ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.112
Committed: Sat Jul 20 16:50:04 2013 UTC (10 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.111: +69 -40 lines
Log Message:
Ensure consistent insertion

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8
9 import jsr166e.ForkJoinPool;
10
11 import java.io.ObjectStreamField;
12 import java.io.Serializable;
13 import java.lang.reflect.ParameterizedType;
14 import java.lang.reflect.Type;
15 import java.util.AbstractMap;
16 import java.util.Arrays;
17 import java.util.Collection;
18 import java.util.Comparator;
19 import java.util.ConcurrentModificationException;
20 import java.util.Enumeration;
21 import java.util.HashMap;
22 import java.util.Hashtable;
23 import java.util.Iterator;
24 import java.util.Map;
25 import java.util.NoSuchElementException;
26 import java.util.Set;
27 import java.util.concurrent.ConcurrentMap;
28 import java.util.concurrent.atomic.AtomicReference;
29 import java.util.concurrent.atomic.AtomicInteger;
30 import java.util.concurrent.locks.LockSupport;
31 import java.util.concurrent.locks.ReentrantLock;
32
33 /**
34 * A hash table supporting full concurrency of retrievals and
35 * high expected concurrency for updates. This class obeys the
36 * same functional specification as {@link java.util.Hashtable}, and
37 * includes versions of methods corresponding to each method of
38 * {@code Hashtable}. However, even though all operations are
39 * thread-safe, retrieval operations do <em>not</em> entail locking,
40 * and there is <em>not</em> any support for locking the entire table
41 * in a way that prevents all access. This class is fully
42 * interoperable with {@code Hashtable} in programs that rely on its
43 * thread safety but not on its synchronization details.
44 *
45 * <p>Retrieval operations (including {@code get}) generally do not
46 * block, so may overlap with update operations (including {@code put}
47 * and {@code remove}). Retrievals reflect the results of the most
48 * recently <em>completed</em> update operations holding upon their
49 * onset. (More formally, an update operation for a given key bears a
50 * <em>happens-before</em> relation with any (non-null) retrieval for
51 * that key reporting the updated value.) For aggregate operations
52 * such as {@code putAll} and {@code clear}, concurrent retrievals may
53 * reflect insertion or removal of only some entries. Similarly,
54 * Iterators and Enumerations return elements reflecting the state of
55 * the hash table at some point at or since the creation of the
56 * iterator/enumeration. They do <em>not</em> throw {@link
57 * ConcurrentModificationException}. However, iterators are designed
58 * to be used by only one thread at a time. Bear in mind that the
59 * results of aggregate status methods including {@code size}, {@code
60 * isEmpty}, and {@code containsValue} are typically useful only when
61 * a map is not undergoing concurrent updates in other threads.
62 * Otherwise the results of these methods reflect transient states
63 * that may be adequate for monitoring or estimation purposes, but not
64 * for program control.
65 *
66 * <p>The table is dynamically expanded when there are too many
67 * collisions (i.e., keys that have distinct hash codes but fall into
68 * the same slot modulo the table size), with the expected average
69 * effect of maintaining roughly two bins per mapping (corresponding
70 * to a 0.75 load factor threshold for resizing). There may be much
71 * variance around this average as mappings are added and removed, but
72 * overall, this maintains a commonly accepted time/space tradeoff for
73 * hash tables. However, resizing this or any other kind of hash
74 * table may be a relatively slow operation. When possible, it is a
75 * good idea to provide a size estimate as an optional {@code
76 * initialCapacity} constructor argument. An additional optional
77 * {@code loadFactor} constructor argument provides a further means of
78 * customizing initial table capacity by specifying the table density
79 * to be used in calculating the amount of space to allocate for the
80 * given number of elements. Also, for compatibility with previous
81 * versions of this class, constructors may optionally specify an
82 * expected {@code concurrencyLevel} as an additional hint for
83 * internal sizing. Note that using many keys with exactly the same
84 * {@code hashCode()} is a sure way to slow down performance of any
85 * hash table. To ameliorate impact, when keys are {@link Comparable},
86 * this class may use comparison order among keys to help break ties.
87 *
88 * <p>A {@link Set} projection of a ConcurrentHashMapV8 may be created
89 * (using {@link #newKeySet()} or {@link #newKeySet(int)}), or viewed
90 * (using {@link #keySet(Object)} when only keys are of interest, and the
91 * mapped values are (perhaps transiently) not used or all take the
92 * same mapping value.
93 *
94 * <p>This class and its views and iterators implement all of the
95 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
96 * interfaces.
97 *
98 * <p>Like {@link Hashtable} but unlike {@link HashMap}, this class
99 * does <em>not</em> allow {@code null} to be used as a key or value.
100 *
101 * <p>ConcurrentHashMapV8s support a set of sequential and parallel bulk
102 * operations that are designed
103 * to be safely, and often sensibly, applied even with maps that are
104 * being concurrently updated by other threads; for example, when
105 * computing a snapshot summary of the values in a shared registry.
106 * There are three kinds of operation, each with four forms, accepting
107 * functions with Keys, Values, Entries, and (Key, Value) arguments
108 * and/or return values. Because the elements of a ConcurrentHashMapV8
109 * are not ordered in any particular way, and may be processed in
110 * different orders in different parallel executions, the correctness
111 * of supplied functions should not depend on any ordering, or on any
112 * other objects or values that may transiently change while
113 * computation is in progress; and except for forEach actions, should
114 * ideally be side-effect-free. Bulk operations on {@link java.util.Map.Entry}
115 * objects do not support method {@code setValue}.
116 *
117 * <ul>
118 * <li> forEach: Perform a given action on each element.
119 * A variant form applies a given transformation on each element
120 * before performing the action.</li>
121 *
122 * <li> search: Return the first available non-null result of
123 * applying a given function on each element; skipping further
124 * search when a result is found.</li>
125 *
126 * <li> reduce: Accumulate each element. The supplied reduction
127 * function cannot rely on ordering (more formally, it should be
128 * both associative and commutative). There are five variants:
129 *
130 * <ul>
131 *
132 * <li> Plain reductions. (There is not a form of this method for
133 * (key, value) function arguments since there is no corresponding
134 * return type.)</li>
135 *
136 * <li> Mapped reductions that accumulate the results of a given
137 * function applied to each element.</li>
138 *
139 * <li> Reductions to scalar doubles, longs, and ints, using a
140 * given basis value.</li>
141 *
142 * </ul>
143 * </li>
144 * </ul>
145 *
146 * <p>These bulk operations accept a {@code parallelismThreshold}
147 * argument. Methods proceed sequentially if the current map size is
148 * estimated to be less than the given threshold. Using a value of
149 * {@code Long.MAX_VALUE} suppresses all parallelism. Using a value
150 * of {@code 1} results in maximal parallelism by partitioning into
151 * enough subtasks to fully utilize the {@link
152 * ForkJoinPool#commonPool()} that is used for all parallel
153 * computations. Normally, you would initially choose one of these
154 * extreme values, and then measure performance of using in-between
155 * values that trade off overhead versus throughput.
156 *
157 * <p>The concurrency properties of bulk operations follow
158 * from those of ConcurrentHashMapV8: Any non-null result returned
159 * from {@code get(key)} and related access methods bears a
160 * happens-before relation with the associated insertion or
161 * update. The result of any bulk operation reflects the
162 * composition of these per-element relations (but is not
163 * necessarily atomic with respect to the map as a whole unless it
164 * is somehow known to be quiescent). Conversely, because keys
165 * and values in the map are never null, null serves as a reliable
166 * atomic indicator of the current lack of any result. To
167 * maintain this property, null serves as an implicit basis for
168 * all non-scalar reduction operations. For the double, long, and
169 * int versions, the basis should be one that, when combined with
170 * any other value, returns that other value (more formally, it
171 * should be the identity element for the reduction). Most common
172 * reductions have these properties; for example, computing a sum
173 * with basis 0 or a minimum with basis MAX_VALUE.
174 *
175 * <p>Search and transformation functions provided as arguments
176 * should similarly return null to indicate the lack of any result
177 * (in which case it is not used). In the case of mapped
178 * reductions, this also enables transformations to serve as
179 * filters, returning null (or, in the case of primitive
180 * specializations, the identity basis) if the element should not
181 * be combined. You can create compound transformations and
182 * filterings by composing them yourself under this "null means
183 * there is nothing there now" rule before using them in search or
184 * reduce operations.
185 *
186 * <p>Methods accepting and/or returning Entry arguments maintain
187 * key-value associations. They may be useful for example when
188 * finding the key for the greatest value. Note that "plain" Entry
189 * arguments can be supplied using {@code new
190 * AbstractMap.SimpleEntry(k,v)}.
191 *
192 * <p>Bulk operations may complete abruptly, throwing an
193 * exception encountered in the application of a supplied
194 * function. Bear in mind when handling such exceptions that other
195 * concurrently executing functions could also have thrown
196 * exceptions, or would have done so if the first exception had
197 * not occurred.
198 *
199 * <p>Speedups for parallel compared to sequential forms are common
200 * but not guaranteed. Parallel operations involving brief functions
201 * on small maps may execute more slowly than sequential forms if the
202 * underlying work to parallelize the computation is more expensive
203 * than the computation itself. Similarly, parallelization may not
204 * lead to much actual parallelism if all processors are busy
205 * performing unrelated tasks.
206 *
207 * <p>All arguments to all task methods must be non-null.
208 *
209 * <p><em>jsr166e note: During transition, this class
210 * uses nested functional interfaces with different names but the
211 * same forms as those expected for JDK8.</em>
212 *
213 * <p>This class is a member of the
214 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
215 * Java Collections Framework</a>.
216 *
217 * @since 1.5
218 * @author Doug Lea
219 * @param <K> the type of keys maintained by this map
220 * @param <V> the type of mapped values
221 */
222 public class ConcurrentHashMapV8<K,V> extends AbstractMap<K,V>
223 implements ConcurrentMap<K,V>, Serializable {
224 private static final long serialVersionUID = 7249069246763182397L;
225
226 /**
227 * An object for traversing and partitioning elements of a source.
228 * This interface provides a subset of the functionality of JDK8
229 * java.util.Spliterator.
230 */
231 public static interface ConcurrentHashMapSpliterator<T> {
232 /**
233 * If possible, returns a new spliterator covering
234 * approximately one half of the elements, which will not be
235 * covered by this spliterator. Returns null if cannot be
236 * split.
237 */
238 ConcurrentHashMapSpliterator<T> trySplit();
239 /**
240 * Returns an estimate of the number of elements covered by
241 * this Spliterator.
242 */
243 long estimateSize();
244
245 /** Applies the action to each untraversed element */
246 void forEachRemaining(Action<? super T> action);
247 /** If an element remains, applies the action and returns true. */
248 boolean tryAdvance(Action<? super T> action);
249 }
250
251 // Sams
252 /** Interface describing a void action of one argument */
253 public interface Action<A> { void apply(A a); }
254 /** Interface describing a void action of two arguments */
255 public interface BiAction<A,B> { void apply(A a, B b); }
256 /** Interface describing a function of one argument */
257 public interface Fun<A,T> { T apply(A a); }
258 /** Interface describing a function of two arguments */
259 public interface BiFun<A,B,T> { T apply(A a, B b); }
260 /** Interface describing a function mapping its argument to a double */
261 public interface ObjectToDouble<A> { double apply(A a); }
262 /** Interface describing a function mapping its argument to a long */
263 public interface ObjectToLong<A> { long apply(A a); }
264 /** Interface describing a function mapping its argument to an int */
265 public interface ObjectToInt<A> {int apply(A a); }
266 /** Interface describing a function mapping two arguments to a double */
267 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
268 /** Interface describing a function mapping two arguments to a long */
269 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
270 /** Interface describing a function mapping two arguments to an int */
271 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
272 /** Interface describing a function mapping two doubles to a double */
273 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
274 /** Interface describing a function mapping two longs to a long */
275 public interface LongByLongToLong { long apply(long a, long b); }
276 /** Interface describing a function mapping two ints to an int */
277 public interface IntByIntToInt { int apply(int a, int b); }
278
279 /*
280 * Overview:
281 *
282 * The primary design goal of this hash table is to maintain
283 * concurrent readability (typically method get(), but also
284 * iterators and related methods) while minimizing update
285 * contention. Secondary goals are to keep space consumption about
286 * the same or better than java.util.HashMap, and to support high
287 * initial insertion rates on an empty table by many threads.
288 *
289 * This map usually acts as a binned (bucketed) hash table. Each
290 * key-value mapping is held in a Node. Most nodes are instances
291 * of the basic Node class with hash, key, value, and next
292 * fields. However, various subclasses exist: TreeNodes are
293 * arranged in balanced trees, not lists. TreeBins hold the roots
294 * of sets of TreeNodes. ForwardingNodes are placed at the heads
295 * of bins during resizing. ReservationNodes are used as
296 * placeholders while establishing values in computeIfAbsent and
297 * related methods. The types TreeBin, ForwardingNode, and
298 * ReservationNode do not hold normal user keys, values, or
299 * hashes, and are readily distinguishable during search etc
300 * because they have negative hash fields and null key and value
301 * fields. (These special nodes are either uncommon or transient,
302 * so the impact of carrying around some unused fields is
303 * insignificant.)
304 *
305 * The table is lazily initialized to a power-of-two size upon the
306 * first insertion. Each bin in the table normally contains a
307 * list of Nodes (most often, the list has only zero or one Node).
308 * Table accesses require volatile/atomic reads, writes, and
309 * CASes. Because there is no other way to arrange this without
310 * adding further indirections, we use intrinsics
311 * (sun.misc.Unsafe) operations.
312 *
313 * We use the top (sign) bit of Node hash fields for control
314 * purposes -- it is available anyway because of addressing
315 * constraints. Nodes with negative hash fields are specially
316 * handled or ignored in map methods.
317 *
318 * Insertion (via put or its variants) of the first node in an
319 * empty bin is performed by just CASing it to the bin. This is
320 * by far the most common case for put operations under most
321 * key/hash distributions. Other update operations (insert,
322 * delete, and replace) require locks. We do not want to waste
323 * the space required to associate a distinct lock object with
324 * each bin, so instead use the first node of a bin list itself as
325 * a lock. Locking support for these locks relies on builtin
326 * "synchronized" monitors.
327 *
328 * Using the first node of a list as a lock does not by itself
329 * suffice though: When a node is locked, any update must first
330 * validate that it is still the first node after locking it, and
331 * retry if not. Because new nodes are always appended to lists,
332 * once a node is first in a bin, it remains first until deleted
333 * or the bin becomes invalidated (upon resizing).
334 *
335 * The main disadvantage of per-bin locks is that other update
336 * operations on other nodes in a bin list protected by the same
337 * lock can stall, for example when user equals() or mapping
338 * functions take a long time. However, statistically, under
339 * random hash codes, this is not a common problem. Ideally, the
340 * frequency of nodes in bins follows a Poisson distribution
341 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
342 * parameter of about 0.5 on average, given the resizing threshold
343 * of 0.75, although with a large variance because of resizing
344 * granularity. Ignoring variance, the expected occurrences of
345 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
346 * first values are:
347 *
348 * 0: 0.60653066
349 * 1: 0.30326533
350 * 2: 0.07581633
351 * 3: 0.01263606
352 * 4: 0.00157952
353 * 5: 0.00015795
354 * 6: 0.00001316
355 * 7: 0.00000094
356 * 8: 0.00000006
357 * more: less than 1 in ten million
358 *
359 * Lock contention probability for two threads accessing distinct
360 * elements is roughly 1 / (8 * #elements) under random hashes.
361 *
362 * Actual hash code distributions encountered in practice
363 * sometimes deviate significantly from uniform randomness. This
364 * includes the case when N > (1<<30), so some keys MUST collide.
365 * Similarly for dumb or hostile usages in which multiple keys are
366 * designed to have identical hash codes or ones that differs only
367 * in masked-out high bits. So we use a secondary strategy that
368 * applies when the number of nodes in a bin exceeds a
369 * threshold. These TreeBins use a balanced tree to hold nodes (a
370 * specialized form of red-black trees), bounding search time to
371 * O(log N). Each search step in a TreeBin is at least twice as
372 * slow as in a regular list, but given that N cannot exceed
373 * (1<<64) (before running out of addresses) this bounds search
374 * steps, lock hold times, etc, to reasonable constants (roughly
375 * 100 nodes inspected per operation worst case) so long as keys
376 * are Comparable (which is very common -- String, Long, etc).
377 * TreeBin nodes (TreeNodes) also maintain the same "next"
378 * traversal pointers as regular nodes, so can be traversed in
379 * iterators in the same way.
380 *
381 * The table is resized when occupancy exceeds a percentage
382 * threshold (nominally, 0.75, but see below). Any thread
383 * noticing an overfull bin may assist in resizing after the
384 * initiating thread allocates and sets up the replacement
385 * array. However, rather than stalling, these other threads may
386 * proceed with insertions etc. The use of TreeBins shields us
387 * from the worst case effects of overfilling while resizes are in
388 * progress. Resizing proceeds by transferring bins, one by one,
389 * from the table to the next table. To enable concurrency, the
390 * next table must be (incrementally) prefilled with place-holders
391 * serving as reverse forwarders to the old table. Because we are
392 * using power-of-two expansion, the elements from each bin must
393 * either stay at same index, or move with a power of two
394 * offset. We eliminate unnecessary node creation by catching
395 * cases where old nodes can be reused because their next fields
396 * won't change. On average, only about one-sixth of them need
397 * cloning when a table doubles. The nodes they replace will be
398 * garbage collectable as soon as they are no longer referenced by
399 * any reader thread that may be in the midst of concurrently
400 * traversing table. Upon transfer, the old table bin contains
401 * only a special forwarding node (with hash field "MOVED") that
402 * contains the next table as its key. On encountering a
403 * forwarding node, access and update operations restart, using
404 * the new table.
405 *
406 * Each bin transfer requires its bin lock, which can stall
407 * waiting for locks while resizing. However, because other
408 * threads can join in and help resize rather than contend for
409 * locks, average aggregate waits become shorter as resizing
410 * progresses. The transfer operation must also ensure that all
411 * accessible bins in both the old and new table are usable by any
412 * traversal. This is arranged by proceeding from the last bin
413 * (table.length - 1) up towards the first. Upon seeing a
414 * forwarding node, traversals (see class Traverser) arrange to
415 * move to the new table without revisiting nodes. However, to
416 * ensure that no intervening nodes are skipped, bin splitting can
417 * only begin after the associated reverse-forwarders are in
418 * place.
419 *
420 * The traversal scheme also applies to partial traversals of
421 * ranges of bins (via an alternate Traverser constructor)
422 * to support partitioned aggregate operations. Also, read-only
423 * operations give up if ever forwarded to a null table, which
424 * provides support for shutdown-style clearing, which is also not
425 * currently implemented.
426 *
427 * Lazy table initialization minimizes footprint until first use,
428 * and also avoids resizings when the first operation is from a
429 * putAll, constructor with map argument, or deserialization.
430 * These cases attempt to override the initial capacity settings,
431 * but harmlessly fail to take effect in cases of races.
432 *
433 * The element count is maintained using a specialization of
434 * LongAdder. We need to incorporate a specialization rather than
435 * just use a LongAdder in order to access implicit
436 * contention-sensing that leads to creation of multiple
437 * CounterCells. The counter mechanics avoid contention on
438 * updates but can encounter cache thrashing if read too
439 * frequently during concurrent access. To avoid reading so often,
440 * resizing under contention is attempted only upon adding to a
441 * bin already holding two or more nodes. Under uniform hash
442 * distributions, the probability of this occurring at threshold
443 * is around 13%, meaning that only about 1 in 8 puts check
444 * threshold (and after resizing, many fewer do so).
445 *
446 * TreeBins use a special form of comparison for search and
447 * related operations (which is the main reason we cannot use
448 * existing collections such as TreeMaps). TreeBins contain
449 * Comparable elements, but may contain others, as well as
450 * elements that are Comparable but not necessarily Comparable for
451 * the same T, so we cannot invoke compareTo among them. To handle
452 * this, the tree is ordered primarily by hash value, then by
453 * Comparable.compareTo order if applicable. On lookup at a node,
454 * if elements are not comparable or compare as 0 then both left
455 * and right children may need to be searched in the case of tied
456 * hash values. (This corresponds to the full list search that
457 * would be necessary if all elements were non-Comparable and had
458 * tied hashes.) On insertion, to keep a total ordering (or as
459 * close as is required here) across rebalancings, we compare
460 * classes and identityHashCodes as tie-breakers. The red-black
461 * balancing code is updated from pre-jdk-collections
462 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
463 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
464 * Algorithms" (CLR).
465 *
466 * TreeBins also require an additional locking mechanism. While
467 * list traversal is always possible by readers even during
468 * updates, tree traversal is not, mainly because of tree-rotations
469 * that may change the root node and/or its linkages. TreeBins
470 * include a simple read-write lock mechanism parasitic on the
471 * main bin-synchronization strategy: Structural adjustments
472 * associated with an insertion or removal are already bin-locked
473 * (and so cannot conflict with other writers) but must wait for
474 * ongoing readers to finish. Since there can be only one such
475 * waiter, we use a simple scheme using a single "waiter" field to
476 * block writers. However, readers need never block. If the root
477 * lock is held, they proceed along the slow traversal path (via
478 * next-pointers) until the lock becomes available or the list is
479 * exhausted, whichever comes first. These cases are not fast, but
480 * maximize aggregate expected throughput.
481 *
482 * Maintaining API and serialization compatibility with previous
483 * versions of this class introduces several oddities. Mainly: We
484 * leave untouched but unused constructor arguments refering to
485 * concurrencyLevel. We accept a loadFactor constructor argument,
486 * but apply it only to initial table capacity (which is the only
487 * time that we can guarantee to honor it.) We also declare an
488 * unused "Segment" class that is instantiated in minimal form
489 * only when serializing.
490 *
491 * Also, solely for compatibility with previous versions of this
492 * class, it extends AbstractMap, even though all of its methods
493 * are overridden, so it is just useless baggage.
494 *
495 * This file is organized to make things a little easier to follow
496 * while reading than they might otherwise: First the main static
497 * declarations and utilities, then fields, then main public
498 * methods (with a few factorings of multiple public methods into
499 * internal ones), then sizing methods, trees, traversers, and
500 * bulk operations.
501 */
502
503 /* ---------------- Constants -------------- */
504
505 /**
506 * The largest possible table capacity. This value must be
507 * exactly 1<<30 to stay within Java array allocation and indexing
508 * bounds for power of two table sizes, and is further required
509 * because the top two bits of 32bit hash fields are used for
510 * control purposes.
511 */
512 private static final int MAXIMUM_CAPACITY = 1 << 30;
513
514 /**
515 * The default initial table capacity. Must be a power of 2
516 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
517 */
518 private static final int DEFAULT_CAPACITY = 16;
519
520 /**
521 * The largest possible (non-power of two) array size.
522 * Needed by toArray and related methods.
523 */
524 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
525
526 /**
527 * The default concurrency level for this table. Unused but
528 * defined for compatibility with previous versions of this class.
529 */
530 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
531
532 /**
533 * The load factor for this table. Overrides of this value in
534 * constructors affect only the initial table capacity. The
535 * actual floating point value isn't normally used -- it is
536 * simpler to use expressions such as {@code n - (n >>> 2)} for
537 * the associated resizing threshold.
538 */
539 private static final float LOAD_FACTOR = 0.75f;
540
541 /**
542 * The bin count threshold for using a tree rather than list for a
543 * bin. Bins are converted to trees when adding an element to a
544 * bin with at least this many nodes. The value must be greater
545 * than 2, and should be at least 8 to mesh with assumptions in
546 * tree removal about conversion back to plain bins upon
547 * shrinkage.
548 */
549 static final int TREEIFY_THRESHOLD = 8;
550
551 /**
552 * The bin count threshold for untreeifying a (split) bin during a
553 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
554 * most 6 to mesh with shrinkage detection under removal.
555 */
556 static final int UNTREEIFY_THRESHOLD = 6;
557
558 /**
559 * The smallest table capacity for which bins may be treeified.
560 * (Otherwise the table is resized if too many nodes in a bin.)
561 * The value should be at least 4 * TREEIFY_THRESHOLD to avoid
562 * conflicts between resizing and treeification thresholds.
563 */
564 static final int MIN_TREEIFY_CAPACITY = 64;
565
566 /**
567 * Minimum number of rebinnings per transfer step. Ranges are
568 * subdivided to allow multiple resizer threads. This value
569 * serves as a lower bound to avoid resizers encountering
570 * excessive memory contention. The value should be at least
571 * DEFAULT_CAPACITY.
572 */
573 private static final int MIN_TRANSFER_STRIDE = 16;
574
575 /*
576 * Encodings for Node hash fields. See above for explanation.
577 */
578 static final int MOVED = -1; // hash for forwarding nodes
579 static final int TREEBIN = -2; // hash for roots of trees
580 static final int RESERVED = -3; // hash for transient reservations
581 static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash
582
583 /** Number of CPUS, to place bounds on some sizings */
584 static final int NCPU = Runtime.getRuntime().availableProcessors();
585
586 /** For serialization compatibility. */
587 private static final ObjectStreamField[] serialPersistentFields = {
588 new ObjectStreamField("segments", Segment[].class),
589 new ObjectStreamField("segmentMask", Integer.TYPE),
590 new ObjectStreamField("segmentShift", Integer.TYPE)
591 };
592
593 /* ---------------- Nodes -------------- */
594
595 /**
596 * Key-value entry. This class is never exported out as a
597 * user-mutable Map.Entry (i.e., one supporting setValue; see
598 * MapEntry below), but can be used for read-only traversals used
599 * in bulk tasks. Subclasses of Node with a negative hash field
600 * are special, and contain null keys and values (but are never
601 * exported). Otherwise, keys and vals are never null.
602 */
603 static class Node<K,V> implements Map.Entry<K,V> {
604 final int hash;
605 final K key;
606 volatile V val;
607 volatile Node<K,V> next;
608
609 Node(int hash, K key, V val, Node<K,V> next) {
610 this.hash = hash;
611 this.key = key;
612 this.val = val;
613 this.next = next;
614 }
615
616 public final K getKey() { return key; }
617 public final V getValue() { return val; }
618 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
619 public final String toString(){ return key + "=" + val; }
620 public final V setValue(V value) {
621 throw new UnsupportedOperationException();
622 }
623
624 public final boolean equals(Object o) {
625 Object k, v, u; Map.Entry<?,?> e;
626 return ((o instanceof Map.Entry) &&
627 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
628 (v = e.getValue()) != null &&
629 (k == key || k.equals(key)) &&
630 (v == (u = val) || v.equals(u)));
631 }
632
633 /**
634 * Virtualized support for map.get(); overridden in subclasses.
635 */
636 Node<K,V> find(int h, Object k) {
637 Node<K,V> e = this;
638 if (k != null) {
639 do {
640 K ek;
641 if (e.hash == h &&
642 ((ek = e.key) == k || (ek != null && k.equals(ek))))
643 return e;
644 } while ((e = e.next) != null);
645 }
646 return null;
647 }
648 }
649
650 /* ---------------- Static utilities -------------- */
651
652 /**
653 * Spreads (XORs) higher bits of hash to lower and also forces top
654 * bit to 0. Because the table uses power-of-two masking, sets of
655 * hashes that vary only in bits above the current mask will
656 * always collide. (Among known examples are sets of Float keys
657 * holding consecutive whole numbers in small tables.) So we
658 * apply a transform that spreads the impact of higher bits
659 * downward. There is a tradeoff between speed, utility, and
660 * quality of bit-spreading. Because many common sets of hashes
661 * are already reasonably distributed (so don't benefit from
662 * spreading), and because we use trees to handle large sets of
663 * collisions in bins, we just XOR some shifted bits in the
664 * cheapest possible way to reduce systematic lossage, as well as
665 * to incorporate impact of the highest bits that would otherwise
666 * never be used in index calculations because of table bounds.
667 */
668 static final int spread(int h) {
669 return (h ^ (h >>> 16)) & HASH_BITS;
670 }
671
672 /**
673 * Returns a power of two table size for the given desired capacity.
674 * See Hackers Delight, sec 3.2
675 */
676 private static final int tableSizeFor(int c) {
677 int n = c - 1;
678 n |= n >>> 1;
679 n |= n >>> 2;
680 n |= n >>> 4;
681 n |= n >>> 8;
682 n |= n >>> 16;
683 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
684 }
685
686 /**
687 * Returns x's Class if it is of the form "class C implements
688 * Comparable<C>", else null.
689 */
690 static Class<?> comparableClassFor(Object x) {
691 if (x instanceof Comparable) {
692 Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
693 if ((c = x.getClass()) == String.class) // bypass checks
694 return c;
695 if ((ts = c.getGenericInterfaces()) != null) {
696 for (int i = 0; i < ts.length; ++i) {
697 if (((t = ts[i]) instanceof ParameterizedType) &&
698 ((p = (ParameterizedType)t).getRawType() ==
699 Comparable.class) &&
700 (as = p.getActualTypeArguments()) != null &&
701 as.length == 1 && as[0] == c) // type arg is c
702 return c;
703 }
704 }
705 }
706 return null;
707 }
708
709 /**
710 * Returns k.compareTo(x) if x matches kc (k's screened comparable
711 * class), else 0.
712 */
713 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
714 static int compareComparables(Class<?> kc, Object k, Object x) {
715 return (x == null || x.getClass() != kc ? 0 :
716 ((Comparable)k).compareTo(x));
717 }
718
719 /* ---------------- Table element access -------------- */
720
721 /*
722 * Volatile access methods are used for table elements as well as
723 * elements of in-progress next table while resizing. All uses of
724 * the tab arguments must be null checked by callers. All callers
725 * also paranoically precheck that tab's length is not zero (or an
726 * equivalent check), thus ensuring that any index argument taking
727 * the form of a hash value anded with (length - 1) is a valid
728 * index. Note that, to be correct wrt arbitrary concurrency
729 * errors by users, these checks must operate on local variables,
730 * which accounts for some odd-looking inline assignments below.
731 * Note that calls to setTabAt always occur within locked regions,
732 * and so in principle require only release ordering, not need
733 * full volatile semantics, but are currently coded as volatile
734 * writes to be conservative.
735 */
736
737 @SuppressWarnings("unchecked")
738 static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
739 return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
740 }
741
742 static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
743 Node<K,V> c, Node<K,V> v) {
744 return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
745 }
746
747 static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
748 U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
749 }
750
751 /* ---------------- Fields -------------- */
752
753 /**
754 * The array of bins. Lazily initialized upon first insertion.
755 * Size is always a power of two. Accessed directly by iterators.
756 */
757 transient volatile Node<K,V>[] table;
758
759 /**
760 * The next table to use; non-null only while resizing.
761 */
762 private transient volatile Node<K,V>[] nextTable;
763
764 /**
765 * Base counter value, used mainly when there is no contention,
766 * but also as a fallback during table initialization
767 * races. Updated via CAS.
768 */
769 private transient volatile long baseCount;
770
771 /**
772 * Table initialization and resizing control. When negative, the
773 * table is being initialized or resized: -1 for initialization,
774 * else -(1 + the number of active resizing threads). Otherwise,
775 * when table is null, holds the initial table size to use upon
776 * creation, or 0 for default. After initialization, holds the
777 * next element count value upon which to resize the table.
778 */
779 private transient volatile int sizeCtl;
780
781 /**
782 * The next table index (plus one) to split while resizing.
783 */
784 private transient volatile int transferIndex;
785
786 /**
787 * The least available table index to split while resizing.
788 */
789 private transient volatile int transferOrigin;
790
791 /**
792 * Spinlock (locked via CAS) used when resizing and/or creating CounterCells.
793 */
794 private transient volatile int cellsBusy;
795
796 /**
797 * Table of counter cells. When non-null, size is a power of 2.
798 */
799 private transient volatile CounterCell[] counterCells;
800
801 // views
802 private transient KeySetView<K,V> keySet;
803 private transient ValuesView<K,V> values;
804 private transient EntrySetView<K,V> entrySet;
805
806
807 /* ---------------- Public operations -------------- */
808
809 /**
810 * Creates a new, empty map with the default initial table size (16).
811 */
812 public ConcurrentHashMapV8() {
813 }
814
815 /**
816 * Creates a new, empty map with an initial table size
817 * accommodating the specified number of elements without the need
818 * to dynamically resize.
819 *
820 * @param initialCapacity The implementation performs internal
821 * sizing to accommodate this many elements.
822 * @throws IllegalArgumentException if the initial capacity of
823 * elements is negative
824 */
825 public ConcurrentHashMapV8(int initialCapacity) {
826 if (initialCapacity < 0)
827 throw new IllegalArgumentException();
828 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
829 MAXIMUM_CAPACITY :
830 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
831 this.sizeCtl = cap;
832 }
833
834 /**
835 * Creates a new map with the same mappings as the given map.
836 *
837 * @param m the map
838 */
839 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
840 this.sizeCtl = DEFAULT_CAPACITY;
841 putAll(m);
842 }
843
844 /**
845 * Creates a new, empty map with an initial table size based on
846 * the given number of elements ({@code initialCapacity}) and
847 * initial table density ({@code loadFactor}).
848 *
849 * @param initialCapacity the initial capacity. The implementation
850 * performs internal sizing to accommodate this many elements,
851 * given the specified load factor.
852 * @param loadFactor the load factor (table density) for
853 * establishing the initial table size
854 * @throws IllegalArgumentException if the initial capacity of
855 * elements is negative or the load factor is nonpositive
856 *
857 * @since 1.6
858 */
859 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
860 this(initialCapacity, loadFactor, 1);
861 }
862
863 /**
864 * Creates a new, empty map with an initial table size based on
865 * the given number of elements ({@code initialCapacity}), table
866 * density ({@code loadFactor}), and number of concurrently
867 * updating threads ({@code concurrencyLevel}).
868 *
869 * @param initialCapacity the initial capacity. The implementation
870 * performs internal sizing to accommodate this many elements,
871 * given the specified load factor.
872 * @param loadFactor the load factor (table density) for
873 * establishing the initial table size
874 * @param concurrencyLevel the estimated number of concurrently
875 * updating threads. The implementation may use this value as
876 * a sizing hint.
877 * @throws IllegalArgumentException if the initial capacity is
878 * negative or the load factor or concurrencyLevel are
879 * nonpositive
880 */
881 public ConcurrentHashMapV8(int initialCapacity,
882 float loadFactor, int concurrencyLevel) {
883 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
884 throw new IllegalArgumentException();
885 if (initialCapacity < concurrencyLevel) // Use at least as many bins
886 initialCapacity = concurrencyLevel; // as estimated threads
887 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
888 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
889 MAXIMUM_CAPACITY : tableSizeFor((int)size);
890 this.sizeCtl = cap;
891 }
892
893 // Original (since JDK1.2) Map methods
894
895 /**
896 * {@inheritDoc}
897 */
898 public int size() {
899 long n = sumCount();
900 return ((n < 0L) ? 0 :
901 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
902 (int)n);
903 }
904
905 /**
906 * {@inheritDoc}
907 */
908 public boolean isEmpty() {
909 return sumCount() <= 0L; // ignore transient negative values
910 }
911
912 /**
913 * Returns the value to which the specified key is mapped,
914 * or {@code null} if this map contains no mapping for the key.
915 *
916 * <p>More formally, if this map contains a mapping from a key
917 * {@code k} to a value {@code v} such that {@code key.equals(k)},
918 * then this method returns {@code v}; otherwise it returns
919 * {@code null}. (There can be at most one such mapping.)
920 *
921 * @throws NullPointerException if the specified key is null
922 */
923 public V get(Object key) {
924 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
925 int h = spread(key.hashCode());
926 if ((tab = table) != null && (n = tab.length) > 0 &&
927 (e = tabAt(tab, (n - 1) & h)) != null) {
928 if ((eh = e.hash) == h) {
929 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
930 return e.val;
931 }
932 else if (eh < 0)
933 return (p = e.find(h, key)) != null ? p.val : null;
934 while ((e = e.next) != null) {
935 if (e.hash == h &&
936 ((ek = e.key) == key || (ek != null && key.equals(ek))))
937 return e.val;
938 }
939 }
940 return null;
941 }
942
943 /**
944 * Tests if the specified object is a key in this table.
945 *
946 * @param key possible key
947 * @return {@code true} if and only if the specified object
948 * is a key in this table, as determined by the
949 * {@code equals} method; {@code false} otherwise
950 * @throws NullPointerException if the specified key is null
951 */
952 public boolean containsKey(Object key) {
953 return get(key) != null;
954 }
955
956 /**
957 * Returns {@code true} if this map maps one or more keys to the
958 * specified value. Note: This method may require a full traversal
959 * of the map, and is much slower than method {@code containsKey}.
960 *
961 * @param value value whose presence in this map is to be tested
962 * @return {@code true} if this map maps one or more keys to the
963 * specified value
964 * @throws NullPointerException if the specified value is null
965 */
966 public boolean containsValue(Object value) {
967 if (value == null)
968 throw new NullPointerException();
969 Node<K,V>[] t;
970 if ((t = table) != null) {
971 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
972 for (Node<K,V> p; (p = it.advance()) != null; ) {
973 V v;
974 if ((v = p.val) == value || (v != null && value.equals(v)))
975 return true;
976 }
977 }
978 return false;
979 }
980
981 /**
982 * Maps the specified key to the specified value in this table.
983 * Neither the key nor the value can be null.
984 *
985 * <p>The value can be retrieved by calling the {@code get} method
986 * with a key that is equal to the original key.
987 *
988 * @param key key with which the specified value is to be associated
989 * @param value value to be associated with the specified key
990 * @return the previous value associated with {@code key}, or
991 * {@code null} if there was no mapping for {@code key}
992 * @throws NullPointerException if the specified key or value is null
993 */
994 public V put(K key, V value) {
995 return putVal(key, value, false);
996 }
997
998 /** Implementation for put and putIfAbsent */
999 final V putVal(K key, V value, boolean onlyIfAbsent) {
1000 if (key == null || value == null) throw new NullPointerException();
1001 int hash = spread(key.hashCode());
1002 int binCount = 0;
1003 for (Node<K,V>[] tab = table;;) {
1004 Node<K,V> f; int n, i, fh;
1005 if (tab == null || (n = tab.length) == 0)
1006 tab = initTable();
1007 else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
1008 if (casTabAt(tab, i, null,
1009 new Node<K,V>(hash, key, value, null)))
1010 break; // no lock when adding to empty bin
1011 }
1012 else if ((fh = f.hash) == MOVED)
1013 tab = helpTransfer(tab, f);
1014 else {
1015 V oldVal = null;
1016 synchronized (f) {
1017 if (tabAt(tab, i) == f) {
1018 if (fh >= 0) {
1019 binCount = 1;
1020 for (Node<K,V> e = f;; ++binCount) {
1021 K ek;
1022 if (e.hash == hash &&
1023 ((ek = e.key) == key ||
1024 (ek != null && key.equals(ek)))) {
1025 oldVal = e.val;
1026 if (!onlyIfAbsent)
1027 e.val = value;
1028 break;
1029 }
1030 Node<K,V> pred = e;
1031 if ((e = e.next) == null) {
1032 pred.next = new Node<K,V>(hash, key,
1033 value, null);
1034 break;
1035 }
1036 }
1037 }
1038 else if (f instanceof TreeBin) {
1039 Node<K,V> p;
1040 binCount = 2;
1041 if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
1042 value)) != null) {
1043 oldVal = p.val;
1044 if (!onlyIfAbsent)
1045 p.val = value;
1046 }
1047 }
1048 }
1049 }
1050 if (binCount != 0) {
1051 if (binCount >= TREEIFY_THRESHOLD)
1052 treeifyBin(tab, i);
1053 if (oldVal != null)
1054 return oldVal;
1055 break;
1056 }
1057 }
1058 }
1059 addCount(1L, binCount);
1060 return null;
1061 }
1062
1063 /**
1064 * Copies all of the mappings from the specified map to this one.
1065 * These mappings replace any mappings that this map had for any of the
1066 * keys currently in the specified map.
1067 *
1068 * @param m mappings to be stored in this map
1069 */
1070 public void putAll(Map<? extends K, ? extends V> m) {
1071 tryPresize(m.size());
1072 for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
1073 putVal(e.getKey(), e.getValue(), false);
1074 }
1075
1076 /**
1077 * Removes the key (and its corresponding value) from this map.
1078 * This method does nothing if the key is not in the map.
1079 *
1080 * @param key the key that needs to be removed
1081 * @return the previous value associated with {@code key}, or
1082 * {@code null} if there was no mapping for {@code key}
1083 * @throws NullPointerException if the specified key is null
1084 */
1085 public V remove(Object key) {
1086 return replaceNode(key, null, null);
1087 }
1088
1089 /**
1090 * Implementation for the four public remove/replace methods:
1091 * Replaces node value with v, conditional upon match of cv if
1092 * non-null. If resulting value is null, delete.
1093 */
1094 final V replaceNode(Object key, V value, Object cv) {
1095 int hash = spread(key.hashCode());
1096 for (Node<K,V>[] tab = table;;) {
1097 Node<K,V> f; int n, i, fh;
1098 if (tab == null || (n = tab.length) == 0 ||
1099 (f = tabAt(tab, i = (n - 1) & hash)) == null)
1100 break;
1101 else if ((fh = f.hash) == MOVED)
1102 tab = helpTransfer(tab, f);
1103 else {
1104 V oldVal = null;
1105 boolean validated = false;
1106 synchronized (f) {
1107 if (tabAt(tab, i) == f) {
1108 if (fh >= 0) {
1109 validated = true;
1110 for (Node<K,V> e = f, pred = null;;) {
1111 K ek;
1112 if (e.hash == hash &&
1113 ((ek = e.key) == key ||
1114 (ek != null && key.equals(ek)))) {
1115 V ev = e.val;
1116 if (cv == null || cv == ev ||
1117 (ev != null && cv.equals(ev))) {
1118 oldVal = ev;
1119 if (value != null)
1120 e.val = value;
1121 else if (pred != null)
1122 pred.next = e.next;
1123 else
1124 setTabAt(tab, i, e.next);
1125 }
1126 break;
1127 }
1128 pred = e;
1129 if ((e = e.next) == null)
1130 break;
1131 }
1132 }
1133 else if (f instanceof TreeBin) {
1134 validated = true;
1135 TreeBin<K,V> t = (TreeBin<K,V>)f;
1136 TreeNode<K,V> r, p;
1137 if ((r = t.root) != null &&
1138 (p = r.findTreeNode(hash, key, null)) != null) {
1139 V pv = p.val;
1140 if (cv == null || cv == pv ||
1141 (pv != null && cv.equals(pv))) {
1142 oldVal = pv;
1143 if (value != null)
1144 p.val = value;
1145 else if (t.removeTreeNode(p))
1146 setTabAt(tab, i, untreeify(t.first));
1147 }
1148 }
1149 }
1150 }
1151 }
1152 if (validated) {
1153 if (oldVal != null) {
1154 if (value == null)
1155 addCount(-1L, -1);
1156 return oldVal;
1157 }
1158 break;
1159 }
1160 }
1161 }
1162 return null;
1163 }
1164
1165 /**
1166 * Removes all of the mappings from this map.
1167 */
1168 public void clear() {
1169 long delta = 0L; // negative number of deletions
1170 int i = 0;
1171 Node<K,V>[] tab = table;
1172 while (tab != null && i < tab.length) {
1173 int fh;
1174 Node<K,V> f = tabAt(tab, i);
1175 if (f == null)
1176 ++i;
1177 else if ((fh = f.hash) == MOVED) {
1178 tab = helpTransfer(tab, f);
1179 i = 0; // restart
1180 }
1181 else {
1182 synchronized (f) {
1183 if (tabAt(tab, i) == f) {
1184 Node<K,V> p = (fh >= 0 ? f :
1185 (f instanceof TreeBin) ?
1186 ((TreeBin<K,V>)f).first : null);
1187 while (p != null) {
1188 --delta;
1189 p = p.next;
1190 }
1191 setTabAt(tab, i++, null);
1192 }
1193 }
1194 }
1195 }
1196 if (delta != 0L)
1197 addCount(delta, -1);
1198 }
1199
1200 /**
1201 * Returns a {@link Set} view of the keys contained in this map.
1202 * The set is backed by the map, so changes to the map are
1203 * reflected in the set, and vice-versa. The set supports element
1204 * removal, which removes the corresponding mapping from this map,
1205 * via the {@code Iterator.remove}, {@code Set.remove},
1206 * {@code removeAll}, {@code retainAll}, and {@code clear}
1207 * operations. It does not support the {@code add} or
1208 * {@code addAll} operations.
1209 *
1210 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1211 * that will never throw {@link ConcurrentModificationException},
1212 * and guarantees to traverse elements as they existed upon
1213 * construction of the iterator, and may (but is not guaranteed to)
1214 * reflect any modifications subsequent to construction.
1215 *
1216 * @return the set view
1217 */
1218 public KeySetView<K,V> keySet() {
1219 KeySetView<K,V> ks;
1220 return (ks = keySet) != null ? ks : (keySet = new KeySetView<K,V>(this, null));
1221 }
1222
1223 /**
1224 * Returns a {@link Collection} view of the values contained in this map.
1225 * The collection is backed by the map, so changes to the map are
1226 * reflected in the collection, and vice-versa. The collection
1227 * supports element removal, which removes the corresponding
1228 * mapping from this map, via the {@code Iterator.remove},
1229 * {@code Collection.remove}, {@code removeAll},
1230 * {@code retainAll}, and {@code clear} operations. It does not
1231 * support the {@code add} or {@code addAll} operations.
1232 *
1233 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1234 * that will never throw {@link ConcurrentModificationException},
1235 * and guarantees to traverse elements as they existed upon
1236 * construction of the iterator, and may (but is not guaranteed to)
1237 * reflect any modifications subsequent to construction.
1238 *
1239 * @return the collection view
1240 */
1241 public Collection<V> values() {
1242 ValuesView<K,V> vs;
1243 return (vs = values) != null ? vs : (values = new ValuesView<K,V>(this));
1244 }
1245
1246 /**
1247 * Returns a {@link Set} view of the mappings contained in this map.
1248 * The set is backed by the map, so changes to the map are
1249 * reflected in the set, and vice-versa. The set supports element
1250 * removal, which removes the corresponding mapping from the map,
1251 * via the {@code Iterator.remove}, {@code Set.remove},
1252 * {@code removeAll}, {@code retainAll}, and {@code clear}
1253 * operations.
1254 *
1255 * <p>The view's {@code iterator} is a "weakly consistent" iterator
1256 * that will never throw {@link ConcurrentModificationException},
1257 * and guarantees to traverse elements as they existed upon
1258 * construction of the iterator, and may (but is not guaranteed to)
1259 * reflect any modifications subsequent to construction.
1260 *
1261 * @return the set view
1262 */
1263 public Set<Map.Entry<K,V>> entrySet() {
1264 EntrySetView<K,V> es;
1265 return (es = entrySet) != null ? es : (entrySet = new EntrySetView<K,V>(this));
1266 }
1267
1268 /**
1269 * Returns the hash code value for this {@link Map}, i.e.,
1270 * the sum of, for each key-value pair in the map,
1271 * {@code key.hashCode() ^ value.hashCode()}.
1272 *
1273 * @return the hash code value for this map
1274 */
1275 public int hashCode() {
1276 int h = 0;
1277 Node<K,V>[] t;
1278 if ((t = table) != null) {
1279 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1280 for (Node<K,V> p; (p = it.advance()) != null; )
1281 h += p.key.hashCode() ^ p.val.hashCode();
1282 }
1283 return h;
1284 }
1285
1286 /**
1287 * Returns a string representation of this map. The string
1288 * representation consists of a list of key-value mappings (in no
1289 * particular order) enclosed in braces ("{@code {}}"). Adjacent
1290 * mappings are separated by the characters {@code ", "} (comma
1291 * and space). Each key-value mapping is rendered as the key
1292 * followed by an equals sign ("{@code =}") followed by the
1293 * associated value.
1294 *
1295 * @return a string representation of this map
1296 */
1297 public String toString() {
1298 Node<K,V>[] t;
1299 int f = (t = table) == null ? 0 : t.length;
1300 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1301 StringBuilder sb = new StringBuilder();
1302 sb.append('{');
1303 Node<K,V> p;
1304 if ((p = it.advance()) != null) {
1305 for (;;) {
1306 K k = p.key;
1307 V v = p.val;
1308 sb.append(k == this ? "(this Map)" : k);
1309 sb.append('=');
1310 sb.append(v == this ? "(this Map)" : v);
1311 if ((p = it.advance()) == null)
1312 break;
1313 sb.append(',').append(' ');
1314 }
1315 }
1316 return sb.append('}').toString();
1317 }
1318
1319 /**
1320 * Compares the specified object with this map for equality.
1321 * Returns {@code true} if the given object is a map with the same
1322 * mappings as this map. This operation may return misleading
1323 * results if either map is concurrently modified during execution
1324 * of this method.
1325 *
1326 * @param o object to be compared for equality with this map
1327 * @return {@code true} if the specified object is equal to this map
1328 */
1329 public boolean equals(Object o) {
1330 if (o != this) {
1331 if (!(o instanceof Map))
1332 return false;
1333 Map<?,?> m = (Map<?,?>) o;
1334 Node<K,V>[] t;
1335 int f = (t = table) == null ? 0 : t.length;
1336 Traverser<K,V> it = new Traverser<K,V>(t, f, 0, f);
1337 for (Node<K,V> p; (p = it.advance()) != null; ) {
1338 V val = p.val;
1339 Object v = m.get(p.key);
1340 if (v == null || (v != val && !v.equals(val)))
1341 return false;
1342 }
1343 for (Map.Entry<?,?> e : m.entrySet()) {
1344 Object mk, mv, v;
1345 if ((mk = e.getKey()) == null ||
1346 (mv = e.getValue()) == null ||
1347 (v = get(mk)) == null ||
1348 (mv != v && !mv.equals(v)))
1349 return false;
1350 }
1351 }
1352 return true;
1353 }
1354
1355 /**
1356 * Stripped-down version of helper class used in previous version,
1357 * declared for the sake of serialization compatibility
1358 */
1359 static class Segment<K,V> extends ReentrantLock implements Serializable {
1360 private static final long serialVersionUID = 2249069246763182397L;
1361 final float loadFactor;
1362 Segment(float lf) { this.loadFactor = lf; }
1363 }
1364
1365 /**
1366 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
1367 * stream (i.e., serializes it).
1368 * @param s the stream
1369 * @serialData
1370 * the key (Object) and value (Object)
1371 * for each key-value mapping, followed by a null pair.
1372 * The key-value mappings are emitted in no particular order.
1373 */
1374 private void writeObject(java.io.ObjectOutputStream s)
1375 throws java.io.IOException {
1376 // For serialization compatibility
1377 // Emulate segment calculation from previous version of this class
1378 int sshift = 0;
1379 int ssize = 1;
1380 while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
1381 ++sshift;
1382 ssize <<= 1;
1383 }
1384 int segmentShift = 32 - sshift;
1385 int segmentMask = ssize - 1;
1386 @SuppressWarnings("unchecked") Segment<K,V>[] segments = (Segment<K,V>[])
1387 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
1388 for (int i = 0; i < segments.length; ++i)
1389 segments[i] = new Segment<K,V>(LOAD_FACTOR);
1390 s.putFields().put("segments", segments);
1391 s.putFields().put("segmentShift", segmentShift);
1392 s.putFields().put("segmentMask", segmentMask);
1393 s.writeFields();
1394
1395 Node<K,V>[] t;
1396 if ((t = table) != null) {
1397 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1398 for (Node<K,V> p; (p = it.advance()) != null; ) {
1399 s.writeObject(p.key);
1400 s.writeObject(p.val);
1401 }
1402 }
1403 s.writeObject(null);
1404 s.writeObject(null);
1405 segments = null; // throw away
1406 }
1407
1408 /**
1409 * Reconstitutes the instance from a stream (that is, deserializes it).
1410 * @param s the stream
1411 */
1412 private void readObject(java.io.ObjectInputStream s)
1413 throws java.io.IOException, ClassNotFoundException {
1414 /*
1415 * To improve performance in typical cases, we create nodes
1416 * while reading, then place in table once size is known.
1417 * However, we must also validate uniqueness and deal with
1418 * overpopulated bins while doing so, which requires
1419 * specialized versions of putVal mechanics.
1420 */
1421 sizeCtl = -1; // force exclusion for table construction
1422 s.defaultReadObject();
1423 long size = 0L;
1424 Node<K,V> p = null;
1425 for (;;) {
1426 @SuppressWarnings("unchecked") K k = (K) s.readObject();
1427 @SuppressWarnings("unchecked") V v = (V) s.readObject();
1428 if (k != null && v != null) {
1429 p = new Node<K,V>(spread(k.hashCode()), k, v, p);
1430 ++size;
1431 }
1432 else
1433 break;
1434 }
1435 if (size == 0L)
1436 sizeCtl = 0;
1437 else {
1438 int n;
1439 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
1440 n = MAXIMUM_CAPACITY;
1441 else {
1442 int sz = (int)size;
1443 n = tableSizeFor(sz + (sz >>> 1) + 1);
1444 }
1445 @SuppressWarnings({"rawtypes","unchecked"})
1446 Node<K,V>[] tab = (Node<K,V>[])new Node[n];
1447 int mask = n - 1;
1448 long added = 0L;
1449 while (p != null) {
1450 boolean insertAtFront;
1451 Node<K,V> next = p.next, first;
1452 int h = p.hash, j = h & mask;
1453 if ((first = tabAt(tab, j)) == null)
1454 insertAtFront = true;
1455 else {
1456 K k = p.key;
1457 if (first.hash < 0) {
1458 TreeBin<K,V> t = (TreeBin<K,V>)first;
1459 if (t.putTreeVal(h, k, p.val) == null)
1460 ++added;
1461 insertAtFront = false;
1462 }
1463 else {
1464 int binCount = 0;
1465 insertAtFront = true;
1466 Node<K,V> q; K qk;
1467 for (q = first; q != null; q = q.next) {
1468 if (q.hash == h &&
1469 ((qk = q.key) == k ||
1470 (qk != null && k.equals(qk)))) {
1471 insertAtFront = false;
1472 break;
1473 }
1474 ++binCount;
1475 }
1476 if (insertAtFront && binCount >= TREEIFY_THRESHOLD) {
1477 insertAtFront = false;
1478 ++added;
1479 p.next = first;
1480 TreeNode<K,V> hd = null, tl = null;
1481 for (q = p; q != null; q = q.next) {
1482 TreeNode<K,V> t = new TreeNode<K,V>
1483 (q.hash, q.key, q.val, null, null);
1484 if ((t.prev = tl) == null)
1485 hd = t;
1486 else
1487 tl.next = t;
1488 tl = t;
1489 }
1490 setTabAt(tab, j, new TreeBin<K,V>(hd));
1491 }
1492 }
1493 }
1494 if (insertAtFront) {
1495 ++added;
1496 p.next = first;
1497 setTabAt(tab, j, p);
1498 }
1499 p = next;
1500 }
1501 table = tab;
1502 sizeCtl = n - (n >>> 2);
1503 baseCount = added;
1504 }
1505 }
1506
1507 // ConcurrentMap methods
1508
1509 /**
1510 * {@inheritDoc}
1511 *
1512 * @return the previous value associated with the specified key,
1513 * or {@code null} if there was no mapping for the key
1514 * @throws NullPointerException if the specified key or value is null
1515 */
1516 public V putIfAbsent(K key, V value) {
1517 return putVal(key, value, true);
1518 }
1519
1520 /**
1521 * {@inheritDoc}
1522 *
1523 * @throws NullPointerException if the specified key is null
1524 */
1525 public boolean remove(Object key, Object value) {
1526 if (key == null)
1527 throw new NullPointerException();
1528 return value != null && replaceNode(key, null, value) != null;
1529 }
1530
1531 /**
1532 * {@inheritDoc}
1533 *
1534 * @throws NullPointerException if any of the arguments are null
1535 */
1536 public boolean replace(K key, V oldValue, V newValue) {
1537 if (key == null || oldValue == null || newValue == null)
1538 throw new NullPointerException();
1539 return replaceNode(key, newValue, oldValue) != null;
1540 }
1541
1542 /**
1543 * {@inheritDoc}
1544 *
1545 * @return the previous value associated with the specified key,
1546 * or {@code null} if there was no mapping for the key
1547 * @throws NullPointerException if the specified key or value is null
1548 */
1549 public V replace(K key, V value) {
1550 if (key == null || value == null)
1551 throw new NullPointerException();
1552 return replaceNode(key, value, null);
1553 }
1554
1555 // Overrides of JDK8+ Map extension method defaults
1556
1557 /**
1558 * Returns the value to which the specified key is mapped, or the
1559 * given default value if this map contains no mapping for the
1560 * key.
1561 *
1562 * @param key the key whose associated value is to be returned
1563 * @param defaultValue the value to return if this map contains
1564 * no mapping for the given key
1565 * @return the mapping for the key, if present; else the default value
1566 * @throws NullPointerException if the specified key is null
1567 */
1568 public V getOrDefault(Object key, V defaultValue) {
1569 V v;
1570 return (v = get(key)) == null ? defaultValue : v;
1571 }
1572
1573 public void forEach(BiAction<? super K, ? super V> action) {
1574 if (action == null) throw new NullPointerException();
1575 Node<K,V>[] t;
1576 if ((t = table) != null) {
1577 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1578 for (Node<K,V> p; (p = it.advance()) != null; ) {
1579 action.apply(p.key, p.val);
1580 }
1581 }
1582 }
1583
1584 public void replaceAll(BiFun<? super K, ? super V, ? extends V> function) {
1585 if (function == null) throw new NullPointerException();
1586 Node<K,V>[] t;
1587 if ((t = table) != null) {
1588 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
1589 for (Node<K,V> p; (p = it.advance()) != null; ) {
1590 V oldValue = p.val;
1591 for (K key = p.key;;) {
1592 V newValue = function.apply(key, oldValue);
1593 if (newValue == null)
1594 throw new NullPointerException();
1595 if (replaceNode(key, newValue, oldValue) != null ||
1596 (oldValue = get(key)) == null)
1597 break;
1598 }
1599 }
1600 }
1601 }
1602
1603 /**
1604 * If the specified key is not already associated with a value,
1605 * attempts to compute its value using the given mapping function
1606 * and enters it into this map unless {@code null}. The entire
1607 * method invocation is performed atomically, so the function is
1608 * applied at most once per key. Some attempted update operations
1609 * on this map by other threads may be blocked while computation
1610 * is in progress, so the computation should be short and simple,
1611 * and must not attempt to update any other mappings of this map.
1612 *
1613 * @param key key with which the specified value is to be associated
1614 * @param mappingFunction the function to compute a value
1615 * @return the current (existing or computed) value associated with
1616 * the specified key, or null if the computed value is null
1617 * @throws NullPointerException if the specified key or mappingFunction
1618 * is null
1619 * @throws IllegalStateException if the computation detectably
1620 * attempts a recursive update to this map that would
1621 * otherwise never complete
1622 * @throws RuntimeException or Error if the mappingFunction does so,
1623 * in which case the mapping is left unestablished
1624 */
1625 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
1626 if (key == null || mappingFunction == null)
1627 throw new NullPointerException();
1628 int h = spread(key.hashCode());
1629 V val = null;
1630 int binCount = 0;
1631 for (Node<K,V>[] tab = table;;) {
1632 Node<K,V> f; int n, i, fh;
1633 if (tab == null || (n = tab.length) == 0)
1634 tab = initTable();
1635 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1636 Node<K,V> r = new ReservationNode<K,V>();
1637 synchronized (r) {
1638 if (casTabAt(tab, i, null, r)) {
1639 binCount = 1;
1640 Node<K,V> node = null;
1641 try {
1642 if ((val = mappingFunction.apply(key)) != null)
1643 node = new Node<K,V>(h, key, val, null);
1644 } finally {
1645 setTabAt(tab, i, node);
1646 }
1647 }
1648 }
1649 if (binCount != 0)
1650 break;
1651 }
1652 else if ((fh = f.hash) == MOVED)
1653 tab = helpTransfer(tab, f);
1654 else {
1655 boolean added = false;
1656 synchronized (f) {
1657 if (tabAt(tab, i) == f) {
1658 if (fh >= 0) {
1659 binCount = 1;
1660 for (Node<K,V> e = f;; ++binCount) {
1661 K ek; V ev;
1662 if (e.hash == h &&
1663 ((ek = e.key) == key ||
1664 (ek != null && key.equals(ek)))) {
1665 val = e.val;
1666 break;
1667 }
1668 Node<K,V> pred = e;
1669 if ((e = e.next) == null) {
1670 if ((val = mappingFunction.apply(key)) != null) {
1671 added = true;
1672 pred.next = new Node<K,V>(h, key, val, null);
1673 }
1674 break;
1675 }
1676 }
1677 }
1678 else if (f instanceof TreeBin) {
1679 binCount = 2;
1680 TreeBin<K,V> t = (TreeBin<K,V>)f;
1681 TreeNode<K,V> r, p;
1682 if ((r = t.root) != null &&
1683 (p = r.findTreeNode(h, key, null)) != null)
1684 val = p.val;
1685 else if ((val = mappingFunction.apply(key)) != null) {
1686 added = true;
1687 t.putTreeVal(h, key, val);
1688 }
1689 }
1690 }
1691 }
1692 if (binCount != 0) {
1693 if (binCount >= TREEIFY_THRESHOLD)
1694 treeifyBin(tab, i);
1695 if (!added)
1696 return val;
1697 break;
1698 }
1699 }
1700 }
1701 if (val != null)
1702 addCount(1L, binCount);
1703 return val;
1704 }
1705
1706 /**
1707 * If the value for the specified key is present, attempts to
1708 * compute a new mapping given the key and its current mapped
1709 * value. The entire method invocation is performed atomically.
1710 * Some attempted update operations on this map by other threads
1711 * may be blocked while computation is in progress, so the
1712 * computation should be short and simple, and must not attempt to
1713 * update any other mappings of this map.
1714 *
1715 * @param key key with which a value may be associated
1716 * @param remappingFunction the function to compute a value
1717 * @return the new value associated with the specified key, or null if none
1718 * @throws NullPointerException if the specified key or remappingFunction
1719 * is null
1720 * @throws IllegalStateException if the computation detectably
1721 * attempts a recursive update to this map that would
1722 * otherwise never complete
1723 * @throws RuntimeException or Error if the remappingFunction does so,
1724 * in which case the mapping is unchanged
1725 */
1726 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1727 if (key == null || remappingFunction == null)
1728 throw new NullPointerException();
1729 int h = spread(key.hashCode());
1730 V val = null;
1731 int delta = 0;
1732 int binCount = 0;
1733 for (Node<K,V>[] tab = table;;) {
1734 Node<K,V> f; int n, i, fh;
1735 if (tab == null || (n = tab.length) == 0)
1736 tab = initTable();
1737 else if ((f = tabAt(tab, i = (n - 1) & h)) == null)
1738 break;
1739 else if ((fh = f.hash) == MOVED)
1740 tab = helpTransfer(tab, f);
1741 else {
1742 synchronized (f) {
1743 if (tabAt(tab, i) == f) {
1744 if (fh >= 0) {
1745 binCount = 1;
1746 for (Node<K,V> e = f, pred = null;; ++binCount) {
1747 K ek;
1748 if (e.hash == h &&
1749 ((ek = e.key) == key ||
1750 (ek != null && key.equals(ek)))) {
1751 val = remappingFunction.apply(key, e.val);
1752 if (val != null)
1753 e.val = val;
1754 else {
1755 delta = -1;
1756 Node<K,V> en = e.next;
1757 if (pred != null)
1758 pred.next = en;
1759 else
1760 setTabAt(tab, i, en);
1761 }
1762 break;
1763 }
1764 pred = e;
1765 if ((e = e.next) == null)
1766 break;
1767 }
1768 }
1769 else if (f instanceof TreeBin) {
1770 binCount = 2;
1771 TreeBin<K,V> t = (TreeBin<K,V>)f;
1772 TreeNode<K,V> r, p;
1773 if ((r = t.root) != null &&
1774 (p = r.findTreeNode(h, key, null)) != null) {
1775 val = remappingFunction.apply(key, p.val);
1776 if (val != null)
1777 p.val = val;
1778 else {
1779 delta = -1;
1780 if (t.removeTreeNode(p))
1781 setTabAt(tab, i, untreeify(t.first));
1782 }
1783 }
1784 }
1785 }
1786 }
1787 if (binCount != 0)
1788 break;
1789 }
1790 }
1791 if (delta != 0)
1792 addCount((long)delta, binCount);
1793 return val;
1794 }
1795
1796 /**
1797 * Attempts to compute a mapping for the specified key and its
1798 * current mapped value (or {@code null} if there is no current
1799 * mapping). The entire method invocation is performed atomically.
1800 * Some attempted update operations on this map by other threads
1801 * may be blocked while computation is in progress, so the
1802 * computation should be short and simple, and must not attempt to
1803 * update any other mappings of this Map.
1804 *
1805 * @param key key with which the specified value is to be associated
1806 * @param remappingFunction the function to compute a value
1807 * @return the new value associated with the specified key, or null if none
1808 * @throws NullPointerException if the specified key or remappingFunction
1809 * is null
1810 * @throws IllegalStateException if the computation detectably
1811 * attempts a recursive update to this map that would
1812 * otherwise never complete
1813 * @throws RuntimeException or Error if the remappingFunction does so,
1814 * in which case the mapping is unchanged
1815 */
1816 public V compute(K key,
1817 BiFun<? super K, ? super V, ? extends V> remappingFunction) {
1818 if (key == null || remappingFunction == null)
1819 throw new NullPointerException();
1820 int h = spread(key.hashCode());
1821 V val = null;
1822 int delta = 0;
1823 int binCount = 0;
1824 for (Node<K,V>[] tab = table;;) {
1825 Node<K,V> f; int n, i, fh;
1826 if (tab == null || (n = tab.length) == 0)
1827 tab = initTable();
1828 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1829 Node<K,V> r = new ReservationNode<K,V>();
1830 synchronized (r) {
1831 if (casTabAt(tab, i, null, r)) {
1832 binCount = 1;
1833 Node<K,V> node = null;
1834 try {
1835 if ((val = remappingFunction.apply(key, null)) != null) {
1836 delta = 1;
1837 node = new Node<K,V>(h, key, val, null);
1838 }
1839 } finally {
1840 setTabAt(tab, i, node);
1841 }
1842 }
1843 }
1844 if (binCount != 0)
1845 break;
1846 }
1847 else if ((fh = f.hash) == MOVED)
1848 tab = helpTransfer(tab, f);
1849 else {
1850 synchronized (f) {
1851 if (tabAt(tab, i) == f) {
1852 if (fh >= 0) {
1853 binCount = 1;
1854 for (Node<K,V> e = f, pred = null;; ++binCount) {
1855 K ek;
1856 if (e.hash == h &&
1857 ((ek = e.key) == key ||
1858 (ek != null && key.equals(ek)))) {
1859 val = remappingFunction.apply(key, e.val);
1860 if (val != null)
1861 e.val = val;
1862 else {
1863 delta = -1;
1864 Node<K,V> en = e.next;
1865 if (pred != null)
1866 pred.next = en;
1867 else
1868 setTabAt(tab, i, en);
1869 }
1870 break;
1871 }
1872 pred = e;
1873 if ((e = e.next) == null) {
1874 val = remappingFunction.apply(key, null);
1875 if (val != null) {
1876 delta = 1;
1877 pred.next =
1878 new Node<K,V>(h, key, val, null);
1879 }
1880 break;
1881 }
1882 }
1883 }
1884 else if (f instanceof TreeBin) {
1885 binCount = 1;
1886 TreeBin<K,V> t = (TreeBin<K,V>)f;
1887 TreeNode<K,V> r, p;
1888 if ((r = t.root) != null)
1889 p = r.findTreeNode(h, key, null);
1890 else
1891 p = null;
1892 V pv = (p == null) ? null : p.val;
1893 val = remappingFunction.apply(key, pv);
1894 if (val != null) {
1895 if (p != null)
1896 p.val = val;
1897 else {
1898 delta = 1;
1899 t.putTreeVal(h, key, val);
1900 }
1901 }
1902 else if (p != null) {
1903 delta = -1;
1904 if (t.removeTreeNode(p))
1905 setTabAt(tab, i, untreeify(t.first));
1906 }
1907 }
1908 }
1909 }
1910 if (binCount != 0) {
1911 if (binCount >= TREEIFY_THRESHOLD)
1912 treeifyBin(tab, i);
1913 break;
1914 }
1915 }
1916 }
1917 if (delta != 0)
1918 addCount((long)delta, binCount);
1919 return val;
1920 }
1921
1922 /**
1923 * If the specified key is not already associated with a
1924 * (non-null) value, associates it with the given value.
1925 * Otherwise, replaces the value with the results of the given
1926 * remapping function, or removes if {@code null}. The entire
1927 * method invocation is performed atomically. Some attempted
1928 * update operations on this map by other threads may be blocked
1929 * while computation is in progress, so the computation should be
1930 * short and simple, and must not attempt to update any other
1931 * mappings of this Map.
1932 *
1933 * @param key key with which the specified value is to be associated
1934 * @param value the value to use if absent
1935 * @param remappingFunction the function to recompute a value if present
1936 * @return the new value associated with the specified key, or null if none
1937 * @throws NullPointerException if the specified key or the
1938 * remappingFunction is null
1939 * @throws RuntimeException or Error if the remappingFunction does so,
1940 * in which case the mapping is unchanged
1941 */
1942 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
1943 if (key == null || value == null || remappingFunction == null)
1944 throw new NullPointerException();
1945 int h = spread(key.hashCode());
1946 V val = null;
1947 int delta = 0;
1948 int binCount = 0;
1949 for (Node<K,V>[] tab = table;;) {
1950 Node<K,V> f; int n, i, fh;
1951 if (tab == null || (n = tab.length) == 0)
1952 tab = initTable();
1953 else if ((f = tabAt(tab, i = (n - 1) & h)) == null) {
1954 if (casTabAt(tab, i, null, new Node<K,V>(h, key, value, null))) {
1955 delta = 1;
1956 val = value;
1957 break;
1958 }
1959 }
1960 else if ((fh = f.hash) == MOVED)
1961 tab = helpTransfer(tab, f);
1962 else {
1963 synchronized (f) {
1964 if (tabAt(tab, i) == f) {
1965 if (fh >= 0) {
1966 binCount = 1;
1967 for (Node<K,V> e = f, pred = null;; ++binCount) {
1968 K ek;
1969 if (e.hash == h &&
1970 ((ek = e.key) == key ||
1971 (ek != null && key.equals(ek)))) {
1972 val = remappingFunction.apply(e.val, value);
1973 if (val != null)
1974 e.val = val;
1975 else {
1976 delta = -1;
1977 Node<K,V> en = e.next;
1978 if (pred != null)
1979 pred.next = en;
1980 else
1981 setTabAt(tab, i, en);
1982 }
1983 break;
1984 }
1985 pred = e;
1986 if ((e = e.next) == null) {
1987 delta = 1;
1988 val = value;
1989 pred.next =
1990 new Node<K,V>(h, key, val, null);
1991 break;
1992 }
1993 }
1994 }
1995 else if (f instanceof TreeBin) {
1996 binCount = 2;
1997 TreeBin<K,V> t = (TreeBin<K,V>)f;
1998 TreeNode<K,V> r = t.root;
1999 TreeNode<K,V> p = (r == null) ? null :
2000 r.findTreeNode(h, key, null);
2001 val = (p == null) ? value :
2002 remappingFunction.apply(p.val, value);
2003 if (val != null) {
2004 if (p != null)
2005 p.val = val;
2006 else {
2007 delta = 1;
2008 t.putTreeVal(h, key, val);
2009 }
2010 }
2011 else if (p != null) {
2012 delta = -1;
2013 if (t.removeTreeNode(p))
2014 setTabAt(tab, i, untreeify(t.first));
2015 }
2016 }
2017 }
2018 }
2019 if (binCount != 0) {
2020 if (binCount >= TREEIFY_THRESHOLD)
2021 treeifyBin(tab, i);
2022 break;
2023 }
2024 }
2025 }
2026 if (delta != 0)
2027 addCount((long)delta, binCount);
2028 return val;
2029 }
2030
2031 // Hashtable legacy methods
2032
2033 /**
2034 * Legacy method testing if some key maps into the specified value
2035 * in this table. This method is identical in functionality to
2036 * {@link #containsValue(Object)}, and exists solely to ensure
2037 * full compatibility with class {@link java.util.Hashtable},
2038 * which supported this method prior to introduction of the
2039 * Java Collections framework.
2040 *
2041 * @param value a value to search for
2042 * @return {@code true} if and only if some key maps to the
2043 * {@code value} argument in this table as
2044 * determined by the {@code equals} method;
2045 * {@code false} otherwise
2046 * @throws NullPointerException if the specified value is null
2047 */
2048 @Deprecated public boolean contains(Object value) {
2049 return containsValue(value);
2050 }
2051
2052 /**
2053 * Returns an enumeration of the keys in this table.
2054 *
2055 * @return an enumeration of the keys in this table
2056 * @see #keySet()
2057 */
2058 public Enumeration<K> keys() {
2059 Node<K,V>[] t;
2060 int f = (t = table) == null ? 0 : t.length;
2061 return new KeyIterator<K,V>(t, f, 0, f, this);
2062 }
2063
2064 /**
2065 * Returns an enumeration of the values in this table.
2066 *
2067 * @return an enumeration of the values in this table
2068 * @see #values()
2069 */
2070 public Enumeration<V> elements() {
2071 Node<K,V>[] t;
2072 int f = (t = table) == null ? 0 : t.length;
2073 return new ValueIterator<K,V>(t, f, 0, f, this);
2074 }
2075
2076 // ConcurrentHashMapV8-only methods
2077
2078 /**
2079 * Returns the number of mappings. This method should be used
2080 * instead of {@link #size} because a ConcurrentHashMapV8 may
2081 * contain more mappings than can be represented as an int. The
2082 * value returned is an estimate; the actual count may differ if
2083 * there are concurrent insertions or removals.
2084 *
2085 * @return the number of mappings
2086 * @since 1.8
2087 */
2088 public long mappingCount() {
2089 long n = sumCount();
2090 return (n < 0L) ? 0L : n; // ignore transient negative values
2091 }
2092
2093 /**
2094 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2095 * from the given type to {@code Boolean.TRUE}.
2096 *
2097 * @return the new set
2098 * @since 1.8
2099 */
2100 public static <K> KeySetView<K,Boolean> newKeySet() {
2101 return new KeySetView<K,Boolean>
2102 (new ConcurrentHashMapV8<K,Boolean>(), Boolean.TRUE);
2103 }
2104
2105 /**
2106 * Creates a new {@link Set} backed by a ConcurrentHashMapV8
2107 * from the given type to {@code Boolean.TRUE}.
2108 *
2109 * @param initialCapacity The implementation performs internal
2110 * sizing to accommodate this many elements.
2111 * @return the new set
2112 * @throws IllegalArgumentException if the initial capacity of
2113 * elements is negative
2114 * @since 1.8
2115 */
2116 public static <K> KeySetView<K,Boolean> newKeySet(int initialCapacity) {
2117 return new KeySetView<K,Boolean>
2118 (new ConcurrentHashMapV8<K,Boolean>(initialCapacity), Boolean.TRUE);
2119 }
2120
2121 /**
2122 * Returns a {@link Set} view of the keys in this map, using the
2123 * given common mapped value for any additions (i.e., {@link
2124 * Collection#add} and {@link Collection#addAll(Collection)}).
2125 * This is of course only appropriate if it is acceptable to use
2126 * the same value for all additions from this view.
2127 *
2128 * @param mappedValue the mapped value to use for any additions
2129 * @return the set view
2130 * @throws NullPointerException if the mappedValue is null
2131 */
2132 public KeySetView<K,V> keySet(V mappedValue) {
2133 if (mappedValue == null)
2134 throw new NullPointerException();
2135 return new KeySetView<K,V>(this, mappedValue);
2136 }
2137
2138 /* ---------------- Special Nodes -------------- */
2139
2140 /**
2141 * A node inserted at head of bins during transfer operations.
2142 */
2143 static final class ForwardingNode<K,V> extends Node<K,V> {
2144 final Node<K,V>[] nextTable;
2145 ForwardingNode(Node<K,V>[] tab) {
2146 super(MOVED, null, null, null);
2147 this.nextTable = tab;
2148 }
2149
2150 Node<K,V> find(int h, Object k) {
2151 // loop to avoid arbitrarily deep recursion on forwarding nodes
2152 outer: for (Node<K,V>[] tab = nextTable;;) {
2153 Node<K,V> e; int n;
2154 if (k == null || tab == null || (n = tab.length) == 0 ||
2155 (e = tabAt(tab, (n - 1) & h)) == null)
2156 return null;
2157 for (;;) {
2158 int eh; K ek;
2159 if ((eh = e.hash) == h &&
2160 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2161 return e;
2162 if (eh < 0) {
2163 if (e instanceof ForwardingNode) {
2164 tab = ((ForwardingNode<K,V>)e).nextTable;
2165 continue outer;
2166 }
2167 else
2168 return e.find(h, k);
2169 }
2170 if ((e = e.next) == null)
2171 return null;
2172 }
2173 }
2174 }
2175 }
2176
2177 /**
2178 * A place-holder node used in computeIfAbsent and compute
2179 */
2180 static final class ReservationNode<K,V> extends Node<K,V> {
2181 ReservationNode() {
2182 super(RESERVED, null, null, null);
2183 }
2184
2185 Node<K,V> find(int h, Object k) {
2186 return null;
2187 }
2188 }
2189
2190 /* ---------------- Table Initialization and Resizing -------------- */
2191
2192 /**
2193 * Initializes table, using the size recorded in sizeCtl.
2194 */
2195 private final Node<K,V>[] initTable() {
2196 Node<K,V>[] tab; int sc;
2197 while ((tab = table) == null || tab.length == 0) {
2198 if ((sc = sizeCtl) < 0)
2199 Thread.yield(); // lost initialization race; just spin
2200 else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2201 try {
2202 if ((tab = table) == null || tab.length == 0) {
2203 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
2204 @SuppressWarnings({"rawtypes","unchecked"})
2205 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2206 table = tab = nt;
2207 sc = n - (n >>> 2);
2208 }
2209 } finally {
2210 sizeCtl = sc;
2211 }
2212 break;
2213 }
2214 }
2215 return tab;
2216 }
2217
2218 /**
2219 * Adds to count, and if table is too small and not already
2220 * resizing, initiates transfer. If already resizing, helps
2221 * perform transfer if work is available. Rechecks occupancy
2222 * after a transfer to see if another resize is already needed
2223 * because resizings are lagging additions.
2224 *
2225 * @param x the count to add
2226 * @param check if <0, don't check resize, if <= 1 only check if uncontended
2227 */
2228 private final void addCount(long x, int check) {
2229 CounterCell[] as; long b, s;
2230 if ((as = counterCells) != null ||
2231 !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
2232 CounterHashCode hc; CounterCell a; long v; int m;
2233 boolean uncontended = true;
2234 if ((hc = threadCounterHashCode.get()) == null ||
2235 as == null || (m = as.length - 1) < 0 ||
2236 (a = as[m & hc.code]) == null ||
2237 !(uncontended =
2238 U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
2239 fullAddCount(x, hc, uncontended);
2240 return;
2241 }
2242 if (check <= 1)
2243 return;
2244 s = sumCount();
2245 }
2246 if (check >= 0) {
2247 Node<K,V>[] tab, nt; int sc;
2248 while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
2249 tab.length < MAXIMUM_CAPACITY) {
2250 if (sc < 0) {
2251 if (sc == -1 || transferIndex <= transferOrigin ||
2252 (nt = nextTable) == null)
2253 break;
2254 if (U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2255 transfer(tab, nt);
2256 }
2257 else if (U.compareAndSwapInt(this, SIZECTL, sc, -2))
2258 transfer(tab, null);
2259 s = sumCount();
2260 }
2261 }
2262 }
2263
2264 /**
2265 * Helps transfer if a resize is in progress.
2266 */
2267 final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
2268 Node<K,V>[] nextTab; int sc;
2269 if ((f instanceof ForwardingNode) &&
2270 (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
2271 if (nextTab == nextTable && tab == table &&
2272 transferIndex > transferOrigin && (sc = sizeCtl) < -1 &&
2273 U.compareAndSwapInt(this, SIZECTL, sc, sc - 1))
2274 transfer(tab, nextTab);
2275 return nextTab;
2276 }
2277 return table;
2278 }
2279
2280 /**
2281 * Tries to presize table to accommodate the given number of elements.
2282 *
2283 * @param size number of elements (doesn't need to be perfectly accurate)
2284 */
2285 private final void tryPresize(int size) {
2286 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
2287 tableSizeFor(size + (size >>> 1) + 1);
2288 int sc;
2289 while ((sc = sizeCtl) >= 0) {
2290 Node<K,V>[] tab = table; int n;
2291 if (tab == null || (n = tab.length) == 0) {
2292 n = (sc > c) ? sc : c;
2293 if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
2294 try {
2295 if (table == tab) {
2296 @SuppressWarnings({"rawtypes","unchecked"})
2297 Node<K,V>[] nt = (Node<K,V>[])new Node[n];
2298 table = nt;
2299 sc = n - (n >>> 2);
2300 }
2301 } finally {
2302 sizeCtl = sc;
2303 }
2304 }
2305 }
2306 else if (c <= sc || n >= MAXIMUM_CAPACITY)
2307 break;
2308 else if (tab == table &&
2309 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2310 transfer(tab, null);
2311 }
2312 }
2313
2314 /**
2315 * Moves and/or copies the nodes in each bin to new table. See
2316 * above for explanation.
2317 */
2318 private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
2319 int n = tab.length, stride;
2320 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
2321 stride = MIN_TRANSFER_STRIDE; // subdivide range
2322 if (nextTab == null) { // initiating
2323 try {
2324 @SuppressWarnings({"rawtypes","unchecked"})
2325 Node<K,V>[] nt = (Node<K,V>[])new Node[n << 1];
2326 nextTab = nt;
2327 } catch (Throwable ex) { // try to cope with OOME
2328 sizeCtl = Integer.MAX_VALUE;
2329 return;
2330 }
2331 nextTable = nextTab;
2332 transferOrigin = n;
2333 transferIndex = n;
2334 ForwardingNode<K,V> rev = new ForwardingNode<K,V>(tab);
2335 for (int k = n; k > 0;) { // progressively reveal ready slots
2336 int nextk = (k > stride) ? k - stride : 0;
2337 for (int m = nextk; m < k; ++m)
2338 nextTab[m] = rev;
2339 for (int m = n + nextk; m < n + k; ++m)
2340 nextTab[m] = rev;
2341 U.putOrderedInt(this, TRANSFERORIGIN, k = nextk);
2342 }
2343 }
2344 int nextn = nextTab.length;
2345 ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
2346 boolean advance = true;
2347 boolean finishing = false; // to ensure sweep before committing nextTab
2348 for (int i = 0, bound = 0;;) {
2349 int nextIndex, nextBound, fh; Node<K,V> f;
2350 while (advance) {
2351 if (--i >= bound || finishing)
2352 advance = false;
2353 else if ((nextIndex = transferIndex) <= transferOrigin) {
2354 i = -1;
2355 advance = false;
2356 }
2357 else if (U.compareAndSwapInt
2358 (this, TRANSFERINDEX, nextIndex,
2359 nextBound = (nextIndex > stride ?
2360 nextIndex - stride : 0))) {
2361 bound = nextBound;
2362 i = nextIndex - 1;
2363 advance = false;
2364 }
2365 }
2366 if (i < 0 || i >= n || i + n >= nextn) {
2367 if (finishing) {
2368 nextTable = null;
2369 table = nextTab;
2370 sizeCtl = (n << 1) - (n >>> 1);
2371 return;
2372 }
2373 for (int sc;;) {
2374 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, ++sc)) {
2375 if (sc != -1)
2376 return;
2377 finishing = advance = true;
2378 i = n; // recheck before commit
2379 break;
2380 }
2381 }
2382 }
2383 else if ((f = tabAt(tab, i)) == null) {
2384 if (casTabAt(tab, i, null, fwd)) {
2385 setTabAt(nextTab, i, null);
2386 setTabAt(nextTab, i + n, null);
2387 advance = true;
2388 }
2389 }
2390 else if ((fh = f.hash) == MOVED)
2391 advance = true; // already processed
2392 else {
2393 synchronized (f) {
2394 if (tabAt(tab, i) == f) {
2395 Node<K,V> ln, hn;
2396 if (fh >= 0) {
2397 int runBit = fh & n;
2398 Node<K,V> lastRun = f;
2399 for (Node<K,V> p = f.next; p != null; p = p.next) {
2400 int b = p.hash & n;
2401 if (b != runBit) {
2402 runBit = b;
2403 lastRun = p;
2404 }
2405 }
2406 if (runBit == 0) {
2407 ln = lastRun;
2408 hn = null;
2409 }
2410 else {
2411 hn = lastRun;
2412 ln = null;
2413 }
2414 for (Node<K,V> p = f; p != lastRun; p = p.next) {
2415 int ph = p.hash; K pk = p.key; V pv = p.val;
2416 if ((ph & n) == 0)
2417 ln = new Node<K,V>(ph, pk, pv, ln);
2418 else
2419 hn = new Node<K,V>(ph, pk, pv, hn);
2420 }
2421 setTabAt(nextTab, i, ln);
2422 setTabAt(nextTab, i + n, hn);
2423 setTabAt(tab, i, fwd);
2424 advance = true;
2425 }
2426 else if (f instanceof TreeBin) {
2427 TreeBin<K,V> t = (TreeBin<K,V>)f;
2428 TreeNode<K,V> lo = null, loTail = null;
2429 TreeNode<K,V> hi = null, hiTail = null;
2430 int lc = 0, hc = 0;
2431 for (Node<K,V> e = t.first; e != null; e = e.next) {
2432 int h = e.hash;
2433 TreeNode<K,V> p = new TreeNode<K,V>
2434 (h, e.key, e.val, null, null);
2435 if ((h & n) == 0) {
2436 if ((p.prev = loTail) == null)
2437 lo = p;
2438 else
2439 loTail.next = p;
2440 loTail = p;
2441 ++lc;
2442 }
2443 else {
2444 if ((p.prev = hiTail) == null)
2445 hi = p;
2446 else
2447 hiTail.next = p;
2448 hiTail = p;
2449 ++hc;
2450 }
2451 }
2452 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
2453 (hc != 0) ? new TreeBin<K,V>(lo) : t;
2454 hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
2455 (lc != 0) ? new TreeBin<K,V>(hi) : t;
2456 setTabAt(nextTab, i, ln);
2457 setTabAt(nextTab, i + n, hn);
2458 setTabAt(tab, i, fwd);
2459 advance = true;
2460 }
2461 }
2462 }
2463 }
2464 }
2465 }
2466
2467 /* ---------------- Conversion from/to TreeBins -------------- */
2468
2469 /**
2470 * Replaces all linked nodes in bin at given index unless table is
2471 * too small, in which case resizes instead.
2472 */
2473 private final void treeifyBin(Node<K,V>[] tab, int index) {
2474 Node<K,V> b; int n, sc;
2475 if (tab != null) {
2476 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) {
2477 if (tab == table && (sc = sizeCtl) >= 0 &&
2478 U.compareAndSwapInt(this, SIZECTL, sc, -2))
2479 transfer(tab, null);
2480 }
2481 else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
2482 synchronized (b) {
2483 if (tabAt(tab, index) == b) {
2484 TreeNode<K,V> hd = null, tl = null;
2485 for (Node<K,V> e = b; e != null; e = e.next) {
2486 TreeNode<K,V> p =
2487 new TreeNode<K,V>(e.hash, e.key, e.val,
2488 null, null);
2489 if ((p.prev = tl) == null)
2490 hd = p;
2491 else
2492 tl.next = p;
2493 tl = p;
2494 }
2495 setTabAt(tab, index, new TreeBin<K,V>(hd));
2496 }
2497 }
2498 }
2499 }
2500 }
2501
2502 /**
2503 * Returns a list on non-TreeNodes replacing those in given list.
2504 */
2505 static <K,V> Node<K,V> untreeify(Node<K,V> b) {
2506 Node<K,V> hd = null, tl = null;
2507 for (Node<K,V> q = b; q != null; q = q.next) {
2508 Node<K,V> p = new Node<K,V>(q.hash, q.key, q.val, null);
2509 if (tl == null)
2510 hd = p;
2511 else
2512 tl.next = p;
2513 tl = p;
2514 }
2515 return hd;
2516 }
2517
2518 /* ---------------- TreeNodes -------------- */
2519
2520 /**
2521 * Nodes for use in TreeBins
2522 */
2523 static final class TreeNode<K,V> extends Node<K,V> {
2524 TreeNode<K,V> parent; // red-black tree links
2525 TreeNode<K,V> left;
2526 TreeNode<K,V> right;
2527 TreeNode<K,V> prev; // needed to unlink next upon deletion
2528 boolean red;
2529
2530 TreeNode(int hash, K key, V val, Node<K,V> next,
2531 TreeNode<K,V> parent) {
2532 super(hash, key, val, next);
2533 this.parent = parent;
2534 }
2535
2536 Node<K,V> find(int h, Object k) {
2537 return findTreeNode(h, k, null);
2538 }
2539
2540 /**
2541 * Returns the TreeNode (or null if not found) for the given key
2542 * starting at given root.
2543 */
2544 final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {
2545 if (k != null) {
2546 TreeNode<K,V> p = this;
2547 do {
2548 int ph, dir; K pk; TreeNode<K,V> q;
2549 TreeNode<K,V> pl = p.left, pr = p.right;
2550 if ((ph = p.hash) > h)
2551 p = pl;
2552 else if (ph < h)
2553 p = pr;
2554 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2555 return p;
2556 else if (pl == null)
2557 p = pr;
2558 else if (pr == null)
2559 p = pl;
2560 else if ((kc != null ||
2561 (kc = comparableClassFor(k)) != null) &&
2562 (dir = compareComparables(kc, k, pk)) != 0)
2563 p = (dir < 0) ? pl : pr;
2564 else if ((q = pr.findTreeNode(h, k, kc)) != null)
2565 return q;
2566 else
2567 p = pl;
2568 } while (p != null);
2569 }
2570 return null;
2571 }
2572 }
2573
2574 /* ---------------- TreeBins -------------- */
2575
2576 /**
2577 * TreeNodes used at the heads of bins. TreeBins do not hold user
2578 * keys or values, but instead point to list of TreeNodes and
2579 * their root. They also maintain a parasitic read-write lock
2580 * forcing writers (who hold bin lock) to wait for readers (who do
2581 * not) to complete before tree restructuring operations.
2582 */
2583 static final class TreeBin<K,V> extends Node<K,V> {
2584 TreeNode<K,V> root;
2585 volatile TreeNode<K,V> first;
2586 volatile Thread waiter;
2587 volatile int lockState;
2588 // values for lockState
2589 static final int WRITER = 1; // set while holding write lock
2590 static final int WAITER = 2; // set when waiting for write lock
2591 static final int READER = 4; // increment value for setting read lock
2592
2593 /**
2594 * Tie-breaking utility for ordering insertions when equal
2595 * hashCodes and non-comparable. We don't require a total
2596 * order, just a consistent insertion rule to maintain
2597 * equivalence across rebalancings. Tie-breaking further than
2598 * necessary simplifies testing a bit.
2599 */
2600 static int tieBreakOrder(Object a, Object b) {
2601 int d;
2602 if (a == null || b == null ||
2603 (d = a.getClass().getName().
2604 compareTo(b.getClass().getName())) == 0)
2605 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
2606 -1 : 1);
2607 return d;
2608 }
2609
2610 /**
2611 * Creates bin with initial set of nodes headed by b.
2612 */
2613 TreeBin(TreeNode<K,V> b) {
2614 super(TREEBIN, null, null, null);
2615 this.first = b;
2616 TreeNode<K,V> r = null;
2617 for (TreeNode<K,V> x = b, next; x != null; x = next) {
2618 next = (TreeNode<K,V>)x.next;
2619 x.left = x.right = null;
2620 if (r == null) {
2621 x.parent = null;
2622 x.red = false;
2623 r = x;
2624 }
2625 else {
2626 K k = x.key;
2627 int h = x.hash;
2628 Class<?> kc = null;
2629 for (TreeNode<K,V> p = r;;) {
2630 int dir, ph;
2631 K pk = p.key;
2632 if ((ph = p.hash) > h)
2633 dir = -1;
2634 else if (ph < h)
2635 dir = 1;
2636 else if ((kc == null &&
2637 (kc = comparableClassFor(k)) == null) ||
2638 (dir = compareComparables(kc, k, pk)) == 0)
2639 dir = tieBreakOrder(k, pk);
2640 TreeNode<K,V> xp = p;
2641 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2642 x.parent = xp;
2643 if (dir <= 0)
2644 xp.left = x;
2645 else
2646 xp.right = x;
2647 r = balanceInsertion(r, x);
2648 break;
2649 }
2650 }
2651 }
2652 }
2653 this.root = r;
2654 assert checkInvariants(root);
2655 }
2656
2657 /**
2658 * Acquires write lock for tree restructuring.
2659 */
2660 private final void lockRoot() {
2661 if (!U.compareAndSwapInt(this, LOCKSTATE, 0, WRITER))
2662 contendedLock(); // offload to separate method
2663 }
2664
2665 /**
2666 * Releases write lock for tree restructuring.
2667 */
2668 private final void unlockRoot() {
2669 lockState = 0;
2670 }
2671
2672 /**
2673 * Possibly blocks awaiting root lock.
2674 */
2675 private final void contendedLock() {
2676 boolean waiting = false;
2677 for (int s;;) {
2678 if (((s = lockState) & WRITER) == 0) {
2679 if (U.compareAndSwapInt(this, LOCKSTATE, s, WRITER)) {
2680 if (waiting)
2681 waiter = null;
2682 return;
2683 }
2684 }
2685 else if ((s | WAITER) == 0) {
2686 if (U.compareAndSwapInt(this, LOCKSTATE, s, s | WAITER)) {
2687 waiting = true;
2688 waiter = Thread.currentThread();
2689 }
2690 }
2691 else if (waiting)
2692 LockSupport.park(this);
2693 }
2694 }
2695
2696 /**
2697 * Returns matching node or null if none. Tries to search
2698 * using tree comparisons from root, but continues linear
2699 * search when lock not available.
2700 */
2701 final Node<K,V> find(int h, Object k) {
2702 if (k != null) {
2703 for (Node<K,V> e = first; e != null; e = e.next) {
2704 int s; K ek;
2705 if (((s = lockState) & (WAITER|WRITER)) != 0) {
2706 if (e.hash == h &&
2707 ((ek = e.key) == k || (ek != null && k.equals(ek))))
2708 return e;
2709 }
2710 else if (U.compareAndSwapInt(this, LOCKSTATE, s,
2711 s + READER)) {
2712 TreeNode<K,V> r, p;
2713 try {
2714 p = ((r = root) == null ? null :
2715 r.findTreeNode(h, k, null));
2716 } finally {
2717 Thread w;
2718 int ls;
2719 do {} while (!U.compareAndSwapInt
2720 (this, LOCKSTATE,
2721 ls = lockState, ls - READER));
2722 if (ls == (READER|WAITER) && (w = waiter) != null)
2723 LockSupport.unpark(w);
2724 }
2725 return p;
2726 }
2727 }
2728 }
2729 return null;
2730 }
2731
2732 /**
2733 * Finds or adds a node.
2734 * @return null if added
2735 */
2736 final TreeNode<K,V> putTreeVal(int h, K k, V v) {
2737 Class<?> kc = null;
2738 boolean searched = false;
2739 for (TreeNode<K,V> p = root;;) {
2740 int dir, ph; K pk;
2741 if (p == null) {
2742 first = root = new TreeNode<K,V>(h, k, v, null, null);
2743 break;
2744 }
2745 else if ((ph = p.hash) > h)
2746 dir = -1;
2747 else if (ph < h)
2748 dir = 1;
2749 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
2750 return p;
2751 else if ((kc == null &&
2752 (kc = comparableClassFor(k)) == null) ||
2753 (dir = compareComparables(kc, k, pk)) == 0) {
2754 if (!searched) {
2755 TreeNode<K,V> q, ch;
2756 searched = true;
2757 if (((ch = p.left) != null &&
2758 (q = ch.findTreeNode(h, k, kc)) != null) ||
2759 ((ch = p.right) != null &&
2760 (q = ch.findTreeNode(h, k, kc)) != null))
2761 return q;
2762 }
2763 dir = tieBreakOrder(k, pk);
2764 }
2765
2766 TreeNode<K,V> xp = p;
2767 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2768 TreeNode<K,V> x, f = first;
2769 first = x = new TreeNode<K,V>(h, k, v, f, xp);
2770 if (f != null)
2771 f.prev = x;
2772 if (dir <= 0)
2773 xp.left = x;
2774 else
2775 xp.right = x;
2776 if (!xp.red)
2777 x.red = true;
2778 else {
2779 lockRoot();
2780 try {
2781 root = balanceInsertion(root, x);
2782 } finally {
2783 unlockRoot();
2784 }
2785 }
2786 break;
2787 }
2788 }
2789 assert checkInvariants(root);
2790 return null;
2791 }
2792
2793 /**
2794 * Removes the given node, that must be present before this
2795 * call. This is messier than typical red-black deletion code
2796 * because we cannot swap the contents of an interior node
2797 * with a leaf successor that is pinned by "next" pointers
2798 * that are accessible independently of lock. So instead we
2799 * swap the tree linkages.
2800 *
2801 * @return true if now too small, so should be untreeified
2802 */
2803 final boolean removeTreeNode(TreeNode<K,V> p) {
2804 TreeNode<K,V> next = (TreeNode<K,V>)p.next;
2805 TreeNode<K,V> pred = p.prev; // unlink traversal pointers
2806 TreeNode<K,V> r, rl;
2807 if (pred == null)
2808 first = next;
2809 else
2810 pred.next = next;
2811 if (next != null)
2812 next.prev = pred;
2813 if (first == null) {
2814 root = null;
2815 return true;
2816 }
2817 if ((r = root) == null || r.right == null || // too small
2818 (rl = r.left) == null || rl.left == null)
2819 return true;
2820 lockRoot();
2821 try {
2822 TreeNode<K,V> replacement;
2823 TreeNode<K,V> pl = p.left;
2824 TreeNode<K,V> pr = p.right;
2825 if (pl != null && pr != null) {
2826 TreeNode<K,V> s = pr, sl;
2827 while ((sl = s.left) != null) // find successor
2828 s = sl;
2829 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2830 TreeNode<K,V> sr = s.right;
2831 TreeNode<K,V> pp = p.parent;
2832 if (s == pr) { // p was s's direct parent
2833 p.parent = s;
2834 s.right = p;
2835 }
2836 else {
2837 TreeNode<K,V> sp = s.parent;
2838 if ((p.parent = sp) != null) {
2839 if (s == sp.left)
2840 sp.left = p;
2841 else
2842 sp.right = p;
2843 }
2844 if ((s.right = pr) != null)
2845 pr.parent = s;
2846 }
2847 p.left = null;
2848 if ((p.right = sr) != null)
2849 sr.parent = p;
2850 if ((s.left = pl) != null)
2851 pl.parent = s;
2852 if ((s.parent = pp) == null)
2853 r = s;
2854 else if (p == pp.left)
2855 pp.left = s;
2856 else
2857 pp.right = s;
2858 if (sr != null)
2859 replacement = sr;
2860 else
2861 replacement = p;
2862 }
2863 else if (pl != null)
2864 replacement = pl;
2865 else if (pr != null)
2866 replacement = pr;
2867 else
2868 replacement = p;
2869 if (replacement != p) {
2870 TreeNode<K,V> pp = replacement.parent = p.parent;
2871 if (pp == null)
2872 r = replacement;
2873 else if (p == pp.left)
2874 pp.left = replacement;
2875 else
2876 pp.right = replacement;
2877 p.left = p.right = p.parent = null;
2878 }
2879
2880 root = (p.red) ? r : balanceDeletion(r, replacement);
2881
2882 if (p == replacement) { // detach pointers
2883 TreeNode<K,V> pp;
2884 if ((pp = p.parent) != null) {
2885 if (p == pp.left)
2886 pp.left = null;
2887 else if (p == pp.right)
2888 pp.right = null;
2889 p.parent = null;
2890 }
2891 }
2892 } finally {
2893 unlockRoot();
2894 }
2895 assert checkInvariants(root);
2896 return false;
2897 }
2898
2899 /* ------------------------------------------------------------ */
2900 // Red-black tree methods, all adapted from CLR
2901
2902 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2903 TreeNode<K,V> p) {
2904 TreeNode<K,V> r, pp, rl;
2905 if (p != null && (r = p.right) != null) {
2906 if ((rl = p.right = r.left) != null)
2907 rl.parent = p;
2908 if ((pp = r.parent = p.parent) == null)
2909 (root = r).red = false;
2910 else if (pp.left == p)
2911 pp.left = r;
2912 else
2913 pp.right = r;
2914 r.left = p;
2915 p.parent = r;
2916 }
2917 return root;
2918 }
2919
2920 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2921 TreeNode<K,V> p) {
2922 TreeNode<K,V> l, pp, lr;
2923 if (p != null && (l = p.left) != null) {
2924 if ((lr = p.left = l.right) != null)
2925 lr.parent = p;
2926 if ((pp = l.parent = p.parent) == null)
2927 (root = l).red = false;
2928 else if (pp.right == p)
2929 pp.right = l;
2930 else
2931 pp.left = l;
2932 l.right = p;
2933 p.parent = l;
2934 }
2935 return root;
2936 }
2937
2938 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2939 TreeNode<K,V> x) {
2940 x.red = true;
2941 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2942 if ((xp = x.parent) == null) {
2943 x.red = false;
2944 return x;
2945 }
2946 else if (!xp.red || (xpp = xp.parent) == null)
2947 return root;
2948 if (xp == (xppl = xpp.left)) {
2949 if ((xppr = xpp.right) != null && xppr.red) {
2950 xppr.red = false;
2951 xp.red = false;
2952 xpp.red = true;
2953 x = xpp;
2954 }
2955 else {
2956 if (x == xp.right) {
2957 root = rotateLeft(root, x = xp);
2958 xpp = (xp = x.parent) == null ? null : xp.parent;
2959 }
2960 if (xp != null) {
2961 xp.red = false;
2962 if (xpp != null) {
2963 xpp.red = true;
2964 root = rotateRight(root, xpp);
2965 }
2966 }
2967 }
2968 }
2969 else {
2970 if (xppl != null && xppl.red) {
2971 xppl.red = false;
2972 xp.red = false;
2973 xpp.red = true;
2974 x = xpp;
2975 }
2976 else {
2977 if (x == xp.left) {
2978 root = rotateRight(root, x = xp);
2979 xpp = (xp = x.parent) == null ? null : xp.parent;
2980 }
2981 if (xp != null) {
2982 xp.red = false;
2983 if (xpp != null) {
2984 xpp.red = true;
2985 root = rotateLeft(root, xpp);
2986 }
2987 }
2988 }
2989 }
2990 }
2991 }
2992
2993 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2994 TreeNode<K,V> x) {
2995 for (TreeNode<K,V> xp, xpl, xpr;;) {
2996 if (x == null || x == root)
2997 return root;
2998 else if ((xp = x.parent) == null) {
2999 x.red = false;
3000 return x;
3001 }
3002 else if (x.red) {
3003 x.red = false;
3004 return root;
3005 }
3006 else if ((xpl = xp.left) == x) {
3007 if ((xpr = xp.right) != null && xpr.red) {
3008 xpr.red = false;
3009 xp.red = true;
3010 root = rotateLeft(root, xp);
3011 xpr = (xp = x.parent) == null ? null : xp.right;
3012 }
3013 if (xpr == null)
3014 x = xp;
3015 else {
3016 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
3017 if ((sr == null || !sr.red) &&
3018 (sl == null || !sl.red)) {
3019 xpr.red = true;
3020 x = xp;
3021 }
3022 else {
3023 if (sr == null || !sr.red) {
3024 if (sl != null)
3025 sl.red = false;
3026 xpr.red = true;
3027 root = rotateRight(root, xpr);
3028 xpr = (xp = x.parent) == null ?
3029 null : xp.right;
3030 }
3031 if (xpr != null) {
3032 xpr.red = (xp == null) ? false : xp.red;
3033 if ((sr = xpr.right) != null)
3034 sr.red = false;
3035 }
3036 if (xp != null) {
3037 xp.red = false;
3038 root = rotateLeft(root, xp);
3039 }
3040 x = root;
3041 }
3042 }
3043 }
3044 else { // symmetric
3045 if (xpl != null && xpl.red) {
3046 xpl.red = false;
3047 xp.red = true;
3048 root = rotateRight(root, xp);
3049 xpl = (xp = x.parent) == null ? null : xp.left;
3050 }
3051 if (xpl == null)
3052 x = xp;
3053 else {
3054 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
3055 if ((sl == null || !sl.red) &&
3056 (sr == null || !sr.red)) {
3057 xpl.red = true;
3058 x = xp;
3059 }
3060 else {
3061 if (sl == null || !sl.red) {
3062 if (sr != null)
3063 sr.red = false;
3064 xpl.red = true;
3065 root = rotateLeft(root, xpl);
3066 xpl = (xp = x.parent) == null ?
3067 null : xp.left;
3068 }
3069 if (xpl != null) {
3070 xpl.red = (xp == null) ? false : xp.red;
3071 if ((sl = xpl.left) != null)
3072 sl.red = false;
3073 }
3074 if (xp != null) {
3075 xp.red = false;
3076 root = rotateRight(root, xp);
3077 }
3078 x = root;
3079 }
3080 }
3081 }
3082 }
3083 }
3084
3085 /**
3086 * Recursive invariant check
3087 */
3088 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
3089 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
3090 tb = t.prev, tn = (TreeNode<K,V>)t.next;
3091 if (tb != null && tb.next != t)
3092 return false;
3093 if (tn != null && tn.prev != t)
3094 return false;
3095 if (tp != null && t != tp.left && t != tp.right)
3096 return false;
3097 if (tl != null && (tl.parent != t || tl.hash > t.hash))
3098 return false;
3099 if (tr != null && (tr.parent != t || tr.hash < t.hash))
3100 return false;
3101 if (t.red && tl != null && tl.red && tr != null && tr.red)
3102 return false;
3103 if (tl != null && !checkInvariants(tl))
3104 return false;
3105 if (tr != null && !checkInvariants(tr))
3106 return false;
3107 return true;
3108 }
3109
3110 private static final sun.misc.Unsafe U;
3111 private static final long LOCKSTATE;
3112 static {
3113 try {
3114 U = getUnsafe();
3115 Class<?> k = TreeBin.class;
3116 LOCKSTATE = U.objectFieldOffset
3117 (k.getDeclaredField("lockState"));
3118 } catch (Exception e) {
3119 throw new Error(e);
3120 }
3121 }
3122 }
3123
3124 /* ----------------Table Traversal -------------- */
3125
3126 /**
3127 * Encapsulates traversal for methods such as containsValue; also
3128 * serves as a base class for other iterators and spliterators.
3129 *
3130 * Method advance visits once each still-valid node that was
3131 * reachable upon iterator construction. It might miss some that
3132 * were added to a bin after the bin was visited, which is OK wrt
3133 * consistency guarantees. Maintaining this property in the face
3134 * of possible ongoing resizes requires a fair amount of
3135 * bookkeeping state that is difficult to optimize away amidst
3136 * volatile accesses. Even so, traversal maintains reasonable
3137 * throughput.
3138 *
3139 * Normally, iteration proceeds bin-by-bin traversing lists.
3140 * However, if the table has been resized, then all future steps
3141 * must traverse both the bin at the current index as well as at
3142 * (index + baseSize); and so on for further resizings. To
3143 * paranoically cope with potential sharing by users of iterators
3144 * across threads, iteration terminates if a bounds checks fails
3145 * for a table read.
3146 */
3147 static class Traverser<K,V> {
3148 Node<K,V>[] tab; // current table; updated if resized
3149 Node<K,V> next; // the next entry to use
3150 int index; // index of bin to use next
3151 int baseIndex; // current index of initial table
3152 int baseLimit; // index bound for initial table
3153 final int baseSize; // initial table size
3154
3155 Traverser(Node<K,V>[] tab, int size, int index, int limit) {
3156 this.tab = tab;
3157 this.baseSize = size;
3158 this.baseIndex = this.index = index;
3159 this.baseLimit = limit;
3160 this.next = null;
3161 }
3162
3163 /**
3164 * Advances if possible, returning next valid node, or null if none.
3165 */
3166 final Node<K,V> advance() {
3167 Node<K,V> e;
3168 if ((e = next) != null)
3169 e = e.next;
3170 for (;;) {
3171 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
3172 if (e != null)
3173 return next = e;
3174 if (baseIndex >= baseLimit || (t = tab) == null ||
3175 (n = t.length) <= (i = index) || i < 0)
3176 return next = null;
3177 if ((e = tabAt(t, index)) != null && e.hash < 0) {
3178 if (e instanceof ForwardingNode) {
3179 tab = ((ForwardingNode<K,V>)e).nextTable;
3180 e = null;
3181 continue;
3182 }
3183 else if (e instanceof TreeBin)
3184 e = ((TreeBin<K,V>)e).first;
3185 else
3186 e = null;
3187 }
3188 if ((index += baseSize) >= n)
3189 index = ++baseIndex; // visit upper slots if present
3190 }
3191 }
3192 }
3193
3194 /**
3195 * Base of key, value, and entry Iterators. Adds fields to
3196 * Traverser to support iterator.remove.
3197 */
3198 static class BaseIterator<K,V> extends Traverser<K,V> {
3199 final ConcurrentHashMapV8<K,V> map;
3200 Node<K,V> lastReturned;
3201 BaseIterator(Node<K,V>[] tab, int size, int index, int limit,
3202 ConcurrentHashMapV8<K,V> map) {
3203 super(tab, size, index, limit);
3204 this.map = map;
3205 advance();
3206 }
3207
3208 public final boolean hasNext() { return next != null; }
3209 public final boolean hasMoreElements() { return next != null; }
3210
3211 public final void remove() {
3212 Node<K,V> p;
3213 if ((p = lastReturned) == null)
3214 throw new IllegalStateException();
3215 lastReturned = null;
3216 map.replaceNode(p.key, null, null);
3217 }
3218 }
3219
3220 static final class KeyIterator<K,V> extends BaseIterator<K,V>
3221 implements Iterator<K>, Enumeration<K> {
3222 KeyIterator(Node<K,V>[] tab, int index, int size, int limit,
3223 ConcurrentHashMapV8<K,V> map) {
3224 super(tab, index, size, limit, map);
3225 }
3226
3227 public final K next() {
3228 Node<K,V> p;
3229 if ((p = next) == null)
3230 throw new NoSuchElementException();
3231 K k = p.key;
3232 lastReturned = p;
3233 advance();
3234 return k;
3235 }
3236
3237 public final K nextElement() { return next(); }
3238 }
3239
3240 static final class ValueIterator<K,V> extends BaseIterator<K,V>
3241 implements Iterator<V>, Enumeration<V> {
3242 ValueIterator(Node<K,V>[] tab, int index, int size, int limit,
3243 ConcurrentHashMapV8<K,V> map) {
3244 super(tab, index, size, limit, map);
3245 }
3246
3247 public final V next() {
3248 Node<K,V> p;
3249 if ((p = next) == null)
3250 throw new NoSuchElementException();
3251 V v = p.val;
3252 lastReturned = p;
3253 advance();
3254 return v;
3255 }
3256
3257 public final V nextElement() { return next(); }
3258 }
3259
3260 static final class EntryIterator<K,V> extends BaseIterator<K,V>
3261 implements Iterator<Map.Entry<K,V>> {
3262 EntryIterator(Node<K,V>[] tab, int index, int size, int limit,
3263 ConcurrentHashMapV8<K,V> map) {
3264 super(tab, index, size, limit, map);
3265 }
3266
3267 public final Map.Entry<K,V> next() {
3268 Node<K,V> p;
3269 if ((p = next) == null)
3270 throw new NoSuchElementException();
3271 K k = p.key;
3272 V v = p.val;
3273 lastReturned = p;
3274 advance();
3275 return new MapEntry<K,V>(k, v, map);
3276 }
3277 }
3278
3279 /**
3280 * Exported Entry for EntryIterator
3281 */
3282 static final class MapEntry<K,V> implements Map.Entry<K,V> {
3283 final K key; // non-null
3284 V val; // non-null
3285 final ConcurrentHashMapV8<K,V> map;
3286 MapEntry(K key, V val, ConcurrentHashMapV8<K,V> map) {
3287 this.key = key;
3288 this.val = val;
3289 this.map = map;
3290 }
3291 public K getKey() { return key; }
3292 public V getValue() { return val; }
3293 public int hashCode() { return key.hashCode() ^ val.hashCode(); }
3294 public String toString() { return key + "=" + val; }
3295
3296 public boolean equals(Object o) {
3297 Object k, v; Map.Entry<?,?> e;
3298 return ((o instanceof Map.Entry) &&
3299 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3300 (v = e.getValue()) != null &&
3301 (k == key || k.equals(key)) &&
3302 (v == val || v.equals(val)));
3303 }
3304
3305 /**
3306 * Sets our entry's value and writes through to the map. The
3307 * value to return is somewhat arbitrary here. Since we do not
3308 * necessarily track asynchronous changes, the most recent
3309 * "previous" value could be different from what we return (or
3310 * could even have been removed, in which case the put will
3311 * re-establish). We do not and cannot guarantee more.
3312 */
3313 public V setValue(V value) {
3314 if (value == null) throw new NullPointerException();
3315 V v = val;
3316 val = value;
3317 map.put(key, value);
3318 return v;
3319 }
3320 }
3321
3322 static final class KeySpliterator<K,V> extends Traverser<K,V>
3323 implements ConcurrentHashMapSpliterator<K> {
3324 long est; // size estimate
3325 KeySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3326 long est) {
3327 super(tab, size, index, limit);
3328 this.est = est;
3329 }
3330
3331 public ConcurrentHashMapSpliterator<K> trySplit() {
3332 int i, f, h;
3333 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3334 new KeySpliterator<K,V>(tab, baseSize, baseLimit = h,
3335 f, est >>>= 1);
3336 }
3337
3338 public void forEachRemaining(Action<? super K> action) {
3339 if (action == null) throw new NullPointerException();
3340 for (Node<K,V> p; (p = advance()) != null;)
3341 action.apply(p.key);
3342 }
3343
3344 public boolean tryAdvance(Action<? super K> action) {
3345 if (action == null) throw new NullPointerException();
3346 Node<K,V> p;
3347 if ((p = advance()) == null)
3348 return false;
3349 action.apply(p.key);
3350 return true;
3351 }
3352
3353 public long estimateSize() { return est; }
3354
3355 }
3356
3357 static final class ValueSpliterator<K,V> extends Traverser<K,V>
3358 implements ConcurrentHashMapSpliterator<V> {
3359 long est; // size estimate
3360 ValueSpliterator(Node<K,V>[] tab, int size, int index, int limit,
3361 long est) {
3362 super(tab, size, index, limit);
3363 this.est = est;
3364 }
3365
3366 public ConcurrentHashMapSpliterator<V> trySplit() {
3367 int i, f, h;
3368 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3369 new ValueSpliterator<K,V>(tab, baseSize, baseLimit = h,
3370 f, est >>>= 1);
3371 }
3372
3373 public void forEachRemaining(Action<? super V> action) {
3374 if (action == null) throw new NullPointerException();
3375 for (Node<K,V> p; (p = advance()) != null;)
3376 action.apply(p.val);
3377 }
3378
3379 public boolean tryAdvance(Action<? super V> action) {
3380 if (action == null) throw new NullPointerException();
3381 Node<K,V> p;
3382 if ((p = advance()) == null)
3383 return false;
3384 action.apply(p.val);
3385 return true;
3386 }
3387
3388 public long estimateSize() { return est; }
3389
3390 }
3391
3392 static final class EntrySpliterator<K,V> extends Traverser<K,V>
3393 implements ConcurrentHashMapSpliterator<Map.Entry<K,V>> {
3394 final ConcurrentHashMapV8<K,V> map; // To export MapEntry
3395 long est; // size estimate
3396 EntrySpliterator(Node<K,V>[] tab, int size, int index, int limit,
3397 long est, ConcurrentHashMapV8<K,V> map) {
3398 super(tab, size, index, limit);
3399 this.map = map;
3400 this.est = est;
3401 }
3402
3403 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> trySplit() {
3404 int i, f, h;
3405 return (h = ((i = baseIndex) + (f = baseLimit)) >>> 1) <= i ? null :
3406 new EntrySpliterator<K,V>(tab, baseSize, baseLimit = h,
3407 f, est >>>= 1, map);
3408 }
3409
3410 public void forEachRemaining(Action<? super Map.Entry<K,V>> action) {
3411 if (action == null) throw new NullPointerException();
3412 for (Node<K,V> p; (p = advance()) != null; )
3413 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3414 }
3415
3416 public boolean tryAdvance(Action<? super Map.Entry<K,V>> action) {
3417 if (action == null) throw new NullPointerException();
3418 Node<K,V> p;
3419 if ((p = advance()) == null)
3420 return false;
3421 action.apply(new MapEntry<K,V>(p.key, p.val, map));
3422 return true;
3423 }
3424
3425 public long estimateSize() { return est; }
3426
3427 }
3428
3429 // Parallel bulk operations
3430
3431 /**
3432 * Computes initial batch value for bulk tasks. The returned value
3433 * is approximately exp2 of the number of times (minus one) to
3434 * split task by two before executing leaf action. This value is
3435 * faster to compute and more convenient to use as a guide to
3436 * splitting than is the depth, since it is used while dividing by
3437 * two anyway.
3438 */
3439 final int batchFor(long b) {
3440 long n;
3441 if (b == Long.MAX_VALUE || (n = sumCount()) <= 1L || n < b)
3442 return 0;
3443 int sp = ForkJoinPool.getCommonPoolParallelism() << 2; // slack of 4
3444 return (b <= 0L || (n /= b) >= sp) ? sp : (int)n;
3445 }
3446
3447 /**
3448 * Performs the given action for each (key, value).
3449 *
3450 * @param parallelismThreshold the (estimated) number of elements
3451 * needed for this operation to be executed in parallel
3452 * @param action the action
3453 * @since 1.8
3454 */
3455 public void forEach(long parallelismThreshold,
3456 BiAction<? super K,? super V> action) {
3457 if (action == null) throw new NullPointerException();
3458 new ForEachMappingTask<K,V>
3459 (null, batchFor(parallelismThreshold), 0, 0, table,
3460 action).invoke();
3461 }
3462
3463 /**
3464 * Performs the given action for each non-null transformation
3465 * of each (key, value).
3466 *
3467 * @param parallelismThreshold the (estimated) number of elements
3468 * needed for this operation to be executed in parallel
3469 * @param transformer a function returning the transformation
3470 * for an element, or null if there is no transformation (in
3471 * which case the action is not applied)
3472 * @param action the action
3473 * @since 1.8
3474 */
3475 public <U> void forEach(long parallelismThreshold,
3476 BiFun<? super K, ? super V, ? extends U> transformer,
3477 Action<? super U> action) {
3478 if (transformer == null || action == null)
3479 throw new NullPointerException();
3480 new ForEachTransformedMappingTask<K,V,U>
3481 (null, batchFor(parallelismThreshold), 0, 0, table,
3482 transformer, action).invoke();
3483 }
3484
3485 /**
3486 * Returns a non-null result from applying the given search
3487 * function on each (key, value), or null if none. Upon
3488 * success, further element processing is suppressed and the
3489 * results of any other parallel invocations of the search
3490 * function are ignored.
3491 *
3492 * @param parallelismThreshold the (estimated) number of elements
3493 * needed for this operation to be executed in parallel
3494 * @param searchFunction a function returning a non-null
3495 * result on success, else null
3496 * @return a non-null result from applying the given search
3497 * function on each (key, value), or null if none
3498 * @since 1.8
3499 */
3500 public <U> U search(long parallelismThreshold,
3501 BiFun<? super K, ? super V, ? extends U> searchFunction) {
3502 if (searchFunction == null) throw new NullPointerException();
3503 return new SearchMappingsTask<K,V,U>
3504 (null, batchFor(parallelismThreshold), 0, 0, table,
3505 searchFunction, new AtomicReference<U>()).invoke();
3506 }
3507
3508 /**
3509 * Returns the result of accumulating the given transformation
3510 * of all (key, value) pairs using the given reducer to
3511 * combine values, or null if none.
3512 *
3513 * @param parallelismThreshold the (estimated) number of elements
3514 * needed for this operation to be executed in parallel
3515 * @param transformer a function returning the transformation
3516 * for an element, or null if there is no transformation (in
3517 * which case it is not combined)
3518 * @param reducer a commutative associative combining function
3519 * @return the result of accumulating the given transformation
3520 * of all (key, value) pairs
3521 * @since 1.8
3522 */
3523 public <U> U reduce(long parallelismThreshold,
3524 BiFun<? super K, ? super V, ? extends U> transformer,
3525 BiFun<? super U, ? super U, ? extends U> reducer) {
3526 if (transformer == null || reducer == null)
3527 throw new NullPointerException();
3528 return new MapReduceMappingsTask<K,V,U>
3529 (null, batchFor(parallelismThreshold), 0, 0, table,
3530 null, transformer, reducer).invoke();
3531 }
3532
3533 /**
3534 * Returns the result of accumulating the given transformation
3535 * of all (key, value) pairs using the given reducer to
3536 * combine values, and the given basis as an identity value.
3537 *
3538 * @param parallelismThreshold the (estimated) number of elements
3539 * needed for this operation to be executed in parallel
3540 * @param transformer a function returning the transformation
3541 * for an element
3542 * @param basis the identity (initial default value) for the reduction
3543 * @param reducer a commutative associative combining function
3544 * @return the result of accumulating the given transformation
3545 * of all (key, value) pairs
3546 * @since 1.8
3547 */
3548 public double reduceToDouble(long parallelismThreshold,
3549 ObjectByObjectToDouble<? super K, ? super V> transformer,
3550 double basis,
3551 DoubleByDoubleToDouble reducer) {
3552 if (transformer == null || reducer == null)
3553 throw new NullPointerException();
3554 return new MapReduceMappingsToDoubleTask<K,V>
3555 (null, batchFor(parallelismThreshold), 0, 0, table,
3556 null, transformer, basis, reducer).invoke();
3557 }
3558
3559 /**
3560 * Returns the result of accumulating the given transformation
3561 * of all (key, value) pairs using the given reducer to
3562 * combine values, and the given basis as an identity value.
3563 *
3564 * @param parallelismThreshold the (estimated) number of elements
3565 * needed for this operation to be executed in parallel
3566 * @param transformer a function returning the transformation
3567 * for an element
3568 * @param basis the identity (initial default value) for the reduction
3569 * @param reducer a commutative associative combining function
3570 * @return the result of accumulating the given transformation
3571 * of all (key, value) pairs
3572 * @since 1.8
3573 */
3574 public long reduceToLong(long parallelismThreshold,
3575 ObjectByObjectToLong<? super K, ? super V> transformer,
3576 long basis,
3577 LongByLongToLong reducer) {
3578 if (transformer == null || reducer == null)
3579 throw new NullPointerException();
3580 return new MapReduceMappingsToLongTask<K,V>
3581 (null, batchFor(parallelismThreshold), 0, 0, table,
3582 null, transformer, basis, reducer).invoke();
3583 }
3584
3585 /**
3586 * Returns the result of accumulating the given transformation
3587 * of all (key, value) pairs using the given reducer to
3588 * combine values, and the given basis as an identity value.
3589 *
3590 * @param parallelismThreshold the (estimated) number of elements
3591 * needed for this operation to be executed in parallel
3592 * @param transformer a function returning the transformation
3593 * for an element
3594 * @param basis the identity (initial default value) for the reduction
3595 * @param reducer a commutative associative combining function
3596 * @return the result of accumulating the given transformation
3597 * of all (key, value) pairs
3598 * @since 1.8
3599 */
3600 public int reduceToInt(long parallelismThreshold,
3601 ObjectByObjectToInt<? super K, ? super V> transformer,
3602 int basis,
3603 IntByIntToInt reducer) {
3604 if (transformer == null || reducer == null)
3605 throw new NullPointerException();
3606 return new MapReduceMappingsToIntTask<K,V>
3607 (null, batchFor(parallelismThreshold), 0, 0, table,
3608 null, transformer, basis, reducer).invoke();
3609 }
3610
3611 /**
3612 * Performs the given action for each key.
3613 *
3614 * @param parallelismThreshold the (estimated) number of elements
3615 * needed for this operation to be executed in parallel
3616 * @param action the action
3617 * @since 1.8
3618 */
3619 public void forEachKey(long parallelismThreshold,
3620 Action<? super K> action) {
3621 if (action == null) throw new NullPointerException();
3622 new ForEachKeyTask<K,V>
3623 (null, batchFor(parallelismThreshold), 0, 0, table,
3624 action).invoke();
3625 }
3626
3627 /**
3628 * Performs the given action for each non-null transformation
3629 * of each key.
3630 *
3631 * @param parallelismThreshold the (estimated) number of elements
3632 * needed for this operation to be executed in parallel
3633 * @param transformer a function returning the transformation
3634 * for an element, or null if there is no transformation (in
3635 * which case the action is not applied)
3636 * @param action the action
3637 * @since 1.8
3638 */
3639 public <U> void forEachKey(long parallelismThreshold,
3640 Fun<? super K, ? extends U> transformer,
3641 Action<? super U> action) {
3642 if (transformer == null || action == null)
3643 throw new NullPointerException();
3644 new ForEachTransformedKeyTask<K,V,U>
3645 (null, batchFor(parallelismThreshold), 0, 0, table,
3646 transformer, action).invoke();
3647 }
3648
3649 /**
3650 * Returns a non-null result from applying the given search
3651 * function on each key, or null if none. Upon success,
3652 * further element processing is suppressed and the results of
3653 * any other parallel invocations of the search function are
3654 * ignored.
3655 *
3656 * @param parallelismThreshold the (estimated) number of elements
3657 * needed for this operation to be executed in parallel
3658 * @param searchFunction a function returning a non-null
3659 * result on success, else null
3660 * @return a non-null result from applying the given search
3661 * function on each key, or null if none
3662 * @since 1.8
3663 */
3664 public <U> U searchKeys(long parallelismThreshold,
3665 Fun<? super K, ? extends U> searchFunction) {
3666 if (searchFunction == null) throw new NullPointerException();
3667 return new SearchKeysTask<K,V,U>
3668 (null, batchFor(parallelismThreshold), 0, 0, table,
3669 searchFunction, new AtomicReference<U>()).invoke();
3670 }
3671
3672 /**
3673 * Returns the result of accumulating all keys using the given
3674 * reducer to combine values, or null if none.
3675 *
3676 * @param parallelismThreshold the (estimated) number of elements
3677 * needed for this operation to be executed in parallel
3678 * @param reducer a commutative associative combining function
3679 * @return the result of accumulating all keys using the given
3680 * reducer to combine values, or null if none
3681 * @since 1.8
3682 */
3683 public K reduceKeys(long parallelismThreshold,
3684 BiFun<? super K, ? super K, ? extends K> reducer) {
3685 if (reducer == null) throw new NullPointerException();
3686 return new ReduceKeysTask<K,V>
3687 (null, batchFor(parallelismThreshold), 0, 0, table,
3688 null, reducer).invoke();
3689 }
3690
3691 /**
3692 * Returns the result of accumulating the given transformation
3693 * of all keys using the given reducer to combine values, or
3694 * null if none.
3695 *
3696 * @param parallelismThreshold the (estimated) number of elements
3697 * needed for this operation to be executed in parallel
3698 * @param transformer a function returning the transformation
3699 * for an element, or null if there is no transformation (in
3700 * which case it is not combined)
3701 * @param reducer a commutative associative combining function
3702 * @return the result of accumulating the given transformation
3703 * of all keys
3704 * @since 1.8
3705 */
3706 public <U> U reduceKeys(long parallelismThreshold,
3707 Fun<? super K, ? extends U> transformer,
3708 BiFun<? super U, ? super U, ? extends U> reducer) {
3709 if (transformer == null || reducer == null)
3710 throw new NullPointerException();
3711 return new MapReduceKeysTask<K,V,U>
3712 (null, batchFor(parallelismThreshold), 0, 0, table,
3713 null, transformer, reducer).invoke();
3714 }
3715
3716 /**
3717 * Returns the result of accumulating the given transformation
3718 * of all keys using the given reducer to combine values, and
3719 * the given basis as an identity value.
3720 *
3721 * @param parallelismThreshold the (estimated) number of elements
3722 * needed for this operation to be executed in parallel
3723 * @param transformer a function returning the transformation
3724 * for an element
3725 * @param basis the identity (initial default value) for the reduction
3726 * @param reducer a commutative associative combining function
3727 * @return the result of accumulating the given transformation
3728 * of all keys
3729 * @since 1.8
3730 */
3731 public double reduceKeysToDouble(long parallelismThreshold,
3732 ObjectToDouble<? super K> transformer,
3733 double basis,
3734 DoubleByDoubleToDouble reducer) {
3735 if (transformer == null || reducer == null)
3736 throw new NullPointerException();
3737 return new MapReduceKeysToDoubleTask<K,V>
3738 (null, batchFor(parallelismThreshold), 0, 0, table,
3739 null, transformer, basis, reducer).invoke();
3740 }
3741
3742 /**
3743 * Returns the result of accumulating the given transformation
3744 * of all keys using the given reducer to combine values, and
3745 * the given basis as an identity value.
3746 *
3747 * @param parallelismThreshold the (estimated) number of elements
3748 * needed for this operation to be executed in parallel
3749 * @param transformer a function returning the transformation
3750 * for an element
3751 * @param basis the identity (initial default value) for the reduction
3752 * @param reducer a commutative associative combining function
3753 * @return the result of accumulating the given transformation
3754 * of all keys
3755 * @since 1.8
3756 */
3757 public long reduceKeysToLong(long parallelismThreshold,
3758 ObjectToLong<? super K> transformer,
3759 long basis,
3760 LongByLongToLong reducer) {
3761 if (transformer == null || reducer == null)
3762 throw new NullPointerException();
3763 return new MapReduceKeysToLongTask<K,V>
3764 (null, batchFor(parallelismThreshold), 0, 0, table,
3765 null, transformer, basis, reducer).invoke();
3766 }
3767
3768 /**
3769 * Returns the result of accumulating the given transformation
3770 * of all keys using the given reducer to combine values, and
3771 * the given basis as an identity value.
3772 *
3773 * @param parallelismThreshold the (estimated) number of elements
3774 * needed for this operation to be executed in parallel
3775 * @param transformer a function returning the transformation
3776 * for an element
3777 * @param basis the identity (initial default value) for the reduction
3778 * @param reducer a commutative associative combining function
3779 * @return the result of accumulating the given transformation
3780 * of all keys
3781 * @since 1.8
3782 */
3783 public int reduceKeysToInt(long parallelismThreshold,
3784 ObjectToInt<? super K> transformer,
3785 int basis,
3786 IntByIntToInt reducer) {
3787 if (transformer == null || reducer == null)
3788 throw new NullPointerException();
3789 return new MapReduceKeysToIntTask<K,V>
3790 (null, batchFor(parallelismThreshold), 0, 0, table,
3791 null, transformer, basis, reducer).invoke();
3792 }
3793
3794 /**
3795 * Performs the given action for each value.
3796 *
3797 * @param parallelismThreshold the (estimated) number of elements
3798 * needed for this operation to be executed in parallel
3799 * @param action the action
3800 * @since 1.8
3801 */
3802 public void forEachValue(long parallelismThreshold,
3803 Action<? super V> action) {
3804 if (action == null)
3805 throw new NullPointerException();
3806 new ForEachValueTask<K,V>
3807 (null, batchFor(parallelismThreshold), 0, 0, table,
3808 action).invoke();
3809 }
3810
3811 /**
3812 * Performs the given action for each non-null transformation
3813 * of each value.
3814 *
3815 * @param parallelismThreshold the (estimated) number of elements
3816 * needed for this operation to be executed in parallel
3817 * @param transformer a function returning the transformation
3818 * for an element, or null if there is no transformation (in
3819 * which case the action is not applied)
3820 * @param action the action
3821 * @since 1.8
3822 */
3823 public <U> void forEachValue(long parallelismThreshold,
3824 Fun<? super V, ? extends U> transformer,
3825 Action<? super U> action) {
3826 if (transformer == null || action == null)
3827 throw new NullPointerException();
3828 new ForEachTransformedValueTask<K,V,U>
3829 (null, batchFor(parallelismThreshold), 0, 0, table,
3830 transformer, action).invoke();
3831 }
3832
3833 /**
3834 * Returns a non-null result from applying the given search
3835 * function on each value, or null if none. Upon success,
3836 * further element processing is suppressed and the results of
3837 * any other parallel invocations of the search function are
3838 * ignored.
3839 *
3840 * @param parallelismThreshold the (estimated) number of elements
3841 * needed for this operation to be executed in parallel
3842 * @param searchFunction a function returning a non-null
3843 * result on success, else null
3844 * @return a non-null result from applying the given search
3845 * function on each value, or null if none
3846 * @since 1.8
3847 */
3848 public <U> U searchValues(long parallelismThreshold,
3849 Fun<? super V, ? extends U> searchFunction) {
3850 if (searchFunction == null) throw new NullPointerException();
3851 return new SearchValuesTask<K,V,U>
3852 (null, batchFor(parallelismThreshold), 0, 0, table,
3853 searchFunction, new AtomicReference<U>()).invoke();
3854 }
3855
3856 /**
3857 * Returns the result of accumulating all values using the
3858 * given reducer to combine values, or null if none.
3859 *
3860 * @param parallelismThreshold the (estimated) number of elements
3861 * needed for this operation to be executed in parallel
3862 * @param reducer a commutative associative combining function
3863 * @return the result of accumulating all values
3864 * @since 1.8
3865 */
3866 public V reduceValues(long parallelismThreshold,
3867 BiFun<? super V, ? super V, ? extends V> reducer) {
3868 if (reducer == null) throw new NullPointerException();
3869 return new ReduceValuesTask<K,V>
3870 (null, batchFor(parallelismThreshold), 0, 0, table,
3871 null, reducer).invoke();
3872 }
3873
3874 /**
3875 * Returns the result of accumulating the given transformation
3876 * of all values using the given reducer to combine values, or
3877 * null if none.
3878 *
3879 * @param parallelismThreshold the (estimated) number of elements
3880 * needed for this operation to be executed in parallel
3881 * @param transformer a function returning the transformation
3882 * for an element, or null if there is no transformation (in
3883 * which case it is not combined)
3884 * @param reducer a commutative associative combining function
3885 * @return the result of accumulating the given transformation
3886 * of all values
3887 * @since 1.8
3888 */
3889 public <U> U reduceValues(long parallelismThreshold,
3890 Fun<? super V, ? extends U> transformer,
3891 BiFun<? super U, ? super U, ? extends U> reducer) {
3892 if (transformer == null || reducer == null)
3893 throw new NullPointerException();
3894 return new MapReduceValuesTask<K,V,U>
3895 (null, batchFor(parallelismThreshold), 0, 0, table,
3896 null, transformer, reducer).invoke();
3897 }
3898
3899 /**
3900 * Returns the result of accumulating the given transformation
3901 * of all values using the given reducer to combine values,
3902 * and the given basis as an identity value.
3903 *
3904 * @param parallelismThreshold the (estimated) number of elements
3905 * needed for this operation to be executed in parallel
3906 * @param transformer a function returning the transformation
3907 * for an element
3908 * @param basis the identity (initial default value) for the reduction
3909 * @param reducer a commutative associative combining function
3910 * @return the result of accumulating the given transformation
3911 * of all values
3912 * @since 1.8
3913 */
3914 public double reduceValuesToDouble(long parallelismThreshold,
3915 ObjectToDouble<? super V> transformer,
3916 double basis,
3917 DoubleByDoubleToDouble reducer) {
3918 if (transformer == null || reducer == null)
3919 throw new NullPointerException();
3920 return new MapReduceValuesToDoubleTask<K,V>
3921 (null, batchFor(parallelismThreshold), 0, 0, table,
3922 null, transformer, basis, reducer).invoke();
3923 }
3924
3925 /**
3926 * Returns the result of accumulating the given transformation
3927 * of all values using the given reducer to combine values,
3928 * and the given basis as an identity value.
3929 *
3930 * @param parallelismThreshold the (estimated) number of elements
3931 * needed for this operation to be executed in parallel
3932 * @param transformer a function returning the transformation
3933 * for an element
3934 * @param basis the identity (initial default value) for the reduction
3935 * @param reducer a commutative associative combining function
3936 * @return the result of accumulating the given transformation
3937 * of all values
3938 * @since 1.8
3939 */
3940 public long reduceValuesToLong(long parallelismThreshold,
3941 ObjectToLong<? super V> transformer,
3942 long basis,
3943 LongByLongToLong reducer) {
3944 if (transformer == null || reducer == null)
3945 throw new NullPointerException();
3946 return new MapReduceValuesToLongTask<K,V>
3947 (null, batchFor(parallelismThreshold), 0, 0, table,
3948 null, transformer, basis, reducer).invoke();
3949 }
3950
3951 /**
3952 * Returns the result of accumulating the given transformation
3953 * of all values using the given reducer to combine values,
3954 * and the given basis as an identity value.
3955 *
3956 * @param parallelismThreshold the (estimated) number of elements
3957 * needed for this operation to be executed in parallel
3958 * @param transformer a function returning the transformation
3959 * for an element
3960 * @param basis the identity (initial default value) for the reduction
3961 * @param reducer a commutative associative combining function
3962 * @return the result of accumulating the given transformation
3963 * of all values
3964 * @since 1.8
3965 */
3966 public int reduceValuesToInt(long parallelismThreshold,
3967 ObjectToInt<? super V> transformer,
3968 int basis,
3969 IntByIntToInt reducer) {
3970 if (transformer == null || reducer == null)
3971 throw new NullPointerException();
3972 return new MapReduceValuesToIntTask<K,V>
3973 (null, batchFor(parallelismThreshold), 0, 0, table,
3974 null, transformer, basis, reducer).invoke();
3975 }
3976
3977 /**
3978 * Performs the given action for each entry.
3979 *
3980 * @param parallelismThreshold the (estimated) number of elements
3981 * needed for this operation to be executed in parallel
3982 * @param action the action
3983 * @since 1.8
3984 */
3985 public void forEachEntry(long parallelismThreshold,
3986 Action<? super Map.Entry<K,V>> action) {
3987 if (action == null) throw new NullPointerException();
3988 new ForEachEntryTask<K,V>(null, batchFor(parallelismThreshold), 0, 0, table,
3989 action).invoke();
3990 }
3991
3992 /**
3993 * Performs the given action for each non-null transformation
3994 * of each entry.
3995 *
3996 * @param parallelismThreshold the (estimated) number of elements
3997 * needed for this operation to be executed in parallel
3998 * @param transformer a function returning the transformation
3999 * for an element, or null if there is no transformation (in
4000 * which case the action is not applied)
4001 * @param action the action
4002 * @since 1.8
4003 */
4004 public <U> void forEachEntry(long parallelismThreshold,
4005 Fun<Map.Entry<K,V>, ? extends U> transformer,
4006 Action<? super U> action) {
4007 if (transformer == null || action == null)
4008 throw new NullPointerException();
4009 new ForEachTransformedEntryTask<K,V,U>
4010 (null, batchFor(parallelismThreshold), 0, 0, table,
4011 transformer, action).invoke();
4012 }
4013
4014 /**
4015 * Returns a non-null result from applying the given search
4016 * function on each entry, or null if none. Upon success,
4017 * further element processing is suppressed and the results of
4018 * any other parallel invocations of the search function are
4019 * ignored.
4020 *
4021 * @param parallelismThreshold the (estimated) number of elements
4022 * needed for this operation to be executed in parallel
4023 * @param searchFunction a function returning a non-null
4024 * result on success, else null
4025 * @return a non-null result from applying the given search
4026 * function on each entry, or null if none
4027 * @since 1.8
4028 */
4029 public <U> U searchEntries(long parallelismThreshold,
4030 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4031 if (searchFunction == null) throw new NullPointerException();
4032 return new SearchEntriesTask<K,V,U>
4033 (null, batchFor(parallelismThreshold), 0, 0, table,
4034 searchFunction, new AtomicReference<U>()).invoke();
4035 }
4036
4037 /**
4038 * Returns the result of accumulating all entries using the
4039 * given reducer to combine values, or null if none.
4040 *
4041 * @param parallelismThreshold the (estimated) number of elements
4042 * needed for this operation to be executed in parallel
4043 * @param reducer a commutative associative combining function
4044 * @return the result of accumulating all entries
4045 * @since 1.8
4046 */
4047 public Map.Entry<K,V> reduceEntries(long parallelismThreshold,
4048 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4049 if (reducer == null) throw new NullPointerException();
4050 return new ReduceEntriesTask<K,V>
4051 (null, batchFor(parallelismThreshold), 0, 0, table,
4052 null, reducer).invoke();
4053 }
4054
4055 /**
4056 * Returns the result of accumulating the given transformation
4057 * of all entries using the given reducer to combine values,
4058 * or null if none.
4059 *
4060 * @param parallelismThreshold the (estimated) number of elements
4061 * needed for this operation to be executed in parallel
4062 * @param transformer a function returning the transformation
4063 * for an element, or null if there is no transformation (in
4064 * which case it is not combined)
4065 * @param reducer a commutative associative combining function
4066 * @return the result of accumulating the given transformation
4067 * of all entries
4068 * @since 1.8
4069 */
4070 public <U> U reduceEntries(long parallelismThreshold,
4071 Fun<Map.Entry<K,V>, ? extends U> transformer,
4072 BiFun<? super U, ? super U, ? extends U> reducer) {
4073 if (transformer == null || reducer == null)
4074 throw new NullPointerException();
4075 return new MapReduceEntriesTask<K,V,U>
4076 (null, batchFor(parallelismThreshold), 0, 0, table,
4077 null, transformer, reducer).invoke();
4078 }
4079
4080 /**
4081 * Returns the result of accumulating the given transformation
4082 * of all entries using the given reducer to combine values,
4083 * and the given basis as an identity value.
4084 *
4085 * @param parallelismThreshold the (estimated) number of elements
4086 * needed for this operation to be executed in parallel
4087 * @param transformer a function returning the transformation
4088 * for an element
4089 * @param basis the identity (initial default value) for the reduction
4090 * @param reducer a commutative associative combining function
4091 * @return the result of accumulating the given transformation
4092 * of all entries
4093 * @since 1.8
4094 */
4095 public double reduceEntriesToDouble(long parallelismThreshold,
4096 ObjectToDouble<Map.Entry<K,V>> transformer,
4097 double basis,
4098 DoubleByDoubleToDouble reducer) {
4099 if (transformer == null || reducer == null)
4100 throw new NullPointerException();
4101 return new MapReduceEntriesToDoubleTask<K,V>
4102 (null, batchFor(parallelismThreshold), 0, 0, table,
4103 null, transformer, basis, reducer).invoke();
4104 }
4105
4106 /**
4107 * Returns the result of accumulating the given transformation
4108 * of all entries using the given reducer to combine values,
4109 * and the given basis as an identity value.
4110 *
4111 * @param parallelismThreshold the (estimated) number of elements
4112 * needed for this operation to be executed in parallel
4113 * @param transformer a function returning the transformation
4114 * for an element
4115 * @param basis the identity (initial default value) for the reduction
4116 * @param reducer a commutative associative combining function
4117 * @return the result of accumulating the given transformation
4118 * of all entries
4119 * @since 1.8
4120 */
4121 public long reduceEntriesToLong(long parallelismThreshold,
4122 ObjectToLong<Map.Entry<K,V>> transformer,
4123 long basis,
4124 LongByLongToLong reducer) {
4125 if (transformer == null || reducer == null)
4126 throw new NullPointerException();
4127 return new MapReduceEntriesToLongTask<K,V>
4128 (null, batchFor(parallelismThreshold), 0, 0, table,
4129 null, transformer, basis, reducer).invoke();
4130 }
4131
4132 /**
4133 * Returns the result of accumulating the given transformation
4134 * of all entries using the given reducer to combine values,
4135 * and the given basis as an identity value.
4136 *
4137 * @param parallelismThreshold the (estimated) number of elements
4138 * needed for this operation to be executed in parallel
4139 * @param transformer a function returning the transformation
4140 * for an element
4141 * @param basis the identity (initial default value) for the reduction
4142 * @param reducer a commutative associative combining function
4143 * @return the result of accumulating the given transformation
4144 * of all entries
4145 * @since 1.8
4146 */
4147 public int reduceEntriesToInt(long parallelismThreshold,
4148 ObjectToInt<Map.Entry<K,V>> transformer,
4149 int basis,
4150 IntByIntToInt reducer) {
4151 if (transformer == null || reducer == null)
4152 throw new NullPointerException();
4153 return new MapReduceEntriesToIntTask<K,V>
4154 (null, batchFor(parallelismThreshold), 0, 0, table,
4155 null, transformer, basis, reducer).invoke();
4156 }
4157
4158
4159 /* ----------------Views -------------- */
4160
4161 /**
4162 * Base class for views.
4163 */
4164 abstract static class CollectionView<K,V,E>
4165 implements Collection<E>, java.io.Serializable {
4166 private static final long serialVersionUID = 7249069246763182397L;
4167 final ConcurrentHashMapV8<K,V> map;
4168 CollectionView(ConcurrentHashMapV8<K,V> map) { this.map = map; }
4169
4170 /**
4171 * Returns the map backing this view.
4172 *
4173 * @return the map backing this view
4174 */
4175 public ConcurrentHashMapV8<K,V> getMap() { return map; }
4176
4177 /**
4178 * Removes all of the elements from this view, by removing all
4179 * the mappings from the map backing this view.
4180 */
4181 public final void clear() { map.clear(); }
4182 public final int size() { return map.size(); }
4183 public final boolean isEmpty() { return map.isEmpty(); }
4184
4185 // implementations below rely on concrete classes supplying these
4186 // abstract methods
4187 /**
4188 * Returns a "weakly consistent" iterator that will never
4189 * throw {@link ConcurrentModificationException}, and
4190 * guarantees to traverse elements as they existed upon
4191 * construction of the iterator, and may (but is not
4192 * guaranteed to) reflect any modifications subsequent to
4193 * construction.
4194 */
4195 public abstract Iterator<E> iterator();
4196 public abstract boolean contains(Object o);
4197 public abstract boolean remove(Object o);
4198
4199 private static final String oomeMsg = "Required array size too large";
4200
4201 public final Object[] toArray() {
4202 long sz = map.mappingCount();
4203 if (sz > MAX_ARRAY_SIZE)
4204 throw new OutOfMemoryError(oomeMsg);
4205 int n = (int)sz;
4206 Object[] r = new Object[n];
4207 int i = 0;
4208 for (E e : this) {
4209 if (i == n) {
4210 if (n >= MAX_ARRAY_SIZE)
4211 throw new OutOfMemoryError(oomeMsg);
4212 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4213 n = MAX_ARRAY_SIZE;
4214 else
4215 n += (n >>> 1) + 1;
4216 r = Arrays.copyOf(r, n);
4217 }
4218 r[i++] = e;
4219 }
4220 return (i == n) ? r : Arrays.copyOf(r, i);
4221 }
4222
4223 @SuppressWarnings("unchecked")
4224 public final <T> T[] toArray(T[] a) {
4225 long sz = map.mappingCount();
4226 if (sz > MAX_ARRAY_SIZE)
4227 throw new OutOfMemoryError(oomeMsg);
4228 int m = (int)sz;
4229 T[] r = (a.length >= m) ? a :
4230 (T[])java.lang.reflect.Array
4231 .newInstance(a.getClass().getComponentType(), m);
4232 int n = r.length;
4233 int i = 0;
4234 for (E e : this) {
4235 if (i == n) {
4236 if (n >= MAX_ARRAY_SIZE)
4237 throw new OutOfMemoryError(oomeMsg);
4238 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
4239 n = MAX_ARRAY_SIZE;
4240 else
4241 n += (n >>> 1) + 1;
4242 r = Arrays.copyOf(r, n);
4243 }
4244 r[i++] = (T)e;
4245 }
4246 if (a == r && i < n) {
4247 r[i] = null; // null-terminate
4248 return r;
4249 }
4250 return (i == n) ? r : Arrays.copyOf(r, i);
4251 }
4252
4253 /**
4254 * Returns a string representation of this collection.
4255 * The string representation consists of the string representations
4256 * of the collection's elements in the order they are returned by
4257 * its iterator, enclosed in square brackets ({@code "[]"}).
4258 * Adjacent elements are separated by the characters {@code ", "}
4259 * (comma and space). Elements are converted to strings as by
4260 * {@link String#valueOf(Object)}.
4261 *
4262 * @return a string representation of this collection
4263 */
4264 public final String toString() {
4265 StringBuilder sb = new StringBuilder();
4266 sb.append('[');
4267 Iterator<E> it = iterator();
4268 if (it.hasNext()) {
4269 for (;;) {
4270 Object e = it.next();
4271 sb.append(e == this ? "(this Collection)" : e);
4272 if (!it.hasNext())
4273 break;
4274 sb.append(',').append(' ');
4275 }
4276 }
4277 return sb.append(']').toString();
4278 }
4279
4280 public final boolean containsAll(Collection<?> c) {
4281 if (c != this) {
4282 for (Object e : c) {
4283 if (e == null || !contains(e))
4284 return false;
4285 }
4286 }
4287 return true;
4288 }
4289
4290 public final boolean removeAll(Collection<?> c) {
4291 boolean modified = false;
4292 for (Iterator<E> it = iterator(); it.hasNext();) {
4293 if (c.contains(it.next())) {
4294 it.remove();
4295 modified = true;
4296 }
4297 }
4298 return modified;
4299 }
4300
4301 public final boolean retainAll(Collection<?> c) {
4302 boolean modified = false;
4303 for (Iterator<E> it = iterator(); it.hasNext();) {
4304 if (!c.contains(it.next())) {
4305 it.remove();
4306 modified = true;
4307 }
4308 }
4309 return modified;
4310 }
4311
4312 }
4313
4314 /**
4315 * A view of a ConcurrentHashMapV8 as a {@link Set} of keys, in
4316 * which additions may optionally be enabled by mapping to a
4317 * common value. This class cannot be directly instantiated.
4318 * See {@link #keySet() keySet()},
4319 * {@link #keySet(Object) keySet(V)},
4320 * {@link #newKeySet() newKeySet()},
4321 * {@link #newKeySet(int) newKeySet(int)}.
4322 *
4323 * @since 1.8
4324 */
4325 public static class KeySetView<K,V> extends CollectionView<K,V,K>
4326 implements Set<K>, java.io.Serializable {
4327 private static final long serialVersionUID = 7249069246763182397L;
4328 private final V value;
4329 KeySetView(ConcurrentHashMapV8<K,V> map, V value) { // non-public
4330 super(map);
4331 this.value = value;
4332 }
4333
4334 /**
4335 * Returns the default mapped value for additions,
4336 * or {@code null} if additions are not supported.
4337 *
4338 * @return the default mapped value for additions, or {@code null}
4339 * if not supported
4340 */
4341 public V getMappedValue() { return value; }
4342
4343 /**
4344 * {@inheritDoc}
4345 * @throws NullPointerException if the specified key is null
4346 */
4347 public boolean contains(Object o) { return map.containsKey(o); }
4348
4349 /**
4350 * Removes the key from this map view, by removing the key (and its
4351 * corresponding value) from the backing map. This method does
4352 * nothing if the key is not in the map.
4353 *
4354 * @param o the key to be removed from the backing map
4355 * @return {@code true} if the backing map contained the specified key
4356 * @throws NullPointerException if the specified key is null
4357 */
4358 public boolean remove(Object o) { return map.remove(o) != null; }
4359
4360 /**
4361 * @return an iterator over the keys of the backing map
4362 */
4363 public Iterator<K> iterator() {
4364 Node<K,V>[] t;
4365 ConcurrentHashMapV8<K,V> m = map;
4366 int f = (t = m.table) == null ? 0 : t.length;
4367 return new KeyIterator<K,V>(t, f, 0, f, m);
4368 }
4369
4370 /**
4371 * Adds the specified key to this set view by mapping the key to
4372 * the default mapped value in the backing map, if defined.
4373 *
4374 * @param e key to be added
4375 * @return {@code true} if this set changed as a result of the call
4376 * @throws NullPointerException if the specified key is null
4377 * @throws UnsupportedOperationException if no default mapped value
4378 * for additions was provided
4379 */
4380 public boolean add(K e) {
4381 V v;
4382 if ((v = value) == null)
4383 throw new UnsupportedOperationException();
4384 return map.putVal(e, v, true) == null;
4385 }
4386
4387 /**
4388 * Adds all of the elements in the specified collection to this set,
4389 * as if by calling {@link #add} on each one.
4390 *
4391 * @param c the elements to be inserted into this set
4392 * @return {@code true} if this set changed as a result of the call
4393 * @throws NullPointerException if the collection or any of its
4394 * elements are {@code null}
4395 * @throws UnsupportedOperationException if no default mapped value
4396 * for additions was provided
4397 */
4398 public boolean addAll(Collection<? extends K> c) {
4399 boolean added = false;
4400 V v;
4401 if ((v = value) == null)
4402 throw new UnsupportedOperationException();
4403 for (K e : c) {
4404 if (map.putVal(e, v, true) == null)
4405 added = true;
4406 }
4407 return added;
4408 }
4409
4410 public int hashCode() {
4411 int h = 0;
4412 for (K e : this)
4413 h += e.hashCode();
4414 return h;
4415 }
4416
4417 public boolean equals(Object o) {
4418 Set<?> c;
4419 return ((o instanceof Set) &&
4420 ((c = (Set<?>)o) == this ||
4421 (containsAll(c) && c.containsAll(this))));
4422 }
4423
4424 public ConcurrentHashMapSpliterator<K> spliterator() {
4425 Node<K,V>[] t;
4426 ConcurrentHashMapV8<K,V> m = map;
4427 long n = m.sumCount();
4428 int f = (t = m.table) == null ? 0 : t.length;
4429 return new KeySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4430 }
4431
4432 public void forEach(Action<? super K> action) {
4433 if (action == null) throw new NullPointerException();
4434 Node<K,V>[] t;
4435 if ((t = map.table) != null) {
4436 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4437 for (Node<K,V> p; (p = it.advance()) != null; )
4438 action.apply(p.key);
4439 }
4440 }
4441 }
4442
4443 /**
4444 * A view of a ConcurrentHashMapV8 as a {@link Collection} of
4445 * values, in which additions are disabled. This class cannot be
4446 * directly instantiated. See {@link #values()}.
4447 */
4448 static final class ValuesView<K,V> extends CollectionView<K,V,V>
4449 implements Collection<V>, java.io.Serializable {
4450 private static final long serialVersionUID = 2249069246763182397L;
4451 ValuesView(ConcurrentHashMapV8<K,V> map) { super(map); }
4452 public final boolean contains(Object o) {
4453 return map.containsValue(o);
4454 }
4455
4456 public final boolean remove(Object o) {
4457 if (o != null) {
4458 for (Iterator<V> it = iterator(); it.hasNext();) {
4459 if (o.equals(it.next())) {
4460 it.remove();
4461 return true;
4462 }
4463 }
4464 }
4465 return false;
4466 }
4467
4468 public final Iterator<V> iterator() {
4469 ConcurrentHashMapV8<K,V> m = map;
4470 Node<K,V>[] t;
4471 int f = (t = m.table) == null ? 0 : t.length;
4472 return new ValueIterator<K,V>(t, f, 0, f, m);
4473 }
4474
4475 public final boolean add(V e) {
4476 throw new UnsupportedOperationException();
4477 }
4478 public final boolean addAll(Collection<? extends V> c) {
4479 throw new UnsupportedOperationException();
4480 }
4481
4482 public ConcurrentHashMapSpliterator<V> spliterator() {
4483 Node<K,V>[] t;
4484 ConcurrentHashMapV8<K,V> m = map;
4485 long n = m.sumCount();
4486 int f = (t = m.table) == null ? 0 : t.length;
4487 return new ValueSpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n);
4488 }
4489
4490 public void forEach(Action<? super V> action) {
4491 if (action == null) throw new NullPointerException();
4492 Node<K,V>[] t;
4493 if ((t = map.table) != null) {
4494 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4495 for (Node<K,V> p; (p = it.advance()) != null; )
4496 action.apply(p.val);
4497 }
4498 }
4499 }
4500
4501 /**
4502 * A view of a ConcurrentHashMapV8 as a {@link Set} of (key, value)
4503 * entries. This class cannot be directly instantiated. See
4504 * {@link #entrySet()}.
4505 */
4506 static final class EntrySetView<K,V> extends CollectionView<K,V,Map.Entry<K,V>>
4507 implements Set<Map.Entry<K,V>>, java.io.Serializable {
4508 private static final long serialVersionUID = 2249069246763182397L;
4509 EntrySetView(ConcurrentHashMapV8<K,V> map) { super(map); }
4510
4511 public boolean contains(Object o) {
4512 Object k, v, r; Map.Entry<?,?> e;
4513 return ((o instanceof Map.Entry) &&
4514 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4515 (r = map.get(k)) != null &&
4516 (v = e.getValue()) != null &&
4517 (v == r || v.equals(r)));
4518 }
4519
4520 public boolean remove(Object o) {
4521 Object k, v; Map.Entry<?,?> e;
4522 return ((o instanceof Map.Entry) &&
4523 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
4524 (v = e.getValue()) != null &&
4525 map.remove(k, v));
4526 }
4527
4528 /**
4529 * @return an iterator over the entries of the backing map
4530 */
4531 public Iterator<Map.Entry<K,V>> iterator() {
4532 ConcurrentHashMapV8<K,V> m = map;
4533 Node<K,V>[] t;
4534 int f = (t = m.table) == null ? 0 : t.length;
4535 return new EntryIterator<K,V>(t, f, 0, f, m);
4536 }
4537
4538 public boolean add(Entry<K,V> e) {
4539 return map.putVal(e.getKey(), e.getValue(), false) == null;
4540 }
4541
4542 public boolean addAll(Collection<? extends Entry<K,V>> c) {
4543 boolean added = false;
4544 for (Entry<K,V> e : c) {
4545 if (add(e))
4546 added = true;
4547 }
4548 return added;
4549 }
4550
4551 public final int hashCode() {
4552 int h = 0;
4553 Node<K,V>[] t;
4554 if ((t = map.table) != null) {
4555 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4556 for (Node<K,V> p; (p = it.advance()) != null; ) {
4557 h += p.hashCode();
4558 }
4559 }
4560 return h;
4561 }
4562
4563 public final boolean equals(Object o) {
4564 Set<?> c;
4565 return ((o instanceof Set) &&
4566 ((c = (Set<?>)o) == this ||
4567 (containsAll(c) && c.containsAll(this))));
4568 }
4569
4570 public ConcurrentHashMapSpliterator<Map.Entry<K,V>> spliterator() {
4571 Node<K,V>[] t;
4572 ConcurrentHashMapV8<K,V> m = map;
4573 long n = m.sumCount();
4574 int f = (t = m.table) == null ? 0 : t.length;
4575 return new EntrySpliterator<K,V>(t, f, 0, f, n < 0L ? 0L : n, m);
4576 }
4577
4578 public void forEach(Action<? super Map.Entry<K,V>> action) {
4579 if (action == null) throw new NullPointerException();
4580 Node<K,V>[] t;
4581 if ((t = map.table) != null) {
4582 Traverser<K,V> it = new Traverser<K,V>(t, t.length, 0, t.length);
4583 for (Node<K,V> p; (p = it.advance()) != null; )
4584 action.apply(new MapEntry<K,V>(p.key, p.val, map));
4585 }
4586 }
4587
4588 }
4589
4590 // -------------------------------------------------------
4591
4592 /**
4593 * Base class for bulk tasks. Repeats some fields and code from
4594 * class Traverser, because we need to subclass CountedCompleter.
4595 */
4596 abstract static class BulkTask<K,V,R> extends CountedCompleter<R> {
4597 Node<K,V>[] tab; // same as Traverser
4598 Node<K,V> next;
4599 int index;
4600 int baseIndex;
4601 int baseLimit;
4602 final int baseSize;
4603 int batch; // split control
4604
4605 BulkTask(BulkTask<K,V,?> par, int b, int i, int f, Node<K,V>[] t) {
4606 super(par);
4607 this.batch = b;
4608 this.index = this.baseIndex = i;
4609 if ((this.tab = t) == null)
4610 this.baseSize = this.baseLimit = 0;
4611 else if (par == null)
4612 this.baseSize = this.baseLimit = t.length;
4613 else {
4614 this.baseLimit = f;
4615 this.baseSize = par.baseSize;
4616 }
4617 }
4618
4619 /**
4620 * Same as Traverser version
4621 */
4622 final Node<K,V> advance() {
4623 Node<K,V> e;
4624 if ((e = next) != null)
4625 e = e.next;
4626 for (;;) {
4627 Node<K,V>[] t; int i, n; K ek; // must use locals in checks
4628 if (e != null)
4629 return next = e;
4630 if (baseIndex >= baseLimit || (t = tab) == null ||
4631 (n = t.length) <= (i = index) || i < 0)
4632 return next = null;
4633 if ((e = tabAt(t, index)) != null && e.hash < 0) {
4634 if (e instanceof ForwardingNode) {
4635 tab = ((ForwardingNode<K,V>)e).nextTable;
4636 e = null;
4637 continue;
4638 }
4639 else if (e instanceof TreeBin)
4640 e = ((TreeBin<K,V>)e).first;
4641 else
4642 e = null;
4643 }
4644 if ((index += baseSize) >= n)
4645 index = ++baseIndex; // visit upper slots if present
4646 }
4647 }
4648 }
4649
4650 /*
4651 * Task classes. Coded in a regular but ugly format/style to
4652 * simplify checks that each variant differs in the right way from
4653 * others. The null screenings exist because compilers cannot tell
4654 * that we've already null-checked task arguments, so we force
4655 * simplest hoisted bypass to help avoid convoluted traps.
4656 */
4657 @SuppressWarnings("serial")
4658 static final class ForEachKeyTask<K,V>
4659 extends BulkTask<K,V,Void> {
4660 final Action<? super K> action;
4661 ForEachKeyTask
4662 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4663 Action<? super K> action) {
4664 super(p, b, i, f, t);
4665 this.action = action;
4666 }
4667 public final void compute() {
4668 final Action<? super K> action;
4669 if ((action = this.action) != null) {
4670 for (int i = baseIndex, f, h; batch > 0 &&
4671 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4672 addToPendingCount(1);
4673 new ForEachKeyTask<K,V>
4674 (this, batch >>>= 1, baseLimit = h, f, tab,
4675 action).fork();
4676 }
4677 for (Node<K,V> p; (p = advance()) != null;)
4678 action.apply(p.key);
4679 propagateCompletion();
4680 }
4681 }
4682 }
4683
4684 @SuppressWarnings("serial")
4685 static final class ForEachValueTask<K,V>
4686 extends BulkTask<K,V,Void> {
4687 final Action<? super V> action;
4688 ForEachValueTask
4689 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4690 Action<? super V> action) {
4691 super(p, b, i, f, t);
4692 this.action = action;
4693 }
4694 public final void compute() {
4695 final Action<? super V> action;
4696 if ((action = this.action) != null) {
4697 for (int i = baseIndex, f, h; batch > 0 &&
4698 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4699 addToPendingCount(1);
4700 new ForEachValueTask<K,V>
4701 (this, batch >>>= 1, baseLimit = h, f, tab,
4702 action).fork();
4703 }
4704 for (Node<K,V> p; (p = advance()) != null;)
4705 action.apply(p.val);
4706 propagateCompletion();
4707 }
4708 }
4709 }
4710
4711 @SuppressWarnings("serial")
4712 static final class ForEachEntryTask<K,V>
4713 extends BulkTask<K,V,Void> {
4714 final Action<? super Entry<K,V>> action;
4715 ForEachEntryTask
4716 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4717 Action<? super Entry<K,V>> action) {
4718 super(p, b, i, f, t);
4719 this.action = action;
4720 }
4721 public final void compute() {
4722 final Action<? super Entry<K,V>> action;
4723 if ((action = this.action) != null) {
4724 for (int i = baseIndex, f, h; batch > 0 &&
4725 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4726 addToPendingCount(1);
4727 new ForEachEntryTask<K,V>
4728 (this, batch >>>= 1, baseLimit = h, f, tab,
4729 action).fork();
4730 }
4731 for (Node<K,V> p; (p = advance()) != null; )
4732 action.apply(p);
4733 propagateCompletion();
4734 }
4735 }
4736 }
4737
4738 @SuppressWarnings("serial")
4739 static final class ForEachMappingTask<K,V>
4740 extends BulkTask<K,V,Void> {
4741 final BiAction<? super K, ? super V> action;
4742 ForEachMappingTask
4743 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4744 BiAction<? super K,? super V> action) {
4745 super(p, b, i, f, t);
4746 this.action = action;
4747 }
4748 public final void compute() {
4749 final BiAction<? super K, ? super V> action;
4750 if ((action = this.action) != null) {
4751 for (int i = baseIndex, f, h; batch > 0 &&
4752 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4753 addToPendingCount(1);
4754 new ForEachMappingTask<K,V>
4755 (this, batch >>>= 1, baseLimit = h, f, tab,
4756 action).fork();
4757 }
4758 for (Node<K,V> p; (p = advance()) != null; )
4759 action.apply(p.key, p.val);
4760 propagateCompletion();
4761 }
4762 }
4763 }
4764
4765 @SuppressWarnings("serial")
4766 static final class ForEachTransformedKeyTask<K,V,U>
4767 extends BulkTask<K,V,Void> {
4768 final Fun<? super K, ? extends U> transformer;
4769 final Action<? super U> action;
4770 ForEachTransformedKeyTask
4771 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4772 Fun<? super K, ? extends U> transformer, Action<? super U> action) {
4773 super(p, b, i, f, t);
4774 this.transformer = transformer; this.action = action;
4775 }
4776 public final void compute() {
4777 final Fun<? super K, ? extends U> transformer;
4778 final Action<? super U> action;
4779 if ((transformer = this.transformer) != null &&
4780 (action = this.action) != null) {
4781 for (int i = baseIndex, f, h; batch > 0 &&
4782 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4783 addToPendingCount(1);
4784 new ForEachTransformedKeyTask<K,V,U>
4785 (this, batch >>>= 1, baseLimit = h, f, tab,
4786 transformer, action).fork();
4787 }
4788 for (Node<K,V> p; (p = advance()) != null; ) {
4789 U u;
4790 if ((u = transformer.apply(p.key)) != null)
4791 action.apply(u);
4792 }
4793 propagateCompletion();
4794 }
4795 }
4796 }
4797
4798 @SuppressWarnings("serial")
4799 static final class ForEachTransformedValueTask<K,V,U>
4800 extends BulkTask<K,V,Void> {
4801 final Fun<? super V, ? extends U> transformer;
4802 final Action<? super U> action;
4803 ForEachTransformedValueTask
4804 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4805 Fun<? super V, ? extends U> transformer, Action<? super U> action) {
4806 super(p, b, i, f, t);
4807 this.transformer = transformer; this.action = action;
4808 }
4809 public final void compute() {
4810 final Fun<? super V, ? extends U> transformer;
4811 final Action<? super U> action;
4812 if ((transformer = this.transformer) != null &&
4813 (action = this.action) != null) {
4814 for (int i = baseIndex, f, h; batch > 0 &&
4815 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4816 addToPendingCount(1);
4817 new ForEachTransformedValueTask<K,V,U>
4818 (this, batch >>>= 1, baseLimit = h, f, tab,
4819 transformer, action).fork();
4820 }
4821 for (Node<K,V> p; (p = advance()) != null; ) {
4822 U u;
4823 if ((u = transformer.apply(p.val)) != null)
4824 action.apply(u);
4825 }
4826 propagateCompletion();
4827 }
4828 }
4829 }
4830
4831 @SuppressWarnings("serial")
4832 static final class ForEachTransformedEntryTask<K,V,U>
4833 extends BulkTask<K,V,Void> {
4834 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4835 final Action<? super U> action;
4836 ForEachTransformedEntryTask
4837 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4838 Fun<Map.Entry<K,V>, ? extends U> transformer, Action<? super U> action) {
4839 super(p, b, i, f, t);
4840 this.transformer = transformer; this.action = action;
4841 }
4842 public final void compute() {
4843 final Fun<Map.Entry<K,V>, ? extends U> transformer;
4844 final Action<? super U> action;
4845 if ((transformer = this.transformer) != null &&
4846 (action = this.action) != null) {
4847 for (int i = baseIndex, f, h; batch > 0 &&
4848 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4849 addToPendingCount(1);
4850 new ForEachTransformedEntryTask<K,V,U>
4851 (this, batch >>>= 1, baseLimit = h, f, tab,
4852 transformer, action).fork();
4853 }
4854 for (Node<K,V> p; (p = advance()) != null; ) {
4855 U u;
4856 if ((u = transformer.apply(p)) != null)
4857 action.apply(u);
4858 }
4859 propagateCompletion();
4860 }
4861 }
4862 }
4863
4864 @SuppressWarnings("serial")
4865 static final class ForEachTransformedMappingTask<K,V,U>
4866 extends BulkTask<K,V,Void> {
4867 final BiFun<? super K, ? super V, ? extends U> transformer;
4868 final Action<? super U> action;
4869 ForEachTransformedMappingTask
4870 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4871 BiFun<? super K, ? super V, ? extends U> transformer,
4872 Action<? super U> action) {
4873 super(p, b, i, f, t);
4874 this.transformer = transformer; this.action = action;
4875 }
4876 public final void compute() {
4877 final BiFun<? super K, ? super V, ? extends U> transformer;
4878 final Action<? super U> action;
4879 if ((transformer = this.transformer) != null &&
4880 (action = this.action) != null) {
4881 for (int i = baseIndex, f, h; batch > 0 &&
4882 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4883 addToPendingCount(1);
4884 new ForEachTransformedMappingTask<K,V,U>
4885 (this, batch >>>= 1, baseLimit = h, f, tab,
4886 transformer, action).fork();
4887 }
4888 for (Node<K,V> p; (p = advance()) != null; ) {
4889 U u;
4890 if ((u = transformer.apply(p.key, p.val)) != null)
4891 action.apply(u);
4892 }
4893 propagateCompletion();
4894 }
4895 }
4896 }
4897
4898 @SuppressWarnings("serial")
4899 static final class SearchKeysTask<K,V,U>
4900 extends BulkTask<K,V,U> {
4901 final Fun<? super K, ? extends U> searchFunction;
4902 final AtomicReference<U> result;
4903 SearchKeysTask
4904 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4905 Fun<? super K, ? extends U> searchFunction,
4906 AtomicReference<U> result) {
4907 super(p, b, i, f, t);
4908 this.searchFunction = searchFunction; this.result = result;
4909 }
4910 public final U getRawResult() { return result.get(); }
4911 public final void compute() {
4912 final Fun<? super K, ? extends U> searchFunction;
4913 final AtomicReference<U> result;
4914 if ((searchFunction = this.searchFunction) != null &&
4915 (result = this.result) != null) {
4916 for (int i = baseIndex, f, h; batch > 0 &&
4917 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4918 if (result.get() != null)
4919 return;
4920 addToPendingCount(1);
4921 new SearchKeysTask<K,V,U>
4922 (this, batch >>>= 1, baseLimit = h, f, tab,
4923 searchFunction, result).fork();
4924 }
4925 while (result.get() == null) {
4926 U u;
4927 Node<K,V> p;
4928 if ((p = advance()) == null) {
4929 propagateCompletion();
4930 break;
4931 }
4932 if ((u = searchFunction.apply(p.key)) != null) {
4933 if (result.compareAndSet(null, u))
4934 quietlyCompleteRoot();
4935 break;
4936 }
4937 }
4938 }
4939 }
4940 }
4941
4942 @SuppressWarnings("serial")
4943 static final class SearchValuesTask<K,V,U>
4944 extends BulkTask<K,V,U> {
4945 final Fun<? super V, ? extends U> searchFunction;
4946 final AtomicReference<U> result;
4947 SearchValuesTask
4948 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4949 Fun<? super V, ? extends U> searchFunction,
4950 AtomicReference<U> result) {
4951 super(p, b, i, f, t);
4952 this.searchFunction = searchFunction; this.result = result;
4953 }
4954 public final U getRawResult() { return result.get(); }
4955 public final void compute() {
4956 final Fun<? super V, ? extends U> searchFunction;
4957 final AtomicReference<U> result;
4958 if ((searchFunction = this.searchFunction) != null &&
4959 (result = this.result) != null) {
4960 for (int i = baseIndex, f, h; batch > 0 &&
4961 (h = ((f = baseLimit) + i) >>> 1) > i;) {
4962 if (result.get() != null)
4963 return;
4964 addToPendingCount(1);
4965 new SearchValuesTask<K,V,U>
4966 (this, batch >>>= 1, baseLimit = h, f, tab,
4967 searchFunction, result).fork();
4968 }
4969 while (result.get() == null) {
4970 U u;
4971 Node<K,V> p;
4972 if ((p = advance()) == null) {
4973 propagateCompletion();
4974 break;
4975 }
4976 if ((u = searchFunction.apply(p.val)) != null) {
4977 if (result.compareAndSet(null, u))
4978 quietlyCompleteRoot();
4979 break;
4980 }
4981 }
4982 }
4983 }
4984 }
4985
4986 @SuppressWarnings("serial")
4987 static final class SearchEntriesTask<K,V,U>
4988 extends BulkTask<K,V,U> {
4989 final Fun<Entry<K,V>, ? extends U> searchFunction;
4990 final AtomicReference<U> result;
4991 SearchEntriesTask
4992 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
4993 Fun<Entry<K,V>, ? extends U> searchFunction,
4994 AtomicReference<U> result) {
4995 super(p, b, i, f, t);
4996 this.searchFunction = searchFunction; this.result = result;
4997 }
4998 public final U getRawResult() { return result.get(); }
4999 public final void compute() {
5000 final Fun<Entry<K,V>, ? extends U> searchFunction;
5001 final AtomicReference<U> result;
5002 if ((searchFunction = this.searchFunction) != null &&
5003 (result = this.result) != null) {
5004 for (int i = baseIndex, f, h; batch > 0 &&
5005 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5006 if (result.get() != null)
5007 return;
5008 addToPendingCount(1);
5009 new SearchEntriesTask<K,V,U>
5010 (this, batch >>>= 1, baseLimit = h, f, tab,
5011 searchFunction, result).fork();
5012 }
5013 while (result.get() == null) {
5014 U u;
5015 Node<K,V> p;
5016 if ((p = advance()) == null) {
5017 propagateCompletion();
5018 break;
5019 }
5020 if ((u = searchFunction.apply(p)) != null) {
5021 if (result.compareAndSet(null, u))
5022 quietlyCompleteRoot();
5023 return;
5024 }
5025 }
5026 }
5027 }
5028 }
5029
5030 @SuppressWarnings("serial")
5031 static final class SearchMappingsTask<K,V,U>
5032 extends BulkTask<K,V,U> {
5033 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5034 final AtomicReference<U> result;
5035 SearchMappingsTask
5036 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5037 BiFun<? super K, ? super V, ? extends U> searchFunction,
5038 AtomicReference<U> result) {
5039 super(p, b, i, f, t);
5040 this.searchFunction = searchFunction; this.result = result;
5041 }
5042 public final U getRawResult() { return result.get(); }
5043 public final void compute() {
5044 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5045 final AtomicReference<U> result;
5046 if ((searchFunction = this.searchFunction) != null &&
5047 (result = this.result) != null) {
5048 for (int i = baseIndex, f, h; batch > 0 &&
5049 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5050 if (result.get() != null)
5051 return;
5052 addToPendingCount(1);
5053 new SearchMappingsTask<K,V,U>
5054 (this, batch >>>= 1, baseLimit = h, f, tab,
5055 searchFunction, result).fork();
5056 }
5057 while (result.get() == null) {
5058 U u;
5059 Node<K,V> p;
5060 if ((p = advance()) == null) {
5061 propagateCompletion();
5062 break;
5063 }
5064 if ((u = searchFunction.apply(p.key, p.val)) != null) {
5065 if (result.compareAndSet(null, u))
5066 quietlyCompleteRoot();
5067 break;
5068 }
5069 }
5070 }
5071 }
5072 }
5073
5074 @SuppressWarnings("serial")
5075 static final class ReduceKeysTask<K,V>
5076 extends BulkTask<K,V,K> {
5077 final BiFun<? super K, ? super K, ? extends K> reducer;
5078 K result;
5079 ReduceKeysTask<K,V> rights, nextRight;
5080 ReduceKeysTask
5081 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5082 ReduceKeysTask<K,V> nextRight,
5083 BiFun<? super K, ? super K, ? extends K> reducer) {
5084 super(p, b, i, f, t); this.nextRight = nextRight;
5085 this.reducer = reducer;
5086 }
5087 public final K getRawResult() { return result; }
5088 public final void compute() {
5089 final BiFun<? super K, ? super K, ? extends K> reducer;
5090 if ((reducer = this.reducer) != null) {
5091 for (int i = baseIndex, f, h; batch > 0 &&
5092 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5093 addToPendingCount(1);
5094 (rights = new ReduceKeysTask<K,V>
5095 (this, batch >>>= 1, baseLimit = h, f, tab,
5096 rights, reducer)).fork();
5097 }
5098 K r = null;
5099 for (Node<K,V> p; (p = advance()) != null; ) {
5100 K u = p.key;
5101 r = (r == null) ? u : u == null ? r : reducer.apply(r, u);
5102 }
5103 result = r;
5104 CountedCompleter<?> c;
5105 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5106 @SuppressWarnings("unchecked") ReduceKeysTask<K,V>
5107 t = (ReduceKeysTask<K,V>)c,
5108 s = t.rights;
5109 while (s != null) {
5110 K tr, sr;
5111 if ((sr = s.result) != null)
5112 t.result = (((tr = t.result) == null) ? sr :
5113 reducer.apply(tr, sr));
5114 s = t.rights = s.nextRight;
5115 }
5116 }
5117 }
5118 }
5119 }
5120
5121 @SuppressWarnings("serial")
5122 static final class ReduceValuesTask<K,V>
5123 extends BulkTask<K,V,V> {
5124 final BiFun<? super V, ? super V, ? extends V> reducer;
5125 V result;
5126 ReduceValuesTask<K,V> rights, nextRight;
5127 ReduceValuesTask
5128 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5129 ReduceValuesTask<K,V> nextRight,
5130 BiFun<? super V, ? super V, ? extends V> reducer) {
5131 super(p, b, i, f, t); this.nextRight = nextRight;
5132 this.reducer = reducer;
5133 }
5134 public final V getRawResult() { return result; }
5135 public final void compute() {
5136 final BiFun<? super V, ? super V, ? extends V> reducer;
5137 if ((reducer = this.reducer) != null) {
5138 for (int i = baseIndex, f, h; batch > 0 &&
5139 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5140 addToPendingCount(1);
5141 (rights = new ReduceValuesTask<K,V>
5142 (this, batch >>>= 1, baseLimit = h, f, tab,
5143 rights, reducer)).fork();
5144 }
5145 V r = null;
5146 for (Node<K,V> p; (p = advance()) != null; ) {
5147 V v = p.val;
5148 r = (r == null) ? v : reducer.apply(r, v);
5149 }
5150 result = r;
5151 CountedCompleter<?> c;
5152 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5153 @SuppressWarnings("unchecked") ReduceValuesTask<K,V>
5154 t = (ReduceValuesTask<K,V>)c,
5155 s = t.rights;
5156 while (s != null) {
5157 V tr, sr;
5158 if ((sr = s.result) != null)
5159 t.result = (((tr = t.result) == null) ? sr :
5160 reducer.apply(tr, sr));
5161 s = t.rights = s.nextRight;
5162 }
5163 }
5164 }
5165 }
5166 }
5167
5168 @SuppressWarnings("serial")
5169 static final class ReduceEntriesTask<K,V>
5170 extends BulkTask<K,V,Map.Entry<K,V>> {
5171 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5172 Map.Entry<K,V> result;
5173 ReduceEntriesTask<K,V> rights, nextRight;
5174 ReduceEntriesTask
5175 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5176 ReduceEntriesTask<K,V> nextRight,
5177 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5178 super(p, b, i, f, t); this.nextRight = nextRight;
5179 this.reducer = reducer;
5180 }
5181 public final Map.Entry<K,V> getRawResult() { return result; }
5182 public final void compute() {
5183 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5184 if ((reducer = this.reducer) != null) {
5185 for (int i = baseIndex, f, h; batch > 0 &&
5186 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5187 addToPendingCount(1);
5188 (rights = new ReduceEntriesTask<K,V>
5189 (this, batch >>>= 1, baseLimit = h, f, tab,
5190 rights, reducer)).fork();
5191 }
5192 Map.Entry<K,V> r = null;
5193 for (Node<K,V> p; (p = advance()) != null; )
5194 r = (r == null) ? p : reducer.apply(r, p);
5195 result = r;
5196 CountedCompleter<?> c;
5197 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5198 @SuppressWarnings("unchecked") ReduceEntriesTask<K,V>
5199 t = (ReduceEntriesTask<K,V>)c,
5200 s = t.rights;
5201 while (s != null) {
5202 Map.Entry<K,V> tr, sr;
5203 if ((sr = s.result) != null)
5204 t.result = (((tr = t.result) == null) ? sr :
5205 reducer.apply(tr, sr));
5206 s = t.rights = s.nextRight;
5207 }
5208 }
5209 }
5210 }
5211 }
5212
5213 @SuppressWarnings("serial")
5214 static final class MapReduceKeysTask<K,V,U>
5215 extends BulkTask<K,V,U> {
5216 final Fun<? super K, ? extends U> transformer;
5217 final BiFun<? super U, ? super U, ? extends U> reducer;
5218 U result;
5219 MapReduceKeysTask<K,V,U> rights, nextRight;
5220 MapReduceKeysTask
5221 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5222 MapReduceKeysTask<K,V,U> nextRight,
5223 Fun<? super K, ? extends U> transformer,
5224 BiFun<? super U, ? super U, ? extends U> reducer) {
5225 super(p, b, i, f, t); this.nextRight = nextRight;
5226 this.transformer = transformer;
5227 this.reducer = reducer;
5228 }
5229 public final U getRawResult() { return result; }
5230 public final void compute() {
5231 final Fun<? super K, ? extends U> transformer;
5232 final BiFun<? super U, ? super U, ? extends U> reducer;
5233 if ((transformer = this.transformer) != null &&
5234 (reducer = this.reducer) != null) {
5235 for (int i = baseIndex, f, h; batch > 0 &&
5236 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5237 addToPendingCount(1);
5238 (rights = new MapReduceKeysTask<K,V,U>
5239 (this, batch >>>= 1, baseLimit = h, f, tab,
5240 rights, transformer, reducer)).fork();
5241 }
5242 U r = null;
5243 for (Node<K,V> p; (p = advance()) != null; ) {
5244 U u;
5245 if ((u = transformer.apply(p.key)) != null)
5246 r = (r == null) ? u : reducer.apply(r, u);
5247 }
5248 result = r;
5249 CountedCompleter<?> c;
5250 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5251 @SuppressWarnings("unchecked") MapReduceKeysTask<K,V,U>
5252 t = (MapReduceKeysTask<K,V,U>)c,
5253 s = t.rights;
5254 while (s != null) {
5255 U tr, sr;
5256 if ((sr = s.result) != null)
5257 t.result = (((tr = t.result) == null) ? sr :
5258 reducer.apply(tr, sr));
5259 s = t.rights = s.nextRight;
5260 }
5261 }
5262 }
5263 }
5264 }
5265
5266 @SuppressWarnings("serial")
5267 static final class MapReduceValuesTask<K,V,U>
5268 extends BulkTask<K,V,U> {
5269 final Fun<? super V, ? extends U> transformer;
5270 final BiFun<? super U, ? super U, ? extends U> reducer;
5271 U result;
5272 MapReduceValuesTask<K,V,U> rights, nextRight;
5273 MapReduceValuesTask
5274 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5275 MapReduceValuesTask<K,V,U> nextRight,
5276 Fun<? super V, ? extends U> transformer,
5277 BiFun<? super U, ? super U, ? extends U> reducer) {
5278 super(p, b, i, f, t); this.nextRight = nextRight;
5279 this.transformer = transformer;
5280 this.reducer = reducer;
5281 }
5282 public final U getRawResult() { return result; }
5283 public final void compute() {
5284 final Fun<? super V, ? extends U> transformer;
5285 final BiFun<? super U, ? super U, ? extends U> reducer;
5286 if ((transformer = this.transformer) != null &&
5287 (reducer = this.reducer) != null) {
5288 for (int i = baseIndex, f, h; batch > 0 &&
5289 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5290 addToPendingCount(1);
5291 (rights = new MapReduceValuesTask<K,V,U>
5292 (this, batch >>>= 1, baseLimit = h, f, tab,
5293 rights, transformer, reducer)).fork();
5294 }
5295 U r = null;
5296 for (Node<K,V> p; (p = advance()) != null; ) {
5297 U u;
5298 if ((u = transformer.apply(p.val)) != null)
5299 r = (r == null) ? u : reducer.apply(r, u);
5300 }
5301 result = r;
5302 CountedCompleter<?> c;
5303 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5304 @SuppressWarnings("unchecked") MapReduceValuesTask<K,V,U>
5305 t = (MapReduceValuesTask<K,V,U>)c,
5306 s = t.rights;
5307 while (s != null) {
5308 U tr, sr;
5309 if ((sr = s.result) != null)
5310 t.result = (((tr = t.result) == null) ? sr :
5311 reducer.apply(tr, sr));
5312 s = t.rights = s.nextRight;
5313 }
5314 }
5315 }
5316 }
5317 }
5318
5319 @SuppressWarnings("serial")
5320 static final class MapReduceEntriesTask<K,V,U>
5321 extends BulkTask<K,V,U> {
5322 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5323 final BiFun<? super U, ? super U, ? extends U> reducer;
5324 U result;
5325 MapReduceEntriesTask<K,V,U> rights, nextRight;
5326 MapReduceEntriesTask
5327 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5328 MapReduceEntriesTask<K,V,U> nextRight,
5329 Fun<Map.Entry<K,V>, ? extends U> transformer,
5330 BiFun<? super U, ? super U, ? extends U> reducer) {
5331 super(p, b, i, f, t); this.nextRight = nextRight;
5332 this.transformer = transformer;
5333 this.reducer = reducer;
5334 }
5335 public final U getRawResult() { return result; }
5336 public final void compute() {
5337 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5338 final BiFun<? super U, ? super U, ? extends U> reducer;
5339 if ((transformer = this.transformer) != null &&
5340 (reducer = this.reducer) != null) {
5341 for (int i = baseIndex, f, h; batch > 0 &&
5342 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5343 addToPendingCount(1);
5344 (rights = new MapReduceEntriesTask<K,V,U>
5345 (this, batch >>>= 1, baseLimit = h, f, tab,
5346 rights, transformer, reducer)).fork();
5347 }
5348 U r = null;
5349 for (Node<K,V> p; (p = advance()) != null; ) {
5350 U u;
5351 if ((u = transformer.apply(p)) != null)
5352 r = (r == null) ? u : reducer.apply(r, u);
5353 }
5354 result = r;
5355 CountedCompleter<?> c;
5356 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5357 @SuppressWarnings("unchecked") MapReduceEntriesTask<K,V,U>
5358 t = (MapReduceEntriesTask<K,V,U>)c,
5359 s = t.rights;
5360 while (s != null) {
5361 U tr, sr;
5362 if ((sr = s.result) != null)
5363 t.result = (((tr = t.result) == null) ? sr :
5364 reducer.apply(tr, sr));
5365 s = t.rights = s.nextRight;
5366 }
5367 }
5368 }
5369 }
5370 }
5371
5372 @SuppressWarnings("serial")
5373 static final class MapReduceMappingsTask<K,V,U>
5374 extends BulkTask<K,V,U> {
5375 final BiFun<? super K, ? super V, ? extends U> transformer;
5376 final BiFun<? super U, ? super U, ? extends U> reducer;
5377 U result;
5378 MapReduceMappingsTask<K,V,U> rights, nextRight;
5379 MapReduceMappingsTask
5380 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5381 MapReduceMappingsTask<K,V,U> nextRight,
5382 BiFun<? super K, ? super V, ? extends U> transformer,
5383 BiFun<? super U, ? super U, ? extends U> reducer) {
5384 super(p, b, i, f, t); this.nextRight = nextRight;
5385 this.transformer = transformer;
5386 this.reducer = reducer;
5387 }
5388 public final U getRawResult() { return result; }
5389 public final void compute() {
5390 final BiFun<? super K, ? super V, ? extends U> transformer;
5391 final BiFun<? super U, ? super U, ? extends U> reducer;
5392 if ((transformer = this.transformer) != null &&
5393 (reducer = this.reducer) != null) {
5394 for (int i = baseIndex, f, h; batch > 0 &&
5395 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5396 addToPendingCount(1);
5397 (rights = new MapReduceMappingsTask<K,V,U>
5398 (this, batch >>>= 1, baseLimit = h, f, tab,
5399 rights, transformer, reducer)).fork();
5400 }
5401 U r = null;
5402 for (Node<K,V> p; (p = advance()) != null; ) {
5403 U u;
5404 if ((u = transformer.apply(p.key, p.val)) != null)
5405 r = (r == null) ? u : reducer.apply(r, u);
5406 }
5407 result = r;
5408 CountedCompleter<?> c;
5409 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5410 @SuppressWarnings("unchecked") MapReduceMappingsTask<K,V,U>
5411 t = (MapReduceMappingsTask<K,V,U>)c,
5412 s = t.rights;
5413 while (s != null) {
5414 U tr, sr;
5415 if ((sr = s.result) != null)
5416 t.result = (((tr = t.result) == null) ? sr :
5417 reducer.apply(tr, sr));
5418 s = t.rights = s.nextRight;
5419 }
5420 }
5421 }
5422 }
5423 }
5424
5425 @SuppressWarnings("serial")
5426 static final class MapReduceKeysToDoubleTask<K,V>
5427 extends BulkTask<K,V,Double> {
5428 final ObjectToDouble<? super K> transformer;
5429 final DoubleByDoubleToDouble reducer;
5430 final double basis;
5431 double result;
5432 MapReduceKeysToDoubleTask<K,V> rights, nextRight;
5433 MapReduceKeysToDoubleTask
5434 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5435 MapReduceKeysToDoubleTask<K,V> nextRight,
5436 ObjectToDouble<? super K> transformer,
5437 double basis,
5438 DoubleByDoubleToDouble reducer) {
5439 super(p, b, i, f, t); this.nextRight = nextRight;
5440 this.transformer = transformer;
5441 this.basis = basis; this.reducer = reducer;
5442 }
5443 public final Double getRawResult() { return result; }
5444 public final void compute() {
5445 final ObjectToDouble<? super K> transformer;
5446 final DoubleByDoubleToDouble reducer;
5447 if ((transformer = this.transformer) != null &&
5448 (reducer = this.reducer) != null) {
5449 double r = this.basis;
5450 for (int i = baseIndex, f, h; batch > 0 &&
5451 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5452 addToPendingCount(1);
5453 (rights = new MapReduceKeysToDoubleTask<K,V>
5454 (this, batch >>>= 1, baseLimit = h, f, tab,
5455 rights, transformer, r, reducer)).fork();
5456 }
5457 for (Node<K,V> p; (p = advance()) != null; )
5458 r = reducer.apply(r, transformer.apply(p.key));
5459 result = r;
5460 CountedCompleter<?> c;
5461 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5462 @SuppressWarnings("unchecked") MapReduceKeysToDoubleTask<K,V>
5463 t = (MapReduceKeysToDoubleTask<K,V>)c,
5464 s = t.rights;
5465 while (s != null) {
5466 t.result = reducer.apply(t.result, s.result);
5467 s = t.rights = s.nextRight;
5468 }
5469 }
5470 }
5471 }
5472 }
5473
5474 @SuppressWarnings("serial")
5475 static final class MapReduceValuesToDoubleTask<K,V>
5476 extends BulkTask<K,V,Double> {
5477 final ObjectToDouble<? super V> transformer;
5478 final DoubleByDoubleToDouble reducer;
5479 final double basis;
5480 double result;
5481 MapReduceValuesToDoubleTask<K,V> rights, nextRight;
5482 MapReduceValuesToDoubleTask
5483 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5484 MapReduceValuesToDoubleTask<K,V> nextRight,
5485 ObjectToDouble<? super V> transformer,
5486 double basis,
5487 DoubleByDoubleToDouble reducer) {
5488 super(p, b, i, f, t); this.nextRight = nextRight;
5489 this.transformer = transformer;
5490 this.basis = basis; this.reducer = reducer;
5491 }
5492 public final Double getRawResult() { return result; }
5493 public final void compute() {
5494 final ObjectToDouble<? super V> transformer;
5495 final DoubleByDoubleToDouble reducer;
5496 if ((transformer = this.transformer) != null &&
5497 (reducer = this.reducer) != null) {
5498 double r = this.basis;
5499 for (int i = baseIndex, f, h; batch > 0 &&
5500 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5501 addToPendingCount(1);
5502 (rights = new MapReduceValuesToDoubleTask<K,V>
5503 (this, batch >>>= 1, baseLimit = h, f, tab,
5504 rights, transformer, r, reducer)).fork();
5505 }
5506 for (Node<K,V> p; (p = advance()) != null; )
5507 r = reducer.apply(r, transformer.apply(p.val));
5508 result = r;
5509 CountedCompleter<?> c;
5510 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5511 @SuppressWarnings("unchecked") MapReduceValuesToDoubleTask<K,V>
5512 t = (MapReduceValuesToDoubleTask<K,V>)c,
5513 s = t.rights;
5514 while (s != null) {
5515 t.result = reducer.apply(t.result, s.result);
5516 s = t.rights = s.nextRight;
5517 }
5518 }
5519 }
5520 }
5521 }
5522
5523 @SuppressWarnings("serial")
5524 static final class MapReduceEntriesToDoubleTask<K,V>
5525 extends BulkTask<K,V,Double> {
5526 final ObjectToDouble<Map.Entry<K,V>> transformer;
5527 final DoubleByDoubleToDouble reducer;
5528 final double basis;
5529 double result;
5530 MapReduceEntriesToDoubleTask<K,V> rights, nextRight;
5531 MapReduceEntriesToDoubleTask
5532 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5533 MapReduceEntriesToDoubleTask<K,V> nextRight,
5534 ObjectToDouble<Map.Entry<K,V>> transformer,
5535 double basis,
5536 DoubleByDoubleToDouble reducer) {
5537 super(p, b, i, f, t); this.nextRight = nextRight;
5538 this.transformer = transformer;
5539 this.basis = basis; this.reducer = reducer;
5540 }
5541 public final Double getRawResult() { return result; }
5542 public final void compute() {
5543 final ObjectToDouble<Map.Entry<K,V>> transformer;
5544 final DoubleByDoubleToDouble reducer;
5545 if ((transformer = this.transformer) != null &&
5546 (reducer = this.reducer) != null) {
5547 double r = this.basis;
5548 for (int i = baseIndex, f, h; batch > 0 &&
5549 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5550 addToPendingCount(1);
5551 (rights = new MapReduceEntriesToDoubleTask<K,V>
5552 (this, batch >>>= 1, baseLimit = h, f, tab,
5553 rights, transformer, r, reducer)).fork();
5554 }
5555 for (Node<K,V> p; (p = advance()) != null; )
5556 r = reducer.apply(r, transformer.apply(p));
5557 result = r;
5558 CountedCompleter<?> c;
5559 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5560 @SuppressWarnings("unchecked") MapReduceEntriesToDoubleTask<K,V>
5561 t = (MapReduceEntriesToDoubleTask<K,V>)c,
5562 s = t.rights;
5563 while (s != null) {
5564 t.result = reducer.apply(t.result, s.result);
5565 s = t.rights = s.nextRight;
5566 }
5567 }
5568 }
5569 }
5570 }
5571
5572 @SuppressWarnings("serial")
5573 static final class MapReduceMappingsToDoubleTask<K,V>
5574 extends BulkTask<K,V,Double> {
5575 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5576 final DoubleByDoubleToDouble reducer;
5577 final double basis;
5578 double result;
5579 MapReduceMappingsToDoubleTask<K,V> rights, nextRight;
5580 MapReduceMappingsToDoubleTask
5581 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5582 MapReduceMappingsToDoubleTask<K,V> nextRight,
5583 ObjectByObjectToDouble<? super K, ? super V> transformer,
5584 double basis,
5585 DoubleByDoubleToDouble reducer) {
5586 super(p, b, i, f, t); this.nextRight = nextRight;
5587 this.transformer = transformer;
5588 this.basis = basis; this.reducer = reducer;
5589 }
5590 public final Double getRawResult() { return result; }
5591 public final void compute() {
5592 final ObjectByObjectToDouble<? super K, ? super V> transformer;
5593 final DoubleByDoubleToDouble reducer;
5594 if ((transformer = this.transformer) != null &&
5595 (reducer = this.reducer) != null) {
5596 double r = this.basis;
5597 for (int i = baseIndex, f, h; batch > 0 &&
5598 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5599 addToPendingCount(1);
5600 (rights = new MapReduceMappingsToDoubleTask<K,V>
5601 (this, batch >>>= 1, baseLimit = h, f, tab,
5602 rights, transformer, r, reducer)).fork();
5603 }
5604 for (Node<K,V> p; (p = advance()) != null; )
5605 r = reducer.apply(r, transformer.apply(p.key, p.val));
5606 result = r;
5607 CountedCompleter<?> c;
5608 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5609 @SuppressWarnings("unchecked") MapReduceMappingsToDoubleTask<K,V>
5610 t = (MapReduceMappingsToDoubleTask<K,V>)c,
5611 s = t.rights;
5612 while (s != null) {
5613 t.result = reducer.apply(t.result, s.result);
5614 s = t.rights = s.nextRight;
5615 }
5616 }
5617 }
5618 }
5619 }
5620
5621 @SuppressWarnings("serial")
5622 static final class MapReduceKeysToLongTask<K,V>
5623 extends BulkTask<K,V,Long> {
5624 final ObjectToLong<? super K> transformer;
5625 final LongByLongToLong reducer;
5626 final long basis;
5627 long result;
5628 MapReduceKeysToLongTask<K,V> rights, nextRight;
5629 MapReduceKeysToLongTask
5630 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5631 MapReduceKeysToLongTask<K,V> nextRight,
5632 ObjectToLong<? super K> transformer,
5633 long basis,
5634 LongByLongToLong reducer) {
5635 super(p, b, i, f, t); this.nextRight = nextRight;
5636 this.transformer = transformer;
5637 this.basis = basis; this.reducer = reducer;
5638 }
5639 public final Long getRawResult() { return result; }
5640 public final void compute() {
5641 final ObjectToLong<? super K> transformer;
5642 final LongByLongToLong reducer;
5643 if ((transformer = this.transformer) != null &&
5644 (reducer = this.reducer) != null) {
5645 long r = this.basis;
5646 for (int i = baseIndex, f, h; batch > 0 &&
5647 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5648 addToPendingCount(1);
5649 (rights = new MapReduceKeysToLongTask<K,V>
5650 (this, batch >>>= 1, baseLimit = h, f, tab,
5651 rights, transformer, r, reducer)).fork();
5652 }
5653 for (Node<K,V> p; (p = advance()) != null; )
5654 r = reducer.apply(r, transformer.apply(p.key));
5655 result = r;
5656 CountedCompleter<?> c;
5657 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5658 @SuppressWarnings("unchecked") MapReduceKeysToLongTask<K,V>
5659 t = (MapReduceKeysToLongTask<K,V>)c,
5660 s = t.rights;
5661 while (s != null) {
5662 t.result = reducer.apply(t.result, s.result);
5663 s = t.rights = s.nextRight;
5664 }
5665 }
5666 }
5667 }
5668 }
5669
5670 @SuppressWarnings("serial")
5671 static final class MapReduceValuesToLongTask<K,V>
5672 extends BulkTask<K,V,Long> {
5673 final ObjectToLong<? super V> transformer;
5674 final LongByLongToLong reducer;
5675 final long basis;
5676 long result;
5677 MapReduceValuesToLongTask<K,V> rights, nextRight;
5678 MapReduceValuesToLongTask
5679 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5680 MapReduceValuesToLongTask<K,V> nextRight,
5681 ObjectToLong<? super V> transformer,
5682 long basis,
5683 LongByLongToLong reducer) {
5684 super(p, b, i, f, t); this.nextRight = nextRight;
5685 this.transformer = transformer;
5686 this.basis = basis; this.reducer = reducer;
5687 }
5688 public final Long getRawResult() { return result; }
5689 public final void compute() {
5690 final ObjectToLong<? super V> transformer;
5691 final LongByLongToLong reducer;
5692 if ((transformer = this.transformer) != null &&
5693 (reducer = this.reducer) != null) {
5694 long r = this.basis;
5695 for (int i = baseIndex, f, h; batch > 0 &&
5696 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5697 addToPendingCount(1);
5698 (rights = new MapReduceValuesToLongTask<K,V>
5699 (this, batch >>>= 1, baseLimit = h, f, tab,
5700 rights, transformer, r, reducer)).fork();
5701 }
5702 for (Node<K,V> p; (p = advance()) != null; )
5703 r = reducer.apply(r, transformer.apply(p.val));
5704 result = r;
5705 CountedCompleter<?> c;
5706 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5707 @SuppressWarnings("unchecked") MapReduceValuesToLongTask<K,V>
5708 t = (MapReduceValuesToLongTask<K,V>)c,
5709 s = t.rights;
5710 while (s != null) {
5711 t.result = reducer.apply(t.result, s.result);
5712 s = t.rights = s.nextRight;
5713 }
5714 }
5715 }
5716 }
5717 }
5718
5719 @SuppressWarnings("serial")
5720 static final class MapReduceEntriesToLongTask<K,V>
5721 extends BulkTask<K,V,Long> {
5722 final ObjectToLong<Map.Entry<K,V>> transformer;
5723 final LongByLongToLong reducer;
5724 final long basis;
5725 long result;
5726 MapReduceEntriesToLongTask<K,V> rights, nextRight;
5727 MapReduceEntriesToLongTask
5728 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5729 MapReduceEntriesToLongTask<K,V> nextRight,
5730 ObjectToLong<Map.Entry<K,V>> transformer,
5731 long basis,
5732 LongByLongToLong reducer) {
5733 super(p, b, i, f, t); this.nextRight = nextRight;
5734 this.transformer = transformer;
5735 this.basis = basis; this.reducer = reducer;
5736 }
5737 public final Long getRawResult() { return result; }
5738 public final void compute() {
5739 final ObjectToLong<Map.Entry<K,V>> transformer;
5740 final LongByLongToLong reducer;
5741 if ((transformer = this.transformer) != null &&
5742 (reducer = this.reducer) != null) {
5743 long r = this.basis;
5744 for (int i = baseIndex, f, h; batch > 0 &&
5745 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5746 addToPendingCount(1);
5747 (rights = new MapReduceEntriesToLongTask<K,V>
5748 (this, batch >>>= 1, baseLimit = h, f, tab,
5749 rights, transformer, r, reducer)).fork();
5750 }
5751 for (Node<K,V> p; (p = advance()) != null; )
5752 r = reducer.apply(r, transformer.apply(p));
5753 result = r;
5754 CountedCompleter<?> c;
5755 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5756 @SuppressWarnings("unchecked") MapReduceEntriesToLongTask<K,V>
5757 t = (MapReduceEntriesToLongTask<K,V>)c,
5758 s = t.rights;
5759 while (s != null) {
5760 t.result = reducer.apply(t.result, s.result);
5761 s = t.rights = s.nextRight;
5762 }
5763 }
5764 }
5765 }
5766 }
5767
5768 @SuppressWarnings("serial")
5769 static final class MapReduceMappingsToLongTask<K,V>
5770 extends BulkTask<K,V,Long> {
5771 final ObjectByObjectToLong<? super K, ? super V> transformer;
5772 final LongByLongToLong reducer;
5773 final long basis;
5774 long result;
5775 MapReduceMappingsToLongTask<K,V> rights, nextRight;
5776 MapReduceMappingsToLongTask
5777 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5778 MapReduceMappingsToLongTask<K,V> nextRight,
5779 ObjectByObjectToLong<? super K, ? super V> transformer,
5780 long basis,
5781 LongByLongToLong reducer) {
5782 super(p, b, i, f, t); this.nextRight = nextRight;
5783 this.transformer = transformer;
5784 this.basis = basis; this.reducer = reducer;
5785 }
5786 public final Long getRawResult() { return result; }
5787 public final void compute() {
5788 final ObjectByObjectToLong<? super K, ? super V> transformer;
5789 final LongByLongToLong reducer;
5790 if ((transformer = this.transformer) != null &&
5791 (reducer = this.reducer) != null) {
5792 long r = this.basis;
5793 for (int i = baseIndex, f, h; batch > 0 &&
5794 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5795 addToPendingCount(1);
5796 (rights = new MapReduceMappingsToLongTask<K,V>
5797 (this, batch >>>= 1, baseLimit = h, f, tab,
5798 rights, transformer, r, reducer)).fork();
5799 }
5800 for (Node<K,V> p; (p = advance()) != null; )
5801 r = reducer.apply(r, transformer.apply(p.key, p.val));
5802 result = r;
5803 CountedCompleter<?> c;
5804 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5805 @SuppressWarnings("unchecked") MapReduceMappingsToLongTask<K,V>
5806 t = (MapReduceMappingsToLongTask<K,V>)c,
5807 s = t.rights;
5808 while (s != null) {
5809 t.result = reducer.apply(t.result, s.result);
5810 s = t.rights = s.nextRight;
5811 }
5812 }
5813 }
5814 }
5815 }
5816
5817 @SuppressWarnings("serial")
5818 static final class MapReduceKeysToIntTask<K,V>
5819 extends BulkTask<K,V,Integer> {
5820 final ObjectToInt<? super K> transformer;
5821 final IntByIntToInt reducer;
5822 final int basis;
5823 int result;
5824 MapReduceKeysToIntTask<K,V> rights, nextRight;
5825 MapReduceKeysToIntTask
5826 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5827 MapReduceKeysToIntTask<K,V> nextRight,
5828 ObjectToInt<? super K> transformer,
5829 int basis,
5830 IntByIntToInt reducer) {
5831 super(p, b, i, f, t); this.nextRight = nextRight;
5832 this.transformer = transformer;
5833 this.basis = basis; this.reducer = reducer;
5834 }
5835 public final Integer getRawResult() { return result; }
5836 public final void compute() {
5837 final ObjectToInt<? super K> transformer;
5838 final IntByIntToInt reducer;
5839 if ((transformer = this.transformer) != null &&
5840 (reducer = this.reducer) != null) {
5841 int r = this.basis;
5842 for (int i = baseIndex, f, h; batch > 0 &&
5843 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5844 addToPendingCount(1);
5845 (rights = new MapReduceKeysToIntTask<K,V>
5846 (this, batch >>>= 1, baseLimit = h, f, tab,
5847 rights, transformer, r, reducer)).fork();
5848 }
5849 for (Node<K,V> p; (p = advance()) != null; )
5850 r = reducer.apply(r, transformer.apply(p.key));
5851 result = r;
5852 CountedCompleter<?> c;
5853 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5854 @SuppressWarnings("unchecked") MapReduceKeysToIntTask<K,V>
5855 t = (MapReduceKeysToIntTask<K,V>)c,
5856 s = t.rights;
5857 while (s != null) {
5858 t.result = reducer.apply(t.result, s.result);
5859 s = t.rights = s.nextRight;
5860 }
5861 }
5862 }
5863 }
5864 }
5865
5866 @SuppressWarnings("serial")
5867 static final class MapReduceValuesToIntTask<K,V>
5868 extends BulkTask<K,V,Integer> {
5869 final ObjectToInt<? super V> transformer;
5870 final IntByIntToInt reducer;
5871 final int basis;
5872 int result;
5873 MapReduceValuesToIntTask<K,V> rights, nextRight;
5874 MapReduceValuesToIntTask
5875 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5876 MapReduceValuesToIntTask<K,V> nextRight,
5877 ObjectToInt<? super V> transformer,
5878 int basis,
5879 IntByIntToInt reducer) {
5880 super(p, b, i, f, t); this.nextRight = nextRight;
5881 this.transformer = transformer;
5882 this.basis = basis; this.reducer = reducer;
5883 }
5884 public final Integer getRawResult() { return result; }
5885 public final void compute() {
5886 final ObjectToInt<? super V> transformer;
5887 final IntByIntToInt reducer;
5888 if ((transformer = this.transformer) != null &&
5889 (reducer = this.reducer) != null) {
5890 int r = this.basis;
5891 for (int i = baseIndex, f, h; batch > 0 &&
5892 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5893 addToPendingCount(1);
5894 (rights = new MapReduceValuesToIntTask<K,V>
5895 (this, batch >>>= 1, baseLimit = h, f, tab,
5896 rights, transformer, r, reducer)).fork();
5897 }
5898 for (Node<K,V> p; (p = advance()) != null; )
5899 r = reducer.apply(r, transformer.apply(p.val));
5900 result = r;
5901 CountedCompleter<?> c;
5902 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5903 @SuppressWarnings("unchecked") MapReduceValuesToIntTask<K,V>
5904 t = (MapReduceValuesToIntTask<K,V>)c,
5905 s = t.rights;
5906 while (s != null) {
5907 t.result = reducer.apply(t.result, s.result);
5908 s = t.rights = s.nextRight;
5909 }
5910 }
5911 }
5912 }
5913 }
5914
5915 @SuppressWarnings("serial")
5916 static final class MapReduceEntriesToIntTask<K,V>
5917 extends BulkTask<K,V,Integer> {
5918 final ObjectToInt<Map.Entry<K,V>> transformer;
5919 final IntByIntToInt reducer;
5920 final int basis;
5921 int result;
5922 MapReduceEntriesToIntTask<K,V> rights, nextRight;
5923 MapReduceEntriesToIntTask
5924 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5925 MapReduceEntriesToIntTask<K,V> nextRight,
5926 ObjectToInt<Map.Entry<K,V>> transformer,
5927 int basis,
5928 IntByIntToInt reducer) {
5929 super(p, b, i, f, t); this.nextRight = nextRight;
5930 this.transformer = transformer;
5931 this.basis = basis; this.reducer = reducer;
5932 }
5933 public final Integer getRawResult() { return result; }
5934 public final void compute() {
5935 final ObjectToInt<Map.Entry<K,V>> transformer;
5936 final IntByIntToInt reducer;
5937 if ((transformer = this.transformer) != null &&
5938 (reducer = this.reducer) != null) {
5939 int r = this.basis;
5940 for (int i = baseIndex, f, h; batch > 0 &&
5941 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5942 addToPendingCount(1);
5943 (rights = new MapReduceEntriesToIntTask<K,V>
5944 (this, batch >>>= 1, baseLimit = h, f, tab,
5945 rights, transformer, r, reducer)).fork();
5946 }
5947 for (Node<K,V> p; (p = advance()) != null; )
5948 r = reducer.apply(r, transformer.apply(p));
5949 result = r;
5950 CountedCompleter<?> c;
5951 for (c = firstComplete(); c != null; c = c.nextComplete()) {
5952 @SuppressWarnings("unchecked") MapReduceEntriesToIntTask<K,V>
5953 t = (MapReduceEntriesToIntTask<K,V>)c,
5954 s = t.rights;
5955 while (s != null) {
5956 t.result = reducer.apply(t.result, s.result);
5957 s = t.rights = s.nextRight;
5958 }
5959 }
5960 }
5961 }
5962 }
5963
5964 @SuppressWarnings("serial")
5965 static final class MapReduceMappingsToIntTask<K,V>
5966 extends BulkTask<K,V,Integer> {
5967 final ObjectByObjectToInt<? super K, ? super V> transformer;
5968 final IntByIntToInt reducer;
5969 final int basis;
5970 int result;
5971 MapReduceMappingsToIntTask<K,V> rights, nextRight;
5972 MapReduceMappingsToIntTask
5973 (BulkTask<K,V,?> p, int b, int i, int f, Node<K,V>[] t,
5974 MapReduceMappingsToIntTask<K,V> nextRight,
5975 ObjectByObjectToInt<? super K, ? super V> transformer,
5976 int basis,
5977 IntByIntToInt reducer) {
5978 super(p, b, i, f, t); this.nextRight = nextRight;
5979 this.transformer = transformer;
5980 this.basis = basis; this.reducer = reducer;
5981 }
5982 public final Integer getRawResult() { return result; }
5983 public final void compute() {
5984 final ObjectByObjectToInt<? super K, ? super V> transformer;
5985 final IntByIntToInt reducer;
5986 if ((transformer = this.transformer) != null &&
5987 (reducer = this.reducer) != null) {
5988 int r = this.basis;
5989 for (int i = baseIndex, f, h; batch > 0 &&
5990 (h = ((f = baseLimit) + i) >>> 1) > i;) {
5991 addToPendingCount(1);
5992 (rights = new MapReduceMappingsToIntTask<K,V>
5993 (this, batch >>>= 1, baseLimit = h, f, tab,
5994 rights, transformer, r, reducer)).fork();
5995 }
5996 for (Node<K,V> p; (p = advance()) != null; )
5997 r = reducer.apply(r, transformer.apply(p.key, p.val));
5998 result = r;
5999 CountedCompleter<?> c;
6000 for (c = firstComplete(); c != null; c = c.nextComplete()) {
6001 @SuppressWarnings("unchecked") MapReduceMappingsToIntTask<K,V>
6002 t = (MapReduceMappingsToIntTask<K,V>)c,
6003 s = t.rights;
6004 while (s != null) {
6005 t.result = reducer.apply(t.result, s.result);
6006 s = t.rights = s.nextRight;
6007 }
6008 }
6009 }
6010 }
6011 }
6012
6013 /* ---------------- Counters -------------- */
6014
6015 // Adapted from LongAdder and Striped64.
6016 // See their internal docs for explanation.
6017
6018 // A padded cell for distributing counts
6019 static final class CounterCell {
6020 volatile long p0, p1, p2, p3, p4, p5, p6;
6021 volatile long value;
6022 volatile long q0, q1, q2, q3, q4, q5, q6;
6023 CounterCell(long x) { value = x; }
6024 }
6025
6026 /**
6027 * Holder for the thread-local hash code determining which
6028 * CounterCell to use. The code is initialized via the
6029 * counterHashCodeGenerator, but may be moved upon collisions.
6030 */
6031 static final class CounterHashCode {
6032 int code;
6033 }
6034
6035 /**
6036 * Generates initial value for per-thread CounterHashCodes.
6037 */
6038 static final AtomicInteger counterHashCodeGenerator = new AtomicInteger();
6039
6040 /**
6041 * Increment for counterHashCodeGenerator. See class ThreadLocal
6042 * for explanation.
6043 */
6044 static final int SEED_INCREMENT = 0x61c88647;
6045
6046 /**
6047 * Per-thread counter hash codes. Shared across all instances.
6048 */
6049 static final ThreadLocal<CounterHashCode> threadCounterHashCode =
6050 new ThreadLocal<CounterHashCode>();
6051
6052
6053 final long sumCount() {
6054 CounterCell[] as = counterCells; CounterCell a;
6055 long sum = baseCount;
6056 if (as != null) {
6057 for (int i = 0; i < as.length; ++i) {
6058 if ((a = as[i]) != null)
6059 sum += a.value;
6060 }
6061 }
6062 return sum;
6063 }
6064
6065 // See LongAdder version for explanation
6066 private final void fullAddCount(long x, CounterHashCode hc,
6067 boolean wasUncontended) {
6068 int h;
6069 if (hc == null) {
6070 hc = new CounterHashCode();
6071 int s = counterHashCodeGenerator.addAndGet(SEED_INCREMENT);
6072 h = hc.code = (s == 0) ? 1 : s; // Avoid zero
6073 threadCounterHashCode.set(hc);
6074 }
6075 else
6076 h = hc.code;
6077 boolean collide = false; // True if last slot nonempty
6078 for (;;) {
6079 CounterCell[] as; CounterCell a; int n; long v;
6080 if ((as = counterCells) != null && (n = as.length) > 0) {
6081 if ((a = as[(n - 1) & h]) == null) {
6082 if (cellsBusy == 0) { // Try to attach new Cell
6083 CounterCell r = new CounterCell(x); // Optimistic create
6084 if (cellsBusy == 0 &&
6085 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6086 boolean created = false;
6087 try { // Recheck under lock
6088 CounterCell[] rs; int m, j;
6089 if ((rs = counterCells) != null &&
6090 (m = rs.length) > 0 &&
6091 rs[j = (m - 1) & h] == null) {
6092 rs[j] = r;
6093 created = true;
6094 }
6095 } finally {
6096 cellsBusy = 0;
6097 }
6098 if (created)
6099 break;
6100 continue; // Slot is now non-empty
6101 }
6102 }
6103 collide = false;
6104 }
6105 else if (!wasUncontended) // CAS already known to fail
6106 wasUncontended = true; // Continue after rehash
6107 else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
6108 break;
6109 else if (counterCells != as || n >= NCPU)
6110 collide = false; // At max size or stale
6111 else if (!collide)
6112 collide = true;
6113 else if (cellsBusy == 0 &&
6114 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6115 try {
6116 if (counterCells == as) {// Expand table unless stale
6117 CounterCell[] rs = new CounterCell[n << 1];
6118 for (int i = 0; i < n; ++i)
6119 rs[i] = as[i];
6120 counterCells = rs;
6121 }
6122 } finally {
6123 cellsBusy = 0;
6124 }
6125 collide = false;
6126 continue; // Retry with expanded table
6127 }
6128 h ^= h << 13; // Rehash
6129 h ^= h >>> 17;
6130 h ^= h << 5;
6131 }
6132 else if (cellsBusy == 0 && counterCells == as &&
6133 U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
6134 boolean init = false;
6135 try { // Initialize table
6136 if (counterCells == as) {
6137 CounterCell[] rs = new CounterCell[2];
6138 rs[h & 1] = new CounterCell(x);
6139 counterCells = rs;
6140 init = true;
6141 }
6142 } finally {
6143 cellsBusy = 0;
6144 }
6145 if (init)
6146 break;
6147 }
6148 else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
6149 break; // Fall back on using base
6150 }
6151 hc.code = h; // Record index for next time
6152 }
6153
6154 // Unsafe mechanics
6155 private static final sun.misc.Unsafe U;
6156 private static final long SIZECTL;
6157 private static final long TRANSFERINDEX;
6158 private static final long TRANSFERORIGIN;
6159 private static final long BASECOUNT;
6160 private static final long CELLSBUSY;
6161 private static final long CELLVALUE;
6162 private static final long ABASE;
6163 private static final int ASHIFT;
6164
6165 static {
6166 try {
6167 U = getUnsafe();
6168 Class<?> k = ConcurrentHashMapV8.class;
6169 SIZECTL = U.objectFieldOffset
6170 (k.getDeclaredField("sizeCtl"));
6171 TRANSFERINDEX = U.objectFieldOffset
6172 (k.getDeclaredField("transferIndex"));
6173 TRANSFERORIGIN = U.objectFieldOffset
6174 (k.getDeclaredField("transferOrigin"));
6175 BASECOUNT = U.objectFieldOffset
6176 (k.getDeclaredField("baseCount"));
6177 CELLSBUSY = U.objectFieldOffset
6178 (k.getDeclaredField("cellsBusy"));
6179 Class<?> ck = CounterCell.class;
6180 CELLVALUE = U.objectFieldOffset
6181 (ck.getDeclaredField("value"));
6182 Class<?> ak = Node[].class;
6183 ABASE = U.arrayBaseOffset(ak);
6184 int scale = U.arrayIndexScale(ak);
6185 if ((scale & (scale - 1)) != 0)
6186 throw new Error("data type scale not a power of two");
6187 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
6188 } catch (Exception e) {
6189 throw new Error(e);
6190 }
6191 }
6192
6193 /**
6194 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6195 * Replace with a simple call to Unsafe.getUnsafe when integrating
6196 * into a jdk.
6197 *
6198 * @return a sun.misc.Unsafe
6199 */
6200 private static sun.misc.Unsafe getUnsafe() {
6201 try {
6202 return sun.misc.Unsafe.getUnsafe();
6203 } catch (SecurityException tryReflectionInstead) {}
6204 try {
6205 return java.security.AccessController.doPrivileged
6206 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
6207 public sun.misc.Unsafe run() throws Exception {
6208 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
6209 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
6210 f.setAccessible(true);
6211 Object x = f.get(null);
6212 if (k.isInstance(x))
6213 return k.cast(x);
6214 }
6215 throw new NoSuchFieldError("the Unsafe");
6216 }});
6217 } catch (java.security.PrivilegedActionException e) {
6218 throw new RuntimeException("Could not initialize intrinsics",
6219 e.getCause());
6220 }
6221 }
6222 }