating the given transformation
4473 +         * of all values
4474 +         */
4475 +        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4476 +                                     double basis,
4477 +                                     DoubleByDoubleToDouble reducer) {
4478 +            return ForkJoinTasks.reduceValuesToDouble
4479 +                (map, transformer, basis, reducer).invoke();
4480 +        }
4481 +
4482 +        /**
4483 +         * Returns the result of accumulating the given transformation
4484 +         * of all values using the given reducer to combine values,
4485 +         * and the given basis as an identity value.
4486 +         *
4487 +         * @param transformer a function returning the transformation
4488 +         * for an element
4489 +         * @param basis the identity (initial default value) for the reduction
4490 +         * @param reducer a commutative associative combining function
4491 +         * @return the result of accumulating the given transformation
4492 +         * of all values
4493 +         */
4494 +        public long reduceToLong(ObjectToLong<? super V> transformer,
4495 +                                 long basis,
4496 +                                 LongByLongToLong reducer) {
4497 +            return ForkJoinTasks.reduceValuesToLong
4498 +                (map, transformer, basis, reducer).invoke();
4499 +        }
4500 +
4501 +        /**
4502 +         * Returns the result of accumulating the given transformation
4503 +         * of all values using the given reducer to combine values,
4504 +         * and the given basis as an identity value.
4505 +         *
4506 +         * @param transformer a function returning the transformation
4507 +         * for an element
4508 +         * @param basis the identity (initial default value) for the reduction
4509 +         * @param reducer a commutative associative combining function
4510 +         * @return the result of accumulating the given transformation
4511 +         * of all values
4512 +         */
4513 +        public int reduceToInt(ObjectToInt<? super V> transformer,
4514 +                               int basis,
4515 +                               IntByIntToInt reducer) {
4516 +            return ForkJoinTasks.reduceValuesToInt
4517 +                (map, transformer, basis, reducer).invoke();
4518 +        }
4519 +
4520      }
4521  
4522 <    static final class EntrySet<K,V>  extends MapView<K,V>
4522 >    /**
4523 >     * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4524 >     * entries.  This class cannot be directly instantiated. See
4525 >     * {@link #entrySet}.
4526 >     */
4527 >    public static final class EntrySetView<K,V> extends CHMView<K,V>
4528          implements Set<Map.Entry<K,V>> {
4529 <        EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
2273 <
4529 >        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4530          public final boolean contains(Object o) {
4531              Object k, v, r; Map.Entry<?,?> e;
4532              return ((o instanceof Map.Entry) &&
# Line 2279 | Line 4535 | public class ConcurrentHashMapV8<K, V>
4535                      (v = e.getValue()) != null &&
4536                      (v == r || v.equals(r)));
4537          }
2282
4538          public final boolean remove(Object o) {
4539              Object k, v; Map.Entry<?,?> e;
4540              return ((o instanceof Map.Entry) &&
# Line 2288 | Line 4543 | public class ConcurrentHashMapV8<K, V>
4543                      map.remove(k, v));
4544          }
4545  
4546 +        /**
4547 +         * Returns a "weakly consistent" iterator that will never
4548 +         * throw {@link ConcurrentModificationException}, and
4549 +         * guarantees to traverse elements as they existed upon
4550 +         * construction of the iterator, and may (but is not
4551 +         * guaranteed to) reflect any modifications subsequent to
4552 +         * construction.
4553 +         *
4554 +         * @return an iterator over the entries of this map
4555 +         */
4556          public final Iterator<Map.Entry<K,V>> iterator() {
4557              return new EntryIterator<K,V>(map);
4558          }
4559 <        final Iterator<?> iter() {
2295 <            return new SnapshotEntryIterator<K,V>(map);
2296 <        }
4559 >
4560          public final boolean add(Entry<K,V> e) {
4561 <            throw new UnsupportedOperationException();
4561 >            K key = e.getKey();
4562 >            V value = e.getValue();
4563 >            if (key == null || value == null)
4564 >                throw new NullPointerException();
4565 >            return map.internalPut(key, value) == null;
4566          }
4567          public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4568 <            throw new UnsupportedOperationException();
4568 >            boolean added = false;
4569 >            for (Entry<K,V> e : c) {
4570 >                if (add(e))
4571 >                    added = true;
4572 >            }
4573 >            return added;
4574          }
4575          public boolean equals(Object o) {
4576              Set<?> c;
# Line 2306 | Line 4578 | public class ConcurrentHashMapV8<K, V>
4578                      ((c = (Set<?>)o) == this ||
4579                       (containsAll(c) && c.containsAll(this))));
4580          }
4581 +
4582 +        /**
4583 +         * Performs the given action for each entry.
4584 +         *
4585 +         * @param action the action
4586 +         */
4587 +        public void forEach(Action<Map.Entry<K,V>> action) {
4588 +            ForkJoinTasks.forEachEntry
4589 +                (map, action).invoke();
4590 +        }
4591 +
4592 +        /**
4593 +         * Performs the given action for each non-null transformation
4594 +         * of each entry.
4595 +         *
4596 +         * @param transformer a function returning the transformation
4597 +         * for an element, or null of there is no transformation (in
4598 +         * which case the action is not applied).
4599 +         * @param action the action
4600 +         */
4601 +        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4602 +                                Action<U> action) {
4603 +            ForkJoinTasks.forEachEntry
4604 +                (map, transformer, action).invoke();
4605 +        }
4606 +
4607 +        /**
4608 +         * Returns a non-null result from applying the given search
4609 +         * function on each entry, or null if none.  Upon success,
4610 +         * further element processing is suppressed and the results of
4611 +         * any other parallel invocations of the search function are
4612 +         * ignored.
4613 +         *
4614 +         * @param searchFunction a function returning a non-null
4615 +         * result on success, else null
4616 +         * @return a non-null result from applying the given search
4617 +         * function on each entry, or null if none
4618 +         */
4619 +        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4620 +            return ForkJoinTasks.searchEntries
4621 +                (map, searchFunction).invoke();
4622 +        }
4623 +
4624 +        /**
4625 +         * Returns the result of accumulating all entries using the
4626 +         * given reducer to combine values, or null if none.
4627 +         *
4628 +         * @param reducer a commutative associative combining function
4629 +         * @return the result of accumulating all entries
4630 +         */
4631 +        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4632 +            return ForkJoinTasks.reduceEntries
4633 +                (map, reducer).invoke();
4634 +        }
4635 +
4636 +        /**
4637 +         * Returns the result of accumulating the given transformation
4638 +         * of all entries using the given reducer to combine values,
4639 +         * or null if none.
4640 +         *
4641 +         * @param transformer a function returning the transformation
4642 +         * for an element, or null of there is no transformation (in
4643 +         * which case it is not combined).
4644 +         * @param reducer a commutative associative combining function
4645 +         * @return the result of accumulating the given transformation
4646 +         * of all entries
4647 +         */
4648 +        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4649 +                            BiFun<? super U, ? super U, ? extends U> reducer) {
4650 +            return ForkJoinTasks.reduceEntries
4651 +                (map, transformer, reducer).invoke();
4652 +        }
4653 +
4654 +        /**
4655 +         * Returns the result of accumulating the given transformation
4656 +         * of all entries using the given reducer to combine values,
4657 +         * and the given basis as an identity value.
4658 +         *
4659 +         * @param transformer a function returning the transformation
4660 +         * for an element
4661 +         * @param basis the identity (initial default value) for the reduction
4662 +         * @param reducer a commutative associative combining function
4663 +         * @return the result of accumulating the given transformation
4664 +         * of all entries
4665 +         */
4666 +        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4667 +                                     double basis,
4668 +                                     DoubleByDoubleToDouble reducer) {
4669 +            return ForkJoinTasks.reduceEntriesToDouble
4670 +                (map, transformer, basis, reducer).invoke();
4671 +        }
4672 +
4673 +        /**
4674 +         * Returns the result of accumulating the given transformation
4675 +         * of all entries using the given reducer to combine values,
4676 +         * and the given basis as an identity value.
4677 +         *
4678 +         * @param transformer a function returning the transformation
4679 +         * for an element
4680 +         * @param basis the identity (initial default value) for the reduction
4681 +         * @param reducer a commutative associative combining function
4682 +         * @return  the result of accumulating the given transformation
4683 +         * of all entries
4684 +         */
4685 +        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4686 +                                 long basis,
4687 +                                 LongByLongToLong reducer) {
4688 +            return ForkJoinTasks.reduceEntriesToLong
4689 +                (map, transformer, basis, reducer).invoke();
4690 +        }
4691 +
4692 +        /**
4693 +         * Returns the result of accumulating the given transformation
4694 +         * of all entries using the given reducer to combine values,
4695 +         * and the given basis as an identity value.
4696 +         *
4697 +         * @param transformer a function returning the transformation
4698 +         * for an element
4699 +         * @param basis the identity (initial default value) for the reduction
4700 +         * @param reducer a commutative associative combining function
4701 +         * @return the result of accumulating the given transformation
4702 +         * of all entries
4703 +         */
4704 +        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4705 +                               int basis,
4706 +                               IntByIntToInt reducer) {
4707 +            return ForkJoinTasks.reduceEntriesToInt
4708 +                (map, transformer, basis, reducer).invoke();
4709 +        }
4710 +
4711      }
4712  
4713 <    /* ---------------- Serialization Support -------------- */
4713 >    // ---------------------------------------------------------------------
4714  
4715      /**
4716 <     * Stripped-down version of helper class used in previous version,
4717 <     * declared for the sake of serialization compatibility
4716 >     * Predefined tasks for performing bulk parallel operations on
4717 >     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4718 >     * for bulk operations. Each method has the same name, but returns
4719 >     * a task rather than invoking it. These methods may be useful in
4720 >     * custom applications such as submitting a task without waiting
4721 >     * for completion, using a custom pool, or combining with other
4722 >     * tasks.
4723       */
4724 <    static class Segment<K,V> implements Serializable {
4725 <        private static final long serialVersionUID = 2249069246763182397L;
4726 <        final float loadFactor;
4727 <        Segment(float lf) { this.loadFactor = lf; }
4724 >    public static class ForkJoinTasks {
4725 >        private ForkJoinTasks() {}
4726 >
4727 >        /**
4728 >         * Returns a task that when invoked, performs the given
4729 >         * action for each (key, value)
4730 >         *
4731 >         * @param map the map
4732 >         * @param action the action
4733 >         * @return the task
4734 >         */
4735 >        public static <K,V> ForkJoinTask<Void> forEach
4736 >            (ConcurrentHashMapV8<K,V> map,
4737 >             BiAction<K,V> action) {
4738 >            if (action == null) throw new NullPointerException();
4739 >            return new ForEachMappingTask<K,V>(map, null, -1, action);
4740 >        }
4741 >
4742 >        /**
4743 >         * Returns a task that when invoked, performs the given
4744 >         * action for each non-null transformation of each (key, value)
4745 >         *
4746 >         * @param map the map
4747 >         * @param transformer a function returning the transformation
4748 >         * for an element, or null if there is no transformation (in
4749 >         * which case the action is not applied)
4750 >         * @param action the action
4751 >         * @return the task
4752 >         */
4753 >        public static <K,V,U> ForkJoinTask<Void> forEach
4754 >            (ConcurrentHashMapV8<K,V> map,
4755 >             BiFun<? super K, ? super V, ? extends U> transformer,
4756 >             Action<U> action) {
4757 >            if (transformer == null || action == null)
4758 >                throw new NullPointerException();
4759 >            return new ForEachTransformedMappingTask<K,V,U>
4760 >                (map, null, -1, transformer, action);
4761 >        }
4762 >
4763 >        /**
4764 >         * Returns a task that when invoked, returns a non-null result
4765 >         * from applying the given search function on each (key,
4766 >         * value), or null if none. Upon success, further element
4767 >         * processing is suppressed and the results of any other
4768 >         * parallel invocations of the search function are ignored.
4769 >         *
4770 >         * @param map the map
4771 >         * @param searchFunction a function returning a non-null
4772 >         * result on success, else null
4773 >         * @return the task
4774 >         */
4775 >        public static <K,V,U> ForkJoinTask<U> search
4776 >            (ConcurrentHashMapV8<K,V> map,
4777 >             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4778 >            if (searchFunction == null) throw new NullPointerException();
4779 >            return new SearchMappingsTask<K,V,U>
4780 >                (map, null, -1, searchFunction,
4781 >                 new AtomicReference<U>());
4782 >        }
4783 >
4784 >        /**
4785 >         * Returns a task that when invoked, returns the result of
4786 >         * accumulating the given transformation of all (key, value) pairs
4787 >         * using the given reducer to combine values, or null if none.
4788 >         *
4789 >         * @param map the map
4790 >         * @param transformer a function returning the transformation
4791 >         * for an element, or null if there is no transformation (in
4792 >         * which case it is not combined).
4793 >         * @param reducer a commutative associative combining function
4794 >         * @return the task
4795 >         */
4796 >        public static <K,V,U> ForkJoinTask<U> reduce
4797 >            (ConcurrentHashMapV8<K,V> map,
4798 >             BiFun<? super K, ? super V, ? extends U> transformer,
4799 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4800 >            if (transformer == null || reducer == null)
4801 >                throw new NullPointerException();
4802 >            return new MapReduceMappingsTask<K,V,U>
4803 >                (map, null, -1, null, transformer, reducer);
4804 >        }
4805 >
4806 >        /**
4807 >         * Returns a task that when invoked, returns the result of
4808 >         * accumulating the given transformation of all (key, value) pairs
4809 >         * using the given reducer to combine values, and the given
4810 >         * basis as an identity value.
4811 >         *
4812 >         * @param map the map
4813 >         * @param transformer a function returning the transformation
4814 >         * for an element
4815 >         * @param basis the identity (initial default value) for the reduction
4816 >         * @param reducer a commutative associative combining function
4817 >         * @return the task
4818 >         */
4819 >        public static <K,V> ForkJoinTask<Double> reduceToDouble
4820 >            (ConcurrentHashMapV8<K,V> map,
4821 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
4822 >             double basis,
4823 >             DoubleByDoubleToDouble reducer) {
4824 >            if (transformer == null || reducer == null)
4825 >                throw new NullPointerException();
4826 >            return new MapReduceMappingsToDoubleTask<K,V>
4827 >                (map, null, -1, null, transformer, basis, reducer);
4828 >        }
4829 >
4830 >        /**
4831 >         * Returns a task that when invoked, returns the result of
4832 >         * accumulating the given transformation of all (key, value) pairs
4833 >         * using the given reducer to combine values, and the given
4834 >         * basis as an identity value.
4835 >         *
4836 >         * @param map the map
4837 >         * @param transformer a function returning the transformation
4838 >         * for an element
4839 >         * @param basis the identity (initial default value) for the reduction
4840 >         * @param reducer a commutative associative combining function
4841 >         * @return the task
4842 >         */
4843 >        public static <K,V> ForkJoinTask<Long> reduceToLong
4844 >            (ConcurrentHashMapV8<K,V> map,
4845 >             ObjectByObjectToLong<? super K, ? super V> transformer,
4846 >             long basis,
4847 >             LongByLongToLong reducer) {
4848 >            if (transformer == null || reducer == null)
4849 >                throw new NullPointerException();
4850 >            return new MapReduceMappingsToLongTask<K,V>
4851 >                (map, null, -1, null, transformer, basis, reducer);
4852 >        }
4853 >
4854 >        /**
4855 >         * Returns a task that when invoked, returns the result of
4856 >         * accumulating the given transformation of all (key, value) pairs
4857 >         * using the given reducer to combine values, and the given
4858 >         * basis as an identity value.
4859 >         *
4860 >         * @param transformer a function returning the transformation
4861 >         * for an element
4862 >         * @param basis the identity (initial default value) for the reduction
4863 >         * @param reducer a commutative associative combining function
4864 >         * @return the task
4865 >         */
4866 >        public static <K,V> ForkJoinTask<Integer> reduceToInt
4867 >            (ConcurrentHashMapV8<K,V> map,
4868 >             ObjectByObjectToInt<? super K, ? super V> transformer,
4869 >             int basis,
4870 >             IntByIntToInt reducer) {
4871 >            if (transformer == null || reducer == null)
4872 >                throw new NullPointerException();
4873 >            return new MapReduceMappingsToIntTask<K,V>
4874 >                (map, null, -1, null, transformer, basis, reducer);
4875 >        }
4876 >
4877 >        /**
4878 >         * Returns a task that when invoked, performs the given action
4879 >         * for each key.
4880 >         *
4881 >         * @param map the map
4882 >         * @param action the action
4883 >         * @return the task
4884 >         */
4885 >        public static <K,V> ForkJoinTask<Void> forEachKey
4886 >            (ConcurrentHashMapV8<K,V> map,
4887 >             Action<K> action) {
4888 >            if (action == null) throw new NullPointerException();
4889 >            return new ForEachKeyTask<K,V>(map, null, -1, action);
4890 >        }
4891 >
4892 >        /**
4893 >         * Returns a task that when invoked, performs the given action
4894 >         * for each non-null transformation of each key.
4895 >         *
4896 >         * @param map the map
4897 >         * @param transformer a function returning the transformation
4898 >         * for an element, or null if there is no transformation (in
4899 >         * which case the action is not applied)
4900 >         * @param action the action
4901 >         * @return the task
4902 >         */
4903 >        public static <K,V,U> ForkJoinTask<Void> forEachKey
4904 >            (ConcurrentHashMapV8<K,V> map,
4905 >             Fun<? super K, ? extends U> transformer,
4906 >             Action<U> action) {
4907 >            if (transformer == null || action == null)
4908 >                throw new NullPointerException();
4909 >            return new ForEachTransformedKeyTask<K,V,U>
4910 >                (map, null, -1, transformer, action);
4911 >        }
4912 >
4913 >        /**
4914 >         * Returns a task that when invoked, returns a non-null result
4915 >         * from applying the given search function on each key, or
4916 >         * null if none.  Upon success, further element processing is
4917 >         * suppressed and the results of any other parallel
4918 >         * invocations of the search function are ignored.
4919 >         *
4920 >         * @param map the map
4921 >         * @param searchFunction a function returning a non-null
4922 >         * result on success, else null
4923 >         * @return the task
4924 >         */
4925 >        public static <K,V,U> ForkJoinTask<U> searchKeys
4926 >            (ConcurrentHashMapV8<K,V> map,
4927 >             Fun<? super K, ? extends U> searchFunction) {
4928 >            if (searchFunction == null) throw new NullPointerException();
4929 >            return new SearchKeysTask<K,V,U>
4930 >                (map, null, -1, searchFunction,
4931 >                 new AtomicReference<U>());
4932 >        }
4933 >
4934 >        /**
4935 >         * Returns a task that when invoked, returns the result of
4936 >         * accumulating all keys using the given reducer to combine
4937 >         * values, or null if none.
4938 >         *
4939 >         * @param map the map
4940 >         * @param reducer a commutative associative combining function
4941 >         * @return the task
4942 >         */
4943 >        public static <K,V> ForkJoinTask<K> reduceKeys
4944 >            (ConcurrentHashMapV8<K,V> map,
4945 >             BiFun<? super K, ? super K, ? extends K> reducer) {
4946 >            if (reducer == null) throw new NullPointerException();
4947 >            return new ReduceKeysTask<K,V>
4948 >                (map, null, -1, null, reducer);
4949 >        }
4950 >
4951 >        /**
4952 >         * Returns a task that when invoked, returns the result of
4953 >         * accumulating the given transformation of all keys using the given
4954 >         * reducer to combine values, or null if none.
4955 >         *
4956 >         * @param map the map
4957 >         * @param transformer a function returning the transformation
4958 >         * for an element, or null if there is no transformation (in
4959 >         * which case it is not combined).
4960 >         * @param reducer a commutative associative combining function
4961 >         * @return the task
4962 >         */
4963 >        public static <K,V,U> ForkJoinTask<U> reduceKeys
4964 >            (ConcurrentHashMapV8<K,V> map,
4965 >             Fun<? super K, ? extends U> transformer,
4966 >             BiFun<? super U, ? super U, ? extends U> reducer) {
4967 >            if (transformer == null || reducer == null)
4968 >                throw new NullPointerException();
4969 >            return new MapReduceKeysTask<K,V,U>
4970 >                (map, null, -1, null, transformer, reducer);
4971 >        }
4972 >
4973 >        /**
4974 >         * Returns a task that when invoked, returns the result of
4975 >         * accumulating the given transformation of all keys using the given
4976 >         * reducer to combine values, and the given basis as an
4977 >         * identity value.
4978 >         *
4979 >         * @param map the map
4980 >         * @param transformer a function returning the transformation
4981 >         * for an element
4982 >         * @param basis the identity (initial default value) for the reduction
4983 >         * @param reducer a commutative associative combining function
4984 >         * @return the task
4985 >         */
4986 >        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4987 >            (ConcurrentHashMapV8<K,V> map,
4988 >             ObjectToDouble<? super K> transformer,
4989 >             double basis,
4990 >             DoubleByDoubleToDouble reducer) {
4991 >            if (transformer == null || reducer == null)
4992 >                throw new NullPointerException();
4993 >            return new MapReduceKeysToDoubleTask<K,V>
4994 >                (map, null, -1, null, transformer, basis, reducer);
4995 >        }
4996 >
4997 >        /**
4998 >         * Returns a task that when invoked, returns the result of
4999 >         * accumulating the given transformation of all keys using the given
5000 >         * reducer to combine values, and the given basis as an
5001 >         * identity value.
5002 >         *
5003 >         * @param map the map
5004 >         * @param transformer a function returning the transformation
5005 >         * for an element
5006 >         * @param basis the identity (initial default value) for the reduction
5007 >         * @param reducer a commutative associative combining function
5008 >         * @return the task
5009 >         */
5010 >        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
5011 >            (ConcurrentHashMapV8<K,V> map,
5012 >             ObjectToLong<? super K> transformer,
5013 >             long basis,
5014 >             LongByLongToLong reducer) {
5015 >            if (transformer == null || reducer == null)
5016 >                throw new NullPointerException();
5017 >            return new MapReduceKeysToLongTask<K,V>
5018 >                (map, null, -1, null, transformer, basis, reducer);
5019 >        }
5020 >
5021 >        /**
5022 >         * Returns a task that when invoked, returns the result of
5023 >         * accumulating the given transformation of all keys using the given
5024 >         * reducer to combine values, and the given basis as an
5025 >         * identity value.
5026 >         *
5027 >         * @param map the map
5028 >         * @param transformer a function returning the transformation
5029 >         * for an element
5030 >         * @param basis the identity (initial default value) for the reduction
5031 >         * @param reducer a commutative associative combining function
5032 >         * @return the task
5033 >         */
5034 >        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
5035 >            (ConcurrentHashMapV8<K,V> map,
5036 >             ObjectToInt<? super K> transformer,
5037 >             int basis,
5038 >             IntByIntToInt reducer) {
5039 >            if (transformer == null || reducer == null)
5040 >                throw new NullPointerException();
5041 >            return new MapReduceKeysToIntTask<K,V>
5042 >                (map, null, -1, null, transformer, basis, reducer);
5043 >        }
5044 >
5045 >        /**
5046 >         * Returns a task that when invoked, performs the given action
5047 >         * for each value.
5048 >         *
5049 >         * @param map the map
5050 >         * @param action the action
5051 >         */
5052 >        public static <K,V> ForkJoinTask<Void> forEachValue
5053 >            (ConcurrentHashMapV8<K,V> map,
5054 >             Action<V> action) {
5055 >            if (action == null) throw new NullPointerException();
5056 >            return new ForEachValueTask<K,V>(map, null, -1, action);
5057 >        }
5058 >
5059 >        /**
5060 >         * Returns a task that when invoked, performs the given action
5061 >         * for each non-null transformation of each value.
5062 >         *
5063 >         * @param map the map
5064 >         * @param transformer a function returning the transformation
5065 >         * for an element, or null if there is no transformation (in
5066 >         * which case the action is not applied)
5067 >         * @param action the action
5068 >         */
5069 >        public static <K,V,U> ForkJoinTask<Void> forEachValue
5070 >            (ConcurrentHashMapV8<K,V> map,
5071 >             Fun<? super V, ? extends U> transformer,
5072 >             Action<U> action) {
5073 >            if (transformer == null || action == null)
5074 >                throw new NullPointerException();
5075 >            return new ForEachTransformedValueTask<K,V,U>
5076 >                (map, null, -1, transformer, action);
5077 >        }
5078 >
5079 >        /**
5080 >         * Returns a task that when invoked, returns a non-null result
5081 >         * from applying the given search function on each value, or
5082 >         * null if none.  Upon success, further element processing is
5083 >         * suppressed and the results of any other parallel
5084 >         * invocations of the search function are ignored.
5085 >         *
5086 >         * @param map the map
5087 >         * @param searchFunction a function returning a non-null
5088 >         * result on success, else null
5089 >         * @return the task
5090 >         */
5091 >        public static <K,V,U> ForkJoinTask<U> searchValues
5092 >            (ConcurrentHashMapV8<K,V> map,
5093 >             Fun<? super V, ? extends U> searchFunction) {
5094 >            if (searchFunction == null) throw new NullPointerException();
5095 >            return new SearchValuesTask<K,V,U>
5096 >                (map, null, -1, searchFunction,
5097 >                 new AtomicReference<U>());
5098 >        }
5099 >
5100 >        /**
5101 >         * Returns a task that when invoked, returns the result of
5102 >         * accumulating all values using the given reducer to combine
5103 >         * values, or null if none.
5104 >         *
5105 >         * @param map the map
5106 >         * @param reducer a commutative associative combining function
5107 >         * @return the task
5108 >         */
5109 >        public static <K,V> ForkJoinTask<V> reduceValues
5110 >            (ConcurrentHashMapV8<K,V> map,
5111 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5112 >            if (reducer == null) throw new NullPointerException();
5113 >            return new ReduceValuesTask<K,V>
5114 >                (map, null, -1, null, reducer);
5115 >        }
5116 >
5117 >        /**
5118 >         * Returns a task that when invoked, returns the result of
5119 >         * accumulating the given transformation of all values using the
5120 >         * given reducer to combine values, or null if none.
5121 >         *
5122 >         * @param map the map
5123 >         * @param transformer a function returning the transformation
5124 >         * for an element, or null if there is no transformation (in
5125 >         * which case it is not combined).
5126 >         * @param reducer a commutative associative combining function
5127 >         * @return the task
5128 >         */
5129 >        public static <K,V,U> ForkJoinTask<U> reduceValues
5130 >            (ConcurrentHashMapV8<K,V> map,
5131 >             Fun<? super V, ? extends U> transformer,
5132 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5133 >            if (transformer == null || reducer == null)
5134 >                throw new NullPointerException();
5135 >            return new MapReduceValuesTask<K,V,U>
5136 >                (map, null, -1, null, transformer, reducer);
5137 >        }
5138 >
5139 >        /**
5140 >         * Returns a task that when invoked, returns the result of
5141 >         * accumulating the given transformation of all values using the
5142 >         * given reducer to combine values, and the given basis as an
5143 >         * identity value.
5144 >         *
5145 >         * @param map the map
5146 >         * @param transformer a function returning the transformation
5147 >         * for an element
5148 >         * @param basis the identity (initial default value) for the reduction
5149 >         * @param reducer a commutative associative combining function
5150 >         * @return the task
5151 >         */
5152 >        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
5153 >            (ConcurrentHashMapV8<K,V> map,
5154 >             ObjectToDouble<? super V> transformer,
5155 >             double basis,
5156 >             DoubleByDoubleToDouble reducer) {
5157 >            if (transformer == null || reducer == null)
5158 >                throw new NullPointerException();
5159 >            return new MapReduceValuesToDoubleTask<K,V>
5160 >                (map, null, -1, null, transformer, basis, reducer);
5161 >        }
5162 >
5163 >        /**
5164 >         * Returns a task that when invoked, returns the result of
5165 >         * accumulating the given transformation of all values using the
5166 >         * given reducer to combine values, and the given basis as an
5167 >         * identity value.
5168 >         *
5169 >         * @param map the map
5170 >         * @param transformer a function returning the transformation
5171 >         * for an element
5172 >         * @param basis the identity (initial default value) for the reduction
5173 >         * @param reducer a commutative associative combining function
5174 >         * @return the task
5175 >         */
5176 >        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5177 >            (ConcurrentHashMapV8<K,V> map,
5178 >             ObjectToLong<? super V> transformer,
5179 >             long basis,
5180 >             LongByLongToLong reducer) {
5181 >            if (transformer == null || reducer == null)
5182 >                throw new NullPointerException();
5183 >            return new MapReduceValuesToLongTask<K,V>
5184 >                (map, null, -1, null, transformer, basis, reducer);
5185 >        }
5186 >
5187 >        /**
5188 >         * Returns a task that when invoked, returns the result of
5189 >         * accumulating the given transformation of all values using the
5190 >         * given reducer to combine values, and the given basis as an
5191 >         * identity value.
5192 >         *
5193 >         * @param map the map
5194 >         * @param transformer a function returning the transformation
5195 >         * for an element
5196 >         * @param basis the identity (initial default value) for the reduction
5197 >         * @param reducer a commutative associative combining function
5198 >         * @return the task
5199 >         */
5200 >        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5201 >            (ConcurrentHashMapV8<K,V> map,
5202 >             ObjectToInt<? super V> transformer,
5203 >             int basis,
5204 >             IntByIntToInt reducer) {
5205 >            if (transformer == null || reducer == null)
5206 >                throw new NullPointerException();
5207 >            return new MapReduceValuesToIntTask<K,V>
5208 >                (map, null, -1, null, transformer, basis, reducer);
5209 >        }
5210 >
5211 >        /**
5212 >         * Returns a task that when invoked, perform the given action
5213 >         * for each entry.
5214 >         *
5215 >         * @param map the map
5216 >         * @param action the action
5217 >         */
5218 >        public static <K,V> ForkJoinTask<Void> forEachEntry
5219 >            (ConcurrentHashMapV8<K,V> map,
5220 >             Action<Map.Entry<K,V>> action) {
5221 >            if (action == null) throw new NullPointerException();
5222 >            return new ForEachEntryTask<K,V>(map, null, -1, action);
5223 >        }
5224 >
5225 >        /**
5226 >         * Returns a task that when invoked, perform the given action
5227 >         * for each non-null transformation of each entry.
5228 >         *
5229 >         * @param map the map
5230 >         * @param transformer a function returning the transformation
5231 >         * for an element, or null if there is no transformation (in
5232 >         * which case the action is not applied)
5233 >         * @param action the action
5234 >         */
5235 >        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5236 >            (ConcurrentHashMapV8<K,V> map,
5237 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5238 >             Action<U> action) {
5239 >            if (transformer == null || action == null)
5240 >                throw new NullPointerException();
5241 >            return new ForEachTransformedEntryTask<K,V,U>
5242 >                (map, null, -1, transformer, action);
5243 >        }
5244 >
5245 >        /**
5246 >         * Returns a task that when invoked, returns a non-null result
5247 >         * from applying the given search function on each entry, or
5248 >         * null if none.  Upon success, further element processing is
5249 >         * suppressed and the results of any other parallel
5250 >         * invocations of the search function are ignored.
5251 >         *
5252 >         * @param map the map
5253 >         * @param searchFunction a function returning a non-null
5254 >         * result on success, else null
5255 >         * @return the task
5256 >         */
5257 >        public static <K,V,U> ForkJoinTask<U> searchEntries
5258 >            (ConcurrentHashMapV8<K,V> map,
5259 >             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5260 >            if (searchFunction == null) throw new NullPointerException();
5261 >            return new SearchEntriesTask<K,V,U>
5262 >                (map, null, -1, searchFunction,
5263 >                 new AtomicReference<U>());
5264 >        }
5265 >
5266 >        /**
5267 >         * Returns a task that when invoked, returns the result of
5268 >         * accumulating all entries using the given reducer to combine
5269 >         * values, or null if none.
5270 >         *
5271 >         * @param map the map
5272 >         * @param reducer a commutative associative combining function
5273 >         * @return the task
5274 >         */
5275 >        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5276 >            (ConcurrentHashMapV8<K,V> map,
5277 >             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5278 >            if (reducer == null) throw new NullPointerException();
5279 >            return new ReduceEntriesTask<K,V>
5280 >                (map, null, -1, null, reducer);
5281 >        }
5282 >
5283 >        /**
5284 >         * Returns a task that when invoked, returns the result of
5285 >         * accumulating the given transformation of all entries using the
5286 >         * given reducer to combine values, or null if none.
5287 >         *
5288 >         * @param map the map
5289 >         * @param transformer a function returning the transformation
5290 >         * for an element, or null if there is no transformation (in
5291 >         * which case it is not combined).
5292 >         * @param reducer a commutative associative combining function
5293 >         * @return the task
5294 >         */
5295 >        public static <K,V,U> ForkJoinTask<U> reduceEntries
5296 >            (ConcurrentHashMapV8<K,V> map,
5297 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5298 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5299 >            if (transformer == null || reducer == null)
5300 >                throw new NullPointerException();
5301 >            return new MapReduceEntriesTask<K,V,U>
5302 >                (map, null, -1, null, transformer, reducer);
5303 >        }
5304 >
5305 >        /**
5306 >         * Returns a task that when invoked, returns the result of
5307 >         * accumulating the given transformation of all entries using the
5308 >         * given reducer to combine values, and the given basis as an
5309 >         * identity value.
5310 >         *
5311 >         * @param map the map
5312 >         * @param transformer a function returning the transformation
5313 >         * for an element
5314 >         * @param basis the identity (initial default value) for the reduction
5315 >         * @param reducer a commutative associative combining function
5316 >         * @return the task
5317 >         */
5318 >        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5319 >            (ConcurrentHashMapV8<K,V> map,
5320 >             ObjectToDouble<Map.Entry<K,V>> transformer,
5321 >             double basis,
5322 >             DoubleByDoubleToDouble reducer) {
5323 >            if (transformer == null || reducer == null)
5324 >                throw new NullPointerException();
5325 >            return new MapReduceEntriesToDoubleTask<K,V>
5326 >                (map, null, -1, null, transformer, basis, reducer);
5327 >        }
5328 >
5329 >        /**
5330 >         * Returns a task that when invoked, returns the result of
5331 >         * accumulating the given transformation of all entries using the
5332 >         * given reducer to combine values, and the given basis as an
5333 >         * identity value.
5334 >         *
5335 >         * @param map the map
5336 >         * @param transformer a function returning the transformation
5337 >         * for an element
5338 >         * @param basis the identity (initial default value) for the reduction
5339 >         * @param reducer a commutative associative combining function
5340 >         * @return the task
5341 >         */
5342 >        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5343 >            (ConcurrentHashMapV8<K,V> map,
5344 >             ObjectToLong<Map.Entry<K,V>> transformer,
5345 >             long basis,
5346 >             LongByLongToLong reducer) {
5347 >            if (transformer == null || reducer == null)
5348 >                throw new NullPointerException();
5349 >            return new MapReduceEntriesToLongTask<K,V>
5350 >                (map, null, -1, null, transformer, basis, reducer);
5351 >        }
5352 >
5353 >        /**
5354 >         * Returns a task that when invoked, returns the result of
5355 >         * accumulating the given transformation of all entries using the
5356 >         * given reducer to combine values, and the given basis as an
5357 >         * identity value.
5358 >         *
5359 >         * @param map the map
5360 >         * @param transformer a function returning the transformation
5361 >         * for an element
5362 >         * @param basis the identity (initial default value) for the reduction
5363 >         * @param reducer a commutative associative combining function
5364 >         * @return the task
5365 >         */
5366 >        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
5367 >            (ConcurrentHashMapV8<K,V> map,
5368 >             ObjectToInt<Map.Entry<K,V>> transformer,
5369 >             int basis,
5370 >             IntByIntToInt reducer) {
5371 >            if (transformer == null || reducer == null)
5372 >                throw new NullPointerException();
5373 >            return new MapReduceEntriesToIntTask<K,V>
5374 >                (map, null, -1, null, transformer, basis, reducer);
5375 >        }
5376      }
5377  
5378 <    /**
5379 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
5380 <     * stream (i.e., serializes it).
5381 <     * @param s the stream
5382 <     * @serialData
5383 <     * the key (Object) and value (Object)
5384 <     * for each key-value mapping, followed by a null pair.
5385 <     * The key-value mappings are emitted in no particular order.
5386 <     */
5387 <    @SuppressWarnings("unchecked")
5388 <    private void writeObject(java.io.ObjectOutputStream s)
5389 <            throws java.io.IOException {
5390 <        if (segments == null) { // for serialization compatibility
5391 <            segments = (Segment<K,V>[])
5392 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
5393 <            for (int i = 0; i < segments.length; ++i)
5394 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
5378 >    // -------------------------------------------------------
5379 >
5380 >    /*
5381 >     * Task classes. Coded in a regular but ugly format/style to
5382 >     * simplify checks that each variant differs in the right way from
5383 >     * others.
5384 >     */
5385 >
5386 >    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
5387 >        extends Traverser<K,V,Void> {
5388 >        final Action<K> action;
5389 >        ForEachKeyTask
5390 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5391 >             Action<K> action) {
5392 >            super(m, p, b);
5393 >            this.action = action;
5394 >        }
5395 >        @SuppressWarnings("unchecked") public final void compute() {
5396 >            final Action<K> action;
5397 >            if ((action = this.action) == null)
5398 >                throw new NullPointerException();
5399 >            for (int b; (b = preSplit()) > 0;)
5400 >                new ForEachKeyTask<K,V>(map, this, b, action).fork();
5401 >            while (advance() != null)
5402 >                action.apply((K)nextKey);
5403 >            propagateCompletion();
5404 >        }
5405 >    }
5406 >
5407 >    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
5408 >        extends Traverser<K,V,Void> {
5409 >        final Action<V> action;
5410 >        ForEachValueTask
5411 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5412 >             Action<V> action) {
5413 >            super(m, p, b);
5414 >            this.action = action;
5415 >        }
5416 >        @SuppressWarnings("unchecked") public final void compute() {
5417 >            final Action<V> action;
5418 >            if ((action = this.action) == null)
5419 >                throw new NullPointerException();
5420 >            for (int b; (b = preSplit()) > 0;)
5421 >                new ForEachValueTask<K,V>(map, this, b, action).fork();
5422 >            Object v;
5423 >            while ((v = advance()) != null)
5424 >                action.apply((V)v);
5425 >            propagateCompletion();
5426 >        }
5427 >    }
5428 >
5429 >    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
5430 >        extends Traverser<K,V,Void> {
5431 >        final Action<Entry<K,V>> action;
5432 >        ForEachEntryTask
5433 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5434 >             Action<Entry<K,V>> action) {
5435 >            super(m, p, b);
5436 >            this.action = action;
5437 >        }
5438 >        @SuppressWarnings("unchecked") public final void compute() {
5439 >            final Action<Entry<K,V>> action;
5440 >            if ((action = this.action) == null)
5441 >                throw new NullPointerException();
5442 >            for (int b; (b = preSplit()) > 0;)
5443 >                new ForEachEntryTask<K,V>(map, this, b, action).fork();
5444 >            Object v;
5445 >            while ((v = advance()) != null)
5446 >                action.apply(entryFor((K)nextKey, (V)v));
5447 >            propagateCompletion();
5448 >        }
5449 >    }
5450 >
5451 >    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
5452 >        extends Traverser<K,V,Void> {
5453 >        final BiAction<K,V> action;
5454 >        ForEachMappingTask
5455 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5456 >             BiAction<K,V> action) {
5457 >            super(m, p, b);
5458 >            this.action = action;
5459 >        }
5460 >        @SuppressWarnings("unchecked") public final void compute() {
5461 >            final BiAction<K,V> action;
5462 >            if ((action = this.action) == null)
5463 >                throw new NullPointerException();
5464 >            for (int b; (b = preSplit()) > 0;)
5465 >                new ForEachMappingTask<K,V>(map, this, b, action).fork();
5466 >            Object v;
5467 >            while ((v = advance()) != null)
5468 >                action.apply((K)nextKey, (V)v);
5469 >            propagateCompletion();
5470 >        }
5471 >    }
5472 >
5473 >    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
5474 >        extends Traverser<K,V,Void> {
5475 >        final Fun<? super K, ? extends U> transformer;
5476 >        final Action<U> action;
5477 >        ForEachTransformedKeyTask
5478 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5479 >             Fun<? super K, ? extends U> transformer, Action<U> action) {
5480 >            super(m, p, b);
5481 >            this.transformer = transformer; this.action = action;
5482 >        }
5483 >        @SuppressWarnings("unchecked") public final void compute() {
5484 >            final Fun<? super K, ? extends U> transformer;
5485 >            final Action<U> action;
5486 >            if ((transformer = this.transformer) == null ||
5487 >                (action = this.action) == null)
5488 >                throw new NullPointerException();
5489 >            for (int b; (b = preSplit()) > 0;)
5490 >                new ForEachTransformedKeyTask<K,V,U>
5491 >                     (map, this, b, transformer, action).fork();
5492 >            U u;
5493 >            while (advance() != null) {
5494 >                if ((u = transformer.apply((K)nextKey)) != null)
5495 >                    action.apply(u);
5496 >            }
5497 >            propagateCompletion();
5498 >        }
5499 >    }
5500 >
5501 >    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
5502 >        extends Traverser<K,V,Void> {
5503 >        final Fun<? super V, ? extends U> transformer;
5504 >        final Action<U> action;
5505 >        ForEachTransformedValueTask
5506 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5507 >             Fun<? super V, ? extends U> transformer, Action<U> action) {
5508 >            super(m, p, b);
5509 >            this.transformer = transformer; this.action = action;
5510 >        }
5511 >        @SuppressWarnings("unchecked") public final void compute() {
5512 >            final Fun<? super V, ? extends U> transformer;
5513 >            final Action<U> action;
5514 >            if ((transformer = this.transformer) == null ||
5515 >                (action = this.action) == null)
5516 >                throw new NullPointerException();
5517 >            for (int b; (b = preSplit()) > 0;)
5518 >                new ForEachTransformedValueTask<K,V,U>
5519 >                    (map, this, b, transformer, action).fork();
5520 >            Object v; U u;
5521 >            while ((v = advance()) != null) {
5522 >                if ((u = transformer.apply((V)v)) != null)
5523 >                    action.apply(u);
5524 >            }
5525 >            propagateCompletion();
5526 >        }
5527 >    }
5528 >
5529 >    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
5530 >        extends Traverser<K,V,Void> {
5531 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5532 >        final Action<U> action;
5533 >        ForEachTransformedEntryTask
5534 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5535 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
5536 >            super(m, p, b);
5537 >            this.transformer = transformer; this.action = action;
5538 >        }
5539 >        @SuppressWarnings("unchecked") public final void compute() {
5540 >            final Fun<Map.Entry<K,V>, ? extends U> transformer;
5541 >            final Action<U> action;
5542 >            if ((transformer = this.transformer) == null ||
5543 >                (action = this.action) == null)
5544 >                throw new NullPointerException();
5545 >            for (int b; (b = preSplit()) > 0;)
5546 >                new ForEachTransformedEntryTask<K,V,U>
5547 >                    (map, this, b, transformer, action).fork();
5548 >            Object v; U u;
5549 >            while ((v = advance()) != null) {
5550 >                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5551 >                    action.apply(u);
5552 >            }
5553 >            propagateCompletion();
5554 >        }
5555 >    }
5556 >
5557 >    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
5558 >        extends Traverser<K,V,Void> {
5559 >        final BiFun<? super K, ? super V, ? extends U> transformer;
5560 >        final Action<U> action;
5561 >        ForEachTransformedMappingTask
5562 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5563 >             BiFun<? super K, ? super V, ? extends U> transformer,
5564 >             Action<U> action) {
5565 >            super(m, p, b);
5566 >            this.transformer = transformer; this.action = action;
5567 >        }
5568 >        @SuppressWarnings("unchecked") public final void compute() {
5569 >            final BiFun<? super K, ? super V, ? extends U> transformer;
5570 >            final Action<U> action;
5571 >            if ((transformer = this.transformer) == null ||
5572 >                (action = this.action) == null)
5573 >                throw new NullPointerException();
5574 >            for (int b; (b = preSplit()) > 0;)
5575 >                new ForEachTransformedMappingTask<K,V,U>
5576 >                    (map, this, b, transformer, action).fork();
5577 >            Object v; U u;
5578 >            while ((v = advance()) != null) {
5579 >                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5580 >                    action.apply(u);
5581 >            }
5582 >            propagateCompletion();
5583 >        }
5584 >    }
5585 >
5586 >    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
5587 >        extends Traverser<K,V,U> {
5588 >        final Fun<? super K, ? extends U> searchFunction;
5589 >        final AtomicReference<U> result;
5590 >        SearchKeysTask
5591 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5592 >             Fun<? super K, ? extends U> searchFunction,
5593 >             AtomicReference<U> result) {
5594 >            super(m, p, b);
5595 >            this.searchFunction = searchFunction; this.result = result;
5596 >        }
5597 >        public final U getRawResult() { return result.get(); }
5598 >        @SuppressWarnings("unchecked") public final void compute() {
5599 >            final Fun<? super K, ? extends U> searchFunction;
5600 >            final AtomicReference<U> result;
5601 >            if ((searchFunction = this.searchFunction) == null ||
5602 >                (result = this.result) == null)
5603 >                throw new NullPointerException();
5604 >            for (int b;;) {
5605 >                if (result.get() != null)
5606 >                    return;
5607 >                if ((b = preSplit()) <= 0)
5608 >                    break;
5609 >                new SearchKeysTask<K,V,U>
5610 >                    (map, this, b, searchFunction, result).fork();
5611 >            }
5612 >            while (result.get() == null) {
5613 >                U u;
5614 >                if (advance() == null) {
5615 >                    propagateCompletion();
5616 >                    break;
5617 >                }
5618 >                if ((u = searchFunction.apply((K)nextKey)) != null) {
5619 >                    if (result.compareAndSet(null, u))
5620 >                        quietlyCompleteRoot();
5621 >                    break;
5622 >                }
5623 >            }
5624          }
5625 <        s.defaultWriteObject();
5626 <        InternalIterator it = new InternalIterator(table);
5627 <        while (it.next != null) {
5628 <            s.writeObject(it.nextKey);
5629 <            s.writeObject(it.nextVal);
5630 <            it.advance();
5625 >    }
5626 >
5627 >    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
5628 >        extends Traverser<K,V,U> {
5629 >        final Fun<? super V, ? extends U> searchFunction;
5630 >        final AtomicReference<U> result;
5631 >        SearchValuesTask
5632 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5633 >             Fun<? super V, ? extends U> searchFunction,
5634 >             AtomicReference<U> result) {
5635 >            super(m, p, b);
5636 >            this.searchFunction = searchFunction; this.result = result;
5637 >        }
5638 >        public final U getRawResult() { return result.get(); }
5639 >        @SuppressWarnings("unchecked") public final void compute() {
5640 >            final Fun<? super V, ? extends U> searchFunction;
5641 >            final AtomicReference<U> result;
5642 >            if ((searchFunction = this.searchFunction) == null ||
5643 >                (result = this.result) == null)
5644 >                throw new NullPointerException();
5645 >            for (int b;;) {
5646 >                if (result.get() != null)
5647 >                    return;
5648 >                if ((b = preSplit()) <= 0)
5649 >                    break;
5650 >                new SearchValuesTask<K,V,U>
5651 >                    (map, this, b, searchFunction, result).fork();
5652 >            }
5653 >            while (result.get() == null) {
5654 >                Object v; U u;
5655 >                if ((v = advance()) == null) {
5656 >                    propagateCompletion();
5657 >                    break;
5658 >                }
5659 >                if ((u = searchFunction.apply((V)v)) != null) {
5660 >                    if (result.compareAndSet(null, u))
5661 >                        quietlyCompleteRoot();
5662 >                    break;
5663 >                }
5664 >            }
5665          }
2348        s.writeObject(null);
2349        s.writeObject(null);
2350        segments = null; // throw away
5666      }
5667  
5668 <    /**
5669 <     * Reconstitutes the instance from a stream (that is, deserializes it).
5670 <     * @param s the stream
5671 <     */
5672 <    @SuppressWarnings("unchecked")
5673 <    private void readObject(java.io.ObjectInputStream s)
5674 <            throws java.io.IOException, ClassNotFoundException {
5675 <        s.defaultReadObject();
5676 <        this.segments = null; // unneeded
5677 <        // initialize transient final field
5678 <        UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
5668 >    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
5669 >        extends Traverser<K,V,U> {
5670 >        final Fun<Entry<K,V>, ? extends U> searchFunction;
5671 >        final AtomicReference<U> result;
5672 >        SearchEntriesTask
5673 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5674 >             Fun<Entry<K,V>, ? extends U> searchFunction,
5675 >             AtomicReference<U> result) {
5676 >            super(m, p, b);
5677 >            this.searchFunction = searchFunction; this.result = result;
5678 >        }
5679 >        public final U getRawResult() { return result.get(); }
5680 >        @SuppressWarnings("unchecked") public final void compute() {
5681 >            final Fun<Entry<K,V>, ? extends U> searchFunction;
5682 >            final AtomicReference<U> result;
5683 >            if ((searchFunction = this.searchFunction) == null ||
5684 >                (result = this.result) == null)
5685 >                throw new NullPointerException();
5686 >            for (int b;;) {
5687 >                if (result.get() != null)
5688 >                    return;
5689 >                if ((b = preSplit()) <= 0)
5690 >                    break;
5691 >                new SearchEntriesTask<K,V,U>
5692 >                    (map, this, b, searchFunction, result).fork();
5693 >            }
5694 >            while (result.get() == null) {
5695 >                Object v; U u;
5696 >                if ((v = advance()) == null) {
5697 >                    propagateCompletion();
5698 >                    break;
5699 >                }
5700 >                if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5701 >                    if (result.compareAndSet(null, u))
5702 >                        quietlyCompleteRoot();
5703 >                    return;
5704 >                }
5705 >            }
5706 >        }
5707 >    }
5708  
5709 <        // Create all nodes, then place in table once size is known
5710 <        long size = 0L;
5711 <        Node p = null;
5712 <        for (;;) {
5713 <            K k = (K) s.readObject();
5714 <            V v = (V) s.readObject();
5715 <            if (k != null && v != null) {
5716 <                p = new Node(spread(k.hashCode()), k, v, p);
5717 <                ++size;
5709 >    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5710 >        extends Traverser<K,V,U> {
5711 >        final BiFun<? super K, ? super V, ? extends U> searchFunction;
5712 >        final AtomicReference<U> result;
5713 >        SearchMappingsTask
5714 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5715 >             BiFun<? super K, ? super V, ? extends U> searchFunction,
5716 >             AtomicReference<U> result) {
5717 >            super(m, p, b);
5718 >            this.searchFunction = searchFunction; this.result = result;
5719 >        }
5720 >        public final U getRawResult() { return result.get(); }
5721 >        @SuppressWarnings("unchecked") public final void compute() {
5722 >            final BiFun<? super K, ? super V, ? extends U> searchFunction;
5723 >            final AtomicReference<U> result;
5724 >            if ((searchFunction = this.searchFunction) == null ||
5725 >                (result = this.result) == null)
5726 >                throw new NullPointerException();
5727 >            for (int b;;) {
5728 >                if (result.get() != null)
5729 >                    return;
5730 >                if ((b = preSplit()) <= 0)
5731 >                    break;
5732 >                new SearchMappingsTask<K,V,U>
5733 >                    (map, this, b, searchFunction, result).fork();
5734 >            }
5735 >            while (result.get() == null) {
5736 >                Object v; U u;
5737 >                if ((v = advance()) == null) {
5738 >                    propagateCompletion();
5739 >                    break;
5740 >                }
5741 >                if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5742 >                    if (result.compareAndSet(null, u))
5743 >                        quietlyCompleteRoot();
5744 >                    break;
5745 >                }
5746              }
2375            else
2376                break;
5747          }
5748 <        if (p != null) {
5749 <            boolean init = false;
5750 <            int n;
5751 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
5752 <                n = MAXIMUM_CAPACITY;
5753 <            else {
5754 <                int sz = (int)size;
5755 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
5748 >    }
5749 >
5750 >    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5751 >        extends Traverser<K,V,K> {
5752 >        final BiFun<? super K, ? super K, ? extends K> reducer;
5753 >        K result;
5754 >        ReduceKeysTask<K,V> rights, nextRight;
5755 >        ReduceKeysTask
5756 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5757 >             ReduceKeysTask<K,V> nextRight,
5758 >             BiFun<? super K, ? super K, ? extends K> reducer) {
5759 >            super(m, p, b); this.nextRight = nextRight;
5760 >            this.reducer = reducer;
5761 >        }
5762 >        public final K getRawResult() { return result; }
5763 >        @SuppressWarnings("unchecked") public final void compute() {
5764 >            final BiFun<? super K, ? super K, ? extends K> reducer =
5765 >                this.reducer;
5766 >            if (reducer == null)
5767 >                throw new NullPointerException();
5768 >            for (int b; (b = preSplit()) > 0;)
5769 >                (rights = new ReduceKeysTask<K,V>
5770 >                 (map, this, b, rights, reducer)).fork();
5771 >            K r = null;
5772 >            while (advance() != null) {
5773 >                K u = (K)nextKey;
5774 >                r = (r == null) ? u : reducer.apply(r, u);
5775 >            }
5776 >            result = r;
5777 >            CountedCompleter<?> c;
5778 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5779 >                ReduceKeysTask<K,V>
5780 >                    t = (ReduceKeysTask<K,V>)c,
5781 >                    s = t.rights;
5782 >                while (s != null) {
5783 >                    K tr, sr;
5784 >                    if ((sr = s.result) != null)
5785 >                        t.result = (((tr = t.result) == null) ? sr :
5786 >                                    reducer.apply(tr, sr));
5787 >                    s = t.rights = s.nextRight;
5788 >                }
5789              }
5790 <            int sc = sizeCtl;
5791 <            if (n > sc &&
5792 <                UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
5793 <                try {
5794 <                    if (table == null) {
5795 <                        init = true;
5796 <                        Node[] tab = new Node[n];
5797 <                        int mask = n - 1;
5798 <                        while (p != null) {
5799 <                            int j = p.hash & mask;
5800 <                            Node next = p.next;
5801 <                            p.next = tabAt(tab, j);
5802 <                            setTabAt(tab, j, p);
5803 <                            p = next;
5804 <                        }
5805 <                        table = tab;
5806 <                        counter.add(size);
5807 <                        sc = n - (n >>> 2);
5808 <                    }
5809 <                } finally {
5810 <                    sizeCtl = sc;
5790 >        }
5791 >    }
5792 >
5793 >    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5794 >        extends Traverser<K,V,V> {
5795 >        final BiFun<? super V, ? super V, ? extends V> reducer;
5796 >        V result;
5797 >        ReduceValuesTask<K,V> rights, nextRight;
5798 >        ReduceValuesTask
5799 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5800 >             ReduceValuesTask<K,V> nextRight,
5801 >             BiFun<? super V, ? super V, ? extends V> reducer) {
5802 >            super(m, p, b); this.nextRight = nextRight;
5803 >            this.reducer = reducer;
5804 >        }
5805 >        public final V getRawResult() { return result; }
5806 >        @SuppressWarnings("unchecked") public final void compute() {
5807 >            final BiFun<? super V, ? super V, ? extends V> reducer =
5808 >                this.reducer;
5809 >            if (reducer == null)
5810 >                throw new NullPointerException();
5811 >            for (int b; (b = preSplit()) > 0;)
5812 >                (rights = new ReduceValuesTask<K,V>
5813 >                 (map, this, b, rights, reducer)).fork();
5814 >            V r = null;
5815 >            Object v;
5816 >            while ((v = advance()) != null) {
5817 >                V u = (V)v;
5818 >                r = (r == null) ? u : reducer.apply(r, u);
5819 >            }
5820 >            result = r;
5821 >            CountedCompleter<?> c;
5822 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5823 >                ReduceValuesTask<K,V>
5824 >                    t = (ReduceValuesTask<K,V>)c,
5825 >                    s = t.rights;
5826 >                while (s != null) {
5827 >                    V tr, sr;
5828 >                    if ((sr = s.result) != null)
5829 >                        t.result = (((tr = t.result) == null) ? sr :
5830 >                                    reducer.apply(tr, sr));
5831 >                    s = t.rights = s.nextRight;
5832                  }
5833              }
5834 <            if (!init) { // Can only happen if unsafely published.
5835 <                while (p != null) {
5836 <                    internalPut(p.key, p.val);
5837 <                    p = p.next;
5834 >        }
5835 >    }
5836 >
5837 >    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5838 >        extends Traverser<K,V,Map.Entry<K,V>> {
5839 >        final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5840 >        Map.Entry<K,V> result;
5841 >        ReduceEntriesTask<K,V> rights, nextRight;
5842 >        ReduceEntriesTask
5843 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5844 >             ReduceEntriesTask<K,V> nextRight,
5845 >             BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5846 >            super(m, p, b); this.nextRight = nextRight;
5847 >            this.reducer = reducer;
5848 >        }
5849 >        public final Map.Entry<K,V> getRawResult() { return result; }
5850 >        @SuppressWarnings("unchecked") public final void compute() {
5851 >            final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5852 >                this.reducer;
5853 >            if (reducer == null)
5854 >                throw new NullPointerException();
5855 >            for (int b; (b = preSplit()) > 0;)
5856 >                (rights = new ReduceEntriesTask<K,V>
5857 >                 (map, this, b, rights, reducer)).fork();
5858 >            Map.Entry<K,V> r = null;
5859 >            Object v;
5860 >            while ((v = advance()) != null) {
5861 >                Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5862 >                r = (r == null) ? u : reducer.apply(r, u);
5863 >            }
5864 >            result = r;
5865 >            CountedCompleter<?> c;
5866 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5867 >                ReduceEntriesTask<K,V>
5868 >                    t = (ReduceEntriesTask<K,V>)c,
5869 >                    s = t.rights;
5870 >                while (s != null) {
5871 >                    Map.Entry<K,V> tr, sr;
5872 >                    if ((sr = s.result) != null)
5873 >                        t.result = (((tr = t.result) == null) ? sr :
5874 >                                    reducer.apply(tr, sr));
5875 >                    s = t.rights = s.nextRight;
5876 >                }
5877 >            }
5878 >        }
5879 >    }
5880 >
5881 >    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5882 >        extends Traverser<K,V,U> {
5883 >        final Fun<? super K, ? extends U> transformer;
5884 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5885 >        U result;
5886 >        MapReduceKeysTask<K,V,U> rights, nextRight;
5887 >        MapReduceKeysTask
5888 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5889 >             MapReduceKeysTask<K,V,U> nextRight,
5890 >             Fun<? super K, ? extends U> transformer,
5891 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5892 >            super(m, p, b); this.nextRight = nextRight;
5893 >            this.transformer = transformer;
5894 >            this.reducer = reducer;
5895 >        }
5896 >        public final U getRawResult() { return result; }
5897 >        @SuppressWarnings("unchecked") public final void compute() {
5898 >            final Fun<? super K, ? extends U> transformer =
5899 >                this.transformer;
5900 >            final BiFun<? super U, ? super U, ? extends U> reducer =
5901 >                this.reducer;
5902 >            if (transformer == null || reducer == null)
5903 >                throw new NullPointerException();
5904 >            for (int b; (b = preSplit()) > 0;)
5905 >                (rights = new MapReduceKeysTask<K,V,U>
5906 >                 (map, this, b, rights, transformer, reducer)).fork();
5907 >            U r = null, u;
5908 >            while (advance() != null) {
5909 >                if ((u = transformer.apply((K)nextKey)) != null)
5910 >                    r = (r == null) ? u : reducer.apply(r, u);
5911 >            }
5912 >            result = r;
5913 >            CountedCompleter<?> c;
5914 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5915 >                MapReduceKeysTask<K,V,U>
5916 >                    t = (MapReduceKeysTask<K,V,U>)c,
5917 >                    s = t.rights;
5918 >                while (s != null) {
5919 >                    U tr, sr;
5920 >                    if ((sr = s.result) != null)
5921 >                        t.result = (((tr = t.result) == null) ? sr :
5922 >                                    reducer.apply(tr, sr));
5923 >                    s = t.rights = s.nextRight;
5924 >                }
5925 >            }
5926 >        }
5927 >    }
5928 >
5929 >    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5930 >        extends Traverser<K,V,U> {
5931 >        final Fun<? super V, ? extends U> transformer;
5932 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5933 >        U result;
5934 >        MapReduceValuesTask<K,V,U> rights, nextRight;
5935 >        MapReduceValuesTask
5936 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5937 >             MapReduceValuesTask<K,V,U> nextRight,
5938 >             Fun<? super V, ? extends U> transformer,
5939 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5940 >            super(m, p, b); this.nextRight = nextRight;
5941 >            this.transformer = transformer;
5942 >            this.reducer = reducer;
5943 >        }
5944 >        public final U getRawResult() { return result; }
5945 >        @SuppressWarnings("unchecked") public final void compute() {
5946 >            final Fun<? super V, ? extends U> transformer =
5947 >                this.transformer;
5948 >            final BiFun<? super U, ? super U, ? extends U> reducer =
5949 >                this.reducer;
5950 >            if (transformer == null || reducer == null)
5951 >                throw new NullPointerException();
5952 >            for (int b; (b = preSplit()) > 0;)
5953 >                (rights = new MapReduceValuesTask<K,V,U>
5954 >                 (map, this, b, rights, transformer, reducer)).fork();
5955 >            U r = null, u;
5956 >            Object v;
5957 >            while ((v = advance()) != null) {
5958 >                if ((u = transformer.apply((V)v)) != null)
5959 >                    r = (r == null) ? u : reducer.apply(r, u);
5960 >            }
5961 >            result = r;
5962 >            CountedCompleter<?> c;
5963 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
5964 >                MapReduceValuesTask<K,V,U>
5965 >                    t = (MapReduceValuesTask<K,V,U>)c,
5966 >                    s = t.rights;
5967 >                while (s != null) {
5968 >                    U tr, sr;
5969 >                    if ((sr = s.result) != null)
5970 >                        t.result = (((tr = t.result) == null) ? sr :
5971 >                                    reducer.apply(tr, sr));
5972 >                    s = t.rights = s.nextRight;
5973 >                }
5974 >            }
5975 >        }
5976 >    }
5977 >
5978 >    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5979 >        extends Traverser<K,V,U> {
5980 >        final Fun<Map.Entry<K,V>, ? extends U> transformer;
5981 >        final BiFun<? super U, ? super U, ? extends U> reducer;
5982 >        U result;
5983 >        MapReduceEntriesTask<K,V,U> rights, nextRight;
5984 >        MapReduceEntriesTask
5985 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5986 >             MapReduceEntriesTask<K,V,U> nextRight,
5987 >             Fun<Map.Entry<K,V>, ? extends U> transformer,
5988 >             BiFun<? super U, ? super U, ? extends U> reducer) {
5989 >            super(m, p, b); this.nextRight = nextRight;
5990 >            this.transformer = transformer;
5991 >            this.reducer = reducer;
5992 >        }
5993 >        public final U getRawResult() { return result; }
5994 >        @SuppressWarnings("unchecked") public final void compute() {
5995 >            final Fun<Map.Entry<K,V>, ? extends U> transformer =
5996 >                this.transformer;
5997 >            final BiFun<? super U, ? super U, ? extends U> reducer =
5998 >                this.reducer;
5999 >            if (transformer == null || reducer == null)
6000 >                throw new NullPointerException();
6001 >            for (int b; (b = preSplit()) > 0;)
6002 >                (rights = new MapReduceEntriesTask<K,V,U>
6003 >                 (map, this, b, rights, transformer, reducer)).fork();
6004 >            U r = null, u;
6005 >            Object v;
6006 >            while ((v = advance()) != null) {
6007 >                if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
6008 >                    r = (r == null) ? u : reducer.apply(r, u);
6009 >            }
6010 >            result = r;
6011 >            CountedCompleter<?> c;
6012 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6013 >                MapReduceEntriesTask<K,V,U>
6014 >                    t = (MapReduceEntriesTask<K,V,U>)c,
6015 >                    s = t.rights;
6016 >                while (s != null) {
6017 >                    U tr, sr;
6018 >                    if ((sr = s.result) != null)
6019 >                        t.result = (((tr = t.result) == null) ? sr :
6020 >                                    reducer.apply(tr, sr));
6021 >                    s = t.rights = s.nextRight;
6022 >                }
6023 >            }
6024 >        }
6025 >    }
6026 >
6027 >    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
6028 >        extends Traverser<K,V,U> {
6029 >        final BiFun<? super K, ? super V, ? extends U> transformer;
6030 >        final BiFun<? super U, ? super U, ? extends U> reducer;
6031 >        U result;
6032 >        MapReduceMappingsTask<K,V,U> rights, nextRight;
6033 >        MapReduceMappingsTask
6034 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6035 >             MapReduceMappingsTask<K,V,U> nextRight,
6036 >             BiFun<? super K, ? super V, ? extends U> transformer,
6037 >             BiFun<? super U, ? super U, ? extends U> reducer) {
6038 >            super(m, p, b); this.nextRight = nextRight;
6039 >            this.transformer = transformer;
6040 >            this.reducer = reducer;
6041 >        }
6042 >        public final U getRawResult() { return result; }
6043 >        @SuppressWarnings("unchecked") public final void compute() {
6044 >            final BiFun<? super K, ? super V, ? extends U> transformer =
6045 >                this.transformer;
6046 >            final BiFun<? super U, ? super U, ? extends U> reducer =
6047 >                this.reducer;
6048 >            if (transformer == null || reducer == null)
6049 >                throw new NullPointerException();
6050 >            for (int b; (b = preSplit()) > 0;)
6051 >                (rights = new MapReduceMappingsTask<K,V,U>
6052 >                 (map, this, b, rights, transformer, reducer)).fork();
6053 >            U r = null, u;
6054 >            Object v;
6055 >            while ((v = advance()) != null) {
6056 >                if ((u = transformer.apply((K)nextKey, (V)v)) != null)
6057 >                    r = (r == null) ? u : reducer.apply(r, u);
6058 >            }
6059 >            result = r;
6060 >            CountedCompleter<?> c;
6061 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6062 >                MapReduceMappingsTask<K,V,U>
6063 >                    t = (MapReduceMappingsTask<K,V,U>)c,
6064 >                    s = t.rights;
6065 >                while (s != null) {
6066 >                    U tr, sr;
6067 >                    if ((sr = s.result) != null)
6068 >                        t.result = (((tr = t.result) == null) ? sr :
6069 >                                    reducer.apply(tr, sr));
6070 >                    s = t.rights = s.nextRight;
6071 >                }
6072 >            }
6073 >        }
6074 >    }
6075 >
6076 >    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
6077 >        extends Traverser<K,V,Double> {
6078 >        final ObjectToDouble<? super K> transformer;
6079 >        final DoubleByDoubleToDouble reducer;
6080 >        final double basis;
6081 >        double result;
6082 >        MapReduceKeysToDoubleTask<K,V> rights, nextRight;
6083 >        MapReduceKeysToDoubleTask
6084 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6085 >             MapReduceKeysToDoubleTask<K,V> nextRight,
6086 >             ObjectToDouble<? super K> transformer,
6087 >             double basis,
6088 >             DoubleByDoubleToDouble reducer) {
6089 >            super(m, p, b); this.nextRight = nextRight;
6090 >            this.transformer = transformer;
6091 >            this.basis = basis; this.reducer = reducer;
6092 >        }
6093 >        public final Double getRawResult() { return result; }
6094 >        @SuppressWarnings("unchecked") public final void compute() {
6095 >            final ObjectToDouble<? super K> transformer =
6096 >                this.transformer;
6097 >            final DoubleByDoubleToDouble reducer = this.reducer;
6098 >            if (transformer == null || reducer == null)
6099 >                throw new NullPointerException();
6100 >            double r = this.basis;
6101 >            for (int b; (b = preSplit()) > 0;)
6102 >                (rights = new MapReduceKeysToDoubleTask<K,V>
6103 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6104 >            while (advance() != null)
6105 >                r = reducer.apply(r, transformer.apply((K)nextKey));
6106 >            result = r;
6107 >            CountedCompleter<?> c;
6108 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6109 >                MapReduceKeysToDoubleTask<K,V>
6110 >                    t = (MapReduceKeysToDoubleTask<K,V>)c,
6111 >                    s = t.rights;
6112 >                while (s != null) {
6113 >                    t.result = reducer.apply(t.result, s.result);
6114 >                    s = t.rights = s.nextRight;
6115 >                }
6116 >            }
6117 >        }
6118 >    }
6119 >
6120 >    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
6121 >        extends Traverser<K,V,Double> {
6122 >        final ObjectToDouble<? super V> transformer;
6123 >        final DoubleByDoubleToDouble reducer;
6124 >        final double basis;
6125 >        double result;
6126 >        MapReduceValuesToDoubleTask<K,V> rights, nextRight;
6127 >        MapReduceValuesToDoubleTask
6128 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6129 >             MapReduceValuesToDoubleTask<K,V> nextRight,
6130 >             ObjectToDouble<? super V> transformer,
6131 >             double basis,
6132 >             DoubleByDoubleToDouble reducer) {
6133 >            super(m, p, b); this.nextRight = nextRight;
6134 >            this.transformer = transformer;
6135 >            this.basis = basis; this.reducer = reducer;
6136 >        }
6137 >        public final Double getRawResult() { return result; }
6138 >        @SuppressWarnings("unchecked") public final void compute() {
6139 >            final ObjectToDouble<? super V> transformer =
6140 >                this.transformer;
6141 >            final DoubleByDoubleToDouble reducer = this.reducer;
6142 >            if (transformer == null || reducer == null)
6143 >                throw new NullPointerException();
6144 >            double r = this.basis;
6145 >            for (int b; (b = preSplit()) > 0;)
6146 >                (rights = new MapReduceValuesToDoubleTask<K,V>
6147 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6148 >            Object v;
6149 >            while ((v = advance()) != null)
6150 >                r = reducer.apply(r, transformer.apply((V)v));
6151 >            result = r;
6152 >            CountedCompleter<?> c;
6153 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6154 >                MapReduceValuesToDoubleTask<K,V>
6155 >                    t = (MapReduceValuesToDoubleTask<K,V>)c,
6156 >                    s = t.rights;
6157 >                while (s != null) {
6158 >                    t.result = reducer.apply(t.result, s.result);
6159 >                    s = t.rights = s.nextRight;
6160 >                }
6161 >            }
6162 >        }
6163 >    }
6164 >
6165 >    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
6166 >        extends Traverser<K,V,Double> {
6167 >        final ObjectToDouble<Map.Entry<K,V>> transformer;
6168 >        final DoubleByDoubleToDouble reducer;
6169 >        final double basis;
6170 >        double result;
6171 >        MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
6172 >        MapReduceEntriesToDoubleTask
6173 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6174 >             MapReduceEntriesToDoubleTask<K,V> nextRight,
6175 >             ObjectToDouble<Map.Entry<K,V>> transformer,
6176 >             double basis,
6177 >             DoubleByDoubleToDouble reducer) {
6178 >            super(m, p, b); this.nextRight = nextRight;
6179 >            this.transformer = transformer;
6180 >            this.basis = basis; this.reducer = reducer;
6181 >        }
6182 >        public final Double getRawResult() { return result; }
6183 >        @SuppressWarnings("unchecked") public final void compute() {
6184 >            final ObjectToDouble<Map.Entry<K,V>> transformer =
6185 >                this.transformer;
6186 >            final DoubleByDoubleToDouble reducer = this.reducer;
6187 >            if (transformer == null || reducer == null)
6188 >                throw new NullPointerException();
6189 >            double r = this.basis;
6190 >            for (int b; (b = preSplit()) > 0;)
6191 >                (rights = new MapReduceEntriesToDoubleTask<K,V>
6192 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6193 >            Object v;
6194 >            while ((v = advance()) != null)
6195 >                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6196 >            result = r;
6197 >            CountedCompleter<?> c;
6198 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6199 >                MapReduceEntriesToDoubleTask<K,V>
6200 >                    t = (MapReduceEntriesToDoubleTask<K,V>)c,
6201 >                    s = t.rights;
6202 >                while (s != null) {
6203 >                    t.result = reducer.apply(t.result, s.result);
6204 >                    s = t.rights = s.nextRight;
6205 >                }
6206 >            }
6207 >        }
6208 >    }
6209 >
6210 >    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
6211 >        extends Traverser<K,V,Double> {
6212 >        final ObjectByObjectToDouble<? super K, ? super V> transformer;
6213 >        final DoubleByDoubleToDouble reducer;
6214 >        final double basis;
6215 >        double result;
6216 >        MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
6217 >        MapReduceMappingsToDoubleTask
6218 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6219 >             MapReduceMappingsToDoubleTask<K,V> nextRight,
6220 >             ObjectByObjectToDouble<? super K, ? super V> transformer,
6221 >             double basis,
6222 >             DoubleByDoubleToDouble reducer) {
6223 >            super(m, p, b); this.nextRight = nextRight;
6224 >            this.transformer = transformer;
6225 >            this.basis = basis; this.reducer = reducer;
6226 >        }
6227 >        public final Double getRawResult() { return result; }
6228 >        @SuppressWarnings("unchecked") public final void compute() {
6229 >            final ObjectByObjectToDouble<? super K, ? super V> transformer =
6230 >                this.transformer;
6231 >            final DoubleByDoubleToDouble reducer = this.reducer;
6232 >            if (transformer == null || reducer == null)
6233 >                throw new NullPointerException();
6234 >            double r = this.basis;
6235 >            for (int b; (b = preSplit()) > 0;)
6236 >                (rights = new MapReduceMappingsToDoubleTask<K,V>
6237 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6238 >            Object v;
6239 >            while ((v = advance()) != null)
6240 >                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6241 >            result = r;
6242 >            CountedCompleter<?> c;
6243 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6244 >                MapReduceMappingsToDoubleTask<K,V>
6245 >                    t = (MapReduceMappingsToDoubleTask<K,V>)c,
6246 >                    s = t.rights;
6247 >                while (s != null) {
6248 >                    t.result = reducer.apply(t.result, s.result);
6249 >                    s = t.rights = s.nextRight;
6250 >                }
6251 >            }
6252 >        }
6253 >    }
6254 >
6255 >    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
6256 >        extends Traverser<K,V,Long> {
6257 >        final ObjectToLong<? super K> transformer;
6258 >        final LongByLongToLong reducer;
6259 >        final long basis;
6260 >        long result;
6261 >        MapReduceKeysToLongTask<K,V> rights, nextRight;
6262 >        MapReduceKeysToLongTask
6263 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6264 >             MapReduceKeysToLongTask<K,V> nextRight,
6265 >             ObjectToLong<? super K> transformer,
6266 >             long basis,
6267 >             LongByLongToLong reducer) {
6268 >            super(m, p, b); this.nextRight = nextRight;
6269 >            this.transformer = transformer;
6270 >            this.basis = basis; this.reducer = reducer;
6271 >        }
6272 >        public final Long getRawResult() { return result; }
6273 >        @SuppressWarnings("unchecked") public final void compute() {
6274 >            final ObjectToLong<? super K> transformer =
6275 >                this.transformer;
6276 >            final LongByLongToLong reducer = this.reducer;
6277 >            if (transformer == null || reducer == null)
6278 >                throw new NullPointerException();
6279 >            long r = this.basis;
6280 >            for (int b; (b = preSplit()) > 0;)
6281 >                (rights = new MapReduceKeysToLongTask<K,V>
6282 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6283 >            while (advance() != null)
6284 >                r = reducer.apply(r, transformer.apply((K)nextKey));
6285 >            result = r;
6286 >            CountedCompleter<?> c;
6287 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6288 >                MapReduceKeysToLongTask<K,V>
6289 >                    t = (MapReduceKeysToLongTask<K,V>)c,
6290 >                    s = t.rights;
6291 >                while (s != null) {
6292 >                    t.result = reducer.apply(t.result, s.result);
6293 >                    s = t.rights = s.nextRight;
6294 >                }
6295 >            }
6296 >        }
6297 >    }
6298 >
6299 >    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
6300 >        extends Traverser<K,V,Long> {
6301 >        final ObjectToLong<? super V> transformer;
6302 >        final LongByLongToLong reducer;
6303 >        final long basis;
6304 >        long result;
6305 >        MapReduceValuesToLongTask<K,V> rights, nextRight;
6306 >        MapReduceValuesToLongTask
6307 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6308 >             MapReduceValuesToLongTask<K,V> nextRight,
6309 >             ObjectToLong<? super V> transformer,
6310 >             long basis,
6311 >             LongByLongToLong reducer) {
6312 >            super(m, p, b); this.nextRight = nextRight;
6313 >            this.transformer = transformer;
6314 >            this.basis = basis; this.reducer = reducer;
6315 >        }
6316 >        public final Long getRawResult() { return result; }
6317 >        @SuppressWarnings("unchecked") public final void compute() {
6318 >            final ObjectToLong<? super V> transformer =
6319 >                this.transformer;
6320 >            final LongByLongToLong reducer = this.reducer;
6321 >            if (transformer == null || reducer == null)
6322 >                throw new NullPointerException();
6323 >            long r = this.basis;
6324 >            for (int b; (b = preSplit()) > 0;)
6325 >                (rights = new MapReduceValuesToLongTask<K,V>
6326 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6327 >            Object v;
6328 >            while ((v = advance()) != null)
6329 >                r = reducer.apply(r, transformer.apply((V)v));
6330 >            result = r;
6331 >            CountedCompleter<?> c;
6332 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6333 >                MapReduceValuesToLongTask<K,V>
6334 >                    t = (MapReduceValuesToLongTask<K,V>)c,
6335 >                    s = t.rights;
6336 >                while (s != null) {
6337 >                    t.result = reducer.apply(t.result, s.result);
6338 >                    s = t.rights = s.nextRight;
6339 >                }
6340 >            }
6341 >        }
6342 >    }
6343 >
6344 >    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
6345 >        extends Traverser<K,V,Long> {
6346 >        final ObjectToLong<Map.Entry<K,V>> transformer;
6347 >        final LongByLongToLong reducer;
6348 >        final long basis;
6349 >        long result;
6350 >        MapReduceEntriesToLongTask<K,V> rights, nextRight;
6351 >        MapReduceEntriesToLongTask
6352 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6353 >             MapReduceEntriesToLongTask<K,V> nextRight,
6354 >             ObjectToLong<Map.Entry<K,V>> transformer,
6355 >             long basis,
6356 >             LongByLongToLong reducer) {
6357 >            super(m, p, b); this.nextRight = nextRight;
6358 >            this.transformer = transformer;
6359 >            this.basis = basis; this.reducer = reducer;
6360 >        }
6361 >        public final Long getRawResult() { return result; }
6362 >        @SuppressWarnings("unchecked") public final void compute() {
6363 >            final ObjectToLong<Map.Entry<K,V>> transformer =
6364 >                this.transformer;
6365 >            final LongByLongToLong reducer = this.reducer;
6366 >            if (transformer == null || reducer == null)
6367 >                throw new NullPointerException();
6368 >            long r = this.basis;
6369 >            for (int b; (b = preSplit()) > 0;)
6370 >                (rights = new MapReduceEntriesToLongTask<K,V>
6371 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6372 >            Object v;
6373 >            while ((v = advance()) != null)
6374 >                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6375 >            result = r;
6376 >            CountedCompleter<?> c;
6377 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6378 >                MapReduceEntriesToLongTask<K,V>
6379 >                    t = (MapReduceEntriesToLongTask<K,V>)c,
6380 >                    s = t.rights;
6381 >                while (s != null) {
6382 >                    t.result = reducer.apply(t.result, s.result);
6383 >                    s = t.rights = s.nextRight;
6384 >                }
6385 >            }
6386 >        }
6387 >    }
6388 >
6389 >    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
6390 >        extends Traverser<K,V,Long> {
6391 >        final ObjectByObjectToLong<? super K, ? super V> transformer;
6392 >        final LongByLongToLong reducer;
6393 >        final long basis;
6394 >        long result;
6395 >        MapReduceMappingsToLongTask<K,V> rights, nextRight;
6396 >        MapReduceMappingsToLongTask
6397 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6398 >             MapReduceMappingsToLongTask<K,V> nextRight,
6399 >             ObjectByObjectToLong<? super K, ? super V> transformer,
6400 >             long basis,
6401 >             LongByLongToLong reducer) {
6402 >            super(m, p, b); this.nextRight = nextRight;
6403 >            this.transformer = transformer;
6404 >            this.basis = basis; this.reducer = reducer;
6405 >        }
6406 >        public final Long getRawResult() { return result; }
6407 >        @SuppressWarnings("unchecked") public final void compute() {
6408 >            final ObjectByObjectToLong<? super K, ? super V> transformer =
6409 >                this.transformer;
6410 >            final LongByLongToLong reducer = this.reducer;
6411 >            if (transformer == null || reducer == null)
6412 >                throw new NullPointerException();
6413 >            long r = this.basis;
6414 >            for (int b; (b = preSplit()) > 0;)
6415 >                (rights = new MapReduceMappingsToLongTask<K,V>
6416 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6417 >            Object v;
6418 >            while ((v = advance()) != null)
6419 >                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6420 >            result = r;
6421 >            CountedCompleter<?> c;
6422 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6423 >                MapReduceMappingsToLongTask<K,V>
6424 >                    t = (MapReduceMappingsToLongTask<K,V>)c,
6425 >                    s = t.rights;
6426 >                while (s != null) {
6427 >                    t.result = reducer.apply(t.result, s.result);
6428 >                    s = t.rights = s.nextRight;
6429 >                }
6430 >            }
6431 >        }
6432 >    }
6433 >
6434 >    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
6435 >        extends Traverser<K,V,Integer> {
6436 >        final ObjectToInt<? super K> transformer;
6437 >        final IntByIntToInt reducer;
6438 >        final int basis;
6439 >        int result;
6440 >        MapReduceKeysToIntTask<K,V> rights, nextRight;
6441 >        MapReduceKeysToIntTask
6442 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6443 >             MapReduceKeysToIntTask<K,V> nextRight,
6444 >             ObjectToInt<? super K> transformer,
6445 >             int basis,
6446 >             IntByIntToInt reducer) {
6447 >            super(m, p, b); this.nextRight = nextRight;
6448 >            this.transformer = transformer;
6449 >            this.basis = basis; this.reducer = reducer;
6450 >        }
6451 >        public final Integer getRawResult() { return result; }
6452 >        @SuppressWarnings("unchecked") public final void compute() {
6453 >            final ObjectToInt<? super K> transformer =
6454 >                this.transformer;
6455 >            final IntByIntToInt reducer = this.reducer;
6456 >            if (transformer == null || reducer == null)
6457 >                throw new NullPointerException();
6458 >            int r = this.basis;
6459 >            for (int b; (b = preSplit()) > 0;)
6460 >                (rights = new MapReduceKeysToIntTask<K,V>
6461 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6462 >            while (advance() != null)
6463 >                r = reducer.apply(r, transformer.apply((K)nextKey));
6464 >            result = r;
6465 >            CountedCompleter<?> c;
6466 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6467 >                MapReduceKeysToIntTask<K,V>
6468 >                    t = (MapReduceKeysToIntTask<K,V>)c,
6469 >                    s = t.rights;
6470 >                while (s != null) {
6471 >                    t.result = reducer.apply(t.result, s.result);
6472 >                    s = t.rights = s.nextRight;
6473 >                }
6474 >            }
6475 >        }
6476 >    }
6477 >
6478 >    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
6479 >        extends Traverser<K,V,Integer> {
6480 >        final ObjectToInt<? super V> transformer;
6481 >        final IntByIntToInt reducer;
6482 >        final int basis;
6483 >        int result;
6484 >        MapReduceValuesToIntTask<K,V> rights, nextRight;
6485 >        MapReduceValuesToIntTask
6486 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6487 >             MapReduceValuesToIntTask<K,V> nextRight,
6488 >             ObjectToInt<? super V> transformer,
6489 >             int basis,
6490 >             IntByIntToInt reducer) {
6491 >            super(m, p, b); this.nextRight = nextRight;
6492 >            this.transformer = transformer;
6493 >            this.basis = basis; this.reducer = reducer;
6494 >        }
6495 >        public final Integer getRawResult() { return result; }
6496 >        @SuppressWarnings("unchecked") public final void compute() {
6497 >            final ObjectToInt<? super V> transformer =
6498 >                this.transformer;
6499 >            final IntByIntToInt reducer = this.reducer;
6500 >            if (transformer == null || reducer == null)
6501 >                throw new NullPointerException();
6502 >            int r = this.basis;
6503 >            for (int b; (b = preSplit()) > 0;)
6504 >                (rights = new MapReduceValuesToIntTask<K,V>
6505 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6506 >            Object v;
6507 >            while ((v = advance()) != null)
6508 >                r = reducer.apply(r, transformer.apply((V)v));
6509 >            result = r;
6510 >            CountedCompleter<?> c;
6511 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6512 >                MapReduceValuesToIntTask<K,V>
6513 >                    t = (MapReduceValuesToIntTask<K,V>)c,
6514 >                    s = t.rights;
6515 >                while (s != null) {
6516 >                    t.result = reducer.apply(t.result, s.result);
6517 >                    s = t.rights = s.nextRight;
6518 >                }
6519 >            }
6520 >        }
6521 >    }
6522 >
6523 >    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
6524 >        extends Traverser<K,V,Integer> {
6525 >        final ObjectToInt<Map.Entry<K,V>> transformer;
6526 >        final IntByIntToInt reducer;
6527 >        final int basis;
6528 >        int result;
6529 >        MapReduceEntriesToIntTask<K,V> rights, nextRight;
6530 >        MapReduceEntriesToIntTask
6531 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6532 >             MapReduceEntriesToIntTask<K,V> nextRight,
6533 >             ObjectToInt<Map.Entry<K,V>> transformer,
6534 >             int basis,
6535 >             IntByIntToInt reducer) {
6536 >            super(m, p, b); this.nextRight = nextRight;
6537 >            this.transformer = transformer;
6538 >            this.basis = basis; this.reducer = reducer;
6539 >        }
6540 >        public final Integer getRawResult() { return result; }
6541 >        @SuppressWarnings("unchecked") public final void compute() {
6542 >            final ObjectToInt<Map.Entry<K,V>> transformer =
6543 >                this.transformer;
6544 >            final IntByIntToInt reducer = this.reducer;
6545 >            if (transformer == null || reducer == null)
6546 >                throw new NullPointerException();
6547 >            int r = this.basis;
6548 >            for (int b; (b = preSplit()) > 0;)
6549 >                (rights = new MapReduceEntriesToIntTask<K,V>
6550 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6551 >            Object v;
6552 >            while ((v = advance()) != null)
6553 >                r = reducer.apply(r, transformer.apply(entryFor((K)nextKey, (V)v)));
6554 >            result = r;
6555 >            CountedCompleter<?> c;
6556 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6557 >                MapReduceEntriesToIntTask<K,V>
6558 >                    t = (MapReduceEntriesToIntTask<K,V>)c,
6559 >                    s = t.rights;
6560 >                while (s != null) {
6561 >                    t.result = reducer.apply(t.result, s.result);
6562 >                    s = t.rights = s.nextRight;
6563 >                }
6564 >            }
6565 >        }
6566 >    }
6567 >
6568 >    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
6569 >        extends Traverser<K,V,Integer> {
6570 >        final ObjectByObjectToInt<? super K, ? super V> transformer;
6571 >        final IntByIntToInt reducer;
6572 >        final int basis;
6573 >        int result;
6574 >        MapReduceMappingsToIntTask<K,V> rights, nextRight;
6575 >        MapReduceMappingsToIntTask
6576 >            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
6577 >             MapReduceMappingsToIntTask<K,V> nextRight,
6578 >             ObjectByObjectToInt<? super K, ? super V> transformer,
6579 >             int basis,
6580 >             IntByIntToInt reducer) {
6581 >            super(m, p, b); this.nextRight = nextRight;
6582 >            this.transformer = transformer;
6583 >            this.basis = basis; this.reducer = reducer;
6584 >        }
6585 >        public final Integer getRawResult() { return result; }
6586 >        @SuppressWarnings("unchecked") public final void compute() {
6587 >            final ObjectByObjectToInt<? super K, ? super V> transformer =
6588 >                this.transformer;
6589 >            final IntByIntToInt reducer = this.reducer;
6590 >            if (transformer == null || reducer == null)
6591 >                throw new NullPointerException();
6592 >            int r = this.basis;
6593 >            for (int b; (b = preSplit()) > 0;)
6594 >                (rights = new MapReduceMappingsToIntTask<K,V>
6595 >                 (map, this, b, rights, transformer, r, reducer)).fork();
6596 >            Object v;
6597 >            while ((v = advance()) != null)
6598 >                r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
6599 >            result = r;
6600 >            CountedCompleter<?> c;
6601 >            for (c = firstComplete(); c != null; c = c.nextComplete()) {
6602 >                MapReduceMappingsToIntTask<K,V>
6603 >                    t = (MapReduceMappingsToIntTask<K,V>)c,
6604 >                    s = t.rights;
6605 >                while (s != null) {
6606 >                    t.result = reducer.apply(t.result, s.result);
6607 >                    s = t.rights = s.nextRight;
6608                  }
6609              }
6610          }
# Line 2470 | Line 6664 | public class ConcurrentHashMapV8<K, V>
6664              }
6665          }
6666      }
2473
6667   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines