ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
(Generate patch)

Comparing jsr166/src/jsr166e/ConcurrentHashMapV8.java (file contents):
Revision 1.82 by dl, Thu Dec 13 20:34:00 2012 UTC vs.
Revision 1.112 by dl, Sat Jul 20 16:50:04 2013 UTC

# Line 6 | Line 6
6  
7   package jsr166e;
8  
9 < import java.util.Comparator;
9 > import jsr166e.ForkJoinPool;
10 >
11 > import java.io.ObjectStreamField;
12 > import java.io.Serializable;
13 > import java.lang.reflect.ParameterizedType;
14 > import java.lang.reflect.Type;
15 > import java.util.AbstractMap;
16   import java.util.Arrays;
11 import java.util.Map;
12 import java.util.Set;
17   import java.util.Collection;
18 < import java.util.AbstractMap;
19 < import java.util.AbstractSet;
20 < import java.util.AbstractCollection;
17 < import java.util.Hashtable;
18 > import java.util.Comparator;
19 > import java.util.ConcurrentModificationException;
20 > import java.util.Enumeration;
21   import java.util.HashMap;
22 + import java.util.Hashtable;
23   import java.util.Iterator;
24 < import java.util.Enumeration;
21 < import java.util.ConcurrentModificationException;
24 > import java.util.Map;
25   import java.util.NoSuchElementException;
26 + import java.util.Set;
27   import java.util.concurrent.ConcurrentMap;
24 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 import java.util.concurrent.atomic.AtomicInteger;
28   import java.util.concurrent.atomic.AtomicReference;
29 < import java.io.Serializable;
29 > import java.util.concurrent.atomic.AtomicInteger;
30 > import java.util.concurrent.locks.LockSupport;
31 > import java.util.concurrent.locks.ReentrantLock;
32  
33   /**
34   * A hash table supporting full concurrency of retrievals and
# Line 78 | Line 82 | import java.io.Serializable;
82   * expected {@code concurrencyLevel} as an additional hint for
83   * internal sizing.  Note that using many keys with exactly the same
84   * {@code hashCode()} is a sure way to slow down performance of any
85 < * hash table.
85 > * hash table. To ameliorate impact, when keys are {@link Comparable},
86 > * this class may use comparison order among keys to help break ties.
87   *
88   * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89   * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
# Line 86 | Line 91 | import java.io.Serializable;
91   * mapped values are (perhaps transiently) not used or all take the
92   * same mapping value.
93   *
89 * <p>A ConcurrentHashMapV8 can be used as scalable frequency map (a
90 * form of histogram or multiset) by using {@link LongAdder} values
91 * and initializing via {@link #computeIfAbsent}. For example, to add
92 * a count to a {@code ConcurrentHashMapV8<String,LongAdder> freqs}, you
93 * can use {@code freqs.computeIfAbsent(k -> new
94 * LongAdder()).increment();}
95 *
94   * <p>This class and its views and iterators implement all of the
95   * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96   * interfaces.
# Line 100 | Line 98 | import java.io.Serializable;
98   * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99   * does <em>not</em> allow {@code null} to be used as a key or value.
100   *
101 < * <p>ConcurrentHashMapV8s support parallel operations using the {@link
102 < * ForkJoinPool#commonPool}. (Tasks that may be used in other contexts
103 < * are available in class {@link ForkJoinTasks}). These operations are
104 < * designed to be safely, and often sensibly, applied even with maps
105 < * that are being concurrently updated by other threads; for example,
106 < * when computing a snapshot summary of the values in a shared
107 < * registry.  There are three kinds of operation, each with four
108 < * forms, accepting functions with Keys, Values, Entries, and (Key,
109 < * Value) arguments and/or return values. (The first three forms are
110 < * also available via the {@link #keySet()}, {@link #values()} and
111 < * {@link #entrySet()} views). Because the elements of a
112 < * ConcurrentHashMapV8 are not ordered in any particular way, and may be
113 < * processed in different orders in different parallel executions, the
114 < * correctness of supplied functions should not depend on any
115 < * ordering, or on any other objects or values that may transiently
118 < * change while computation is in progress; and except for forEach
119 < * actions, should ideally be side-effect-free.
101 > * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 > * operations that are designed
103 > * to be safely, and often sensibly, applied even with maps that are
104 > * being concurrently updated by other threads; for example, when
105 > * computing a snapshot summary of the values in a shared registry.
106 > * There are three kinds of operation, each with four forms, accepting
107 > * functions with Keys, Values, Entries, and (Key, Value) arguments
108 > * and/or return values. Because the elements of a ConcurrentHashMapV8
109 > * are not ordered in any particular way, and may be processed in
110 > * different orders in different parallel executions, the correctness
111 > * of supplied functions should not depend on any ordering, or on any
112 > * other objects or values that may transiently change while
113 > * computation is in progress; and except for forEach actions, should
114 > * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 > * objects do not support method {@code setValue}.
116   *
117   * <ul>
118   * <li> forEach: Perform a given action on each element.
# Line 143 | Line 139 | import java.io.Serializable;
139   * <li> Reductions to scalar doubles, longs, and ints, using a
140   * given basis value.</li>
141   *
146 * </li>
142   * </ul>
143 + * </li>
144   * </ul>
145   *
146 + * <p>These bulk operations accept a {@code parallelismThreshold}
147 + * argument. Methods proceed sequentially if the current map size is
148 + * estimated to be less than the given threshold. Using a value of
149 + * {@code Long.MAX_VALUE} suppresses all parallelism.  Using a value
150 + * of {@code 1} results in maximal parallelism by partitioning into
151 + * enough subtasks to fully utilize the {@link
152 + * ForkJoinPool#commonPool()} that is used for all parallel
153 + * computations. Normally, you would initially choose one of these
154 + * extreme values, and then measure performance of using in-between
155 + * values that trade off overhead versus throughput.
156 + *
157   * <p>The concurrency properties of bulk operations follow
158   * from those of ConcurrentHashMapV8: Any non-null result returned
159   * from {@code get(key)} and related access methods bears a
# Line 189 | Line 196 | import java.io.Serializable;
196   * exceptions, or would have done so if the first exception had
197   * not occurred.
198   *
199 < * <p>Parallel speedups for bulk operations compared to sequential
200 < * processing are common but not guaranteed.  Operations involving
201 < * brief functions on small maps may execute more slowly than
202 < * sequential loops if the underlying work to parallelize the
203 < * computation is more expensive than the computation itself.
204 < * Similarly, parallelization may not lead to much actual parallelism
205 < * if all processors are busy performing unrelated tasks.
199 > * <p>Speedups for parallel compared to sequential forms are common
200 > * but not guaranteed.  Parallel operations involving brief functions
201 > * on small maps may execute more slowly than sequential forms if the
202 > * underlying work to parallelize the computation is more expensive
203 > * than the computation itself.  Similarly, parallelization may not
204 > * lead to much actual parallelism if all processors are busy
205 > * performing unrelated tasks.
206   *
207   * <p>All arguments to all task methods must be non-null.
208   *
# Line 212 | Line 219 | import java.io.Serializable;
219   * @param <K> the type of keys maintained by this map
220   * @param <V> the type of mapped values
221   */
222 < public class ConcurrentHashMapV8<K, V>
223 <    implements ConcurrentMap<K, V>, Serializable {
222 > public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 >    implements ConcurrentMap<K,V>, Serializable {
224      private static final long serialVersionUID = 7249069246763182397L;
225  
226      /**
227 <     * A partitionable iterator. A Spliterator can be traversed
228 <     * directly, but can also be partitioned (before traversal) by
229 <     * creating another Spliterator that covers a non-overlapping
223 <     * portion of the elements, and so may be amenable to parallel
224 <     * execution.
225 <     *
226 <     * <p>This interface exports a subset of expected JDK8
227 <     * functionality.
228 <     *
229 <     * <p>Sample usage: Here is one (of the several) ways to compute
230 <     * the sum of the values held in a map using the ForkJoin
231 <     * framework. As illustrated here, Spliterators are well suited to
232 <     * designs in which a task repeatedly splits off half its work
233 <     * into forked subtasks until small enough to process directly,
234 <     * and then joins these subtasks. Variants of this style can also
235 <     * be used in completion-based designs.
236 <     *
237 <     * <pre>
238 <     * {@code ConcurrentHashMapV8<String, Long> m = ...
239 <     * // split as if have 8 * parallelism, for load balance
240 <     * int n = m.size();
241 <     * int p = aForkJoinPool.getParallelism() * 8;
242 <     * int split = (n < p)? n : p;
243 <     * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
244 <     * // ...
245 <     * static class SumValues extends RecursiveTask<Long> {
246 <     *   final Spliterator<Long> s;
247 <     *   final int split;             // split while > 1
248 <     *   final SumValues nextJoin;    // records forked subtasks to join
249 <     *   SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
250 <     *     this.s = s; this.depth = depth; this.nextJoin = nextJoin;
251 <     *   }
252 <     *   public Long compute() {
253 <     *     long sum = 0;
254 <     *     SumValues subtasks = null; // fork subtasks
255 <     *     for (int s = split >>> 1; s > 0; s >>>= 1)
256 <     *       (subtasks = new SumValues(s.split(), s, subtasks)).fork();
257 <     *     while (s.hasNext())        // directly process remaining elements
258 <     *       sum += s.next();
259 <     *     for (SumValues t = subtasks; t != null; t = t.nextJoin)
260 <     *       sum += t.join();         // collect subtask results
261 <     *     return sum;
262 <     *   }
263 <     * }
264 <     * }</pre>
227 >     * An object for traversing and partitioning elements of a source.
228 >     * This interface provides a subset of the functionality of JDK8
229 >     * java.util.Spliterator.
230       */
231 <    public static interface Spliterator<T> extends Iterator<T> {
231 >    public static interface ConcurrentHashMapSpliterator<T> {
232          /**
233 <         * Returns a Spliterator covering approximately half of the
234 <         * elements, guaranteed not to overlap with those subsequently
235 <         * returned by this Spliterator.  After invoking this method,
236 <         * the current Spliterator will <em>not</em> produce any of
237 <         * the elements of the returned Spliterator, but the two
238 <         * Spliterators together will produce all of the elements that
239 <         * would have been produced by this Spliterator had this
240 <         * method not been called. The exact number of elements
241 <         * produced by the returned Spliterator is not guaranteed, and
277 <         * may be zero (i.e., with {@code hasNext()} reporting {@code
278 <         * false}) if this Spliterator cannot be further split.
279 <         *
280 <         * @return a Spliterator covering approximately half of the
281 <         * elements
282 <         * @throws IllegalStateException if this Spliterator has
283 <         * already commenced traversing elements
233 >         * If possible, returns a new spliterator covering
234 >         * approximately one half of the elements, which will not be
235 >         * covered by this spliterator. Returns null if cannot be
236 >         * split.
237 >         */
238 >        ConcurrentHashMapSpliterator<T> trySplit();
239 >        /**
240 >         * Returns an estimate of the number of elements covered by
241 >         * this Spliterator.
242           */
243 <        Spliterator<T> split();
243 >        long estimateSize();
244 >
245 >        /** Applies the action to each untraversed element */
246 >        void forEachRemaining(Action<? super T> action);
247 >        /** If an element remains, applies the action and returns true. */
248 >        boolean tryAdvance(Action<? super T> action);
249      }
250  
251 +    // Sams
252 +    /** Interface describing a void action of one argument */
253 +    public interface Action<A> { void apply(A a); }
254 +    /** Interface describing a void action of two arguments */
255 +    public interface BiAction<A,B> { void apply(A a, B b); }
256 +    /** Interface describing a function of one argument */
257 +    public interface Fun<A,T> { T apply(A a); }
258 +    /** Interface describing a function of two arguments */
259 +    public interface BiFun<A,B,T> { T apply(A a, B b); }
260 +    /** Interface describing a function mapping its argument to a double */
261 +    public interface ObjectToDouble<A> { double apply(A a); }
262 +    /** Interface describing a function mapping its argument to a long */
263 +    public interface ObjectToLong<A> { long apply(A a); }
264 +    /** Interface describing a function mapping its argument to an int */
265 +    public interface ObjectToInt<A> {int apply(A a); }
266 +    /** Interface describing a function mapping two arguments to a double */
267 +    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 +    /** Interface describing a function mapping two arguments to a long */
269 +    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 +    /** Interface describing a function mapping two arguments to an int */
271 +    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 +    /** Interface describing a function mapping two doubles to a double */
273 +    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 +    /** Interface describing a function mapping two longs to a long */
275 +    public interface LongByLongToLong { long apply(long a, long b); }
276 +    /** Interface describing a function mapping two ints to an int */
277 +    public interface IntByIntToInt { int apply(int a, int b); }
278 +
279      /*
280       * Overview:
281       *
# Line 295 | Line 286 | public class ConcurrentHashMapV8<K, V>
286       * the same or better than java.util.HashMap, and to support high
287       * initial insertion rates on an empty table by many threads.
288       *
289 <     * Each key-value mapping is held in a Node.  Because Node fields
290 <     * can contain special values, they are defined using plain Object
291 <     * types. Similarly in turn, all internal methods that use them
292 <     * work off Object types. And similarly, so do the internal
293 <     * methods of auxiliary iterator and view classes. This also
294 <     * allows many of the public methods to be factored into a smaller
295 <     * number of internal methods (although sadly not so for the five
296 <     * variants of put-related operations). The validation-based
297 <     * approach explained below leads to a lot of code sprawl because
298 <     * retry-control precludes factoring into smaller methods.
289 >     * This map usually acts as a binned (bucketed) hash table.  Each
290 >     * key-value mapping is held in a Node.  Most nodes are instances
291 >     * of the basic Node class with hash, key, value, and next
292 >     * fields. However, various subclasses exist: TreeNodes are
293 >     * arranged in balanced trees, not lists.  TreeBins hold the roots
294 >     * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 >     * of bins during resizing. ReservationNodes are used as
296 >     * placeholders while establishing values in computeIfAbsent and
297 >     * related methods.  The types TreeBin, ForwardingNode, and
298 >     * ReservationNode do not hold normal user keys, values, or
299 >     * hashes, and are readily distinguishable during search etc
300 >     * because they have negative hash fields and null key and value
301 >     * fields. (These special nodes are either uncommon or transient,
302 >     * so the impact of carrying around some unused fields is
303 >     * insignificant.)
304       *
305       * The table is lazily initialized to a power-of-two size upon the
306       * first insertion.  Each bin in the table normally contains a
# Line 312 | Line 308 | public class ConcurrentHashMapV8<K, V>
308       * Table accesses require volatile/atomic reads, writes, and
309       * CASes.  Because there is no other way to arrange this without
310       * adding further indirections, we use intrinsics
311 <     * (sun.misc.Unsafe) operations.  The lists of nodes within bins
316 <     * are always accurately traversable under volatile reads, so long
317 <     * as lookups check hash code and non-nullness of value before
318 <     * checking key equality.
311 >     * (sun.misc.Unsafe) operations.
312       *
313       * We use the top (sign) bit of Node hash fields for control
314       * purposes -- it is available anyway because of addressing
315 <     * constraints.  Nodes with negative hash fields are forwarding
316 <     * nodes to either TreeBins or resized tables.  The lower 31 bits
324 <     * of each normal Node's hash field contain a transformation of
325 <     * the key's hash code.
315 >     * constraints.  Nodes with negative hash fields are specially
316 >     * handled or ignored in map methods.
317       *
318       * Insertion (via put or its variants) of the first node in an
319       * empty bin is performed by just CASing it to the bin.  This is
# Line 339 | Line 330 | public class ConcurrentHashMapV8<K, V>
330       * validate that it is still the first node after locking it, and
331       * retry if not. Because new nodes are always appended to lists,
332       * once a node is first in a bin, it remains first until deleted
333 <     * or the bin becomes invalidated (upon resizing).  However,
343 <     * operations that only conditionally update may inspect nodes
344 <     * until the point of update. This is a converse of sorts to the
345 <     * lazy locking technique described by Herlihy & Shavit.
333 >     * or the bin becomes invalidated (upon resizing).
334       *
335       * The main disadvantage of per-bin locks is that other update
336       * operations on other nodes in a bin list protected by the same
# Line 375 | Line 363 | public class ConcurrentHashMapV8<K, V>
363       * sometimes deviate significantly from uniform randomness.  This
364       * includes the case when N > (1<<30), so some keys MUST collide.
365       * Similarly for dumb or hostile usages in which multiple keys are
366 <     * designed to have identical hash codes. Also, although we guard
367 <     * against the worst effects of this (see method spread), sets of
368 <     * hashes may differ only in bits that do not impact their bin
369 <     * index for a given power-of-two mask.  So we use a secondary
370 <     * strategy that applies when the number of nodes in a bin exceeds
371 <     * a threshold, and at least one of the keys implements
384 <     * Comparable.  These TreeBins use a balanced tree to hold nodes
385 <     * (a specialized form of red-black trees), bounding search time
386 <     * to O(log N).  Each search step in a TreeBin is around twice as
366 >     * designed to have identical hash codes or ones that differs only
367 >     * in masked-out high bits. So we use a secondary strategy that
368 >     * applies when the number of nodes in a bin exceeds a
369 >     * threshold. These TreeBins use a balanced tree to hold nodes (a
370 >     * specialized form of red-black trees), bounding search time to
371 >     * O(log N).  Each search step in a TreeBin is at least twice as
372       * slow as in a regular list, but given that N cannot exceed
373       * (1<<64) (before running out of addresses) this bounds search
374       * steps, lock hold times, etc, to reasonable constants (roughly
# Line 456 | Line 441 | public class ConcurrentHashMapV8<K, V>
441       * bin already holding two or more nodes. Under uniform hash
442       * distributions, the probability of this occurring at threshold
443       * is around 13%, meaning that only about 1 in 8 puts check
444 <     * threshold (and after resizing, many fewer do so). The bulk
445 <     * putAll operation further reduces contention by only committing
446 <     * count updates upon these size checks.
444 >     * threshold (and after resizing, many fewer do so).
445 >     *
446 >     * TreeBins use a special form of comparison for search and
447 >     * related operations (which is the main reason we cannot use
448 >     * existing collections such as TreeMaps). TreeBins contain
449 >     * Comparable elements, but may contain others, as well as
450 >     * elements that are Comparable but not necessarily Comparable for
451 >     * the same T, so we cannot invoke compareTo among them. To handle
452 >     * this, the tree is ordered primarily by hash value, then by
453 >     * Comparable.compareTo order if applicable.  On lookup at a node,
454 >     * if elements are not comparable or compare as 0 then both left
455 >     * and right children may need to be searched in the case of tied
456 >     * hash values. (This corresponds to the full list search that
457 >     * would be necessary if all elements were non-Comparable and had
458 >     * tied hashes.) On insertion, to keep a total ordering (or as
459 >     * close as is required here) across rebalancings, we compare
460 >     * classes and identityHashCodes as tie-breakers. The red-black
461 >     * balancing code is updated from pre-jdk-collections
462 >     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
463 >     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
464 >     * Algorithms" (CLR).
465 >     *
466 >     * TreeBins also require an additional locking mechanism.  While
467 >     * list traversal is always possible by readers even during
468 >     * updates, tree traversal is not, mainly because of tree-rotations
469 >     * that may change the root node and/or its linkages.  TreeBins
470 >     * include a simple read-write lock mechanism parasitic on the
471 >     * main bin-synchronization strategy: Structural adjustments
472 >     * associated with an insertion or removal are already bin-locked
473 >     * (and so cannot conflict with other writers) but must wait for
474 >     * ongoing readers to finish. Since there can be only one such
475 >     * waiter, we use a simple scheme using a single "waiter" field to
476 >     * block writers.  However, readers need never block.  If the root
477 >     * lock is held, they proceed along the slow traversal path (via
478 >     * next-pointers) until the lock becomes available or the list is
479 >     * exhausted, whichever comes first. These cases are not fast, but
480 >     * maximize aggregate expected throughput.
481       *
482       * Maintaining API and serialization compatibility with previous
483       * versions of this class introduces several oddities. Mainly: We
# Line 468 | Line 487 | public class ConcurrentHashMapV8<K, V>
487       * time that we can guarantee to honor it.) We also declare an
488       * unused "Segment" class that is instantiated in minimal form
489       * only when serializing.
490 +     *
491 +     * Also, solely for compatibility with previous versions of this
492 +     * class, it extends AbstractMap, even though all of its methods
493 +     * are overridden, so it is just useless baggage.
494 +     *
495 +     * This file is organized to make things a little easier to follow
496 +     * while reading than they might otherwise: First the main static
497 +     * declarations and utilities, then fields, then main public
498 +     * methods (with a few factorings of multiple public methods into
499 +     * internal ones), then sizing methods, trees, traversers, and
500 +     * bulk operations.
501       */
502  
503      /* ---------------- Constants -------------- */
# Line 510 | Line 540 | public class ConcurrentHashMapV8<K, V>
540  
541      /**
542       * The bin count threshold for using a tree rather than list for a
543 <     * bin.  The value reflects the approximate break-even point for
544 <     * using tree-based operations.
543 >     * bin.  Bins are converted to trees when adding an element to a
544 >     * bin with at least this many nodes. The value must be greater
545 >     * than 2, and should be at least 8 to mesh with assumptions in
546 >     * tree removal about conversion back to plain bins upon
547 >     * shrinkage.
548 >     */
549 >    static final int TREEIFY_THRESHOLD = 8;
550 >
551 >    /**
552 >     * The bin count threshold for untreeifying a (split) bin during a
553 >     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
554 >     * most 6 to mesh with shrinkage detection under removal.
555       */
556 <    private static final int TREE_THRESHOLD = 8;
556 >    static final int UNTREEIFY_THRESHOLD = 6;
557 >
558 >    /**
559 >     * The smallest table capacity for which bins may be treeified.
560 >     * (Otherwise the table is resized if too many nodes in a bin.)
561 >     * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
562 >     * conflicts between resizing and treeification thresholds.
563 >     */
564 >    static final int MIN_TREEIFY_CAPACITY = 64;
565  
566      /**
567       * Minimum number of rebinnings per transfer step. Ranges are
# Line 527 | Line 575 | public class ConcurrentHashMapV8<K, V>
575      /*
576       * Encodings for Node hash fields. See above for explanation.
577       */
578 <    static final int MOVED     = 0x80000000; // hash field for forwarding nodes
578 >    static final int MOVED     = -1; // hash for forwarding nodes
579 >    static final int TREEBIN   = -2; // hash for roots of trees
580 >    static final int RESERVED  = -3; // hash for transient reservations
581      static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
582  
583      /** Number of CPUS, to place bounds on some sizings */
584      static final int NCPU = Runtime.getRuntime().availableProcessors();
585  
586 <    /* ---------------- Counters -------------- */
586 >    /** For serialization compatibility. */
587 >    private static final ObjectStreamField[] serialPersistentFields = {
588 >        new ObjectStreamField("segments", Segment[].class),
589 >        new ObjectStreamField("segmentMask", Integer.TYPE),
590 >        new ObjectStreamField("segmentShift", Integer.TYPE)
591 >    };
592  
593 <    // Adapted from LongAdder and Striped64.
539 <    // See their internal docs for explanation.
593 >    /* ---------------- Nodes -------------- */
594  
595 <    // A padded cell for distributing counts
596 <    static final class CounterCell {
597 <        volatile long p0, p1, p2, p3, p4, p5, p6;
598 <        volatile long value;
599 <        volatile long q0, q1, q2, q3, q4, q5, q6;
600 <        CounterCell(long x) { value = x; }
595 >    /**
596 >     * Key-value entry.  This class is never exported out as a
597 >     * user-mutable Map.Entry (i.e., one supporting setValue; see
598 >     * MapEntry below), but can be used for read-only traversals used
599 >     * in bulk tasks.  Subclasses of Node with a negative hash field
600 >     * are special, and contain null keys and values (but are never
601 >     * exported).  Otherwise, keys and vals are never null.
602 >     */
603 >    static class Node<K,V> implements Map.Entry<K,V> {
604 >        final int hash;
605 >        final K key;
606 >        volatile V val;
607 >        volatile Node<K,V> next;
608 >
609 >        Node(int hash, K key, V val, Node<K,V> next) {
610 >            this.hash = hash;
611 >            this.key = key;
612 >            this.val = val;
613 >            this.next = next;
614 >        }
615 >
616 >        public final K getKey()       { return key; }
617 >        public final V getValue()     { return val; }
618 >        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
619 >        public final String toString(){ return key + "=" + val; }
620 >        public final V setValue(V value) {
621 >            throw new UnsupportedOperationException();
622 >        }
623 >
624 >        public final boolean equals(Object o) {
625 >            Object k, v, u; Map.Entry<?,?> e;
626 >            return ((o instanceof Map.Entry) &&
627 >                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 >                    (v = e.getValue()) != null &&
629 >                    (k == key || k.equals(key)) &&
630 >                    (v == (u = val) || v.equals(u)));
631 >        }
632 >
633 >        /**
634 >         * Virtualized support for map.get(); overridden in subclasses.
635 >         */
636 >        Node<K,V> find(int h, Object k) {
637 >            Node<K,V> e = this;
638 >            if (k != null) {
639 >                do {
640 >                    K ek;
641 >                    if (e.hash == h &&
642 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 >                        return e;
644 >                } while ((e = e.next) != null);
645 >            }
646 >            return null;
647 >        }
648      }
649  
650 +    /* ---------------- Static utilities -------------- */
651 +
652      /**
653 <     * Holder for the thread-local hash code determining which
654 <     * CounterCell to use. The code is initialized via the
655 <     * counterHashCodeGenerator, but may be moved upon collisions.
653 >     * Spreads (XORs) higher bits of hash to lower and also forces top
654 >     * bit to 0. Because the table uses power-of-two masking, sets of
655 >     * hashes that vary only in bits above the current mask will
656 >     * always collide. (Among known examples are sets of Float keys
657 >     * holding consecutive whole numbers in small tables.)  So we
658 >     * apply a transform that spreads the impact of higher bits
659 >     * downward. There is a tradeoff between speed, utility, and
660 >     * quality of bit-spreading. Because many common sets of hashes
661 >     * are already reasonably distributed (so don't benefit from
662 >     * spreading), and because we use trees to handle large sets of
663 >     * collisions in bins, we just XOR some shifted bits in the
664 >     * cheapest possible way to reduce systematic lossage, as well as
665 >     * to incorporate impact of the highest bits that would otherwise
666 >     * never be used in index calculations because of table bounds.
667       */
668 <    static final class CounterHashCode {
669 <        int code;
668 >    static final int spread(int h) {
669 >        return (h ^ (h >>> 16)) & HASH_BITS;
670      }
671  
672      /**
673 <     * Generates initial value for per-thread CounterHashCodes
673 >     * Returns a power of two table size for the given desired capacity.
674 >     * See Hackers Delight, sec 3.2
675       */
676 <    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
676 >    private static final int tableSizeFor(int c) {
677 >        int n = c - 1;
678 >        n |= n >>> 1;
679 >        n |= n >>> 2;
680 >        n |= n >>> 4;
681 >        n |= n >>> 8;
682 >        n |= n >>> 16;
683 >        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684 >    }
685  
686      /**
687 <     * Increment for counterHashCodeGenerator. See class ThreadLocal
688 <     * for explanation.
687 >     * Returns x's Class if it is of the form "class C implements
688 >     * Comparable<C>", else null.
689       */
690 <    static final int SEED_INCREMENT = 0x61c88647;
690 >    static Class<?> comparableClassFor(Object x) {
691 >        if (x instanceof Comparable) {
692 >            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 >            if ((c = x.getClass()) == String.class) // bypass checks
694 >                return c;
695 >            if ((ts = c.getGenericInterfaces()) != null) {
696 >                for (int i = 0; i < ts.length; ++i) {
697 >                    if (((t = ts[i]) instanceof ParameterizedType) &&
698 >                        ((p = (ParameterizedType)t).getRawType() ==
699 >                         Comparable.class) &&
700 >                        (as = p.getActualTypeArguments()) != null &&
701 >                        as.length == 1 && as[0] == c) // type arg is c
702 >                        return c;
703 >                }
704 >            }
705 >        }
706 >        return null;
707 >    }
708  
709      /**
710 <     * Per-thread counter hash codes. Shared across all instances
710 >     * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 >     * class), else 0.
712       */
713 <    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
714 <        new ThreadLocal<CounterHashCode>();
713 >    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 >    static int compareComparables(Class<?> kc, Object k, Object x) {
715 >        return (x == null || x.getClass() != kc ? 0 :
716 >                ((Comparable)k).compareTo(x));
717 >    }
718 >
719 >    /* ---------------- Table element access -------------- */
720 >
721 >    /*
722 >     * Volatile access methods are used for table elements as well as
723 >     * elements of in-progress next table while resizing.  All uses of
724 >     * the tab arguments must be null checked by callers.  All callers
725 >     * also paranoically precheck that tab's length is not zero (or an
726 >     * equivalent check), thus ensuring that any index argument taking
727 >     * the form of a hash value anded with (length - 1) is a valid
728 >     * index.  Note that, to be correct wrt arbitrary concurrency
729 >     * errors by users, these checks must operate on local variables,
730 >     * which accounts for some odd-looking inline assignments below.
731 >     * Note that calls to setTabAt always occur within locked regions,
732 >     * and so in principle require only release ordering, not need
733 >     * full volatile semantics, but are currently coded as volatile
734 >     * writes to be conservative.
735 >     */
736 >
737 >    @SuppressWarnings("unchecked")
738 >    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
739 >        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
740 >    }
741 >
742 >    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
743 >                                        Node<K,V> c, Node<K,V> v) {
744 >        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
745 >    }
746 >
747 >    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
748 >        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
749 >    }
750  
751      /* ---------------- Fields -------------- */
752  
# Line 578 | Line 754 | public class ConcurrentHashMapV8<K, V>
754       * The array of bins. Lazily initialized upon first insertion.
755       * Size is always a power of two. Accessed directly by iterators.
756       */
757 <    transient volatile Node[] table;
757 >    transient volatile Node<K,V>[] table;
758  
759      /**
760       * The next table to use; non-null only while resizing.
761       */
762 <    private transient volatile Node[] nextTable;
762 >    private transient volatile Node<K,V>[] nextTable;
763  
764      /**
765       * Base counter value, used mainly when there is no contention,
# Line 613 | Line 789 | public class ConcurrentHashMapV8<K, V>
789      private transient volatile int transferOrigin;
790  
791      /**
792 <     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
792 >     * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
793       */
794 <    private transient volatile int counterBusy;
794 >    private transient volatile int cellsBusy;
795  
796      /**
797       * Table of counter cells. When non-null, size is a power of 2.
# Line 627 | Line 803 | public class ConcurrentHashMapV8<K, V>
803      private transient ValuesView<K,V> values;
804      private transient EntrySetView<K,V> entrySet;
805  
630    /** For serialization compatibility. Null unless serialized; see below */
631    private Segment<K,V>[] segments;
806  
807 <    /* ---------------- Table element access -------------- */
807 >    /* ---------------- Public operations -------------- */
808  
809 <    /*
810 <     * Volatile access methods are used for table elements as well as
637 <     * elements of in-progress next table while resizing.  Uses are
638 <     * null checked by callers, and implicitly bounds-checked, relying
639 <     * on the invariants that tab arrays have non-zero size, and all
640 <     * indices are masked with (tab.length - 1) which is never
641 <     * negative and always less than length. Note that, to be correct
642 <     * wrt arbitrary concurrency errors by users, bounds checks must
643 <     * operate on local variables, which accounts for some odd-looking
644 <     * inline assignments below.
809 >    /**
810 >     * Creates a new, empty map with the default initial table size (16).
811       */
812 <
647 <    static final Node tabAt(Node[] tab, int i) { // used by Traverser
648 <        return (Node)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
812 >    public ConcurrentHashMapV8() {
813      }
814  
815 <    private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
816 <        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
815 >    /**
816 >     * Creates a new, empty map with an initial table size
817 >     * accommodating the specified number of elements without the need
818 >     * to dynamically resize.
819 >     *
820 >     * @param initialCapacity The implementation performs internal
821 >     * sizing to accommodate this many elements.
822 >     * @throws IllegalArgumentException if the initial capacity of
823 >     * elements is negative
824 >     */
825 >    public ConcurrentHashMapV8(int initialCapacity) {
826 >        if (initialCapacity < 0)
827 >            throw new IllegalArgumentException();
828 >        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
829 >                   MAXIMUM_CAPACITY :
830 >                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
831 >        this.sizeCtl = cap;
832      }
833  
834 <    private static final void setTabAt(Node[] tab, int i, Node v) {
835 <        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
834 >    /**
835 >     * Creates a new map with the same mappings as the given map.
836 >     *
837 >     * @param m the map
838 >     */
839 >    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
840 >        this.sizeCtl = DEFAULT_CAPACITY;
841 >        putAll(m);
842      }
843  
659    /* ---------------- Nodes -------------- */
660
844      /**
845 <     * Key-value entry. Note that this is never exported out as a
846 <     * user-visible Map.Entry (see MapEntry below). Nodes with a hash
847 <     * field of MOVED are special, and do not contain user keys or
848 <     * values.  Otherwise, keys are never null, and null val fields
849 <     * indicate that a node is in the process of being deleted or
850 <     * created. For purposes of read-only access, a key may be read
851 <     * before a val, but can only be used after checking val to be
852 <     * non-null.
845 >     * Creates a new, empty map with an initial table size based on
846 >     * the given number of elements ({@code initialCapacity}) and
847 >     * initial table density ({@code loadFactor}).
848 >     *
849 >     * @param initialCapacity the initial capacity. The implementation
850 >     * performs internal sizing to accommodate this many elements,
851 >     * given the specified load factor.
852 >     * @param loadFactor the load factor (table density) for
853 >     * establishing the initial table size
854 >     * @throws IllegalArgumentException if the initial capacity of
855 >     * elements is negative or the load factor is nonpositive
856 >     *
857 >     * @since 1.6
858       */
859 <    static class Node {
860 <        final int hash;
861 <        final Object key;
674 <        volatile Object val;
675 <        volatile Node next;
859 >    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
860 >        this(initialCapacity, loadFactor, 1);
861 >    }
862  
863 <        Node(int hash, Object key, Object val, Node next) {
864 <            this.hash = hash;
865 <            this.key = key;
866 <            this.val = val;
867 <            this.next = next;
868 <        }
863 >    /**
864 >     * Creates a new, empty map with an initial table size based on
865 >     * the given number of elements ({@code initialCapacity}), table
866 >     * density ({@code loadFactor}), and number of concurrently
867 >     * updating threads ({@code concurrencyLevel}).
868 >     *
869 >     * @param initialCapacity the initial capacity. The implementation
870 >     * performs internal sizing to accommodate this many elements,
871 >     * given the specified load factor.
872 >     * @param loadFactor the load factor (table density) for
873 >     * establishing the initial table size
874 >     * @param concurrencyLevel the estimated number of concurrently
875 >     * updating threads. The implementation may use this value as
876 >     * a sizing hint.
877 >     * @throws IllegalArgumentException if the initial capacity is
878 >     * negative or the load factor or concurrencyLevel are
879 >     * nonpositive
880 >     */
881 >    public ConcurrentHashMapV8(int initialCapacity,
882 >                             float loadFactor, int concurrencyLevel) {
883 >        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
884 >            throw new IllegalArgumentException();
885 >        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
886 >            initialCapacity = concurrencyLevel;   // as estimated threads
887 >        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
888 >        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
889 >            MAXIMUM_CAPACITY : tableSizeFor((int)size);
890 >        this.sizeCtl = cap;
891      }
892  
893 <    /* ---------------- TreeBins -------------- */
893 >    // Original (since JDK1.2) Map methods
894  
895      /**
896 <     * Nodes for use in TreeBins
896 >     * {@inheritDoc}
897       */
898 <    static final class TreeNode extends Node {
899 <        TreeNode parent;  // red-black tree links
900 <        TreeNode left;
901 <        TreeNode right;
902 <        TreeNode prev;    // needed to unlink next upon deletion
903 <        boolean red;
898 >    public int size() {
899 >        long n = sumCount();
900 >        return ((n < 0L) ? 0 :
901 >                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
902 >                (int)n);
903 >    }
904  
905 <        TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
906 <            super(hash, key, val, next);
907 <            this.parent = parent;
908 <        }
905 >    /**
906 >     * {@inheritDoc}
907 >     */
908 >    public boolean isEmpty() {
909 >        return sumCount() <= 0L; // ignore transient negative values
910      }
911  
912      /**
913 <     * A specialized form of red-black tree for use in bins
914 <     * whose size exceeds a threshold.
913 >     * Returns the value to which the specified key is mapped,
914 >     * or {@code null} if this map contains no mapping for the key.
915       *
916 <     * TreeBins use a special form of comparison for search and
917 <     * related operations (which is the main reason we cannot use
918 <     * existing collections such as TreeMaps). TreeBins contain
919 <     * Comparable elements, but may contain others, as well as
711 <     * elements that are Comparable but not necessarily Comparable<T>
712 <     * for the same T, so we cannot invoke compareTo among them. To
713 <     * handle this, the tree is ordered primarily by hash value, then
714 <     * by getClass().getName() order, and then by Comparator order
715 <     * among elements of the same class.  On lookup at a node, if
716 <     * elements are not comparable or compare as 0, both left and
717 <     * right children may need to be searched in the case of tied hash
718 <     * values. (This corresponds to the full list search that would be
719 <     * necessary if all elements were non-Comparable and had tied
720 <     * hashes.)  The red-black balancing code is updated from
721 <     * pre-jdk-collections
722 <     * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
723 <     * based in turn on Cormen, Leiserson, and Rivest "Introduction to
724 <     * Algorithms" (CLR).
916 >     * <p>More formally, if this map contains a mapping from a key
917 >     * {@code k} to a value {@code v} such that {@code key.equals(k)},
918 >     * then this method returns {@code v}; otherwise it returns
919 >     * {@code null}.  (There can be at most one such mapping.)
920       *
921 <     * TreeBins also maintain a separate locking discipline than
727 <     * regular bins. Because they are forwarded via special MOVED
728 <     * nodes at bin heads (which can never change once established),
729 <     * we cannot use those nodes as locks. Instead, TreeBin
730 <     * extends AbstractQueuedSynchronizer to support a simple form of
731 <     * read-write lock. For update operations and table validation,
732 <     * the exclusive form of lock behaves in the same way as bin-head
733 <     * locks. However, lookups use shared read-lock mechanics to allow
734 <     * multiple readers in the absence of writers.  Additionally,
735 <     * these lookups do not ever block: While the lock is not
736 <     * available, they proceed along the slow traversal path (via
737 <     * next-pointers) until the lock becomes available or the list is
738 <     * exhausted, whichever comes first. (These cases are not fast,
739 <     * but maximize aggregate expected throughput.)  The AQS mechanics
740 <     * for doing this are straightforward.  The lock state is held as
741 <     * AQS getState().  Read counts are negative; the write count (1)
742 <     * is positive.  There are no signalling preferences among readers
743 <     * and writers. Since we don't need to export full Lock API, we
744 <     * just override the minimal AQS methods and use them directly.
921 >     * @throws NullPointerException if the specified key is null
922       */
923 <    static final class TreeBin extends AbstractQueuedSynchronizer {
924 <        private static final long serialVersionUID = 2249069246763182397L;
925 <        transient TreeNode root;  // root of tree
926 <        transient TreeNode first; // head of next-pointer list
927 <
928 <        /* AQS overrides */
929 <        public final boolean isHeldExclusively() { return getState() > 0; }
930 <        public final boolean tryAcquire(int ignore) {
931 <            if (compareAndSetState(0, 1)) {
932 <                setExclusiveOwnerThread(Thread.currentThread());
933 <                return true;
934 <            }
935 <            return false;
936 <        }
937 <        public final boolean tryRelease(int ignore) {
761 <            setExclusiveOwnerThread(null);
762 <            setState(0);
763 <            return true;
764 <        }
765 <        public final int tryAcquireShared(int ignore) {
766 <            for (int c;;) {
767 <                if ((c = getState()) > 0)
768 <                    return -1;
769 <                if (compareAndSetState(c, c -1))
770 <                    return 1;
771 <            }
772 <        }
773 <        public final boolean tryReleaseShared(int ignore) {
774 <            int c;
775 <            do {} while (!compareAndSetState(c = getState(), c + 1));
776 <            return c == -1;
777 <        }
778 <
779 <        /** From CLR */
780 <        private void rotateLeft(TreeNode p) {
781 <            if (p != null) {
782 <                TreeNode r = p.right, pp, rl;
783 <                if ((rl = p.right = r.left) != null)
784 <                    rl.parent = p;
785 <                if ((pp = r.parent = p.parent) == null)
786 <                    root = r;
787 <                else if (pp.left == p)
788 <                    pp.left = r;
789 <                else
790 <                    pp.right = r;
791 <                r.left = p;
792 <                p.parent = r;
923 >    public V get(Object key) {
924 >        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
925 >        int h = spread(key.hashCode());
926 >        if ((tab = table) != null && (n = tab.length) > 0 &&
927 >            (e = tabAt(tab, (n - 1) & h)) != null) {
928 >            if ((eh = e.hash) == h) {
929 >                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
930 >                    return e.val;
931 >            }
932 >            else if (eh < 0)
933 >                return (p = e.find(h, key)) != null ? p.val : null;
934 >            while ((e = e.next) != null) {
935 >                if (e.hash == h &&
936 >                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
937 >                    return e.val;
938              }
939          }
940 +        return null;
941 +    }
942  
943 <        /** From CLR */
944 <        private void rotateRight(TreeNode p) {
945 <            if (p != null) {
946 <                TreeNode l = p.left, pp, lr;
947 <                if ((lr = p.left = l.right) != null)
948 <                    lr.parent = p;
949 <                if ((pp = l.parent = p.parent) == null)
950 <                    root = l;
951 <                else if (pp.right == p)
952 <                    pp.right = l;
953 <                else
954 <                    pp.left = l;
808 <                l.right = p;
809 <                p.parent = l;
810 <            }
811 <        }
943 >    /**
944 >     * Tests if the specified object is a key in this table.
945 >     *
946 >     * @param  key possible key
947 >     * @return {@code true} if and only if the specified object
948 >     *         is a key in this table, as determined by the
949 >     *         {@code equals} method; {@code false} otherwise
950 >     * @throws NullPointerException if the specified key is null
951 >     */
952 >    public boolean containsKey(Object key) {
953 >        return get(key) != null;
954 >    }
955  
956 <        /**
957 <         * Returns the TreeNode (or null if not found) for the given key
958 <         * starting at given root.
959 <         */
960 <        @SuppressWarnings("unchecked") final TreeNode getTreeNode
961 <            (int h, Object k, TreeNode p) {
962 <            Class<?> c = k.getClass();
963 <            while (p != null) {
964 <                int dir, ph;  Object pk; Class<?> pc;
965 <                if ((ph = p.hash) == h) {
966 <                    if ((pk = p.key) == k || k.equals(pk))
967 <                        return p;
968 <                    if (c != (pc = pk.getClass()) ||
969 <                        !(k instanceof Comparable) ||
970 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
971 <                        if ((dir = (c == pc) ? 0 :
972 <                             c.getName().compareTo(pc.getName())) == 0) {
973 <                            TreeNode r = null, pl, pr; // check both sides
974 <                            if ((pr = p.right) != null && h >= pr.hash &&
975 <                                (r = getTreeNode(h, k, pr)) != null)
833 <                                return r;
834 <                            else if ((pl = p.left) != null && h <= pl.hash)
835 <                                dir = -1;
836 <                            else // nothing there
837 <                                return null;
838 <                        }
839 <                    }
840 <                }
841 <                else
842 <                    dir = (h < ph) ? -1 : 1;
843 <                p = (dir > 0) ? p.right : p.left;
956 >    /**
957 >     * Returns {@code true} if this map maps one or more keys to the
958 >     * specified value. Note: This method may require a full traversal
959 >     * of the map, and is much slower than method {@code containsKey}.
960 >     *
961 >     * @param value value whose presence in this map is to be tested
962 >     * @return {@code true} if this map maps one or more keys to the
963 >     *         specified value
964 >     * @throws NullPointerException if the specified value is null
965 >     */
966 >    public boolean containsValue(Object value) {
967 >        if (value == null)
968 >            throw new NullPointerException();
969 >        Node<K,V>[] t;
970 >        if ((t = table) != null) {
971 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
972 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
973 >                V v;
974 >                if ((v = p.val) == value || (v != null && value.equals(v)))
975 >                    return true;
976              }
845            return null;
977          }
978 +        return false;
979 +    }
980  
981 <        /**
982 <         * Wrapper for getTreeNode used by CHM.get. Tries to obtain
983 <         * read-lock to call getTreeNode, but during failure to get
984 <         * lock, searches along next links.
985 <         */
986 <        final Object getValue(int h, Object k) {
987 <            Node r = null;
988 <            int c = getState(); // Must read lock state first
989 <            for (Node e = first; e != null; e = e.next) {
990 <                if (c <= 0 && compareAndSetState(c, c - 1)) {
991 <                    try {
992 <                        r = getTreeNode(h, k, root);
993 <                    } finally {
994 <                        releaseShared(0);
981 >    /**
982 >     * Maps the specified key to the specified value in this table.
983 >     * Neither the key nor the value can be null.
984 >     *
985 >     * <p>The value can be retrieved by calling the {@code get} method
986 >     * with a key that is equal to the original key.
987 >     *
988 >     * @param key key with which the specified value is to be associated
989 >     * @param value value to be associated with the specified key
990 >     * @return the previous value associated with {@code key}, or
991 >     *         {@code null} if there was no mapping for {@code key}
992 >     * @throws NullPointerException if the specified key or value is null
993 >     */
994 >    public V put(K key, V value) {
995 >        return putVal(key, value, false);
996 >    }
997 >
998 >    /** Implementation for put and putIfAbsent */
999 >    final V putVal(K key, V value, boolean onlyIfAbsent) {
1000 >        if (key == null || value == null) throw new NullPointerException();
1001 >        int hash = spread(key.hashCode());
1002 >        int binCount = 0;
1003 >        for (Node<K,V>[] tab = table;;) {
1004 >            Node<K,V> f; int n, i, fh;
1005 >            if (tab == null || (n = tab.length) == 0)
1006 >                tab = initTable();
1007 >            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1008 >                if (casTabAt(tab, i, null,
1009 >                             new Node<K,V>(hash, key, value, null)))
1010 >                    break;                   // no lock when adding to empty bin
1011 >            }
1012 >            else if ((fh = f.hash) == MOVED)
1013 >                tab = helpTransfer(tab, f);
1014 >            else {
1015 >                V oldVal = null;
1016 >                synchronized (f) {
1017 >                    if (tabAt(tab, i) == f) {
1018 >                        if (fh >= 0) {
1019 >                            binCount = 1;
1020 >                            for (Node<K,V> e = f;; ++binCount) {
1021 >                                K ek;
1022 >                                if (e.hash == hash &&
1023 >                                    ((ek = e.key) == key ||
1024 >                                     (ek != null && key.equals(ek)))) {
1025 >                                    oldVal = e.val;
1026 >                                    if (!onlyIfAbsent)
1027 >                                        e.val = value;
1028 >                                    break;
1029 >                                }
1030 >                                Node<K,V> pred = e;
1031 >                                if ((e = e.next) == null) {
1032 >                                    pred.next = new Node<K,V>(hash, key,
1033 >                                                              value, null);
1034 >                                    break;
1035 >                                }
1036 >                            }
1037 >                        }
1038 >                        else if (f instanceof TreeBin) {
1039 >                            Node<K,V> p;
1040 >                            binCount = 2;
1041 >                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1042 >                                                           value)) != null) {
1043 >                                oldVal = p.val;
1044 >                                if (!onlyIfAbsent)
1045 >                                    p.val = value;
1046 >                            }
1047 >                        }
1048                      }
863                    break;
1049                  }
1050 <                else if (e.hash == h && k.equals(e.key)) {
1051 <                    r = e;
1050 >                if (binCount != 0) {
1051 >                    if (binCount >= TREEIFY_THRESHOLD)
1052 >                        treeifyBin(tab, i);
1053 >                    if (oldVal != null)
1054 >                        return oldVal;
1055                      break;
1056                  }
869                else
870                    c = getState();
1057              }
872            return r == null ? null : r.val;
1058          }
1059 +        addCount(1L, binCount);
1060 +        return null;
1061 +    }
1062  
1063 <        /**
1064 <         * Finds or adds a node.
1065 <         * @return null if added
1066 <         */
1067 <        @SuppressWarnings("unchecked") final TreeNode putTreeNode
1068 <            (int h, Object k, Object v) {
1069 <            Class<?> c = k.getClass();
1070 <            TreeNode pp = root, p = null;
1071 <            int dir = 0;
1072 <            while (pp != null) { // find existing node or leaf to insert at
1073 <                int ph;  Object pk; Class<?> pc;
1074 <                p = pp;
887 <                if ((ph = p.hash) == h) {
888 <                    if ((pk = p.key) == k || k.equals(pk))
889 <                        return p;
890 <                    if (c != (pc = pk.getClass()) ||
891 <                        !(k instanceof Comparable) ||
892 <                        (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
893 <                        TreeNode s = null, r = null, pr;
894 <                        if ((dir = (c == pc) ? 0 :
895 <                             c.getName().compareTo(pc.getName())) == 0) {
896 <                            if ((pr = p.right) != null && h >= pr.hash &&
897 <                                (r = getTreeNode(h, k, pr)) != null)
898 <                                return r;
899 <                            else // continue left
900 <                                dir = -1;
901 <                        }
902 <                        else if ((pr = p.right) != null && h >= pr.hash)
903 <                            s = pr;
904 <                        if (s != null && (r = getTreeNode(h, k, s)) != null)
905 <                            return r;
906 <                    }
907 <                }
908 <                else
909 <                    dir = (h < ph) ? -1 : 1;
910 <                pp = (dir > 0) ? p.right : p.left;
911 <            }
1063 >    /**
1064 >     * Copies all of the mappings from the specified map to this one.
1065 >     * These mappings replace any mappings that this map had for any of the
1066 >     * keys currently in the specified map.
1067 >     *
1068 >     * @param m mappings to be stored in this map
1069 >     */
1070 >    public void putAll(Map<? extends K, ? extends V> m) {
1071 >        tryPresize(m.size());
1072 >        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1073 >            putVal(e.getKey(), e.getValue(), false);
1074 >    }
1075  
1076 <            TreeNode f = first;
1077 <            TreeNode x = first = new TreeNode(h, k, v, f, p);
1078 <            if (p == null)
1079 <                root = x;
1080 <            else { // attach and rebalance; adapted from CLR
1081 <                TreeNode xp, xpp;
1082 <                if (f != null)
1083 <                    f.prev = x;
1084 <                if (dir <= 0)
1085 <                    p.left = x;
1086 <                else
1087 <                    p.right = x;
1088 <                x.red = true;
1089 <                while (x != null && (xp = x.parent) != null && xp.red &&
1090 <                       (xpp = xp.parent) != null) {
1091 <                    TreeNode xppl = xpp.left;
1092 <                    if (xp == xppl) {
1093 <                        TreeNode y = xpp.right;
1094 <                        if (y != null && y.red) {
1095 <                            y.red = false;
1096 <                            xp.red = false;
1097 <                            xpp.red = true;
1098 <                            x = xpp;
1099 <                        }
1100 <                        else {
1101 <                            if (x == xp.right) {
1102 <                                rotateLeft(x = xp);
1103 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1104 <                            }
1105 <                            if (xp != null) {
1106 <                                xp.red = false;
1107 <                                if (xpp != null) {
1108 <                                    xpp.red = true;
1109 <                                    rotateRight(xpp);
1076 >    /**
1077 >     * Removes the key (and its corresponding value) from this map.
1078 >     * This method does nothing if the key is not in the map.
1079 >     *
1080 >     * @param  key the key that needs to be removed
1081 >     * @return the previous value associated with {@code key}, or
1082 >     *         {@code null} if there was no mapping for {@code key}
1083 >     * @throws NullPointerException if the specified key is null
1084 >     */
1085 >    public V remove(Object key) {
1086 >        return replaceNode(key, null, null);
1087 >    }
1088 >
1089 >    /**
1090 >     * Implementation for the four public remove/replace methods:
1091 >     * Replaces node value with v, conditional upon match of cv if
1092 >     * non-null.  If resulting value is null, delete.
1093 >     */
1094 >    final V replaceNode(Object key, V value, Object cv) {
1095 >        int hash = spread(key.hashCode());
1096 >        for (Node<K,V>[] tab = table;;) {
1097 >            Node<K,V> f; int n, i, fh;
1098 >            if (tab == null || (n = tab.length) == 0 ||
1099 >                (f = tabAt(tab, i = (n - 1) & hash)) == null)
1100 >                break;
1101 >            else if ((fh = f.hash) == MOVED)
1102 >                tab = helpTransfer(tab, f);
1103 >            else {
1104 >                V oldVal = null;
1105 >                boolean validated = false;
1106 >                synchronized (f) {
1107 >                    if (tabAt(tab, i) == f) {
1108 >                        if (fh >= 0) {
1109 >                            validated = true;
1110 >                            for (Node<K,V> e = f, pred = null;;) {
1111 >                                K ek;
1112 >                                if (e.hash == hash &&
1113 >                                    ((ek = e.key) == key ||
1114 >                                     (ek != null && key.equals(ek)))) {
1115 >                                    V ev = e.val;
1116 >                                    if (cv == null || cv == ev ||
1117 >                                        (ev != null && cv.equals(ev))) {
1118 >                                        oldVal = ev;
1119 >                                        if (value != null)
1120 >                                            e.val = value;
1121 >                                        else if (pred != null)
1122 >                                            pred.next = e.next;
1123 >                                        else
1124 >                                            setTabAt(tab, i, e.next);
1125 >                                    }
1126 >                                    break;
1127                                  }
1128 +                                pred = e;
1129 +                                if ((e = e.next) == null)
1130 +                                    break;
1131                              }
1132                          }
1133 <                    }
1134 <                    else {
1135 <                        TreeNode y = xppl;
1136 <                        if (y != null && y.red) {
1137 <                            y.red = false;
1138 <                            xp.red = false;
1139 <                            xpp.red = true;
1140 <                            x = xpp;
1141 <                        }
1142 <                        else {
1143 <                            if (x == xp.left) {
1144 <                                rotateRight(x = xp);
1145 <                                xpp = (xp = x.parent) == null ? null : xp.parent;
1146 <                            }
964 <                            if (xp != null) {
965 <                                xp.red = false;
966 <                                if (xpp != null) {
967 <                                    xpp.red = true;
968 <                                    rotateLeft(xpp);
1133 >                        else if (f instanceof TreeBin) {
1134 >                            validated = true;
1135 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1136 >                            TreeNode<K,V> r, p;
1137 >                            if ((r = t.root) != null &&
1138 >                                (p = r.findTreeNode(hash, key, null)) != null) {
1139 >                                V pv = p.val;
1140 >                                if (cv == null || cv == pv ||
1141 >                                    (pv != null && cv.equals(pv))) {
1142 >                                    oldVal = pv;
1143 >                                    if (value != null)
1144 >                                        p.val = value;
1145 >                                    else if (t.removeTreeNode(p))
1146 >                                        setTabAt(tab, i, untreeify(t.first));
1147                                  }
1148                              }
1149                          }
1150                      }
1151                  }
1152 <                TreeNode r = root;
1153 <                if (r != null && r.red)
1154 <                    r.red = false;
1155 <            }
1156 <            return null;
979 <        }
980 <
981 <        /**
982 <         * Removes the given node, that must be present before this
983 <         * call.  This is messier than typical red-black deletion code
984 <         * because we cannot swap the contents of an interior node
985 <         * with a leaf successor that is pinned by "next" pointers
986 <         * that are accessible independently of lock. So instead we
987 <         * swap the tree linkages.
988 <         */
989 <        final void deleteTreeNode(TreeNode p) {
990 <            TreeNode next = (TreeNode)p.next; // unlink traversal pointers
991 <            TreeNode pred = p.prev;
992 <            if (pred == null)
993 <                first = next;
994 <            else
995 <                pred.next = next;
996 <            if (next != null)
997 <                next.prev = pred;
998 <            TreeNode replacement;
999 <            TreeNode pl = p.left;
1000 <            TreeNode pr = p.right;
1001 <            if (pl != null && pr != null) {
1002 <                TreeNode s = pr, sl;
1003 <                while ((sl = s.left) != null) // find successor
1004 <                    s = sl;
1005 <                boolean c = s.red; s.red = p.red; p.red = c; // swap colors
1006 <                TreeNode sr = s.right;
1007 <                TreeNode pp = p.parent;
1008 <                if (s == pr) { // p was s's direct parent
1009 <                    p.parent = s;
1010 <                    s.right = p;
1011 <                }
1012 <                else {
1013 <                    TreeNode sp = s.parent;
1014 <                    if ((p.parent = sp) != null) {
1015 <                        if (s == sp.left)
1016 <                            sp.left = p;
1017 <                        else
1018 <                            sp.right = p;
1152 >                if (validated) {
1153 >                    if (oldVal != null) {
1154 >                        if (value == null)
1155 >                            addCount(-1L, -1);
1156 >                        return oldVal;
1157                      }
1158 <                    if ((s.right = pr) != null)
1021 <                        pr.parent = s;
1158 >                    break;
1159                  }
1023                p.left = null;
1024                if ((p.right = sr) != null)
1025                    sr.parent = p;
1026                if ((s.left = pl) != null)
1027                    pl.parent = s;
1028                if ((s.parent = pp) == null)
1029                    root = s;
1030                else if (p == pp.left)
1031                    pp.left = s;
1032                else
1033                    pp.right = s;
1034                replacement = sr;
1160              }
1161 <            else
1162 <                replacement = (pl != null) ? pl : pr;
1163 <            TreeNode pp = p.parent;
1164 <            if (replacement == null) {
1165 <                if (pp == null) {
1166 <                    root = null;
1167 <                    return;
1168 <                }
1169 <                replacement = p;
1161 >        }
1162 >        return null;
1163 >    }
1164 >
1165 >    /**
1166 >     * Removes all of the mappings from this map.
1167 >     */
1168 >    public void clear() {
1169 >        long delta = 0L; // negative number of deletions
1170 >        int i = 0;
1171 >        Node<K,V>[] tab = table;
1172 >        while (tab != null && i < tab.length) {
1173 >            int fh;
1174 >            Node<K,V> f = tabAt(tab, i);
1175 >            if (f == null)
1176 >                ++i;
1177 >            else if ((fh = f.hash) == MOVED) {
1178 >                tab = helpTransfer(tab, f);
1179 >                i = 0; // restart
1180              }
1181              else {
1182 <                replacement.parent = pp;
1183 <                if (pp == null)
1184 <                    root = replacement;
1185 <                else if (p == pp.left)
1186 <                    pp.left = replacement;
1187 <                else
1188 <                    pp.right = replacement;
1189 <                p.left = p.right = p.parent = null;
1055 <            }
1056 <            if (!p.red) { // rebalance, from CLR
1057 <                TreeNode x = replacement;
1058 <                while (x != null) {
1059 <                    TreeNode xp, xpl;
1060 <                    if (x.red || (xp = x.parent) == null) {
1061 <                        x.red = false;
1062 <                        break;
1063 <                    }
1064 <                    if (x == (xpl = xp.left)) {
1065 <                        TreeNode sib = xp.right;
1066 <                        if (sib != null && sib.red) {
1067 <                            sib.red = false;
1068 <                            xp.red = true;
1069 <                            rotateLeft(xp);
1070 <                            sib = (xp = x.parent) == null ? null : xp.right;
1071 <                        }
1072 <                        if (sib == null)
1073 <                            x = xp;
1074 <                        else {
1075 <                            TreeNode sl = sib.left, sr = sib.right;
1076 <                            if ((sr == null || !sr.red) &&
1077 <                                (sl == null || !sl.red)) {
1078 <                                sib.red = true;
1079 <                                x = xp;
1080 <                            }
1081 <                            else {
1082 <                                if (sr == null || !sr.red) {
1083 <                                    if (sl != null)
1084 <                                        sl.red = false;
1085 <                                    sib.red = true;
1086 <                                    rotateRight(sib);
1087 <                                    sib = (xp = x.parent) == null ?
1088 <                                        null : xp.right;
1089 <                                }
1090 <                                if (sib != null) {
1091 <                                    sib.red = (xp == null) ? false : xp.red;
1092 <                                    if ((sr = sib.right) != null)
1093 <                                        sr.red = false;
1094 <                                }
1095 <                                if (xp != null) {
1096 <                                    xp.red = false;
1097 <                                    rotateLeft(xp);
1098 <                                }
1099 <                                x = root;
1100 <                            }
1101 <                        }
1102 <                    }
1103 <                    else { // symmetric
1104 <                        TreeNode sib = xpl;
1105 <                        if (sib != null && sib.red) {
1106 <                            sib.red = false;
1107 <                            xp.red = true;
1108 <                            rotateRight(xp);
1109 <                            sib = (xp = x.parent) == null ? null : xp.left;
1110 <                        }
1111 <                        if (sib == null)
1112 <                            x = xp;
1113 <                        else {
1114 <                            TreeNode sl = sib.left, sr = sib.right;
1115 <                            if ((sl == null || !sl.red) &&
1116 <                                (sr == null || !sr.red)) {
1117 <                                sib.red = true;
1118 <                                x = xp;
1119 <                            }
1120 <                            else {
1121 <                                if (sl == null || !sl.red) {
1122 <                                    if (sr != null)
1123 <                                        sr.red = false;
1124 <                                    sib.red = true;
1125 <                                    rotateLeft(sib);
1126 <                                    sib = (xp = x.parent) == null ?
1127 <                                        null : xp.left;
1128 <                                }
1129 <                                if (sib != null) {
1130 <                                    sib.red = (xp == null) ? false : xp.red;
1131 <                                    if ((sl = sib.left) != null)
1132 <                                        sl.red = false;
1133 <                                }
1134 <                                if (xp != null) {
1135 <                                    xp.red = false;
1136 <                                    rotateRight(xp);
1137 <                                }
1138 <                                x = root;
1139 <                            }
1182 >                synchronized (f) {
1183 >                    if (tabAt(tab, i) == f) {
1184 >                        Node<K,V> p = (fh >= 0 ? f :
1185 >                                       (f instanceof TreeBin) ?
1186 >                                       ((TreeBin<K,V>)f).first : null);
1187 >                        while (p != null) {
1188 >                            --delta;
1189 >                            p = p.next;
1190                          }
1191 +                        setTabAt(tab, i++, null);
1192                      }
1193                  }
1194              }
1144            if (p == replacement && (pp = p.parent) != null) {
1145                if (p == pp.left) // detach pointers
1146                    pp.left = null;
1147                else if (p == pp.right)
1148                    pp.right = null;
1149                p.parent = null;
1150            }
1195          }
1196 +        if (delta != 0L)
1197 +            addCount(delta, -1);
1198 +    }
1199 +
1200 +    /**
1201 +     * Returns a {@link Set} view of the keys contained in this map.
1202 +     * The set is backed by the map, so changes to the map are
1203 +     * reflected in the set, and vice-versa. The set supports element
1204 +     * removal, which removes the corresponding mapping from this map,
1205 +     * via the {@code Iterator.remove}, {@code Set.remove},
1206 +     * {@code removeAll}, {@code retainAll}, and {@code clear}
1207 +     * operations.  It does not support the {@code add} or
1208 +     * {@code addAll} operations.
1209 +     *
1210 +     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 +     * that will never throw {@link ConcurrentModificationException},
1212 +     * and guarantees to traverse elements as they existed upon
1213 +     * construction of the iterator, and may (but is not guaranteed to)
1214 +     * reflect any modifications subsequent to construction.
1215 +     *
1216 +     * @return the set view
1217 +     */
1218 +    public KeySetView<K,V> keySet() {
1219 +        KeySetView<K,V> ks;
1220 +        return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1221      }
1222  
1223 <    /* ---------------- Collision reduction methods -------------- */
1223 >    /**
1224 >     * Returns a {@link Collection} view of the values contained in this map.
1225 >     * The collection is backed by the map, so changes to the map are
1226 >     * reflected in the collection, and vice-versa.  The collection
1227 >     * supports element removal, which removes the corresponding
1228 >     * mapping from this map, via the {@code Iterator.remove},
1229 >     * {@code Collection.remove}, {@code removeAll},
1230 >     * {@code retainAll}, and {@code clear} operations.  It does not
1231 >     * support the {@code add} or {@code addAll} operations.
1232 >     *
1233 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1234 >     * that will never throw {@link ConcurrentModificationException},
1235 >     * and guarantees to traverse elements as they existed upon
1236 >     * construction of the iterator, and may (but is not guaranteed to)
1237 >     * reflect any modifications subsequent to construction.
1238 >     *
1239 >     * @return the collection view
1240 >     */
1241 >    public Collection<V> values() {
1242 >        ValuesView<K,V> vs;
1243 >        return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1244 >    }
1245  
1246      /**
1247 <     * Spreads higher bits to lower, and also forces top bit to 0.
1248 <     * Because the table uses power-of-two masking, sets of hashes
1249 <     * that vary only in bits above the current mask will always
1250 <     * collide. (Among known examples are sets of Float keys holding
1251 <     * consecutive whole numbers in small tables.)  To counter this,
1252 <     * we apply a transform that spreads the impact of higher bits
1253 <     * downward. There is a tradeoff between speed, utility, and
1254 <     * quality of bit-spreading. Because many common sets of hashes
1255 <     * are already reasonably distributed across bits (so don't benefit
1256 <     * from spreading), and because we use trees to handle large sets
1257 <     * of collisions in bins, we don't need excessively high quality.
1247 >     * Returns a {@link Set} view of the mappings contained in this map.
1248 >     * The set is backed by the map, so changes to the map are
1249 >     * reflected in the set, and vice-versa.  The set supports element
1250 >     * removal, which removes the corresponding mapping from the map,
1251 >     * via the {@code Iterator.remove}, {@code Set.remove},
1252 >     * {@code removeAll}, {@code retainAll}, and {@code clear}
1253 >     * operations.
1254 >     *
1255 >     * <p>The view's {@code iterator} is a "weakly consistent" iterator
1256 >     * that will never throw {@link ConcurrentModificationException},
1257 >     * and guarantees to traverse elements as they existed upon
1258 >     * construction of the iterator, and may (but is not guaranteed to)
1259 >     * reflect any modifications subsequent to construction.
1260 >     *
1261 >     * @return the set view
1262       */
1263 <    private static final int spread(int h) {
1264 <        h ^= (h >>> 18) ^ (h >>> 12);
1265 <        return (h ^ (h >>> 10)) & HASH_BITS;
1263 >    public Set<Map.Entry<K,V>> entrySet() {
1264 >        EntrySetView<K,V> es;
1265 >        return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1266      }
1267  
1268      /**
1269 <     * Replaces a list bin with a tree bin if key is comparable.  Call
1270 <     * only when locked.
1269 >     * Returns the hash code value for this {@link Map}, i.e.,
1270 >     * the sum of, for each key-value pair in the map,
1271 >     * {@code key.hashCode() ^ value.hashCode()}.
1272 >     *
1273 >     * @return the hash code value for this map
1274       */
1275 <    private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1276 <        if (key instanceof Comparable) {
1277 <            TreeBin t = new TreeBin();
1278 <            for (Node e = tabAt(tab, index); e != null; e = e.next)
1279 <                t.putTreeNode(e.hash, e.key, e.val);
1280 <            setTabAt(tab, index, new Node(MOVED, t, null, null));
1275 >    public int hashCode() {
1276 >        int h = 0;
1277 >        Node<K,V>[] t;
1278 >        if ((t = table) != null) {
1279 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1280 >            for (Node<K,V> p; (p = it.advance()) != null; )
1281 >                h += p.key.hashCode() ^ p.val.hashCode();
1282          }
1283 +        return h;
1284      }
1285  
1286 <    /* ---------------- Internal access and update methods -------------- */
1286 >    /**
1287 >     * Returns a string representation of this map.  The string
1288 >     * representation consists of a list of key-value mappings (in no
1289 >     * particular order) enclosed in braces ("{@code {}}").  Adjacent
1290 >     * mappings are separated by the characters {@code ", "} (comma
1291 >     * and space).  Each key-value mapping is rendered as the key
1292 >     * followed by an equals sign ("{@code =}") followed by the
1293 >     * associated value.
1294 >     *
1295 >     * @return a string representation of this map
1296 >     */
1297 >    public String toString() {
1298 >        Node<K,V>[] t;
1299 >        int f = (t = table) == null ? 0 : t.length;
1300 >        Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301 >        StringBuilder sb = new StringBuilder();
1302 >        sb.append('{');
1303 >        Node<K,V> p;
1304 >        if ((p = it.advance()) != null) {
1305 >            for (;;) {
1306 >                K k = p.key;
1307 >                V v = p.val;
1308 >                sb.append(k == this ? "(this Map)" : k);
1309 >                sb.append('=');
1310 >                sb.append(v == this ? "(this Map)" : v);
1311 >                if ((p = it.advance()) == null)
1312 >                    break;
1313 >                sb.append(',').append(' ');
1314 >            }
1315 >        }
1316 >        return sb.append('}').toString();
1317 >    }
1318  
1319 <    /** Implementation for get and containsKey */
1320 <    @SuppressWarnings("unchecked") private final V internalGet(Object k) {
1321 <        int h = spread(k.hashCode());
1322 <        retry: for (Node[] tab = table; tab != null;) {
1323 <            Node e; Object ek, ev; int eh;      // locals to read fields once
1324 <            for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1325 <                if ((eh = e.hash) < 0) {
1326 <                    if ((ek = e.key) instanceof TreeBin)  // search TreeBin
1327 <                        return (V)((TreeBin)ek).getValue(h, k);
1328 <                    else {                        // restart with new table
1329 <                        tab = (Node[])ek;
1330 <                        continue retry;
1331 <                    }
1332 <                }
1333 <                else if (eh == h && (ev = e.val) != null &&
1334 <                         ((ek = e.key) == k || k.equals(ek)))
1335 <                    return (V)ev;
1319 >    /**
1320 >     * Compares the specified object with this map for equality.
1321 >     * Returns {@code true} if the given object is a map with the same
1322 >     * mappings as this map.  This operation may return misleading
1323 >     * results if either map is concurrently modified during execution
1324 >     * of this method.
1325 >     *
1326 >     * @param o object to be compared for equality with this map
1327 >     * @return {@code true} if the specified object is equal to this map
1328 >     */
1329 >    public boolean equals(Object o) {
1330 >        if (o != this) {
1331 >            if (!(o instanceof Map))
1332 >                return false;
1333 >            Map<?,?> m = (Map<?,?>) o;
1334 >            Node<K,V>[] t;
1335 >            int f = (t = table) == null ? 0 : t.length;
1336 >            Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1337 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1338 >                V val = p.val;
1339 >                Object v = m.get(p.key);
1340 >                if (v == null || (v != val && !v.equals(val)))
1341 >                    return false;
1342 >            }
1343 >            for (Map.Entry<?,?> e : m.entrySet()) {
1344 >                Object mk, mv, v;
1345 >                if ((mk = e.getKey()) == null ||
1346 >                    (mv = e.getValue()) == null ||
1347 >                    (v = get(mk)) == null ||
1348 >                    (mv != v && !mv.equals(v)))
1349 >                    return false;
1350              }
1207            break;
1351          }
1352 <        return null;
1352 >        return true;
1353      }
1354  
1355      /**
1356 <     * Implementation for the four public remove/replace methods:
1357 <     * Replaces node value with v, conditional upon match of cv if
1215 <     * non-null.  If resulting value is null, delete.
1356 >     * Stripped-down version of helper class used in previous version,
1357 >     * declared for the sake of serialization compatibility
1358       */
1359 <    @SuppressWarnings("unchecked") private final V internalReplace
1360 <        (Object k, V v, Object cv) {
1361 <        int h = spread(k.hashCode());
1362 <        Object oldVal = null;
1363 <        for (Node[] tab = table;;) {
1364 <            Node f; int i, fh; Object fk;
1365 <            if (tab == null ||
1366 <                (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1367 <                break;
1368 <            else if ((fh = f.hash) < 0) {
1369 <                if ((fk = f.key) instanceof TreeBin) {
1370 <                    TreeBin t = (TreeBin)fk;
1371 <                    boolean validated = false;
1372 <                    boolean deleted = false;
1373 <                    t.acquire(0);
1374 <                    try {
1375 <                        if (tabAt(tab, i) == f) {
1376 <                            validated = true;
1377 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1378 <                            if (p != null) {
1379 <                                Object pv = p.val;
1380 <                                if (cv == null || cv == pv || cv.equals(pv)) {
1381 <                                    oldVal = pv;
1382 <                                    if ((p.val = v) == null) {
1383 <                                        deleted = true;
1384 <                                        t.deleteTreeNode(p);
1385 <                                    }
1386 <                                }
1387 <                            }
1388 <                        }
1389 <                    } finally {
1390 <                        t.release(0);
1391 <                    }
1392 <                    if (validated) {
1393 <                        if (deleted)
1394 <                            addCount(-1L, -1);
1395 <                        break;
1396 <                    }
1397 <                }
1398 <                else
1399 <                    tab = (Node[])fk;
1359 >    static class Segment<K,V> extends ReentrantLock implements Serializable {
1360 >        private static final long serialVersionUID = 2249069246763182397L;
1361 >        final float loadFactor;
1362 >        Segment(float lf) { this.loadFactor = lf; }
1363 >    }
1364 >
1365 >    /**
1366 >     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1367 >     * stream (i.e., serializes it).
1368 >     * @param s the stream
1369 >     * @serialData
1370 >     * the key (Object) and value (Object)
1371 >     * for each key-value mapping, followed by a null pair.
1372 >     * The key-value mappings are emitted in no particular order.
1373 >     */
1374 >    private void writeObject(java.io.ObjectOutputStream s)
1375 >        throws java.io.IOException {
1376 >        // For serialization compatibility
1377 >        // Emulate segment calculation from previous version of this class
1378 >        int sshift = 0;
1379 >        int ssize = 1;
1380 >        while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381 >            ++sshift;
1382 >            ssize <<= 1;
1383 >        }
1384 >        int segmentShift = 32 - sshift;
1385 >        int segmentMask = ssize - 1;
1386 >        @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1387 >            new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1388 >        for (int i = 0; i < segments.length; ++i)
1389 >            segments[i] = new Segment<K,V>(LOAD_FACTOR);
1390 >        s.putFields().put("segments", segments);
1391 >        s.putFields().put("segmentShift", segmentShift);
1392 >        s.putFields().put("segmentMask", segmentMask);
1393 >        s.writeFields();
1394 >
1395 >        Node<K,V>[] t;
1396 >        if ((t = table) != null) {
1397 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1398 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1399 >                s.writeObject(p.key);
1400 >                s.writeObject(p.val);
1401 >            }
1402 >        }
1403 >        s.writeObject(null);
1404 >        s.writeObject(null);
1405 >        segments = null; // throw away
1406 >    }
1407 >
1408 >    /**
1409 >     * Reconstitutes the instance from a stream (that is, deserializes it).
1410 >     * @param s the stream
1411 >     */
1412 >    private void readObject(java.io.ObjectInputStream s)
1413 >        throws java.io.IOException, ClassNotFoundException {
1414 >        /*
1415 >         * To improve performance in typical cases, we create nodes
1416 >         * while reading, then place in table once size is known.
1417 >         * However, we must also validate uniqueness and deal with
1418 >         * overpopulated bins while doing so, which requires
1419 >         * specialized versions of putVal mechanics.
1420 >         */
1421 >        sizeCtl = -1; // force exclusion for table construction
1422 >        s.defaultReadObject();
1423 >        long size = 0L;
1424 >        Node<K,V> p = null;
1425 >        for (;;) {
1426 >            @SuppressWarnings("unchecked") K k = (K) s.readObject();
1427 >            @SuppressWarnings("unchecked") V v = (V) s.readObject();
1428 >            if (k != null && v != null) {
1429 >                p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1430 >                ++size;
1431              }
1432 <            else if (fh != h && f.next == null) // precheck
1433 <                break;                          // rules out possible existence
1432 >            else
1433 >                break;
1434 >        }
1435 >        if (size == 0L)
1436 >            sizeCtl = 0;
1437 >        else {
1438 >            int n;
1439 >            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1440 >                n = MAXIMUM_CAPACITY;
1441              else {
1442 <                boolean validated = false;
1443 <                boolean deleted = false;
1444 <                synchronized(f) {
1445 <                    if (tabAt(tab, i) == f) {
1446 <                        validated = true;
1447 <                        for (Node e = f, pred = null;;) {
1448 <                            Object ek, ev;
1449 <                            if (e.hash == h &&
1450 <                                ((ev = e.val) != null) &&
1451 <                                ((ek = e.key) == k || k.equals(ek))) {
1452 <                                if (cv == null || cv == ev || cv.equals(ev)) {
1453 <                                    oldVal = ev;
1454 <                                    if ((e.val = v) == null) {
1455 <                                        deleted = true;
1456 <                                        Node en = e.next;
1457 <                                        if (pred != null)
1458 <                                            pred.next = en;
1459 <                                        else
1460 <                                            setTabAt(tab, i, en);
1461 <                                    }
1462 <                                }
1442 >                int sz = (int)size;
1443 >                n = tableSizeFor(sz + (sz >>> 1) + 1);
1444 >            }
1445 >            @SuppressWarnings({"rawtypes","unchecked"})
1446 >                Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1447 >            int mask = n - 1;
1448 >            long added = 0L;
1449 >            while (p != null) {
1450 >                boolean insertAtFront;
1451 >                Node<K,V> next = p.next, first;
1452 >                int h = p.hash, j = h & mask;
1453 >                if ((first = tabAt(tab, j)) == null)
1454 >                    insertAtFront = true;
1455 >                else {
1456 >                    K k = p.key;
1457 >                    if (first.hash < 0) {
1458 >                        TreeBin<K,V> t = (TreeBin<K,V>)first;
1459 >                        if (t.putTreeVal(h, k, p.val) == null)
1460 >                            ++added;
1461 >                        insertAtFront = false;
1462 >                    }
1463 >                    else {
1464 >                        int binCount = 0;
1465 >                        insertAtFront = true;
1466 >                        Node<K,V> q; K qk;
1467 >                        for (q = first; q != null; q = q.next) {
1468 >                            if (q.hash == h &&
1469 >                                ((qk = q.key) == k ||
1470 >                                 (qk != null && k.equals(qk)))) {
1471 >                                insertAtFront = false;
1472                                  break;
1473                              }
1474 <                            pred = e;
1475 <                            if ((e = e.next) == null)
1476 <                                break;
1474 >                            ++binCount;
1475 >                        }
1476 >                        if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1477 >                            insertAtFront = false;
1478 >                            ++added;
1479 >                            p.next = first;
1480 >                            TreeNode<K,V> hd = null, tl = null;
1481 >                            for (q = p; q != null; q = q.next) {
1482 >                                TreeNode<K,V> t = new TreeNode<K,V>
1483 >                                    (q.hash, q.key, q.val, null, null);
1484 >                                if ((t.prev = tl) == null)
1485 >                                    hd = t;
1486 >                                else
1487 >                                    tl.next = t;
1488 >                                tl = t;
1489 >                            }
1490 >                            setTabAt(tab, j, new TreeBin<K,V>(hd));
1491                          }
1492                      }
1493                  }
1494 <                if (validated) {
1495 <                    if (deleted)
1496 <                        addCount(-1L, -1);
1497 <                    break;
1494 >                if (insertAtFront) {
1495 >                    ++added;
1496 >                    p.next = first;
1497 >                    setTabAt(tab, j, p);
1498                  }
1499 +                p = next;
1500              }
1501 +            table = tab;
1502 +            sizeCtl = n - (n >>> 2);
1503 +            baseCount = added;
1504          }
1298        return (V)oldVal;
1505      }
1506  
1507 <    /*
1508 <     * Internal versions of insertion methods
1509 <     * All have the same basic structure as the first (internalPut):
1510 <     *  1. If table uninitialized, create
1511 <     *  2. If bin empty, try to CAS new node
1512 <     *  3. If bin stale, use new table
1513 <     *  4. if bin converted to TreeBin, validate and relay to TreeBin methods
1514 <     *  5. Lock and validate; if valid, scan and add or update
1309 <     *
1310 <     * The putAll method differs mainly in attempting to pre-allocate
1311 <     * enough table space, and also more lazily performs count updates
1312 <     * and checks.
1313 <     *
1314 <     * Most of the function-accepting methods can't be factored nicely
1315 <     * because they require different functional forms, so instead
1316 <     * sprawl out similar mechanics.
1507 >    // ConcurrentMap methods
1508 >
1509 >    /**
1510 >     * {@inheritDoc}
1511 >     *
1512 >     * @return the previous value associated with the specified key,
1513 >     *         or {@code null} if there was no mapping for the key
1514 >     * @throws NullPointerException if the specified key or value is null
1515       */
1516 +    public V putIfAbsent(K key, V value) {
1517 +        return putVal(key, value, true);
1518 +    }
1519  
1520 <    /** Implementation for put and putIfAbsent */
1521 <    @SuppressWarnings("unchecked") private final V internalPut
1522 <        (K k, V v, boolean onlyIfAbsent) {
1523 <        if (k == null || v == null) throw new NullPointerException();
1524 <        int h = spread(k.hashCode());
1525 <        int len = 0;
1526 <        for (Node[] tab = table;;) {
1527 <            int i, fh; Node f; Object fk, fv;
1528 <            if (tab == null)
1529 <                tab = initTable();
1530 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1531 <                if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1532 <                    break;                   // no lock when adding to empty bin
1520 >    /**
1521 >     * {@inheritDoc}
1522 >     *
1523 >     * @throws NullPointerException if the specified key is null
1524 >     */
1525 >    public boolean remove(Object key, Object value) {
1526 >        if (key == null)
1527 >            throw new NullPointerException();
1528 >        return value != null && replaceNode(key, null, value) != null;
1529 >    }
1530 >
1531 >    /**
1532 >     * {@inheritDoc}
1533 >     *
1534 >     * @throws NullPointerException if any of the arguments are null
1535 >     */
1536 >    public boolean replace(K key, V oldValue, V newValue) {
1537 >        if (key == null || oldValue == null || newValue == null)
1538 >            throw new NullPointerException();
1539 >        return replaceNode(key, newValue, oldValue) != null;
1540 >    }
1541 >
1542 >    /**
1543 >     * {@inheritDoc}
1544 >     *
1545 >     * @return the previous value associated with the specified key,
1546 >     *         or {@code null} if there was no mapping for the key
1547 >     * @throws NullPointerException if the specified key or value is null
1548 >     */
1549 >    public V replace(K key, V value) {
1550 >        if (key == null || value == null)
1551 >            throw new NullPointerException();
1552 >        return replaceNode(key, value, null);
1553 >    }
1554 >
1555 >    // Overrides of JDK8+ Map extension method defaults
1556 >
1557 >    /**
1558 >     * Returns the value to which the specified key is mapped, or the
1559 >     * given default value if this map contains no mapping for the
1560 >     * key.
1561 >     *
1562 >     * @param key the key whose associated value is to be returned
1563 >     * @param defaultValue the value to return if this map contains
1564 >     * no mapping for the given key
1565 >     * @return the mapping for the key, if present; else the default value
1566 >     * @throws NullPointerException if the specified key is null
1567 >     */
1568 >    public V getOrDefault(Object key, V defaultValue) {
1569 >        V v;
1570 >        return (v = get(key)) == null ? defaultValue : v;
1571 >    }
1572 >
1573 >    public void forEach(BiAction<? super K, ? super V> action) {
1574 >        if (action == null) throw new NullPointerException();
1575 >        Node<K,V>[] t;
1576 >        if ((t = table) != null) {
1577 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 >                action.apply(p.key, p.val);
1580              }
1581 <            else if ((fh = f.hash) < 0) {
1582 <                if ((fk = f.key) instanceof TreeBin) {
1583 <                    TreeBin t = (TreeBin)fk;
1584 <                    Object oldVal = null;
1585 <                    t.acquire(0);
1586 <                    try {
1587 <                        if (tabAt(tab, i) == f) {
1588 <                            len = 2;
1589 <                            TreeNode p = t.putTreeNode(h, k, v);
1590 <                            if (p != null) {
1591 <                                oldVal = p.val;
1592 <                                if (!onlyIfAbsent)
1593 <                                    p.val = v;
1594 <                            }
1595 <                        }
1596 <                    } finally {
1349 <                        t.release(0);
1350 <                    }
1351 <                    if (len != 0) {
1352 <                        if (oldVal != null)
1353 <                            return (V)oldVal;
1581 >        }
1582 >    }
1583 >
1584 >    public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1585 >        if (function == null) throw new NullPointerException();
1586 >        Node<K,V>[] t;
1587 >        if ((t = table) != null) {
1588 >            Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1589 >            for (Node<K,V> p; (p = it.advance()) != null; ) {
1590 >                V oldValue = p.val;
1591 >                for (K key = p.key;;) {
1592 >                    V newValue = function.apply(key, oldValue);
1593 >                    if (newValue == null)
1594 >                        throw new NullPointerException();
1595 >                    if (replaceNode(key, newValue, oldValue) != null ||
1596 >                        (oldValue = get(key)) == null)
1597                          break;
1355                    }
1356                }
1357                else
1358                    tab = (Node[])fk;
1359            }
1360            else if (onlyIfAbsent && fh == h && (fv = f.val) != null &&
1361                     ((fk = f.key) == k || k.equals(fk))) // peek while nearby
1362                return (V)fv;
1363            else {
1364                Object oldVal = null;
1365                synchronized(f) {
1366                    if (tabAt(tab, i) == f) {
1367                        len = 1;
1368                        for (Node e = f;; ++len) {
1369                            Object ek, ev;
1370                            if (e.hash == h &&
1371                                (ev = e.val) != null &&
1372                                ((ek = e.key) == k || k.equals(ek))) {
1373                                oldVal = ev;
1374                                if (!onlyIfAbsent)
1375                                    e.val = v;
1376                                break;
1377                            }
1378                            Node last = e;
1379                            if ((e = e.next) == null) {
1380                                last.next = new Node(h, k, v, null);
1381                                if (len >= TREE_THRESHOLD)
1382                                    replaceWithTreeBin(tab, i, k);
1383                                break;
1384                            }
1385                        }
1386                    }
1387                }
1388                if (len != 0) {
1389                    if (oldVal != null)
1390                        return (V)oldVal;
1391                    break;
1598                  }
1599              }
1600          }
1395        addCount(1L, len);
1396        return null;
1601      }
1602  
1603 <    /** Implementation for computeIfAbsent */
1604 <    @SuppressWarnings("unchecked") private final V internalComputeIfAbsent
1605 <        (K k, Fun<? super K, ?> mf) {
1606 <        if (k == null || mf == null)
1603 >    /**
1604 >     * If the specified key is not already associated with a value,
1605 >     * attempts to compute its value using the given mapping function
1606 >     * and enters it into this map unless {@code null}.  The entire
1607 >     * method invocation is performed atomically, so the function is
1608 >     * applied at most once per key.  Some attempted update operations
1609 >     * on this map by other threads may be blocked while computation
1610 >     * is in progress, so the computation should be short and simple,
1611 >     * and must not attempt to update any other mappings of this map.
1612 >     *
1613 >     * @param key key with which the specified value is to be associated
1614 >     * @param mappingFunction the function to compute a value
1615 >     * @return the current (existing or computed) value associated with
1616 >     *         the specified key, or null if the computed value is null
1617 >     * @throws NullPointerException if the specified key or mappingFunction
1618 >     *         is null
1619 >     * @throws IllegalStateException if the computation detectably
1620 >     *         attempts a recursive update to this map that would
1621 >     *         otherwise never complete
1622 >     * @throws RuntimeException or Error if the mappingFunction does so,
1623 >     *         in which case the mapping is left unestablished
1624 >     */
1625 >    public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1626 >        if (key == null || mappingFunction == null)
1627              throw new NullPointerException();
1628 <        int h = spread(k.hashCode());
1629 <        Object val = null;
1630 <        int len = 0;
1631 <        for (Node[] tab = table;;) {
1632 <            Node f; int i; Object fk;
1633 <            if (tab == null)
1628 >        int h = spread(key.hashCode());
1629 >        V val = null;
1630 >        int binCount = 0;
1631 >        for (Node<K,V>[] tab = table;;) {
1632 >            Node<K,V> f; int n, i, fh;
1633 >            if (tab == null || (n = tab.length) == 0)
1634                  tab = initTable();
1635 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1636 <                Node node = new Node(h, k, null, null);
1637 <                synchronized(node) {
1638 <                    if (casTabAt(tab, i, null, node)) {
1639 <                        len = 1;
1635 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1636 >                Node<K,V> r = new ReservationNode<K,V>();
1637 >                synchronized (r) {
1638 >                    if (casTabAt(tab, i, null, r)) {
1639 >                        binCount = 1;
1640 >                        Node<K,V> node = null;
1641                          try {
1642 <                            if ((val = mf.apply(k)) != null)
1643 <                                node.val = val;
1642 >                            if ((val = mappingFunction.apply(key)) != null)
1643 >                                node = new Node<K,V>(h, key, val, null);
1644                          } finally {
1645 <                            if (val == null)
1421 <                                setTabAt(tab, i, null);
1645 >                            setTabAt(tab, i, node);
1646                          }
1647                      }
1648                  }
1649 <                if (len != 0)
1649 >                if (binCount != 0)
1650                      break;
1651              }
1652 <            else if (f.hash < 0) {
1653 <                if ((fk = f.key) instanceof TreeBin) {
1654 <                    TreeBin t = (TreeBin)fk;
1655 <                    boolean added = false;
1656 <                    t.acquire(0);
1657 <                    try {
1658 <                        if (tabAt(tab, i) == f) {
1659 <                            len = 1;
1660 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1661 <                            if (p != null)
1652 >            else if ((fh = f.hash) == MOVED)
1653 >                tab = helpTransfer(tab, f);
1654 >            else {
1655 >                boolean added = false;
1656 >                synchronized (f) {
1657 >                    if (tabAt(tab, i) == f) {
1658 >                        if (fh >= 0) {
1659 >                            binCount = 1;
1660 >                            for (Node<K,V> e = f;; ++binCount) {
1661 >                                K ek; V ev;
1662 >                                if (e.hash == h &&
1663 >                                    ((ek = e.key) == key ||
1664 >                                     (ek != null && key.equals(ek)))) {
1665 >                                    val = e.val;
1666 >                                    break;
1667 >                                }
1668 >                                Node<K,V> pred = e;
1669 >                                if ((e = e.next) == null) {
1670 >                                    if ((val = mappingFunction.apply(key)) != null) {
1671 >                                        added = true;
1672 >                                        pred.next = new Node<K,V>(h, key, val, null);
1673 >                                    }
1674 >                                    break;
1675 >                                }
1676 >                            }
1677 >                        }
1678 >                        else if (f instanceof TreeBin) {
1679 >                            binCount = 2;
1680 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1681 >                            TreeNode<K,V> r, p;
1682 >                            if ((r = t.root) != null &&
1683 >                                (p = r.findTreeNode(h, key, null)) != null)
1684                                  val = p.val;
1685 <                            else if ((val = mf.apply(k)) != null) {
1685 >                            else if ((val = mappingFunction.apply(key)) != null) {
1686                                  added = true;
1687 <                                len = 2;
1442 <                                t.putTreeNode(h, k, val);
1687 >                                t.putTreeVal(h, key, val);
1688                              }
1689                          }
1445                    } finally {
1446                        t.release(0);
1447                    }
1448                    if (len != 0) {
1449                        if (!added)
1450                            return (V)val;
1451                        break;
1690                      }
1691                  }
1692 <                else
1693 <                    tab = (Node[])fk;
1692 >                if (binCount != 0) {
1693 >                    if (binCount >= TREEIFY_THRESHOLD)
1694 >                        treeifyBin(tab, i);
1695 >                    if (!added)
1696 >                        return val;
1697 >                    break;
1698 >                }
1699              }
1700 +        }
1701 +        if (val != null)
1702 +            addCount(1L, binCount);
1703 +        return val;
1704 +    }
1705 +
1706 +    /**
1707 +     * If the value for the specified key is present, attempts to
1708 +     * compute a new mapping given the key and its current mapped
1709 +     * value.  The entire method invocation is performed atomically.
1710 +     * Some attempted update operations on this map by other threads
1711 +     * may be blocked while computation is in progress, so the
1712 +     * computation should be short and simple, and must not attempt to
1713 +     * update any other mappings of this map.
1714 +     *
1715 +     * @param key key with which a value may be associated
1716 +     * @param remappingFunction the function to compute a value
1717 +     * @return the new value associated with the specified key, or null if none
1718 +     * @throws NullPointerException if the specified key or remappingFunction
1719 +     *         is null
1720 +     * @throws IllegalStateException if the computation detectably
1721 +     *         attempts a recursive update to this map that would
1722 +     *         otherwise never complete
1723 +     * @throws RuntimeException or Error if the remappingFunction does so,
1724 +     *         in which case the mapping is unchanged
1725 +     */
1726 +    public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1727 +        if (key == null || remappingFunction == null)
1728 +            throw new NullPointerException();
1729 +        int h = spread(key.hashCode());
1730 +        V val = null;
1731 +        int delta = 0;
1732 +        int binCount = 0;
1733 +        for (Node<K,V>[] tab = table;;) {
1734 +            Node<K,V> f; int n, i, fh;
1735 +            if (tab == null || (n = tab.length) == 0)
1736 +                tab = initTable();
1737 +            else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1738 +                break;
1739 +            else if ((fh = f.hash) == MOVED)
1740 +                tab = helpTransfer(tab, f);
1741              else {
1742 <                for (Node e = f; e != null; e = e.next) { // prescan
1459 <                    Object ek, ev;
1460 <                    if (e.hash == h && (ev = e.val) != null &&
1461 <                        ((ek = e.key) == k || k.equals(ek)))
1462 <                        return (V)ev;
1463 <                }
1464 <                boolean added = false;
1465 <                synchronized(f) {
1742 >                synchronized (f) {
1743                      if (tabAt(tab, i) == f) {
1744 <                        len = 1;
1745 <                        for (Node e = f;; ++len) {
1746 <                            Object ek, ev;
1747 <                            if (e.hash == h &&
1748 <                                (ev = e.val) != null &&
1749 <                                ((ek = e.key) == k || k.equals(ek))) {
1750 <                                val = ev;
1751 <                                break;
1744 >                        if (fh >= 0) {
1745 >                            binCount = 1;
1746 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1747 >                                K ek;
1748 >                                if (e.hash == h &&
1749 >                                    ((ek = e.key) == key ||
1750 >                                     (ek != null && key.equals(ek)))) {
1751 >                                    val = remappingFunction.apply(key, e.val);
1752 >                                    if (val != null)
1753 >                                        e.val = val;
1754 >                                    else {
1755 >                                        delta = -1;
1756 >                                        Node<K,V> en = e.next;
1757 >                                        if (pred != null)
1758 >                                            pred.next = en;
1759 >                                        else
1760 >                                            setTabAt(tab, i, en);
1761 >                                    }
1762 >                                    break;
1763 >                                }
1764 >                                pred = e;
1765 >                                if ((e = e.next) == null)
1766 >                                    break;
1767                              }
1768 <                            Node last = e;
1769 <                            if ((e = e.next) == null) {
1770 <                                if ((val = mf.apply(k)) != null) {
1771 <                                    added = true;
1772 <                                    last.next = new Node(h, k, val, null);
1773 <                                    if (len >= TREE_THRESHOLD)
1774 <                                        replaceWithTreeBin(tab, i, k);
1768 >                        }
1769 >                        else if (f instanceof TreeBin) {
1770 >                            binCount = 2;
1771 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1772 >                            TreeNode<K,V> r, p;
1773 >                            if ((r = t.root) != null &&
1774 >                                (p = r.findTreeNode(h, key, null)) != null) {
1775 >                                val = remappingFunction.apply(key, p.val);
1776 >                                if (val != null)
1777 >                                    p.val = val;
1778 >                                else {
1779 >                                    delta = -1;
1780 >                                    if (t.removeTreeNode(p))
1781 >                                        setTabAt(tab, i, untreeify(t.first));
1782                                  }
1484                                break;
1783                              }
1784                          }
1785                      }
1786                  }
1787 <                if (len != 0) {
1490 <                    if (!added)
1491 <                        return (V)val;
1787 >                if (binCount != 0)
1788                      break;
1493                }
1789              }
1790          }
1791 <        if (val != null)
1792 <            addCount(1L, len);
1793 <        return (V)val;
1791 >        if (delta != 0)
1792 >            addCount((long)delta, binCount);
1793 >        return val;
1794      }
1795  
1796 <    /** Implementation for compute */
1797 <    @SuppressWarnings("unchecked") private final V internalCompute
1798 <        (K k, boolean onlyIfPresent,
1799 <         BiFun<? super K, ? super V, ? extends V> mf) {
1800 <        if (k == null || mf == null)
1796 >    /**
1797 >     * Attempts to compute a mapping for the specified key and its
1798 >     * current mapped value (or {@code null} if there is no current
1799 >     * mapping). The entire method invocation is performed atomically.
1800 >     * Some attempted update operations on this map by other threads
1801 >     * may be blocked while computation is in progress, so the
1802 >     * computation should be short and simple, and must not attempt to
1803 >     * update any other mappings of this Map.
1804 >     *
1805 >     * @param key key with which the specified value is to be associated
1806 >     * @param remappingFunction the function to compute a value
1807 >     * @return the new value associated with the specified key, or null if none
1808 >     * @throws NullPointerException if the specified key or remappingFunction
1809 >     *         is null
1810 >     * @throws IllegalStateException if the computation detectably
1811 >     *         attempts a recursive update to this map that would
1812 >     *         otherwise never complete
1813 >     * @throws RuntimeException or Error if the remappingFunction does so,
1814 >     *         in which case the mapping is unchanged
1815 >     */
1816 >    public V compute(K key,
1817 >                     BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1818 >        if (key == null || remappingFunction == null)
1819              throw new NullPointerException();
1820 <        int h = spread(k.hashCode());
1821 <        Object val = null;
1820 >        int h = spread(key.hashCode());
1821 >        V val = null;
1822          int delta = 0;
1823 <        int len = 0;
1824 <        for (Node[] tab = table;;) {
1825 <            Node f; int i, fh; Object fk;
1826 <            if (tab == null)
1823 >        int binCount = 0;
1824 >        for (Node<K,V>[] tab = table;;) {
1825 >            Node<K,V> f; int n, i, fh;
1826 >            if (tab == null || (n = tab.length) == 0)
1827                  tab = initTable();
1828 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1829 <                if (onlyIfPresent)
1830 <                    break;
1831 <                Node node = new Node(h, k, null, null);
1832 <                synchronized(node) {
1833 <                    if (casTabAt(tab, i, null, node)) {
1828 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1829 >                Node<K,V> r = new ReservationNode<K,V>();
1830 >                synchronized (r) {
1831 >                    if (casTabAt(tab, i, null, r)) {
1832 >                        binCount = 1;
1833 >                        Node<K,V> node = null;
1834                          try {
1835 <                            len = 1;
1523 <                            if ((val = mf.apply(k, null)) != null) {
1524 <                                node.val = val;
1835 >                            if ((val = remappingFunction.apply(key, null)) != null) {
1836                                  delta = 1;
1837 +                                node = new Node<K,V>(h, key, val, null);
1838                              }
1839                          } finally {
1840 <                            if (delta == 0)
1529 <                                setTabAt(tab, i, null);
1840 >                            setTabAt(tab, i, node);
1841                          }
1842                      }
1843                  }
1844 <                if (len != 0)
1844 >                if (binCount != 0)
1845                      break;
1846              }
1847 <            else if ((fh = f.hash) < 0) {
1848 <                if ((fk = f.key) instanceof TreeBin) {
1849 <                    TreeBin t = (TreeBin)fk;
1850 <                    t.acquire(0);
1851 <                    try {
1852 <                        if (tabAt(tab, i) == f) {
1853 <                            len = 1;
1854 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1855 <                            if (p == null && onlyIfPresent)
1856 <                                break;
1857 <                            Object pv = (p == null) ? null : p.val;
1858 <                            if ((val = mf.apply(k, (V)pv)) != null) {
1847 >            else if ((fh = f.hash) == MOVED)
1848 >                tab = helpTransfer(tab, f);
1849 >            else {
1850 >                synchronized (f) {
1851 >                    if (tabAt(tab, i) == f) {
1852 >                        if (fh >= 0) {
1853 >                            binCount = 1;
1854 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1855 >                                K ek;
1856 >                                if (e.hash == h &&
1857 >                                    ((ek = e.key) == key ||
1858 >                                     (ek != null && key.equals(ek)))) {
1859 >                                    val = remappingFunction.apply(key, e.val);
1860 >                                    if (val != null)
1861 >                                        e.val = val;
1862 >                                    else {
1863 >                                        delta = -1;
1864 >                                        Node<K,V> en = e.next;
1865 >                                        if (pred != null)
1866 >                                            pred.next = en;
1867 >                                        else
1868 >                                            setTabAt(tab, i, en);
1869 >                                    }
1870 >                                    break;
1871 >                                }
1872 >                                pred = e;
1873 >                                if ((e = e.next) == null) {
1874 >                                    val = remappingFunction.apply(key, null);
1875 >                                    if (val != null) {
1876 >                                        delta = 1;
1877 >                                        pred.next =
1878 >                                            new Node<K,V>(h, key, val, null);
1879 >                                    }
1880 >                                    break;
1881 >                                }
1882 >                            }
1883 >                        }
1884 >                        else if (f instanceof TreeBin) {
1885 >                            binCount = 1;
1886 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1887 >                            TreeNode<K,V> r, p;
1888 >                            if ((r = t.root) != null)
1889 >                                p = r.findTreeNode(h, key, null);
1890 >                            else
1891 >                                p = null;
1892 >                            V pv = (p == null) ? null : p.val;
1893 >                            val = remappingFunction.apply(key, pv);
1894 >                            if (val != null) {
1895                                  if (p != null)
1896                                      p.val = val;
1897                                  else {
1551                                    len = 2;
1898                                      delta = 1;
1899 <                                    t.putTreeNode(h, k, val);
1899 >                                    t.putTreeVal(h, key, val);
1900                                  }
1901                              }
1902                              else if (p != null) {
1903                                  delta = -1;
1904 <                                t.deleteTreeNode(p);
1905 <                            }
1560 <                        }
1561 <                    } finally {
1562 <                        t.release(0);
1563 <                    }
1564 <                    if (len != 0)
1565 <                        break;
1566 <                }
1567 <                else
1568 <                    tab = (Node[])fk;
1569 <            }
1570 <            else {
1571 <                synchronized(f) {
1572 <                    if (tabAt(tab, i) == f) {
1573 <                        len = 1;
1574 <                        for (Node e = f, pred = null;; ++len) {
1575 <                            Object ek, ev;
1576 <                            if (e.hash == h &&
1577 <                                (ev = e.val) != null &&
1578 <                                ((ek = e.key) == k || k.equals(ek))) {
1579 <                                val = mf.apply(k, (V)ev);
1580 <                                if (val != null)
1581 <                                    e.val = val;
1582 <                                else {
1583 <                                    delta = -1;
1584 <                                    Node en = e.next;
1585 <                                    if (pred != null)
1586 <                                        pred.next = en;
1587 <                                    else
1588 <                                        setTabAt(tab, i, en);
1589 <                                }
1590 <                                break;
1591 <                            }
1592 <                            pred = e;
1593 <                            if ((e = e.next) == null) {
1594 <                                if (!onlyIfPresent &&
1595 <                                    (val = mf.apply(k, null)) != null) {
1596 <                                    pred.next = new Node(h, k, val, null);
1597 <                                    delta = 1;
1598 <                                    if (len >= TREE_THRESHOLD)
1599 <                                        replaceWithTreeBin(tab, i, k);
1600 <                                }
1601 <                                break;
1904 >                                if (t.removeTreeNode(p))
1905 >                                    setTabAt(tab, i, untreeify(t.first));
1906                              }
1907                          }
1908                      }
1909                  }
1910 <                if (len != 0)
1910 >                if (binCount != 0) {
1911 >                    if (binCount >= TREEIFY_THRESHOLD)
1912 >                        treeifyBin(tab, i);
1913                      break;
1914 +                }
1915              }
1916          }
1917          if (delta != 0)
1918 <            addCount((long)delta, len);
1919 <        return (V)val;
1918 >            addCount((long)delta, binCount);
1919 >        return val;
1920      }
1921  
1922 <    /** Implementation for merge */
1923 <    @SuppressWarnings("unchecked") private final V internalMerge
1924 <        (K k, V v, BiFun<? super V, ? super V, ? extends V> mf) {
1925 <        if (k == null || v == null || mf == null)
1922 >    /**
1923 >     * If the specified key is not already associated with a
1924 >     * (non-null) value, associates it with the given value.
1925 >     * Otherwise, replaces the value with the results of the given
1926 >     * remapping function, or removes if {@code null}. The entire
1927 >     * method invocation is performed atomically.  Some attempted
1928 >     * update operations on this map by other threads may be blocked
1929 >     * while computation is in progress, so the computation should be
1930 >     * short and simple, and must not attempt to update any other
1931 >     * mappings of this Map.
1932 >     *
1933 >     * @param key key with which the specified value is to be associated
1934 >     * @param value the value to use if absent
1935 >     * @param remappingFunction the function to recompute a value if present
1936 >     * @return the new value associated with the specified key, or null if none
1937 >     * @throws NullPointerException if the specified key or the
1938 >     *         remappingFunction is null
1939 >     * @throws RuntimeException or Error if the remappingFunction does so,
1940 >     *         in which case the mapping is unchanged
1941 >     */
1942 >    public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1943 >        if (key == null || value == null || remappingFunction == null)
1944              throw new NullPointerException();
1945 <        int h = spread(k.hashCode());
1946 <        Object val = null;
1945 >        int h = spread(key.hashCode());
1946 >        V val = null;
1947          int delta = 0;
1948 <        int len = 0;
1949 <        for (Node[] tab = table;;) {
1950 <            int i; Node f; Object fk, fv;
1951 <            if (tab == null)
1948 >        int binCount = 0;
1949 >        for (Node<K,V>[] tab = table;;) {
1950 >            Node<K,V> f; int n, i, fh;
1951 >            if (tab == null || (n = tab.length) == 0)
1952                  tab = initTable();
1953 <            else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1954 <                if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1953 >            else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1954 >                if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1955                      delta = 1;
1956 <                    val = v;
1956 >                    val = value;
1957                      break;
1958                  }
1959              }
1960 <            else if (f.hash < 0) {
1961 <                if ((fk = f.key) instanceof TreeBin) {
1962 <                    TreeBin t = (TreeBin)fk;
1963 <                    t.acquire(0);
1964 <                    try {
1965 <                        if (tabAt(tab, i) == f) {
1966 <                            len = 1;
1967 <                            TreeNode p = t.getTreeNode(h, k, t.root);
1968 <                            val = (p == null) ? v : mf.apply((V)p.val, v);
1960 >            else if ((fh = f.hash) == MOVED)
1961 >                tab = helpTransfer(tab, f);
1962 >            else {
1963 >                synchronized (f) {
1964 >                    if (tabAt(tab, i) == f) {
1965 >                        if (fh >= 0) {
1966 >                            binCount = 1;
1967 >                            for (Node<K,V> e = f, pred = null;; ++binCount) {
1968 >                                K ek;
1969 >                                if (e.hash == h &&
1970 >                                    ((ek = e.key) == key ||
1971 >                                     (ek != null && key.equals(ek)))) {
1972 >                                    val = remappingFunction.apply(e.val, value);
1973 >                                    if (val != null)
1974 >                                        e.val = val;
1975 >                                    else {
1976 >                                        delta = -1;
1977 >                                        Node<K,V> en = e.next;
1978 >                                        if (pred != null)
1979 >                                            pred.next = en;
1980 >                                        else
1981 >                                            setTabAt(tab, i, en);
1982 >                                    }
1983 >                                    break;
1984 >                                }
1985 >                                pred = e;
1986 >                                if ((e = e.next) == null) {
1987 >                                    delta = 1;
1988 >                                    val = value;
1989 >                                    pred.next =
1990 >                                        new Node<K,V>(h, key, val, null);
1991 >                                    break;
1992 >                                }
1993 >                            }
1994 >                        }
1995 >                        else if (f instanceof TreeBin) {
1996 >                            binCount = 2;
1997 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
1998 >                            TreeNode<K,V> r = t.root;
1999 >                            TreeNode<K,V> p = (r == null) ? null :
2000 >                                r.findTreeNode(h, key, null);
2001 >                            val = (p == null) ? value :
2002 >                                remappingFunction.apply(p.val, value);
2003                              if (val != null) {
2004                                  if (p != null)
2005                                      p.val = val;
2006                                  else {
1648                                    len = 2;
2007                                      delta = 1;
2008 <                                    t.putTreeNode(h, k, val);
2008 >                                    t.putTreeVal(h, key, val);
2009                                  }
2010                              }
2011                              else if (p != null) {
2012                                  delta = -1;
2013 <                                t.deleteTreeNode(p);
2014 <                            }
1657 <                        }
1658 <                    } finally {
1659 <                        t.release(0);
1660 <                    }
1661 <                    if (len != 0)
1662 <                        break;
1663 <                }
1664 <                else
1665 <                    tab = (Node[])fk;
1666 <            }
1667 <            else {
1668 <                synchronized(f) {
1669 <                    if (tabAt(tab, i) == f) {
1670 <                        len = 1;
1671 <                        for (Node e = f, pred = null;; ++len) {
1672 <                            Object ek, ev;
1673 <                            if (e.hash == h &&
1674 <                                (ev = e.val) != null &&
1675 <                                ((ek = e.key) == k || k.equals(ek))) {
1676 <                                val = mf.apply((V)ev, v);
1677 <                                if (val != null)
1678 <                                    e.val = val;
1679 <                                else {
1680 <                                    delta = -1;
1681 <                                    Node en = e.next;
1682 <                                    if (pred != null)
1683 <                                        pred.next = en;
1684 <                                    else
1685 <                                        setTabAt(tab, i, en);
1686 <                                }
1687 <                                break;
1688 <                            }
1689 <                            pred = e;
1690 <                            if ((e = e.next) == null) {
1691 <                                val = v;
1692 <                                pred.next = new Node(h, k, val, null);
1693 <                                delta = 1;
1694 <                                if (len >= TREE_THRESHOLD)
1695 <                                    replaceWithTreeBin(tab, i, k);
1696 <                                break;
2013 >                                if (t.removeTreeNode(p))
2014 >                                    setTabAt(tab, i, untreeify(t.first));
2015                              }
2016                          }
2017                      }
2018                  }
2019 <                if (len != 0)
2019 >                if (binCount != 0) {
2020 >                    if (binCount >= TREEIFY_THRESHOLD)
2021 >                        treeifyBin(tab, i);
2022                      break;
2023 +                }
2024              }
2025          }
2026          if (delta != 0)
2027 <            addCount((long)delta, len);
2028 <        return (V)val;
2027 >            addCount((long)delta, binCount);
2028 >        return val;
2029      }
2030  
2031 <    /** Implementation for putAll */
2032 <    private final void internalPutAll(Map<?, ?> m) {
2033 <        tryPresize(m.size());
2034 <        long delta = 0L;     // number of uncommitted additions
2035 <        boolean npe = false; // to throw exception on exit for nulls
2036 <        try {                // to clean up counts on other exceptions
2037 <            for (Map.Entry<?, ?> entry : m.entrySet()) {
2038 <                Object k, v;
2039 <                if (entry == null || (k = entry.getKey()) == null ||
2040 <                    (v = entry.getValue()) == null) {
2041 <                    npe = true;
2042 <                    break;
2043 <                }
2044 <                int h = spread(k.hashCode());
2045 <                for (Node[] tab = table;;) {
2046 <                    int i; Node f; int fh; Object fk;
2047 <                    if (tab == null)
2048 <                        tab = initTable();
2049 <                    else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
2050 <                        if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
2051 <                            ++delta;
2052 <                            break;
2053 <                        }
2054 <                    }
2055 <                    else if ((fh = f.hash) < 0) {
2056 <                        if ((fk = f.key) instanceof TreeBin) {
2057 <                            TreeBin t = (TreeBin)fk;
2058 <                            boolean validated = false;
2059 <                            t.acquire(0);
2060 <                            try {
2061 <                                if (tabAt(tab, i) == f) {
2062 <                                    validated = true;
2063 <                                    TreeNode p = t.getTreeNode(h, k, t.root);
2064 <                                    if (p != null)
2065 <                                        p.val = v;
2066 <                                    else {
2067 <                                        t.putTreeNode(h, k, v);
2068 <                                        ++delta;
2069 <                                    }
2070 <                                }
2071 <                            } finally {
2072 <                                t.release(0);
2073 <                            }
2074 <                            if (validated)
2075 <                                break;
2076 <                        }
2077 <                        else
2078 <                            tab = (Node[])fk;
2079 <                    }
2080 <                    else {
2081 <                        int len = 0;
2082 <                        synchronized(f) {
2083 <                            if (tabAt(tab, i) == f) {
2084 <                                len = 1;
2085 <                                for (Node e = f;; ++len) {
2086 <                                    Object ek, ev;
2087 <                                    if (e.hash == h &&
2088 <                                        (ev = e.val) != null &&
2089 <                                        ((ek = e.key) == k || k.equals(ek))) {
2090 <                                        e.val = v;
2091 <                                        break;
2092 <                                    }
2093 <                                    Node last = e;
2094 <                                    if ((e = e.next) == null) {
2095 <                                        ++delta;
2096 <                                        last.next = new Node(h, k, v, null);
2097 <                                        if (len >= TREE_THRESHOLD)
2098 <                                            replaceWithTreeBin(tab, i, k);
2099 <                                        break;
2100 <                                    }
2101 <                                }
2102 <                            }
2103 <                        }
2104 <                        if (len != 0) {
2105 <                            if (len > 1)
2106 <                                addCount(delta, len);
2107 <                            break;
2108 <                        }
2109 <                    }
2110 <                }
2111 <            }
2112 <        } finally {
2113 <            if (delta != 0L)
2114 <                addCount(delta, 2);
2115 <        }
2116 <        if (npe)
2031 >    // Hashtable legacy methods
2032 >
2033 >    /**
2034 >     * Legacy method testing if some key maps into the specified value
2035 >     * in this table.  This method is identical in functionality to
2036 >     * {@link #containsValue(Object)}, and exists solely to ensure
2037 >     * full compatibility with class {@link java.util.Hashtable},
2038 >     * which supported this method prior to introduction of the
2039 >     * Java Collections framework.
2040 >     *
2041 >     * @param  value a value to search for
2042 >     * @return {@code true} if and only if some key maps to the
2043 >     *         {@code value} argument in this table as
2044 >     *         determined by the {@code equals} method;
2045 >     *         {@code false} otherwise
2046 >     * @throws NullPointerException if the specified value is null
2047 >     */
2048 >    @Deprecated public boolean contains(Object value) {
2049 >        return containsValue(value);
2050 >    }
2051 >
2052 >    /**
2053 >     * Returns an enumeration of the keys in this table.
2054 >     *
2055 >     * @return an enumeration of the keys in this table
2056 >     * @see #keySet()
2057 >     */
2058 >    public Enumeration<K> keys() {
2059 >        Node<K,V>[] t;
2060 >        int f = (t = table) == null ? 0 : t.length;
2061 >        return new KeyIterator<K,V>(t, f, 0, f, this);
2062 >    }
2063 >
2064 >    /**
2065 >     * Returns an enumeration of the values in this table.
2066 >     *
2067 >     * @return an enumeration of the values in this table
2068 >     * @see #values()
2069 >     */
2070 >    public Enumeration<V> elements() {
2071 >        Node<K,V>[] t;
2072 >        int f = (t = table) == null ? 0 : t.length;
2073 >        return new ValueIterator<K,V>(t, f, 0, f, this);
2074 >    }
2075 >
2076 >    // ConcurrentHashMapV8-only methods
2077 >
2078 >    /**
2079 >     * Returns the number of mappings. This method should be used
2080 >     * instead of {@link #size} because a ConcurrentHashMapV8 may
2081 >     * contain more mappings than can be represented as an int. The
2082 >     * value returned is an estimate; the actual count may differ if
2083 >     * there are concurrent insertions or removals.
2084 >     *
2085 >     * @return the number of mappings
2086 >     * @since 1.8
2087 >     */
2088 >    public long mappingCount() {
2089 >        long n = sumCount();
2090 >        return (n < 0L) ? 0L : n; // ignore transient negative values
2091 >    }
2092 >
2093 >    /**
2094 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2095 >     * from the given type to {@code Boolean.TRUE}.
2096 >     *
2097 >     * @return the new set
2098 >     * @since 1.8
2099 >     */
2100 >    public static <K> KeySetView<K,Boolean> newKeySet() {
2101 >        return new KeySetView<K,Boolean>
2102 >            (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2103 >    }
2104 >
2105 >    /**
2106 >     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2107 >     * from the given type to {@code Boolean.TRUE}.
2108 >     *
2109 >     * @param initialCapacity The implementation performs internal
2110 >     * sizing to accommodate this many elements.
2111 >     * @return the new set
2112 >     * @throws IllegalArgumentException if the initial capacity of
2113 >     * elements is negative
2114 >     * @since 1.8
2115 >     */
2116 >    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2117 >        return new KeySetView<K,Boolean>
2118 >            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2119 >    }
2120 >
2121 >    /**
2122 >     * Returns a {@link Set} view of the keys in this map, using the
2123 >     * given common mapped value for any additions (i.e., {@link
2124 >     * Collection#add} and {@link Collection#addAll(Collection)}).
2125 >     * This is of course only appropriate if it is acceptable to use
2126 >     * the same value for all additions from this view.
2127 >     *
2128 >     * @param mappedValue the mapped value to use for any additions
2129 >     * @return the set view
2130 >     * @throws NullPointerException if the mappedValue is null
2131 >     */
2132 >    public KeySetView<K,V> keySet(V mappedValue) {
2133 >        if (mappedValue == null)
2134              throw new NullPointerException();
2135 +        return new KeySetView<K,V>(this, mappedValue);
2136      }
2137  
2138 +    /* ---------------- Special Nodes -------------- */
2139 +
2140      /**
2141 <     * Implementation for clear. Steps through each bin, removing all
1801 <     * nodes.
2141 >     * A node inserted at head of bins during transfer operations.
2142       */
2143 <    private final void internalClear() {
2144 <        long delta = 0L; // negative number of deletions
2145 <        int i = 0;
2146 <        Node[] tab = table;
2147 <        while (tab != null && i < tab.length) {
2148 <            Node f = tabAt(tab, i);
2149 <            if (f == null)
2150 <                ++i;
2151 <            else if (f.hash < 0) {
2152 <                Object fk;
2153 <                if ((fk = f.key) instanceof TreeBin) {
2154 <                    TreeBin t = (TreeBin)fk;
2155 <                    t.acquire(0);
2156 <                    try {
2157 <                        if (tabAt(tab, i) == f) {
2158 <                            for (Node p = t.first; p != null; p = p.next) {
2159 <                                if (p.val != null) { // (currently always true)
2160 <                                    p.val = null;
2161 <                                    --delta;
2162 <                                }
2163 <                            }
2164 <                            t.first = null;
2165 <                            t.root = null;
1826 <                            ++i;
1827 <                        }
1828 <                    } finally {
1829 <                        t.release(0);
1830 <                    }
1831 <                }
1832 <                else
1833 <                    tab = (Node[])fk;
1834 <            }
1835 <            else {
1836 <                synchronized(f) {
1837 <                    if (tabAt(tab, i) == f) {
1838 <                        for (Node e = f; e != null; e = e.next) {
1839 <                            if (e.val != null) {  // (currently always true)
1840 <                                e.val = null;
1841 <                                --delta;
1842 <                            }
2143 >    static final class ForwardingNode<K,V> extends Node<K,V> {
2144 >        final Node<K,V>[] nextTable;
2145 >        ForwardingNode(Node<K,V>[] tab) {
2146 >            super(MOVED, null, null, null);
2147 >            this.nextTable = tab;
2148 >        }
2149 >
2150 >        Node<K,V> find(int h, Object k) {
2151 >            // loop to avoid arbitrarily deep recursion on forwarding nodes
2152 >            outer: for (Node<K,V>[] tab = nextTable;;) {
2153 >                Node<K,V> e; int n;
2154 >                if (k == null || tab == null || (n = tab.length) == 0 ||
2155 >                    (e = tabAt(tab, (n - 1) & h)) == null)
2156 >                    return null;
2157 >                for (;;) {
2158 >                    int eh; K ek;
2159 >                    if ((eh = e.hash) == h &&
2160 >                        ((ek = e.key) == k || (ek != null && k.equals(ek))))
2161 >                        return e;
2162 >                    if (eh < 0) {
2163 >                        if (e instanceof ForwardingNode) {
2164 >                            tab = ((ForwardingNode<K,V>)e).nextTable;
2165 >                            continue outer;
2166                          }
2167 <                        setTabAt(tab, i, null);
2168 <                        ++i;
2167 >                        else
2168 >                            return e.find(h, k);
2169                      }
2170 +                    if ((e = e.next) == null)
2171 +                        return null;
2172                  }
2173              }
2174          }
1850        if (delta != 0L)
1851            addCount(delta, -1);
2175      }
2176  
1854    /* ---------------- Table Initialization and Resizing -------------- */
1855
2177      /**
2178 <     * Returns a power of two table size for the given desired capacity.
1858 <     * See Hackers Delight, sec 3.2
2178 >     * A place-holder node used in computeIfAbsent and compute
2179       */
2180 <    private static final int tableSizeFor(int c) {
2181 <        int n = c - 1;
2182 <        n |= n >>> 1;
2183 <        n |= n >>> 2;
2184 <        n |= n >>> 4;
2185 <        n |= n >>> 8;
2186 <        n |= n >>> 16;
2187 <        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
2180 >    static final class ReservationNode<K,V> extends Node<K,V> {
2181 >        ReservationNode() {
2182 >            super(RESERVED, null, null, null);
2183 >        }
2184 >
2185 >        Node<K,V> find(int h, Object k) {
2186 >            return null;
2187 >        }
2188      }
2189  
2190 +    /* ---------------- Table Initialization and Resizing -------------- */
2191 +
2192      /**
2193       * Initializes table, using the size recorded in sizeCtl.
2194       */
2195 <    private final Node[] initTable() {
2196 <        Node[] tab; int sc;
2197 <        while ((tab = table) == null) {
2195 >    private final Node<K,V>[] initTable() {
2196 >        Node<K,V>[] tab; int sc;
2197 >        while ((tab = table) == null || tab.length == 0) {
2198              if ((sc = sizeCtl) < 0)
2199                  Thread.yield(); // lost initialization race; just spin
2200              else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2201                  try {
2202 <                    if ((tab = table) == null) {
2202 >                    if ((tab = table) == null || tab.length == 0) {
2203                          int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2204 <                        tab = table = new Node[n];
2204 >                        @SuppressWarnings({"rawtypes","unchecked"})
2205 >                            Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2206 >                        table = tab = nt;
2207                          sc = n - (n >>> 2);
2208                      }
2209                  } finally {
# Line 1920 | Line 2244 | public class ConcurrentHashMapV8<K, V>
2244              s = sumCount();
2245          }
2246          if (check >= 0) {
2247 <            Node[] tab, nt; int sc;
2247 >            Node<K,V>[] tab, nt; int sc;
2248              while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2249                     tab.length < MAXIMUM_CAPACITY) {
2250                  if (sc < 0) {
# Line 1938 | Line 2262 | public class ConcurrentHashMapV8<K, V>
2262      }
2263  
2264      /**
2265 +     * Helps transfer if a resize is in progress.
2266 +     */
2267 +    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2268 +        Node<K,V>[] nextTab; int sc;
2269 +        if ((f instanceof ForwardingNode) &&
2270 +            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2271 +            if (nextTab == nextTable && tab == table &&
2272 +                transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2273 +                U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2274 +                transfer(tab, nextTab);
2275 +            return nextTab;
2276 +        }
2277 +        return table;
2278 +    }
2279 +
2280 +    /**
2281       * Tries to presize table to accommodate the given number of elements.
2282       *
2283       * @param size number of elements (doesn't need to be perfectly accurate)
# Line 1947 | Line 2287 | public class ConcurrentHashMapV8<K, V>
2287              tableSizeFor(size + (size >>> 1) + 1);
2288          int sc;
2289          while ((sc = sizeCtl) >= 0) {
2290 <            Node[] tab = table; int n;
2290 >            Node<K,V>[] tab = table; int n;
2291              if (tab == null || (n = tab.length) == 0) {
2292                  n = (sc > c) ? sc : c;
2293                  if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2294                      try {
2295                          if (table == tab) {
2296 <                            table = new Node[n];
2296 >                            @SuppressWarnings({"rawtypes","unchecked"})
2297 >                                Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2298 >                            table = nt;
2299                              sc = n - (n >>> 2);
2300                          }
2301                      } finally {
# Line 1969 | Line 2311 | public class ConcurrentHashMapV8<K, V>
2311          }
2312      }
2313  
2314 <    /*
2314 >    /**
2315       * Moves and/or copies the nodes in each bin to new table. See
2316       * above for explanation.
2317       */
2318 <    private final void transfer(Node[] tab, Node[] nextTab) {
2318 >    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2319          int n = tab.length, stride;
2320          if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2321              stride = MIN_TRANSFER_STRIDE; // subdivide range
2322          if (nextTab == null) {            // initiating
2323              try {
2324 <                nextTab = new Node[n << 1];
2325 <            } catch(Throwable ex) {       // try to cope with OOME
2324 >                @SuppressWarnings({"rawtypes","unchecked"})
2325 >                    Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2326 >                nextTab = nt;
2327 >            } catch (Throwable ex) {      // try to cope with OOME
2328                  sizeCtl = Integer.MAX_VALUE;
2329                  return;
2330              }
2331              nextTable = nextTab;
2332              transferOrigin = n;
2333              transferIndex = n;
2334 <            Node rev = new Node(MOVED, tab, null, null);
2334 >            ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2335              for (int k = n; k > 0;) {    // progressively reveal ready slots
2336 <                int nextk = k > stride? k - stride : 0;
2336 >                int nextk = (k > stride) ? k - stride : 0;
2337                  for (int m = nextk; m < k; ++m)
2338                      nextTab[m] = rev;
2339                  for (int m = n + nextk; m < n + k; ++m)
# Line 1998 | Line 2342 | public class ConcurrentHashMapV8<K, V>
2342              }
2343          }
2344          int nextn = nextTab.length;
2345 <        Node fwd = new Node(MOVED, nextTab, null, null);
2345 >        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2346          boolean advance = true;
2347 +        boolean finishing = false; // to ensure sweep before committing nextTab
2348          for (int i = 0, bound = 0;;) {
2349 <            int nextIndex, nextBound; Node f; Object fk;
2349 >            int nextIndex, nextBound, fh; Node<K,V> f;
2350              while (advance) {
2351 <                if (--i >= bound)
2351 >                if (--i >= bound || finishing)
2352                      advance = false;
2353                  else if ((nextIndex = transferIndex) <= transferOrigin) {
2354                      i = -1;
# Line 2011 | Line 2356 | public class ConcurrentHashMapV8<K, V>
2356                  }
2357                  else if (U.compareAndSwapInt
2358                           (this, TRANSFERINDEX, nextIndex,
2359 <                          nextBound = (nextIndex > stride?
2359 >                          nextBound = (nextIndex > stride ?
2360                                         nextIndex - stride : 0))) {
2361                      bound = nextBound;
2362                      i = nextIndex - 1;
# Line 2019 | Line 2364 | public class ConcurrentHashMapV8<K, V>
2364                  }
2365              }
2366              if (i < 0 || i >= n || i + n >= nextn) {
2367 +                if (finishing) {
2368 +                    nextTable = null;
2369 +                    table = nextTab;
2370 +                    sizeCtl = (n << 1) - (n >>> 1);
2371 +                    return;
2372 +                }
2373                  for (int sc;;) {
2374                      if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2375 <                        if (sc == -1) {
2376 <                            nextTable = null;
2377 <                            table = nextTab;
2378 <                            sizeCtl = (n << 1) - (n >>> 1);
2379 <                        }
2029 <                        return;
2375 >                        if (sc != -1)
2376 >                            return;
2377 >                        finishing = advance = true;
2378 >                        i = n; // recheck before commit
2379 >                        break;
2380                      }
2381                  }
2382              }
# Line 2037 | Line 2387 | public class ConcurrentHashMapV8<K, V>
2387                      advance = true;
2388                  }
2389              }
2390 <            else if (f.hash >= 0) {
2391 <                synchronized(f) {
2390 >            else if ((fh = f.hash) == MOVED)
2391 >                advance = true; // already processed
2392 >            else {
2393 >                synchronized (f) {
2394                      if (tabAt(tab, i) == f) {
2395 <                        int runBit = f.hash & n;
2396 <                        Node lastRun = f, lo = null, hi = null;
2397 <                        for (Node p = f.next; p != null; p = p.next) {
2398 <                            int b = p.hash & n;
2399 <                            if (b != runBit) {
2400 <                                runBit = b;
2401 <                                lastRun = p;
2395 >                        Node<K,V> ln, hn;
2396 >                        if (fh >= 0) {
2397 >                            int runBit = fh & n;
2398 >                            Node<K,V> lastRun = f;
2399 >                            for (Node<K,V> p = f.next; p != null; p = p.next) {
2400 >                                int b = p.hash & n;
2401 >                                if (b != runBit) {
2402 >                                    runBit = b;
2403 >                                    lastRun = p;
2404 >                                }
2405                              }
2406 <                        }
2407 <                        if (runBit == 0)
2408 <                            lo = lastRun;
2054 <                        else
2055 <                            hi = lastRun;
2056 <                        for (Node p = f; p != lastRun; p = p.next) {
2057 <                            int ph = p.hash;
2058 <                            Object pk = p.key, pv = p.val;
2059 <                            if ((ph & n) == 0)
2060 <                                lo = new Node(ph, pk, pv, lo);
2061 <                            else
2062 <                                hi = new Node(ph, pk, pv, hi);
2063 <                        }
2064 <                        setTabAt(nextTab, i, lo);
2065 <                        setTabAt(nextTab, i + n, hi);
2066 <                        setTabAt(tab, i, fwd);
2067 <                        advance = true;
2068 <                    }
2069 <                }
2070 <            }
2071 <            else if ((fk = f.key) instanceof TreeBin) {
2072 <                TreeBin t = (TreeBin)fk;
2073 <                t.acquire(0);
2074 <                try {
2075 <                    if (tabAt(tab, i) == f) {
2076 <                        TreeBin lt = new TreeBin();
2077 <                        TreeBin ht = new TreeBin();
2078 <                        int lc = 0, hc = 0;
2079 <                        for (Node e = t.first; e != null; e = e.next) {
2080 <                            int h = e.hash;
2081 <                            Object k = e.key, v = e.val;
2082 <                            if ((h & n) == 0) {
2083 <                                ++lc;
2084 <                                lt.putTreeNode(h, k, v);
2406 >                            if (runBit == 0) {
2407 >                                ln = lastRun;
2408 >                                hn = null;
2409                              }
2410                              else {
2411 <                                ++hc;
2412 <                                ht.putTreeNode(h, k, v);
2411 >                                hn = lastRun;
2412 >                                ln = null;
2413                              }
2414 +                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
2415 +                                int ph = p.hash; K pk = p.key; V pv = p.val;
2416 +                                if ((ph & n) == 0)
2417 +                                    ln = new Node<K,V>(ph, pk, pv, ln);
2418 +                                else
2419 +                                    hn = new Node<K,V>(ph, pk, pv, hn);
2420 +                            }
2421 +                            setTabAt(nextTab, i, ln);
2422 +                            setTabAt(nextTab, i + n, hn);
2423 +                            setTabAt(tab, i, fwd);
2424 +                            advance = true;
2425                          }
2426 <                        Node ln, hn; // throw away trees if too small
2427 <                        if (lc < TREE_THRESHOLD) {
2428 <                            ln = null;
2429 <                            for (Node p = lt.first; p != null; p = p.next)
2430 <                                ln = new Node(p.hash, p.key, p.val, ln);
2431 <                        }
2432 <                        else
2433 <                            ln = new Node(MOVED, lt, null, null);
2434 <                        setTabAt(nextTab, i, ln);
2435 <                        if (hc < TREE_THRESHOLD) {
2436 <                            hn = null;
2437 <                            for (Node p = ht.first; p != null; p = p.next)
2438 <                                hn = new Node(p.hash, p.key, p.val, hn);
2426 >                        else if (f instanceof TreeBin) {
2427 >                            TreeBin<K,V> t = (TreeBin<K,V>)f;
2428 >                            TreeNode<K,V> lo = null, loTail = null;
2429 >                            TreeNode<K,V> hi = null, hiTail = null;
2430 >                            int lc = 0, hc = 0;
2431 >                            for (Node<K,V> e = t.first; e != null; e = e.next) {
2432 >                                int h = e.hash;
2433 >                                TreeNode<K,V> p = new TreeNode<K,V>
2434 >                                    (h, e.key, e.val, null, null);
2435 >                                if ((h & n) == 0) {
2436 >                                    if ((p.prev = loTail) == null)
2437 >                                        lo = p;
2438 >                                    else
2439 >                                        loTail.next = p;
2440 >                                    loTail = p;
2441 >                                    ++lc;
2442 >                                }
2443 >                                else {
2444 >                                    if ((p.prev = hiTail) == null)
2445 >                                        hi = p;
2446 >                                    else
2447 >                                        hiTail.next = p;
2448 >                                    hiTail = p;
2449 >                                    ++hc;
2450 >                                }
2451 >                            }
2452 >                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2453 >                                (hc != 0) ? new TreeBin<K,V>(lo) : t;
2454 >                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2455 >                                (lc != 0) ? new TreeBin<K,V>(hi) : t;
2456 >                            setTabAt(nextTab, i, ln);
2457 >                            setTabAt(nextTab, i + n, hn);
2458 >                            setTabAt(tab, i, fwd);
2459 >                            advance = true;
2460                          }
2105                        else
2106                            hn = new Node(MOVED, ht, null, null);
2107                        setTabAt(nextTab, i + n, hn);
2108                        setTabAt(tab, i, fwd);
2109                        advance = true;
2461                      }
2111                } finally {
2112                    t.release(0);
2462                  }
2463              }
2115            else
2116                advance = true; // already processed
2464          }
2465      }
2466  
2467 <    /* ---------------- Counter support -------------- */
2467 >    /* ---------------- Conversion from/to TreeBins -------------- */
2468  
2469 <    final long sumCount() {
2470 <        CounterCell[] as = counterCells; CounterCell a;
2471 <        long sum = baseCount;
2472 <        if (as != null) {
2473 <            for (int i = 0; i < as.length; ++i) {
2474 <                if ((a = as[i]) != null)
2475 <                    sum += a.value;
2469 >    /**
2470 >     * Replaces all linked nodes in bin at given index unless table is
2471 >     * too small, in which case resizes instead.
2472 >     */
2473 >    private final void treeifyBin(Node<K,V>[] tab, int index) {
2474 >        Node<K,V> b; int n, sc;
2475 >        if (tab != null) {
2476 >            if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2477 >                if (tab == table && (sc = sizeCtl) >= 0 &&
2478 >                    U.compareAndSwapInt(this, SIZECTL, sc, -2))
2479 >                    transfer(tab, null);
2480              }
2481 <        }
2482 <        return sum;
2483 <    }
2484 <
2485 <    // See LongAdder version for explanation
2486 <    private final void fullAddCount(long x, CounterHashCode hc,
2487 <                                    boolean wasUncontended) {
2488 <        int h;
2489 <        if (hc == null) {
2490 <            hc = new CounterHashCode();
2491 <            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
2492 <            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
2493 <            threadCounterHashCode.set(hc);
2143 <        }
2144 <        else
2145 <            h = hc.code;
2146 <        boolean collide = false;                // True if last slot nonempty
2147 <        for (;;) {
2148 <            CounterCell[] as; CounterCell a; int n; long v;
2149 <            if ((as = counterCells) != null && (n = as.length) > 0) {
2150 <                if ((a = as[(n - 1) & h]) == null) {
2151 <                    if (counterBusy == 0) {            // Try to attach new Cell
2152 <                        CounterCell r = new CounterCell(x); // Optimistic create
2153 <                        if (counterBusy == 0 &&
2154 <                            U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2155 <                            boolean created = false;
2156 <                            try {               // Recheck under lock
2157 <                                CounterCell[] rs; int m, j;
2158 <                                if ((rs = counterCells) != null &&
2159 <                                    (m = rs.length) > 0 &&
2160 <                                    rs[j = (m - 1) & h] == null) {
2161 <                                    rs[j] = r;
2162 <                                    created = true;
2163 <                                }
2164 <                            } finally {
2165 <                                counterBusy = 0;
2166 <                            }
2167 <                            if (created)
2168 <                                break;
2169 <                            continue;           // Slot is now non-empty
2170 <                        }
2171 <                    }
2172 <                    collide = false;
2173 <                }
2174 <                else if (!wasUncontended)       // CAS already known to fail
2175 <                    wasUncontended = true;      // Continue after rehash
2176 <                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
2177 <                    break;
2178 <                else if (counterCells != as || n >= NCPU)
2179 <                    collide = false;            // At max size or stale
2180 <                else if (!collide)
2181 <                    collide = true;
2182 <                else if (counterBusy == 0 &&
2183 <                         U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2184 <                    try {
2185 <                        if (counterCells == as) {// Expand table unless stale
2186 <                            CounterCell[] rs = new CounterCell[n << 1];
2187 <                            for (int i = 0; i < n; ++i)
2188 <                                rs[i] = as[i];
2189 <                            counterCells = rs;
2481 >            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2482 >                synchronized (b) {
2483 >                    if (tabAt(tab, index) == b) {
2484 >                        TreeNode<K,V> hd = null, tl = null;
2485 >                        for (Node<K,V> e = b; e != null; e = e.next) {
2486 >                            TreeNode<K,V> p =
2487 >                                new TreeNode<K,V>(e.hash, e.key, e.val,
2488 >                                                  null, null);
2489 >                            if ((p.prev = tl) == null)
2490 >                                hd = p;
2491 >                            else
2492 >                                tl.next = p;
2493 >                            tl = p;
2494                          }
2495 <                    } finally {
2192 <                        counterBusy = 0;
2193 <                    }
2194 <                    collide = false;
2195 <                    continue;                   // Retry with expanded table
2196 <                }
2197 <                h ^= h << 13;                   // Rehash
2198 <                h ^= h >>> 17;
2199 <                h ^= h << 5;
2200 <            }
2201 <            else if (counterBusy == 0 && counterCells == as &&
2202 <                     U.compareAndSwapInt(this, COUNTERBUSY, 0, 1)) {
2203 <                boolean init = false;
2204 <                try {                           // Initialize table
2205 <                    if (counterCells == as) {
2206 <                        CounterCell[] rs = new CounterCell[2];
2207 <                        rs[h & 1] = new CounterCell(x);
2208 <                        counterCells = rs;
2209 <                        init = true;
2495 >                        setTabAt(tab, index, new TreeBin<K,V>(hd));
2496                      }
2211                } finally {
2212                    counterBusy = 0;
2497                  }
2214                if (init)
2215                    break;
2498              }
2217            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
2218                break;                          // Fall back on using base
2499          }
2220        hc.code = h;                            // Record index for next time
2500      }
2501  
2502 <    /* ----------------Table Traversal -------------- */
2502 >    /**
2503 >     * Returns a list on non-TreeNodes replacing those in given list.
2504 >     */
2505 >    static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2506 >        Node<K,V> hd = null, tl = null;
2507 >        for (Node<K,V> q = b; q != null; q = q.next) {
2508 >            Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2509 >            if (tl == null)
2510 >                hd = p;
2511 >            else
2512 >                tl.next = p;
2513 >            tl = p;
2514 >        }
2515 >        return hd;
2516 >    }
2517 >
2518 >    /* ---------------- TreeNodes -------------- */
2519  
2520      /**
2521 <     * Encapsulates traversal for methods such as containsValue; also
2522 <     * serves as a base class for other iterators and bulk tasks.
2523 <     *
2524 <     * At each step, the iterator snapshots the key ("nextKey") and
2525 <     * value ("nextVal") of a valid node (i.e., one that, at point of
2526 <     * snapshot, has a non-null user value). Because val fields can
2527 <     * change (including to null, indicating deletion), field nextVal
2528 <     * might not be accurate at point of use, but still maintains the
2234 <     * weak consistency property of holding a value that was once
2235 <     * valid. To support iterator.remove, the nextKey field is not
2236 <     * updated (nulled out) when the iterator cannot advance.
2237 <     *
2238 <     * Internal traversals directly access these fields, as in:
2239 <     * {@code while (it.advance() != null) { process(it.nextKey); }}
2240 <     *
2241 <     * Exported iterators must track whether the iterator has advanced
2242 <     * (in hasNext vs next) (by setting/checking/nulling field
2243 <     * nextVal), and then extract key, value, or key-value pairs as
2244 <     * return values of next().
2245 <     *
2246 <     * The iterator visits once each still-valid node that was
2247 <     * reachable upon iterator construction. It might miss some that
2248 <     * were added to a bin after the bin was visited, which is OK wrt
2249 <     * consistency guarantees. Maintaining this property in the face
2250 <     * of possible ongoing resizes requires a fair amount of
2251 <     * bookkeeping state that is difficult to optimize away amidst
2252 <     * volatile accesses.  Even so, traversal maintains reasonable
2253 <     * throughput.
2254 <     *
2255 <     * Normally, iteration proceeds bin-by-bin traversing lists.
2256 <     * However, if the table has been resized, then all future steps
2257 <     * must traverse both the bin at the current index as well as at
2258 <     * (index + baseSize); and so on for further resizings. To
2259 <     * paranoically cope with potential sharing by users of iterators
2260 <     * across threads, iteration terminates if a bounds checks fails
2261 <     * for a table read.
2262 <     *
2263 <     * This class extends CountedCompleter to streamline parallel
2264 <     * iteration in bulk operations. This adds only a few fields of
2265 <     * space overhead, which is small enough in cases where it is not
2266 <     * needed to not worry about it.  Because CountedCompleter is
2267 <     * Serializable, but iterators need not be, we need to add warning
2268 <     * suppressions.
2269 <     */
2270 <    @SuppressWarnings("serial") static class Traverser<K,V,R>
2271 <        extends CountedCompleter<R> {
2272 <        final ConcurrentHashMapV8<K, V> map;
2273 <        Node next;           // the next entry to use
2274 <        Object nextKey;      // cached key field of next
2275 <        Object nextVal;      // cached val field of next
2276 <        Node[] tab;          // current table; updated if resized
2277 <        int index;           // index of bin to use next
2278 <        int baseIndex;       // current index of initial table
2279 <        int baseLimit;       // index bound for initial table
2280 <        int baseSize;        // initial table size
2281 <        int batch;           // split control
2521 >     * Nodes for use in TreeBins
2522 >     */
2523 >    static final class TreeNode<K,V> extends Node<K,V> {
2524 >        TreeNode<K,V> parent;  // red-black tree links
2525 >        TreeNode<K,V> left;
2526 >        TreeNode<K,V> right;
2527 >        TreeNode<K,V> prev;    // needed to unlink next upon deletion
2528 >        boolean red;
2529  
2530 <        /** Creates iterator for all entries in the table. */
2531 <        Traverser(ConcurrentHashMapV8<K, V> map) {
2532 <            this.map = map;
2530 >        TreeNode(int hash, K key, V val, Node<K,V> next,
2531 >                 TreeNode<K,V> parent) {
2532 >            super(hash, key, val, next);
2533 >            this.parent = parent;
2534          }
2535  
2536 <        /** Creates iterator for split() methods and task constructors */
2537 <        Traverser(ConcurrentHashMapV8<K,V> map, Traverser<K,V,?> it, int batch) {
2290 <            super(it);
2291 <            this.batch = batch;
2292 <            if ((this.map = map) != null && it != null) { // split parent
2293 <                Node[] t;
2294 <                if ((t = it.tab) == null &&
2295 <                    (t = it.tab = map.table) != null)
2296 <                    it.baseLimit = it.baseSize = t.length;
2297 <                this.tab = t;
2298 <                this.baseSize = it.baseSize;
2299 <                int hi = this.baseLimit = it.baseLimit;
2300 <                it.baseLimit = this.index = this.baseIndex =
2301 <                    (hi + it.baseIndex + 1) >>> 1;
2302 <            }
2536 >        Node<K,V> find(int h, Object k) {
2537 >            return findTreeNode(h, k, null);
2538          }
2539  
2540          /**
2541 <         * Advances next; returns nextVal or null if terminated.
2542 <         * See above for explanation.
2541 >         * Returns the TreeNode (or null if not found) for the given key
2542 >         * starting at given root.
2543           */
2544 <        final Object advance() {
2545 <            Node e = next;
2546 <            Object ev = null;
2547 <            outer: do {
2548 <                if (e != null)                  // advance past used/skipped node
2549 <                    e = e.next;
2550 <                while (e == null) {             // get to next non-null bin
2551 <                    ConcurrentHashMapV8<K, V> m;
2552 <                    Node[] t; int b, i, n; Object ek; // checks must use locals
2553 <                    if ((t = tab) != null)
2554 <                        n = t.length;
2555 <                    else if ((m = map) != null && (t = tab = m.table) != null)
2556 <                        n = baseLimit = baseSize = t.length;
2544 >        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2545 >            if (k != null) {
2546 >                TreeNode<K,V> p = this;
2547 >                do  {
2548 >                    int ph, dir; K pk; TreeNode<K,V> q;
2549 >                    TreeNode<K,V> pl = p.left, pr = p.right;
2550 >                    if ((ph = p.hash) > h)
2551 >                        p = pl;
2552 >                    else if (ph < h)
2553 >                        p = pr;
2554 >                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2555 >                        return p;
2556 >                    else if (pl == null)
2557 >                        p = pr;
2558 >                    else if (pr == null)
2559 >                        p = pl;
2560 >                    else if ((kc != null ||
2561 >                              (kc = comparableClassFor(k)) != null) &&
2562 >                             (dir = compareComparables(kc, k, pk)) != 0)
2563 >                        p = (dir < 0) ? pl : pr;
2564 >                    else if ((q = pr.findTreeNode(h, k, kc)) != null)
2565 >                        return q;
2566                      else
2567 <                        break outer;
2568 <                    if ((b = baseIndex) >= baseLimit ||
2569 <                        (i = index) < 0 || i >= n)
2570 <                        break outer;
2327 <                    if ((e = tabAt(t, i)) != null && e.hash < 0) {
2328 <                        if ((ek = e.key) instanceof TreeBin)
2329 <                            e = ((TreeBin)ek).first;
2330 <                        else {
2331 <                            tab = (Node[])ek;
2332 <                            continue;           // restarts due to null val
2333 <                        }
2334 <                    }                           // visit upper slots if present
2335 <                    index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2336 <                }
2337 <                nextKey = e.key;
2338 <            } while ((ev = e.val) == null);    // skip deleted or special nodes
2339 <            next = e;
2340 <            return nextVal = ev;
2567 >                        p = pl;
2568 >                } while (p != null);
2569 >            }
2570 >            return null;
2571          }
2572 +    }
2573  
2574 <        public final void remove() {
2344 <            Object k = nextKey;
2345 <            if (k == null && (advance() == null || (k = nextKey) == null))
2346 <                throw new IllegalStateException();
2347 <            map.internalReplace(k, null, null);
2348 <        }
2574 >    /* ---------------- TreeBins -------------- */
2575  
2576 <        public final boolean hasNext() {
2577 <            return nextVal != null || advance() != null;
2576 >    /**
2577 >     * TreeNodes used at the heads of bins. TreeBins do not hold user
2578 >     * keys or values, but instead point to list of TreeNodes and
2579 >     * their root. They also maintain a parasitic read-write lock
2580 >     * forcing writers (who hold bin lock) to wait for readers (who do
2581 >     * not) to complete before tree restructuring operations.
2582 >     */
2583 >    static final class TreeBin<K,V> extends Node<K,V> {
2584 >        TreeNode<K,V> root;
2585 >        volatile TreeNode<K,V> first;
2586 >        volatile Thread waiter;
2587 >        volatile int lockState;
2588 >        // values for lockState
2589 >        static final int WRITER = 1; // set while holding write lock
2590 >        static final int WAITER = 2; // set when waiting for write lock
2591 >        static final int READER = 4; // increment value for setting read lock
2592 >
2593 >        /**
2594 >         * Tie-breaking utility for ordering insertions when equal
2595 >         * hashCodes and non-comparable. We don't require a total
2596 >         * order, just a consistent insertion rule to maintain
2597 >         * equivalence across rebalancings. Tie-breaking further than
2598 >         * necessary simplifies testing a bit.
2599 >         */
2600 >        static int tieBreakOrder(Object a, Object b) {
2601 >            int d;
2602 >            if (a == null || b == null ||
2603 >                (d = a.getClass().getName().
2604 >                 compareTo(b.getClass().getName())) == 0)
2605 >                d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2606 >                     -1 : 1);
2607 >            return d;
2608          }
2609  
2610 <        public final boolean hasMoreElements() { return hasNext(); }
2611 <
2612 <        public void compute() { } // default no-op CountedCompleter body
2610 >        /**
2611 >         * Creates bin with initial set of nodes headed by b.
2612 >         */
2613 >        TreeBin(TreeNode<K,V> b) {
2614 >            super(TREEBIN, null, null, null);
2615 >            this.first = b;
2616 >            TreeNode<K,V> r = null;
2617 >            for (TreeNode<K,V> x = b, next; x != null; x = next) {
2618 >                next = (TreeNode<K,V>)x.next;
2619 >                x.left = x.right = null;
2620 >                if (r == null) {
2621 >                    x.parent = null;
2622 >                    x.red = false;
2623 >                    r = x;
2624 >                }
2625 >                else {
2626 >                    K k = x.key;
2627 >                    int h = x.hash;
2628 >                    Class<?> kc = null;
2629 >                    for (TreeNode<K,V> p = r;;) {
2630 >                        int dir, ph;
2631 >                        K pk = p.key;
2632 >                        if ((ph = p.hash) > h)
2633 >                            dir = -1;
2634 >                        else if (ph < h)
2635 >                            dir = 1;
2636 >                        else if ((kc == null &&
2637 >                                  (kc = comparableClassFor(k)) == null) ||
2638 >                                 (dir = compareComparables(kc, k, pk)) == 0)
2639 >                            dir = tieBreakOrder(k, pk);
2640 >                            TreeNode<K,V> xp = p;
2641 >                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
2642 >                            x.parent = xp;
2643 >                            if (dir <= 0)
2644 >                                xp.left = x;
2645 >                            else
2646 >                                xp.right = x;
2647 >                            r = balanceInsertion(r, x);
2648 >                            break;
2649 >                        }
2650 >                    }
2651 >                }
2652 >            }
2653 >            this.root = r;
2654 >            assert checkInvariants(root);
2655 >        }
2656  
2657          /**
2658 <         * Returns a batch value > 0 if this task should (and must) be
2360 <         * split, if so, adding to pending count, and in any case
2361 <         * updating batch value. The initial batch value is approx
2362 <         * exp2 of the number of times (minus one) to split task by
2363 <         * two before executing leaf action. This value is faster to
2364 <         * compute and more convenient to use as a guide to splitting
2365 <         * than is the depth, since it is used while dividing by two
2366 <         * anyway.
2658 >         * Acquires write lock for tree restructuring.
2659           */
2660 <        final int preSplit() {
2661 <            ConcurrentHashMapV8<K, V> m; int b; Node[] t;  ForkJoinPool pool;
2662 <            if ((b = batch) < 0 && (m = map) != null) { // force initialization
2371 <                if ((t = tab) == null && (t = tab = m.table) != null)
2372 <                    baseLimit = baseSize = t.length;
2373 <                if (t != null) {
2374 <                    long n = m.sumCount();
2375 <                    int par = ((pool = getPool()) == null) ?
2376 <                        ForkJoinPool.getCommonPoolParallelism() :
2377 <                        pool.getParallelism();
2378 <                    int sp = par << 3; // slack of 8
2379 <                    b = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
2380 <                }
2381 <            }
2382 <            b = (b <= 1 || baseIndex == baseLimit) ? 0 : (b >>> 1);
2383 <            if ((batch = b) > 0)
2384 <                addToPendingCount(1);
2385 <            return b;
2660 >        private final void lockRoot() {
2661 >            if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2662 >                contendedLock(); // offload to separate method
2663          }
2664  
2665 <    }
2666 <
2667 <    /* ---------------- Public operations -------------- */
2668 <
2669 <    /**
2393 <     * Creates a new, empty map with the default initial table size (16).
2394 <     */
2395 <    public ConcurrentHashMapV8() {
2396 <    }
2397 <
2398 <    /**
2399 <     * Creates a new, empty map with an initial table size
2400 <     * accommodating the specified number of elements without the need
2401 <     * to dynamically resize.
2402 <     *
2403 <     * @param initialCapacity The implementation performs internal
2404 <     * sizing to accommodate this many elements.
2405 <     * @throws IllegalArgumentException if the initial capacity of
2406 <     * elements is negative
2407 <     */
2408 <    public ConcurrentHashMapV8(int initialCapacity) {
2409 <        if (initialCapacity < 0)
2410 <            throw new IllegalArgumentException();
2411 <        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2412 <                   MAXIMUM_CAPACITY :
2413 <                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2414 <        this.sizeCtl = cap;
2415 <    }
2416 <
2417 <    /**
2418 <     * Creates a new map with the same mappings as the given map.
2419 <     *
2420 <     * @param m the map
2421 <     */
2422 <    public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2423 <        this.sizeCtl = DEFAULT_CAPACITY;
2424 <        internalPutAll(m);
2425 <    }
2426 <
2427 <    /**
2428 <     * Creates a new, empty map with an initial table size based on
2429 <     * the given number of elements ({@code initialCapacity}) and
2430 <     * initial table density ({@code loadFactor}).
2431 <     *
2432 <     * @param initialCapacity the initial capacity. The implementation
2433 <     * performs internal sizing to accommodate this many elements,
2434 <     * given the specified load factor.
2435 <     * @param loadFactor the load factor (table density) for
2436 <     * establishing the initial table size
2437 <     * @throws IllegalArgumentException if the initial capacity of
2438 <     * elements is negative or the load factor is nonpositive
2439 <     *
2440 <     * @since 1.6
2441 <     */
2442 <    public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2443 <        this(initialCapacity, loadFactor, 1);
2444 <    }
2445 <
2446 <    /**
2447 <     * Creates a new, empty map with an initial table size based on
2448 <     * the given number of elements ({@code initialCapacity}), table
2449 <     * density ({@code loadFactor}), and number of concurrently
2450 <     * updating threads ({@code concurrencyLevel}).
2451 <     *
2452 <     * @param initialCapacity the initial capacity. The implementation
2453 <     * performs internal sizing to accommodate this many elements,
2454 <     * given the specified load factor.
2455 <     * @param loadFactor the load factor (table density) for
2456 <     * establishing the initial table size
2457 <     * @param concurrencyLevel the estimated number of concurrently
2458 <     * updating threads. The implementation may use this value as
2459 <     * a sizing hint.
2460 <     * @throws IllegalArgumentException if the initial capacity is
2461 <     * negative or the load factor or concurrencyLevel are
2462 <     * nonpositive
2463 <     */
2464 <    public ConcurrentHashMapV8(int initialCapacity,
2465 <                               float loadFactor, int concurrencyLevel) {
2466 <        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2467 <            throw new IllegalArgumentException();
2468 <        if (initialCapacity < concurrencyLevel)   // Use at least as many bins
2469 <            initialCapacity = concurrencyLevel;   // as estimated threads
2470 <        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2471 <        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2472 <            MAXIMUM_CAPACITY : tableSizeFor((int)size);
2473 <        this.sizeCtl = cap;
2474 <    }
2475 <
2476 <    /**
2477 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2478 <     * from the given type to {@code Boolean.TRUE}.
2479 <     *
2480 <     * @return the new set
2481 <     */
2482 <    public static <K> KeySetView<K,Boolean> newKeySet() {
2483 <        return new KeySetView<K,Boolean>(new ConcurrentHashMapV8<K,Boolean>(),
2484 <                                      Boolean.TRUE);
2485 <    }
2486 <
2487 <    /**
2488 <     * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2489 <     * from the given type to {@code Boolean.TRUE}.
2490 <     *
2491 <     * @param initialCapacity The implementation performs internal
2492 <     * sizing to accommodate this many elements.
2493 <     * @throws IllegalArgumentException if the initial capacity of
2494 <     * elements is negative
2495 <     * @return the new set
2496 <     */
2497 <    public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2498 <        return new KeySetView<K,Boolean>
2499 <            (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2500 <    }
2501 <
2502 <    /**
2503 <     * {@inheritDoc}
2504 <     */
2505 <    public boolean isEmpty() {
2506 <        return sumCount() <= 0L; // ignore transient negative values
2507 <    }
2508 <
2509 <    /**
2510 <     * {@inheritDoc}
2511 <     */
2512 <    public int size() {
2513 <        long n = sumCount();
2514 <        return ((n < 0L) ? 0 :
2515 <                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2516 <                (int)n);
2517 <    }
2518 <
2519 <    /**
2520 <     * Returns the number of mappings. This method should be used
2521 <     * instead of {@link #size} because a ConcurrentHashMapV8 may
2522 <     * contain more mappings than can be represented as an int. The
2523 <     * value returned is an estimate; the actual count may differ if
2524 <     * there are concurrent insertions or removals.
2525 <     *
2526 <     * @return the number of mappings
2527 <     */
2528 <    public long mappingCount() {
2529 <        long n = sumCount();
2530 <        return (n < 0L) ? 0L : n; // ignore transient negative values
2531 <    }
2532 <
2533 <    /**
2534 <     * Returns the value to which the specified key is mapped,
2535 <     * or {@code null} if this map contains no mapping for the key.
2536 <     *
2537 <     * <p>More formally, if this map contains a mapping from a key
2538 <     * {@code k} to a value {@code v} such that {@code key.equals(k)},
2539 <     * then this method returns {@code v}; otherwise it returns
2540 <     * {@code null}.  (There can be at most one such mapping.)
2541 <     *
2542 <     * @throws NullPointerException if the specified key is null
2543 <     */
2544 <    public V get(Object key) {
2545 <        return internalGet(key);
2546 <    }
2547 <
2548 <    /**
2549 <     * Returns the value to which the specified key is mapped,
2550 <     * or the given defaultValue if this map contains no mapping for the key.
2551 <     *
2552 <     * @param key the key
2553 <     * @param defaultValue the value to return if this map contains
2554 <     * no mapping for the given key
2555 <     * @return the mapping for the key, if present; else the defaultValue
2556 <     * @throws NullPointerException if the specified key is null
2557 <     */
2558 <    public V getValueOrDefault(Object key, V defaultValue) {
2559 <        V v;
2560 <        return (v = internalGet(key)) == null ? defaultValue : v;
2561 <    }
2562 <
2563 <    /**
2564 <     * Tests if the specified object is a key in this table.
2565 <     *
2566 <     * @param  key   possible key
2567 <     * @return {@code true} if and only if the specified object
2568 <     *         is a key in this table, as determined by the
2569 <     *         {@code equals} method; {@code false} otherwise
2570 <     * @throws NullPointerException if the specified key is null
2571 <     */
2572 <    public boolean containsKey(Object key) {
2573 <        return internalGet(key) != null;
2574 <    }
2575 <
2576 <    /**
2577 <     * Returns {@code true} if this map maps one or more keys to the
2578 <     * specified value. Note: This method may require a full traversal
2579 <     * of the map, and is much slower than method {@code containsKey}.
2580 <     *
2581 <     * @param value value whose presence in this map is to be tested
2582 <     * @return {@code true} if this map maps one or more keys to the
2583 <     *         specified value
2584 <     * @throws NullPointerException if the specified value is null
2585 <     */
2586 <    public boolean containsValue(Object value) {
2587 <        if (value == null)
2588 <            throw new NullPointerException();
2589 <        Object v;
2590 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2591 <        while ((v = it.advance()) != null) {
2592 <            if (v == value || value.equals(v))
2593 <                return true;
2665 >        /**
2666 >         * Releases write lock for tree restructuring.
2667 >         */
2668 >        private final void unlockRoot() {
2669 >            lockState = 0;
2670          }
2595        return false;
2596    }
2597
2598    /**
2599     * Legacy method testing if some key maps into the specified value
2600     * in this table.  This method is identical in functionality to
2601     * {@link #containsValue}, and exists solely to ensure
2602     * full compatibility with class {@link java.util.Hashtable},
2603     * which supported this method prior to introduction of the
2604     * Java Collections framework.
2605     *
2606     * @param  value a value to search for
2607     * @return {@code true} if and only if some key maps to the
2608     *         {@code value} argument in this table as
2609     *         determined by the {@code equals} method;
2610     *         {@code false} otherwise
2611     * @throws NullPointerException if the specified value is null
2612     */
2613    public boolean contains(Object value) {
2614        return containsValue(value);
2615    }
2616
2617    /**
2618     * Maps the specified key to the specified value in this table.
2619     * Neither the key nor the value can be null.
2620     *
2621     * <p>The value can be retrieved by calling the {@code get} method
2622     * with a key that is equal to the original key.
2623     *
2624     * @param key key with which the specified value is to be associated
2625     * @param value value to be associated with the specified key
2626     * @return the previous value associated with {@code key}, or
2627     *         {@code null} if there was no mapping for {@code key}
2628     * @throws NullPointerException if the specified key or value is null
2629     */
2630    public V put(K key, V value) {
2631        return internalPut(key, value, false);
2632    }
2671  
2672 <    /**
2673 <     * {@inheritDoc}
2674 <     *
2675 <     * @return the previous value associated with the specified key,
2676 <     *         or {@code null} if there was no mapping for the key
2677 <     * @throws NullPointerException if the specified key or value is null
2678 <     */
2679 <    public V putIfAbsent(K key, V value) {
2680 <        return internalPut(key, value, true);
2681 <    }
2682 <
2683 <    /**
2684 <     * Copies all of the mappings from the specified map to this one.
2685 <     * These mappings replace any mappings that this map had for any of the
2686 <     * keys currently in the specified map.
2687 <     *
2688 <     * @param m mappings to be stored in this map
2689 <     */
2690 <    public void putAll(Map<? extends K, ? extends V> m) {
2691 <        internalPutAll(m);
2692 <    }
2693 <
2694 <    /**
2657 <     * If the specified key is not already associated with a value,
2658 <     * computes its value using the given mappingFunction and enters
2659 <     * it into the map unless null.  This is equivalent to
2660 <     * <pre> {@code
2661 <     * if (map.containsKey(key))
2662 <     *   return map.get(key);
2663 <     * value = mappingFunction.apply(key);
2664 <     * if (value != null)
2665 <     *   map.put(key, value);
2666 <     * return value;}</pre>
2667 <     *
2668 <     * except that the action is performed atomically.  If the
2669 <     * function returns {@code null} no mapping is recorded. If the
2670 <     * function itself throws an (unchecked) exception, the exception
2671 <     * is rethrown to its caller, and no mapping is recorded.  Some
2672 <     * attempted update operations on this map by other threads may be
2673 <     * blocked while computation is in progress, so the computation
2674 <     * should be short and simple, and must not attempt to update any
2675 <     * other mappings of this Map. The most appropriate usage is to
2676 <     * construct a new object serving as an initial mapped value, or
2677 <     * memoized result, as in:
2678 <     *
2679 <     *  <pre> {@code
2680 <     * map.computeIfAbsent(key, new Fun<K, V>() {
2681 <     *   public V map(K k) { return new Value(f(k)); }});}</pre>
2682 <     *
2683 <     * @param key key with which the specified value is to be associated
2684 <     * @param mappingFunction the function to compute a value
2685 <     * @return the current (existing or computed) value associated with
2686 <     *         the specified key, or null if the computed value is null
2687 <     * @throws NullPointerException if the specified key or mappingFunction
2688 <     *         is null
2689 <     * @throws IllegalStateException if the computation detectably
2690 <     *         attempts a recursive update to this map that would
2691 <     *         otherwise never complete
2692 <     * @throws RuntimeException or Error if the mappingFunction does so,
2693 <     *         in which case the mapping is left unestablished
2694 <     */
2695 <    public V computeIfAbsent
2696 <        (K key, Fun<? super K, ? extends V> mappingFunction) {
2697 <        return internalComputeIfAbsent(key, mappingFunction);
2698 <    }
2699 <
2700 <    /**
2701 <     * If the given key is present, computes a new mapping value given a key and
2702 <     * its current mapped value. This is equivalent to
2703 <     *  <pre> {@code
2704 <     *   if (map.containsKey(key)) {
2705 <     *     value = remappingFunction.apply(key, map.get(key));
2706 <     *     if (value != null)
2707 <     *       map.put(key, value);
2708 <     *     else
2709 <     *       map.remove(key);
2710 <     *   }
2711 <     * }</pre>
2712 <     *
2713 <     * except that the action is performed atomically.  If the
2714 <     * function returns {@code null}, the mapping is removed.  If the
2715 <     * function itself throws an (unchecked) exception, the exception
2716 <     * is rethrown to its caller, and the current mapping is left
2717 <     * unchanged.  Some attempted update operations on this map by
2718 <     * other threads may be blocked while computation is in progress,
2719 <     * so the computation should be short and simple, and must not
2720 <     * attempt to update any other mappings of this Map. For example,
2721 <     * to either create or append new messages to a value mapping:
2722 <     *
2723 <     * @param key key with which the specified value is to be associated
2724 <     * @param remappingFunction the function to compute a value
2725 <     * @return the new value associated with the specified key, or null if none
2726 <     * @throws NullPointerException if the specified key or remappingFunction
2727 <     *         is null
2728 <     * @throws IllegalStateException if the computation detectably
2729 <     *         attempts a recursive update to this map that would
2730 <     *         otherwise never complete
2731 <     * @throws RuntimeException or Error if the remappingFunction does so,
2732 <     *         in which case the mapping is unchanged
2733 <     */
2734 <    public V computeIfPresent
2735 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2736 <        return internalCompute(key, true, remappingFunction);
2737 <    }
2738 <
2739 <    /**
2740 <     * Computes a new mapping value given a key and
2741 <     * its current mapped value (or {@code null} if there is no current
2742 <     * mapping). This is equivalent to
2743 <     *  <pre> {@code
2744 <     *   value = remappingFunction.apply(key, map.get(key));
2745 <     *   if (value != null)
2746 <     *     map.put(key, value);
2747 <     *   else
2748 <     *     map.remove(key);
2749 <     * }</pre>
2750 <     *
2751 <     * except that the action is performed atomically.  If the
2752 <     * function returns {@code null}, the mapping is removed.  If the
2753 <     * function itself throws an (unchecked) exception, the exception
2754 <     * is rethrown to its caller, and the current mapping is left
2755 <     * unchanged.  Some attempted update operations on this map by
2756 <     * other threads may be blocked while computation is in progress,
2757 <     * so the computation should be short and simple, and must not
2758 <     * attempt to update any other mappings of this Map. For example,
2759 <     * to either create or append new messages to a value mapping:
2760 <     *
2761 <     * <pre> {@code
2762 <     * Map<Key, String> map = ...;
2763 <     * final String msg = ...;
2764 <     * map.compute(key, new BiFun<Key, String, String>() {
2765 <     *   public String apply(Key k, String v) {
2766 <     *    return (v == null) ? msg : v + msg;});}}</pre>
2767 <     *
2768 <     * @param key key with which the specified value is to be associated
2769 <     * @param remappingFunction the function to compute a value
2770 <     * @return the new value associated with the specified key, or null if none
2771 <     * @throws NullPointerException if the specified key or remappingFunction
2772 <     *         is null
2773 <     * @throws IllegalStateException if the computation detectably
2774 <     *         attempts a recursive update to this map that would
2775 <     *         otherwise never complete
2776 <     * @throws RuntimeException or Error if the remappingFunction does so,
2777 <     *         in which case the mapping is unchanged
2778 <     */
2779 <    public V compute
2780 <        (K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2781 <        return internalCompute(key, false, remappingFunction);
2782 <    }
2783 <
2784 <    /**
2785 <     * If the specified key is not already associated
2786 <     * with a value, associate it with the given value.
2787 <     * Otherwise, replace the value with the results of
2788 <     * the given remapping function. This is equivalent to:
2789 <     *  <pre> {@code
2790 <     *   if (!map.containsKey(key))
2791 <     *     map.put(value);
2792 <     *   else {
2793 <     *     newValue = remappingFunction.apply(map.get(key), value);
2794 <     *     if (value != null)
2795 <     *       map.put(key, value);
2796 <     *     else
2797 <     *       map.remove(key);
2798 <     *   }
2799 <     * }</pre>
2800 <     * except that the action is performed atomically.  If the
2801 <     * function returns {@code null}, the mapping is removed.  If the
2802 <     * function itself throws an (unchecked) exception, the exception
2803 <     * is rethrown to its caller, and the current mapping is left
2804 <     * unchanged.  Some attempted update operations on this map by
2805 <     * other threads may be blocked while computation is in progress,
2806 <     * so the computation should be short and simple, and must not
2807 <     * attempt to update any other mappings of this Map.
2808 <     */
2809 <    public V merge
2810 <        (K key, V value,
2811 <         BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2812 <        return internalMerge(key, value, remappingFunction);
2813 <    }
2672 >        /**
2673 >         * Possibly blocks awaiting root lock.
2674 >         */
2675 >        private final void contendedLock() {
2676 >            boolean waiting = false;
2677 >            for (int s;;) {
2678 >                if (((s = lockState) & WRITER) == 0) {
2679 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2680 >                        if (waiting)
2681 >                            waiter = null;
2682 >                        return;
2683 >                    }
2684 >                }
2685 >                else if ((s | WAITER) == 0) {
2686 >                    if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2687 >                        waiting = true;
2688 >                        waiter = Thread.currentThread();
2689 >                    }
2690 >                }
2691 >                else if (waiting)
2692 >                    LockSupport.park(this);
2693 >            }
2694 >        }
2695  
2696 <    /**
2697 <     * Removes the key (and its corresponding value) from this map.
2698 <     * This method does nothing if the key is not in the map.
2699 <     *
2700 <     * @param  key the key that needs to be removed
2701 <     * @return the previous value associated with {@code key}, or
2702 <     *         {@code null} if there was no mapping for {@code key}
2703 <     * @throws NullPointerException if the specified key is null
2704 <     */
2705 <    public V remove(Object key) {
2706 <        return internalReplace(key, null, null);
2707 <    }
2696 >        /**
2697 >         * Returns matching node or null if none. Tries to search
2698 >         * using tree comparisons from root, but continues linear
2699 >         * search when lock not available.
2700 >         */
2701 > final Node<K,V> find(int h, Object k) {
2702 >            if (k != null) {
2703 >                for (Node<K,V> e = first; e != null; e = e.next) {
2704 >                    int s; K ek;
2705 >                    if (((s = lockState) & (WAITER|WRITER)) != 0) {
2706 >                        if (e.hash == h &&
2707 >                            ((ek = e.key) == k || (ek != null && k.equals(ek))))
2708 >                            return e;
2709 >                    }
2710 >                    else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2711 >                                                 s + READER)) {
2712 >                        TreeNode<K,V> r, p;
2713 >                        try {
2714 >                            p = ((r = root) == null ? null :
2715 >                                 r.findTreeNode(h, k, null));
2716 >                        } finally {
2717 >                            Thread w;
2718 >                            int ls;
2719 >                            do {} while (!U.compareAndSwapInt
2720 >                                         (this, LOCKSTATE,
2721 >                                          ls = lockState, ls - READER));
2722 >                            if (ls == (READER|WAITER) && (w = waiter) != null)
2723 >                                LockSupport.unpark(w);
2724 >                        }
2725 >                        return p;
2726 >                    }
2727 >                }
2728 >            }
2729 >            return null;
2730 >        }
2731  
2732 <    /**
2733 <     * {@inheritDoc}
2734 <     *
2735 <     * @throws NullPointerException if the specified key is null
2736 <     */
2737 <    public boolean remove(Object key, Object value) {
2738 <        return value != null && internalReplace(key, null, value) != null;
2739 <    }
2732 >        /**
2733 >         * Finds or adds a node.
2734 >         * @return null if added
2735 >         */
2736 >        final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2737 >            Class<?> kc = null;
2738 >            boolean searched = false;
2739 >            for (TreeNode<K,V> p = root;;) {
2740 >                int dir, ph; K pk;
2741 >                if (p == null) {
2742 >                    first = root = new TreeNode<K,V>(h, k, v, null, null);
2743 >                    break;
2744 >                }
2745 >                else if ((ph = p.hash) > h)
2746 >                    dir = -1;
2747 >                else if (ph < h)
2748 >                    dir = 1;
2749 >                else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2750 >                    return p;
2751 >                else if ((kc == null &&
2752 >                          (kc = comparableClassFor(k)) == null) ||
2753 >                         (dir = compareComparables(kc, k, pk)) == 0) {
2754 >                    if (!searched) {
2755 >                        TreeNode<K,V> q, ch;
2756 >                        searched = true;
2757 >                        if (((ch = p.left) != null &&
2758 >                             (q = ch.findTreeNode(h, k, kc)) != null) ||
2759 >                            ((ch = p.right) != null &&
2760 >                             (q = ch.findTreeNode(h, k, kc)) != null))
2761 >                            return q;
2762 >                    }
2763 >                    dir = tieBreakOrder(k, pk);
2764 >                }
2765 >
2766 >                TreeNode<K,V> xp = p;
2767 >                if ((p = (dir <= 0) ? p.left : p.right) == null) {
2768 >                    TreeNode<K,V> x, f = first;
2769 >                    first = x = new TreeNode<K,V>(h, k, v, f, xp);
2770 >                    if (f != null)
2771 >                        f.prev = x;
2772 >                    if (dir <= 0)
2773 >                        xp.left = x;
2774 >                    else
2775 >                        xp.right = x;
2776 >                    if (!xp.red)
2777 >                        x.red = true;
2778 >                    else {
2779 >                        lockRoot();
2780 >                        try {
2781 >                            root = balanceInsertion(root, x);
2782 >                        } finally {
2783 >                            unlockRoot();
2784 >                        }
2785 >                    }
2786 >                    break;
2787 >                }
2788 >            }
2789 >            assert checkInvariants(root);
2790 >            return null;
2791 >        }
2792  
2793 <    /**
2794 <     * {@inheritDoc}
2795 <     *
2796 <     * @throws NullPointerException if any of the arguments are null
2797 <     */
2798 <    public boolean replace(K key, V oldValue, V newValue) {
2799 <        if (key == null || oldValue == null || newValue == null)
2800 <            throw new NullPointerException();
2801 <        return internalReplace(key, newValue, oldValue) != null;
2802 <    }
2793 >        /**
2794 >         * Removes the given node, that must be present before this
2795 >         * call.  This is messier than typical red-black deletion code
2796 >         * because we cannot swap the contents of an interior node
2797 >         * with a leaf successor that is pinned by "next" pointers
2798 >         * that are accessible independently of lock. So instead we
2799 >         * swap the tree linkages.
2800 >         *
2801 >         * @return true if now too small, so should be untreeified
2802 >         */
2803 >        final boolean removeTreeNode(TreeNode<K,V> p) {
2804 >            TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2805 >            TreeNode<K,V> pred = p.prev;  // unlink traversal pointers
2806 >            TreeNode<K,V> r, rl;
2807 >            if (pred == null)
2808 >                first = next;
2809 >            else
2810 >                pred.next = next;
2811 >            if (next != null)
2812 >                next.prev = pred;
2813 >            if (first == null) {
2814 >                root = null;
2815 >                return true;
2816 >            }
2817 >            if ((r = root) == null || r.right == null || // too small
2818 >                (rl = r.left) == null || rl.left == null)
2819 >                return true;
2820 >            lockRoot();
2821 >            try {
2822 >                TreeNode<K,V> replacement;
2823 >                TreeNode<K,V> pl = p.left;
2824 >                TreeNode<K,V> pr = p.right;
2825 >                if (pl != null && pr != null) {
2826 >                    TreeNode<K,V> s = pr, sl;
2827 >                    while ((sl = s.left) != null) // find successor
2828 >                        s = sl;
2829 >                    boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2830 >                    TreeNode<K,V> sr = s.right;
2831 >                    TreeNode<K,V> pp = p.parent;
2832 >                    if (s == pr) { // p was s's direct parent
2833 >                        p.parent = s;
2834 >                        s.right = p;
2835 >                    }
2836 >                    else {
2837 >                        TreeNode<K,V> sp = s.parent;
2838 >                        if ((p.parent = sp) != null) {
2839 >                            if (s == sp.left)
2840 >                                sp.left = p;
2841 >                            else
2842 >                                sp.right = p;
2843 >                        }
2844 >                        if ((s.right = pr) != null)
2845 >                            pr.parent = s;
2846 >                    }
2847 >                    p.left = null;
2848 >                    if ((p.right = sr) != null)
2849 >                        sr.parent = p;
2850 >                    if ((s.left = pl) != null)
2851 >                        pl.parent = s;
2852 >                    if ((s.parent = pp) == null)
2853 >                        r = s;
2854 >                    else if (p == pp.left)
2855 >                        pp.left = s;
2856 >                    else
2857 >                        pp.right = s;
2858 >                    if (sr != null)
2859 >                        replacement = sr;
2860 >                    else
2861 >                        replacement = p;
2862 >                }
2863 >                else if (pl != null)
2864 >                    replacement = pl;
2865 >                else if (pr != null)
2866 >                    replacement = pr;
2867 >                else
2868 >                    replacement = p;
2869 >                if (replacement != p) {
2870 >                    TreeNode<K,V> pp = replacement.parent = p.parent;
2871 >                    if (pp == null)
2872 >                        r = replacement;
2873 >                    else if (p == pp.left)
2874 >                        pp.left = replacement;
2875 >                    else
2876 >                        pp.right = replacement;
2877 >                    p.left = p.right = p.parent = null;
2878 >                }
2879  
2880 <    /**
2849 <     * {@inheritDoc}
2850 <     *
2851 <     * @return the previous value associated with the specified key,
2852 <     *         or {@code null} if there was no mapping for the key
2853 <     * @throws NullPointerException if the specified key or value is null
2854 <     */
2855 <    public V replace(K key, V value) {
2856 <        if (key == null || value == null)
2857 <            throw new NullPointerException();
2858 <        return internalReplace(key, value, null);
2859 <    }
2880 >                root = (p.red) ? r : balanceDeletion(r, replacement);
2881  
2882 <    /**
2883 <     * Removes all of the mappings from this map.
2884 <     */
2885 <    public void clear() {
2886 <        internalClear();
2887 <    }
2882 >                if (p == replacement) {  // detach pointers
2883 >                    TreeNode<K,V> pp;
2884 >                    if ((pp = p.parent) != null) {
2885 >                        if (p == pp.left)
2886 >                            pp.left = null;
2887 >                        else if (p == pp.right)
2888 >                            pp.right = null;
2889 >                        p.parent = null;
2890 >                    }
2891 >                }
2892 >            } finally {
2893 >                unlockRoot();
2894 >            }
2895 >            assert checkInvariants(root);
2896 >            return false;
2897 >        }
2898  
2899 <    /**
2900 <     * Returns a {@link Set} view of the keys contained in this map.
2870 <     * The set is backed by the map, so changes to the map are
2871 <     * reflected in the set, and vice-versa.
2872 <     *
2873 <     * @return the set view
2874 <     */
2875 <    public KeySetView<K,V> keySet() {
2876 <        KeySetView<K,V> ks = keySet;
2877 <        return (ks != null) ? ks : (keySet = new KeySetView<K,V>(this, null));
2878 <    }
2899 >        /* ------------------------------------------------------------ */
2900 >        // Red-black tree methods, all adapted from CLR
2901  
2902 <    /**
2903 <     * Returns a {@link Set} view of the keys in this map, using the
2904 <     * given common mapped value for any additions (i.e., {@link
2905 <     * Collection#add} and {@link Collection#addAll}). This is of
2906 <     * course only appropriate if it is acceptable to use the same
2907 <     * value for all additions from this view.
2908 <     *
2909 <     * @param mappedValue the mapped value to use for any
2910 <     * additions.
2911 <     * @return the set view
2912 <     * @throws NullPointerException if the mappedValue is null
2913 <     */
2914 <    public KeySetView<K,V> keySet(V mappedValue) {
2915 <        if (mappedValue == null)
2916 <            throw new NullPointerException();
2917 <        return new KeySetView<K,V>(this, mappedValue);
2918 <    }
2902 >        static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2903 >                                              TreeNode<K,V> p) {
2904 >            TreeNode<K,V> r, pp, rl;
2905 >            if (p != null && (r = p.right) != null) {
2906 >                if ((rl = p.right = r.left) != null)
2907 >                    rl.parent = p;
2908 >                if ((pp = r.parent = p.parent) == null)
2909 >                    (root = r).red = false;
2910 >                else if (pp.left == p)
2911 >                    pp.left = r;
2912 >                else
2913 >                    pp.right = r;
2914 >                r.left = p;
2915 >                p.parent = r;
2916 >            }
2917 >            return root;
2918 >        }
2919  
2920 <    /**
2921 <     * Returns a {@link Collection} view of the values contained in this map.
2922 <     * The collection is backed by the map, so changes to the map are
2923 <     * reflected in the collection, and vice-versa.
2924 <     */
2925 <    public ValuesView<K,V> values() {
2926 <        ValuesView<K,V> vs = values;
2927 <        return (vs != null) ? vs : (values = new ValuesView<K,V>(this));
2928 <    }
2920 >        static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2921 >                                               TreeNode<K,V> p) {
2922 >            TreeNode<K,V> l, pp, lr;
2923 >            if (p != null && (l = p.left) != null) {
2924 >                if ((lr = p.left = l.right) != null)
2925 >                    lr.parent = p;
2926 >                if ((pp = l.parent = p.parent) == null)
2927 >                    (root = l).red = false;
2928 >                else if (pp.right == p)
2929 >                    pp.right = l;
2930 >                else
2931 >                    pp.left = l;
2932 >                l.right = p;
2933 >                p.parent = l;
2934 >            }
2935 >            return root;
2936 >        }
2937  
2938 <    /**
2939 <     * Returns a {@link Set} view of the mappings contained in this map.
2940 <     * The set is backed by the map, so changes to the map are
2941 <     * reflected in the set, and vice-versa.  The set supports element
2942 <     * removal, which removes the corresponding mapping from the map,
2943 <     * via the {@code Iterator.remove}, {@code Set.remove},
2944 <     * {@code removeAll}, {@code retainAll}, and {@code clear}
2945 <     * operations.  It does not support the {@code add} or
2946 <     * {@code addAll} operations.
2947 <     *
2948 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
2949 <     * that will never throw {@link ConcurrentModificationException},
2950 <     * and guarantees to traverse elements as they existed upon
2951 <     * construction of the iterator, and may (but is not guaranteed to)
2952 <     * reflect any modifications subsequent to construction.
2953 <     */
2954 <    public Set<Map.Entry<K,V>> entrySet() {
2955 <        EntrySetView<K,V> es = entrySet;
2956 <        return (es != null) ? es : (entrySet = new EntrySetView<K,V>(this));
2957 <    }
2938 >        static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2939 >                                                    TreeNode<K,V> x) {
2940 >            x.red = true;
2941 >            for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2942 >                if ((xp = x.parent) == null) {
2943 >                    x.red = false;
2944 >                    return x;
2945 >                }
2946 >                else if (!xp.red || (xpp = xp.parent) == null)
2947 >                    return root;
2948 >                if (xp == (xppl = xpp.left)) {
2949 >                    if ((xppr = xpp.right) != null && xppr.red) {
2950 >                        xppr.red = false;
2951 >                        xp.red = false;
2952 >                        xpp.red = true;
2953 >                        x = xpp;
2954 >                    }
2955 >                    else {
2956 >                        if (x == xp.right) {
2957 >                            root = rotateLeft(root, x = xp);
2958 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2959 >                        }
2960 >                        if (xp != null) {
2961 >                            xp.red = false;
2962 >                            if (xpp != null) {
2963 >                                xpp.red = true;
2964 >                                root = rotateRight(root, xpp);
2965 >                            }
2966 >                        }
2967 >                    }
2968 >                }
2969 >                else {
2970 >                    if (xppl != null && xppl.red) {
2971 >                        xppl.red = false;
2972 >                        xp.red = false;
2973 >                        xpp.red = true;
2974 >                        x = xpp;
2975 >                    }
2976 >                    else {
2977 >                        if (x == xp.left) {
2978 >                            root = rotateRight(root, x = xp);
2979 >                            xpp = (xp = x.parent) == null ? null : xp.parent;
2980 >                        }
2981 >                        if (xp != null) {
2982 >                            xp.red = false;
2983 >                            if (xpp != null) {
2984 >                                xpp.red = true;
2985 >                                root = rotateLeft(root, xpp);
2986 >                            }
2987 >                        }
2988 >                    }
2989 >                }
2990 >            }
2991 >        }
2992  
2993 <    /**
2994 <     * Returns an enumeration of the keys in this table.
2995 <     *
2996 <     * @return an enumeration of the keys in this table
2997 <     * @see #keySet()
2998 <     */
2999 <    public Enumeration<K> keys() {
3000 <        return new KeyIterator<K,V>(this);
3001 <    }
2993 >        static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2994 >                                                   TreeNode<K,V> x) {
2995 >            for (TreeNode<K,V> xp, xpl, xpr;;)  {
2996 >                if (x == null || x == root)
2997 >                    return root;
2998 >                else if ((xp = x.parent) == null) {
2999 >                    x.red = false;
3000 >                    return x;
3001 >                }
3002 >                else if (x.red) {
3003 >                    x.red = false;
3004 >                    return root;
3005 >                }
3006 >                else if ((xpl = xp.left) == x) {
3007 >                    if ((xpr = xp.right) != null && xpr.red) {
3008 >                        xpr.red = false;
3009 >                        xp.red = true;
3010 >                        root = rotateLeft(root, xp);
3011 >                        xpr = (xp = x.parent) == null ? null : xp.right;
3012 >                    }
3013 >                    if (xpr == null)
3014 >                        x = xp;
3015 >                    else {
3016 >                        TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3017 >                        if ((sr == null || !sr.red) &&
3018 >                            (sl == null || !sl.red)) {
3019 >                            xpr.red = true;
3020 >                            x = xp;
3021 >                        }
3022 >                        else {
3023 >                            if (sr == null || !sr.red) {
3024 >                                if (sl != null)
3025 >                                    sl.red = false;
3026 >                                xpr.red = true;
3027 >                                root = rotateRight(root, xpr);
3028 >                                xpr = (xp = x.parent) == null ?
3029 >                                    null : xp.right;
3030 >                            }
3031 >                            if (xpr != null) {
3032 >                                xpr.red = (xp == null) ? false : xp.red;
3033 >                                if ((sr = xpr.right) != null)
3034 >                                    sr.red = false;
3035 >                            }
3036 >                            if (xp != null) {
3037 >                                xp.red = false;
3038 >                                root = rotateLeft(root, xp);
3039 >                            }
3040 >                            x = root;
3041 >                        }
3042 >                    }
3043 >                }
3044 >                else { // symmetric
3045 >                    if (xpl != null && xpl.red) {
3046 >                        xpl.red = false;
3047 >                        xp.red = true;
3048 >                        root = rotateRight(root, xp);
3049 >                        xpl = (xp = x.parent) == null ? null : xp.left;
3050 >                    }
3051 >                    if (xpl == null)
3052 >                        x = xp;
3053 >                    else {
3054 >                        TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3055 >                        if ((sl == null || !sl.red) &&
3056 >                            (sr == null || !sr.red)) {
3057 >                            xpl.red = true;
3058 >                            x = xp;
3059 >                        }
3060 >                        else {
3061 >                            if (sl == null || !sl.red) {
3062 >                                if (sr != null)
3063 >                                    sr.red = false;
3064 >                                xpl.red = true;
3065 >                                root = rotateLeft(root, xpl);
3066 >                                xpl = (xp = x.parent) == null ?
3067 >                                    null : xp.left;
3068 >                            }
3069 >                            if (xpl != null) {
3070 >                                xpl.red = (xp == null) ? false : xp.red;
3071 >                                if ((sl = xpl.left) != null)
3072 >                                    sl.red = false;
3073 >                            }
3074 >                            if (xp != null) {
3075 >                                xp.red = false;
3076 >                                root = rotateRight(root, xp);
3077 >                            }
3078 >                            x = root;
3079 >                        }
3080 >                    }
3081 >                }
3082 >            }
3083 >        }
3084  
3085 <    /**
3086 <     * Returns an enumeration of the values in this table.
3087 <     *
3088 <     * @return an enumeration of the values in this table
3089 <     * @see #values()
3090 <     */
3091 <    public Enumeration<V> elements() {
3092 <        return new ValueIterator<K,V>(this);
3093 <    }
3085 >        /**
3086 >         * Recursive invariant check
3087 >         */
3088 >        static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3089 >            TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3090 >                tb = t.prev, tn = (TreeNode<K,V>)t.next;
3091 >            if (tb != null && tb.next != t)
3092 >                return false;
3093 >            if (tn != null && tn.prev != t)
3094 >                return false;
3095 >            if (tp != null && t != tp.left && t != tp.right)
3096 >                return false;
3097 >            if (tl != null && (tl.parent != t || tl.hash > t.hash))
3098 >                return false;
3099 >            if (tr != null && (tr.parent != t || tr.hash < t.hash))
3100 >                return false;
3101 >            if (t.red && tl != null && tl.red && tr != null && tr.red)
3102 >                return false;
3103 >            if (tl != null && !checkInvariants(tl))
3104 >                return false;
3105 >            if (tr != null && !checkInvariants(tr))
3106 >                return false;
3107 >            return true;
3108 >        }
3109  
3110 <    /**
3111 <     * Returns a partitionable iterator of the keys in this map.
3112 <     *
3113 <     * @return a partitionable iterator of the keys in this map
3114 <     */
3115 <    public Spliterator<K> keySpliterator() {
3116 <        return new KeyIterator<K,V>(this);
3110 >        private static final sun.misc.Unsafe U;
3111 >        private static final long LOCKSTATE;
3112 >        static {
3113 >            try {
3114 >                U = getUnsafe();
3115 >                Class<?> k = TreeBin.class;
3116 >                LOCKSTATE = U.objectFieldOffset
3117 >                    (k.getDeclaredField("lockState"));
3118 >            } catch (Exception e) {
3119 >                throw new Error(e);
3120 >            }
3121 >        }
3122      }
3123  
3124 <    /**
2959 <     * Returns a partitionable iterator of the values in this map.
2960 <     *
2961 <     * @return a partitionable iterator of the values in this map
2962 <     */
2963 <    public Spliterator<V> valueSpliterator() {
2964 <        return new ValueIterator<K,V>(this);
2965 <    }
3124 >    /* ----------------Table Traversal -------------- */
3125  
3126      /**
3127 <     * Returns a partitionable iterator of the entries in this map.
3127 >     * Encapsulates traversal for methods such as containsValue; also
3128 >     * serves as a base class for other iterators and spliterators.
3129       *
3130 <     * @return a partitionable iterator of the entries in this map
3131 <     */
3132 <    public Spliterator<Map.Entry<K,V>> entrySpliterator() {
3133 <        return new EntryIterator<K,V>(this);
3134 <    }
3135 <
3136 <    /**
3137 <     * Returns the hash code value for this {@link Map}, i.e.,
2978 <     * the sum of, for each key-value pair in the map,
2979 <     * {@code key.hashCode() ^ value.hashCode()}.
3130 >     * Method advance visits once each still-valid node that was
3131 >     * reachable upon iterator construction. It might miss some that
3132 >     * were added to a bin after the bin was visited, which is OK wrt
3133 >     * consistency guarantees. Maintaining this property in the face
3134 >     * of possible ongoing resizes requires a fair amount of
3135 >     * bookkeeping state that is difficult to optimize away amidst
3136 >     * volatile accesses.  Even so, traversal maintains reasonable
3137 >     * throughput.
3138       *
3139 <     * @return the hash code value for this map
3139 >     * Normally, iteration proceeds bin-by-bin traversing lists.
3140 >     * However, if the table has been resized, then all future steps
3141 >     * must traverse both the bin at the current index as well as at
3142 >     * (index + baseSize); and so on for further resizings. To
3143 >     * paranoically cope with potential sharing by users of iterators
3144 >     * across threads, iteration terminates if a bounds checks fails
3145 >     * for a table read.
3146       */
3147 <    public int hashCode() {
3148 <        int h = 0;
3149 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3150 <        Object v;
3151 <        while ((v = it.advance()) != null) {
3152 <            h += it.nextKey.hashCode() ^ v.hashCode();
3147 >    static class Traverser<K,V> {
3148 >        Node<K,V>[] tab;        // current table; updated if resized
3149 >        Node<K,V> next;         // the next entry to use
3150 >        int index;              // index of bin to use next
3151 >        int baseIndex;          // current index of initial table
3152 >        int baseLimit;          // index bound for initial table
3153 >        final int baseSize;     // initial table size
3154 >
3155 >        Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3156 >            this.tab = tab;
3157 >            this.baseSize = size;
3158 >            this.baseIndex = this.index = index;
3159 >            this.baseLimit = limit;
3160 >            this.next = null;
3161          }
2990        return h;
2991    }
3162  
3163 <    /**
3164 <     * Returns a string representation of this map.  The string
3165 <     * representation consists of a list of key-value mappings (in no
3166 <     * particular order) enclosed in braces ("{@code {}}").  Adjacent
3167 <     * mappings are separated by the characters {@code ", "} (comma
3168 <     * and space).  Each key-value mapping is rendered as the key
3169 <     * followed by an equals sign ("{@code =}") followed by the
3000 <     * associated value.
3001 <     *
3002 <     * @return a string representation of this map
3003 <     */
3004 <    public String toString() {
3005 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3006 <        StringBuilder sb = new StringBuilder();
3007 <        sb.append('{');
3008 <        Object v;
3009 <        if ((v = it.advance()) != null) {
3163 >        /**
3164 >         * Advances if possible, returning next valid node, or null if none.
3165 >         */
3166 >        final Node<K,V> advance() {
3167 >            Node<K,V> e;
3168 >            if ((e = next) != null)
3169 >                e = e.next;
3170              for (;;) {
3171 <                Object k = it.nextKey;
3172 <                sb.append(k == this ? "(this Map)" : k);
3173 <                sb.append('=');
3174 <                sb.append(v == this ? "(this Map)" : v);
3175 <                if ((v = it.advance()) == null)
3176 <                    break;
3177 <                sb.append(',').append(' ');
3171 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
3172 >                if (e != null)
3173 >                    return next = e;
3174 >                if (baseIndex >= baseLimit || (t = tab) == null ||
3175 >                    (n = t.length) <= (i = index) || i < 0)
3176 >                    return next = null;
3177 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
3178 >                    if (e instanceof ForwardingNode) {
3179 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
3180 >                        e = null;
3181 >                        continue;
3182 >                    }
3183 >                    else if (e instanceof TreeBin)
3184 >                        e = ((TreeBin<K,V>)e).first;
3185 >                    else
3186 >                        e = null;
3187 >                }
3188 >                if ((index += baseSize) >= n)
3189 >                    index = ++baseIndex;    // visit upper slots if present
3190              }
3191          }
3020        return sb.append('}').toString();
3192      }
3193  
3194      /**
3195 <     * Compares the specified object with this map for equality.
3196 <     * Returns {@code true} if the given object is a map with the same
3026 <     * mappings as this map.  This operation may return misleading
3027 <     * results if either map is concurrently modified during execution
3028 <     * of this method.
3029 <     *
3030 <     * @param o object to be compared for equality with this map
3031 <     * @return {@code true} if the specified object is equal to this map
3195 >     * Base of key, value, and entry Iterators. Adds fields to
3196 >     * Traverser to support iterator.remove.
3197       */
3198 <    public boolean equals(Object o) {
3199 <        if (o != this) {
3200 <            if (!(o instanceof Map))
3201 <                return false;
3202 <            Map<?,?> m = (Map<?,?>) o;
3203 <            Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3204 <            Object val;
3205 <            while ((val = it.advance()) != null) {
3041 <                Object v = m.get(it.nextKey);
3042 <                if (v == null || (v != val && !v.equals(val)))
3043 <                    return false;
3044 <            }
3045 <            for (Map.Entry<?,?> e : m.entrySet()) {
3046 <                Object mk, mv, v;
3047 <                if ((mk = e.getKey()) == null ||
3048 <                    (mv = e.getValue()) == null ||
3049 <                    (v = internalGet(mk)) == null ||
3050 <                    (mv != v && !mv.equals(v)))
3051 <                    return false;
3052 <            }
3198 >    static class BaseIterator<K,V> extends Traverser<K,V> {
3199 >        final ConcurrentHashMapV8<K,V> map;
3200 >        Node<K,V> lastReturned;
3201 >        BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3202 >                    ConcurrentHashMapV8<K,V> map) {
3203 >            super(tab, size, index, limit);
3204 >            this.map = map;
3205 >            advance();
3206          }
3054        return true;
3055    }
3207  
3208 <    /* ----------------Iterators -------------- */
3208 >        public final boolean hasNext() { return next != null; }
3209 >        public final boolean hasMoreElements() { return next != null; }
3210  
3211 <    @SuppressWarnings("serial") static final class KeyIterator<K,V>
3212 <        extends Traverser<K,V,Object>
3213 <        implements Spliterator<K>, Enumeration<K> {
3062 <        KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3063 <        KeyIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3064 <            super(map, it, -1);
3065 <        }
3066 <        public KeyIterator<K,V> split() {
3067 <            if (nextKey != null)
3211 >        public final void remove() {
3212 >            Node<K,V> p;
3213 >            if ((p = lastReturned) == null)
3214                  throw new IllegalStateException();
3215 <            return new KeyIterator<K,V>(map, this);
3215 >            lastReturned = null;
3216 >            map.replaceNode(p.key, null, null);
3217 >        }
3218 >    }
3219 >
3220 >    static final class KeyIterator<K,V> extends BaseIterator<K,V>
3221 >        implements Iterator<K>, Enumeration<K> {
3222 >        KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3223 >                    ConcurrentHashMapV8<K,V> map) {
3224 >            super(tab, index, size, limit, map);
3225          }
3226 <        @SuppressWarnings("unchecked") public final K next() {
3227 <            if (nextVal == null && advance() == null)
3226 >
3227 >        public final K next() {
3228 >            Node<K,V> p;
3229 >            if ((p = next) == null)
3230                  throw new NoSuchElementException();
3231 <            Object k = nextKey;
3232 <            nextVal = null;
3233 <            return (K) k;
3231 >            K k = p.key;
3232 >            lastReturned = p;
3233 >            advance();
3234 >            return k;
3235          }
3236  
3237          public final K nextElement() { return next(); }
3238      }
3239  
3240 <    @SuppressWarnings("serial") static final class ValueIterator<K,V>
3241 <        extends Traverser<K,V,Object>
3242 <        implements Spliterator<V>, Enumeration<V> {
3243 <        ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3244 <        ValueIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3087 <            super(map, it, -1);
3088 <        }
3089 <        public ValueIterator<K,V> split() {
3090 <            if (nextKey != null)
3091 <                throw new IllegalStateException();
3092 <            return new ValueIterator<K,V>(map, this);
3240 >    static final class ValueIterator<K,V> extends BaseIterator<K,V>
3241 >        implements Iterator<V>, Enumeration<V> {
3242 >        ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3243 >                      ConcurrentHashMapV8<K,V> map) {
3244 >            super(tab, index, size, limit, map);
3245          }
3246  
3247 <        @SuppressWarnings("unchecked") public final V next() {
3248 <            Object v;
3249 <            if ((v = nextVal) == null && (v = advance()) == null)
3247 >        public final V next() {
3248 >            Node<K,V> p;
3249 >            if ((p = next) == null)
3250                  throw new NoSuchElementException();
3251 <            nextVal = null;
3252 <            return (V) v;
3251 >            V v = p.val;
3252 >            lastReturned = p;
3253 >            advance();
3254 >            return v;
3255          }
3256  
3257          public final V nextElement() { return next(); }
3258      }
3259  
3260 <    @SuppressWarnings("serial") static final class EntryIterator<K,V>
3261 <        extends Traverser<K,V,Object>
3262 <        implements Spliterator<Map.Entry<K,V>> {
3263 <        EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3264 <        EntryIterator(ConcurrentHashMapV8<K, V> map, Traverser<K,V,Object> it) {
3111 <            super(map, it, -1);
3112 <        }
3113 <        public EntryIterator<K,V> split() {
3114 <            if (nextKey != null)
3115 <                throw new IllegalStateException();
3116 <            return new EntryIterator<K,V>(map, this);
3260 >    static final class EntryIterator<K,V> extends BaseIterator<K,V>
3261 >        implements Iterator<Map.Entry<K,V>> {
3262 >        EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3263 >                      ConcurrentHashMapV8<K,V> map) {
3264 >            super(tab, index, size, limit, map);
3265          }
3266  
3267 <        @SuppressWarnings("unchecked") public final Map.Entry<K,V> next() {
3268 <            Object v;
3269 <            if ((v = nextVal) == null && (v = advance()) == null)
3267 >        public final Map.Entry<K,V> next() {
3268 >            Node<K,V> p;
3269 >            if ((p = next) == null)
3270                  throw new NoSuchElementException();
3271 <            Object k = nextKey;
3272 <            nextVal = null;
3273 <            return new MapEntry<K,V>((K)k, (V)v, map);
3271 >            K k = p.key;
3272 >            V v = p.val;
3273 >            lastReturned = p;
3274 >            advance();
3275 >            return new MapEntry<K,V>(k, v, map);
3276          }
3277      }
3278  
3279      /**
3280 <     * Exported Entry for iterators
3280 >     * Exported Entry for EntryIterator
3281       */
3282 <    static final class MapEntry<K,V> implements Map.Entry<K, V> {
3282 >    static final class MapEntry<K,V> implements Map.Entry<K,V> {
3283          final K key; // non-null
3284          V val;       // non-null
3285 <        final ConcurrentHashMapV8<K, V> map;
3286 <        MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3285 >        final ConcurrentHashMapV8<K,V> map;
3286 >        MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3287              this.key = key;
3288              this.val = val;
3289              this.map = map;
3290          }
3291 <        public final K getKey()       { return key; }
3292 <        public final V getValue()     { return val; }
3293 <        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
3294 <        public final String toString(){ return key + "=" + val; }
3291 >        public K getKey()        { return key; }
3292 >        public V getValue()      { return val; }
3293 >        public int hashCode()    { return key.hashCode() ^ val.hashCode(); }
3294 >        public String toString() { return key + "=" + val; }
3295  
3296 <        public final boolean equals(Object o) {
3296 >        public boolean equals(Object o) {
3297              Object k, v; Map.Entry<?,?> e;
3298              return ((o instanceof Map.Entry) &&
3299                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 3157 | Line 3307 | public class ConcurrentHashMapV8<K, V>
3307           * value to return is somewhat arbitrary here. Since we do not
3308           * necessarily track asynchronous changes, the most recent
3309           * "previous" value could be different from what we return (or
3310 <         * could even have been removed in which case the put will
3310 >         * could even have been removed, in which case the put will
3311           * re-establish). We do not and cannot guarantee more.
3312           */
3313 <        public final V setValue(V value) {
3313 >        public V setValue(V value) {
3314              if (value == null) throw new NullPointerException();
3315              V v = val;
3316              val = value;
# Line 3169 | Line 3319 | public class ConcurrentHashMapV8<K, V>
3319          }
3320      }
3321  
3322 <    /**
3323 <     * Returns exportable snapshot entry for the given key and value
3324 <     * when write-through can't or shouldn't be used.
3325 <     */
3326 <    static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
3327 <        return new AbstractMap.SimpleEntry<K,V>(k, v);
3328 <    }
3322 >    static final class KeySpliterator<K,V> extends Traverser<K,V>
3323 >        implements ConcurrentHashMapSpliterator<K> {
3324 >        long est;               // size estimate
3325 >        KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3326 >                       long est) {
3327 >            super(tab, size, index, limit);
3328 >            this.est = est;
3329 >        }
3330 >
3331 >        public ConcurrentHashMapSpliterator<K> trySplit() {
3332 >            int i, f, h;
3333 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3334 >                new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3335 >                                        f, est >>>= 1);
3336 >        }
3337  
3338 <    /* ---------------- Serialization Support -------------- */
3338 >        public void forEachRemaining(Action<? super K> action) {
3339 >            if (action == null) throw new NullPointerException();
3340 >            for (Node<K,V> p; (p = advance()) != null;)
3341 >                action.apply(p.key);
3342 >        }
3343 >
3344 >        public boolean tryAdvance(Action<? super K> action) {
3345 >            if (action == null) throw new NullPointerException();
3346 >            Node<K,V> p;
3347 >            if ((p = advance()) == null)
3348 >                return false;
3349 >            action.apply(p.key);
3350 >            return true;
3351 >        }
3352 >
3353 >        public long estimateSize() { return est; }
3354  
3182    /**
3183     * Stripped-down version of helper class used in previous version,
3184     * declared for the sake of serialization compatibility
3185     */
3186    static class Segment<K,V> implements Serializable {
3187        private static final long serialVersionUID = 2249069246763182397L;
3188        final float loadFactor;
3189        Segment(float lf) { this.loadFactor = lf; }
3355      }
3356  
3357 <    /**
3358 <     * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3359 <     * stream (i.e., serializes it).
3360 <     * @param s the stream
3361 <     * @serialData
3362 <     * the key (Object) and value (Object)
3363 <     * for each key-value mapping, followed by a null pair.
3199 <     * The key-value mappings are emitted in no particular order.
3200 <     */
3201 <    @SuppressWarnings("unchecked") private void writeObject
3202 <        (java.io.ObjectOutputStream s)
3203 <        throws java.io.IOException {
3204 <        if (segments == null) { // for serialization compatibility
3205 <            segments = (Segment<K,V>[])
3206 <                new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3207 <            for (int i = 0; i < segments.length; ++i)
3208 <                segments[i] = new Segment<K,V>(LOAD_FACTOR);
3209 <        }
3210 <        s.defaultWriteObject();
3211 <        Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3212 <        Object v;
3213 <        while ((v = it.advance()) != null) {
3214 <            s.writeObject(it.nextKey);
3215 <            s.writeObject(v);
3357 >    static final class ValueSpliterator<K,V> extends Traverser<K,V>
3358 >        implements ConcurrentHashMapSpliterator<V> {
3359 >        long est;               // size estimate
3360 >        ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3361 >                         long est) {
3362 >            super(tab, size, index, limit);
3363 >            this.est = est;
3364          }
3217        s.writeObject(null);
3218        s.writeObject(null);
3219        segments = null; // throw away
3220    }
3365  
3366 <    /**
3367 <     * Reconstitutes the instance from a stream (that is, deserializes it).
3368 <     * @param s the stream
3369 <     */
3370 <    @SuppressWarnings("unchecked") private void readObject
3371 <        (java.io.ObjectInputStream s)
3228 <        throws java.io.IOException, ClassNotFoundException {
3229 <        s.defaultReadObject();
3230 <        this.segments = null; // unneeded
3366 >        public ConcurrentHashMapSpliterator<V> trySplit() {
3367 >            int i, f, h;
3368 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3369 >                new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3370 >                                          f, est >>>= 1);
3371 >        }
3372  
3373 <        // Create all nodes, then place in table once size is known
3374 <        long size = 0L;
3375 <        Node p = null;
3376 <        for (;;) {
3236 <            K k = (K) s.readObject();
3237 <            V v = (V) s.readObject();
3238 <            if (k != null && v != null) {
3239 <                int h = spread(k.hashCode());
3240 <                p = new Node(h, k, v, p);
3241 <                ++size;
3242 <            }
3243 <            else
3244 <                break;
3373 >        public void forEachRemaining(Action<? super V> action) {
3374 >            if (action == null) throw new NullPointerException();
3375 >            for (Node<K,V> p; (p = advance()) != null;)
3376 >                action.apply(p.val);
3377          }
3378 <        if (p != null) {
3379 <            boolean init = false;
3380 <            int n;
3381 <            if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3382 <                n = MAXIMUM_CAPACITY;
3383 <            else {
3384 <                int sz = (int)size;
3385 <                n = tableSizeFor(sz + (sz >>> 1) + 1);
3254 <            }
3255 <            int sc = sizeCtl;
3256 <            boolean collide = false;
3257 <            if (n > sc &&
3258 <                U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
3259 <                try {
3260 <                    if (table == null) {
3261 <                        init = true;
3262 <                        Node[] tab = new Node[n];
3263 <                        int mask = n - 1;
3264 <                        while (p != null) {
3265 <                            int j = p.hash & mask;
3266 <                            Node next = p.next;
3267 <                            Node q = p.next = tabAt(tab, j);
3268 <                            setTabAt(tab, j, p);
3269 <                            if (!collide && q != null && q.hash == p.hash)
3270 <                                collide = true;
3271 <                            p = next;
3272 <                        }
3273 <                        table = tab;
3274 <                        addCount(size, -1);
3275 <                        sc = n - (n >>> 2);
3276 <                    }
3277 <                } finally {
3278 <                    sizeCtl = sc;
3279 <                }
3280 <                if (collide) { // rescan and convert to TreeBins
3281 <                    Node[] tab = table;
3282 <                    for (int i = 0; i < tab.length; ++i) {
3283 <                        int c = 0;
3284 <                        for (Node e = tabAt(tab, i); e != null; e = e.next) {
3285 <                            if (++c > TREE_THRESHOLD &&
3286 <                                (e.key instanceof Comparable)) {
3287 <                                replaceWithTreeBin(tab, i, e.key);
3288 <                                break;
3289 <                            }
3290 <                        }
3291 <                    }
3292 <                }
3293 <            }
3294 <            if (!init) { // Can only happen if unsafely published.
3295 <                while (p != null) {
3296 <                    internalPut((K)p.key, (V)p.val, false);
3297 <                    p = p.next;
3298 <                }
3299 <            }
3378 >
3379 >        public boolean tryAdvance(Action<? super V> action) {
3380 >            if (action == null) throw new NullPointerException();
3381 >            Node<K,V> p;
3382 >            if ((p = advance()) == null)
3383 >                return false;
3384 >            action.apply(p.val);
3385 >            return true;
3386          }
3387 +
3388 +        public long estimateSize() { return est; }
3389 +
3390      }
3391  
3392 <    // -------------------------------------------------------
3392 >    static final class EntrySpliterator<K,V> extends Traverser<K,V>
3393 >        implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3394 >        final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3395 >        long est;               // size estimate
3396 >        EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3397 >                         long est, ConcurrentHashMapV8<K,V> map) {
3398 >            super(tab, size, index, limit);
3399 >            this.map = map;
3400 >            this.est = est;
3401 >        }
3402  
3403 <    // Sams
3404 <    /** Interface describing a void action of one argument */
3405 <    public interface Action<A> { void apply(A a); }
3406 <    /** Interface describing a void action of two arguments */
3407 <    public interface BiAction<A,B> { void apply(A a, B b); }
3408 <    /** Interface describing a function of one argument */
3311 <    public interface Fun<A,T> { T apply(A a); }
3312 <    /** Interface describing a function of two arguments */
3313 <    public interface BiFun<A,B,T> { T apply(A a, B b); }
3314 <    /** Interface describing a function of no arguments */
3315 <    public interface Generator<T> { T apply(); }
3316 <    /** Interface describing a function mapping its argument to a double */
3317 <    public interface ObjectToDouble<A> { double apply(A a); }
3318 <    /** Interface describing a function mapping its argument to a long */
3319 <    public interface ObjectToLong<A> { long apply(A a); }
3320 <    /** Interface describing a function mapping its argument to an int */
3321 <    public interface ObjectToInt<A> {int apply(A a); }
3322 <    /** Interface describing a function mapping two arguments to a double */
3323 <    public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3324 <    /** Interface describing a function mapping two arguments to a long */
3325 <    public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3326 <    /** Interface describing a function mapping two arguments to an int */
3327 <    public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3328 <    /** Interface describing a function mapping a double to a double */
3329 <    public interface DoubleToDouble { double apply(double a); }
3330 <    /** Interface describing a function mapping a long to a long */
3331 <    public interface LongToLong { long apply(long a); }
3332 <    /** Interface describing a function mapping an int to an int */
3333 <    public interface IntToInt { int apply(int a); }
3334 <    /** Interface describing a function mapping two doubles to a double */
3335 <    public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3336 <    /** Interface describing a function mapping two longs to a long */
3337 <    public interface LongByLongToLong { long apply(long a, long b); }
3338 <    /** Interface describing a function mapping two ints to an int */
3339 <    public interface IntByIntToInt { int apply(int a, int b); }
3403 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3404 >            int i, f, h;
3405 >            return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3406 >                new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3407 >                                          f, est >>>= 1, map);
3408 >        }
3409  
3410 +        public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3411 +            if (action == null) throw new NullPointerException();
3412 +            for (Node<K,V> p; (p = advance()) != null; )
3413 +                action.apply(new MapEntry<K,V>(p.key, p.val, map));
3414 +        }
3415  
3416 <    // -------------------------------------------------------
3416 >        public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3417 >            if (action == null) throw new NullPointerException();
3418 >            Node<K,V> p;
3419 >            if ((p = advance()) == null)
3420 >                return false;
3421 >            action.apply(new MapEntry<K,V>(p.key, p.val, map));
3422 >            return true;
3423 >        }
3424 >
3425 >        public long estimateSize() { return est; }
3426 >
3427 >    }
3428 >
3429 >    // Parallel bulk operations
3430 >
3431 >    /**
3432 >     * Computes initial batch value for bulk tasks. The returned value
3433 >     * is approximately exp2 of the number of times (minus one) to
3434 >     * split task by two before executing leaf action. This value is
3435 >     * faster to compute and more convenient to use as a guide to
3436 >     * splitting than is the depth, since it is used while dividing by
3437 >     * two anyway.
3438 >     */
3439 >    final int batchFor(long b) {
3440 >        long n;
3441 >        if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3442 >            return 0;
3443 >        int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3444 >        return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3445 >    }
3446  
3447      /**
3448       * Performs the given action for each (key, value).
3449       *
3450 +     * @param parallelismThreshold the (estimated) number of elements
3451 +     * needed for this operation to be executed in parallel
3452       * @param action the action
3453 +     * @since 1.8
3454       */
3455 <    public void forEach(BiAction<K,V> action) {
3456 <        ForkJoinTasks.forEach
3457 <            (this, action).invoke();
3455 >    public void forEach(long parallelismThreshold,
3456 >                        BiAction<? super K,? super V> action) {
3457 >        if (action == null) throw new NullPointerException();
3458 >        new ForEachMappingTask<K,V>
3459 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3460 >             action).invoke();
3461      }
3462  
3463      /**
3464       * Performs the given action for each non-null transformation
3465       * of each (key, value).
3466       *
3467 +     * @param parallelismThreshold the (estimated) number of elements
3468 +     * needed for this operation to be executed in parallel
3469       * @param transformer a function returning the transformation
3470 <     * for an element, or null of there is no transformation (in
3471 <     * which case the action is not applied).
3470 >     * for an element, or null if there is no transformation (in
3471 >     * which case the action is not applied)
3472       * @param action the action
3473 +     * @since 1.8
3474       */
3475 <    public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3476 <                            Action<U> action) {
3477 <        ForkJoinTasks.forEach
3478 <            (this, transformer, action).invoke();
3475 >    public <U> void forEach(long parallelismThreshold,
3476 >                            BiFun<? super K, ? super V, ? extends U> transformer,
3477 >                            Action<? super U> action) {
3478 >        if (transformer == null || action == null)
3479 >            throw new NullPointerException();
3480 >        new ForEachTransformedMappingTask<K,V,U>
3481 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3482 >             transformer, action).invoke();
3483      }
3484  
3485      /**
# Line 3373 | Line 3489 | public class ConcurrentHashMapV8<K, V>
3489       * results of any other parallel invocations of the search
3490       * function are ignored.
3491       *
3492 +     * @param parallelismThreshold the (estimated) number of elements
3493 +     * needed for this operation to be executed in parallel
3494       * @param searchFunction a function returning a non-null
3495       * result on success, else null
3496       * @return a non-null result from applying the given search
3497       * function on each (key, value), or null if none
3498 +     * @since 1.8
3499       */
3500 <    public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3501 <        return ForkJoinTasks.search
3502 <            (this, searchFunction).invoke();
3500 >    public <U> U search(long parallelismThreshold,
3501 >                        BiFun<? super K, ? super V, ? extends U> searchFunction) {
3502 >        if (searchFunction == null) throw new NullPointerException();
3503 >        return new SearchMappingsTask<K,V,U>
3504 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3505 >             searchFunction, new AtomicReference<U>()).invoke();
3506      }
3507  
3508      /**
# Line 3388 | Line 3510 | public class ConcurrentHashMapV8<K, V>
3510       * of all (key, value) pairs using the given reducer to
3511       * combine values, or null if none.
3512       *
3513 +     * @param parallelismThreshold the (estimated) number of elements
3514 +     * needed for this operation to be executed in parallel
3515       * @param transformer a function returning the transformation
3516 <     * for an element, or null of there is no transformation (in
3517 <     * which case it is not combined).
3516 >     * for an element, or null if there is no transformation (in
3517 >     * which case it is not combined)
3518       * @param reducer a commutative associative combining function
3519       * @return the result of accumulating the given transformation
3520       * of all (key, value) pairs
3521 +     * @since 1.8
3522       */
3523 <    public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3523 >    public <U> U reduce(long parallelismThreshold,
3524 >                        BiFun<? super K, ? super V, ? extends U> transformer,
3525                          BiFun<? super U, ? super U, ? extends U> reducer) {
3526 <        return ForkJoinTasks.reduce
3527 <            (this, transformer, reducer).invoke();
3526 >        if (transformer == null || reducer == null)
3527 >            throw new NullPointerException();
3528 >        return new MapReduceMappingsTask<K,V,U>
3529 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3530 >             null, transformer, reducer).invoke();
3531      }
3532  
3533      /**
# Line 3406 | Line 3535 | public class ConcurrentHashMapV8<K, V>
3535       * of all (key, value) pairs using the given reducer to
3536       * combine values, and the given basis as an identity value.
3537       *
3538 +     * @param parallelismThreshold the (estimated) number of elements
3539 +     * needed for this operation to be executed in parallel
3540       * @param transformer a function returning the transformation
3541       * for an element
3542       * @param basis the identity (initial default value) for the reduction
3543       * @param reducer a commutative associative combining function
3544       * @return the result of accumulating the given transformation
3545       * of all (key, value) pairs
3546 +     * @since 1.8
3547       */
3548 <    public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3548 >    public double reduceToDouble(long parallelismThreshold,
3549 >                                 ObjectByObjectToDouble<? super K, ? super V> transformer,
3550                                   double basis,
3551                                   DoubleByDoubleToDouble reducer) {
3552 <        return ForkJoinTasks.reduceToDouble
3553 <            (this, transformer, basis, reducer).invoke();
3552 >        if (transformer == null || reducer == null)
3553 >            throw new NullPointerException();
3554 >        return new MapReduceMappingsToDoubleTask<K,V>
3555 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3556 >             null, transformer, basis, reducer).invoke();
3557      }
3558  
3559      /**
# Line 3425 | Line 3561 | public class ConcurrentHashMapV8<K, V>
3561       * of all (key, value) pairs using the given reducer to
3562       * combine values, and the given basis as an identity value.
3563       *
3564 +     * @param parallelismThreshold the (estimated) number of elements
3565 +     * needed for this operation to be executed in parallel
3566       * @param transformer a function returning the transformation
3567       * for an element
3568       * @param basis the identity (initial default value) for the reduction
3569       * @param reducer a commutative associative combining function
3570       * @return the result of accumulating the given transformation
3571       * of all (key, value) pairs
3572 +     * @since 1.8
3573       */
3574 <    public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3574 >    public long reduceToLong(long parallelismThreshold,
3575 >                             ObjectByObjectToLong<? super K, ? super V> transformer,
3576                               long basis,
3577                               LongByLongToLong reducer) {
3578 <        return ForkJoinTasks.reduceToLong
3579 <            (this, transformer, basis, reducer).invoke();
3578 >        if (transformer == null || reducer == null)
3579 >            throw new NullPointerException();
3580 >        return new MapReduceMappingsToLongTask<K,V>
3581 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3582 >             null, transformer, basis, reducer).invoke();
3583      }
3584  
3585      /**
# Line 3444 | Line 3587 | public class ConcurrentHashMapV8<K, V>
3587       * of all (key, value) pairs using the given reducer to
3588       * combine values, and the given basis as an identity value.
3589       *
3590 +     * @param parallelismThreshold the (estimated) number of elements
3591 +     * needed for this operation to be executed in parallel
3592       * @param transformer a function returning the transformation
3593       * for an element
3594       * @param basis the identity (initial default value) for the reduction
3595       * @param reducer a commutative associative combining function
3596       * @return the result of accumulating the given transformation
3597       * of all (key, value) pairs
3598 +     * @since 1.8
3599       */
3600 <    public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3600 >    public int reduceToInt(long parallelismThreshold,
3601 >                           ObjectByObjectToInt<? super K, ? super V> transformer,
3602                             int basis,
3603                             IntByIntToInt reducer) {
3604 <        return ForkJoinTasks.reduceToInt
3605 <            (this, transformer, basis, reducer).invoke();
3604 >        if (transformer == null || reducer == null)
3605 >            throw new NullPointerException();
3606 >        return new MapReduceMappingsToIntTask<K,V>
3607 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3608 >             null, transformer, basis, reducer).invoke();
3609      }
3610  
3611      /**
3612       * Performs the given action for each key.
3613       *
3614 +     * @param parallelismThreshold the (estimated) number of elements
3615 +     * needed for this operation to be executed in parallel
3616       * @param action the action
3617 +     * @since 1.8
3618       */
3619 <    public void forEachKey(Action<K> action) {
3620 <        ForkJoinTasks.forEachKey
3621 <            (this, action).invoke();
3619 >    public void forEachKey(long parallelismThreshold,
3620 >                           Action<? super K> action) {
3621 >        if (action == null) throw new NullPointerException();
3622 >        new ForEachKeyTask<K,V>
3623 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3624 >             action).invoke();
3625      }
3626  
3627      /**
3628       * Performs the given action for each non-null transformation
3629       * of each key.
3630       *
3631 +     * @param parallelismThreshold the (estimated) number of elements
3632 +     * needed for this operation to be executed in parallel
3633       * @param transformer a function returning the transformation
3634 <     * for an element, or null of there is no transformation (in
3635 <     * which case the action is not applied).
3634 >     * for an element, or null if there is no transformation (in
3635 >     * which case the action is not applied)
3636       * @param action the action
3637 +     * @since 1.8
3638       */
3639 <    public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3640 <                               Action<U> action) {
3641 <        ForkJoinTasks.forEachKey
3642 <            (this, transformer, action).invoke();
3639 >    public <U> void forEachKey(long parallelismThreshold,
3640 >                               Fun<? super K, ? extends U> transformer,
3641 >                               Action<? super U> action) {
3642 >        if (transformer == null || action == null)
3643 >            throw new NullPointerException();
3644 >        new ForEachTransformedKeyTask<K,V,U>
3645 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3646 >             transformer, action).invoke();
3647      }
3648  
3649      /**
# Line 3490 | Line 3653 | public class ConcurrentHashMapV8<K, V>
3653       * any other parallel invocations of the search function are
3654       * ignored.
3655       *
3656 +     * @param parallelismThreshold the (estimated) number of elements
3657 +     * needed for this operation to be executed in parallel
3658       * @param searchFunction a function returning a non-null
3659       * result on success, else null
3660       * @return a non-null result from applying the given search
3661       * function on each key, or null if none
3662 +     * @since 1.8
3663       */
3664 <    public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3665 <        return ForkJoinTasks.searchKeys
3666 <            (this, searchFunction).invoke();
3664 >    public <U> U searchKeys(long parallelismThreshold,
3665 >                            Fun<? super K, ? extends U> searchFunction) {
3666 >        if (searchFunction == null) throw new NullPointerException();
3667 >        return new SearchKeysTask<K,V,U>
3668 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3669 >             searchFunction, new AtomicReference<U>()).invoke();
3670      }
3671  
3672      /**
3673       * Returns the result of accumulating all keys using the given
3674       * reducer to combine values, or null if none.
3675       *
3676 +     * @param parallelismThreshold the (estimated) number of elements
3677 +     * needed for this operation to be executed in parallel
3678       * @param reducer a commutative associative combining function
3679       * @return the result of accumulating all keys using the given
3680       * reducer to combine values, or null if none
3681 +     * @since 1.8
3682       */
3683 <    public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3684 <        return ForkJoinTasks.reduceKeys
3685 <            (this, reducer).invoke();
3683 >    public K reduceKeys(long parallelismThreshold,
3684 >                        BiFun<? super K, ? super K, ? extends K> reducer) {
3685 >        if (reducer == null) throw new NullPointerException();
3686 >        return new ReduceKeysTask<K,V>
3687 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3688 >             null, reducer).invoke();
3689      }
3690  
3691      /**
# Line 3518 | Line 3693 | public class ConcurrentHashMapV8<K, V>
3693       * of all keys using the given reducer to combine values, or
3694       * null if none.
3695       *
3696 +     * @param parallelismThreshold the (estimated) number of elements
3697 +     * needed for this operation to be executed in parallel
3698       * @param transformer a function returning the transformation
3699 <     * for an element, or null of there is no transformation (in
3700 <     * which case it is not combined).
3699 >     * for an element, or null if there is no transformation (in
3700 >     * which case it is not combined)
3701       * @param reducer a commutative associative combining function
3702       * @return the result of accumulating the given transformation
3703       * of all keys
3704 +     * @since 1.8
3705       */
3706 <    public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3707 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
3708 <        return ForkJoinTasks.reduceKeys
3709 <            (this, transformer, reducer).invoke();
3706 >    public <U> U reduceKeys(long parallelismThreshold,
3707 >                            Fun<? super K, ? extends U> transformer,
3708 >         BiFun<? super U, ? super U, ? extends U> reducer) {
3709 >        if (transformer == null || reducer == null)
3710 >            throw new NullPointerException();
3711 >        return new MapReduceKeysTask<K,V,U>
3712 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3713 >             null, transformer, reducer).invoke();
3714      }
3715  
3716      /**
# Line 3536 | Line 3718 | public class ConcurrentHashMapV8<K, V>
3718       * of all keys using the given reducer to combine values, and
3719       * the given basis as an identity value.
3720       *
3721 +     * @param parallelismThreshold the (estimated) number of elements
3722 +     * needed for this operation to be executed in parallel
3723       * @param transformer a function returning the transformation
3724       * for an element
3725       * @param basis the identity (initial default value) for the reduction
3726       * @param reducer a commutative associative combining function
3727 <     * @return  the result of accumulating the given transformation
3727 >     * @return the result of accumulating the given transformation
3728       * of all keys
3729 +     * @since 1.8
3730       */
3731 <    public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3731 >    public double reduceKeysToDouble(long parallelismThreshold,
3732 >                                     ObjectToDouble<? super K> transformer,
3733                                       double basis,
3734                                       DoubleByDoubleToDouble reducer) {
3735 <        return ForkJoinTasks.reduceKeysToDouble
3736 <            (this, transformer, basis, reducer).invoke();
3735 >        if (transformer == null || reducer == null)
3736 >            throw new NullPointerException();
3737 >        return new MapReduceKeysToDoubleTask<K,V>
3738 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3739 >             null, transformer, basis, reducer).invoke();
3740      }
3741  
3742      /**
# Line 3555 | Line 3744 | public class ConcurrentHashMapV8<K, V>
3744       * of all keys using the given reducer to combine values, and
3745       * the given basis as an identity value.
3746       *
3747 +     * @param parallelismThreshold the (estimated) number of elements
3748 +     * needed for this operation to be executed in parallel
3749       * @param transformer a function returning the transformation
3750       * for an element
3751       * @param basis the identity (initial default value) for the reduction
3752       * @param reducer a commutative associative combining function
3753       * @return the result of accumulating the given transformation
3754       * of all keys
3755 +     * @since 1.8
3756       */
3757 <    public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3757 >    public long reduceKeysToLong(long parallelismThreshold,
3758 >                                 ObjectToLong<? super K> transformer,
3759                                   long basis,
3760                                   LongByLongToLong reducer) {
3761 <        return ForkJoinTasks.reduceKeysToLong
3762 <            (this, transformer, basis, reducer).invoke();
3761 >        if (transformer == null || reducer == null)
3762 >            throw new NullPointerException();
3763 >        return new MapReduceKeysToLongTask<K,V>
3764 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3765 >             null, transformer, basis, reducer).invoke();
3766      }
3767  
3768      /**
# Line 3574 | Line 3770 | public class ConcurrentHashMapV8<K, V>
3770       * of all keys using the given reducer to combine values, and
3771       * the given basis as an identity value.
3772       *
3773 +     * @param parallelismThreshold the (estimated) number of elements
3774 +     * needed for this operation to be executed in parallel
3775       * @param transformer a function returning the transformation
3776       * for an element
3777       * @param basis the identity (initial default value) for the reduction
3778       * @param reducer a commutative associative combining function
3779       * @return the result of accumulating the given transformation
3780       * of all keys
3781 +     * @since 1.8
3782       */
3783 <    public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3783 >    public int reduceKeysToInt(long parallelismThreshold,
3784 >                               ObjectToInt<? super K> transformer,
3785                                 int basis,
3786                                 IntByIntToInt reducer) {
3787 <        return ForkJoinTasks.reduceKeysToInt
3788 <            (this, transformer, basis, reducer).invoke();
3787 >        if (transformer == null || reducer == null)
3788 >            throw new NullPointerException();
3789 >        return new MapReduceKeysToIntTask<K,V>
3790 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3791 >             null, transformer, basis, reducer).invoke();
3792      }
3793  
3794      /**
3795       * Performs the given action for each value.
3796       *
3797 +     * @param parallelismThreshold the (estimated) number of elements
3798 +     * needed for this operation to be executed in parallel
3799       * @param action the action
3800 +     * @since 1.8
3801       */
3802 <    public void forEachValue(Action<V> action) {
3803 <        ForkJoinTasks.forEachValue
3804 <            (this, action).invoke();
3802 >    public void forEachValue(long parallelismThreshold,
3803 >                             Action<? super V> action) {
3804 >        if (action == null)
3805 >            throw new NullPointerException();
3806 >        new ForEachValueTask<K,V>
3807 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3808 >             action).invoke();
3809      }
3810  
3811      /**
3812       * Performs the given action for each non-null transformation
3813       * of each value.
3814       *
3815 +     * @param parallelismThreshold the (estimated) number of elements
3816 +     * needed for this operation to be executed in parallel
3817       * @param transformer a function returning the transformation
3818 <     * for an element, or null of there is no transformation (in
3819 <     * which case the action is not applied).
3818 >     * for an element, or null if there is no transformation (in
3819 >     * which case the action is not applied)
3820 >     * @param action the action
3821 >     * @since 1.8
3822       */
3823 <    public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3824 <                                 Action<U> action) {
3825 <        ForkJoinTasks.forEachValue
3826 <            (this, transformer, action).invoke();
3823 >    public <U> void forEachValue(long parallelismThreshold,
3824 >                                 Fun<? super V, ? extends U> transformer,
3825 >                                 Action<? super U> action) {
3826 >        if (transformer == null || action == null)
3827 >            throw new NullPointerException();
3828 >        new ForEachTransformedValueTask<K,V,U>
3829 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3830 >             transformer, action).invoke();
3831      }
3832  
3833      /**
# Line 3619 | Line 3837 | public class ConcurrentHashMapV8<K, V>
3837       * any other parallel invocations of the search function are
3838       * ignored.
3839       *
3840 +     * @param parallelismThreshold the (estimated) number of elements
3841 +     * needed for this operation to be executed in parallel
3842       * @param searchFunction a function returning a non-null
3843       * result on success, else null
3844       * @return a non-null result from applying the given search
3845       * function on each value, or null if none
3846 <     *
3846 >     * @since 1.8
3847       */
3848 <    public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3849 <        return ForkJoinTasks.searchValues
3850 <            (this, searchFunction).invoke();
3848 >    public <U> U searchValues(long parallelismThreshold,
3849 >                              Fun<? super V, ? extends U> searchFunction) {
3850 >        if (searchFunction == null) throw new NullPointerException();
3851 >        return new SearchValuesTask<K,V,U>
3852 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3853 >             searchFunction, new AtomicReference<U>()).invoke();
3854      }
3855  
3856      /**
3857       * Returns the result of accumulating all values using the
3858       * given reducer to combine values, or null if none.
3859       *
3860 +     * @param parallelismThreshold the (estimated) number of elements
3861 +     * needed for this operation to be executed in parallel
3862       * @param reducer a commutative associative combining function
3863 <     * @return  the result of accumulating all values
3863 >     * @return the result of accumulating all values
3864 >     * @since 1.8
3865       */
3866 <    public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3867 <        return ForkJoinTasks.reduceValues
3868 <            (this, reducer).invoke();
3866 >    public V reduceValues(long parallelismThreshold,
3867 >                          BiFun<? super V, ? super V, ? extends V> reducer) {
3868 >        if (reducer == null) throw new NullPointerException();
3869 >        return new ReduceValuesTask<K,V>
3870 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3871 >             null, reducer).invoke();
3872      }
3873  
3874      /**
# Line 3647 | Line 3876 | public class ConcurrentHashMapV8<K, V>
3876       * of all values using the given reducer to combine values, or
3877       * null if none.
3878       *
3879 +     * @param parallelismThreshold the (estimated) number of elements
3880 +     * needed for this operation to be executed in parallel
3881       * @param transformer a function returning the transformation
3882 <     * for an element, or null of there is no transformation (in
3883 <     * which case it is not combined).
3882 >     * for an element, or null if there is no transformation (in
3883 >     * which case it is not combined)
3884       * @param reducer a commutative associative combining function
3885       * @return the result of accumulating the given transformation
3886       * of all values
3887 +     * @since 1.8
3888       */
3889 <    public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3889 >    public <U> U reduceValues(long parallelismThreshold,
3890 >                              Fun<? super V, ? extends U> transformer,
3891                                BiFun<? super U, ? super U, ? extends U> reducer) {
3892 <        return ForkJoinTasks.reduceValues
3893 <            (this, transformer, reducer).invoke();
3892 >        if (transformer == null || reducer == null)
3893 >            throw new NullPointerException();
3894 >        return new MapReduceValuesTask<K,V,U>
3895 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3896 >             null, transformer, reducer).invoke();
3897      }
3898  
3899      /**
# Line 3665 | Line 3901 | public class ConcurrentHashMapV8<K, V>
3901       * of all values using the given reducer to combine values,
3902       * and the given basis as an identity value.
3903       *
3904 +     * @param parallelismThreshold the (estimated) number of elements
3905 +     * needed for this operation to be executed in parallel
3906       * @param transformer a function returning the transformation
3907       * for an element
3908       * @param basis the identity (initial default value) for the reduction
3909       * @param reducer a commutative associative combining function
3910       * @return the result of accumulating the given transformation
3911       * of all values
3912 +     * @since 1.8
3913       */
3914 <    public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3914 >    public double reduceValuesToDouble(long parallelismThreshold,
3915 >                                       ObjectToDouble<? super V> transformer,
3916                                         double basis,
3917                                         DoubleByDoubleToDouble reducer) {
3918 <        return ForkJoinTasks.reduceValuesToDouble
3919 <            (this, transformer, basis, reducer).invoke();
3918 >        if (transformer == null || reducer == null)
3919 >            throw new NullPointerException();
3920 >        return new MapReduceValuesToDoubleTask<K,V>
3921 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3922 >             null, transformer, basis, reducer).invoke();
3923      }
3924  
3925      /**
# Line 3684 | Line 3927 | public class ConcurrentHashMapV8<K, V>
3927       * of all values using the given reducer to combine values,
3928       * and the given basis as an identity value.
3929       *
3930 +     * @param parallelismThreshold the (estimated) number of elements
3931 +     * needed for this operation to be executed in parallel
3932       * @param transformer a function returning the transformation
3933       * for an element
3934       * @param basis the identity (initial default value) for the reduction
3935       * @param reducer a commutative associative combining function
3936       * @return the result of accumulating the given transformation
3937       * of all values
3938 +     * @since 1.8
3939       */
3940 <    public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3940 >    public long reduceValuesToLong(long parallelismThreshold,
3941 >                                   ObjectToLong<? super V> transformer,
3942                                     long basis,
3943                                     LongByLongToLong reducer) {
3944 <        return ForkJoinTasks.reduceValuesToLong
3945 <            (this, transformer, basis, reducer).invoke();
3944 >        if (transformer == null || reducer == null)
3945 >            throw new NullPointerException();
3946 >        return new MapReduceValuesToLongTask<K,V>
3947 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3948 >             null, transformer, basis, reducer).invoke();
3949      }
3950  
3951      /**
# Line 3703 | Line 3953 | public class ConcurrentHashMapV8<K, V>
3953       * of all values using the given reducer to combine values,
3954       * and the given basis as an identity value.
3955       *
3956 +     * @param parallelismThreshold the (estimated) number of elements
3957 +     * needed for this operation to be executed in parallel
3958       * @param transformer a function returning the transformation
3959       * for an element
3960       * @param basis the identity (initial default value) for the reduction
3961       * @param reducer a commutative associative combining function
3962       * @return the result of accumulating the given transformation
3963       * of all values
3964 +     * @since 1.8
3965       */
3966 <    public int reduceValuesToInt(ObjectToInt<? super V> transformer,
3966 >    public int reduceValuesToInt(long parallelismThreshold,
3967 >                                 ObjectToInt<? super V> transformer,
3968                                   int basis,
3969                                   IntByIntToInt reducer) {
3970 <        return ForkJoinTasks.reduceValuesToInt
3971 <            (this, transformer, basis, reducer).invoke();
3970 >        if (transformer == null || reducer == null)
3971 >            throw new NullPointerException();
3972 >        return new MapReduceValuesToIntTask<K,V>
3973 >            (null, batchFor(parallelismThreshold), 0, 0, table,
3974 >             null, transformer, basis, reducer).invoke();
3975      }
3976  
3977      /**
3978       * Performs the given action for each entry.
3979       *
3980 +     * @param parallelismThreshold the (estimated) number of elements
3981 +     * needed for this operation to be executed in parallel
3982       * @param action the action
3983 +     * @since 1.8
3984       */
3985 <    public void forEachEntry(Action<Map.Entry<K,V>> action) {
3986 <        ForkJoinTasks.forEachEntry
3987 <            (this, action).invoke();
3985 >    public void forEachEntry(long parallelismThreshold,
3986 >                             Action<? super Map.Entry<K,V>> action) {
3987 >        if (action == null) throw new NullPointerException();
3988 >        new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3989 >                                  action).invoke();
3990      }
3991  
3992      /**
3993       * Performs the given action for each non-null transformation
3994       * of each entry.
3995       *
3996 +     * @param parallelismThreshold the (estimated) number of elements
3997 +     * needed for this operation to be executed in parallel
3998       * @param transformer a function returning the transformation
3999 <     * for an element, or null of there is no transformation (in
4000 <     * which case the action is not applied).
3999 >     * for an element, or null if there is no transformation (in
4000 >     * which case the action is not applied)
4001       * @param action the action
4002 +     * @since 1.8
4003       */
4004 <    public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4005 <                                 Action<U> action) {
4006 <        ForkJoinTasks.forEachEntry
4007 <            (this, transformer, action).invoke();
4004 >    public <U> void forEachEntry(long parallelismThreshold,
4005 >                                 Fun<Map.Entry<K,V>, ? extends U> transformer,
4006 >                                 Action<? super U> action) {
4007 >        if (transformer == null || action == null)
4008 >            throw new NullPointerException();
4009 >        new ForEachTransformedEntryTask<K,V,U>
4010 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4011 >             transformer, action).invoke();
4012      }
4013  
4014      /**
# Line 3749 | Line 4018 | public class ConcurrentHashMapV8<K, V>
4018       * any other parallel invocations of the search function are
4019       * ignored.
4020       *
4021 +     * @param parallelismThreshold the (estimated) number of elements
4022 +     * needed for this operation to be executed in parallel
4023       * @param searchFunction a function returning a non-null
4024       * result on success, else null
4025       * @return a non-null result from applying the given search
4026       * function on each entry, or null if none
4027 +     * @since 1.8
4028       */
4029 <    public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4030 <        return ForkJoinTasks.searchEntries
4031 <            (this, searchFunction).invoke();
4029 >    public <U> U searchEntries(long parallelismThreshold,
4030 >                               Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4031 >        if (searchFunction == null) throw new NullPointerException();
4032 >        return new SearchEntriesTask<K,V,U>
4033 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4034 >             searchFunction, new AtomicReference<U>()).invoke();
4035      }
4036  
4037      /**
4038       * Returns the result of accumulating all entries using the
4039       * given reducer to combine values, or null if none.
4040       *
4041 +     * @param parallelismThreshold the (estimated) number of elements
4042 +     * needed for this operation to be executed in parallel
4043       * @param reducer a commutative associative combining function
4044       * @return the result of accumulating all entries
4045 +     * @since 1.8
4046       */
4047 <    public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4048 <        return ForkJoinTasks.reduceEntries
4049 <            (this, reducer).invoke();
4047 >    public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4048 >                                        BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4049 >        if (reducer == null) throw new NullPointerException();
4050 >        return new ReduceEntriesTask<K,V>
4051 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4052 >             null, reducer).invoke();
4053      }
4054  
4055      /**
# Line 3776 | Line 4057 | public class ConcurrentHashMapV8<K, V>
4057       * of all entries using the given reducer to combine values,
4058       * or null if none.
4059       *
4060 +     * @param parallelismThreshold the (estimated) number of elements
4061 +     * needed for this operation to be executed in parallel
4062       * @param transformer a function returning the transformation
4063 <     * for an element, or null of there is no transformation (in
4064 <     * which case it is not combined).
4063 >     * for an element, or null if there is no transformation (in
4064 >     * which case it is not combined)
4065       * @param reducer a commutative associative combining function
4066       * @return the result of accumulating the given transformation
4067       * of all entries
4068 +     * @since 1.8
4069       */
4070 <    public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4070 >    public <U> U reduceEntries(long parallelismThreshold,
4071 >                               Fun<Map.Entry<K,V>, ? extends U> transformer,
4072                                 BiFun<? super U, ? super U, ? extends U> reducer) {
4073 <        return ForkJoinTasks.reduceEntries
4074 <            (this, transformer, reducer).invoke();
4073 >        if (transformer == null || reducer == null)
4074 >            throw new NullPointerException();
4075 >        return new MapReduceEntriesTask<K,V,U>
4076 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4077 >             null, transformer, reducer).invoke();
4078      }
4079  
4080      /**
# Line 3794 | Line 4082 | public class ConcurrentHashMapV8<K, V>
4082       * of all entries using the given reducer to combine values,
4083       * and the given basis as an identity value.
4084       *
4085 +     * @param parallelismThreshold the (estimated) number of elements
4086 +     * needed for this operation to be executed in parallel
4087       * @param transformer a function returning the transformation
4088       * for an element
4089       * @param basis the identity (initial default value) for the reduction
4090       * @param reducer a commutative associative combining function
4091       * @return the result of accumulating the given transformation
4092       * of all entries
4093 +     * @since 1.8
4094       */
4095 <    public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4095 >    public double reduceEntriesToDouble(long parallelismThreshold,
4096 >                                        ObjectToDouble<Map.Entry<K,V>> transformer,
4097                                          double basis,
4098                                          DoubleByDoubleToDouble reducer) {
4099 <        return ForkJoinTasks.reduceEntriesToDouble
4100 <            (this, transformer, basis, reducer).invoke();
4099 >        if (transformer == null || reducer == null)
4100 >            throw new NullPointerException();
4101 >        return new MapReduceEntriesToDoubleTask<K,V>
4102 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4103 >             null, transformer, basis, reducer).invoke();
4104      }
4105  
4106      /**
# Line 3813 | Line 4108 | public class ConcurrentHashMapV8<K, V>
4108       * of all entries using the given reducer to combine values,
4109       * and the given basis as an identity value.
4110       *
4111 +     * @param parallelismThreshold the (estimated) number of elements
4112 +     * needed for this operation to be executed in parallel
4113       * @param transformer a function returning the transformation
4114       * for an element
4115       * @param basis the identity (initial default value) for the reduction
4116       * @param reducer a commutative associative combining function
4117 <     * @return  the result of accumulating the given transformation
4117 >     * @return the result of accumulating the given transformation
4118       * of all entries
4119 +     * @since 1.8
4120       */
4121 <    public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4121 >    public long reduceEntriesToLong(long parallelismThreshold,
4122 >                                    ObjectToLong<Map.Entry<K,V>> transformer,
4123                                      long basis,
4124                                      LongByLongToLong reducer) {
4125 <        return ForkJoinTasks.reduceEntriesToLong
4126 <            (this, transformer, basis, reducer).invoke();
4125 >        if (transformer == null || reducer == null)
4126 >            throw new NullPointerException();
4127 >        return new MapReduceEntriesToLongTask<K,V>
4128 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4129 >             null, transformer, basis, reducer).invoke();
4130      }
4131  
4132      /**
# Line 3832 | Line 4134 | public class ConcurrentHashMapV8<K, V>
4134       * of all entries using the given reducer to combine values,
4135       * and the given basis as an identity value.
4136       *
4137 +     * @param parallelismThreshold the (estimated) number of elements
4138 +     * needed for this operation to be executed in parallel
4139       * @param transformer a function returning the transformation
4140       * for an element
4141       * @param basis the identity (initial default value) for the reduction
4142       * @param reducer a commutative associative combining function
4143       * @return the result of accumulating the given transformation
4144       * of all entries
4145 +     * @since 1.8
4146       */
4147 <    public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4147 >    public int reduceEntriesToInt(long parallelismThreshold,
4148 >                                  ObjectToInt<Map.Entry<K,V>> transformer,
4149                                    int basis,
4150                                    IntByIntToInt reducer) {
4151 <        return ForkJoinTasks.reduceEntriesToInt
4152 <            (this, transformer, basis, reducer).invoke();
4151 >        if (transformer == null || reducer == null)
4152 >            throw new NullPointerException();
4153 >        return new MapReduceEntriesToIntTask<K,V>
4154 >            (null, batchFor(parallelismThreshold), 0, 0, table,
4155 >             null, transformer, basis, reducer).invoke();
4156      }
4157  
4158 +
4159      /* ----------------Views -------------- */
4160  
4161      /**
4162       * Base class for views.
4163       */
4164 <    static abstract class CHMView<K, V> {
4165 <        final ConcurrentHashMapV8<K, V> map;
4166 <        CHMView(ConcurrentHashMapV8<K, V> map)  { this.map = map; }
4164 >    abstract static class CollectionView<K,V,E>
4165 >        implements Collection<E>, java.io.Serializable {
4166 >        private static final long serialVersionUID = 7249069246763182397L;
4167 >        final ConcurrentHashMapV8<K,V> map;
4168 >        CollectionView(ConcurrentHashMapV8<K,V> map)  { this.map = map; }
4169  
4170          /**
4171           * Returns the map backing this view.
# Line 3862 | Line 4174 | public class ConcurrentHashMapV8<K, V>
4174           */
4175          public ConcurrentHashMapV8<K,V> getMap() { return map; }
4176  
4177 <        public final int size()                 { return map.size(); }
4178 <        public final boolean isEmpty()          { return map.isEmpty(); }
4179 <        public final void clear()               { map.clear(); }
4177 >        /**
4178 >         * Removes all of the elements from this view, by removing all
4179 >         * the mappings from the map backing this view.
4180 >         */
4181 >        public final void clear()      { map.clear(); }
4182 >        public final int size()        { return map.size(); }
4183 >        public final boolean isEmpty() { return map.isEmpty(); }
4184  
4185          // implementations below rely on concrete classes supplying these
4186 <        abstract public Iterator<?> iterator();
4187 <        abstract public boolean contains(Object o);
4188 <        abstract public boolean remove(Object o);
4186 >        // abstract methods
4187 >        /**
4188 >         * Returns a "weakly consistent" iterator that will never
4189 >         * throw {@link ConcurrentModificationException}, and
4190 >         * guarantees to traverse elements as they existed upon
4191 >         * construction of the iterator, and may (but is not
4192 >         * guaranteed to) reflect any modifications subsequent to
4193 >         * construction.
4194 >         */
4195 >        public abstract Iterator<E> iterator();
4196 >        public abstract boolean contains(Object o);
4197 >        public abstract boolean remove(Object o);
4198  
4199          private static final String oomeMsg = "Required array size too large";
4200  
4201          public final Object[] toArray() {
4202              long sz = map.mappingCount();
4203 <            if (sz > (long)(MAX_ARRAY_SIZE))
4203 >            if (sz > MAX_ARRAY_SIZE)
4204                  throw new OutOfMemoryError(oomeMsg);
4205              int n = (int)sz;
4206              Object[] r = new Object[n];
4207              int i = 0;
4208 <            Iterator<?> it = iterator();
3884 <            while (it.hasNext()) {
4208 >            for (E e : this) {
4209                  if (i == n) {
4210                      if (n >= MAX_ARRAY_SIZE)
4211                          throw new OutOfMemoryError(oomeMsg);
# Line 3891 | Line 4215 | public class ConcurrentHashMapV8<K, V>
4215                          n += (n >>> 1) + 1;
4216                      r = Arrays.copyOf(r, n);
4217                  }
4218 <                r[i++] = it.next();
4218 >                r[i++] = e;
4219              }
4220              return (i == n) ? r : Arrays.copyOf(r, i);
4221          }
4222  
4223 <        @SuppressWarnings("unchecked") public final <T> T[] toArray(T[] a) {
4223 >        @SuppressWarnings("unchecked")
4224 >        public final <T> T[] toArray(T[] a) {
4225              long sz = map.mappingCount();
4226 <            if (sz > (long)(MAX_ARRAY_SIZE))
4226 >            if (sz > MAX_ARRAY_SIZE)
4227                  throw new OutOfMemoryError(oomeMsg);
4228              int m = (int)sz;
4229              T[] r = (a.length >= m) ? a :
# Line 3906 | Line 4231 | public class ConcurrentHashMapV8<K, V>
4231                  .newInstance(a.getClass().getComponentType(), m);
4232              int n = r.length;
4233              int i = 0;
4234 <            Iterator<?> it = iterator();
3910 <            while (it.hasNext()) {
4234 >            for (E e : this) {
4235                  if (i == n) {
4236                      if (n >= MAX_ARRAY_SIZE)
4237                          throw new OutOfMemoryError(oomeMsg);
# Line 3917 | Line 4241 | public class ConcurrentHashMapV8<K, V>
4241                          n += (n >>> 1) + 1;
4242                      r = Arrays.copyOf(r, n);
4243                  }
4244 <                r[i++] = (T)it.next();
4244 >                r[i++] = (T)e;
4245              }
4246              if (a == r && i < n) {
4247                  r[i] = null; // null-terminate
# Line 3926 | Line 4250 | public class ConcurrentHashMapV8<K, V>
4250              return (i == n) ? r : Arrays.copyOf(r, i);
4251          }
4252  
4253 <        public final int hashCode() {
4254 <            int h = 0;
4255 <            for (Iterator<?> it = iterator(); it.hasNext();)
4256 <                h += it.next().hashCode();
4257 <            return h;
4258 <        }
4259 <
4253 >        /**
4254 >         * Returns a string representation of this collection.
4255 >         * The string representation consists of the string representations
4256 >         * of the collection's elements in the order they are returned by
4257 >         * its iterator, enclosed in square brackets ({@code "[]"}).
4258 >         * Adjacent elements are separated by the characters {@code ", "}
4259 >         * (comma and space).  Elements are converted to strings as by
4260 >         * {@link String#valueOf(Object)}.
4261 >         *
4262 >         * @return a string representation of this collection
4263 >         */
4264          public final String toString() {
4265              StringBuilder sb = new StringBuilder();
4266              sb.append('[');
4267 <            Iterator<?> it = iterator();
4267 >            Iterator<E> it = iterator();
4268              if (it.hasNext()) {
4269                  for (;;) {
4270                      Object e = it.next();
# Line 3951 | Line 4279 | public class ConcurrentHashMapV8<K, V>
4279  
4280          public final boolean containsAll(Collection<?> c) {
4281              if (c != this) {
4282 <                for (Iterator<?> it = c.iterator(); it.hasNext();) {
3955 <                    Object e = it.next();
4282 >                for (Object e : c) {
4283                      if (e == null || !contains(e))
4284                          return false;
4285                  }
# Line 3962 | Line 4289 | public class ConcurrentHashMapV8<K, V>
4289  
4290          public final boolean removeAll(Collection<?> c) {
4291              boolean modified = false;
4292 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4292 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4293                  if (c.contains(it.next())) {
4294                      it.remove();
4295                      modified = true;
# Line 3973 | Line 4300 | public class ConcurrentHashMapV8<K, V>
4300  
4301          public final boolean retainAll(Collection<?> c) {
4302              boolean modified = false;
4303 <            for (Iterator<?> it = iterator(); it.hasNext();) {
4303 >            for (Iterator<E> it = iterator(); it.hasNext();) {
4304                  if (!c.contains(it.next())) {
4305                      it.remove();
4306                      modified = true;
# Line 3987 | Line 4314 | public class ConcurrentHashMapV8<K, V>
4314      /**
4315       * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4316       * which additions may optionally be enabled by mapping to a
4317 <     * common value.  This class cannot be directly instantiated. See
4318 <     * {@link #keySet}, {@link #keySet(Object)}, {@link #newKeySet()},
4319 <     * {@link #newKeySet(int)}.
4317 >     * common value.  This class cannot be directly instantiated.
4318 >     * See {@link #keySet() keySet()},
4319 >     * {@link #keySet(Object) keySet(V)},
4320 >     * {@link #newKeySet() newKeySet()},
4321 >     * {@link #newKeySet(int) newKeySet(int)}.
4322 >     *
4323 >     * @since 1.8
4324       */
4325 <    public static class KeySetView<K,V> extends CHMView<K,V>
4325 >    public static class KeySetView<K,V> extends CollectionView<K,V,K>
4326          implements Set<K>, java.io.Serializable {
4327          private static final long serialVersionUID = 7249069246763182397L;
4328          private final V value;
4329 <        KeySetView(ConcurrentHashMapV8<K, V> map, V value) {  // non-public
4329 >        KeySetView(ConcurrentHashMapV8<K,V> map, V value) {  // non-public
4330              super(map);
4331              this.value = value;
4332          }
# Line 4005 | Line 4336 | public class ConcurrentHashMapV8<K, V>
4336           * or {@code null} if additions are not supported.
4337           *
4338           * @return the default mapped value for additions, or {@code null}
4339 <         * if not supported.
4339 >         * if not supported
4340           */
4341          public V getMappedValue() { return value; }
4342  
4343 <        // implement Set API
4344 <
4343 >        /**
4344 >         * {@inheritDoc}
4345 >         * @throws NullPointerException if the specified key is null
4346 >         */
4347          public boolean contains(Object o) { return map.containsKey(o); }
4015        public boolean remove(Object o)   { return map.remove(o) != null; }
4348  
4349          /**
4350 <         * Returns a "weakly consistent" iterator that will never
4351 <         * throw {@link ConcurrentModificationException}, and
4352 <         * guarantees to traverse elements as they existed upon
4021 <         * construction of the iterator, and may (but is not
4022 <         * guaranteed to) reflect any modifications subsequent to
4023 <         * construction.
4350 >         * Removes the key from this map view, by removing the key (and its
4351 >         * corresponding value) from the backing map.  This method does
4352 >         * nothing if the key is not in the map.
4353           *
4354 <         * @return an iterator over the keys of this map
4354 >         * @param  o the key to be removed from the backing map
4355 >         * @return {@code true} if the backing map contained the specified key
4356 >         * @throws NullPointerException if the specified key is null
4357 >         */
4358 >        public boolean remove(Object o) { return map.remove(o) != null; }
4359 >
4360 >        /**
4361 >         * @return an iterator over the keys of the backing map
4362 >         */
4363 >        public Iterator<K> iterator() {
4364 >            Node<K,V>[] t;
4365 >            ConcurrentHashMapV8<K,V> m = map;
4366 >            int f = (t = m.table) == null ? 0 : t.length;
4367 >            return new KeyIterator<K,V>(t, f, 0, f, m);
4368 >        }
4369 >
4370 >        /**
4371 >         * Adds the specified key to this set view by mapping the key to
4372 >         * the default mapped value in the backing map, if defined.
4373 >         *
4374 >         * @param e key to be added
4375 >         * @return {@code true} if this set changed as a result of the call
4376 >         * @throws NullPointerException if the specified key is null
4377 >         * @throws UnsupportedOperationException if no default mapped value
4378 >         * for additions was provided
4379           */
4027        public Iterator<K> iterator()     { return new KeyIterator<K,V>(map); }
4380          public boolean add(K e) {
4381              V v;
4382              if ((v = value) == null)
4383                  throw new UnsupportedOperationException();
4384 <            if (e == null)
4033 <                throw new NullPointerException();
4034 <            return map.internalPut(e, v, true) == null;
4384 >            return map.putVal(e, v, true) == null;
4385          }
4386 +
4387 +        /**
4388 +         * Adds all of the elements in the specified collection to this set,
4389 +         * as if by calling {@link #add} on each one.
4390 +         *
4391 +         * @param c the elements to be inserted into this set
4392 +         * @return {@code true} if this set changed as a result of the call
4393 +         * @throws NullPointerException if the collection or any of its
4394 +         * elements are {@code null}
4395 +         * @throws UnsupportedOperationException if no default mapped value
4396 +         * for additions was provided
4397 +         */
4398          public boolean addAll(Collection<? extends K> c) {
4399              boolean added = false;
4400              V v;
4401              if ((v = value) == null)
4402                  throw new UnsupportedOperationException();
4403              for (K e : c) {
4404 <                if (e == null)
4043 <                    throw new NullPointerException();
4044 <                if (map.internalPut(e, v, true) == null)
4404 >                if (map.putVal(e, v, true) == null)
4405                      added = true;
4406              }
4407              return added;
4408          }
4409 +
4410 +        public int hashCode() {
4411 +            int h = 0;
4412 +            for (K e : this)
4413 +                h += e.hashCode();
4414 +            return h;
4415 +        }
4416 +
4417          public boolean equals(Object o) {
4418              Set<?> c;
4419              return ((o instanceof Set) &&
# Line 4053 | Line 4421 | public class ConcurrentHashMapV8<K, V>
4421                       (containsAll(c) && c.containsAll(this))));
4422          }
4423  
4424 <        /**
4425 <         * Performs the given action for each key.
4426 <         *
4427 <         * @param action the action
4428 <         */
4429 <        public void forEach(Action<K> action) {
4062 <            ForkJoinTasks.forEachKey
4063 <                (map, action).invoke();
4064 <        }
4065 <
4066 <        /**
4067 <         * Performs the given action for each non-null transformation
4068 <         * of each key.
4069 <         *
4070 <         * @param transformer a function returning the transformation
4071 <         * for an element, or null of there is no transformation (in
4072 <         * which case the action is not applied).
4073 <         * @param action the action
4074 <         */
4075 <        public <U> void forEach(Fun<? super K, ? extends U> transformer,
4076 <                                Action<U> action) {
4077 <            ForkJoinTasks.forEachKey
4078 <                (map, transformer, action).invoke();
4079 <        }
4080 <
4081 <        /**
4082 <         * Returns a non-null result from applying the given search
4083 <         * function on each key, or null if none. Upon success,
4084 <         * further element processing is suppressed and the results of
4085 <         * any other parallel invocations of the search function are
4086 <         * ignored.
4087 <         *
4088 <         * @param searchFunction a function returning a non-null
4089 <         * result on success, else null
4090 <         * @return a non-null result from applying the given search
4091 <         * function on each key, or null if none
4092 <         */
4093 <        public <U> U search(Fun<? super K, ? extends U> searchFunction) {
4094 <            return ForkJoinTasks.searchKeys
4095 <                (map, searchFunction).invoke();
4096 <        }
4097 <
4098 <        /**
4099 <         * Returns the result of accumulating all keys using the given
4100 <         * reducer to combine values, or null if none.
4101 <         *
4102 <         * @param reducer a commutative associative combining function
4103 <         * @return the result of accumulating all keys using the given
4104 <         * reducer to combine values, or null if none
4105 <         */
4106 <        public K reduce(BiFun<? super K, ? super K, ? extends K> reducer) {
4107 <            return ForkJoinTasks.reduceKeys
4108 <                (map, reducer).invoke();
4109 <        }
4110 <
4111 <        /**
4112 <         * Returns the result of accumulating the given transformation
4113 <         * of all keys using the given reducer to combine values, and
4114 <         * the given basis as an identity value.
4115 <         *
4116 <         * @param transformer a function returning the transformation
4117 <         * for an element
4118 <         * @param basis the identity (initial default value) for the reduction
4119 <         * @param reducer a commutative associative combining function
4120 <         * @return  the result of accumulating the given transformation
4121 <         * of all keys
4122 <         */
4123 <        public double reduceToDouble(ObjectToDouble<? super K> transformer,
4124 <                                     double basis,
4125 <                                     DoubleByDoubleToDouble reducer) {
4126 <            return ForkJoinTasks.reduceKeysToDouble
4127 <                (map, transformer, basis, reducer).invoke();
4424 >        public ConcurrentHashMapSpliterator<K> spliterator() {
4425 >            Node<K,V>[] t;
4426 >            ConcurrentHashMapV8<K,V> m = map;
4427 >            long n = m.sumCount();
4428 >            int f = (t = m.table) == null ? 0 : t.length;
4429 >            return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4430          }
4431  
4432 <        /**
4433 <         * Returns the result of accumulating the given transformation
4434 <         * of all keys using the given reducer to combine values, and
4435 <         * the given basis as an identity value.
4436 <         *
4437 <         * @param transformer a function returning the transformation
4438 <         * for an element
4439 <         * @param basis the identity (initial default value) for the reduction
4138 <         * @param reducer a commutative associative combining function
4139 <         * @return the result of accumulating the given transformation
4140 <         * of all keys
4141 <         */
4142 <        public long reduceToLong(ObjectToLong<? super K> transformer,
4143 <                                 long basis,
4144 <                                 LongByLongToLong reducer) {
4145 <            return ForkJoinTasks.reduceKeysToLong
4146 <                (map, transformer, basis, reducer).invoke();
4147 <        }
4148 <
4149 <        /**
4150 <         * Returns the result of accumulating the given transformation
4151 <         * of all keys using the given reducer to combine values, and
4152 <         * the given basis as an identity value.
4153 <         *
4154 <         * @param transformer a function returning the transformation
4155 <         * for an element
4156 <         * @param basis the identity (initial default value) for the reduction
4157 <         * @param reducer a commutative associative combining function
4158 <         * @return the result of accumulating the given transformation
4159 <         * of all keys
4160 <         */
4161 <        public int reduceToInt(ObjectToInt<? super K> transformer,
4162 <                               int basis,
4163 <                               IntByIntToInt reducer) {
4164 <            return ForkJoinTasks.reduceKeysToInt
4165 <                (map, transformer, basis, reducer).invoke();
4432 >        public void forEach(Action<? super K> action) {
4433 >            if (action == null) throw new NullPointerException();
4434 >            Node<K,V>[] t;
4435 >            if ((t = map.table) != null) {
4436 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4437 >                for (Node<K,V> p; (p = it.advance()) != null; )
4438 >                    action.apply(p.key);
4439 >            }
4440          }
4167
4441      }
4442  
4443      /**
4444       * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4445       * values, in which additions are disabled. This class cannot be
4446 <     * directly instantiated. See {@link #values},
4174 <     *
4175 <     * <p>The view's {@code iterator} is a "weakly consistent" iterator
4176 <     * that will never throw {@link ConcurrentModificationException},
4177 <     * and guarantees to traverse elements as they existed upon
4178 <     * construction of the iterator, and may (but is not guaranteed to)
4179 <     * reflect any modifications subsequent to construction.
4446 >     * directly instantiated. See {@link #values()}.
4447       */
4448 <    public static final class ValuesView<K,V> extends CHMView<K,V>
4449 <        implements Collection<V> {
4450 <        ValuesView(ConcurrentHashMapV8<K, V> map)   { super(map); }
4451 <        public final boolean contains(Object o) { return map.containsValue(o); }
4448 >    static final class ValuesView<K,V> extends CollectionView<K,V,V>
4449 >        implements Collection<V>, java.io.Serializable {
4450 >        private static final long serialVersionUID = 2249069246763182397L;
4451 >        ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4452 >        public final boolean contains(Object o) {
4453 >            return map.containsValue(o);
4454 >        }
4455 >
4456          public final boolean remove(Object o) {
4457              if (o != null) {
4458 <                Iterator<V> it = new ValueIterator<K,V>(map);
4188 <                while (it.hasNext()) {
4458 >                for (Iterator<V> it = iterator(); it.hasNext();) {
4459                      if (o.equals(it.next())) {
4460                          it.remove();
4461                          return true;
# Line 4195 | Line 4465 | public class ConcurrentHashMapV8<K, V>
4465              return false;
4466          }
4467  
4198        /**
4199         * Returns a "weakly consistent" iterator that will never
4200         * throw {@link ConcurrentModificationException}, and
4201         * guarantees to traverse elements as they existed upon
4202         * construction of the iterator, and may (but is not
4203         * guaranteed to) reflect any modifications subsequent to
4204         * construction.
4205         *
4206         * @return an iterator over the values of this map
4207         */
4468          public final Iterator<V> iterator() {
4469 <            return new ValueIterator<K,V>(map);
4469 >            ConcurrentHashMapV8<K,V> m = map;
4470 >            Node<K,V>[] t;
4471 >            int f = (t = m.table) == null ? 0 : t.length;
4472 >            return new ValueIterator<K,V>(t, f, 0, f, m);
4473          }
4474 +
4475          public final boolean add(V e) {
4476              throw new UnsupportedOperationException();
4477          }
# Line 4215 | Line 4479 | public class ConcurrentHashMapV8<K, V>
4479              throw new UnsupportedOperationException();
4480          }
4481  
4482 <        /**
4483 <         * Performs the given action for each value.
4484 <         *
4485 <         * @param action the action
4486 <         */
4487 <        public void forEach(Action<V> action) {
4224 <            ForkJoinTasks.forEachValue
4225 <                (map, action).invoke();
4226 <        }
4227 <
4228 <        /**
4229 <         * Performs the given action for each non-null transformation
4230 <         * of each value.
4231 <         *
4232 <         * @param transformer a function returning the transformation
4233 <         * for an element, or null of there is no transformation (in
4234 <         * which case the action is not applied).
4235 <         */
4236 <        public <U> void forEach(Fun<? super V, ? extends U> transformer,
4237 <                                     Action<U> action) {
4238 <            ForkJoinTasks.forEachValue
4239 <                (map, transformer, action).invoke();
4240 <        }
4241 <
4242 <        /**
4243 <         * Returns a non-null result from applying the given search
4244 <         * function on each value, or null if none.  Upon success,
4245 <         * further element processing is suppressed and the results of
4246 <         * any other parallel invocations of the search function are
4247 <         * ignored.
4248 <         *
4249 <         * @param searchFunction a function returning a non-null
4250 <         * result on success, else null
4251 <         * @return a non-null result from applying the given search
4252 <         * function on each value, or null if none
4253 <         *
4254 <         */
4255 <        public <U> U search(Fun<? super V, ? extends U> searchFunction) {
4256 <            return ForkJoinTasks.searchValues
4257 <                (map, searchFunction).invoke();
4258 <        }
4259 <
4260 <        /**
4261 <         * Returns the result of accumulating all values using the
4262 <         * given reducer to combine values, or null if none.
4263 <         *
4264 <         * @param reducer a commutative associative combining function
4265 <         * @return  the result of accumulating all values
4266 <         */
4267 <        public V reduce(BiFun<? super V, ? super V, ? extends V> reducer) {
4268 <            return ForkJoinTasks.reduceValues
4269 <                (map, reducer).invoke();
4270 <        }
4271 <
4272 <        /**
4273 <         * Returns the result of accumulating the given transformation
4274 <         * of all values using the given reducer to combine values, or
4275 <         * null if none.
4276 <         *
4277 <         * @param transformer a function returning the transformation
4278 <         * for an element, or null of there is no transformation (in
4279 <         * which case it is not combined).
4280 <         * @param reducer a commutative associative combining function
4281 <         * @return the result of accumulating the given transformation
4282 <         * of all values
4283 <         */
4284 <        public <U> U reduce(Fun<? super V, ? extends U> transformer,
4285 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4286 <            return ForkJoinTasks.reduceValues
4287 <                (map, transformer, reducer).invoke();
4482 >        public ConcurrentHashMapSpliterator<V> spliterator() {
4483 >            Node<K,V>[] t;
4484 >            ConcurrentHashMapV8<K,V> m = map;
4485 >            long n = m.sumCount();
4486 >            int f = (t = m.table) == null ? 0 : t.length;
4487 >            return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4488          }
4489  
4490 <        /**
4491 <         * Returns the result of accumulating the given transformation
4492 <         * of all values using the given reducer to combine values,
4493 <         * and the given basis as an identity value.
4494 <         *
4495 <         * @param transformer a function returning the transformation
4496 <         * for an element
4497 <         * @param basis the identity (initial default value) for the reduction
4298 <         * @param reducer a commutative associative combining function
4299 <         * @return the result of accumulating the given transformation
4300 <         * of all values
4301 <         */
4302 <        public double reduceToDouble(ObjectToDouble<? super V> transformer,
4303 <                                     double basis,
4304 <                                     DoubleByDoubleToDouble reducer) {
4305 <            return ForkJoinTasks.reduceValuesToDouble
4306 <                (map, transformer, basis, reducer).invoke();
4307 <        }
4308 <
4309 <        /**
4310 <         * Returns the result of accumulating the given transformation
4311 <         * of all values using the given reducer to combine values,
4312 <         * and the given basis as an identity value.
4313 <         *
4314 <         * @param transformer a function returning the transformation
4315 <         * for an element
4316 <         * @param basis the identity (initial default value) for the reduction
4317 <         * @param reducer a commutative associative combining function
4318 <         * @return the result of accumulating the given transformation
4319 <         * of all values
4320 <         */
4321 <        public long reduceToLong(ObjectToLong<? super V> transformer,
4322 <                                 long basis,
4323 <                                 LongByLongToLong reducer) {
4324 <            return ForkJoinTasks.reduceValuesToLong
4325 <                (map, transformer, basis, reducer).invoke();
4326 <        }
4327 <
4328 <        /**
4329 <         * Returns the result of accumulating the given transformation
4330 <         * of all values using the given reducer to combine values,
4331 <         * and the given basis as an identity value.
4332 <         *
4333 <         * @param transformer a function returning the transformation
4334 <         * for an element
4335 <         * @param basis the identity (initial default value) for the reduction
4336 <         * @param reducer a commutative associative combining function
4337 <         * @return the result of accumulating the given transformation
4338 <         * of all values
4339 <         */
4340 <        public int reduceToInt(ObjectToInt<? super V> transformer,
4341 <                               int basis,
4342 <                               IntByIntToInt reducer) {
4343 <            return ForkJoinTasks.reduceValuesToInt
4344 <                (map, transformer, basis, reducer).invoke();
4490 >        public void forEach(Action<? super V> action) {
4491 >            if (action == null) throw new NullPointerException();
4492 >            Node<K,V>[] t;
4493 >            if ((t = map.table) != null) {
4494 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4495 >                for (Node<K,V> p; (p = it.advance()) != null; )
4496 >                    action.apply(p.val);
4497 >            }
4498          }
4346
4499      }
4500  
4501      /**
4502       * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4503       * entries.  This class cannot be directly instantiated. See
4504 <     * {@link #entrySet}.
4504 >     * {@link #entrySet()}.
4505       */
4506 <    public static final class EntrySetView<K,V> extends CHMView<K,V>
4507 <        implements Set<Map.Entry<K,V>> {
4508 <        EntrySetView(ConcurrentHashMapV8<K, V> map) { super(map); }
4509 <        public final boolean contains(Object o) {
4506 >    static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4507 >        implements Set<Map.Entry<K,V>>, java.io.Serializable {
4508 >        private static final long serialVersionUID = 2249069246763182397L;
4509 >        EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4510 >
4511 >        public boolean contains(Object o) {
4512              Object k, v, r; Map.Entry<?,?> e;
4513              return ((o instanceof Map.Entry) &&
4514                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4362 | Line 4516 | public class ConcurrentHashMapV8<K, V>
4516                      (v = e.getValue()) != null &&
4517                      (v == r || v.equals(r)));
4518          }
4519 <        public final boolean remove(Object o) {
4519 >
4520 >        public boolean remove(Object o) {
4521              Object k, v; Map.Entry<?,?> e;
4522              return ((o instanceof Map.Entry) &&
4523                      (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
# Line 4371 | Line 4526 | public class ConcurrentHashMapV8<K, V>
4526          }
4527  
4528          /**
4529 <         * Returns a "weakly consistent" iterator that will never
4375 <         * throw {@link ConcurrentModificationException}, and
4376 <         * guarantees to traverse elements as they existed upon
4377 <         * construction of the iterator, and may (but is not
4378 <         * guaranteed to) reflect any modifications subsequent to
4379 <         * construction.
4380 <         *
4381 <         * @return an iterator over the entries of this map
4529 >         * @return an iterator over the entries of the backing map
4530           */
4531 <        public final Iterator<Map.Entry<K,V>> iterator() {
4532 <            return new EntryIterator<K,V>(map);
4531 >        public Iterator<Map.Entry<K,V>> iterator() {
4532 >            ConcurrentHashMapV8<K,V> m = map;
4533 >            Node<K,V>[] t;
4534 >            int f = (t = m.table) == null ? 0 : t.length;
4535 >            return new EntryIterator<K,V>(t, f, 0, f, m);
4536          }
4537  
4538 <        public final boolean add(Entry<K,V> e) {
4539 <            K key = e.getKey();
4389 <            V value = e.getValue();
4390 <            if (key == null || value == null)
4391 <                throw new NullPointerException();
4392 <            return map.internalPut(key, value, false) == null;
4538 >        public boolean add(Entry<K,V> e) {
4539 >            return map.putVal(e.getKey(), e.getValue(), false) == null;
4540          }
4541 <        public final boolean addAll(Collection<? extends Entry<K,V>> c) {
4541 >
4542 >        public boolean addAll(Collection<? extends Entry<K,V>> c) {
4543              boolean added = false;
4544              for (Entry<K,V> e : c) {
4545                  if (add(e))
# Line 4399 | Line 4547 | public class ConcurrentHashMapV8<K, V>
4547              }
4548              return added;
4549          }
4550 <        public boolean equals(Object o) {
4550 >
4551 >        public final int hashCode() {
4552 >            int h = 0;
4553 >            Node<K,V>[] t;
4554 >            if ((t = map.table) != null) {
4555 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4556 >                for (Node<K,V> p; (p = it.advance()) != null; ) {
4557 >                    h += p.hashCode();
4558 >                }
4559 >            }
4560 >            return h;
4561 >        }
4562 >
4563 >        public final boolean equals(Object o) {
4564              Set<?> c;
4565              return ((o instanceof Set) &&
4566                      ((c = (Set<?>)o) == this ||
4567                       (containsAll(c) && c.containsAll(this))));
4568          }
4569  
4570 <        /**
4571 <         * Performs the given action for each entry.
4572 <         *
4573 <         * @param action the action
4574 <         */
4575 <        public void forEach(Action<Map.Entry<K,V>> action) {
4415 <            ForkJoinTasks.forEachEntry
4416 <                (map, action).invoke();
4417 <        }
4418 <
4419 <        /**
4420 <         * Performs the given action for each non-null transformation
4421 <         * of each entry.
4422 <         *
4423 <         * @param transformer a function returning the transformation
4424 <         * for an element, or null of there is no transformation (in
4425 <         * which case the action is not applied).
4426 <         * @param action the action
4427 <         */
4428 <        public <U> void forEach(Fun<Map.Entry<K,V>, ? extends U> transformer,
4429 <                                Action<U> action) {
4430 <            ForkJoinTasks.forEachEntry
4431 <                (map, transformer, action).invoke();
4432 <        }
4433 <
4434 <        /**
4435 <         * Returns a non-null result from applying the given search
4436 <         * function on each entry, or null if none.  Upon success,
4437 <         * further element processing is suppressed and the results of
4438 <         * any other parallel invocations of the search function are
4439 <         * ignored.
4440 <         *
4441 <         * @param searchFunction a function returning a non-null
4442 <         * result on success, else null
4443 <         * @return a non-null result from applying the given search
4444 <         * function on each entry, or null if none
4445 <         */
4446 <        public <U> U search(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4447 <            return ForkJoinTasks.searchEntries
4448 <                (map, searchFunction).invoke();
4449 <        }
4450 <
4451 <        /**
4452 <         * Returns the result of accumulating all entries using the
4453 <         * given reducer to combine values, or null if none.
4454 <         *
4455 <         * @param reducer a commutative associative combining function
4456 <         * @return the result of accumulating all entries
4457 <         */
4458 <        public Map.Entry<K,V> reduce(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4459 <            return ForkJoinTasks.reduceEntries
4460 <                (map, reducer).invoke();
4461 <        }
4462 <
4463 <        /**
4464 <         * Returns the result of accumulating the given transformation
4465 <         * of all entries using the given reducer to combine values,
4466 <         * or null if none.
4467 <         *
4468 <         * @param transformer a function returning the transformation
4469 <         * for an element, or null of there is no transformation (in
4470 <         * which case it is not combined).
4471 <         * @param reducer a commutative associative combining function
4472 <         * @return the result of accumulating the given transformation
4473 <         * of all entries
4474 <         */
4475 <        public <U> U reduce(Fun<Map.Entry<K,V>, ? extends U> transformer,
4476 <                            BiFun<? super U, ? super U, ? extends U> reducer) {
4477 <            return ForkJoinTasks.reduceEntries
4478 <                (map, transformer, reducer).invoke();
4479 <        }
4480 <
4481 <        /**
4482 <         * Returns the result of accumulating the given transformation
4483 <         * of all entries using the given reducer to combine values,
4484 <         * and the given basis as an identity value.
4485 <         *
4486 <         * @param transformer a function returning the transformation
4487 <         * for an element
4488 <         * @param basis the identity (initial default value) for the reduction
4489 <         * @param reducer a commutative associative combining function
4490 <         * @return the result of accumulating the given transformation
4491 <         * of all entries
4492 <         */
4493 <        public double reduceToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4494 <                                     double basis,
4495 <                                     DoubleByDoubleToDouble reducer) {
4496 <            return ForkJoinTasks.reduceEntriesToDouble
4497 <                (map, transformer, basis, reducer).invoke();
4498 <        }
4499 <
4500 <        /**
4501 <         * Returns the result of accumulating the given transformation
4502 <         * of all entries using the given reducer to combine values,
4503 <         * and the given basis as an identity value.
4504 <         *
4505 <         * @param transformer a function returning the transformation
4506 <         * for an element
4507 <         * @param basis the identity (initial default value) for the reduction
4508 <         * @param reducer a commutative associative combining function
4509 <         * @return  the result of accumulating the given transformation
4510 <         * of all entries
4511 <         */
4512 <        public long reduceToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4513 <                                 long basis,
4514 <                                 LongByLongToLong reducer) {
4515 <            return ForkJoinTasks.reduceEntriesToLong
4516 <                (map, transformer, basis, reducer).invoke();
4570 >        public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4571 >            Node<K,V>[] t;
4572 >            ConcurrentHashMapV8<K,V> m = map;
4573 >            long n = m.sumCount();
4574 >            int f = (t = m.table) == null ? 0 : t.length;
4575 >            return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4576          }
4577  
4578 <        /**
4579 <         * Returns the result of accumulating the given transformation
4580 <         * of all entries using the given reducer to combine values,
4581 <         * and the given basis as an identity value.
4582 <         *
4583 <         * @param transformer a function returning the transformation
4584 <         * for an element
4585 <         * @param basis the identity (initial default value) for the reduction
4527 <         * @param reducer a commutative associative combining function
4528 <         * @return the result of accumulating the given transformation
4529 <         * of all entries
4530 <         */
4531 <        public int reduceToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4532 <                               int basis,
4533 <                               IntByIntToInt reducer) {
4534 <            return ForkJoinTasks.reduceEntriesToInt
4535 <                (map, transformer, basis, reducer).invoke();
4578 >        public void forEach(Action<? super Map.Entry<K,V>> action) {
4579 >            if (action == null) throw new NullPointerException();
4580 >            Node<K,V>[] t;
4581 >            if ((t = map.table) != null) {
4582 >                Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 >                for (Node<K,V> p; (p = it.advance()) != null; )
4584 >                    action.apply(new MapEntry<K,V>(p.key, p.val, map));
4585 >            }
4586          }
4587  
4588      }
4589  
4590 <    // ---------------------------------------------------------------------
4590 >    // -------------------------------------------------------
4591  
4592      /**
4593 <     * Predefined tasks for performing bulk parallel operations on
4594 <     * ConcurrentHashMapV8s. These tasks follow the forms and rules used
4545 <     * for bulk operations. Each method has the same name, but returns
4546 <     * a task rather than invoking it. These methods may be useful in
4547 <     * custom applications such as submitting a task without waiting
4548 <     * for completion, using a custom pool, or combining with other
4549 <     * tasks.
4593 >     * Base class for bulk tasks. Repeats some fields and code from
4594 >     * class Traverser, because we need to subclass CountedCompleter.
4595       */
4596 <    public static class ForkJoinTasks {
4597 <        private ForkJoinTasks() {}
4598 <
4599 <        /**
4600 <         * Returns a task that when invoked, performs the given
4601 <         * action for each (key, value)
4602 <         *
4603 <         * @param map the map
4604 <         * @param action the action
4605 <         * @return the task
4606 <         */
4607 <        public static <K,V> ForkJoinTask<Void> forEach
4608 <            (ConcurrentHashMapV8<K,V> map,
4609 <             BiAction<K,V> action) {
4610 <            if (action == null) throw new NullPointerException();
4611 <            return new ForEachMappingTask<K,V>(map, null, -1, action);
4612 <        }
4613 <
4614 <        /**
4615 <         * Returns a task that when invoked, performs the given
4616 <         * action for each non-null transformation of each (key, value)
4572 <         *
4573 <         * @param map the map
4574 <         * @param transformer a function returning the transformation
4575 <         * for an element, or null if there is no transformation (in
4576 <         * which case the action is not applied)
4577 <         * @param action the action
4578 <         * @return the task
4579 <         */
4580 <        public static <K,V,U> ForkJoinTask<Void> forEach
4581 <            (ConcurrentHashMapV8<K,V> map,
4582 <             BiFun<? super K, ? super V, ? extends U> transformer,
4583 <             Action<U> action) {
4584 <            if (transformer == null || action == null)
4585 <                throw new NullPointerException();
4586 <            return new ForEachTransformedMappingTask<K,V,U>
4587 <                (map, null, -1, transformer, action);
4588 <        }
4589 <
4590 <        /**
4591 <         * Returns a task that when invoked, returns a non-null result
4592 <         * from applying the given search function on each (key,
4593 <         * value), or null if none. Upon success, further element
4594 <         * processing is suppressed and the results of any other
4595 <         * parallel invocations of the search function are ignored.
4596 <         *
4597 <         * @param map the map
4598 <         * @param searchFunction a function returning a non-null
4599 <         * result on success, else null
4600 <         * @return the task
4601 <         */
4602 <        public static <K,V,U> ForkJoinTask<U> search
4603 <            (ConcurrentHashMapV8<K,V> map,
4604 <             BiFun<? super K, ? super V, ? extends U> searchFunction) {
4605 <            if (searchFunction == null) throw new NullPointerException();
4606 <            return new SearchMappingsTask<K,V,U>
4607 <                (map, null, -1, searchFunction,
4608 <                 new AtomicReference<U>());
4609 <        }
4610 <
4611 <        /**
4612 <         * Returns a task that when invoked, returns the result of
4613 <         * accumulating the given transformation of all (key, value) pairs
4614 <         * using the given reducer to combine values, or null if none.
4615 <         *
4616 <         * @param map the map
4617 <         * @param transformer a function returning the transformation
4618 <         * for an element, or null if there is no transformation (in
4619 <         * which case it is not combined).
4620 <         * @param reducer a commutative associative combining function
4621 <         * @return the task
4622 <         */
4623 <        public static <K,V,U> ForkJoinTask<U> reduce
4624 <            (ConcurrentHashMapV8<K,V> map,
4625 <             BiFun<? super K, ? super V, ? extends U> transformer,
4626 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4627 <            if (transformer == null || reducer == null)
4628 <                throw new NullPointerException();
4629 <            return new MapReduceMappingsTask<K,V,U>
4630 <                (map, null, -1, null, transformer, reducer);
4631 <        }
4632 <
4633 <        /**
4634 <         * Returns a task that when invoked, returns the result of
4635 <         * accumulating the given transformation of all (key, value) pairs
4636 <         * using the given reducer to combine values, and the given
4637 <         * basis as an identity value.
4638 <         *
4639 <         * @param map the map
4640 <         * @param transformer a function returning the transformation
4641 <         * for an element
4642 <         * @param basis the identity (initial default value) for the reduction
4643 <         * @param reducer a commutative associative combining function
4644 <         * @return the task
4645 <         */
4646 <        public static <K,V> ForkJoinTask<Double> reduceToDouble
4647 <            (ConcurrentHashMapV8<K,V> map,
4648 <             ObjectByObjectToDouble<? super K, ? super V> transformer,
4649 <             double basis,
4650 <             DoubleByDoubleToDouble reducer) {
4651 <            if (transformer == null || reducer == null)
4652 <                throw new NullPointerException();
4653 <            return new MapReduceMappingsToDoubleTask<K,V>
4654 <                (map, null, -1, null, transformer, basis, reducer);
4655 <        }
4656 <
4657 <        /**
4658 <         * Returns a task that when invoked, returns the result of
4659 <         * accumulating the given transformation of all (key, value) pairs
4660 <         * using the given reducer to combine values, and the given
4661 <         * basis as an identity value.
4662 <         *
4663 <         * @param map the map
4664 <         * @param transformer a function returning the transformation
4665 <         * for an element
4666 <         * @param basis the identity (initial default value) for the reduction
4667 <         * @param reducer a commutative associative combining function
4668 <         * @return the task
4669 <         */
4670 <        public static <K,V> ForkJoinTask<Long> reduceToLong
4671 <            (ConcurrentHashMapV8<K,V> map,
4672 <             ObjectByObjectToLong<? super K, ? super V> transformer,
4673 <             long basis,
4674 <             LongByLongToLong reducer) {
4675 <            if (transformer == null || reducer == null)
4676 <                throw new NullPointerException();
4677 <            return new MapReduceMappingsToLongTask<K,V>
4678 <                (map, null, -1, null, transformer, basis, reducer);
4679 <        }
4680 <
4681 <        /**
4682 <         * Returns a task that when invoked, returns the result of
4683 <         * accumulating the given transformation of all (key, value) pairs
4684 <         * using the given reducer to combine values, and the given
4685 <         * basis as an identity value.
4686 <         *
4687 <         * @param transformer a function returning the transformation
4688 <         * for an element
4689 <         * @param basis the identity (initial default value) for the reduction
4690 <         * @param reducer a commutative associative combining function
4691 <         * @return the task
4692 <         */
4693 <        public static <K,V> ForkJoinTask<Integer> reduceToInt
4694 <            (ConcurrentHashMapV8<K,V> map,
4695 <             ObjectByObjectToInt<? super K, ? super V> transformer,
4696 <             int basis,
4697 <             IntByIntToInt reducer) {
4698 <            if (transformer == null || reducer == null)
4699 <                throw new NullPointerException();
4700 <            return new MapReduceMappingsToIntTask<K,V>
4701 <                (map, null, -1, null, transformer, basis, reducer);
4702 <        }
4703 <
4704 <        /**
4705 <         * Returns a task that when invoked, performs the given action
4706 <         * for each key.
4707 <         *
4708 <         * @param map the map
4709 <         * @param action the action
4710 <         * @return the task
4711 <         */
4712 <        public static <K,V> ForkJoinTask<Void> forEachKey
4713 <            (ConcurrentHashMapV8<K,V> map,
4714 <             Action<K> action) {
4715 <            if (action == null) throw new NullPointerException();
4716 <            return new ForEachKeyTask<K,V>(map, null, -1, action);
4717 <        }
4718 <
4719 <        /**
4720 <         * Returns a task that when invoked, performs the given action
4721 <         * for each non-null transformation of each key.
4722 <         *
4723 <         * @param map the map
4724 <         * @param transformer a function returning the transformation
4725 <         * for an element, or null if there is no transformation (in
4726 <         * which case the action is not applied)
4727 <         * @param action the action
4728 <         * @return the task
4729 <         */
4730 <        public static <K,V,U> ForkJoinTask<Void> forEachKey
4731 <            (ConcurrentHashMapV8<K,V> map,
4732 <             Fun<? super K, ? extends U> transformer,
4733 <             Action<U> action) {
4734 <            if (transformer == null || action == null)
4735 <                throw new NullPointerException();
4736 <            return new ForEachTransformedKeyTask<K,V,U>
4737 <                (map, null, -1, transformer, action);
4738 <        }
4739 <
4740 <        /**
4741 <         * Returns a task that when invoked, returns a non-null result
4742 <         * from applying the given search function on each key, or
4743 <         * null if none.  Upon success, further element processing is
4744 <         * suppressed and the results of any other parallel
4745 <         * invocations of the search function are ignored.
4746 <         *
4747 <         * @param map the map
4748 <         * @param searchFunction a function returning a non-null
4749 <         * result on success, else null
4750 <         * @return the task
4751 <         */
4752 <        public static <K,V,U> ForkJoinTask<U> searchKeys
4753 <            (ConcurrentHashMapV8<K,V> map,
4754 <             Fun<? super K, ? extends U> searchFunction) {
4755 <            if (searchFunction == null) throw new NullPointerException();
4756 <            return new SearchKeysTask<K,V,U>
4757 <                (map, null, -1, searchFunction,
4758 <                 new AtomicReference<U>());
4759 <        }
4760 <
4761 <        /**
4762 <         * Returns a task that when invoked, returns the result of
4763 <         * accumulating all keys using the given reducer to combine
4764 <         * values, or null if none.
4765 <         *
4766 <         * @param map the map
4767 <         * @param reducer a commutative associative combining function
4768 <         * @return the task
4769 <         */
4770 <        public static <K,V> ForkJoinTask<K> reduceKeys
4771 <            (ConcurrentHashMapV8<K,V> map,
4772 <             BiFun<? super K, ? super K, ? extends K> reducer) {
4773 <            if (reducer == null) throw new NullPointerException();
4774 <            return new ReduceKeysTask<K,V>
4775 <                (map, null, -1, null, reducer);
4776 <        }
4777 <
4778 <        /**
4779 <         * Returns a task that when invoked, returns the result of
4780 <         * accumulating the given transformation of all keys using the given
4781 <         * reducer to combine values, or null if none.
4782 <         *
4783 <         * @param map the map
4784 <         * @param transformer a function returning the transformation
4785 <         * for an element, or null if there is no transformation (in
4786 <         * which case it is not combined).
4787 <         * @param reducer a commutative associative combining function
4788 <         * @return the task
4789 <         */
4790 <        public static <K,V,U> ForkJoinTask<U> reduceKeys
4791 <            (ConcurrentHashMapV8<K,V> map,
4792 <             Fun<? super K, ? extends U> transformer,
4793 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4794 <            if (transformer == null || reducer == null)
4795 <                throw new NullPointerException();
4796 <            return new MapReduceKeysTask<K,V,U>
4797 <                (map, null, -1, null, transformer, reducer);
4798 <        }
4799 <
4800 <        /**
4801 <         * Returns a task that when invoked, returns the result of
4802 <         * accumulating the given transformation of all keys using the given
4803 <         * reducer to combine values, and the given basis as an
4804 <         * identity value.
4805 <         *
4806 <         * @param map the map
4807 <         * @param transformer a function returning the transformation
4808 <         * for an element
4809 <         * @param basis the identity (initial default value) for the reduction
4810 <         * @param reducer a commutative associative combining function
4811 <         * @return the task
4812 <         */
4813 <        public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4814 <            (ConcurrentHashMapV8<K,V> map,
4815 <             ObjectToDouble<? super K> transformer,
4816 <             double basis,
4817 <             DoubleByDoubleToDouble reducer) {
4818 <            if (transformer == null || reducer == null)
4819 <                throw new NullPointerException();
4820 <            return new MapReduceKeysToDoubleTask<K,V>
4821 <                (map, null, -1, null, transformer, basis, reducer);
4822 <        }
4823 <
4824 <        /**
4825 <         * Returns a task that when invoked, returns the result of
4826 <         * accumulating the given transformation of all keys using the given
4827 <         * reducer to combine values, and the given basis as an
4828 <         * identity value.
4829 <         *
4830 <         * @param map the map
4831 <         * @param transformer a function returning the transformation
4832 <         * for an element
4833 <         * @param basis the identity (initial default value) for the reduction
4834 <         * @param reducer a commutative associative combining function
4835 <         * @return the task
4836 <         */
4837 <        public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4838 <            (ConcurrentHashMapV8<K,V> map,
4839 <             ObjectToLong<? super K> transformer,
4840 <             long basis,
4841 <             LongByLongToLong reducer) {
4842 <            if (transformer == null || reducer == null)
4843 <                throw new NullPointerException();
4844 <            return new MapReduceKeysToLongTask<K,V>
4845 <                (map, null, -1, null, transformer, basis, reducer);
4846 <        }
4847 <
4848 <        /**
4849 <         * Returns a task that when invoked, returns the result of
4850 <         * accumulating the given transformation of all keys using the given
4851 <         * reducer to combine values, and the given basis as an
4852 <         * identity value.
4853 <         *
4854 <         * @param map the map
4855 <         * @param transformer a function returning the transformation
4856 <         * for an element
4857 <         * @param basis the identity (initial default value) for the reduction
4858 <         * @param reducer a commutative associative combining function
4859 <         * @return the task
4860 <         */
4861 <        public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4862 <            (ConcurrentHashMapV8<K,V> map,
4863 <             ObjectToInt<? super K> transformer,
4864 <             int basis,
4865 <             IntByIntToInt reducer) {
4866 <            if (transformer == null || reducer == null)
4867 <                throw new NullPointerException();
4868 <            return new MapReduceKeysToIntTask<K,V>
4869 <                (map, null, -1, null, transformer, basis, reducer);
4870 <        }
4871 <
4872 <        /**
4873 <         * Returns a task that when invoked, performs the given action
4874 <         * for each value.
4875 <         *
4876 <         * @param map the map
4877 <         * @param action the action
4878 <         */
4879 <        public static <K,V> ForkJoinTask<Void> forEachValue
4880 <            (ConcurrentHashMapV8<K,V> map,
4881 <             Action<V> action) {
4882 <            if (action == null) throw new NullPointerException();
4883 <            return new ForEachValueTask<K,V>(map, null, -1, action);
4884 <        }
4885 <
4886 <        /**
4887 <         * Returns a task that when invoked, performs the given action
4888 <         * for each non-null transformation of each value.
4889 <         *
4890 <         * @param map the map
4891 <         * @param transformer a function returning the transformation
4892 <         * for an element, or null if there is no transformation (in
4893 <         * which case the action is not applied)
4894 <         * @param action the action
4895 <         */
4896 <        public static <K,V,U> ForkJoinTask<Void> forEachValue
4897 <            (ConcurrentHashMapV8<K,V> map,
4898 <             Fun<? super V, ? extends U> transformer,
4899 <             Action<U> action) {
4900 <            if (transformer == null || action == null)
4901 <                throw new NullPointerException();
4902 <            return new ForEachTransformedValueTask<K,V,U>
4903 <                (map, null, -1, transformer, action);
4904 <        }
4905 <
4906 <        /**
4907 <         * Returns a task that when invoked, returns a non-null result
4908 <         * from applying the given search function on each value, or
4909 <         * null if none.  Upon success, further element processing is
4910 <         * suppressed and the results of any other parallel
4911 <         * invocations of the search function are ignored.
4912 <         *
4913 <         * @param map the map
4914 <         * @param searchFunction a function returning a non-null
4915 <         * result on success, else null
4916 <         * @return the task
4917 <         */
4918 <        public static <K,V,U> ForkJoinTask<U> searchValues
4919 <            (ConcurrentHashMapV8<K,V> map,
4920 <             Fun<? super V, ? extends U> searchFunction) {
4921 <            if (searchFunction == null) throw new NullPointerException();
4922 <            return new SearchValuesTask<K,V,U>
4923 <                (map, null, -1, searchFunction,
4924 <                 new AtomicReference<U>());
4925 <        }
4926 <
4927 <        /**
4928 <         * Returns a task that when invoked, returns the result of
4929 <         * accumulating all values using the given reducer to combine
4930 <         * values, or null if none.
4931 <         *
4932 <         * @param map the map
4933 <         * @param reducer a commutative associative combining function
4934 <         * @return the task
4935 <         */
4936 <        public static <K,V> ForkJoinTask<V> reduceValues
4937 <            (ConcurrentHashMapV8<K,V> map,
4938 <             BiFun<? super V, ? super V, ? extends V> reducer) {
4939 <            if (reducer == null) throw new NullPointerException();
4940 <            return new ReduceValuesTask<K,V>
4941 <                (map, null, -1, null, reducer);
4942 <        }
4943 <
4944 <        /**
4945 <         * Returns a task that when invoked, returns the result of
4946 <         * accumulating the given transformation of all values using the
4947 <         * given reducer to combine values, or null if none.
4948 <         *
4949 <         * @param map the map
4950 <         * @param transformer a function returning the transformation
4951 <         * for an element, or null if there is no transformation (in
4952 <         * which case it is not combined).
4953 <         * @param reducer a commutative associative combining function
4954 <         * @return the task
4955 <         */
4956 <        public static <K,V,U> ForkJoinTask<U> reduceValues
4957 <            (ConcurrentHashMapV8<K,V> map,
4958 <             Fun<? super V, ? extends U> transformer,
4959 <             BiFun<? super U, ? super U, ? extends U> reducer) {
4960 <            if (transformer == null || reducer == null)
4961 <                throw new NullPointerException();
4962 <            return new MapReduceValuesTask<K,V,U>
4963 <                (map, null, -1, null, transformer, reducer);
4964 <        }
4965 <
4966 <        /**
4967 <         * Returns a task that when invoked, returns the result of
4968 <         * accumulating the given transformation of all values using the
4969 <         * given reducer to combine values, and the given basis as an
4970 <         * identity value.
4971 <         *
4972 <         * @param map the map
4973 <         * @param transformer a function returning the transformation
4974 <         * for an element
4975 <         * @param basis the identity (initial default value) for the reduction
4976 <         * @param reducer a commutative associative combining function
4977 <         * @return the task
4978 <         */
4979 <        public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4980 <            (ConcurrentHashMapV8<K,V> map,
4981 <             ObjectToDouble<? super V> transformer,
4982 <             double basis,
4983 <             DoubleByDoubleToDouble reducer) {
4984 <            if (transformer == null || reducer == null)
4985 <                throw new NullPointerException();
4986 <            return new MapReduceValuesToDoubleTask<K,V>
4987 <                (map, null, -1, null, transformer, basis, reducer);
4988 <        }
4989 <
4990 <        /**
4991 <         * Returns a task that when invoked, returns the result of
4992 <         * accumulating the given transformation of all values using the
4993 <         * given reducer to combine values, and the given basis as an
4994 <         * identity value.
4995 <         *
4996 <         * @param map the map
4997 <         * @param transformer a function returning the transformation
4998 <         * for an element
4999 <         * @param basis the identity (initial default value) for the reduction
5000 <         * @param reducer a commutative associative combining function
5001 <         * @return the task
5002 <         */
5003 <        public static <K,V> ForkJoinTask<Long> reduceValuesToLong
5004 <            (ConcurrentHashMapV8<K,V> map,
5005 <             ObjectToLong<? super V> transformer,
5006 <             long basis,
5007 <             LongByLongToLong reducer) {
5008 <            if (transformer == null || reducer == null)
5009 <                throw new NullPointerException();
5010 <            return new MapReduceValuesToLongTask<K,V>
5011 <                (map, null, -1, null, transformer, basis, reducer);
5012 <        }
5013 <
5014 <        /**
5015 <         * Returns a task that when invoked, returns the result of
5016 <         * accumulating the given transformation of all values using the
5017 <         * given reducer to combine values, and the given basis as an
5018 <         * identity value.
5019 <         *
5020 <         * @param map the map
5021 <         * @param transformer a function returning the transformation
5022 <         * for an element
5023 <         * @param basis the identity (initial default value) for the reduction
5024 <         * @param reducer a commutative associative combining function
5025 <         * @return the task
5026 <         */
5027 <        public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
5028 <            (ConcurrentHashMapV8<K,V> map,
5029 <             ObjectToInt<? super V> transformer,
5030 <             int basis,
5031 <             IntByIntToInt reducer) {
5032 <            if (transformer == null || reducer == null)
5033 <                throw new NullPointerException();
5034 <            return new MapReduceValuesToIntTask<K,V>
5035 <                (map, null, -1, null, transformer, basis, reducer);
5036 <        }
5037 <
5038 <        /**
5039 <         * Returns a task that when invoked, perform the given action
5040 <         * for each entry.
5041 <         *
5042 <         * @param map the map
5043 <         * @param action the action
5044 <         */
5045 <        public static <K,V> ForkJoinTask<Void> forEachEntry
5046 <            (ConcurrentHashMapV8<K,V> map,
5047 <             Action<Map.Entry<K,V>> action) {
5048 <            if (action == null) throw new NullPointerException();
5049 <            return new ForEachEntryTask<K,V>(map, null, -1, action);
5050 <        }
5051 <
5052 <        /**
5053 <         * Returns a task that when invoked, perform the given action
5054 <         * for each non-null transformation of each entry.
5055 <         *
5056 <         * @param map the map
5057 <         * @param transformer a function returning the transformation
5058 <         * for an element, or null if there is no transformation (in
5059 <         * which case the action is not applied)
5060 <         * @param action the action
5061 <         */
5062 <        public static <K,V,U> ForkJoinTask<Void> forEachEntry
5063 <            (ConcurrentHashMapV8<K,V> map,
5064 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5065 <             Action<U> action) {
5066 <            if (transformer == null || action == null)
5067 <                throw new NullPointerException();
5068 <            return new ForEachTransformedEntryTask<K,V,U>
5069 <                (map, null, -1, transformer, action);
5070 <        }
5071 <
5072 <        /**
5073 <         * Returns a task that when invoked, returns a non-null result
5074 <         * from applying the given search function on each entry, or
5075 <         * null if none.  Upon success, further element processing is
5076 <         * suppressed and the results of any other parallel
5077 <         * invocations of the search function are ignored.
5078 <         *
5079 <         * @param map the map
5080 <         * @param searchFunction a function returning a non-null
5081 <         * result on success, else null
5082 <         * @return the task
5083 <         */
5084 <        public static <K,V,U> ForkJoinTask<U> searchEntries
5085 <            (ConcurrentHashMapV8<K,V> map,
5086 <             Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
5087 <            if (searchFunction == null) throw new NullPointerException();
5088 <            return new SearchEntriesTask<K,V,U>
5089 <                (map, null, -1, searchFunction,
5090 <                 new AtomicReference<U>());
5091 <        }
5092 <
5093 <        /**
5094 <         * Returns a task that when invoked, returns the result of
5095 <         * accumulating all entries using the given reducer to combine
5096 <         * values, or null if none.
5097 <         *
5098 <         * @param map the map
5099 <         * @param reducer a commutative associative combining function
5100 <         * @return the task
5101 <         */
5102 <        public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
5103 <            (ConcurrentHashMapV8<K,V> map,
5104 <             BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5105 <            if (reducer == null) throw new NullPointerException();
5106 <            return new ReduceEntriesTask<K,V>
5107 <                (map, null, -1, null, reducer);
5108 <        }
5109 <
5110 <        /**
5111 <         * Returns a task that when invoked, returns the result of
5112 <         * accumulating the given transformation of all entries using the
5113 <         * given reducer to combine values, or null if none.
5114 <         *
5115 <         * @param map the map
5116 <         * @param transformer a function returning the transformation
5117 <         * for an element, or null if there is no transformation (in
5118 <         * which case it is not combined).
5119 <         * @param reducer a commutative associative combining function
5120 <         * @return the task
5121 <         */
5122 <        public static <K,V,U> ForkJoinTask<U> reduceEntries
5123 <            (ConcurrentHashMapV8<K,V> map,
5124 <             Fun<Map.Entry<K,V>, ? extends U> transformer,
5125 <             BiFun<? super U, ? super U, ? extends U> reducer) {
5126 <            if (transformer == null || reducer == null)
5127 <                throw new NullPointerException();
5128 <            return new MapReduceEntriesTask<K,V,U>
5129 <                (map, null, -1, null, transformer, reducer);
5130 <        }
5131 <
5132 <        /**
5133 <         * Returns a task that when invoked, returns the result of
5134 <         * accumulating the given transformation of all entries using the
5135 <         * given reducer to combine values, and the given basis as an
5136 <         * identity value.
5137 <         *
5138 <         * @param map the map
5139 <         * @param transformer a function returning the transformation
5140 <         * for an element
5141 <         * @param basis the identity (initial default value) for the reduction
5142 <         * @param reducer a commutative associative combining function
5143 <         * @return the task
5144 <         */
5145 <        public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
5146 <            (ConcurrentHashMapV8<K,V> map,
5147 <             ObjectToDouble<Map.Entry<K,V>> transformer,
5148 <             double basis,
5149 <             DoubleByDoubleToDouble reducer) {
5150 <            if (transformer == null || reducer == null)
5151 <                throw new NullPointerException();
5152 <            return new MapReduceEntriesToDoubleTask<K,V>
5153 <                (map, null, -1, null, transformer, basis, reducer);
5154 <        }
5155 <
5156 <        /**
5157 <         * Returns a task that when invoked, returns the result of
5158 <         * accumulating the given transformation of all entries using the
5159 <         * given reducer to combine values, and the given basis as an
5160 <         * identity value.
5161 <         *
5162 <         * @param map the map
5163 <         * @param transformer a function returning the transformation
5164 <         * for an element
5165 <         * @param basis the identity (initial default value) for the reduction
5166 <         * @param reducer a commutative associative combining function
5167 <         * @return the task
5168 <         */
5169 <        public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
5170 <            (ConcurrentHashMapV8<K,V> map,
5171 <             ObjectToLong<Map.Entry<K,V>> transformer,
5172 <             long basis,
5173 <             LongByLongToLong reducer) {
5174 <            if (transformer == null || reducer == null)
5175 <                throw new NullPointerException();
5176 <            return new MapReduceEntriesToLongTask<K,V>
5177 <                (map, null, -1, null, transformer, basis, reducer);
4596 >    abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4597 >        Node<K,V>[] tab;        // same as Traverser
4598 >        Node<K,V> next;
4599 >        int index;
4600 >        int baseIndex;
4601 >        int baseLimit;
4602 >        final int baseSize;
4603 >        int batch;              // split control
4604 >
4605 >        BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4606 >            super(par);
4607 >            this.batch = b;
4608 >            this.index = this.baseIndex = i;
4609 >            if ((this.tab = t) == null)
4610 >                this.baseSize = this.baseLimit = 0;
4611 >            else if (par == null)
4612 >                this.baseSize = this.baseLimit = t.length;
4613 >            else {
4614 >                this.baseLimit = f;
4615 >                this.baseSize = par.baseSize;
4616 >            }
4617          }
4618  
4619          /**
4620 <         * Returns a task that when invoked, returns the result of
5182 <         * accumulating the given transformation of all entries using the
5183 <         * given reducer to combine values, and the given basis as an
5184 <         * identity value.
5185 <         *
5186 <         * @param map the map
5187 <         * @param transformer a function returning the transformation
5188 <         * for an element
5189 <         * @param basis the identity (initial default value) for the reduction
5190 <         * @param reducer a commutative associative combining function
5191 <         * @return the task
4620 >         * Same as Traverser version
4621           */
4622 <        public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4623 <            (ConcurrentHashMapV8<K,V> map,
4624 <             ObjectToInt<Map.Entry<K,V>> transformer,
4625 <             int basis,
4626 <             IntByIntToInt reducer) {
4627 <            if (transformer == null || reducer == null)
4628 <                throw new NullPointerException();
4629 <            return new MapReduceEntriesToIntTask<K,V>
4630 <                (map, null, -1, null, transformer, basis, reducer);
4622 >        final Node<K,V> advance() {
4623 >            Node<K,V> e;
4624 >            if ((e = next) != null)
4625 >                e = e.next;
4626 >            for (;;) {
4627 >                Node<K,V>[] t; int i, n; K ek;  // must use locals in checks
4628 >                if (e != null)
4629 >                    return next = e;
4630 >                if (baseIndex >= baseLimit || (t = tab) == null ||
4631 >                    (n = t.length) <= (i = index) || i < 0)
4632 >                    return next = null;
4633 >                if ((e = tabAt(t, index)) != null && e.hash < 0) {
4634 >                    if (e instanceof ForwardingNode) {
4635 >                        tab = ((ForwardingNode<K,V>)e).nextTable;
4636 >                        e = null;
4637 >                        continue;
4638 >                    }
4639 >                    else if (e instanceof TreeBin)
4640 >                        e = ((TreeBin<K,V>)e).first;
4641 >                    else
4642 >                        e = null;
4643 >                }
4644 >                if ((index += baseSize) >= n)
4645 >                    index = ++baseIndex;    // visit upper slots if present
4646 >            }
4647          }
4648      }
4649  
5205    // -------------------------------------------------------
5206
4650      /*
4651       * Task classes. Coded in a regular but ugly format/style to
4652       * simplify checks that each variant differs in the right way from
# Line 5211 | Line 4654 | public class ConcurrentHashMapV8<K, V>
4654       * that we've already null-checked task arguments, so we force
4655       * simplest hoisted bypass to help avoid convoluted traps.
4656       */
4657 <
4658 <    @SuppressWarnings("serial") static final class ForEachKeyTask<K,V>
4659 <        extends Traverser<K,V,Void> {
4660 <        final Action<K> action;
4657 >    @SuppressWarnings("serial")
4658 >    static final class ForEachKeyTask<K,V>
4659 >        extends BulkTask<K,V,Void> {
4660 >        final Action<? super K> action;
4661          ForEachKeyTask
4662 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4663 <             Action<K> action) {
4664 <            super(m, p, b);
4662 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4663 >             Action<? super K> action) {
4664 >            super(p, b, i, f, t);
4665              this.action = action;
4666          }
4667 <        @SuppressWarnings("unchecked") public final void compute() {
4668 <            final Action<K> action;
4667 >        public final void compute() {
4668 >            final Action<? super K> action;
4669              if ((action = this.action) != null) {
4670 <                for (int b; (b = preSplit()) > 0;)
4671 <                    new ForEachKeyTask<K,V>(map, this, b, action).fork();
4672 <                while (advance() != null)
4673 <                    action.apply((K)nextKey);
4670 >                for (int i = baseIndex, f, h; batch > 0 &&
4671 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4672 >                    addToPendingCount(1);
4673 >                    new ForEachKeyTask<K,V>
4674 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4675 >                         action).fork();
4676 >                }
4677 >                for (Node<K,V> p; (p = advance()) != null;)
4678 >                    action.apply(p.key);
4679                  propagateCompletion();
4680              }
4681          }
4682      }
4683  
4684 <    @SuppressWarnings("serial") static final class ForEachValueTask<K,V>
4685 <        extends Traverser<K,V,Void> {
4686 <        final Action<V> action;
4684 >    @SuppressWarnings("serial")
4685 >    static final class ForEachValueTask<K,V>
4686 >        extends BulkTask<K,V,Void> {
4687 >        final Action<? super V> action;
4688          ForEachValueTask
4689 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4690 <             Action<V> action) {
4691 <            super(m, p, b);
4689 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4690 >             Action<? super V> action) {
4691 >            super(p, b, i, f, t);
4692              this.action = action;
4693          }
4694 <        @SuppressWarnings("unchecked") public final void compute() {
4695 <            final Action<V> action;
4694 >        public final void compute() {
4695 >            final Action<? super V> action;
4696              if ((action = this.action) != null) {
4697 <                for (int b; (b = preSplit()) > 0;)
4698 <                    new ForEachValueTask<K,V>(map, this, b, action).fork();
4699 <                Object v;
4700 <                while ((v = advance()) != null)
4701 <                    action.apply((V)v);
4697 >                for (int i = baseIndex, f, h; batch > 0 &&
4698 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4699 >                    addToPendingCount(1);
4700 >                    new ForEachValueTask<K,V>
4701 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4702 >                         action).fork();
4703 >                }
4704 >                for (Node<K,V> p; (p = advance()) != null;)
4705 >                    action.apply(p.val);
4706                  propagateCompletion();
4707              }
4708          }
4709      }
4710  
4711 <    @SuppressWarnings("serial") static final class ForEachEntryTask<K,V>
4712 <        extends Traverser<K,V,Void> {
4713 <        final Action<Entry<K,V>> action;
4711 >    @SuppressWarnings("serial")
4712 >    static final class ForEachEntryTask<K,V>
4713 >        extends BulkTask<K,V,Void> {
4714 >        final Action<? super Entry<K,V>> action;
4715          ForEachEntryTask
4716 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4717 <             Action<Entry<K,V>> action) {
4718 <            super(m, p, b);
4716 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4717 >             Action<? super Entry<K,V>> action) {
4718 >            super(p, b, i, f, t);
4719              this.action = action;
4720          }
4721 <        @SuppressWarnings("unchecked") public final void compute() {
4722 <            final Action<Entry<K,V>> action;
4721 >        public final void compute() {
4722 >            final Action<? super Entry<K,V>> action;
4723              if ((action = this.action) != null) {
4724 <                for (int b; (b = preSplit()) > 0;)
4725 <                    new ForEachEntryTask<K,V>(map, this, b, action).fork();
4726 <                Object v;
4727 <                while ((v = advance()) != null)
4728 <                    action.apply(entryFor((K)nextKey, (V)v));
4724 >                for (int i = baseIndex, f, h; batch > 0 &&
4725 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4726 >                    addToPendingCount(1);
4727 >                    new ForEachEntryTask<K,V>
4728 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4729 >                         action).fork();
4730 >                }
4731 >                for (Node<K,V> p; (p = advance()) != null; )
4732 >                    action.apply(p);
4733                  propagateCompletion();
4734              }
4735          }
4736      }
4737  
4738 <    @SuppressWarnings("serial") static final class ForEachMappingTask<K,V>
4739 <        extends Traverser<K,V,Void> {
4740 <        final BiAction<K,V> action;
4738 >    @SuppressWarnings("serial")
4739 >    static final class ForEachMappingTask<K,V>
4740 >        extends BulkTask<K,V,Void> {
4741 >        final BiAction<? super K, ? super V> action;
4742          ForEachMappingTask
4743 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4744 <             BiAction<K,V> action) {
4745 <            super(m, p, b);
4743 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4744 >             BiAction<? super K,? super V> action) {
4745 >            super(p, b, i, f, t);
4746              this.action = action;
4747          }
4748 <        @SuppressWarnings("unchecked") public final void compute() {
4749 <            final BiAction<K,V> action;
4748 >        public final void compute() {
4749 >            final BiAction<? super K, ? super V> action;
4750              if ((action = this.action) != null) {
4751 <                for (int b; (b = preSplit()) > 0;)
4752 <                    new ForEachMappingTask<K,V>(map, this, b, action).fork();
4753 <                Object v;
4754 <                while ((v = advance()) != null)
4755 <                    action.apply((K)nextKey, (V)v);
4751 >                for (int i = baseIndex, f, h; batch > 0 &&
4752 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753 >                    addToPendingCount(1);
4754 >                    new ForEachMappingTask<K,V>
4755 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4756 >                         action).fork();
4757 >                }
4758 >                for (Node<K,V> p; (p = advance()) != null; )
4759 >                    action.apply(p.key, p.val);
4760                  propagateCompletion();
4761              }
4762          }
4763      }
4764  
4765 <    @SuppressWarnings("serial") static final class ForEachTransformedKeyTask<K,V,U>
4766 <        extends Traverser<K,V,Void> {
4765 >    @SuppressWarnings("serial")
4766 >    static final class ForEachTransformedKeyTask<K,V,U>
4767 >        extends BulkTask<K,V,Void> {
4768          final Fun<? super K, ? extends U> transformer;
4769 <        final Action<U> action;
4769 >        final Action<? super U> action;
4770          ForEachTransformedKeyTask
4771 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4772 <             Fun<? super K, ? extends U> transformer, Action<U> action) {
4773 <            super(m, p, b);
4771 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4772 >             Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4773 >            super(p, b, i, f, t);
4774              this.transformer = transformer; this.action = action;
4775          }
4776 <        @SuppressWarnings("unchecked") public final void compute() {
4776 >        public final void compute() {
4777              final Fun<? super K, ? extends U> transformer;
4778 <            final Action<U> action;
4778 >            final Action<? super U> action;
4779              if ((transformer = this.transformer) != null &&
4780                  (action = this.action) != null) {
4781 <                for (int b; (b = preSplit()) > 0;)
4781 >                for (int i = baseIndex, f, h; batch > 0 &&
4782 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4783 >                    addToPendingCount(1);
4784                      new ForEachTransformedKeyTask<K,V,U>
4785 <                        (map, this, b, transformer, action).fork();
4786 <                U u;
4787 <                while (advance() != null) {
4788 <                    if ((u = transformer.apply((K)nextKey)) != null)
4785 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4786 >                         transformer, action).fork();
4787 >                }
4788 >                for (Node<K,V> p; (p = advance()) != null; ) {
4789 >                    U u;
4790 >                    if ((u = transformer.apply(p.key)) != null)
4791                          action.apply(u);
4792                  }
4793                  propagateCompletion();
# Line 5327 | Line 4795 | public class ConcurrentHashMapV8<K, V>
4795          }
4796      }
4797  
4798 <    @SuppressWarnings("serial") static final class ForEachTransformedValueTask<K,V,U>
4799 <        extends Traverser<K,V,Void> {
4798 >    @SuppressWarnings("serial")
4799 >    static final class ForEachTransformedValueTask<K,V,U>
4800 >        extends BulkTask<K,V,Void> {
4801          final Fun<? super V, ? extends U> transformer;
4802 <        final Action<U> action;
4802 >        final Action<? super U> action;
4803          ForEachTransformedValueTask
4804 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4805 <             Fun<? super V, ? extends U> transformer, Action<U> action) {
4806 <            super(m, p, b);
4804 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 >             Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4806 >            super(p, b, i, f, t);
4807              this.transformer = transformer; this.action = action;
4808          }
4809 <        @SuppressWarnings("unchecked") public final void compute() {
4809 >        public final void compute() {
4810              final Fun<? super V, ? extends U> transformer;
4811 <            final Action<U> action;
4811 >            final Action<? super U> action;
4812              if ((transformer = this.transformer) != null &&
4813                  (action = this.action) != null) {
4814 <                for (int b; (b = preSplit()) > 0;)
4814 >                for (int i = baseIndex, f, h; batch > 0 &&
4815 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4816 >                    addToPendingCount(1);
4817                      new ForEachTransformedValueTask<K,V,U>
4818 <                        (map, this, b, transformer, action).fork();
4819 <                Object v; U u;
4820 <                while ((v = advance()) != null) {
4821 <                    if ((u = transformer.apply((V)v)) != null)
4818 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4819 >                         transformer, action).fork();
4820 >                }
4821 >                for (Node<K,V> p; (p = advance()) != null; ) {
4822 >                    U u;
4823 >                    if ((u = transformer.apply(p.val)) != null)
4824                          action.apply(u);
4825                  }
4826                  propagateCompletion();
# Line 5355 | Line 4828 | public class ConcurrentHashMapV8<K, V>
4828          }
4829      }
4830  
4831 <    @SuppressWarnings("serial") static final class ForEachTransformedEntryTask<K,V,U>
4832 <        extends Traverser<K,V,Void> {
4831 >    @SuppressWarnings("serial")
4832 >    static final class ForEachTransformedEntryTask<K,V,U>
4833 >        extends BulkTask<K,V,Void> {
4834          final Fun<Map.Entry<K,V>, ? extends U> transformer;
4835 <        final Action<U> action;
4835 >        final Action<? super U> action;
4836          ForEachTransformedEntryTask
4837 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4838 <             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<U> action) {
4839 <            super(m, p, b);
4837 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4838 >             Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4839 >            super(p, b, i, f, t);
4840              this.transformer = transformer; this.action = action;
4841          }
4842 <        @SuppressWarnings("unchecked") public final void compute() {
4842 >        public final void compute() {
4843              final Fun<Map.Entry<K,V>, ? extends U> transformer;
4844 <            final Action<U> action;
4844 >            final Action<? super U> action;
4845              if ((transformer = this.transformer) != null &&
4846                  (action = this.action) != null) {
4847 <                for (int b; (b = preSplit()) > 0;)
4847 >                for (int i = baseIndex, f, h; batch > 0 &&
4848 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4849 >                    addToPendingCount(1);
4850                      new ForEachTransformedEntryTask<K,V,U>
4851 <                        (map, this, b, transformer, action).fork();
4852 <                Object v; U u;
4853 <                while ((v = advance()) != null) {
4854 <                    if ((u = transformer.apply(entryFor((K)nextKey,
4855 <                                                        (V)v))) != null)
4851 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4852 >                         transformer, action).fork();
4853 >                }
4854 >                for (Node<K,V> p; (p = advance()) != null; ) {
4855 >                    U u;
4856 >                    if ((u = transformer.apply(p)) != null)
4857                          action.apply(u);
4858                  }
4859                  propagateCompletion();
# Line 5384 | Line 4861 | public class ConcurrentHashMapV8<K, V>
4861          }
4862      }
4863  
4864 <    @SuppressWarnings("serial") static final class ForEachTransformedMappingTask<K,V,U>
4865 <        extends Traverser<K,V,Void> {
4864 >    @SuppressWarnings("serial")
4865 >    static final class ForEachTransformedMappingTask<K,V,U>
4866 >        extends BulkTask<K,V,Void> {
4867          final BiFun<? super K, ? super V, ? extends U> transformer;
4868 <        final Action<U> action;
4868 >        final Action<? super U> action;
4869          ForEachTransformedMappingTask
4870 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4870 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4871               BiFun<? super K, ? super V, ? extends U> transformer,
4872 <             Action<U> action) {
4873 <            super(m, p, b);
4872 >             Action<? super U> action) {
4873 >            super(p, b, i, f, t);
4874              this.transformer = transformer; this.action = action;
4875          }
4876 <        @SuppressWarnings("unchecked") public final void compute() {
4876 >        public final void compute() {
4877              final BiFun<? super K, ? super V, ? extends U> transformer;
4878 <            final Action<U> action;
4878 >            final Action<? super U> action;
4879              if ((transformer = this.transformer) != null &&
4880                  (action = this.action) != null) {
4881 <                for (int b; (b = preSplit()) > 0;)
4881 >                for (int i = baseIndex, f, h; batch > 0 &&
4882 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4883 >                    addToPendingCount(1);
4884                      new ForEachTransformedMappingTask<K,V,U>
4885 <                        (map, this, b, transformer, action).fork();
4886 <                Object v; U u;
4887 <                while ((v = advance()) != null) {
4888 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
4885 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4886 >                         transformer, action).fork();
4887 >                }
4888 >                for (Node<K,V> p; (p = advance()) != null; ) {
4889 >                    U u;
4890 >                    if ((u = transformer.apply(p.key, p.val)) != null)
4891                          action.apply(u);
4892                  }
4893                  propagateCompletion();
# Line 5413 | Line 4895 | public class ConcurrentHashMapV8<K, V>
4895          }
4896      }
4897  
4898 <    @SuppressWarnings("serial") static final class SearchKeysTask<K,V,U>
4899 <        extends Traverser<K,V,U> {
4898 >    @SuppressWarnings("serial")
4899 >    static final class SearchKeysTask<K,V,U>
4900 >        extends BulkTask<K,V,U> {
4901          final Fun<? super K, ? extends U> searchFunction;
4902          final AtomicReference<U> result;
4903          SearchKeysTask
4904 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4904 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4905               Fun<? super K, ? extends U> searchFunction,
4906               AtomicReference<U> result) {
4907 <            super(m, p, b);
4907 >            super(p, b, i, f, t);
4908              this.searchFunction = searchFunction; this.result = result;
4909          }
4910          public final U getRawResult() { return result.get(); }
4911 <        @SuppressWarnings("unchecked") public final void compute() {
4911 >        public final void compute() {
4912              final Fun<? super K, ? extends U> searchFunction;
4913              final AtomicReference<U> result;
4914              if ((searchFunction = this.searchFunction) != null &&
4915                  (result = this.result) != null) {
4916 <                for (int b;;) {
4916 >                for (int i = baseIndex, f, h; batch > 0 &&
4917 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4918                      if (result.get() != null)
4919                          return;
4920 <                    if ((b = preSplit()) <= 0)
5437 <                        break;
4920 >                    addToPendingCount(1);
4921                      new SearchKeysTask<K,V,U>
4922 <                        (map, this, b, searchFunction, result).fork();
4922 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4923 >                         searchFunction, result).fork();
4924                  }
4925                  while (result.get() == null) {
4926                      U u;
4927 <                    if (advance() == null) {
4927 >                    Node<K,V> p;
4928 >                    if ((p = advance()) == null) {
4929                          propagateCompletion();
4930                          break;
4931                      }
4932 <                    if ((u = searchFunction.apply((K)nextKey)) != null) {
4932 >                    if ((u = searchFunction.apply(p.key)) != null) {
4933                          if (result.compareAndSet(null, u))
4934                              quietlyCompleteRoot();
4935                          break;
# Line 5454 | Line 4939 | public class ConcurrentHashMapV8<K, V>
4939          }
4940      }
4941  
4942 <    @SuppressWarnings("serial") static final class SearchValuesTask<K,V,U>
4943 <        extends Traverser<K,V,U> {
4942 >    @SuppressWarnings("serial")
4943 >    static final class SearchValuesTask<K,V,U>
4944 >        extends BulkTask<K,V,U> {
4945          final Fun<? super V, ? extends U> searchFunction;
4946          final AtomicReference<U> result;
4947          SearchValuesTask
4948 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4948 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4949               Fun<? super V, ? extends U> searchFunction,
4950               AtomicReference<U> result) {
4951 <            super(m, p, b);
4951 >            super(p, b, i, f, t);
4952              this.searchFunction = searchFunction; this.result = result;
4953          }
4954          public final U getRawResult() { return result.get(); }
4955 <        @SuppressWarnings("unchecked") public final void compute() {
4955 >        public final void compute() {
4956              final Fun<? super V, ? extends U> searchFunction;
4957              final AtomicReference<U> result;
4958              if ((searchFunction = this.searchFunction) != null &&
4959                  (result = this.result) != null) {
4960 <                for (int b;;) {
4960 >                for (int i = baseIndex, f, h; batch > 0 &&
4961 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
4962                      if (result.get() != null)
4963                          return;
4964 <                    if ((b = preSplit()) <= 0)
5478 <                        break;
4964 >                    addToPendingCount(1);
4965                      new SearchValuesTask<K,V,U>
4966 <                        (map, this, b, searchFunction, result).fork();
4966 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
4967 >                         searchFunction, result).fork();
4968                  }
4969                  while (result.get() == null) {
4970 <                    Object v; U u;
4971 <                    if ((v = advance()) == null) {
4970 >                    U u;
4971 >                    Node<K,V> p;
4972 >                    if ((p = advance()) == null) {
4973                          propagateCompletion();
4974                          break;
4975                      }
4976 <                    if ((u = searchFunction.apply((V)v)) != null) {
4976 >                    if ((u = searchFunction.apply(p.val)) != null) {
4977                          if (result.compareAndSet(null, u))
4978                              quietlyCompleteRoot();
4979                          break;
# Line 5495 | Line 4983 | public class ConcurrentHashMapV8<K, V>
4983          }
4984      }
4985  
4986 <    @SuppressWarnings("serial") static final class SearchEntriesTask<K,V,U>
4987 <        extends Traverser<K,V,U> {
4986 >    @SuppressWarnings("serial")
4987 >    static final class SearchEntriesTask<K,V,U>
4988 >        extends BulkTask<K,V,U> {
4989          final Fun<Entry<K,V>, ? extends U> searchFunction;
4990          final AtomicReference<U> result;
4991          SearchEntriesTask
4992 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
4992 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993               Fun<Entry<K,V>, ? extends U> searchFunction,
4994               AtomicReference<U> result) {
4995 <            super(m, p, b);
4995 >            super(p, b, i, f, t);
4996              this.searchFunction = searchFunction; this.result = result;
4997          }
4998          public final U getRawResult() { return result.get(); }
4999 <        @SuppressWarnings("unchecked") public final void compute() {
4999 >        public final void compute() {
5000              final Fun<Entry<K,V>, ? extends U> searchFunction;
5001              final AtomicReference<U> result;
5002              if ((searchFunction = this.searchFunction) != null &&
5003                  (result = this.result) != null) {
5004 <                for (int b;;) {
5004 >                for (int i = baseIndex, f, h; batch > 0 &&
5005 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006                      if (result.get() != null)
5007                          return;
5008 <                    if ((b = preSplit()) <= 0)
5519 <                        break;
5008 >                    addToPendingCount(1);
5009                      new SearchEntriesTask<K,V,U>
5010 <                        (map, this, b, searchFunction, result).fork();
5010 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5011 >                         searchFunction, result).fork();
5012                  }
5013                  while (result.get() == null) {
5014 <                    Object v; U u;
5015 <                    if ((v = advance()) == null) {
5014 >                    U u;
5015 >                    Node<K,V> p;
5016 >                    if ((p = advance()) == null) {
5017                          propagateCompletion();
5018                          break;
5019                      }
5020 <                    if ((u = searchFunction.apply(entryFor((K)nextKey,
5530 <                                                           (V)v))) != null) {
5020 >                    if ((u = searchFunction.apply(p)) != null) {
5021                          if (result.compareAndSet(null, u))
5022                              quietlyCompleteRoot();
5023                          return;
# Line 5537 | Line 5027 | public class ConcurrentHashMapV8<K, V>
5027          }
5028      }
5029  
5030 <    @SuppressWarnings("serial") static final class SearchMappingsTask<K,V,U>
5031 <        extends Traverser<K,V,U> {
5030 >    @SuppressWarnings("serial")
5031 >    static final class SearchMappingsTask<K,V,U>
5032 >        extends BulkTask<K,V,U> {
5033          final BiFun<? super K, ? super V, ? extends U> searchFunction;
5034          final AtomicReference<U> result;
5035          SearchMappingsTask
5036 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5036 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037               BiFun<? super K, ? super V, ? extends U> searchFunction,
5038               AtomicReference<U> result) {
5039 <            super(m, p, b);
5039 >            super(p, b, i, f, t);
5040              this.searchFunction = searchFunction; this.result = result;
5041          }
5042          public final U getRawResult() { return result.get(); }
5043 <        @SuppressWarnings("unchecked") public final void compute() {
5043 >        public final void compute() {
5044              final BiFun<? super K, ? super V, ? extends U> searchFunction;
5045              final AtomicReference<U> result;
5046              if ((searchFunction = this.searchFunction) != null &&
5047                  (result = this.result) != null) {
5048 <                for (int b;;) {
5048 >                for (int i = baseIndex, f, h; batch > 0 &&
5049 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050                      if (result.get() != null)
5051                          return;
5052 <                    if ((b = preSplit()) <= 0)
5561 <                        break;
5052 >                    addToPendingCount(1);
5053                      new SearchMappingsTask<K,V,U>
5054 <                        (map, this, b, searchFunction, result).fork();
5054 >                        (this, batch >>>= 1, baseLimit = h, f, tab,
5055 >                         searchFunction, result).fork();
5056                  }
5057                  while (result.get() == null) {
5058 <                    Object v; U u;
5059 <                    if ((v = advance()) == null) {
5058 >                    U u;
5059 >                    Node<K,V> p;
5060 >                    if ((p = advance()) == null) {
5061                          propagateCompletion();
5062                          break;
5063                      }
5064 <                    if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5064 >                    if ((u = searchFunction.apply(p.key, p.val)) != null) {
5065                          if (result.compareAndSet(null, u))
5066                              quietlyCompleteRoot();
5067                          break;
# Line 5578 | Line 5071 | public class ConcurrentHashMapV8<K, V>
5071          }
5072      }
5073  
5074 <    @SuppressWarnings("serial") static final class ReduceKeysTask<K,V>
5075 <        extends Traverser<K,V,K> {
5074 >    @SuppressWarnings("serial")
5075 >    static final class ReduceKeysTask<K,V>
5076 >        extends BulkTask<K,V,K> {
5077          final BiFun<? super K, ? super K, ? extends K> reducer;
5078          K result;
5079          ReduceKeysTask<K,V> rights, nextRight;
5080          ReduceKeysTask
5081 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5081 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082               ReduceKeysTask<K,V> nextRight,
5083               BiFun<? super K, ? super K, ? extends K> reducer) {
5084 <            super(m, p, b); this.nextRight = nextRight;
5084 >            super(p, b, i, f, t); this.nextRight = nextRight;
5085              this.reducer = reducer;
5086          }
5087          public final K getRawResult() { return result; }
5088 <        @SuppressWarnings("unchecked") public final void compute() {
5088 >        public final void compute() {
5089              final BiFun<? super K, ? super K, ? extends K> reducer;
5090              if ((reducer = this.reducer) != null) {
5091 <                for (int b; (b = preSplit()) > 0;)
5091 >                for (int i = baseIndex, f, h; batch > 0 &&
5092 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 >                    addToPendingCount(1);
5094                      (rights = new ReduceKeysTask<K,V>
5095 <                     (map, this, b, rights, reducer)).fork();
5095 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5096 >                      rights, reducer)).fork();
5097 >                }
5098                  K r = null;
5099 <                while (advance() != null) {
5100 <                    K u = (K)nextKey;
5101 <                    r = (r == null) ? u : reducer.apply(r, u);
5099 >                for (Node<K,V> p; (p = advance()) != null; ) {
5100 >                    K u = p.key;
5101 >                    r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5102                  }
5103                  result = r;
5104                  CountedCompleter<?> c;
5105                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5106 <                    ReduceKeysTask<K,V>
5106 >                    @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5107                          t = (ReduceKeysTask<K,V>)c,
5108                          s = t.rights;
5109                      while (s != null) {
# Line 5620 | Line 5118 | public class ConcurrentHashMapV8<K, V>
5118          }
5119      }
5120  
5121 <    @SuppressWarnings("serial") static final class ReduceValuesTask<K,V>
5122 <        extends Traverser<K,V,V> {
5121 >    @SuppressWarnings("serial")
5122 >    static final class ReduceValuesTask<K,V>
5123 >        extends BulkTask<K,V,V> {
5124          final BiFun<? super V, ? super V, ? extends V> reducer;
5125          V result;
5126          ReduceValuesTask<K,V> rights, nextRight;
5127          ReduceValuesTask
5128 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5128 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129               ReduceValuesTask<K,V> nextRight,
5130               BiFun<? super V, ? super V, ? extends V> reducer) {
5131 <            super(m, p, b); this.nextRight = nextRight;
5131 >            super(p, b, i, f, t); this.nextRight = nextRight;
5132              this.reducer = reducer;
5133          }
5134          public final V getRawResult() { return result; }
5135 <        @SuppressWarnings("unchecked") public final void compute() {
5135 >        public final void compute() {
5136              final BiFun<? super V, ? super V, ? extends V> reducer;
5137              if ((reducer = this.reducer) != null) {
5138 <                for (int b; (b = preSplit()) > 0;)
5138 >                for (int i = baseIndex, f, h; batch > 0 &&
5139 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 >                    addToPendingCount(1);
5141                      (rights = new ReduceValuesTask<K,V>
5142 <                     (map, this, b, rights, reducer)).fork();
5142 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5143 >                      rights, reducer)).fork();
5144 >                }
5145                  V r = null;
5146 <                Object v;
5147 <                while ((v = advance()) != null) {
5148 <                    V u = (V)v;
5646 <                    r = (r == null) ? u : reducer.apply(r, u);
5146 >                for (Node<K,V> p; (p = advance()) != null; ) {
5147 >                    V v = p.val;
5148 >                    r = (r == null) ? v : reducer.apply(r, v);
5149                  }
5150                  result = r;
5151                  CountedCompleter<?> c;
5152                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5153 <                    ReduceValuesTask<K,V>
5153 >                    @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5154                          t = (ReduceValuesTask<K,V>)c,
5155                          s = t.rights;
5156                      while (s != null) {
# Line 5663 | Line 5165 | public class ConcurrentHashMapV8<K, V>
5165          }
5166      }
5167  
5168 <    @SuppressWarnings("serial") static final class ReduceEntriesTask<K,V>
5169 <        extends Traverser<K,V,Map.Entry<K,V>> {
5168 >    @SuppressWarnings("serial")
5169 >    static final class ReduceEntriesTask<K,V>
5170 >        extends BulkTask<K,V,Map.Entry<K,V>> {
5171          final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5172          Map.Entry<K,V> result;
5173          ReduceEntriesTask<K,V> rights, nextRight;
5174          ReduceEntriesTask
5175 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5175 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176               ReduceEntriesTask<K,V> nextRight,
5177               BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5178 <            super(m, p, b); this.nextRight = nextRight;
5178 >            super(p, b, i, f, t); this.nextRight = nextRight;
5179              this.reducer = reducer;
5180          }
5181          public final Map.Entry<K,V> getRawResult() { return result; }
5182 <        @SuppressWarnings("unchecked") public final void compute() {
5182 >        public final void compute() {
5183              final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5184              if ((reducer = this.reducer) != null) {
5185 <                for (int b; (b = preSplit()) > 0;)
5185 >                for (int i = baseIndex, f, h; batch > 0 &&
5186 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 >                    addToPendingCount(1);
5188                      (rights = new ReduceEntriesTask<K,V>
5189 <                     (map, this, b, rights, reducer)).fork();
5190 <                Map.Entry<K,V> r = null;
5686 <                Object v;
5687 <                while ((v = advance()) != null) {
5688 <                    Map.Entry<K,V> u = entryFor((K)nextKey, (V)v);
5689 <                    r = (r == null) ? u : reducer.apply(r, u);
5189 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5190 >                      rights, reducer)).fork();
5191                  }
5192 +                Map.Entry<K,V> r = null;
5193 +                for (Node<K,V> p; (p = advance()) != null; )
5194 +                    r = (r == null) ? p : reducer.apply(r, p);
5195                  result = r;
5196                  CountedCompleter<?> c;
5197                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5198 <                    ReduceEntriesTask<K,V>
5198 >                    @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5199                          t = (ReduceEntriesTask<K,V>)c,
5200                          s = t.rights;
5201                      while (s != null) {
# Line 5706 | Line 5210 | public class ConcurrentHashMapV8<K, V>
5210          }
5211      }
5212  
5213 <    @SuppressWarnings("serial") static final class MapReduceKeysTask<K,V,U>
5214 <        extends Traverser<K,V,U> {
5213 >    @SuppressWarnings("serial")
5214 >    static final class MapReduceKeysTask<K,V,U>
5215 >        extends BulkTask<K,V,U> {
5216          final Fun<? super K, ? extends U> transformer;
5217          final BiFun<? super U, ? super U, ? extends U> reducer;
5218          U result;
5219          MapReduceKeysTask<K,V,U> rights, nextRight;
5220          MapReduceKeysTask
5221 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5221 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5222               MapReduceKeysTask<K,V,U> nextRight,
5223               Fun<? super K, ? extends U> transformer,
5224               BiFun<? super U, ? super U, ? extends U> reducer) {
5225 <            super(m, p, b); this.nextRight = nextRight;
5225 >            super(p, b, i, f, t); this.nextRight = nextRight;
5226              this.transformer = transformer;
5227              this.reducer = reducer;
5228          }
5229          public final U getRawResult() { return result; }
5230 <        @SuppressWarnings("unchecked") public final void compute() {
5230 >        public final void compute() {
5231              final Fun<? super K, ? extends U> transformer;
5232              final BiFun<? super U, ? super U, ? extends U> reducer;
5233              if ((transformer = this.transformer) != null &&
5234                  (reducer = this.reducer) != null) {
5235 <                for (int b; (b = preSplit()) > 0;)
5235 >                for (int i = baseIndex, f, h; batch > 0 &&
5236 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5237 >                    addToPendingCount(1);
5238                      (rights = new MapReduceKeysTask<K,V,U>
5239 <                     (map, this, b, rights, transformer, reducer)).fork();
5240 <                U r = null, u;
5241 <                while (advance() != null) {
5242 <                    if ((u = transformer.apply((K)nextKey)) != null)
5239 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5240 >                      rights, transformer, reducer)).fork();
5241 >                }
5242 >                U r = null;
5243 >                for (Node<K,V> p; (p = advance()) != null; ) {
5244 >                    U u;
5245 >                    if ((u = transformer.apply(p.key)) != null)
5246                          r = (r == null) ? u : reducer.apply(r, u);
5247                  }
5248                  result = r;
5249                  CountedCompleter<?> c;
5250                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5251 <                    MapReduceKeysTask<K,V,U>
5251 >                    @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5252                          t = (MapReduceKeysTask<K,V,U>)c,
5253                          s = t.rights;
5254                      while (s != null) {
# Line 5753 | Line 5263 | public class ConcurrentHashMapV8<K, V>
5263          }
5264      }
5265  
5266 <    @SuppressWarnings("serial") static final class MapReduceValuesTask<K,V,U>
5267 <        extends Traverser<K,V,U> {
5266 >    @SuppressWarnings("serial")
5267 >    static final class MapReduceValuesTask<K,V,U>
5268 >        extends BulkTask<K,V,U> {
5269          final Fun<? super V, ? extends U> transformer;
5270          final BiFun<? super U, ? super U, ? extends U> reducer;
5271          U result;
5272          MapReduceValuesTask<K,V,U> rights, nextRight;
5273          MapReduceValuesTask
5274 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5274 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5275               MapReduceValuesTask<K,V,U> nextRight,
5276               Fun<? super V, ? extends U> transformer,
5277               BiFun<? super U, ? super U, ? extends U> reducer) {
5278 <            super(m, p, b); this.nextRight = nextRight;
5278 >            super(p, b, i, f, t); this.nextRight = nextRight;
5279              this.transformer = transformer;
5280              this.reducer = reducer;
5281          }
5282          public final U getRawResult() { return result; }
5283 <        @SuppressWarnings("unchecked") public final void compute() {
5283 >        public final void compute() {
5284              final Fun<? super V, ? extends U> transformer;
5285              final BiFun<? super U, ? super U, ? extends U> reducer;
5286              if ((transformer = this.transformer) != null &&
5287                  (reducer = this.reducer) != null) {
5288 <                for (int b; (b = preSplit()) > 0;)
5288 >                for (int i = baseIndex, f, h; batch > 0 &&
5289 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290 >                    addToPendingCount(1);
5291                      (rights = new MapReduceValuesTask<K,V,U>
5292 <                     (map, this, b, rights, transformer, reducer)).fork();
5293 <                U r = null, u;
5294 <                Object v;
5295 <                while ((v = advance()) != null) {
5296 <                    if ((u = transformer.apply((V)v)) != null)
5292 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5293 >                      rights, transformer, reducer)).fork();
5294 >                }
5295 >                U r = null;
5296 >                for (Node<K,V> p; (p = advance()) != null; ) {
5297 >                    U u;
5298 >                    if ((u = transformer.apply(p.val)) != null)
5299                          r = (r == null) ? u : reducer.apply(r, u);
5300                  }
5301                  result = r;
5302                  CountedCompleter<?> c;
5303                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5304 <                    MapReduceValuesTask<K,V,U>
5304 >                    @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5305                          t = (MapReduceValuesTask<K,V,U>)c,
5306                          s = t.rights;
5307                      while (s != null) {
# Line 5801 | Line 5316 | public class ConcurrentHashMapV8<K, V>
5316          }
5317      }
5318  
5319 <    @SuppressWarnings("serial") static final class MapReduceEntriesTask<K,V,U>
5320 <        extends Traverser<K,V,U> {
5319 >    @SuppressWarnings("serial")
5320 >    static final class MapReduceEntriesTask<K,V,U>
5321 >        extends BulkTask<K,V,U> {
5322          final Fun<Map.Entry<K,V>, ? extends U> transformer;
5323          final BiFun<? super U, ? super U, ? extends U> reducer;
5324          U result;
5325          MapReduceEntriesTask<K,V,U> rights, nextRight;
5326          MapReduceEntriesTask
5327 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5327 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5328               MapReduceEntriesTask<K,V,U> nextRight,
5329               Fun<Map.Entry<K,V>, ? extends U> transformer,
5330               BiFun<? super U, ? super U, ? extends U> reducer) {
5331 <            super(m, p, b); this.nextRight = nextRight;
5331 >            super(p, b, i, f, t); this.nextRight = nextRight;
5332              this.transformer = transformer;
5333              this.reducer = reducer;
5334          }
5335          public final U getRawResult() { return result; }
5336 <        @SuppressWarnings("unchecked") public final void compute() {
5336 >        public final void compute() {
5337              final Fun<Map.Entry<K,V>, ? extends U> transformer;
5338              final BiFun<? super U, ? super U, ? extends U> reducer;
5339              if ((transformer = this.transformer) != null &&
5340                  (reducer = this.reducer) != null) {
5341 <                for (int b; (b = preSplit()) > 0;)
5341 >                for (int i = baseIndex, f, h; batch > 0 &&
5342 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343 >                    addToPendingCount(1);
5344                      (rights = new MapReduceEntriesTask<K,V,U>
5345 <                     (map, this, b, rights, transformer, reducer)).fork();
5346 <                U r = null, u;
5347 <                Object v;
5348 <                while ((v = advance()) != null) {
5349 <                    if ((u = transformer.apply(entryFor((K)nextKey,
5350 <                                                        (V)v))) != null)
5345 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5346 >                      rights, transformer, reducer)).fork();
5347 >                }
5348 >                U r = null;
5349 >                for (Node<K,V> p; (p = advance()) != null; ) {
5350 >                    U u;
5351 >                    if ((u = transformer.apply(p)) != null)
5352                          r = (r == null) ? u : reducer.apply(r, u);
5353                  }
5354                  result = r;
5355                  CountedCompleter<?> c;
5356                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5357 <                    MapReduceEntriesTask<K,V,U>
5357 >                    @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5358                          t = (MapReduceEntriesTask<K,V,U>)c,
5359                          s = t.rights;
5360                      while (s != null) {
# Line 5850 | Line 5369 | public class ConcurrentHashMapV8<K, V>
5369          }
5370      }
5371  
5372 <    @SuppressWarnings("serial") static final class MapReduceMappingsTask<K,V,U>
5373 <        extends Traverser<K,V,U> {
5372 >    @SuppressWarnings("serial")
5373 >    static final class MapReduceMappingsTask<K,V,U>
5374 >        extends BulkTask<K,V,U> {
5375          final BiFun<? super K, ? super V, ? extends U> transformer;
5376          final BiFun<? super U, ? super U, ? extends U> reducer;
5377          U result;
5378          MapReduceMappingsTask<K,V,U> rights, nextRight;
5379          MapReduceMappingsTask
5380 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5380 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5381               MapReduceMappingsTask<K,V,U> nextRight,
5382               BiFun<? super K, ? super V, ? extends U> transformer,
5383               BiFun<? super U, ? super U, ? extends U> reducer) {
5384 <            super(m, p, b); this.nextRight = nextRight;
5384 >            super(p, b, i, f, t); this.nextRight = nextRight;
5385              this.transformer = transformer;
5386              this.reducer = reducer;
5387          }
5388          public final U getRawResult() { return result; }
5389 <        @SuppressWarnings("unchecked") public final void compute() {
5389 >        public final void compute() {
5390              final BiFun<? super K, ? super V, ? extends U> transformer;
5391              final BiFun<? super U, ? super U, ? extends U> reducer;
5392              if ((transformer = this.transformer) != null &&
5393                  (reducer = this.reducer) != null) {
5394 <                for (int b; (b = preSplit()) > 0;)
5394 >                for (int i = baseIndex, f, h; batch > 0 &&
5395 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5396 >                    addToPendingCount(1);
5397                      (rights = new MapReduceMappingsTask<K,V,U>
5398 <                     (map, this, b, rights, transformer, reducer)).fork();
5399 <                U r = null, u;
5400 <                Object v;
5401 <                while ((v = advance()) != null) {
5402 <                    if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5398 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5399 >                      rights, transformer, reducer)).fork();
5400 >                }
5401 >                U r = null;
5402 >                for (Node<K,V> p; (p = advance()) != null; ) {
5403 >                    U u;
5404 >                    if ((u = transformer.apply(p.key, p.val)) != null)
5405                          r = (r == null) ? u : reducer.apply(r, u);
5406                  }
5407                  result = r;
5408                  CountedCompleter<?> c;
5409                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5410 <                    MapReduceMappingsTask<K,V,U>
5410 >                    @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5411                          t = (MapReduceMappingsTask<K,V,U>)c,
5412                          s = t.rights;
5413                      while (s != null) {
# Line 5898 | Line 5422 | public class ConcurrentHashMapV8<K, V>
5422          }
5423      }
5424  
5425 <    @SuppressWarnings("serial") static final class MapReduceKeysToDoubleTask<K,V>
5426 <        extends Traverser<K,V,Double> {
5425 >    @SuppressWarnings("serial")
5426 >    static final class MapReduceKeysToDoubleTask<K,V>
5427 >        extends BulkTask<K,V,Double> {
5428          final ObjectToDouble<? super K> transformer;
5429          final DoubleByDoubleToDouble reducer;
5430          final double basis;
5431          double result;
5432          MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5433          MapReduceKeysToDoubleTask
5434 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5434 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5435               MapReduceKeysToDoubleTask<K,V> nextRight,
5436               ObjectToDouble<? super K> transformer,
5437               double basis,
5438               DoubleByDoubleToDouble reducer) {
5439 <            super(m, p, b); this.nextRight = nextRight;
5439 >            super(p, b, i, f, t); this.nextRight = nextRight;
5440              this.transformer = transformer;
5441              this.basis = basis; this.reducer = reducer;
5442          }
5443          public final Double getRawResult() { return result; }
5444 <        @SuppressWarnings("unchecked") public final void compute() {
5444 >        public final void compute() {
5445              final ObjectToDouble<? super K> transformer;
5446              final DoubleByDoubleToDouble reducer;
5447              if ((transformer = this.transformer) != null &&
5448                  (reducer = this.reducer) != null) {
5449                  double r = this.basis;
5450 <                for (int b; (b = preSplit()) > 0;)
5450 >                for (int i = baseIndex, f, h; batch > 0 &&
5451 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5452 >                    addToPendingCount(1);
5453                      (rights = new MapReduceKeysToDoubleTask<K,V>
5454 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5455 <                while (advance() != null)
5456 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5454 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5455 >                      rights, transformer, r, reducer)).fork();
5456 >                }
5457 >                for (Node<K,V> p; (p = advance()) != null; )
5458 >                    r = reducer.apply(r, transformer.apply(p.key));
5459                  result = r;
5460                  CountedCompleter<?> c;
5461                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5462 <                    MapReduceKeysToDoubleTask<K,V>
5462 >                    @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5463                          t = (MapReduceKeysToDoubleTask<K,V>)c,
5464                          s = t.rights;
5465                      while (s != null) {
# Line 5942 | Line 5471 | public class ConcurrentHashMapV8<K, V>
5471          }
5472      }
5473  
5474 <    @SuppressWarnings("serial") static final class MapReduceValuesToDoubleTask<K,V>
5475 <        extends Traverser<K,V,Double> {
5474 >    @SuppressWarnings("serial")
5475 >    static final class MapReduceValuesToDoubleTask<K,V>
5476 >        extends BulkTask<K,V,Double> {
5477          final ObjectToDouble<? super V> transformer;
5478          final DoubleByDoubleToDouble reducer;
5479          final double basis;
5480          double result;
5481          MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5482          MapReduceValuesToDoubleTask
5483 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5483 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5484               MapReduceValuesToDoubleTask<K,V> nextRight,
5485               ObjectToDouble<? super V> transformer,
5486               double basis,
5487               DoubleByDoubleToDouble reducer) {
5488 <            super(m, p, b); this.nextRight = nextRight;
5488 >            super(p, b, i, f, t); this.nextRight = nextRight;
5489              this.transformer = transformer;
5490              this.basis = basis; this.reducer = reducer;
5491          }
5492          public final Double getRawResult() { return result; }
5493 <        @SuppressWarnings("unchecked") public final void compute() {
5493 >        public final void compute() {
5494              final ObjectToDouble<? super V> transformer;
5495              final DoubleByDoubleToDouble reducer;
5496              if ((transformer = this.transformer) != null &&
5497                  (reducer = this.reducer) != null) {
5498                  double r = this.basis;
5499 <                for (int b; (b = preSplit()) > 0;)
5499 >                for (int i = baseIndex, f, h; batch > 0 &&
5500 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5501 >                    addToPendingCount(1);
5502                      (rights = new MapReduceValuesToDoubleTask<K,V>
5503 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5504 <                Object v;
5505 <                while ((v = advance()) != null)
5506 <                    r = reducer.apply(r, transformer.apply((V)v));
5503 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5504 >                      rights, transformer, r, reducer)).fork();
5505 >                }
5506 >                for (Node<K,V> p; (p = advance()) != null; )
5507 >                    r = reducer.apply(r, transformer.apply(p.val));
5508                  result = r;
5509                  CountedCompleter<?> c;
5510                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5511 <                    MapReduceValuesToDoubleTask<K,V>
5511 >                    @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5512                          t = (MapReduceValuesToDoubleTask<K,V>)c,
5513                          s = t.rights;
5514                      while (s != null) {
# Line 5987 | Line 5520 | public class ConcurrentHashMapV8<K, V>
5520          }
5521      }
5522  
5523 <    @SuppressWarnings("serial") static final class MapReduceEntriesToDoubleTask<K,V>
5524 <        extends Traverser<K,V,Double> {
5523 >    @SuppressWarnings("serial")
5524 >    static final class MapReduceEntriesToDoubleTask<K,V>
5525 >        extends BulkTask<K,V,Double> {
5526          final ObjectToDouble<Map.Entry<K,V>> transformer;
5527          final DoubleByDoubleToDouble reducer;
5528          final double basis;
5529          double result;
5530          MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5531          MapReduceEntriesToDoubleTask
5532 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5532 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5533               MapReduceEntriesToDoubleTask<K,V> nextRight,
5534               ObjectToDouble<Map.Entry<K,V>> transformer,
5535               double basis,
5536               DoubleByDoubleToDouble reducer) {
5537 <            super(m, p, b); this.nextRight = nextRight;
5537 >            super(p, b, i, f, t); this.nextRight = nextRight;
5538              this.transformer = transformer;
5539              this.basis = basis; this.reducer = reducer;
5540          }
5541          public final Double getRawResult() { return result; }
5542 <        @SuppressWarnings("unchecked") public final void compute() {
5542 >        public final void compute() {
5543              final ObjectToDouble<Map.Entry<K,V>> transformer;
5544              final DoubleByDoubleToDouble reducer;
5545              if ((transformer = this.transformer) != null &&
5546                  (reducer = this.reducer) != null) {
5547                  double r = this.basis;
5548 <                for (int b; (b = preSplit()) > 0;)
5548 >                for (int i = baseIndex, f, h; batch > 0 &&
5549 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5550 >                    addToPendingCount(1);
5551                      (rights = new MapReduceEntriesToDoubleTask<K,V>
5552 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5553 <                Object v;
5554 <                while ((v = advance()) != null)
5555 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5556 <                                                                    (V)v)));
5552 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5553 >                      rights, transformer, r, reducer)).fork();
5554 >                }
5555 >                for (Node<K,V> p; (p = advance()) != null; )
5556 >                    r = reducer.apply(r, transformer.apply(p));
5557                  result = r;
5558                  CountedCompleter<?> c;
5559                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5560 <                    MapReduceEntriesToDoubleTask<K,V>
5560 >                    @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5561                          t = (MapReduceEntriesToDoubleTask<K,V>)c,
5562                          s = t.rights;
5563                      while (s != null) {
# Line 6033 | Line 5569 | public class ConcurrentHashMapV8<K, V>
5569          }
5570      }
5571  
5572 <    @SuppressWarnings("serial") static final class MapReduceMappingsToDoubleTask<K,V>
5573 <        extends Traverser<K,V,Double> {
5572 >    @SuppressWarnings("serial")
5573 >    static final class MapReduceMappingsToDoubleTask<K,V>
5574 >        extends BulkTask<K,V,Double> {
5575          final ObjectByObjectToDouble<? super K, ? super V> transformer;
5576          final DoubleByDoubleToDouble reducer;
5577          final double basis;
5578          double result;
5579          MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5580          MapReduceMappingsToDoubleTask
5581 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5581 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5582               MapReduceMappingsToDoubleTask<K,V> nextRight,
5583               ObjectByObjectToDouble<? super K, ? super V> transformer,
5584               double basis,
5585               DoubleByDoubleToDouble reducer) {
5586 <            super(m, p, b); this.nextRight = nextRight;
5586 >            super(p, b, i, f, t); this.nextRight = nextRight;
5587              this.transformer = transformer;
5588              this.basis = basis; this.reducer = reducer;
5589          }
5590          public final Double getRawResult() { return result; }
5591 <        @SuppressWarnings("unchecked") public final void compute() {
5591 >        public final void compute() {
5592              final ObjectByObjectToDouble<? super K, ? super V> transformer;
5593              final DoubleByDoubleToDouble reducer;
5594              if ((transformer = this.transformer) != null &&
5595                  (reducer = this.reducer) != null) {
5596                  double r = this.basis;
5597 <                for (int b; (b = preSplit()) > 0;)
5597 >                for (int i = baseIndex, f, h; batch > 0 &&
5598 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5599 >                    addToPendingCount(1);
5600                      (rights = new MapReduceMappingsToDoubleTask<K,V>
5601 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5602 <                Object v;
5603 <                while ((v = advance()) != null)
5604 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5601 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5602 >                      rights, transformer, r, reducer)).fork();
5603 >                }
5604 >                for (Node<K,V> p; (p = advance()) != null; )
5605 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5606                  result = r;
5607                  CountedCompleter<?> c;
5608                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5609 <                    MapReduceMappingsToDoubleTask<K,V>
5609 >                    @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5610                          t = (MapReduceMappingsToDoubleTask<K,V>)c,
5611                          s = t.rights;
5612                      while (s != null) {
# Line 6078 | Line 5618 | public class ConcurrentHashMapV8<K, V>
5618          }
5619      }
5620  
5621 <    @SuppressWarnings("serial") static final class MapReduceKeysToLongTask<K,V>
5622 <        extends Traverser<K,V,Long> {
5621 >    @SuppressWarnings("serial")
5622 >    static final class MapReduceKeysToLongTask<K,V>
5623 >        extends BulkTask<K,V,Long> {
5624          final ObjectToLong<? super K> transformer;
5625          final LongByLongToLong reducer;
5626          final long basis;
5627          long result;
5628          MapReduceKeysToLongTask<K,V> rights, nextRight;
5629          MapReduceKeysToLongTask
5630 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5630 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5631               MapReduceKeysToLongTask<K,V> nextRight,
5632               ObjectToLong<? super K> transformer,
5633               long basis,
5634               LongByLongToLong reducer) {
5635 <            super(m, p, b); this.nextRight = nextRight;
5635 >            super(p, b, i, f, t); this.nextRight = nextRight;
5636              this.transformer = transformer;
5637              this.basis = basis; this.reducer = reducer;
5638          }
5639          public final Long getRawResult() { return result; }
5640 <        @SuppressWarnings("unchecked") public final void compute() {
5640 >        public final void compute() {
5641              final ObjectToLong<? super K> transformer;
5642              final LongByLongToLong reducer;
5643              if ((transformer = this.transformer) != null &&
5644                  (reducer = this.reducer) != null) {
5645                  long r = this.basis;
5646 <                for (int b; (b = preSplit()) > 0;)
5646 >                for (int i = baseIndex, f, h; batch > 0 &&
5647 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5648 >                    addToPendingCount(1);
5649                      (rights = new MapReduceKeysToLongTask<K,V>
5650 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5651 <                while (advance() != null)
5652 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5650 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5651 >                      rights, transformer, r, reducer)).fork();
5652 >                }
5653 >                for (Node<K,V> p; (p = advance()) != null; )
5654 >                    r = reducer.apply(r, transformer.apply(p.key));
5655                  result = r;
5656                  CountedCompleter<?> c;
5657                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5658 <                    MapReduceKeysToLongTask<K,V>
5658 >                    @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5659                          t = (MapReduceKeysToLongTask<K,V>)c,
5660                          s = t.rights;
5661                      while (s != null) {
# Line 6122 | Line 5667 | public class ConcurrentHashMapV8<K, V>
5667          }
5668      }
5669  
5670 <    @SuppressWarnings("serial") static final class MapReduceValuesToLongTask<K,V>
5671 <        extends Traverser<K,V,Long> {
5670 >    @SuppressWarnings("serial")
5671 >    static final class MapReduceValuesToLongTask<K,V>
5672 >        extends BulkTask<K,V,Long> {
5673          final ObjectToLong<? super V> transformer;
5674          final LongByLongToLong reducer;
5675          final long basis;
5676          long result;
5677          MapReduceValuesToLongTask<K,V> rights, nextRight;
5678          MapReduceValuesToLongTask
5679 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5679 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5680               MapReduceValuesToLongTask<K,V> nextRight,
5681               ObjectToLong<? super V> transformer,
5682               long basis,
5683               LongByLongToLong reducer) {
5684 <            super(m, p, b); this.nextRight = nextRight;
5684 >            super(p, b, i, f, t); this.nextRight = nextRight;
5685              this.transformer = transformer;
5686              this.basis = basis; this.reducer = reducer;
5687          }
5688          public final Long getRawResult() { return result; }
5689 <        @SuppressWarnings("unchecked") public final void compute() {
5689 >        public final void compute() {
5690              final ObjectToLong<? super V> transformer;
5691              final LongByLongToLong reducer;
5692              if ((transformer = this.transformer) != null &&
5693                  (reducer = this.reducer) != null) {
5694                  long r = this.basis;
5695 <                for (int b; (b = preSplit()) > 0;)
5695 >                for (int i = baseIndex, f, h; batch > 0 &&
5696 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5697 >                    addToPendingCount(1);
5698                      (rights = new MapReduceValuesToLongTask<K,V>
5699 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5700 <                Object v;
5701 <                while ((v = advance()) != null)
5702 <                    r = reducer.apply(r, transformer.apply((V)v));
5699 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5700 >                      rights, transformer, r, reducer)).fork();
5701 >                }
5702 >                for (Node<K,V> p; (p = advance()) != null; )
5703 >                    r = reducer.apply(r, transformer.apply(p.val));
5704                  result = r;
5705                  CountedCompleter<?> c;
5706                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5707 <                    MapReduceValuesToLongTask<K,V>
5707 >                    @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5708                          t = (MapReduceValuesToLongTask<K,V>)c,
5709                          s = t.rights;
5710                      while (s != null) {
# Line 6167 | Line 5716 | public class ConcurrentHashMapV8<K, V>
5716          }
5717      }
5718  
5719 <    @SuppressWarnings("serial") static final class MapReduceEntriesToLongTask<K,V>
5720 <        extends Traverser<K,V,Long> {
5719 >    @SuppressWarnings("serial")
5720 >    static final class MapReduceEntriesToLongTask<K,V>
5721 >        extends BulkTask<K,V,Long> {
5722          final ObjectToLong<Map.Entry<K,V>> transformer;
5723          final LongByLongToLong reducer;
5724          final long basis;
5725          long result;
5726          MapReduceEntriesToLongTask<K,V> rights, nextRight;
5727          MapReduceEntriesToLongTask
5728 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5728 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5729               MapReduceEntriesToLongTask<K,V> nextRight,
5730               ObjectToLong<Map.Entry<K,V>> transformer,
5731               long basis,
5732               LongByLongToLong reducer) {
5733 <            super(m, p, b); this.nextRight = nextRight;
5733 >            super(p, b, i, f, t); this.nextRight = nextRight;
5734              this.transformer = transformer;
5735              this.basis = basis; this.reducer = reducer;
5736          }
5737          public final Long getRawResult() { return result; }
5738 <        @SuppressWarnings("unchecked") public final void compute() {
5738 >        public final void compute() {
5739              final ObjectToLong<Map.Entry<K,V>> transformer;
5740              final LongByLongToLong reducer;
5741              if ((transformer = this.transformer) != null &&
5742                  (reducer = this.reducer) != null) {
5743                  long r = this.basis;
5744 <                for (int b; (b = preSplit()) > 0;)
5744 >                for (int i = baseIndex, f, h; batch > 0 &&
5745 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5746 >                    addToPendingCount(1);
5747                      (rights = new MapReduceEntriesToLongTask<K,V>
5748 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5749 <                Object v;
5750 <                while ((v = advance()) != null)
5751 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5752 <                                                                    (V)v)));
5748 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5749 >                      rights, transformer, r, reducer)).fork();
5750 >                }
5751 >                for (Node<K,V> p; (p = advance()) != null; )
5752 >                    r = reducer.apply(r, transformer.apply(p));
5753                  result = r;
5754                  CountedCompleter<?> c;
5755                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756 <                    MapReduceEntriesToLongTask<K,V>
5756 >                    @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5757                          t = (MapReduceEntriesToLongTask<K,V>)c,
5758                          s = t.rights;
5759                      while (s != null) {
# Line 6213 | Line 5765 | public class ConcurrentHashMapV8<K, V>
5765          }
5766      }
5767  
5768 <    @SuppressWarnings("serial") static final class MapReduceMappingsToLongTask<K,V>
5769 <        extends Traverser<K,V,Long> {
5768 >    @SuppressWarnings("serial")
5769 >    static final class MapReduceMappingsToLongTask<K,V>
5770 >        extends BulkTask<K,V,Long> {
5771          final ObjectByObjectToLong<? super K, ? super V> transformer;
5772          final LongByLongToLong reducer;
5773          final long basis;
5774          long result;
5775          MapReduceMappingsToLongTask<K,V> rights, nextRight;
5776          MapReduceMappingsToLongTask
5777 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5777 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5778               MapReduceMappingsToLongTask<K,V> nextRight,
5779               ObjectByObjectToLong<? super K, ? super V> transformer,
5780               long basis,
5781               LongByLongToLong reducer) {
5782 <            super(m, p, b); this.nextRight = nextRight;
5782 >            super(p, b, i, f, t); this.nextRight = nextRight;
5783              this.transformer = transformer;
5784              this.basis = basis; this.reducer = reducer;
5785          }
5786          public final Long getRawResult() { return result; }
5787 <        @SuppressWarnings("unchecked") public final void compute() {
5787 >        public final void compute() {
5788              final ObjectByObjectToLong<? super K, ? super V> transformer;
5789              final LongByLongToLong reducer;
5790              if ((transformer = this.transformer) != null &&
5791                  (reducer = this.reducer) != null) {
5792                  long r = this.basis;
5793 <                for (int b; (b = preSplit()) > 0;)
5793 >                for (int i = baseIndex, f, h; batch > 0 &&
5794 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5795 >                    addToPendingCount(1);
5796                      (rights = new MapReduceMappingsToLongTask<K,V>
5797 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5798 <                Object v;
5799 <                while ((v = advance()) != null)
5800 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5797 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5798 >                      rights, transformer, r, reducer)).fork();
5799 >                }
5800 >                for (Node<K,V> p; (p = advance()) != null; )
5801 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5802                  result = r;
5803                  CountedCompleter<?> c;
5804                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5805 <                    MapReduceMappingsToLongTask<K,V>
5805 >                    @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5806                          t = (MapReduceMappingsToLongTask<K,V>)c,
5807                          s = t.rights;
5808                      while (s != null) {
# Line 6258 | Line 5814 | public class ConcurrentHashMapV8<K, V>
5814          }
5815      }
5816  
5817 <    @SuppressWarnings("serial") static final class MapReduceKeysToIntTask<K,V>
5818 <        extends Traverser<K,V,Integer> {
5817 >    @SuppressWarnings("serial")
5818 >    static final class MapReduceKeysToIntTask<K,V>
5819 >        extends BulkTask<K,V,Integer> {
5820          final ObjectToInt<? super K> transformer;
5821          final IntByIntToInt reducer;
5822          final int basis;
5823          int result;
5824          MapReduceKeysToIntTask<K,V> rights, nextRight;
5825          MapReduceKeysToIntTask
5826 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5826 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5827               MapReduceKeysToIntTask<K,V> nextRight,
5828               ObjectToInt<? super K> transformer,
5829               int basis,
5830               IntByIntToInt reducer) {
5831 <            super(m, p, b); this.nextRight = nextRight;
5831 >            super(p, b, i, f, t); this.nextRight = nextRight;
5832              this.transformer = transformer;
5833              this.basis = basis; this.reducer = reducer;
5834          }
5835          public final Integer getRawResult() { return result; }
5836 <        @SuppressWarnings("unchecked") public final void compute() {
5836 >        public final void compute() {
5837              final ObjectToInt<? super K> transformer;
5838              final IntByIntToInt reducer;
5839              if ((transformer = this.transformer) != null &&
5840                  (reducer = this.reducer) != null) {
5841                  int r = this.basis;
5842 <                for (int b; (b = preSplit()) > 0;)
5842 >                for (int i = baseIndex, f, h; batch > 0 &&
5843 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5844 >                    addToPendingCount(1);
5845                      (rights = new MapReduceKeysToIntTask<K,V>
5846 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5847 <                while (advance() != null)
5848 <                    r = reducer.apply(r, transformer.apply((K)nextKey));
5846 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5847 >                      rights, transformer, r, reducer)).fork();
5848 >                }
5849 >                for (Node<K,V> p; (p = advance()) != null; )
5850 >                    r = reducer.apply(r, transformer.apply(p.key));
5851                  result = r;
5852                  CountedCompleter<?> c;
5853                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 <                    MapReduceKeysToIntTask<K,V>
5854 >                    @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5855                          t = (MapReduceKeysToIntTask<K,V>)c,
5856                          s = t.rights;
5857                      while (s != null) {
# Line 6302 | Line 5863 | public class ConcurrentHashMapV8<K, V>
5863          }
5864      }
5865  
5866 <    @SuppressWarnings("serial") static final class MapReduceValuesToIntTask<K,V>
5867 <        extends Traverser<K,V,Integer> {
5866 >    @SuppressWarnings("serial")
5867 >    static final class MapReduceValuesToIntTask<K,V>
5868 >        extends BulkTask<K,V,Integer> {
5869          final ObjectToInt<? super V> transformer;
5870          final IntByIntToInt reducer;
5871          final int basis;
5872          int result;
5873          MapReduceValuesToIntTask<K,V> rights, nextRight;
5874          MapReduceValuesToIntTask
5875 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5875 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876               MapReduceValuesToIntTask<K,V> nextRight,
5877               ObjectToInt<? super V> transformer,
5878               int basis,
5879               IntByIntToInt reducer) {
5880 <            super(m, p, b); this.nextRight = nextRight;
5880 >            super(p, b, i, f, t); this.nextRight = nextRight;
5881              this.transformer = transformer;
5882              this.basis = basis; this.reducer = reducer;
5883          }
5884          public final Integer getRawResult() { return result; }
5885 <        @SuppressWarnings("unchecked") public final void compute() {
5885 >        public final void compute() {
5886              final ObjectToInt<? super V> transformer;
5887              final IntByIntToInt reducer;
5888              if ((transformer = this.transformer) != null &&
5889                  (reducer = this.reducer) != null) {
5890                  int r = this.basis;
5891 <                for (int b; (b = preSplit()) > 0;)
5891 >                for (int i = baseIndex, f, h; batch > 0 &&
5892 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893 >                    addToPendingCount(1);
5894                      (rights = new MapReduceValuesToIntTask<K,V>
5895 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5896 <                Object v;
5897 <                while ((v = advance()) != null)
5898 <                    r = reducer.apply(r, transformer.apply((V)v));
5895 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5896 >                      rights, transformer, r, reducer)).fork();
5897 >                }
5898 >                for (Node<K,V> p; (p = advance()) != null; )
5899 >                    r = reducer.apply(r, transformer.apply(p.val));
5900                  result = r;
5901                  CountedCompleter<?> c;
5902                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 <                    MapReduceValuesToIntTask<K,V>
5903 >                    @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5904                          t = (MapReduceValuesToIntTask<K,V>)c,
5905                          s = t.rights;
5906                      while (s != null) {
# Line 6347 | Line 5912 | public class ConcurrentHashMapV8<K, V>
5912          }
5913      }
5914  
5915 <    @SuppressWarnings("serial") static final class MapReduceEntriesToIntTask<K,V>
5916 <        extends Traverser<K,V,Integer> {
5915 >    @SuppressWarnings("serial")
5916 >    static final class MapReduceEntriesToIntTask<K,V>
5917 >        extends BulkTask<K,V,Integer> {
5918          final ObjectToInt<Map.Entry<K,V>> transformer;
5919          final IntByIntToInt reducer;
5920          final int basis;
5921          int result;
5922          MapReduceEntriesToIntTask<K,V> rights, nextRight;
5923          MapReduceEntriesToIntTask
5924 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5924 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5925               MapReduceEntriesToIntTask<K,V> nextRight,
5926               ObjectToInt<Map.Entry<K,V>> transformer,
5927               int basis,
5928               IntByIntToInt reducer) {
5929 <            super(m, p, b); this.nextRight = nextRight;
5929 >            super(p, b, i, f, t); this.nextRight = nextRight;
5930              this.transformer = transformer;
5931              this.basis = basis; this.reducer = reducer;
5932          }
5933          public final Integer getRawResult() { return result; }
5934 <        @SuppressWarnings("unchecked") public final void compute() {
5934 >        public final void compute() {
5935              final ObjectToInt<Map.Entry<K,V>> transformer;
5936              final IntByIntToInt reducer;
5937              if ((transformer = this.transformer) != null &&
5938                  (reducer = this.reducer) != null) {
5939                  int r = this.basis;
5940 <                for (int b; (b = preSplit()) > 0;)
5940 >                for (int i = baseIndex, f, h; batch > 0 &&
5941 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5942 >                    addToPendingCount(1);
5943                      (rights = new MapReduceEntriesToIntTask<K,V>
5944 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5945 <                Object v;
5946 <                while ((v = advance()) != null)
5947 <                    r = reducer.apply(r, transformer.apply(entryFor((K)nextKey,
5948 <                                                                    (V)v)));
5944 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5945 >                      rights, transformer, r, reducer)).fork();
5946 >                }
5947 >                for (Node<K,V> p; (p = advance()) != null; )
5948 >                    r = reducer.apply(r, transformer.apply(p));
5949                  result = r;
5950                  CountedCompleter<?> c;
5951                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
5952 <                    MapReduceEntriesToIntTask<K,V>
5952 >                    @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5953                          t = (MapReduceEntriesToIntTask<K,V>)c,
5954                          s = t.rights;
5955                      while (s != null) {
# Line 6393 | Line 5961 | public class ConcurrentHashMapV8<K, V>
5961          }
5962      }
5963  
5964 <    @SuppressWarnings("serial") static final class MapReduceMappingsToIntTask<K,V>
5965 <        extends Traverser<K,V,Integer> {
5964 >    @SuppressWarnings("serial")
5965 >    static final class MapReduceMappingsToIntTask<K,V>
5966 >        extends BulkTask<K,V,Integer> {
5967          final ObjectByObjectToInt<? super K, ? super V> transformer;
5968          final IntByIntToInt reducer;
5969          final int basis;
5970          int result;
5971          MapReduceMappingsToIntTask<K,V> rights, nextRight;
5972          MapReduceMappingsToIntTask
5973 <            (ConcurrentHashMapV8<K,V> m, Traverser<K,V,?> p, int b,
5973 >            (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5974               MapReduceMappingsToIntTask<K,V> nextRight,
5975               ObjectByObjectToInt<? super K, ? super V> transformer,
5976               int basis,
5977               IntByIntToInt reducer) {
5978 <            super(m, p, b); this.nextRight = nextRight;
5978 >            super(p, b, i, f, t); this.nextRight = nextRight;
5979              this.transformer = transformer;
5980              this.basis = basis; this.reducer = reducer;
5981          }
5982          public final Integer getRawResult() { return result; }
5983 <        @SuppressWarnings("unchecked") public final void compute() {
5983 >        public final void compute() {
5984              final ObjectByObjectToInt<? super K, ? super V> transformer;
5985              final IntByIntToInt reducer;
5986              if ((transformer = this.transformer) != null &&
5987                  (reducer = this.reducer) != null) {
5988                  int r = this.basis;
5989 <                for (int b; (b = preSplit()) > 0;)
5989 >                for (int i = baseIndex, f, h; batch > 0 &&
5990 >                         (h = ((f = baseLimit) + i) >>> 1) > i;) {
5991 >                    addToPendingCount(1);
5992                      (rights = new MapReduceMappingsToIntTask<K,V>
5993 <                     (map, this, b, rights, transformer, r, reducer)).fork();
5994 <                Object v;
5995 <                while ((v = advance()) != null)
5996 <                    r = reducer.apply(r, transformer.apply((K)nextKey, (V)v));
5993 >                     (this, batch >>>= 1, baseLimit = h, f, tab,
5994 >                      rights, transformer, r, reducer)).fork();
5995 >                }
5996 >                for (Node<K,V> p; (p = advance()) != null; )
5997 >                    r = reducer.apply(r, transformer.apply(p.key, p.val));
5998                  result = r;
5999                  CountedCompleter<?> c;
6000                  for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 <                    MapReduceMappingsToIntTask<K,V>
6001 >                    @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6002                          t = (MapReduceMappingsToIntTask<K,V>)c,
6003                          s = t.rights;
6004                      while (s != null) {
# Line 6438 | Line 6010 | public class ConcurrentHashMapV8<K, V>
6010          }
6011      }
6012  
6013 +    /* ---------------- Counters -------------- */
6014 +
6015 +    // Adapted from LongAdder and Striped64.
6016 +    // See their internal docs for explanation.
6017 +
6018 +    // A padded cell for distributing counts
6019 +    static final class CounterCell {
6020 +        volatile long p0, p1, p2, p3, p4, p5, p6;
6021 +        volatile long value;
6022 +        volatile long q0, q1, q2, q3, q4, q5, q6;
6023 +        CounterCell(long x) { value = x; }
6024 +    }
6025 +
6026 +    /**
6027 +     * Holder for the thread-local hash code determining which
6028 +     * CounterCell to use. The code is initialized via the
6029 +     * counterHashCodeGenerator, but may be moved upon collisions.
6030 +     */
6031 +    static final class CounterHashCode {
6032 +        int code;
6033 +    }
6034 +
6035 +    /**
6036 +     * Generates initial value for per-thread CounterHashCodes.
6037 +     */
6038 +    static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6039 +
6040 +    /**
6041 +     * Increment for counterHashCodeGenerator. See class ThreadLocal
6042 +     * for explanation.
6043 +     */
6044 +    static final int SEED_INCREMENT = 0x61c88647;
6045 +
6046 +    /**
6047 +     * Per-thread counter hash codes. Shared across all instances.
6048 +     */
6049 +    static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6050 +        new ThreadLocal<CounterHashCode>();
6051 +
6052 +
6053 +    final long sumCount() {
6054 +        CounterCell[] as = counterCells; CounterCell a;
6055 +        long sum = baseCount;
6056 +        if (as != null) {
6057 +            for (int i = 0; i < as.length; ++i) {
6058 +                if ((a = as[i]) != null)
6059 +                    sum += a.value;
6060 +            }
6061 +        }
6062 +        return sum;
6063 +    }
6064 +
6065 +    // See LongAdder version for explanation
6066 +    private final void fullAddCount(long x, CounterHashCode hc,
6067 +                                    boolean wasUncontended) {
6068 +        int h;
6069 +        if (hc == null) {
6070 +            hc = new CounterHashCode();
6071 +            int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6072 +            h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6073 +            threadCounterHashCode.set(hc);
6074 +        }
6075 +        else
6076 +            h = hc.code;
6077 +        boolean collide = false;                // True if last slot nonempty
6078 +        for (;;) {
6079 +            CounterCell[] as; CounterCell a; int n; long v;
6080 +            if ((as = counterCells) != null && (n = as.length) > 0) {
6081 +                if ((a = as[(n - 1) & h]) == null) {
6082 +                    if (cellsBusy == 0) {            // Try to attach new Cell
6083 +                        CounterCell r = new CounterCell(x); // Optimistic create
6084 +                        if (cellsBusy == 0 &&
6085 +                            U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 +                            boolean created = false;
6087 +                            try {               // Recheck under lock
6088 +                                CounterCell[] rs; int m, j;
6089 +                                if ((rs = counterCells) != null &&
6090 +                                    (m = rs.length) > 0 &&
6091 +                                    rs[j = (m - 1) & h] == null) {
6092 +                                    rs[j] = r;
6093 +                                    created = true;
6094 +                                }
6095 +                            } finally {
6096 +                                cellsBusy = 0;
6097 +                            }
6098 +                            if (created)
6099 +                                break;
6100 +                            continue;           // Slot is now non-empty
6101 +                        }
6102 +                    }
6103 +                    collide = false;
6104 +                }
6105 +                else if (!wasUncontended)       // CAS already known to fail
6106 +                    wasUncontended = true;      // Continue after rehash
6107 +                else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6108 +                    break;
6109 +                else if (counterCells != as || n >= NCPU)
6110 +                    collide = false;            // At max size or stale
6111 +                else if (!collide)
6112 +                    collide = true;
6113 +                else if (cellsBusy == 0 &&
6114 +                         U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6115 +                    try {
6116 +                        if (counterCells == as) {// Expand table unless stale
6117 +                            CounterCell[] rs = new CounterCell[n << 1];
6118 +                            for (int i = 0; i < n; ++i)
6119 +                                rs[i] = as[i];
6120 +                            counterCells = rs;
6121 +                        }
6122 +                    } finally {
6123 +                        cellsBusy = 0;
6124 +                    }
6125 +                    collide = false;
6126 +                    continue;                   // Retry with expanded table
6127 +                }
6128 +                h ^= h << 13;                   // Rehash
6129 +                h ^= h >>> 17;
6130 +                h ^= h << 5;
6131 +            }
6132 +            else if (cellsBusy == 0 && counterCells == as &&
6133 +                     U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6134 +                boolean init = false;
6135 +                try {                           // Initialize table
6136 +                    if (counterCells == as) {
6137 +                        CounterCell[] rs = new CounterCell[2];
6138 +                        rs[h & 1] = new CounterCell(x);
6139 +                        counterCells = rs;
6140 +                        init = true;
6141 +                    }
6142 +                } finally {
6143 +                    cellsBusy = 0;
6144 +                }
6145 +                if (init)
6146 +                    break;
6147 +            }
6148 +            else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6149 +                break;                          // Fall back on using base
6150 +        }
6151 +        hc.code = h;                            // Record index for next time
6152 +    }
6153 +
6154      // Unsafe mechanics
6155      private static final sun.misc.Unsafe U;
6156      private static final long SIZECTL;
6157      private static final long TRANSFERINDEX;
6158      private static final long TRANSFERORIGIN;
6159      private static final long BASECOUNT;
6160 <    private static final long COUNTERBUSY;
6160 >    private static final long CELLSBUSY;
6161      private static final long CELLVALUE;
6162      private static final long ABASE;
6163      private static final int ASHIFT;
6164  
6165      static {
6453        int ss;
6166          try {
6167              U = getUnsafe();
6168              Class<?> k = ConcurrentHashMapV8.class;
# Line 6462 | Line 6174 | public class ConcurrentHashMapV8<K, V>
6174                  (k.getDeclaredField("transferOrigin"));
6175              BASECOUNT = U.objectFieldOffset
6176                  (k.getDeclaredField("baseCount"));
6177 <            COUNTERBUSY = U.objectFieldOffset
6178 <                (k.getDeclaredField("counterBusy"));
6177 >            CELLSBUSY = U.objectFieldOffset
6178 >                (k.getDeclaredField("cellsBusy"));
6179              Class<?> ck = CounterCell.class;
6180              CELLVALUE = U.objectFieldOffset
6181                  (ck.getDeclaredField("value"));
6182 <            Class<?> sc = Node[].class;
6183 <            ABASE = U.arrayBaseOffset(sc);
6184 <            ss = U.arrayIndexScale(sc);
6185 <            ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6182 >            Class<?> ak = Node[].class;
6183 >            ABASE = U.arrayBaseOffset(ak);
6184 >            int scale = U.arrayIndexScale(ak);
6185 >            if ((scale & (scale - 1)) != 0)
6186 >                throw new Error("data type scale not a power of two");
6187 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6188          } catch (Exception e) {
6189              throw new Error(e);
6190          }
6477        if ((ss & (ss-1)) != 0)
6478            throw new Error("data type scale not a power of two");
6191      }
6192  
6193      /**
# Line 6488 | Line 6200 | public class ConcurrentHashMapV8<K, V>
6200      private static sun.misc.Unsafe getUnsafe() {
6201          try {
6202              return sun.misc.Unsafe.getUnsafe();
6203 <        } catch (SecurityException se) {
6204 <            try {
6205 <                return java.security.AccessController.doPrivileged
6206 <                    (new java.security
6207 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6208 <                        public sun.misc.Unsafe run() throws Exception {
6209 <                            java.lang.reflect.Field f = sun.misc
6210 <                                .Unsafe.class.getDeclaredField("theUnsafe");
6211 <                            f.setAccessible(true);
6212 <                            return (sun.misc.Unsafe) f.get(null);
6213 <                        }});
6214 <            } catch (java.security.PrivilegedActionException e) {
6215 <                throw new RuntimeException("Could not initialize intrinsics",
6216 <                                           e.getCause());
6217 <            }
6203 >        } catch (SecurityException tryReflectionInstead) {}
6204 >        try {
6205 >            return java.security.AccessController.doPrivileged
6206 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6207 >                public sun.misc.Unsafe run() throws Exception {
6208 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6209 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6210 >                        f.setAccessible(true);
6211 >                        Object x = f.get(null);
6212 >                        if (k.isInstance(x))
6213 >                            return k.cast(x);
6214 >                    }
6215 >                    throw new NoSuchFieldError("the Unsafe");
6216 >                }});
6217 >        } catch (java.security.PrivilegedActionException e) {
6218 >            throw new RuntimeException("Could not initialize intrinsics",
6219 >                                       e.getCause());
6220          }
6221      }
6222   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines