ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166e/ConcurrentHashMapV8.java
Revision: 1.53
Committed: Mon Aug 13 18:13:30 2012 UTC (11 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.52: +18 -18 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166e;
8 import jsr166e.LongAdder;
9 import jsr166e.ForkJoinPool;
10 import jsr166e.ForkJoinTask;
11
12 import java.util.Comparator;
13 import java.util.Arrays;
14 import java.util.Map;
15 import java.util.Set;
16 import java.util.Collection;
17 import java.util.AbstractMap;
18 import java.util.AbstractSet;
19 import java.util.AbstractCollection;
20 import java.util.Hashtable;
21 import java.util.HashMap;
22 import java.util.Iterator;
23 import java.util.Enumeration;
24 import java.util.ConcurrentModificationException;
25 import java.util.NoSuchElementException;
26 import java.util.concurrent.ConcurrentMap;
27 import java.util.concurrent.ThreadLocalRandom;
28 import java.util.concurrent.locks.LockSupport;
29 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
30 import java.util.concurrent.atomic.AtomicReference;
31
32 import java.io.Serializable;
33
34 /**
35 * A hash table supporting full concurrency of retrievals and
36 * high expected concurrency for updates. This class obeys the
37 * same functional specification as {@link java.util.Hashtable}, and
38 * includes versions of methods corresponding to each method of
39 * {@code Hashtable}. However, even though all operations are
40 * thread-safe, retrieval operations do <em>not</em> entail locking,
41 * and there is <em>not</em> any support for locking the entire table
42 * in a way that prevents all access. This class is fully
43 * interoperable with {@code Hashtable} in programs that rely on its
44 * thread safety but not on its synchronization details.
45 *
46 * <p> Retrieval operations (including {@code get}) generally do not
47 * block, so may overlap with update operations (including {@code put}
48 * and {@code remove}). Retrievals reflect the results of the most
49 * recently <em>completed</em> update operations holding upon their
50 * onset. For aggregate operations such as {@code putAll} and {@code
51 * clear}, concurrent retrievals may reflect insertion or removal of
52 * only some entries. Similarly, Iterators and Enumerations return
53 * elements reflecting the state of the hash table at some point at or
54 * since the creation of the iterator/enumeration. They do
55 * <em>not</em> throw {@link ConcurrentModificationException}.
56 * However, iterators are designed to be used by only one thread at a
57 * time. Bear in mind that the results of aggregate status methods
58 * including {@code size}, {@code isEmpty}, and {@code containsValue}
59 * are typically useful only when a map is not undergoing concurrent
60 * updates in other threads. Otherwise the results of these methods
61 * reflect transient states that may be adequate for monitoring
62 * or estimation purposes, but not for program control.
63 *
64 * <p> The table is dynamically expanded when there are too many
65 * collisions (i.e., keys that have distinct hash codes but fall into
66 * the same slot modulo the table size), with the expected average
67 * effect of maintaining roughly two bins per mapping (corresponding
68 * to a 0.75 load factor threshold for resizing). There may be much
69 * variance around this average as mappings are added and removed, but
70 * overall, this maintains a commonly accepted time/space tradeoff for
71 * hash tables. However, resizing this or any other kind of hash
72 * table may be a relatively slow operation. When possible, it is a
73 * good idea to provide a size estimate as an optional {@code
74 * initialCapacity} constructor argument. An additional optional
75 * {@code loadFactor} constructor argument provides a further means of
76 * customizing initial table capacity by specifying the table density
77 * to be used in calculating the amount of space to allocate for the
78 * given number of elements. Also, for compatibility with previous
79 * versions of this class, constructors may optionally specify an
80 * expected {@code concurrencyLevel} as an additional hint for
81 * internal sizing. Note that using many keys with exactly the same
82 * {@code hashCode()} is a sure way to slow down performance of any
83 * hash table.
84 *
85 * <p>This class and its views and iterators implement all of the
86 * <em>optional</em> methods of the {@link Map} and {@link Iterator}
87 * interfaces.
88 *
89 * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
90 * does <em>not</em> allow {@code null} to be used as a key or value.
91 *
92 * <p>This class is a member of the
93 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
94 * Java Collections Framework</a>.
95 *
96 * <p><em>jsr166e note: This class is a candidate replacement for
97 * java.util.concurrent.ConcurrentHashMap. During transition, this
98 * class declares and uses nested functional interfaces with different
99 * names but the same forms as those expected for JDK8.<em>
100 *
101 * @since 1.5
102 * @author Doug Lea
103 * @param <K> the type of keys maintained by this map
104 * @param <V> the type of mapped values
105 */
106 public class ConcurrentHashMapV8<K, V>
107 implements ConcurrentMap<K, V>, Serializable {
108 private static final long serialVersionUID = 7249069246763182397L;
109
110 /**
111 * A partitionable iterator. A Spliterator can be traversed
112 * directly, but can also be partitioned (before traversal) by
113 * creating another Spliterator that covers a non-overlapping
114 * portion of the elements, and so may be amenable to parallel
115 * execution.
116 *
117 * <p> This interface exports a subset of expected JDK8
118 * functionality.
119 *
120 * <p>Sample usage: Here is one (of the several) ways to compute
121 * the sum of the values held in a map using the ForkJoin
122 * framework. As illustrated here, Spliterators are well suited to
123 * designs in which a task repeatedly splits off half its work
124 * into forked subtasks until small enough to process directly,
125 * and then joins these subtasks. Variants of this style can also
126 * be used in completion-based designs.
127 *
128 * <pre>
129 * {@code ConcurrentHashMapV8<String, Long> m = ...
130 * // split as if have 8 * parallelism, for load balance
131 * int n = m.size();
132 * int p = aForkJoinPool.getParallelism() * 8;
133 * int split = (n < p)? n : p;
134 * long sum = aForkJoinPool.invoke(new SumValues(m.valueSpliterator(), split, null));
135 * // ...
136 * static class SumValues extends RecursiveTask<Long> {
137 * final Spliterator<Long> s;
138 * final int split; // split while > 1
139 * final SumValues nextJoin; // records forked subtasks to join
140 * SumValues(Spliterator<Long> s, int depth, SumValues nextJoin) {
141 * this.s = s; this.depth = depth; this.nextJoin = nextJoin;
142 * }
143 * public Long compute() {
144 * long sum = 0;
145 * SumValues subtasks = null; // fork subtasks
146 * for (int s = split >>> 1; s > 0; s >>>= 1)
147 * (subtasks = new SumValues(s.split(), s, subtasks)).fork();
148 * while (s.hasNext()) // directly process remaining elements
149 * sum += s.next();
150 * for (SumValues t = subtasks; t != null; t = t.nextJoin)
151 * sum += t.join(); // collect subtask results
152 * return sum;
153 * }
154 * }
155 * }</pre>
156 */
157 public static interface Spliterator<T> extends Iterator<T> {
158 /**
159 * Returns a Spliterator covering approximately half of the
160 * elements, guaranteed not to overlap with those subsequently
161 * returned by this Spliterator. After invoking this method,
162 * the current Spliterator will <em>not</em> produce any of
163 * the elements of the returned Spliterator, but the two
164 * Spliterators together will produce all of the elements that
165 * would have been produced by this Spliterator had this
166 * method not been called. The exact number of elements
167 * produced by the returned Spliterator is not guaranteed, and
168 * may be zero (i.e., with {@code hasNext()} reporting {@code
169 * false}) if this Spliterator cannot be further split.
170 *
171 * @return a Spliterator covering approximately half of the
172 * elements
173 * @throws IllegalStateException if this Spliterator has
174 * already commenced traversing elements
175 */
176 Spliterator<T> split();
177 }
178
179 /*
180 * Overview:
181 *
182 * The primary design goal of this hash table is to maintain
183 * concurrent readability (typically method get(), but also
184 * iterators and related methods) while minimizing update
185 * contention. Secondary goals are to keep space consumption about
186 * the same or better than java.util.HashMap, and to support high
187 * initial insertion rates on an empty table by many threads.
188 *
189 * Each key-value mapping is held in a Node. Because Node fields
190 * can contain special values, they are defined using plain Object
191 * types. Similarly in turn, all internal methods that use them
192 * work off Object types. And similarly, so do the internal
193 * methods of auxiliary iterator and view classes. All public
194 * generic typed methods relay in/out of these internal methods,
195 * supplying null-checks and casts as needed. This also allows
196 * many of the public methods to be factored into a smaller number
197 * of internal methods (although sadly not so for the five
198 * variants of put-related operations). The validation-based
199 * approach explained below leads to a lot of code sprawl because
200 * retry-control precludes factoring into smaller methods.
201 *
202 * The table is lazily initialized to a power-of-two size upon the
203 * first insertion. Each bin in the table normally contains a
204 * list of Nodes (most often, the list has only zero or one Node).
205 * Table accesses require volatile/atomic reads, writes, and
206 * CASes. Because there is no other way to arrange this without
207 * adding further indirections, we use intrinsics
208 * (sun.misc.Unsafe) operations. The lists of nodes within bins
209 * are always accurately traversable under volatile reads, so long
210 * as lookups check hash code and non-nullness of value before
211 * checking key equality.
212 *
213 * We use the top two bits of Node hash fields for control
214 * purposes -- they are available anyway because of addressing
215 * constraints. As explained further below, these top bits are
216 * used as follows:
217 * 00 - Normal
218 * 01 - Locked
219 * 11 - Locked and may have a thread waiting for lock
220 * 10 - Node is a forwarding node
221 *
222 * The lower 30 bits of each Node's hash field contain a
223 * transformation of the key's hash code, except for forwarding
224 * nodes, for which the lower bits are zero (and so always have
225 * hash field == MOVED).
226 *
227 * Insertion (via put or its variants) of the first node in an
228 * empty bin is performed by just CASing it to the bin. This is
229 * by far the most common case for put operations under most
230 * key/hash distributions. Other update operations (insert,
231 * delete, and replace) require locks. We do not want to waste
232 * the space required to associate a distinct lock object with
233 * each bin, so instead use the first node of a bin list itself as
234 * a lock. Blocking support for these locks relies on the builtin
235 * "synchronized" monitors. However, we also need a tryLock
236 * construction, so we overlay these by using bits of the Node
237 * hash field for lock control (see above), and so normally use
238 * builtin monitors only for blocking and signalling using
239 * wait/notifyAll constructions. See Node.tryAwaitLock.
240 *
241 * Using the first node of a list as a lock does not by itself
242 * suffice though: When a node is locked, any update must first
243 * validate that it is still the first node after locking it, and
244 * retry if not. Because new nodes are always appended to lists,
245 * once a node is first in a bin, it remains first until deleted
246 * or the bin becomes invalidated (upon resizing). However,
247 * operations that only conditionally update may inspect nodes
248 * until the point of update. This is a converse of sorts to the
249 * lazy locking technique described by Herlihy & Shavit.
250 *
251 * The main disadvantage of per-bin locks is that other update
252 * operations on other nodes in a bin list protected by the same
253 * lock can stall, for example when user equals() or mapping
254 * functions take a long time. However, statistically, under
255 * random hash codes, this is not a common problem. Ideally, the
256 * frequency of nodes in bins follows a Poisson distribution
257 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
258 * parameter of about 0.5 on average, given the resizing threshold
259 * of 0.75, although with a large variance because of resizing
260 * granularity. Ignoring variance, the expected occurrences of
261 * list size k are (exp(-0.5) * pow(0.5, k) / factorial(k)). The
262 * first values are:
263 *
264 * 0: 0.60653066
265 * 1: 0.30326533
266 * 2: 0.07581633
267 * 3: 0.01263606
268 * 4: 0.00157952
269 * 5: 0.00015795
270 * 6: 0.00001316
271 * 7: 0.00000094
272 * 8: 0.00000006
273 * more: less than 1 in ten million
274 *
275 * Lock contention probability for two threads accessing distinct
276 * elements is roughly 1 / (8 * #elements) under random hashes.
277 *
278 * Actual hash code distributions encountered in practice
279 * sometimes deviate significantly from uniform randomness. This
280 * includes the case when N > (1<<30), so some keys MUST collide.
281 * Similarly for dumb or hostile usages in which multiple keys are
282 * designed to have identical hash codes. Also, although we guard
283 * against the worst effects of this (see method spread), sets of
284 * hashes may differ only in bits that do not impact their bin
285 * index for a given power-of-two mask. So we use a secondary
286 * strategy that applies when the number of nodes in a bin exceeds
287 * a threshold, and at least one of the keys implements
288 * Comparable. These TreeBins use a balanced tree to hold nodes
289 * (a specialized form of red-black trees), bounding search time
290 * to O(log N). Each search step in a TreeBin is around twice as
291 * slow as in a regular list, but given that N cannot exceed
292 * (1<<64) (before running out of addresses) this bounds search
293 * steps, lock hold times, etc, to reasonable constants (roughly
294 * 100 nodes inspected per operation worst case) so long as keys
295 * are Comparable (which is very common -- String, Long, etc).
296 * TreeBin nodes (TreeNodes) also maintain the same "next"
297 * traversal pointers as regular nodes, so can be traversed in
298 * iterators in the same way.
299 *
300 * The table is resized when occupancy exceeds a percentage
301 * threshold (nominally, 0.75, but see below). Only a single
302 * thread performs the resize (using field "sizeCtl", to arrange
303 * exclusion), but the table otherwise remains usable for reads
304 * and updates. Resizing proceeds by transferring bins, one by
305 * one, from the table to the next table. Because we are using
306 * power-of-two expansion, the elements from each bin must either
307 * stay at same index, or move with a power of two offset. We
308 * eliminate unnecessary node creation by catching cases where old
309 * nodes can be reused because their next fields won't change. On
310 * average, only about one-sixth of them need cloning when a table
311 * doubles. The nodes they replace will be garbage collectable as
312 * soon as they are no longer referenced by any reader thread that
313 * may be in the midst of concurrently traversing table. Upon
314 * transfer, the old table bin contains only a special forwarding
315 * node (with hash field "MOVED") that contains the next table as
316 * its key. On encountering a forwarding node, access and update
317 * operations restart, using the new table.
318 *
319 * Each bin transfer requires its bin lock. However, unlike other
320 * cases, a transfer can skip a bin if it fails to acquire its
321 * lock, and revisit it later (unless it is a TreeBin). Method
322 * rebuild maintains a buffer of TRANSFER_BUFFER_SIZE bins that
323 * have been skipped because of failure to acquire a lock, and
324 * blocks only if none are available (i.e., only very rarely).
325 * The transfer operation must also ensure that all accessible
326 * bins in both the old and new table are usable by any traversal.
327 * When there are no lock acquisition failures, this is arranged
328 * simply by proceeding from the last bin (table.length - 1) up
329 * towards the first. Upon seeing a forwarding node, traversals
330 * (see class Iter) arrange to move to the new table
331 * without revisiting nodes. However, when any node is skipped
332 * during a transfer, all earlier table bins may have become
333 * visible, so are initialized with a reverse-forwarding node back
334 * to the old table until the new ones are established. (This
335 * sometimes requires transiently locking a forwarding node, which
336 * is possible under the above encoding.) These more expensive
337 * mechanics trigger only when necessary.
338 *
339 * The traversal scheme also applies to partial traversals of
340 * ranges of bins (via an alternate Traverser constructor)
341 * to support partitioned aggregate operations. Also, read-only
342 * operations give up if ever forwarded to a null table, which
343 * provides support for shutdown-style clearing, which is also not
344 * currently implemented.
345 *
346 * Lazy table initialization minimizes footprint until first use,
347 * and also avoids resizings when the first operation is from a
348 * putAll, constructor with map argument, or deserialization.
349 * These cases attempt to override the initial capacity settings,
350 * but harmlessly fail to take effect in cases of races.
351 *
352 * The element count is maintained using a LongAdder, which avoids
353 * contention on updates but can encounter cache thrashing if read
354 * too frequently during concurrent access. To avoid reading so
355 * often, resizing is attempted either when a bin lock is
356 * contended, or upon adding to a bin already holding two or more
357 * nodes (checked before adding in the xIfAbsent methods, after
358 * adding in others). Under uniform hash distributions, the
359 * probability of this occurring at threshold is around 13%,
360 * meaning that only about 1 in 8 puts check threshold (and after
361 * resizing, many fewer do so). But this approximation has high
362 * variance for small table sizes, so we check on any collision
363 * for sizes <= 64. The bulk putAll operation further reduces
364 * contention by only committing count updates upon these size
365 * checks.
366 *
367 * Maintaining API and serialization compatibility with previous
368 * versions of this class introduces several oddities. Mainly: We
369 * leave untouched but unused constructor arguments refering to
370 * concurrencyLevel. We accept a loadFactor constructor argument,
371 * but apply it only to initial table capacity (which is the only
372 * time that we can guarantee to honor it.) We also declare an
373 * unused "Segment" class that is instantiated in minimal form
374 * only when serializing.
375 */
376
377 /* ---------------- Constants -------------- */
378
379 /**
380 * The largest possible table capacity. This value must be
381 * exactly 1<<30 to stay within Java array allocation and indexing
382 * bounds for power of two table sizes, and is further required
383 * because the top two bits of 32bit hash fields are used for
384 * control purposes.
385 */
386 private static final int MAXIMUM_CAPACITY = 1 << 30;
387
388 /**
389 * The default initial table capacity. Must be a power of 2
390 * (i.e., at least 1) and at most MAXIMUM_CAPACITY.
391 */
392 private static final int DEFAULT_CAPACITY = 16;
393
394 /**
395 * The largest possible (non-power of two) array size.
396 * Needed by toArray and related methods.
397 */
398 static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
399
400 /**
401 * The default concurrency level for this table. Unused but
402 * defined for compatibility with previous versions of this class.
403 */
404 private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
405
406 /**
407 * The load factor for this table. Overrides of this value in
408 * constructors affect only the initial table capacity. The
409 * actual floating point value isn't normally used -- it is
410 * simpler to use expressions such as {@code n - (n >>> 2)} for
411 * the associated resizing threshold.
412 */
413 private static final float LOAD_FACTOR = 0.75f;
414
415 /**
416 * The buffer size for skipped bins during transfers. The
417 * value is arbitrary but should be large enough to avoid
418 * most locking stalls during resizes.
419 */
420 private static final int TRANSFER_BUFFER_SIZE = 32;
421
422 /**
423 * The bin count threshold for using a tree rather than list for a
424 * bin. The value reflects the approximate break-even point for
425 * using tree-based operations.
426 */
427 private static final int TREE_THRESHOLD = 8;
428
429 /*
430 * Encodings for special uses of Node hash fields. See above for
431 * explanation.
432 */
433 static final int MOVED = 0x80000000; // hash field for forwarding nodes
434 static final int LOCKED = 0x40000000; // set/tested only as a bit
435 static final int WAITING = 0xc0000000; // both bits set/tested together
436 static final int HASH_BITS = 0x3fffffff; // usable bits of normal node hash
437
438 /* ---------------- Fields -------------- */
439
440 /**
441 * The array of bins. Lazily initialized upon first insertion.
442 * Size is always a power of two. Accessed directly by iterators.
443 */
444 transient volatile Node[] table;
445
446 /**
447 * The counter maintaining number of elements.
448 */
449 private transient final LongAdder counter;
450
451 /**
452 * Table initialization and resizing control. When negative, the
453 * table is being initialized or resized. Otherwise, when table is
454 * null, holds the initial table size to use upon creation, or 0
455 * for default. After initialization, holds the next element count
456 * value upon which to resize the table.
457 */
458 private transient volatile int sizeCtl;
459
460 // views
461 private transient KeySet<K,V> keySet;
462 private transient Values<K,V> values;
463 private transient EntrySet<K,V> entrySet;
464
465 /** For serialization compatibility. Null unless serialized; see below */
466 private Segment<K,V>[] segments;
467
468 /* ---------------- Table element access -------------- */
469
470 /*
471 * Volatile access methods are used for table elements as well as
472 * elements of in-progress next table while resizing. Uses are
473 * null checked by callers, and implicitly bounds-checked, relying
474 * on the invariants that tab arrays have non-zero size, and all
475 * indices are masked with (tab.length - 1) which is never
476 * negative and always less than length. Note that, to be correct
477 * wrt arbitrary concurrency errors by users, bounds checks must
478 * operate on local variables, which accounts for some odd-looking
479 * inline assignments below.
480 */
481
482 static final Node tabAt(Node[] tab, int i) { // used by Iter
483 return (Node)UNSAFE.getObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE);
484 }
485
486 private static final boolean casTabAt(Node[] tab, int i, Node c, Node v) {
487 return UNSAFE.compareAndSwapObject(tab, ((long)i<<ASHIFT)+ABASE, c, v);
488 }
489
490 private static final void setTabAt(Node[] tab, int i, Node v) {
491 UNSAFE.putObjectVolatile(tab, ((long)i<<ASHIFT)+ABASE, v);
492 }
493
494 /* ---------------- Nodes -------------- */
495
496 /**
497 * Key-value entry. Note that this is never exported out as a
498 * user-visible Map.Entry (see MapEntry below). Nodes with a hash
499 * field of MOVED are special, and do not contain user keys or
500 * values. Otherwise, keys are never null, and null val fields
501 * indicate that a node is in the process of being deleted or
502 * created. For purposes of read-only access, a key may be read
503 * before a val, but can only be used after checking val to be
504 * non-null.
505 */
506 static class Node {
507 volatile int hash;
508 final Object key;
509 volatile Object val;
510 volatile Node next;
511
512 Node(int hash, Object key, Object val, Node next) {
513 this.hash = hash;
514 this.key = key;
515 this.val = val;
516 this.next = next;
517 }
518
519 /** CompareAndSet the hash field */
520 final boolean casHash(int cmp, int val) {
521 return UNSAFE.compareAndSwapInt(this, hashOffset, cmp, val);
522 }
523
524 /** The number of spins before blocking for a lock */
525 static final int MAX_SPINS =
526 Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1;
527
528 /**
529 * Spins a while if LOCKED bit set and this node is the first
530 * of its bin, and then sets WAITING bits on hash field and
531 * blocks (once) if they are still set. It is OK for this
532 * method to return even if lock is not available upon exit,
533 * which enables these simple single-wait mechanics.
534 *
535 * The corresponding signalling operation is performed within
536 * callers: Upon detecting that WAITING has been set when
537 * unlocking lock (via a failed CAS from non-waiting LOCKED
538 * state), unlockers acquire the sync lock and perform a
539 * notifyAll.
540 */
541 final void tryAwaitLock(Node[] tab, int i) {
542 if (tab != null && i >= 0 && i < tab.length) { // bounds check
543 int r = ThreadLocalRandom.current().nextInt(); // randomize spins
544 int spins = MAX_SPINS, h;
545 while (tabAt(tab, i) == this && ((h = hash) & LOCKED) != 0) {
546 if (spins >= 0) {
547 r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
548 if (r >= 0 && --spins == 0)
549 Thread.yield(); // yield before block
550 }
551 else if (casHash(h, h | WAITING)) {
552 synchronized (this) {
553 if (tabAt(tab, i) == this &&
554 (hash & WAITING) == WAITING) {
555 try {
556 wait();
557 } catch (InterruptedException ie) {
558 Thread.currentThread().interrupt();
559 }
560 }
561 else
562 notifyAll(); // possibly won race vs signaller
563 }
564 break;
565 }
566 }
567 }
568 }
569
570 // Unsafe mechanics for casHash
571 private static final sun.misc.Unsafe UNSAFE;
572 private static final long hashOffset;
573
574 static {
575 try {
576 UNSAFE = getUnsafe();
577 Class<?> k = Node.class;
578 hashOffset = UNSAFE.objectFieldOffset
579 (k.getDeclaredField("hash"));
580 } catch (Exception e) {
581 throw new Error(e);
582 }
583 }
584 }
585
586 /* ---------------- TreeBins -------------- */
587
588 /**
589 * Nodes for use in TreeBins
590 */
591 static final class TreeNode extends Node {
592 TreeNode parent; // red-black tree links
593 TreeNode left;
594 TreeNode right;
595 TreeNode prev; // needed to unlink next upon deletion
596 boolean red;
597
598 TreeNode(int hash, Object key, Object val, Node next, TreeNode parent) {
599 super(hash, key, val, next);
600 this.parent = parent;
601 }
602 }
603
604 /**
605 * A specialized form of red-black tree for use in bins
606 * whose size exceeds a threshold.
607 *
608 * TreeBins use a special form of comparison for search and
609 * related operations (which is the main reason we cannot use
610 * existing collections such as TreeMaps). TreeBins contain
611 * Comparable elements, but may contain others, as well as
612 * elements that are Comparable but not necessarily Comparable<T>
613 * for the same T, so we cannot invoke compareTo among them. To
614 * handle this, the tree is ordered primarily by hash value, then
615 * by getClass().getName() order, and then by Comparator order
616 * among elements of the same class. On lookup at a node, if
617 * elements are not comparable or compare as 0, both left and
618 * right children may need to be searched in the case of tied hash
619 * values. (This corresponds to the full list search that would be
620 * necessary if all elements were non-Comparable and had tied
621 * hashes.) The red-black balancing code is updated from
622 * pre-jdk-collections
623 * (http://gee.cs.oswego.edu/dl/classes/collections/RBCell.java)
624 * based in turn on Cormen, Leiserson, and Rivest "Introduction to
625 * Algorithms" (CLR).
626 *
627 * TreeBins also maintain a separate locking discipline than
628 * regular bins. Because they are forwarded via special MOVED
629 * nodes at bin heads (which can never change once established),
630 * we cannot use those nodes as locks. Instead, TreeBin
631 * extends AbstractQueuedSynchronizer to support a simple form of
632 * read-write lock. For update operations and table validation,
633 * the exclusive form of lock behaves in the same way as bin-head
634 * locks. However, lookups use shared read-lock mechanics to allow
635 * multiple readers in the absence of writers. Additionally,
636 * these lookups do not ever block: While the lock is not
637 * available, they proceed along the slow traversal path (via
638 * next-pointers) until the lock becomes available or the list is
639 * exhausted, whichever comes first. (These cases are not fast,
640 * but maximize aggregate expected throughput.) The AQS mechanics
641 * for doing this are straightforward. The lock state is held as
642 * AQS getState(). Read counts are negative; the write count (1)
643 * is positive. There are no signalling preferences among readers
644 * and writers. Since we don't need to export full Lock API, we
645 * just override the minimal AQS methods and use them directly.
646 */
647 static final class TreeBin extends AbstractQueuedSynchronizer {
648 private static final long serialVersionUID = 2249069246763182397L;
649 transient TreeNode root; // root of tree
650 transient TreeNode first; // head of next-pointer list
651
652 /* AQS overrides */
653 public final boolean isHeldExclusively() { return getState() > 0; }
654 public final boolean tryAcquire(int ignore) {
655 if (compareAndSetState(0, 1)) {
656 setExclusiveOwnerThread(Thread.currentThread());
657 return true;
658 }
659 return false;
660 }
661 public final boolean tryRelease(int ignore) {
662 setExclusiveOwnerThread(null);
663 setState(0);
664 return true;
665 }
666 public final int tryAcquireShared(int ignore) {
667 for (int c;;) {
668 if ((c = getState()) > 0)
669 return -1;
670 if (compareAndSetState(c, c -1))
671 return 1;
672 }
673 }
674 public final boolean tryReleaseShared(int ignore) {
675 int c;
676 do {} while (!compareAndSetState(c = getState(), c + 1));
677 return c == -1;
678 }
679
680 /** From CLR */
681 private void rotateLeft(TreeNode p) {
682 if (p != null) {
683 TreeNode r = p.right, pp, rl;
684 if ((rl = p.right = r.left) != null)
685 rl.parent = p;
686 if ((pp = r.parent = p.parent) == null)
687 root = r;
688 else if (pp.left == p)
689 pp.left = r;
690 else
691 pp.right = r;
692 r.left = p;
693 p.parent = r;
694 }
695 }
696
697 /** From CLR */
698 private void rotateRight(TreeNode p) {
699 if (p != null) {
700 TreeNode l = p.left, pp, lr;
701 if ((lr = p.left = l.right) != null)
702 lr.parent = p;
703 if ((pp = l.parent = p.parent) == null)
704 root = l;
705 else if (pp.right == p)
706 pp.right = l;
707 else
708 pp.left = l;
709 l.right = p;
710 p.parent = l;
711 }
712 }
713
714 /**
715 * Return the TreeNode (or null if not found) for the given key
716 * starting at given root.
717 */
718 @SuppressWarnings("unchecked") // suppress Comparable cast warning
719 final TreeNode getTreeNode(int h, Object k, TreeNode p) {
720 Class<?> c = k.getClass();
721 while (p != null) {
722 int dir, ph; Object pk; Class<?> pc;
723 if ((ph = p.hash) == h) {
724 if ((pk = p.key) == k || k.equals(pk))
725 return p;
726 if (c != (pc = pk.getClass()) ||
727 !(k instanceof Comparable) ||
728 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
729 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
730 TreeNode r = null, s = null, pl, pr;
731 if (dir >= 0) {
732 if ((pl = p.left) != null && h <= pl.hash)
733 s = pl;
734 }
735 else if ((pr = p.right) != null && h >= pr.hash)
736 s = pr;
737 if (s != null && (r = getTreeNode(h, k, s)) != null)
738 return r;
739 }
740 }
741 else
742 dir = (h < ph) ? -1 : 1;
743 p = (dir > 0) ? p.right : p.left;
744 }
745 return null;
746 }
747
748 /**
749 * Wrapper for getTreeNode used by CHM.get. Tries to obtain
750 * read-lock to call getTreeNode, but during failure to get
751 * lock, searches along next links.
752 */
753 final Object getValue(int h, Object k) {
754 Node r = null;
755 int c = getState(); // Must read lock state first
756 for (Node e = first; e != null; e = e.next) {
757 if (c <= 0 && compareAndSetState(c, c - 1)) {
758 try {
759 r = getTreeNode(h, k, root);
760 } finally {
761 releaseShared(0);
762 }
763 break;
764 }
765 else if ((e.hash & HASH_BITS) == h && k.equals(e.key)) {
766 r = e;
767 break;
768 }
769 else
770 c = getState();
771 }
772 return r == null ? null : r.val;
773 }
774
775 /**
776 * Finds or adds a node.
777 * @return null if added
778 */
779 @SuppressWarnings("unchecked") // suppress Comparable cast warning
780 final TreeNode putTreeNode(int h, Object k, Object v) {
781 Class<?> c = k.getClass();
782 TreeNode pp = root, p = null;
783 int dir = 0;
784 while (pp != null) { // find existing node or leaf to insert at
785 int ph; Object pk; Class<?> pc;
786 p = pp;
787 if ((ph = p.hash) == h) {
788 if ((pk = p.key) == k || k.equals(pk))
789 return p;
790 if (c != (pc = pk.getClass()) ||
791 !(k instanceof Comparable) ||
792 (dir = ((Comparable)k).compareTo((Comparable)pk)) == 0) {
793 dir = (c == pc) ? 0 : c.getName().compareTo(pc.getName());
794 TreeNode r = null, s = null, pl, pr;
795 if (dir >= 0) {
796 if ((pl = p.left) != null && h <= pl.hash)
797 s = pl;
798 }
799 else if ((pr = p.right) != null && h >= pr.hash)
800 s = pr;
801 if (s != null && (r = getTreeNode(h, k, s)) != null)
802 return r;
803 }
804 }
805 else
806 dir = (h < ph) ? -1 : 1;
807 pp = (dir > 0) ? p.right : p.left;
808 }
809
810 TreeNode f = first;
811 TreeNode x = first = new TreeNode(h, k, v, f, p);
812 if (p == null)
813 root = x;
814 else { // attach and rebalance; adapted from CLR
815 TreeNode xp, xpp;
816 if (f != null)
817 f.prev = x;
818 if (dir <= 0)
819 p.left = x;
820 else
821 p.right = x;
822 x.red = true;
823 while (x != null && (xp = x.parent) != null && xp.red &&
824 (xpp = xp.parent) != null) {
825 TreeNode xppl = xpp.left;
826 if (xp == xppl) {
827 TreeNode y = xpp.right;
828 if (y != null && y.red) {
829 y.red = false;
830 xp.red = false;
831 xpp.red = true;
832 x = xpp;
833 }
834 else {
835 if (x == xp.right) {
836 rotateLeft(x = xp);
837 xpp = (xp = x.parent) == null ? null : xp.parent;
838 }
839 if (xp != null) {
840 xp.red = false;
841 if (xpp != null) {
842 xpp.red = true;
843 rotateRight(xpp);
844 }
845 }
846 }
847 }
848 else {
849 TreeNode y = xppl;
850 if (y != null && y.red) {
851 y.red = false;
852 xp.red = false;
853 xpp.red = true;
854 x = xpp;
855 }
856 else {
857 if (x == xp.left) {
858 rotateRight(x = xp);
859 xpp = (xp = x.parent) == null ? null : xp.parent;
860 }
861 if (xp != null) {
862 xp.red = false;
863 if (xpp != null) {
864 xpp.red = true;
865 rotateLeft(xpp);
866 }
867 }
868 }
869 }
870 }
871 TreeNode r = root;
872 if (r != null && r.red)
873 r.red = false;
874 }
875 return null;
876 }
877
878 /**
879 * Removes the given node, that must be present before this
880 * call. This is messier than typical red-black deletion code
881 * because we cannot swap the contents of an interior node
882 * with a leaf successor that is pinned by "next" pointers
883 * that are accessible independently of lock. So instead we
884 * swap the tree linkages.
885 */
886 final void deleteTreeNode(TreeNode p) {
887 TreeNode next = (TreeNode)p.next; // unlink traversal pointers
888 TreeNode pred = p.prev;
889 if (pred == null)
890 first = next;
891 else
892 pred.next = next;
893 if (next != null)
894 next.prev = pred;
895 TreeNode replacement;
896 TreeNode pl = p.left;
897 TreeNode pr = p.right;
898 if (pl != null && pr != null) {
899 TreeNode s = pr, sl;
900 while ((sl = s.left) != null) // find successor
901 s = sl;
902 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
903 TreeNode sr = s.right;
904 TreeNode pp = p.parent;
905 if (s == pr) { // p was s's direct parent
906 p.parent = s;
907 s.right = p;
908 }
909 else {
910 TreeNode sp = s.parent;
911 if ((p.parent = sp) != null) {
912 if (s == sp.left)
913 sp.left = p;
914 else
915 sp.right = p;
916 }
917 if ((s.right = pr) != null)
918 pr.parent = s;
919 }
920 p.left = null;
921 if ((p.right = sr) != null)
922 sr.parent = p;
923 if ((s.left = pl) != null)
924 pl.parent = s;
925 if ((s.parent = pp) == null)
926 root = s;
927 else if (p == pp.left)
928 pp.left = s;
929 else
930 pp.right = s;
931 replacement = sr;
932 }
933 else
934 replacement = (pl != null) ? pl : pr;
935 TreeNode pp = p.parent;
936 if (replacement == null) {
937 if (pp == null) {
938 root = null;
939 return;
940 }
941 replacement = p;
942 }
943 else {
944 replacement.parent = pp;
945 if (pp == null)
946 root = replacement;
947 else if (p == pp.left)
948 pp.left = replacement;
949 else
950 pp.right = replacement;
951 p.left = p.right = p.parent = null;
952 }
953 if (!p.red) { // rebalance, from CLR
954 TreeNode x = replacement;
955 while (x != null) {
956 TreeNode xp, xpl;
957 if (x.red || (xp = x.parent) == null) {
958 x.red = false;
959 break;
960 }
961 if (x == (xpl = xp.left)) {
962 TreeNode sib = xp.right;
963 if (sib != null && sib.red) {
964 sib.red = false;
965 xp.red = true;
966 rotateLeft(xp);
967 sib = (xp = x.parent) == null ? null : xp.right;
968 }
969 if (sib == null)
970 x = xp;
971 else {
972 TreeNode sl = sib.left, sr = sib.right;
973 if ((sr == null || !sr.red) &&
974 (sl == null || !sl.red)) {
975 sib.red = true;
976 x = xp;
977 }
978 else {
979 if (sr == null || !sr.red) {
980 if (sl != null)
981 sl.red = false;
982 sib.red = true;
983 rotateRight(sib);
984 sib = (xp = x.parent) == null ? null : xp.right;
985 }
986 if (sib != null) {
987 sib.red = (xp == null) ? false : xp.red;
988 if ((sr = sib.right) != null)
989 sr.red = false;
990 }
991 if (xp != null) {
992 xp.red = false;
993 rotateLeft(xp);
994 }
995 x = root;
996 }
997 }
998 }
999 else { // symmetric
1000 TreeNode sib = xpl;
1001 if (sib != null && sib.red) {
1002 sib.red = false;
1003 xp.red = true;
1004 rotateRight(xp);
1005 sib = (xp = x.parent) == null ? null : xp.left;
1006 }
1007 if (sib == null)
1008 x = xp;
1009 else {
1010 TreeNode sl = sib.left, sr = sib.right;
1011 if ((sl == null || !sl.red) &&
1012 (sr == null || !sr.red)) {
1013 sib.red = true;
1014 x = xp;
1015 }
1016 else {
1017 if (sl == null || !sl.red) {
1018 if (sr != null)
1019 sr.red = false;
1020 sib.red = true;
1021 rotateLeft(sib);
1022 sib = (xp = x.parent) == null ? null : xp.left;
1023 }
1024 if (sib != null) {
1025 sib.red = (xp == null) ? false : xp.red;
1026 if ((sl = sib.left) != null)
1027 sl.red = false;
1028 }
1029 if (xp != null) {
1030 xp.red = false;
1031 rotateRight(xp);
1032 }
1033 x = root;
1034 }
1035 }
1036 }
1037 }
1038 }
1039 if (p == replacement && (pp = p.parent) != null) {
1040 if (p == pp.left) // detach pointers
1041 pp.left = null;
1042 else if (p == pp.right)
1043 pp.right = null;
1044 p.parent = null;
1045 }
1046 }
1047 }
1048
1049 /* ---------------- Collision reduction methods -------------- */
1050
1051 /**
1052 * Spreads higher bits to lower, and also forces top 2 bits to 0.
1053 * Because the table uses power-of-two masking, sets of hashes
1054 * that vary only in bits above the current mask will always
1055 * collide. (Among known examples are sets of Float keys holding
1056 * consecutive whole numbers in small tables.) To counter this,
1057 * we apply a transform that spreads the impact of higher bits
1058 * downward. There is a tradeoff between speed, utility, and
1059 * quality of bit-spreading. Because many common sets of hashes
1060 * are already reasonably distributed across bits (so don't benefit
1061 * from spreading), and because we use trees to handle large sets
1062 * of collisions in bins, we don't need excessively high quality.
1063 */
1064 private static final int spread(int h) {
1065 h ^= (h >>> 18) ^ (h >>> 12);
1066 return (h ^ (h >>> 10)) & HASH_BITS;
1067 }
1068
1069 /**
1070 * Replaces a list bin with a tree bin. Call only when locked.
1071 * Fails to replace if the given key is non-comparable or table
1072 * is, or needs, resizing.
1073 */
1074 private final void replaceWithTreeBin(Node[] tab, int index, Object key) {
1075 if ((key instanceof Comparable) &&
1076 (tab.length >= MAXIMUM_CAPACITY || counter.sum() < (long)sizeCtl)) {
1077 TreeBin t = new TreeBin();
1078 for (Node e = tabAt(tab, index); e != null; e = e.next)
1079 t.putTreeNode(e.hash & HASH_BITS, e.key, e.val);
1080 setTabAt(tab, index, new Node(MOVED, t, null, null));
1081 }
1082 }
1083
1084 /* ---------------- Internal access and update methods -------------- */
1085
1086 /** Implementation for get and containsKey */
1087 private final Object internalGet(Object k) {
1088 int h = spread(k.hashCode());
1089 retry: for (Node[] tab = table; tab != null;) {
1090 Node e, p; Object ek, ev; int eh; // locals to read fields once
1091 for (e = tabAt(tab, (tab.length - 1) & h); e != null; e = e.next) {
1092 if ((eh = e.hash) == MOVED) {
1093 if ((ek = e.key) instanceof TreeBin) // search TreeBin
1094 return ((TreeBin)ek).getValue(h, k);
1095 else { // restart with new table
1096 tab = (Node[])ek;
1097 continue retry;
1098 }
1099 }
1100 else if ((eh & HASH_BITS) == h && (ev = e.val) != null &&
1101 ((ek = e.key) == k || k.equals(ek)))
1102 return ev;
1103 }
1104 break;
1105 }
1106 return null;
1107 }
1108
1109 /**
1110 * Implementation for the four public remove/replace methods:
1111 * Replaces node value with v, conditional upon match of cv if
1112 * non-null. If resulting value is null, delete.
1113 */
1114 private final Object internalReplace(Object k, Object v, Object cv) {
1115 int h = spread(k.hashCode());
1116 Object oldVal = null;
1117 for (Node[] tab = table;;) {
1118 Node f; int i, fh; Object fk;
1119 if (tab == null ||
1120 (f = tabAt(tab, i = (tab.length - 1) & h)) == null)
1121 break;
1122 else if ((fh = f.hash) == MOVED) {
1123 if ((fk = f.key) instanceof TreeBin) {
1124 TreeBin t = (TreeBin)fk;
1125 boolean validated = false;
1126 boolean deleted = false;
1127 t.acquire(0);
1128 try {
1129 if (tabAt(tab, i) == f) {
1130 validated = true;
1131 TreeNode p = t.getTreeNode(h, k, t.root);
1132 if (p != null) {
1133 Object pv = p.val;
1134 if (cv == null || cv == pv || cv.equals(pv)) {
1135 oldVal = pv;
1136 if ((p.val = v) == null) {
1137 deleted = true;
1138 t.deleteTreeNode(p);
1139 }
1140 }
1141 }
1142 }
1143 } finally {
1144 t.release(0);
1145 }
1146 if (validated) {
1147 if (deleted)
1148 counter.add(-1L);
1149 break;
1150 }
1151 }
1152 else
1153 tab = (Node[])fk;
1154 }
1155 else if ((fh & HASH_BITS) != h && f.next == null) // precheck
1156 break; // rules out possible existence
1157 else if ((fh & LOCKED) != 0) {
1158 checkForResize(); // try resizing if can't get lock
1159 f.tryAwaitLock(tab, i);
1160 }
1161 else if (f.casHash(fh, fh | LOCKED)) {
1162 boolean validated = false;
1163 boolean deleted = false;
1164 try {
1165 if (tabAt(tab, i) == f) {
1166 validated = true;
1167 for (Node e = f, pred = null;;) {
1168 Object ek, ev;
1169 if ((e.hash & HASH_BITS) == h &&
1170 ((ev = e.val) != null) &&
1171 ((ek = e.key) == k || k.equals(ek))) {
1172 if (cv == null || cv == ev || cv.equals(ev)) {
1173 oldVal = ev;
1174 if ((e.val = v) == null) {
1175 deleted = true;
1176 Node en = e.next;
1177 if (pred != null)
1178 pred.next = en;
1179 else
1180 setTabAt(tab, i, en);
1181 }
1182 }
1183 break;
1184 }
1185 pred = e;
1186 if ((e = e.next) == null)
1187 break;
1188 }
1189 }
1190 } finally {
1191 if (!f.casHash(fh | LOCKED, fh)) {
1192 f.hash = fh;
1193 synchronized (f) { f.notifyAll(); };
1194 }
1195 }
1196 if (validated) {
1197 if (deleted)
1198 counter.add(-1L);
1199 break;
1200 }
1201 }
1202 }
1203 return oldVal;
1204 }
1205
1206 /*
1207 * Internal versions of the five insertion methods, each a
1208 * little more complicated than the last. All have
1209 * the same basic structure as the first (internalPut):
1210 * 1. If table uninitialized, create
1211 * 2. If bin empty, try to CAS new node
1212 * 3. If bin stale, use new table
1213 * 4. if bin converted to TreeBin, validate and relay to TreeBin methods
1214 * 5. Lock and validate; if valid, scan and add or update
1215 *
1216 * The others interweave other checks and/or alternative actions:
1217 * * Plain put checks for and performs resize after insertion.
1218 * * putIfAbsent prescans for mapping without lock (and fails to add
1219 * if present), which also makes pre-emptive resize checks worthwhile.
1220 * * computeIfAbsent extends form used in putIfAbsent with additional
1221 * mechanics to deal with, calls, potential exceptions and null
1222 * returns from function call.
1223 * * compute uses the same function-call mechanics, but without
1224 * the prescans
1225 * * putAll attempts to pre-allocate enough table space
1226 * and more lazily performs count updates and checks.
1227 *
1228 * Someday when details settle down a bit more, it might be worth
1229 * some factoring to reduce sprawl.
1230 */
1231
1232 /** Implementation for put */
1233 private final Object internalPut(Object k, Object v) {
1234 int h = spread(k.hashCode());
1235 int count = 0;
1236 for (Node[] tab = table;;) {
1237 int i; Node f; int fh; Object fk;
1238 if (tab == null)
1239 tab = initTable();
1240 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1241 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1242 break; // no lock when adding to empty bin
1243 }
1244 else if ((fh = f.hash) == MOVED) {
1245 if ((fk = f.key) instanceof TreeBin) {
1246 TreeBin t = (TreeBin)fk;
1247 Object oldVal = null;
1248 t.acquire(0);
1249 try {
1250 if (tabAt(tab, i) == f) {
1251 count = 2;
1252 TreeNode p = t.putTreeNode(h, k, v);
1253 if (p != null) {
1254 oldVal = p.val;
1255 p.val = v;
1256 }
1257 }
1258 } finally {
1259 t.release(0);
1260 }
1261 if (count != 0) {
1262 if (oldVal != null)
1263 return oldVal;
1264 break;
1265 }
1266 }
1267 else
1268 tab = (Node[])fk;
1269 }
1270 else if ((fh & LOCKED) != 0) {
1271 checkForResize();
1272 f.tryAwaitLock(tab, i);
1273 }
1274 else if (f.casHash(fh, fh | LOCKED)) {
1275 Object oldVal = null;
1276 try { // needed in case equals() throws
1277 if (tabAt(tab, i) == f) {
1278 count = 1;
1279 for (Node e = f;; ++count) {
1280 Object ek, ev;
1281 if ((e.hash & HASH_BITS) == h &&
1282 (ev = e.val) != null &&
1283 ((ek = e.key) == k || k.equals(ek))) {
1284 oldVal = ev;
1285 e.val = v;
1286 break;
1287 }
1288 Node last = e;
1289 if ((e = e.next) == null) {
1290 last.next = new Node(h, k, v, null);
1291 if (count >= TREE_THRESHOLD)
1292 replaceWithTreeBin(tab, i, k);
1293 break;
1294 }
1295 }
1296 }
1297 } finally { // unlock and signal if needed
1298 if (!f.casHash(fh | LOCKED, fh)) {
1299 f.hash = fh;
1300 synchronized (f) { f.notifyAll(); };
1301 }
1302 }
1303 if (count != 0) {
1304 if (oldVal != null)
1305 return oldVal;
1306 if (tab.length <= 64)
1307 count = 2;
1308 break;
1309 }
1310 }
1311 }
1312 counter.add(1L);
1313 if (count > 1)
1314 checkForResize();
1315 return null;
1316 }
1317
1318 /** Implementation for putIfAbsent */
1319 private final Object internalPutIfAbsent(Object k, Object v) {
1320 int h = spread(k.hashCode());
1321 int count = 0;
1322 for (Node[] tab = table;;) {
1323 int i; Node f; int fh; Object fk, fv;
1324 if (tab == null)
1325 tab = initTable();
1326 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1327 if (casTabAt(tab, i, null, new Node(h, k, v, null)))
1328 break;
1329 }
1330 else if ((fh = f.hash) == MOVED) {
1331 if ((fk = f.key) instanceof TreeBin) {
1332 TreeBin t = (TreeBin)fk;
1333 Object oldVal = null;
1334 t.acquire(0);
1335 try {
1336 if (tabAt(tab, i) == f) {
1337 count = 2;
1338 TreeNode p = t.putTreeNode(h, k, v);
1339 if (p != null)
1340 oldVal = p.val;
1341 }
1342 } finally {
1343 t.release(0);
1344 }
1345 if (count != 0) {
1346 if (oldVal != null)
1347 return oldVal;
1348 break;
1349 }
1350 }
1351 else
1352 tab = (Node[])fk;
1353 }
1354 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1355 ((fk = f.key) == k || k.equals(fk)))
1356 return fv;
1357 else {
1358 Node g = f.next;
1359 if (g != null) { // at least 2 nodes -- search and maybe resize
1360 for (Node e = g;;) {
1361 Object ek, ev;
1362 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1363 ((ek = e.key) == k || k.equals(ek)))
1364 return ev;
1365 if ((e = e.next) == null) {
1366 checkForResize();
1367 break;
1368 }
1369 }
1370 }
1371 if (((fh = f.hash) & LOCKED) != 0) {
1372 checkForResize();
1373 f.tryAwaitLock(tab, i);
1374 }
1375 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1376 Object oldVal = null;
1377 try {
1378 if (tabAt(tab, i) == f) {
1379 count = 1;
1380 for (Node e = f;; ++count) {
1381 Object ek, ev;
1382 if ((e.hash & HASH_BITS) == h &&
1383 (ev = e.val) != null &&
1384 ((ek = e.key) == k || k.equals(ek))) {
1385 oldVal = ev;
1386 break;
1387 }
1388 Node last = e;
1389 if ((e = e.next) == null) {
1390 last.next = new Node(h, k, v, null);
1391 if (count >= TREE_THRESHOLD)
1392 replaceWithTreeBin(tab, i, k);
1393 break;
1394 }
1395 }
1396 }
1397 } finally {
1398 if (!f.casHash(fh | LOCKED, fh)) {
1399 f.hash = fh;
1400 synchronized (f) { f.notifyAll(); };
1401 }
1402 }
1403 if (count != 0) {
1404 if (oldVal != null)
1405 return oldVal;
1406 if (tab.length <= 64)
1407 count = 2;
1408 break;
1409 }
1410 }
1411 }
1412 }
1413 counter.add(1L);
1414 if (count > 1)
1415 checkForResize();
1416 return null;
1417 }
1418
1419 /** Implementation for computeIfAbsent */
1420 private final Object internalComputeIfAbsent(K k,
1421 Fun<? super K, ?> mf) {
1422 int h = spread(k.hashCode());
1423 Object val = null;
1424 int count = 0;
1425 for (Node[] tab = table;;) {
1426 Node f; int i, fh; Object fk, fv;
1427 if (tab == null)
1428 tab = initTable();
1429 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1430 Node node = new Node(fh = h | LOCKED, k, null, null);
1431 if (casTabAt(tab, i, null, node)) {
1432 count = 1;
1433 try {
1434 if ((val = mf.apply(k)) != null)
1435 node.val = val;
1436 } finally {
1437 if (val == null)
1438 setTabAt(tab, i, null);
1439 if (!node.casHash(fh, h)) {
1440 node.hash = h;
1441 synchronized (node) { node.notifyAll(); };
1442 }
1443 }
1444 }
1445 if (count != 0)
1446 break;
1447 }
1448 else if ((fh = f.hash) == MOVED) {
1449 if ((fk = f.key) instanceof TreeBin) {
1450 TreeBin t = (TreeBin)fk;
1451 boolean added = false;
1452 t.acquire(0);
1453 try {
1454 if (tabAt(tab, i) == f) {
1455 count = 1;
1456 TreeNode p = t.getTreeNode(h, k, t.root);
1457 if (p != null)
1458 val = p.val;
1459 else if ((val = mf.apply(k)) != null) {
1460 added = true;
1461 count = 2;
1462 t.putTreeNode(h, k, val);
1463 }
1464 }
1465 } finally {
1466 t.release(0);
1467 }
1468 if (count != 0) {
1469 if (!added)
1470 return val;
1471 break;
1472 }
1473 }
1474 else
1475 tab = (Node[])fk;
1476 }
1477 else if ((fh & HASH_BITS) == h && (fv = f.val) != null &&
1478 ((fk = f.key) == k || k.equals(fk)))
1479 return fv;
1480 else {
1481 Node g = f.next;
1482 if (g != null) {
1483 for (Node e = g;;) {
1484 Object ek, ev;
1485 if ((e.hash & HASH_BITS) == h && (ev = e.val) != null &&
1486 ((ek = e.key) == k || k.equals(ek)))
1487 return ev;
1488 if ((e = e.next) == null) {
1489 checkForResize();
1490 break;
1491 }
1492 }
1493 }
1494 if (((fh = f.hash) & LOCKED) != 0) {
1495 checkForResize();
1496 f.tryAwaitLock(tab, i);
1497 }
1498 else if (tabAt(tab, i) == f && f.casHash(fh, fh | LOCKED)) {
1499 boolean added = false;
1500 try {
1501 if (tabAt(tab, i) == f) {
1502 count = 1;
1503 for (Node e = f;; ++count) {
1504 Object ek, ev;
1505 if ((e.hash & HASH_BITS) == h &&
1506 (ev = e.val) != null &&
1507 ((ek = e.key) == k || k.equals(ek))) {
1508 val = ev;
1509 break;
1510 }
1511 Node last = e;
1512 if ((e = e.next) == null) {
1513 if ((val = mf.apply(k)) != null) {
1514 added = true;
1515 last.next = new Node(h, k, val, null);
1516 if (count >= TREE_THRESHOLD)
1517 replaceWithTreeBin(tab, i, k);
1518 }
1519 break;
1520 }
1521 }
1522 }
1523 } finally {
1524 if (!f.casHash(fh | LOCKED, fh)) {
1525 f.hash = fh;
1526 synchronized (f) { f.notifyAll(); };
1527 }
1528 }
1529 if (count != 0) {
1530 if (!added)
1531 return val;
1532 if (tab.length <= 64)
1533 count = 2;
1534 break;
1535 }
1536 }
1537 }
1538 }
1539 if (val != null) {
1540 counter.add(1L);
1541 if (count > 1)
1542 checkForResize();
1543 }
1544 return val;
1545 }
1546
1547 /** Implementation for compute */
1548 @SuppressWarnings("unchecked")
1549 private final Object internalCompute(K k, boolean onlyIfPresent,
1550 BiFun<? super K, ? super V, ? extends V> mf) {
1551 int h = spread(k.hashCode());
1552 Object val = null;
1553 int delta = 0;
1554 int count = 0;
1555 for (Node[] tab = table;;) {
1556 Node f; int i, fh; Object fk;
1557 if (tab == null)
1558 tab = initTable();
1559 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1560 if (onlyIfPresent)
1561 break;
1562 Node node = new Node(fh = h | LOCKED, k, null, null);
1563 if (casTabAt(tab, i, null, node)) {
1564 try {
1565 count = 1;
1566 if ((val = mf.apply(k, null)) != null) {
1567 node.val = val;
1568 delta = 1;
1569 }
1570 } finally {
1571 if (delta == 0)
1572 setTabAt(tab, i, null);
1573 if (!node.casHash(fh, h)) {
1574 node.hash = h;
1575 synchronized (node) { node.notifyAll(); };
1576 }
1577 }
1578 }
1579 if (count != 0)
1580 break;
1581 }
1582 else if ((fh = f.hash) == MOVED) {
1583 if ((fk = f.key) instanceof TreeBin) {
1584 TreeBin t = (TreeBin)fk;
1585 t.acquire(0);
1586 try {
1587 if (tabAt(tab, i) == f) {
1588 count = 1;
1589 TreeNode p = t.getTreeNode(h, k, t.root);
1590 Object pv = (p == null) ? null : p.val;
1591 if ((val = mf.apply(k, (V)pv)) != null) {
1592 if (p != null)
1593 p.val = val;
1594 else {
1595 count = 2;
1596 delta = 1;
1597 t.putTreeNode(h, k, val);
1598 }
1599 }
1600 else if (p != null) {
1601 delta = -1;
1602 t.deleteTreeNode(p);
1603 }
1604 }
1605 } finally {
1606 t.release(0);
1607 }
1608 if (count != 0)
1609 break;
1610 }
1611 else
1612 tab = (Node[])fk;
1613 }
1614 else if ((fh & LOCKED) != 0) {
1615 checkForResize();
1616 f.tryAwaitLock(tab, i);
1617 }
1618 else if (f.casHash(fh, fh | LOCKED)) {
1619 try {
1620 if (tabAt(tab, i) == f) {
1621 count = 1;
1622 for (Node e = f, pred = null;; ++count) {
1623 Object ek, ev;
1624 if ((e.hash & HASH_BITS) == h &&
1625 (ev = e.val) != null &&
1626 ((ek = e.key) == k || k.equals(ek))) {
1627 val = mf.apply(k, (V)ev);
1628 if (val != null)
1629 e.val = val;
1630 else {
1631 delta = -1;
1632 Node en = e.next;
1633 if (pred != null)
1634 pred.next = en;
1635 else
1636 setTabAt(tab, i, en);
1637 }
1638 break;
1639 }
1640 pred = e;
1641 if ((e = e.next) == null) {
1642 if (!onlyIfPresent && (val = mf.apply(k, null)) != null) {
1643 pred.next = new Node(h, k, val, null);
1644 delta = 1;
1645 if (count >= TREE_THRESHOLD)
1646 replaceWithTreeBin(tab, i, k);
1647 }
1648 break;
1649 }
1650 }
1651 }
1652 } finally {
1653 if (!f.casHash(fh | LOCKED, fh)) {
1654 f.hash = fh;
1655 synchronized (f) { f.notifyAll(); };
1656 }
1657 }
1658 if (count != 0) {
1659 if (tab.length <= 64)
1660 count = 2;
1661 break;
1662 }
1663 }
1664 }
1665 if (delta != 0) {
1666 counter.add((long)delta);
1667 if (count > 1)
1668 checkForResize();
1669 }
1670 return val;
1671 }
1672
1673 private final Object internalMerge(K k, V v,
1674 BiFun<? super V, ? super V, ? extends V> mf) {
1675 int h = spread(k.hashCode());
1676 Object val = null;
1677 int delta = 0;
1678 int count = 0;
1679 for (Node[] tab = table;;) {
1680 int i; Node f; int fh; Object fk, fv;
1681 if (tab == null)
1682 tab = initTable();
1683 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null) {
1684 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1685 delta = 1;
1686 val = v;
1687 break;
1688 }
1689 }
1690 else if ((fh = f.hash) == MOVED) {
1691 if ((fk = f.key) instanceof TreeBin) {
1692 TreeBin t = (TreeBin)fk;
1693 t.acquire(0);
1694 try {
1695 if (tabAt(tab, i) == f) {
1696 count = 1;
1697 TreeNode p = t.getTreeNode(h, k, t.root);
1698 val = (p == null) ? v : mf.apply((V)p.val, v);
1699 if (val != null) {
1700 if (p != null)
1701 p.val = val;
1702 else {
1703 count = 2;
1704 delta = 1;
1705 t.putTreeNode(h, k, val);
1706 }
1707 }
1708 else if (p != null) {
1709 delta = -1;
1710 t.deleteTreeNode(p);
1711 }
1712 }
1713 } finally {
1714 t.release(0);
1715 }
1716 if (count != 0)
1717 break;
1718 }
1719 else
1720 tab = (Node[])fk;
1721 }
1722 else if ((fh & LOCKED) != 0) {
1723 checkForResize();
1724 f.tryAwaitLock(tab, i);
1725 }
1726 else if (f.casHash(fh, fh | LOCKED)) {
1727 try {
1728 if (tabAt(tab, i) == f) {
1729 count = 1;
1730 for (Node e = f, pred = null;; ++count) {
1731 Object ek, ev;
1732 if ((e.hash & HASH_BITS) == h &&
1733 (ev = e.val) != null &&
1734 ((ek = e.key) == k || k.equals(ek))) {
1735 val = mf.apply(v, (V)ev);
1736 if (val != null)
1737 e.val = val;
1738 else {
1739 delta = -1;
1740 Node en = e.next;
1741 if (pred != null)
1742 pred.next = en;
1743 else
1744 setTabAt(tab, i, en);
1745 }
1746 break;
1747 }
1748 pred = e;
1749 if ((e = e.next) == null) {
1750 val = v;
1751 pred.next = new Node(h, k, val, null);
1752 delta = 1;
1753 if (count >= TREE_THRESHOLD)
1754 replaceWithTreeBin(tab, i, k);
1755 break;
1756 }
1757 }
1758 }
1759 } finally {
1760 if (!f.casHash(fh | LOCKED, fh)) {
1761 f.hash = fh;
1762 synchronized (f) { f.notifyAll(); };
1763 }
1764 }
1765 if (count != 0) {
1766 if (tab.length <= 64)
1767 count = 2;
1768 break;
1769 }
1770 }
1771 }
1772 if (delta != 0) {
1773 counter.add((long)delta);
1774 if (count > 1)
1775 checkForResize();
1776 }
1777 return val;
1778 }
1779
1780 /** Implementation for putAll */
1781 private final void internalPutAll(Map<?, ?> m) {
1782 tryPresize(m.size());
1783 long delta = 0L; // number of uncommitted additions
1784 boolean npe = false; // to throw exception on exit for nulls
1785 try { // to clean up counts on other exceptions
1786 for (Map.Entry<?, ?> entry : m.entrySet()) {
1787 Object k, v;
1788 if (entry == null || (k = entry.getKey()) == null ||
1789 (v = entry.getValue()) == null) {
1790 npe = true;
1791 break;
1792 }
1793 int h = spread(k.hashCode());
1794 for (Node[] tab = table;;) {
1795 int i; Node f; int fh; Object fk;
1796 if (tab == null)
1797 tab = initTable();
1798 else if ((f = tabAt(tab, i = (tab.length - 1) & h)) == null){
1799 if (casTabAt(tab, i, null, new Node(h, k, v, null))) {
1800 ++delta;
1801 break;
1802 }
1803 }
1804 else if ((fh = f.hash) == MOVED) {
1805 if ((fk = f.key) instanceof TreeBin) {
1806 TreeBin t = (TreeBin)fk;
1807 boolean validated = false;
1808 t.acquire(0);
1809 try {
1810 if (tabAt(tab, i) == f) {
1811 validated = true;
1812 TreeNode p = t.getTreeNode(h, k, t.root);
1813 if (p != null)
1814 p.val = v;
1815 else {
1816 t.putTreeNode(h, k, v);
1817 ++delta;
1818 }
1819 }
1820 } finally {
1821 t.release(0);
1822 }
1823 if (validated)
1824 break;
1825 }
1826 else
1827 tab = (Node[])fk;
1828 }
1829 else if ((fh & LOCKED) != 0) {
1830 counter.add(delta);
1831 delta = 0L;
1832 checkForResize();
1833 f.tryAwaitLock(tab, i);
1834 }
1835 else if (f.casHash(fh, fh | LOCKED)) {
1836 int count = 0;
1837 try {
1838 if (tabAt(tab, i) == f) {
1839 count = 1;
1840 for (Node e = f;; ++count) {
1841 Object ek, ev;
1842 if ((e.hash & HASH_BITS) == h &&
1843 (ev = e.val) != null &&
1844 ((ek = e.key) == k || k.equals(ek))) {
1845 e.val = v;
1846 break;
1847 }
1848 Node last = e;
1849 if ((e = e.next) == null) {
1850 ++delta;
1851 last.next = new Node(h, k, v, null);
1852 if (count >= TREE_THRESHOLD)
1853 replaceWithTreeBin(tab, i, k);
1854 break;
1855 }
1856 }
1857 }
1858 } finally {
1859 if (!f.casHash(fh | LOCKED, fh)) {
1860 f.hash = fh;
1861 synchronized (f) { f.notifyAll(); };
1862 }
1863 }
1864 if (count != 0) {
1865 if (count > 1) {
1866 counter.add(delta);
1867 delta = 0L;
1868 checkForResize();
1869 }
1870 break;
1871 }
1872 }
1873 }
1874 }
1875 } finally {
1876 if (delta != 0)
1877 counter.add(delta);
1878 }
1879 if (npe)
1880 throw new NullPointerException();
1881 }
1882
1883 /* ---------------- Table Initialization and Resizing -------------- */
1884
1885 /**
1886 * Returns a power of two table size for the given desired capacity.
1887 * See Hackers Delight, sec 3.2
1888 */
1889 private static final int tableSizeFor(int c) {
1890 int n = c - 1;
1891 n |= n >>> 1;
1892 n |= n >>> 2;
1893 n |= n >>> 4;
1894 n |= n >>> 8;
1895 n |= n >>> 16;
1896 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
1897 }
1898
1899 /**
1900 * Initializes table, using the size recorded in sizeCtl.
1901 */
1902 private final Node[] initTable() {
1903 Node[] tab; int sc;
1904 while ((tab = table) == null) {
1905 if ((sc = sizeCtl) < 0)
1906 Thread.yield(); // lost initialization race; just spin
1907 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1908 try {
1909 if ((tab = table) == null) {
1910 int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
1911 tab = table = new Node[n];
1912 sc = n - (n >>> 2);
1913 }
1914 } finally {
1915 sizeCtl = sc;
1916 }
1917 break;
1918 }
1919 }
1920 return tab;
1921 }
1922
1923 /**
1924 * If table is too small and not already resizing, creates next
1925 * table and transfers bins. Rechecks occupancy after a transfer
1926 * to see if another resize is already needed because resizings
1927 * are lagging additions.
1928 */
1929 private final void checkForResize() {
1930 Node[] tab; int n, sc;
1931 while ((tab = table) != null &&
1932 (n = tab.length) < MAXIMUM_CAPACITY &&
1933 (sc = sizeCtl) >= 0 && counter.sum() >= (long)sc &&
1934 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1935 try {
1936 if (tab == table) {
1937 table = rebuild(tab);
1938 sc = (n << 1) - (n >>> 1);
1939 }
1940 } finally {
1941 sizeCtl = sc;
1942 }
1943 }
1944 }
1945
1946 /**
1947 * Tries to presize table to accommodate the given number of elements.
1948 *
1949 * @param size number of elements (doesn't need to be perfectly accurate)
1950 */
1951 private final void tryPresize(int size) {
1952 int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
1953 tableSizeFor(size + (size >>> 1) + 1);
1954 int sc;
1955 while ((sc = sizeCtl) >= 0) {
1956 Node[] tab = table; int n;
1957 if (tab == null || (n = tab.length) == 0) {
1958 n = (sc > c) ? sc : c;
1959 if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1960 try {
1961 if (table == tab) {
1962 table = new Node[n];
1963 sc = n - (n >>> 2);
1964 }
1965 } finally {
1966 sizeCtl = sc;
1967 }
1968 }
1969 }
1970 else if (c <= sc || n >= MAXIMUM_CAPACITY)
1971 break;
1972 else if (UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
1973 try {
1974 if (table == tab) {
1975 table = rebuild(tab);
1976 sc = (n << 1) - (n >>> 1);
1977 }
1978 } finally {
1979 sizeCtl = sc;
1980 }
1981 }
1982 }
1983 }
1984
1985 /*
1986 * Moves and/or copies the nodes in each bin to new table. See
1987 * above for explanation.
1988 *
1989 * @return the new table
1990 */
1991 private static final Node[] rebuild(Node[] tab) {
1992 int n = tab.length;
1993 Node[] nextTab = new Node[n << 1];
1994 Node fwd = new Node(MOVED, nextTab, null, null);
1995 int[] buffer = null; // holds bins to revisit; null until needed
1996 Node rev = null; // reverse forwarder; null until needed
1997 int nbuffered = 0; // the number of bins in buffer list
1998 int bufferIndex = 0; // buffer index of current buffered bin
1999 int bin = n - 1; // current non-buffered bin or -1 if none
2000
2001 for (int i = bin;;) { // start upwards sweep
2002 int fh; Node f;
2003 if ((f = tabAt(tab, i)) == null) {
2004 if (bin >= 0) { // no lock needed (or available)
2005 if (!casTabAt(tab, i, f, fwd))
2006 continue;
2007 }
2008 else { // transiently use a locked forwarding node
2009 Node g = new Node(MOVED|LOCKED, nextTab, null, null);
2010 if (!casTabAt(tab, i, f, g))
2011 continue;
2012 setTabAt(nextTab, i, null);
2013 setTabAt(nextTab, i + n, null);
2014 setTabAt(tab, i, fwd);
2015 if (!g.casHash(MOVED|LOCKED, MOVED)) {
2016 g.hash = MOVED;
2017 synchronized (g) { g.notifyAll(); }
2018 }
2019 }
2020 }
2021 else if ((fh = f.hash) == MOVED) {
2022 Object fk = f.key;
2023 if (fk instanceof TreeBin) {
2024 TreeBin t = (TreeBin)fk;
2025 boolean validated = false;
2026 t.acquire(0);
2027 try {
2028 if (tabAt(tab, i) == f) {
2029 validated = true;
2030 splitTreeBin(nextTab, i, t);
2031 setTabAt(tab, i, fwd);
2032 }
2033 } finally {
2034 t.release(0);
2035 }
2036 if (!validated)
2037 continue;
2038 }
2039 }
2040 else if ((fh & LOCKED) == 0 && f.casHash(fh, fh|LOCKED)) {
2041 boolean validated = false;
2042 try { // split to lo and hi lists; copying as needed
2043 if (tabAt(tab, i) == f) {
2044 validated = true;
2045 splitBin(nextTab, i, f);
2046 setTabAt(tab, i, fwd);
2047 }
2048 } finally {
2049 if (!f.casHash(fh | LOCKED, fh)) {
2050 f.hash = fh;
2051 synchronized (f) { f.notifyAll(); };
2052 }
2053 }
2054 if (!validated)
2055 continue;
2056 }
2057 else {
2058 if (buffer == null) // initialize buffer for revisits
2059 buffer = new int[TRANSFER_BUFFER_SIZE];
2060 if (bin < 0 && bufferIndex > 0) {
2061 int j = buffer[--bufferIndex];
2062 buffer[bufferIndex] = i;
2063 i = j; // swap with another bin
2064 continue;
2065 }
2066 if (bin < 0 || nbuffered >= TRANSFER_BUFFER_SIZE) {
2067 f.tryAwaitLock(tab, i);
2068 continue; // no other options -- block
2069 }
2070 if (rev == null) // initialize reverse-forwarder
2071 rev = new Node(MOVED, tab, null, null);
2072 if (tabAt(tab, i) != f || (f.hash & LOCKED) == 0)
2073 continue; // recheck before adding to list
2074 buffer[nbuffered++] = i;
2075 setTabAt(nextTab, i, rev); // install place-holders
2076 setTabAt(nextTab, i + n, rev);
2077 }
2078
2079 if (bin > 0)
2080 i = --bin;
2081 else if (buffer != null && nbuffered > 0) {
2082 bin = -1;
2083 i = buffer[bufferIndex = --nbuffered];
2084 }
2085 else
2086 return nextTab;
2087 }
2088 }
2089
2090 /**
2091 * Splits a normal bin with list headed by e into lo and hi parts;
2092 * installs in given table.
2093 */
2094 private static void splitBin(Node[] nextTab, int i, Node e) {
2095 int bit = nextTab.length >>> 1; // bit to split on
2096 int runBit = e.hash & bit;
2097 Node lastRun = e, lo = null, hi = null;
2098 for (Node p = e.next; p != null; p = p.next) {
2099 int b = p.hash & bit;
2100 if (b != runBit) {
2101 runBit = b;
2102 lastRun = p;
2103 }
2104 }
2105 if (runBit == 0)
2106 lo = lastRun;
2107 else
2108 hi = lastRun;
2109 for (Node p = e; p != lastRun; p = p.next) {
2110 int ph = p.hash & HASH_BITS;
2111 Object pk = p.key, pv = p.val;
2112 if ((ph & bit) == 0)
2113 lo = new Node(ph, pk, pv, lo);
2114 else
2115 hi = new Node(ph, pk, pv, hi);
2116 }
2117 setTabAt(nextTab, i, lo);
2118 setTabAt(nextTab, i + bit, hi);
2119 }
2120
2121 /**
2122 * Splits a tree bin into lo and hi parts; installs in given table.
2123 */
2124 private static void splitTreeBin(Node[] nextTab, int i, TreeBin t) {
2125 int bit = nextTab.length >>> 1;
2126 TreeBin lt = new TreeBin();
2127 TreeBin ht = new TreeBin();
2128 int lc = 0, hc = 0;
2129 for (Node e = t.first; e != null; e = e.next) {
2130 int h = e.hash & HASH_BITS;
2131 Object k = e.key, v = e.val;
2132 if ((h & bit) == 0) {
2133 ++lc;
2134 lt.putTreeNode(h, k, v);
2135 }
2136 else {
2137 ++hc;
2138 ht.putTreeNode(h, k, v);
2139 }
2140 }
2141 Node ln, hn; // throw away trees if too small
2142 if (lc <= (TREE_THRESHOLD >>> 1)) {
2143 ln = null;
2144 for (Node p = lt.first; p != null; p = p.next)
2145 ln = new Node(p.hash, p.key, p.val, ln);
2146 }
2147 else
2148 ln = new Node(MOVED, lt, null, null);
2149 setTabAt(nextTab, i, ln);
2150 if (hc <= (TREE_THRESHOLD >>> 1)) {
2151 hn = null;
2152 for (Node p = ht.first; p != null; p = p.next)
2153 hn = new Node(p.hash, p.key, p.val, hn);
2154 }
2155 else
2156 hn = new Node(MOVED, ht, null, null);
2157 setTabAt(nextTab, i + bit, hn);
2158 }
2159
2160 /**
2161 * Implementation for clear. Steps through each bin, removing all
2162 * nodes.
2163 */
2164 private final void internalClear() {
2165 long delta = 0L; // negative number of deletions
2166 int i = 0;
2167 Node[] tab = table;
2168 while (tab != null && i < tab.length) {
2169 int fh; Object fk;
2170 Node f = tabAt(tab, i);
2171 if (f == null)
2172 ++i;
2173 else if ((fh = f.hash) == MOVED) {
2174 if ((fk = f.key) instanceof TreeBin) {
2175 TreeBin t = (TreeBin)fk;
2176 t.acquire(0);
2177 try {
2178 if (tabAt(tab, i) == f) {
2179 for (Node p = t.first; p != null; p = p.next) {
2180 p.val = null;
2181 --delta;
2182 }
2183 t.first = null;
2184 t.root = null;
2185 ++i;
2186 }
2187 } finally {
2188 t.release(0);
2189 }
2190 }
2191 else
2192 tab = (Node[])fk;
2193 }
2194 else if ((fh & LOCKED) != 0) {
2195 counter.add(delta); // opportunistically update count
2196 delta = 0L;
2197 f.tryAwaitLock(tab, i);
2198 }
2199 else if (f.casHash(fh, fh | LOCKED)) {
2200 try {
2201 if (tabAt(tab, i) == f) {
2202 for (Node e = f; e != null; e = e.next) {
2203 e.val = null;
2204 --delta;
2205 }
2206 setTabAt(tab, i, null);
2207 ++i;
2208 }
2209 } finally {
2210 if (!f.casHash(fh | LOCKED, fh)) {
2211 f.hash = fh;
2212 synchronized (f) { f.notifyAll(); };
2213 }
2214 }
2215 }
2216 }
2217 if (delta != 0)
2218 counter.add(delta);
2219 }
2220
2221 /* ----------------Table Traversal -------------- */
2222
2223 /**
2224 * Encapsulates traversal for methods such as containsValue; also
2225 * serves as a base class for other iterators.
2226 *
2227 * At each step, the iterator snapshots the key ("nextKey") and
2228 * value ("nextVal") of a valid node (i.e., one that, at point of
2229 * snapshot, has a non-null user value). Because val fields can
2230 * change (including to null, indicating deletion), field nextVal
2231 * might not be accurate at point of use, but still maintains the
2232 * weak consistency property of holding a value that was once
2233 * valid.
2234 *
2235 * Internal traversals directly access these fields, as in:
2236 * {@code while (it.advance() != null) { process(it.nextKey); }}
2237 *
2238 * Exported iterators must track whether the iterator has advanced
2239 * (in hasNext vs next) (by setting/checking/nulling field
2240 * nextVal), and then extract key, value, or key-value pairs as
2241 * return values of next().
2242 *
2243 * The iterator visits once each still-valid node that was
2244 * reachable upon iterator construction. It might miss some that
2245 * were added to a bin after the bin was visited, which is OK wrt
2246 * consistency guarantees. Maintaining this property in the face
2247 * of possible ongoing resizes requires a fair amount of
2248 * bookkeeping state that is difficult to optimize away amidst
2249 * volatile accesses. Even so, traversal maintains reasonable
2250 * throughput.
2251 *
2252 * Normally, iteration proceeds bin-by-bin traversing lists.
2253 * However, if the table has been resized, then all future steps
2254 * must traverse both the bin at the current index as well as at
2255 * (index + baseSize); and so on for further resizings. To
2256 * paranoically cope with potential sharing by users of iterators
2257 * across threads, iteration terminates if a bounds checks fails
2258 * for a table read.
2259 *
2260 * This class extends ForkJoinTask to streamline parallel
2261 * iteration in bulk operations (see BulkTask). This adds only an
2262 * int of space overhead, which is close enough to negligible in
2263 * cases where it is not needed to not worry about it.
2264 */
2265 static class Traverser<K,V,R> extends ForkJoinTask<R> {
2266 final ConcurrentHashMapV8<K, V> map;
2267 Node next; // the next entry to use
2268 Node last; // the last entry used
2269 Object nextKey; // cached key field of next
2270 Object nextVal; // cached val field of next
2271 Node[] tab; // current table; updated if resized
2272 int index; // index of bin to use next
2273 int baseIndex; // current index of initial table
2274 int baseLimit; // index bound for initial table
2275 final int baseSize; // initial table size
2276
2277 /** Creates iterator for all entries in the table. */
2278 Traverser(ConcurrentHashMapV8<K, V> map) {
2279 this.tab = (this.map = map).table;
2280 baseLimit = baseSize = (tab == null) ? 0 : tab.length;
2281 }
2282
2283 /** Creates iterator for split() methods */
2284 Traverser(Traverser<K,V,?> it, boolean split) {
2285 this.map = it.map;
2286 this.tab = it.tab;
2287 this.baseSize = it.baseSize;
2288 int lo = it.baseIndex;
2289 int hi = this.baseLimit = it.baseLimit;
2290 int i;
2291 if (split) // adjust parent
2292 i = it.baseLimit = (lo + hi + 1) >>> 1;
2293 else // clone parent
2294 i = lo;
2295 this.index = this.baseIndex = i;
2296 }
2297
2298 /**
2299 * Advances next; returns nextVal or null if terminated.
2300 * See above for explanation.
2301 */
2302 final Object advance() {
2303 Node e = last = next;
2304 Object ev = null;
2305 outer: do {
2306 if (e != null) // advance past used/skipped node
2307 e = e.next;
2308 while (e == null) { // get to next non-null bin
2309 Node[] t; int b, i, n; Object ek; // checks must use locals
2310 if ((b = baseIndex) >= baseLimit || (i = index) < 0 ||
2311 (t = tab) == null || i >= (n = t.length))
2312 break outer;
2313 else if ((e = tabAt(t, i)) != null && e.hash == MOVED) {
2314 if ((ek = e.key) instanceof TreeBin)
2315 e = ((TreeBin)ek).first;
2316 else {
2317 tab = (Node[])ek;
2318 continue; // restarts due to null val
2319 }
2320 } // visit upper slots if present
2321 index = (i += baseSize) < n ? i : (baseIndex = b + 1);
2322 }
2323 nextKey = e.key;
2324 } while ((ev = e.val) == null); // skip deleted or special nodes
2325 next = e;
2326 return nextVal = ev;
2327 }
2328
2329 public final void remove() {
2330 if (nextVal == null)
2331 advance();
2332 Node e = last;
2333 if (e == null)
2334 throw new IllegalStateException();
2335 last = null;
2336 map.remove(e.key);
2337 }
2338
2339 public final boolean hasNext() {
2340 return nextVal != null || advance() != null;
2341 }
2342
2343 public final boolean hasMoreElements() { return hasNext(); }
2344 public final void setRawResult(Object x) { }
2345 public R getRawResult() { return null; }
2346 public boolean exec() { return true; }
2347 }
2348
2349 /* ---------------- Public operations -------------- */
2350
2351 /**
2352 * Creates a new, empty map with the default initial table size (16).
2353 */
2354 public ConcurrentHashMapV8() {
2355 this.counter = new LongAdder();
2356 }
2357
2358 /**
2359 * Creates a new, empty map with an initial table size
2360 * accommodating the specified number of elements without the need
2361 * to dynamically resize.
2362 *
2363 * @param initialCapacity The implementation performs internal
2364 * sizing to accommodate this many elements.
2365 * @throws IllegalArgumentException if the initial capacity of
2366 * elements is negative
2367 */
2368 public ConcurrentHashMapV8(int initialCapacity) {
2369 if (initialCapacity < 0)
2370 throw new IllegalArgumentException();
2371 int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
2372 MAXIMUM_CAPACITY :
2373 tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
2374 this.counter = new LongAdder();
2375 this.sizeCtl = cap;
2376 }
2377
2378 /**
2379 * Creates a new map with the same mappings as the given map.
2380 *
2381 * @param m the map
2382 */
2383 public ConcurrentHashMapV8(Map<? extends K, ? extends V> m) {
2384 this.counter = new LongAdder();
2385 this.sizeCtl = DEFAULT_CAPACITY;
2386 internalPutAll(m);
2387 }
2388
2389 /**
2390 * Creates a new, empty map with an initial table size based on
2391 * the given number of elements ({@code initialCapacity}) and
2392 * initial table density ({@code loadFactor}).
2393 *
2394 * @param initialCapacity the initial capacity. The implementation
2395 * performs internal sizing to accommodate this many elements,
2396 * given the specified load factor.
2397 * @param loadFactor the load factor (table density) for
2398 * establishing the initial table size
2399 * @throws IllegalArgumentException if the initial capacity of
2400 * elements is negative or the load factor is nonpositive
2401 *
2402 * @since 1.6
2403 */
2404 public ConcurrentHashMapV8(int initialCapacity, float loadFactor) {
2405 this(initialCapacity, loadFactor, 1);
2406 }
2407
2408 /**
2409 * Creates a new, empty map with an initial table size based on
2410 * the given number of elements ({@code initialCapacity}), table
2411 * density ({@code loadFactor}), and number of concurrently
2412 * updating threads ({@code concurrencyLevel}).
2413 *
2414 * @param initialCapacity the initial capacity. The implementation
2415 * performs internal sizing to accommodate this many elements,
2416 * given the specified load factor.
2417 * @param loadFactor the load factor (table density) for
2418 * establishing the initial table size
2419 * @param concurrencyLevel the estimated number of concurrently
2420 * updating threads. The implementation may use this value as
2421 * a sizing hint.
2422 * @throws IllegalArgumentException if the initial capacity is
2423 * negative or the load factor or concurrencyLevel are
2424 * nonpositive
2425 */
2426 public ConcurrentHashMapV8(int initialCapacity,
2427 float loadFactor, int concurrencyLevel) {
2428 if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
2429 throw new IllegalArgumentException();
2430 if (initialCapacity < concurrencyLevel) // Use at least as many bins
2431 initialCapacity = concurrencyLevel; // as estimated threads
2432 long size = (long)(1.0 + (long)initialCapacity / loadFactor);
2433 int cap = (size >= (long)MAXIMUM_CAPACITY) ?
2434 MAXIMUM_CAPACITY : tableSizeFor((int)size);
2435 this.counter = new LongAdder();
2436 this.sizeCtl = cap;
2437 }
2438
2439 /**
2440 * {@inheritDoc}
2441 */
2442 public boolean isEmpty() {
2443 return counter.sum() <= 0L; // ignore transient negative values
2444 }
2445
2446 /**
2447 * {@inheritDoc}
2448 */
2449 public int size() {
2450 long n = counter.sum();
2451 return ((n < 0L) ? 0 :
2452 (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
2453 (int)n);
2454 }
2455
2456 /**
2457 * Returns the number of mappings. This method should be used
2458 * instead of {@link #size} because a ConcurrentHashMap may
2459 * contain more mappings than can be represented as an int. The
2460 * value returned is a snapshot; the actual count may differ if
2461 * there are ongoing concurrent insertions of removals.
2462 *
2463 * @return the number of mappings
2464 */
2465 public long mappingCount() {
2466 long n = counter.sum();
2467 return (n < 0L) ? 0L : n;
2468 }
2469
2470 /**
2471 * Returns the value to which the specified key is mapped,
2472 * or {@code null} if this map contains no mapping for the key.
2473 *
2474 * <p>More formally, if this map contains a mapping from a key
2475 * {@code k} to a value {@code v} such that {@code key.equals(k)},
2476 * then this method returns {@code v}; otherwise it returns
2477 * {@code null}. (There can be at most one such mapping.)
2478 *
2479 * @throws NullPointerException if the specified key is null
2480 */
2481 @SuppressWarnings("unchecked")
2482 public V get(Object key) {
2483 if (key == null)
2484 throw new NullPointerException();
2485 return (V)internalGet(key);
2486 }
2487
2488 /**
2489 * Tests if the specified object is a key in this table.
2490 *
2491 * @param key possible key
2492 * @return {@code true} if and only if the specified object
2493 * is a key in this table, as determined by the
2494 * {@code equals} method; {@code false} otherwise
2495 * @throws NullPointerException if the specified key is null
2496 */
2497 public boolean containsKey(Object key) {
2498 if (key == null)
2499 throw new NullPointerException();
2500 return internalGet(key) != null;
2501 }
2502
2503 /**
2504 * Returns {@code true} if this map maps one or more keys to the
2505 * specified value. Note: This method may require a full traversal
2506 * of the map, and is much slower than method {@code containsKey}.
2507 *
2508 * @param value value whose presence in this map is to be tested
2509 * @return {@code true} if this map maps one or more keys to the
2510 * specified value
2511 * @throws NullPointerException if the specified value is null
2512 */
2513 public boolean containsValue(Object value) {
2514 if (value == null)
2515 throw new NullPointerException();
2516 Object v;
2517 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2518 while ((v = it.advance()) != null) {
2519 if (v == value || value.equals(v))
2520 return true;
2521 }
2522 return false;
2523 }
2524
2525 /**
2526 * Legacy method testing if some key maps into the specified value
2527 * in this table. This method is identical in functionality to
2528 * {@link #containsValue}, and exists solely to ensure
2529 * full compatibility with class {@link java.util.Hashtable},
2530 * which supported this method prior to introduction of the
2531 * Java Collections framework.
2532 *
2533 * @param value a value to search for
2534 * @return {@code true} if and only if some key maps to the
2535 * {@code value} argument in this table as
2536 * determined by the {@code equals} method;
2537 * {@code false} otherwise
2538 * @throws NullPointerException if the specified value is null
2539 */
2540 public boolean contains(Object value) {
2541 return containsValue(value);
2542 }
2543
2544 /**
2545 * Maps the specified key to the specified value in this table.
2546 * Neither the key nor the value can be null.
2547 *
2548 * <p> The value can be retrieved by calling the {@code get} method
2549 * with a key that is equal to the original key.
2550 *
2551 * @param key key with which the specified value is to be associated
2552 * @param value value to be associated with the specified key
2553 * @return the previous value associated with {@code key}, or
2554 * {@code null} if there was no mapping for {@code key}
2555 * @throws NullPointerException if the specified key or value is null
2556 */
2557 @SuppressWarnings("unchecked")
2558 public V put(K key, V value) {
2559 if (key == null || value == null)
2560 throw new NullPointerException();
2561 return (V)internalPut(key, value);
2562 }
2563
2564 /**
2565 * {@inheritDoc}
2566 *
2567 * @return the previous value associated with the specified key,
2568 * or {@code null} if there was no mapping for the key
2569 * @throws NullPointerException if the specified key or value is null
2570 */
2571 @SuppressWarnings("unchecked")
2572 public V putIfAbsent(K key, V value) {
2573 if (key == null || value == null)
2574 throw new NullPointerException();
2575 return (V)internalPutIfAbsent(key, value);
2576 }
2577
2578 /**
2579 * Copies all of the mappings from the specified map to this one.
2580 * These mappings replace any mappings that this map had for any of the
2581 * keys currently in the specified map.
2582 *
2583 * @param m mappings to be stored in this map
2584 */
2585 public void putAll(Map<? extends K, ? extends V> m) {
2586 internalPutAll(m);
2587 }
2588
2589 /**
2590 * If the specified key is not already associated with a value,
2591 * computes its value using the given mappingFunction and enters
2592 * it into the map unless null. This is equivalent to
2593 * <pre> {@code
2594 * if (map.containsKey(key))
2595 * return map.get(key);
2596 * value = mappingFunction.apply(key);
2597 * if (value != null)
2598 * map.put(key, value);
2599 * return value;}</pre>
2600 *
2601 * except that the action is performed atomically. If the
2602 * function returns {@code null} no mapping is recorded. If the
2603 * function itself throws an (unchecked) exception, the exception
2604 * is rethrown to its caller, and no mapping is recorded. Some
2605 * attempted update operations on this map by other threads may be
2606 * blocked while computation is in progress, so the computation
2607 * should be short and simple, and must not attempt to update any
2608 * other mappings of this Map. The most appropriate usage is to
2609 * construct a new object serving as an initial mapped value, or
2610 * memoized result, as in:
2611 *
2612 * <pre> {@code
2613 * map.computeIfAbsent(key, new Fun<K, V>() {
2614 * public V map(K k) { return new Value(f(k)); }});}</pre>
2615 *
2616 * @param key key with which the specified value is to be associated
2617 * @param mappingFunction the function to compute a value
2618 * @return the current (existing or computed) value associated with
2619 * the specified key, or null if the computed value is null.
2620 * @throws NullPointerException if the specified key or mappingFunction
2621 * is null
2622 * @throws IllegalStateException if the computation detectably
2623 * attempts a recursive update to this map that would
2624 * otherwise never complete
2625 * @throws RuntimeException or Error if the mappingFunction does so,
2626 * in which case the mapping is left unestablished
2627 */
2628 @SuppressWarnings("unchecked")
2629 public V computeIfAbsent(K key, Fun<? super K, ? extends V> mappingFunction) {
2630 if (key == null || mappingFunction == null)
2631 throw new NullPointerException();
2632 return (V)internalComputeIfAbsent(key, mappingFunction);
2633 }
2634
2635 /**
2636 * If the given key is present, computes a new mapping value given a key and
2637 * its current mapped value. This is equivalent to
2638 * <pre> {@code
2639 * if (map.containsKey(key)) {
2640 * value = remappingFunction.apply(key, map.get(key));
2641 * if (value != null)
2642 * map.put(key, value);
2643 * else
2644 * map.remove(key);
2645 * }
2646 * }</pre>
2647 *
2648 * except that the action is performed atomically. If the
2649 * function returns {@code null}, the mapping is removed. If the
2650 * function itself throws an (unchecked) exception, the exception
2651 * is rethrown to its caller, and the current mapping is left
2652 * unchanged. Some attempted update operations on this map by
2653 * other threads may be blocked while computation is in progress,
2654 * so the computation should be short and simple, and must not
2655 * attempt to update any other mappings of this Map. For example,
2656 * to either create or append new messages to a value mapping:
2657 *
2658 * @param key key with which the specified value is to be associated
2659 * @param remappingFunction the function to compute a value
2660 * @return the new value associated with
2661 * the specified key, or null if none.
2662 * @throws NullPointerException if the specified key or remappingFunction
2663 * is null
2664 * @throws IllegalStateException if the computation detectably
2665 * attempts a recursive update to this map that would
2666 * otherwise never complete
2667 * @throws RuntimeException or Error if the remappingFunction does so,
2668 * in which case the mapping is unchanged
2669 */
2670 public V computeIfPresent(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2671 if (key == null || remappingFunction == null)
2672 throw new NullPointerException();
2673 return (V)internalCompute(key, true, remappingFunction);
2674 }
2675
2676 /**
2677 * Computes a new mapping value given a key and
2678 * its current mapped value (or {@code null} if there is no current
2679 * mapping). This is equivalent to
2680 * <pre> {@code
2681 * value = remappingFunction.apply(key, map.get(key));
2682 * if (value != null)
2683 * map.put(key, value);
2684 * else
2685 * map.remove(key);
2686 * }</pre>
2687 *
2688 * except that the action is performed atomically. If the
2689 * function returns {@code null}, the mapping is removed. If the
2690 * function itself throws an (unchecked) exception, the exception
2691 * is rethrown to its caller, and the current mapping is left
2692 * unchanged. Some attempted update operations on this map by
2693 * other threads may be blocked while computation is in progress,
2694 * so the computation should be short and simple, and must not
2695 * attempt to update any other mappings of this Map. For example,
2696 * to either create or append new messages to a value mapping:
2697 *
2698 * <pre> {@code
2699 * Map<Key, String> map = ...;
2700 * final String msg = ...;
2701 * map.compute(key, new BiFun<Key, String, String>() {
2702 * public String apply(Key k, String v) {
2703 * return (v == null) ? msg : v + msg;});}}</pre>
2704 *
2705 * @param key key with which the specified value is to be associated
2706 * @param remappingFunction the function to compute a value
2707 * @return the new value associated with
2708 * the specified key, or null if none.
2709 * @throws NullPointerException if the specified key or remappingFunction
2710 * is null
2711 * @throws IllegalStateException if the computation detectably
2712 * attempts a recursive update to this map that would
2713 * otherwise never complete
2714 * @throws RuntimeException or Error if the remappingFunction does so,
2715 * in which case the mapping is unchanged
2716 */
2717 // @SuppressWarnings("unchecked")
2718 public V compute(K key, BiFun<? super K, ? super V, ? extends V> remappingFunction) {
2719 if (key == null || remappingFunction == null)
2720 throw new NullPointerException();
2721 return (V)internalCompute(key, false, remappingFunction);
2722 }
2723
2724 /**
2725 * If the specified key is not already associated
2726 * with a value, associate it with the given value.
2727 * Otherwise, replace the value with the results of
2728 * the given remapping function. This is equivalent to:
2729 * <pre> {@code
2730 * if (!map.containsKey(key))
2731 * map.put(value);
2732 * else {
2733 * newValue = remappingFunction.apply(map.get(key), value);
2734 * if (value != null)
2735 * map.put(key, value);
2736 * else
2737 * map.remove(key);
2738 * }
2739 * }</pre>
2740 * except that the action is performed atomically. If the
2741 * function returns {@code null}, the mapping is removed. If the
2742 * function itself throws an (unchecked) exception, the exception
2743 * is rethrown to its caller, and the current mapping is left
2744 * unchanged. Some attempted update operations on this map by
2745 * other threads may be blocked while computation is in progress,
2746 * so the computation should be short and simple, and must not
2747 * attempt to update any other mappings of this Map.
2748 */
2749 // @SuppressWarnings("unchecked")
2750 public V merge(K key, V value, BiFun<? super V, ? super V, ? extends V> remappingFunction) {
2751 if (key == null || value == null || remappingFunction == null)
2752 throw new NullPointerException();
2753 return (V)internalMerge(key, value, remappingFunction);
2754 }
2755
2756 /**
2757 * Removes the key (and its corresponding value) from this map.
2758 * This method does nothing if the key is not in the map.
2759 *
2760 * @param key the key that needs to be removed
2761 * @return the previous value associated with {@code key}, or
2762 * {@code null} if there was no mapping for {@code key}
2763 * @throws NullPointerException if the specified key is null
2764 */
2765 @SuppressWarnings("unchecked")
2766 public V remove(Object key) {
2767 if (key == null)
2768 throw new NullPointerException();
2769 return (V)internalReplace(key, null, null);
2770 }
2771
2772 /**
2773 * {@inheritDoc}
2774 *
2775 * @throws NullPointerException if the specified key is null
2776 */
2777 public boolean remove(Object key, Object value) {
2778 if (key == null)
2779 throw new NullPointerException();
2780 if (value == null)
2781 return false;
2782 return internalReplace(key, null, value) != null;
2783 }
2784
2785 /**
2786 * {@inheritDoc}
2787 *
2788 * @throws NullPointerException if any of the arguments are null
2789 */
2790 public boolean replace(K key, V oldValue, V newValue) {
2791 if (key == null || oldValue == null || newValue == null)
2792 throw new NullPointerException();
2793 return internalReplace(key, newValue, oldValue) != null;
2794 }
2795
2796 /**
2797 * {@inheritDoc}
2798 *
2799 * @return the previous value associated with the specified key,
2800 * or {@code null} if there was no mapping for the key
2801 * @throws NullPointerException if the specified key or value is null
2802 */
2803 @SuppressWarnings("unchecked")
2804 public V replace(K key, V value) {
2805 if (key == null || value == null)
2806 throw new NullPointerException();
2807 return (V)internalReplace(key, value, null);
2808 }
2809
2810 /**
2811 * Removes all of the mappings from this map.
2812 */
2813 public void clear() {
2814 internalClear();
2815 }
2816
2817 /**
2818 * Returns a {@link Set} view of the keys contained in this map.
2819 * The set is backed by the map, so changes to the map are
2820 * reflected in the set, and vice-versa. The set supports element
2821 * removal, which removes the corresponding mapping from this map,
2822 * via the {@code Iterator.remove}, {@code Set.remove},
2823 * {@code removeAll}, {@code retainAll}, and {@code clear}
2824 * operations. It does not support the {@code add} or
2825 * {@code addAll} operations.
2826 *
2827 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2828 * that will never throw {@link ConcurrentModificationException},
2829 * and guarantees to traverse elements as they existed upon
2830 * construction of the iterator, and may (but is not guaranteed to)
2831 * reflect any modifications subsequent to construction.
2832 */
2833 public Set<K> keySet() {
2834 KeySet<K,V> ks = keySet;
2835 return (ks != null) ? ks : (keySet = new KeySet<K,V>(this));
2836 }
2837
2838 /**
2839 * Returns a {@link Collection} view of the values contained in this map.
2840 * The collection is backed by the map, so changes to the map are
2841 * reflected in the collection, and vice-versa. The collection
2842 * supports element removal, which removes the corresponding
2843 * mapping from this map, via the {@code Iterator.remove},
2844 * {@code Collection.remove}, {@code removeAll},
2845 * {@code retainAll}, and {@code clear} operations. It does not
2846 * support the {@code add} or {@code addAll} operations.
2847 *
2848 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2849 * that will never throw {@link ConcurrentModificationException},
2850 * and guarantees to traverse elements as they existed upon
2851 * construction of the iterator, and may (but is not guaranteed to)
2852 * reflect any modifications subsequent to construction.
2853 */
2854 public Collection<V> values() {
2855 Values<K,V> vs = values;
2856 return (vs != null) ? vs : (values = new Values<K,V>(this));
2857 }
2858
2859 /**
2860 * Returns a {@link Set} view of the mappings contained in this map.
2861 * The set is backed by the map, so changes to the map are
2862 * reflected in the set, and vice-versa. The set supports element
2863 * removal, which removes the corresponding mapping from the map,
2864 * via the {@code Iterator.remove}, {@code Set.remove},
2865 * {@code removeAll}, {@code retainAll}, and {@code clear}
2866 * operations. It does not support the {@code add} or
2867 * {@code addAll} operations.
2868 *
2869 * <p>The view's {@code iterator} is a "weakly consistent" iterator
2870 * that will never throw {@link ConcurrentModificationException},
2871 * and guarantees to traverse elements as they existed upon
2872 * construction of the iterator, and may (but is not guaranteed to)
2873 * reflect any modifications subsequent to construction.
2874 */
2875 public Set<Map.Entry<K,V>> entrySet() {
2876 EntrySet<K,V> es = entrySet;
2877 return (es != null) ? es : (entrySet = new EntrySet<K,V>(this));
2878 }
2879
2880 /**
2881 * Returns an enumeration of the keys in this table.
2882 *
2883 * @return an enumeration of the keys in this table
2884 * @see #keySet()
2885 */
2886 public Enumeration<K> keys() {
2887 return new KeyIterator<K,V>(this);
2888 }
2889
2890 /**
2891 * Returns an enumeration of the values in this table.
2892 *
2893 * @return an enumeration of the values in this table
2894 * @see #values()
2895 */
2896 public Enumeration<V> elements() {
2897 return new ValueIterator<K,V>(this);
2898 }
2899
2900 /**
2901 * Returns a partionable iterator of the keys in this map.
2902 *
2903 * @return a partionable iterator of the keys in this map
2904 */
2905 public Spliterator<K> keySpliterator() {
2906 return new KeyIterator<K,V>(this);
2907 }
2908
2909 /**
2910 * Returns a partionable iterator of the values in this map.
2911 *
2912 * @return a partionable iterator of the values in this map
2913 */
2914 public Spliterator<V> valueSpliterator() {
2915 return new ValueIterator<K,V>(this);
2916 }
2917
2918 /**
2919 * Returns a partionable iterator of the entries in this map.
2920 *
2921 * @return a partionable iterator of the entries in this map
2922 */
2923 public Spliterator<Map.Entry<K,V>> entrySpliterator() {
2924 return new EntryIterator<K,V>(this);
2925 }
2926
2927 /**
2928 * Returns the hash code value for this {@link Map}, i.e.,
2929 * the sum of, for each key-value pair in the map,
2930 * {@code key.hashCode() ^ value.hashCode()}.
2931 *
2932 * @return the hash code value for this map
2933 */
2934 public int hashCode() {
2935 int h = 0;
2936 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2937 Object v;
2938 while ((v = it.advance()) != null) {
2939 h += it.nextKey.hashCode() ^ v.hashCode();
2940 }
2941 return h;
2942 }
2943
2944 /**
2945 * Returns a string representation of this map. The string
2946 * representation consists of a list of key-value mappings (in no
2947 * particular order) enclosed in braces ("{@code {}}"). Adjacent
2948 * mappings are separated by the characters {@code ", "} (comma
2949 * and space). Each key-value mapping is rendered as the key
2950 * followed by an equals sign ("{@code =}") followed by the
2951 * associated value.
2952 *
2953 * @return a string representation of this map
2954 */
2955 public String toString() {
2956 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2957 StringBuilder sb = new StringBuilder();
2958 sb.append('{');
2959 Object v;
2960 if ((v = it.advance()) != null) {
2961 for (;;) {
2962 Object k = it.nextKey;
2963 sb.append(k == this ? "(this Map)" : k);
2964 sb.append('=');
2965 sb.append(v == this ? "(this Map)" : v);
2966 if ((v = it.advance()) == null)
2967 break;
2968 sb.append(',').append(' ');
2969 }
2970 }
2971 return sb.append('}').toString();
2972 }
2973
2974 /**
2975 * Compares the specified object with this map for equality.
2976 * Returns {@code true} if the given object is a map with the same
2977 * mappings as this map. This operation may return misleading
2978 * results if either map is concurrently modified during execution
2979 * of this method.
2980 *
2981 * @param o object to be compared for equality with this map
2982 * @return {@code true} if the specified object is equal to this map
2983 */
2984 public boolean equals(Object o) {
2985 if (o != this) {
2986 if (!(o instanceof Map))
2987 return false;
2988 Map<?,?> m = (Map<?,?>) o;
2989 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
2990 Object val;
2991 while ((val = it.advance()) != null) {
2992 Object v = m.get(it.nextKey);
2993 if (v == null || (v != val && !v.equals(val)))
2994 return false;
2995 }
2996 for (Map.Entry<?,?> e : m.entrySet()) {
2997 Object mk, mv, v;
2998 if ((mk = e.getKey()) == null ||
2999 (mv = e.getValue()) == null ||
3000 (v = internalGet(mk)) == null ||
3001 (mv != v && !mv.equals(v)))
3002 return false;
3003 }
3004 }
3005 return true;
3006 }
3007
3008 /* ----------------Iterators -------------- */
3009
3010 static final class KeyIterator<K,V> extends Traverser<K,V,Object>
3011 implements Spliterator<K>, Enumeration<K> {
3012 KeyIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3013 KeyIterator(Traverser<K,V,Object> it, boolean split) {
3014 super(it, split);
3015 }
3016 public KeyIterator<K,V> split() {
3017 if (last != null || (next != null && nextVal == null))
3018 throw new IllegalStateException();
3019 return new KeyIterator<K,V>(this, true);
3020 }
3021 @SuppressWarnings("unchecked")
3022 public final K next() {
3023 if (nextVal == null && advance() == null)
3024 throw new NoSuchElementException();
3025 Object k = nextKey;
3026 nextVal = null;
3027 return (K) k;
3028 }
3029
3030 public final K nextElement() { return next(); }
3031 }
3032
3033 static final class ValueIterator<K,V> extends Traverser<K,V,Object>
3034 implements Spliterator<V>, Enumeration<V> {
3035 ValueIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3036 ValueIterator(Traverser<K,V,Object> it, boolean split) {
3037 super(it, split);
3038 }
3039 public ValueIterator<K,V> split() {
3040 if (last != null || (next != null && nextVal == null))
3041 throw new IllegalStateException();
3042 return new ValueIterator<K,V>(this, true);
3043 }
3044
3045 @SuppressWarnings("unchecked")
3046 public final V next() {
3047 Object v;
3048 if ((v = nextVal) == null && (v = advance()) == null)
3049 throw new NoSuchElementException();
3050 nextVal = null;
3051 return (V) v;
3052 }
3053
3054 public final V nextElement() { return next(); }
3055 }
3056
3057 static final class EntryIterator<K,V> extends Traverser<K,V,Object>
3058 implements Spliterator<Map.Entry<K,V>> {
3059 EntryIterator(ConcurrentHashMapV8<K, V> map) { super(map); }
3060 EntryIterator(Traverser<K,V,Object> it, boolean split) {
3061 super(it, split);
3062 }
3063 public EntryIterator<K,V> split() {
3064 if (last != null || (next != null && nextVal == null))
3065 throw new IllegalStateException();
3066 return new EntryIterator<K,V>(this, true);
3067 }
3068
3069 @SuppressWarnings("unchecked")
3070 public final Map.Entry<K,V> next() {
3071 Object v;
3072 if ((v = nextVal) == null && (v = advance()) == null)
3073 throw new NoSuchElementException();
3074 Object k = nextKey;
3075 nextVal = null;
3076 return new MapEntry<K,V>((K)k, (V)v, map);
3077 }
3078 }
3079
3080 /**
3081 * Exported Entry for iterators
3082 */
3083 static final class MapEntry<K,V> implements Map.Entry<K, V> {
3084 final K key; // non-null
3085 V val; // non-null
3086 final ConcurrentHashMapV8<K, V> map;
3087 MapEntry(K key, V val, ConcurrentHashMapV8<K, V> map) {
3088 this.key = key;
3089 this.val = val;
3090 this.map = map;
3091 }
3092 public final K getKey() { return key; }
3093 public final V getValue() { return val; }
3094 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
3095 public final String toString(){ return key + "=" + val; }
3096
3097 public final boolean equals(Object o) {
3098 Object k, v; Map.Entry<?,?> e;
3099 return ((o instanceof Map.Entry) &&
3100 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3101 (v = e.getValue()) != null &&
3102 (k == key || k.equals(key)) &&
3103 (v == val || v.equals(val)));
3104 }
3105
3106 /**
3107 * Sets our entry's value and writes through to the map. The
3108 * value to return is somewhat arbitrary here. Since we do not
3109 * necessarily track asynchronous changes, the most recent
3110 * "previous" value could be different from what we return (or
3111 * could even have been removed in which case the put will
3112 * re-establish). We do not and cannot guarantee more.
3113 */
3114 public final V setValue(V value) {
3115 if (value == null) throw new NullPointerException();
3116 V v = val;
3117 val = value;
3118 map.put(key, value);
3119 return v;
3120 }
3121 }
3122
3123 /* ----------------Views -------------- */
3124
3125 /**
3126 * Base class for views.
3127 */
3128 static abstract class CHMView<K, V> {
3129 final ConcurrentHashMapV8<K, V> map;
3130 CHMView(ConcurrentHashMapV8<K, V> map) { this.map = map; }
3131 public final int size() { return map.size(); }
3132 public final boolean isEmpty() { return map.isEmpty(); }
3133 public final void clear() { map.clear(); }
3134
3135 // implementations below rely on concrete classes supplying these
3136 abstract public Iterator<?> iterator();
3137 abstract public boolean contains(Object o);
3138 abstract public boolean remove(Object o);
3139
3140 private static final String oomeMsg = "Required array size too large";
3141
3142 public final Object[] toArray() {
3143 long sz = map.mappingCount();
3144 if (sz > (long)(MAX_ARRAY_SIZE))
3145 throw new OutOfMemoryError(oomeMsg);
3146 int n = (int)sz;
3147 Object[] r = new Object[n];
3148 int i = 0;
3149 Iterator<?> it = iterator();
3150 while (it.hasNext()) {
3151 if (i == n) {
3152 if (n >= MAX_ARRAY_SIZE)
3153 throw new OutOfMemoryError(oomeMsg);
3154 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3155 n = MAX_ARRAY_SIZE;
3156 else
3157 n += (n >>> 1) + 1;
3158 r = Arrays.copyOf(r, n);
3159 }
3160 r[i++] = it.next();
3161 }
3162 return (i == n) ? r : Arrays.copyOf(r, i);
3163 }
3164
3165 @SuppressWarnings("unchecked")
3166 public final <T> T[] toArray(T[] a) {
3167 long sz = map.mappingCount();
3168 if (sz > (long)(MAX_ARRAY_SIZE))
3169 throw new OutOfMemoryError(oomeMsg);
3170 int m = (int)sz;
3171 T[] r = (a.length >= m) ? a :
3172 (T[])java.lang.reflect.Array
3173 .newInstance(a.getClass().getComponentType(), m);
3174 int n = r.length;
3175 int i = 0;
3176 Iterator<?> it = iterator();
3177 while (it.hasNext()) {
3178 if (i == n) {
3179 if (n >= MAX_ARRAY_SIZE)
3180 throw new OutOfMemoryError(oomeMsg);
3181 if (n >= MAX_ARRAY_SIZE - (MAX_ARRAY_SIZE >>> 1) - 1)
3182 n = MAX_ARRAY_SIZE;
3183 else
3184 n += (n >>> 1) + 1;
3185 r = Arrays.copyOf(r, n);
3186 }
3187 r[i++] = (T)it.next();
3188 }
3189 if (a == r && i < n) {
3190 r[i] = null; // null-terminate
3191 return r;
3192 }
3193 return (i == n) ? r : Arrays.copyOf(r, i);
3194 }
3195
3196 public final int hashCode() {
3197 int h = 0;
3198 for (Iterator<?> it = iterator(); it.hasNext();)
3199 h += it.next().hashCode();
3200 return h;
3201 }
3202
3203 public final String toString() {
3204 StringBuilder sb = new StringBuilder();
3205 sb.append('[');
3206 Iterator<?> it = iterator();
3207 if (it.hasNext()) {
3208 for (;;) {
3209 Object e = it.next();
3210 sb.append(e == this ? "(this Collection)" : e);
3211 if (!it.hasNext())
3212 break;
3213 sb.append(',').append(' ');
3214 }
3215 }
3216 return sb.append(']').toString();
3217 }
3218
3219 public final boolean containsAll(Collection<?> c) {
3220 if (c != this) {
3221 for (Iterator<?> it = c.iterator(); it.hasNext();) {
3222 Object e = it.next();
3223 if (e == null || !contains(e))
3224 return false;
3225 }
3226 }
3227 return true;
3228 }
3229
3230 public final boolean removeAll(Collection<?> c) {
3231 boolean modified = false;
3232 for (Iterator<?> it = iterator(); it.hasNext();) {
3233 if (c.contains(it.next())) {
3234 it.remove();
3235 modified = true;
3236 }
3237 }
3238 return modified;
3239 }
3240
3241 public final boolean retainAll(Collection<?> c) {
3242 boolean modified = false;
3243 for (Iterator<?> it = iterator(); it.hasNext();) {
3244 if (!c.contains(it.next())) {
3245 it.remove();
3246 modified = true;
3247 }
3248 }
3249 return modified;
3250 }
3251
3252 }
3253
3254 static final class KeySet<K,V> extends CHMView<K,V> implements Set<K> {
3255 KeySet(ConcurrentHashMapV8<K, V> map) {
3256 super(map);
3257 }
3258 public final boolean contains(Object o) { return map.containsKey(o); }
3259 public final boolean remove(Object o) { return map.remove(o) != null; }
3260 public final Iterator<K> iterator() {
3261 return new KeyIterator<K,V>(map);
3262 }
3263 public final boolean add(K e) {
3264 throw new UnsupportedOperationException();
3265 }
3266 public final boolean addAll(Collection<? extends K> c) {
3267 throw new UnsupportedOperationException();
3268 }
3269 public boolean equals(Object o) {
3270 Set<?> c;
3271 return ((o instanceof Set) &&
3272 ((c = (Set<?>)o) == this ||
3273 (containsAll(c) && c.containsAll(this))));
3274 }
3275 }
3276
3277
3278 static final class Values<K,V> extends CHMView<K,V>
3279 implements Collection<V> {
3280 Values(ConcurrentHashMapV8<K, V> map) { super(map); }
3281 public final boolean contains(Object o) { return map.containsValue(o); }
3282 public final boolean remove(Object o) {
3283 if (o != null) {
3284 Iterator<V> it = new ValueIterator<K,V>(map);
3285 while (it.hasNext()) {
3286 if (o.equals(it.next())) {
3287 it.remove();
3288 return true;
3289 }
3290 }
3291 }
3292 return false;
3293 }
3294 public final Iterator<V> iterator() {
3295 return new ValueIterator<K,V>(map);
3296 }
3297 public final boolean add(V e) {
3298 throw new UnsupportedOperationException();
3299 }
3300 public final boolean addAll(Collection<? extends V> c) {
3301 throw new UnsupportedOperationException();
3302 }
3303
3304 }
3305
3306 static final class EntrySet<K,V> extends CHMView<K,V>
3307 implements Set<Map.Entry<K,V>> {
3308 EntrySet(ConcurrentHashMapV8<K, V> map) { super(map); }
3309 public final boolean contains(Object o) {
3310 Object k, v, r; Map.Entry<?,?> e;
3311 return ((o instanceof Map.Entry) &&
3312 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3313 (r = map.get(k)) != null &&
3314 (v = e.getValue()) != null &&
3315 (v == r || v.equals(r)));
3316 }
3317 public final boolean remove(Object o) {
3318 Object k, v; Map.Entry<?,?> e;
3319 return ((o instanceof Map.Entry) &&
3320 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
3321 (v = e.getValue()) != null &&
3322 map.remove(k, v));
3323 }
3324 public final Iterator<Map.Entry<K,V>> iterator() {
3325 return new EntryIterator<K,V>(map);
3326 }
3327 public final boolean add(Entry<K,V> e) {
3328 throw new UnsupportedOperationException();
3329 }
3330 public final boolean addAll(Collection<? extends Entry<K,V>> c) {
3331 throw new UnsupportedOperationException();
3332 }
3333 public boolean equals(Object o) {
3334 Set<?> c;
3335 return ((o instanceof Set) &&
3336 ((c = (Set<?>)o) == this ||
3337 (containsAll(c) && c.containsAll(this))));
3338 }
3339 }
3340
3341 /* ---------------- Serialization Support -------------- */
3342
3343 /**
3344 * Stripped-down version of helper class used in previous version,
3345 * declared for the sake of serialization compatibility
3346 */
3347 static class Segment<K,V> implements Serializable {
3348 private static final long serialVersionUID = 2249069246763182397L;
3349 final float loadFactor;
3350 Segment(float lf) { this.loadFactor = lf; }
3351 }
3352
3353 /**
3354 * Saves the state of the {@code ConcurrentHashMapV8} instance to a
3355 * stream (i.e., serializes it).
3356 * @param s the stream
3357 * @serialData
3358 * the key (Object) and value (Object)
3359 * for each key-value mapping, followed by a null pair.
3360 * The key-value mappings are emitted in no particular order.
3361 */
3362 @SuppressWarnings("unchecked")
3363 private void writeObject(java.io.ObjectOutputStream s)
3364 throws java.io.IOException {
3365 if (segments == null) { // for serialization compatibility
3366 segments = (Segment<K,V>[])
3367 new Segment<?,?>[DEFAULT_CONCURRENCY_LEVEL];
3368 for (int i = 0; i < segments.length; ++i)
3369 segments[i] = new Segment<K,V>(LOAD_FACTOR);
3370 }
3371 s.defaultWriteObject();
3372 Traverser<K,V,Object> it = new Traverser<K,V,Object>(this);
3373 Object v;
3374 while ((v = it.advance()) != null) {
3375 s.writeObject(it.nextKey);
3376 s.writeObject(v);
3377 }
3378 s.writeObject(null);
3379 s.writeObject(null);
3380 segments = null; // throw away
3381 }
3382
3383 /**
3384 * Reconstitutes the instance from a stream (that is, deserializes it).
3385 * @param s the stream
3386 */
3387 @SuppressWarnings("unchecked")
3388 private void readObject(java.io.ObjectInputStream s)
3389 throws java.io.IOException, ClassNotFoundException {
3390 s.defaultReadObject();
3391 this.segments = null; // unneeded
3392 // initialize transient final field
3393 UNSAFE.putObjectVolatile(this, counterOffset, new LongAdder());
3394
3395 // Create all nodes, then place in table once size is known
3396 long size = 0L;
3397 Node p = null;
3398 for (;;) {
3399 K k = (K) s.readObject();
3400 V v = (V) s.readObject();
3401 if (k != null && v != null) {
3402 int h = spread(k.hashCode());
3403 p = new Node(h, k, v, p);
3404 ++size;
3405 }
3406 else
3407 break;
3408 }
3409 if (p != null) {
3410 boolean init = false;
3411 int n;
3412 if (size >= (long)(MAXIMUM_CAPACITY >>> 1))
3413 n = MAXIMUM_CAPACITY;
3414 else {
3415 int sz = (int)size;
3416 n = tableSizeFor(sz + (sz >>> 1) + 1);
3417 }
3418 int sc = sizeCtl;
3419 boolean collide = false;
3420 if (n > sc &&
3421 UNSAFE.compareAndSwapInt(this, sizeCtlOffset, sc, -1)) {
3422 try {
3423 if (table == null) {
3424 init = true;
3425 Node[] tab = new Node[n];
3426 int mask = n - 1;
3427 while (p != null) {
3428 int j = p.hash & mask;
3429 Node next = p.next;
3430 Node q = p.next = tabAt(tab, j);
3431 setTabAt(tab, j, p);
3432 if (!collide && q != null && q.hash == p.hash)
3433 collide = true;
3434 p = next;
3435 }
3436 table = tab;
3437 counter.add(size);
3438 sc = n - (n >>> 2);
3439 }
3440 } finally {
3441 sizeCtl = sc;
3442 }
3443 if (collide) { // rescan and convert to TreeBins
3444 Node[] tab = table;
3445 for (int i = 0; i < tab.length; ++i) {
3446 int c = 0;
3447 for (Node e = tabAt(tab, i); e != null; e = e.next) {
3448 if (++c > TREE_THRESHOLD &&
3449 (e.key instanceof Comparable)) {
3450 replaceWithTreeBin(tab, i, e.key);
3451 break;
3452 }
3453 }
3454 }
3455 }
3456 }
3457 if (!init) { // Can only happen if unsafely published.
3458 while (p != null) {
3459 internalPut(p.key, p.val);
3460 p = p.next;
3461 }
3462 }
3463 }
3464 }
3465
3466
3467 // -------------------------------------------------------
3468
3469 // Sams
3470 /** Interface describing a void action of one argument */
3471 public interface Action<A> { void apply(A a); }
3472 /** Interface describing a void action of two arguments */
3473 public interface BiAction<A,B> { void apply(A a, B b); }
3474 /** Interface describing a function of one argument */
3475 public interface Fun<A,T> { T apply(A a); }
3476 /** Interface describing a function of two arguments */
3477 public interface BiFun<A,B,T> { T apply(A a, B b); }
3478 /** Interface describing a function of no arguments */
3479 public interface Generator<T> { T apply(); }
3480 /** Interface describing a function mapping its argument to a double */
3481 public interface ObjectToDouble<A> { double apply(A a); }
3482 /** Interface describing a function mapping its argument to a long */
3483 public interface ObjectToLong<A> { long apply(A a); }
3484 /** Interface describing a function mapping its argument to an int */
3485 public interface ObjectToInt<A> {int apply(A a); }
3486 /** Interface describing a function mapping two arguments to a double */
3487 public interface ObjectByObjectToDouble<A,B> { double apply(A a, B b); }
3488 /** Interface describing a function mapping two arguments to a long */
3489 public interface ObjectByObjectToLong<A,B> { long apply(A a, B b); }
3490 /** Interface describing a function mapping two arguments to an int */
3491 public interface ObjectByObjectToInt<A,B> {int apply(A a, B b); }
3492 /** Interface describing a function mapping a double to a double */
3493 public interface DoubleToDouble { double apply(double a); }
3494 /** Interface describing a function mapping a long to a long */
3495 public interface LongToLong { long apply(long a); }
3496 /** Interface describing a function mapping an int to an int */
3497 public interface IntToInt { int apply(int a); }
3498 /** Interface describing a function mapping two doubles to a double */
3499 public interface DoubleByDoubleToDouble { double apply(double a, double b); }
3500 /** Interface describing a function mapping two longs to a long */
3501 public interface LongByLongToLong { long apply(long a, long b); }
3502 /** Interface describing a function mapping two ints to an int */
3503 public interface IntByIntToInt { int apply(int a, int b); }
3504
3505
3506 // -------------------------------------------------------
3507
3508 /**
3509 * Returns an extended {@link Parallel} view of this map using the
3510 * given executor for bulk parallel operations.
3511 *
3512 * @param executor the executor
3513 * @return a parallel view
3514 */
3515 public Parallel parallel(ForkJoinPool executor) {
3516 return new Parallel(executor);
3517 }
3518
3519 /**
3520 * An extended view of a ConcurrentHashMap supporting bulk
3521 * parallel operations. These operations are designed to be be
3522 * safely, and often sensibly, applied even with maps that are
3523 * being concurrently updated by other threads; for example, when
3524 * computing a snapshot summary of the values in a shared
3525 * registry. There are three kinds of operation, each with four
3526 * forms, accepting functions with Keys, Values, Entries, and
3527 * (Key, Value) arguments and/or return values. Because the
3528 * elements of a ConcurrentHashMap are not ordered in any
3529 * particular way, and may be processed in different orders in
3530 * different parallel executions, the correctness of supplied
3531 * functions should not depend on any ordering, or on any other
3532 * objects or values that may transiently change while computation
3533 * is in progress; and except for forEach actions, should ideally
3534 * be side-effect-free.
3535 *
3536 * <ul>
3537 * <li> forEach: Perform a given action on each element.
3538 * A variant form applies a given transformation on each element
3539 * before performing the action.</li>
3540 *
3541 * <li> search: Return the first available non-null result of
3542 * applying a given function on each element; skipping further
3543 * search when a result is found.</li>
3544 *
3545 * <li> reduce: Accumulate each element. The supplied reduction
3546 * function cannot rely on ordering (more formally, it should be
3547 * both associative and commutative). There are five variants:
3548 *
3549 * <ul>
3550 *
3551 * <li> Plain reductions. (There is not a form of this method for
3552 * (key, value) function arguments since there is no corresponding
3553 * return type.)</li>
3554 *
3555 * <li> Mapped reductions that accumulate the results of a given
3556 * function applied to each element.</li>
3557 *
3558 * <li> Reductions to scalar doubles, longs, and ints, using a
3559 * given basis value.</li>
3560 *
3561 * </li>
3562 * </ul>
3563 * </ul>
3564 *
3565 * <p>The concurrency properties of the bulk operations follow
3566 * from those of ConcurrentHashMap: Any non-null result returned
3567 * from {@code get(key)} and related access methods bears a
3568 * happens-before relation with the associated insertion or
3569 * update. The result of any bulk operation reflects the
3570 * composition of these per-element relations (but is not
3571 * necessarily atomic with respect to the map as a whole unless it
3572 * is somehow known to be quiescent). Conversely, because keys
3573 * and values in the map are never null, null serves as a reliable
3574 * atomic indicator of the current lack of any result. To
3575 * maintain this property, null serves as an implicit basis for
3576 * all non-scalar reduction operations. For the double, long, and
3577 * int versions, the basis should be one that, when combined with
3578 * any other value, returns that other value (more formally, it
3579 * should be the identity element for the reduction). Most common
3580 * reductions have these properties; for example, computing a sum
3581 * with basis 0 or a minimum with basis MAX_VALUE.
3582 *
3583 * <p>Search and transformation functions provided as arguments
3584 * should similarly return null to indicate the lack of any result
3585 * (in which case it is not used). In the case of mapped
3586 * reductions, this also enables transformations to serve as
3587 * filters, returning null (or, in the case of primitive
3588 * specializations, the identity basis) if the element should not
3589 * be combined. You can create compound transformations and
3590 * filterings by composing them yourself under this "null means
3591 * there is nothing there now" rule before using them in search or
3592 * reduce operations.
3593 *
3594 * <p>Methods accepting and/or returning Entry arguments maintain
3595 * key-value associations. They may be useful for example when
3596 * finding the key for the greatest value. Note that "plain" Entry
3597 * arguments can be supplied using {@code new
3598 * AbstractMap.SimpleEntry(k,v)}.
3599 *
3600 * <p> Bulk operations may complete abruptly, throwing an
3601 * exception encountered in the application of a supplied
3602 * function. Bear in mind when handling such exceptions that other
3603 * concurrently executing functions could also have thrown
3604 * exceptions, or would have done so if the first exception had
3605 * not occurred.
3606 *
3607 * <p>Parallel speedups compared to sequential processing are
3608 * common but not guaranteed. Operations involving brief
3609 * functions on small maps may execute more slowly than sequential
3610 * loops if the underlying work to parallelize the computation is
3611 * more expensive than the computation itself. Similarly,
3612 * parallelization may not lead to much actual parallelism if all
3613 * processors are busy performing unrelated tasks.
3614 *
3615 * <p> All arguments to all task methods must be non-null.
3616 *
3617 * <p><em>jsr166e note: During transition, this class
3618 * uses nested functional interfaces with different names but the
3619 * same forms as those expected for JDK8.<em>
3620 */
3621 public class Parallel {
3622 final ForkJoinPool fjp;
3623
3624 /**
3625 * Returns an extended view of this map using the given
3626 * executor for bulk parallel operations.
3627 *
3628 * @param executor the executor
3629 */
3630 public Parallel(ForkJoinPool executor) {
3631 this.fjp = executor;
3632 }
3633
3634 /**
3635 * Performs the given action for each (key, value).
3636 *
3637 * @param action the action
3638 */
3639 public void forEach(BiAction<K,V> action) {
3640 fjp.invoke(ForkJoinTasks.forEach
3641 (ConcurrentHashMapV8.this, action));
3642 }
3643
3644 /**
3645 * Performs the given action for each non-null transformation
3646 * of each (key, value).
3647 *
3648 * @param transformer a function returning the transformation
3649 * for an element, or null of there is no transformation (in
3650 * which case the action is not applied).
3651 * @param action the action
3652 */
3653 public <U> void forEach(BiFun<? super K, ? super V, ? extends U> transformer,
3654 Action<U> action) {
3655 fjp.invoke(ForkJoinTasks.forEach
3656 (ConcurrentHashMapV8.this, transformer, action));
3657 }
3658
3659 /**
3660 * Returns a non-null result from applying the given search
3661 * function on each (key, value), or null if none. Further
3662 * element processing is suppressed upon success. However,
3663 * this method does not return until other in-progress
3664 * parallel invocations of the search function also complete.
3665 *
3666 * @param searchFunction a function returning a non-null
3667 * result on success, else null
3668 * @return a non-null result from applying the given search
3669 * function on each (key, value), or null if none
3670 */
3671 public <U> U search(BiFun<? super K, ? super V, ? extends U> searchFunction) {
3672 return fjp.invoke(ForkJoinTasks.search
3673 (ConcurrentHashMapV8.this, searchFunction));
3674 }
3675
3676 /**
3677 * Returns the result of accumulating the given transformation
3678 * of all (key, value) pairs using the given reducer to
3679 * combine values, or null if none.
3680 *
3681 * @param transformer a function returning the transformation
3682 * for an element, or null of there is no transformation (in
3683 * which case it is not combined).
3684 * @param reducer a commutative associative combining function
3685 * @return the result of accumulating the given transformation
3686 * of all (key, value) pairs
3687 */
3688 public <U> U reduce(BiFun<? super K, ? super V, ? extends U> transformer,
3689 BiFun<? super U, ? super U, ? extends U> reducer) {
3690 return fjp.invoke(ForkJoinTasks.reduce
3691 (ConcurrentHashMapV8.this, transformer, reducer));
3692 }
3693
3694 /**
3695 * Returns the result of accumulating the given transformation
3696 * of all (key, value) pairs using the given reducer to
3697 * combine values, and the given basis as an identity value.
3698 *
3699 * @param transformer a function returning the transformation
3700 * for an element
3701 * @param basis the identity (initial default value) for the reduction
3702 * @param reducer a commutative associative combining function
3703 * @return the result of accumulating the given transformation
3704 * of all (key, value) pairs
3705 */
3706 public double reduceToDouble(ObjectByObjectToDouble<? super K, ? super V> transformer,
3707 double basis,
3708 DoubleByDoubleToDouble reducer) {
3709 return fjp.invoke(ForkJoinTasks.reduceToDouble
3710 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3711 }
3712
3713 /**
3714 * Returns the result of accumulating the given transformation
3715 * of all (key, value) pairs using the given reducer to
3716 * combine values, and the given basis as an identity value.
3717 *
3718 * @param transformer a function returning the transformation
3719 * for an element
3720 * @param basis the identity (initial default value) for the reduction
3721 * @param reducer a commutative associative combining function
3722 * @return the result of accumulating the given transformation
3723 * of all (key, value) pairs using the given reducer to
3724 * combine values, and the given basis as an identity value.
3725 */
3726 public long reduceToLong(ObjectByObjectToLong<? super K, ? super V> transformer,
3727 long basis,
3728 LongByLongToLong reducer) {
3729 return fjp.invoke(ForkJoinTasks.reduceToLong
3730 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3731 }
3732
3733 /**
3734 * Returns the result of accumulating the given transformation
3735 * of all (key, value) pairs using the given reducer to
3736 * combine values, and the given basis as an identity value.
3737 *
3738 * @param transformer a function returning the transformation
3739 * for an element
3740 * @param basis the identity (initial default value) for the reduction
3741 * @param reducer a commutative associative combining function
3742 * @return the result of accumulating the given transformation
3743 * of all (key, value) pairs
3744 */
3745 public int reduceToInt(ObjectByObjectToInt<? super K, ? super V> transformer,
3746 int basis,
3747 IntByIntToInt reducer) {
3748 return fjp.invoke(ForkJoinTasks.reduceToInt
3749 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3750 }
3751
3752 /**
3753 * Performs the given action for each key
3754 *
3755 * @param action the action
3756 */
3757 public void forEachKey(Action<K> action) {
3758 fjp.invoke(ForkJoinTasks.forEachKey
3759 (ConcurrentHashMapV8.this, action));
3760 }
3761
3762 /**
3763 * Performs the given action for each non-null transformation
3764 * of each key
3765 *
3766 * @param transformer a function returning the transformation
3767 * for an element, or null of there is no transformation (in
3768 * which case the action is not applied).
3769 * @param action the action
3770 */
3771 public <U> void forEachKey(Fun<? super K, ? extends U> transformer,
3772 Action<U> action) {
3773 fjp.invoke(ForkJoinTasks.forEachKey
3774 (ConcurrentHashMapV8.this, transformer, action));
3775 }
3776
3777 /**
3778 * Returns a non-null result from applying the given search
3779 * function on each key, or null if none. Further element
3780 * processing is suppressed upon success. However, this method
3781 * does not return until other in-progress parallel
3782 * invocations of the search function also complete.
3783 *
3784 * @param searchFunction a function returning a non-null
3785 * result on success, else null
3786 * @return a non-null result from applying the given search
3787 * function on each key, or null if none
3788 */
3789 public <U> U searchKeys(Fun<? super K, ? extends U> searchFunction) {
3790 return fjp.invoke(ForkJoinTasks.searchKeys
3791 (ConcurrentHashMapV8.this, searchFunction));
3792 }
3793
3794 /**
3795 * Returns the result of accumulating all keys using the given
3796 * reducer to combine values, or null if none.
3797 *
3798 * @param reducer a commutative associative combining function
3799 * @return the result of accumulating all keys using the given
3800 * reducer to combine values, or null if none
3801 */
3802 public K reduceKeys(BiFun<? super K, ? super K, ? extends K> reducer) {
3803 return fjp.invoke(ForkJoinTasks.reduceKeys
3804 (ConcurrentHashMapV8.this, reducer));
3805 }
3806
3807 /**
3808 * Returns the result of accumulating the given transformation
3809 * of all keys using the given reducer to combine values, or
3810 * null if none.
3811 *
3812 * @param transformer a function returning the transformation
3813 * for an element, or null of there is no transformation (in
3814 * which case it is not combined).
3815 * @param reducer a commutative associative combining function
3816 * @return the result of accumulating the given transformation
3817 * of all keys
3818 */
3819 public <U> U reduceKeys(Fun<? super K, ? extends U> transformer,
3820 BiFun<? super U, ? super U, ? extends U> reducer) {
3821 return fjp.invoke(ForkJoinTasks.reduceKeys
3822 (ConcurrentHashMapV8.this, transformer, reducer));
3823 }
3824
3825 /**
3826 * Returns the result of accumulating the given transformation
3827 * of all keys using the given reducer to combine values, and
3828 * the given basis as an identity value.
3829 *
3830 * @param transformer a function returning the transformation
3831 * for an element
3832 * @param basis the identity (initial default value) for the reduction
3833 * @param reducer a commutative associative combining function
3834 * @return the result of accumulating the given transformation
3835 * of all keys
3836 */
3837 public double reduceKeysToDouble(ObjectToDouble<? super K> transformer,
3838 double basis,
3839 DoubleByDoubleToDouble reducer) {
3840 return fjp.invoke(ForkJoinTasks.reduceKeysToDouble
3841 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3842 }
3843
3844 /**
3845 * Returns the result of accumulating the given transformation
3846 * of all keys using the given reducer to combine values, and
3847 * the given basis as an identity value.
3848 *
3849 * @param transformer a function returning the transformation
3850 * for an element
3851 * @param basis the identity (initial default value) for the reduction
3852 * @param reducer a commutative associative combining function
3853 * @return the result of accumulating the given transformation
3854 * of all keys
3855 */
3856 public long reduceKeysToLong(ObjectToLong<? super K> transformer,
3857 long basis,
3858 LongByLongToLong reducer) {
3859 return fjp.invoke(ForkJoinTasks.reduceKeysToLong
3860 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3861 }
3862
3863 /**
3864 * Returns the result of accumulating the given transformation
3865 * of all keys using the given reducer to combine values, and
3866 * the given basis as an identity value.
3867 *
3868 * @param transformer a function returning the transformation
3869 * for an element
3870 * @param basis the identity (initial default value) for the reduction
3871 * @param reducer a commutative associative combining function
3872 * @return the result of accumulating the given transformation
3873 * of all keys
3874 */
3875 public int reduceKeysToInt(ObjectToInt<? super K> transformer,
3876 int basis,
3877 IntByIntToInt reducer) {
3878 return fjp.invoke(ForkJoinTasks.reduceKeysToInt
3879 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3880 }
3881
3882 /**
3883 * Performs the given action for each value
3884 *
3885 * @param action the action
3886 */
3887 public void forEachValue(Action<V> action) {
3888 fjp.invoke(ForkJoinTasks.forEachValue
3889 (ConcurrentHashMapV8.this, action));
3890 }
3891
3892 /**
3893 * Performs the given action for each non-null transformation
3894 * of each value
3895 *
3896 * @param transformer a function returning the transformation
3897 * for an element, or null of there is no transformation (in
3898 * which case the action is not applied).
3899 */
3900 public <U> void forEachValue(Fun<? super V, ? extends U> transformer,
3901 Action<U> action) {
3902 fjp.invoke(ForkJoinTasks.forEachValue
3903 (ConcurrentHashMapV8.this, transformer, action));
3904 }
3905
3906 /**
3907 * Returns a non-null result from applying the given search
3908 * function on each value, or null if none. Further element
3909 * processing is suppressed upon success. However, this method
3910 * does not return until other in-progress parallel
3911 * invocations of the search function also complete.
3912 *
3913 * @param searchFunction a function returning a non-null
3914 * result on success, else null
3915 * @return a non-null result from applying the given search
3916 * function on each value, or null if none
3917 *
3918 */
3919 public <U> U searchValues(Fun<? super V, ? extends U> searchFunction) {
3920 return fjp.invoke(ForkJoinTasks.searchValues
3921 (ConcurrentHashMapV8.this, searchFunction));
3922 }
3923
3924 /**
3925 * Returns the result of accumulating all values using the
3926 * given reducer to combine values, or null if none.
3927 *
3928 * @param reducer a commutative associative combining function
3929 * @return the result of accumulating all values
3930 */
3931 public V reduceValues(BiFun<? super V, ? super V, ? extends V> reducer) {
3932 return fjp.invoke(ForkJoinTasks.reduceValues
3933 (ConcurrentHashMapV8.this, reducer));
3934 }
3935
3936 /**
3937 * Returns the result of accumulating the given transformation
3938 * of all values using the given reducer to combine values, or
3939 * null if none.
3940 *
3941 * @param transformer a function returning the transformation
3942 * for an element, or null of there is no transformation (in
3943 * which case it is not combined).
3944 * @param reducer a commutative associative combining function
3945 * @return the result of accumulating the given transformation
3946 * of all values
3947 */
3948 public <U> U reduceValues(Fun<? super V, ? extends U> transformer,
3949 BiFun<? super U, ? super U, ? extends U> reducer) {
3950 return fjp.invoke(ForkJoinTasks.reduceValues
3951 (ConcurrentHashMapV8.this, transformer, reducer));
3952 }
3953
3954 /**
3955 * Returns the result of accumulating the given transformation
3956 * of all values using the given reducer to combine values,
3957 * and the given basis as an identity value.
3958 *
3959 * @param transformer a function returning the transformation
3960 * for an element
3961 * @param basis the identity (initial default value) for the reduction
3962 * @param reducer a commutative associative combining function
3963 * @return the result of accumulating the given transformation
3964 * of all values
3965 */
3966 public double reduceValuesToDouble(ObjectToDouble<? super V> transformer,
3967 double basis,
3968 DoubleByDoubleToDouble reducer) {
3969 return fjp.invoke(ForkJoinTasks.reduceValuesToDouble
3970 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3971 }
3972
3973 /**
3974 * Returns the result of accumulating the given transformation
3975 * of all values using the given reducer to combine values,
3976 * and the given basis as an identity value.
3977 *
3978 * @param transformer a function returning the transformation
3979 * for an element
3980 * @param basis the identity (initial default value) for the reduction
3981 * @param reducer a commutative associative combining function
3982 * @return the result of accumulating the given transformation
3983 * of all values
3984 */
3985 public long reduceValuesToLong(ObjectToLong<? super V> transformer,
3986 long basis,
3987 LongByLongToLong reducer) {
3988 return fjp.invoke(ForkJoinTasks.reduceValuesToLong
3989 (ConcurrentHashMapV8.this, transformer, basis, reducer));
3990 }
3991
3992 /**
3993 * Returns the result of accumulating the given transformation
3994 * of all values using the given reducer to combine values,
3995 * and the given basis as an identity value.
3996 *
3997 * @param transformer a function returning the transformation
3998 * for an element
3999 * @param basis the identity (initial default value) for the reduction
4000 * @param reducer a commutative associative combining function
4001 * @return the result of accumulating the given transformation
4002 * of all values
4003 */
4004 public int reduceValuesToInt(ObjectToInt<? super V> transformer,
4005 int basis,
4006 IntByIntToInt reducer) {
4007 return fjp.invoke(ForkJoinTasks.reduceValuesToInt
4008 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4009 }
4010
4011 /**
4012 * Perform the given action for each entry
4013 *
4014 * @param action the action
4015 */
4016 public void forEachEntry(Action<Map.Entry<K,V>> action) {
4017 fjp.invoke(ForkJoinTasks.forEachEntry
4018 (ConcurrentHashMapV8.this, action));
4019 }
4020
4021 /**
4022 * Perform the given action for each non-null transformation
4023 * of each entry
4024 *
4025 * @param transformer a function returning the transformation
4026 * for an element, or null of there is no transformation (in
4027 * which case the action is not applied).
4028 * @param action the action
4029 */
4030 public <U> void forEachEntry(Fun<Map.Entry<K,V>, ? extends U> transformer,
4031 Action<U> action) {
4032 fjp.invoke(ForkJoinTasks.forEachEntry
4033 (ConcurrentHashMapV8.this, transformer, action));
4034 }
4035
4036 /**
4037 * Returns a non-null result from applying the given search
4038 * function on each entry, or null if none. Further element
4039 * processing is suppressed upon success. However, this method
4040 * does not return until other in-progress parallel
4041 * invocations of the search function also complete.
4042 *
4043 * @param searchFunction a function returning a non-null
4044 * result on success, else null
4045 * @return a non-null result from applying the given search
4046 * function on each entry, or null if none
4047 */
4048 public <U> U searchEntries(Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4049 return fjp.invoke(ForkJoinTasks.searchEntries
4050 (ConcurrentHashMapV8.this, searchFunction));
4051 }
4052
4053 /**
4054 * Returns the result of accumulating all entries using the
4055 * given reducer to combine values, or null if none.
4056 *
4057 * @param reducer a commutative associative combining function
4058 * @return the result of accumulating all entries
4059 */
4060 public Map.Entry<K,V> reduceEntries(BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4061 return fjp.invoke(ForkJoinTasks.reduceEntries
4062 (ConcurrentHashMapV8.this, reducer));
4063 }
4064
4065 /**
4066 * Returns the result of accumulating the given transformation
4067 * of all entries using the given reducer to combine values,
4068 * or null if none.
4069 *
4070 * @param transformer a function returning the transformation
4071 * for an element, or null of there is no transformation (in
4072 * which case it is not combined).
4073 * @param reducer a commutative associative combining function
4074 * @return the result of accumulating the given transformation
4075 * of all entries
4076 */
4077 public <U> U reduceEntries(Fun<Map.Entry<K,V>, ? extends U> transformer,
4078 BiFun<? super U, ? super U, ? extends U> reducer) {
4079 return fjp.invoke(ForkJoinTasks.reduceEntries
4080 (ConcurrentHashMapV8.this, transformer, reducer));
4081 }
4082
4083 /**
4084 * Returns the result of accumulating the given transformation
4085 * of all entries using the given reducer to combine values,
4086 * and the given basis as an identity value.
4087 *
4088 * @param transformer a function returning the transformation
4089 * for an element
4090 * @param basis the identity (initial default value) for the reduction
4091 * @param reducer a commutative associative combining function
4092 * @return the result of accumulating the given transformation
4093 * of all entries
4094 */
4095 public double reduceEntriesToDouble(ObjectToDouble<Map.Entry<K,V>> transformer,
4096 double basis,
4097 DoubleByDoubleToDouble reducer) {
4098 return fjp.invoke(ForkJoinTasks.reduceEntriesToDouble
4099 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4100 }
4101
4102 /**
4103 * Returns the result of accumulating the given transformation
4104 * of all entries using the given reducer to combine values,
4105 * and the given basis as an identity value.
4106 *
4107 * @param transformer a function returning the transformation
4108 * for an element
4109 * @param basis the identity (initial default value) for the reduction
4110 * @param reducer a commutative associative combining function
4111 * @return the result of accumulating the given transformation
4112 * of all entries
4113 */
4114 public long reduceEntriesToLong(ObjectToLong<Map.Entry<K,V>> transformer,
4115 long basis,
4116 LongByLongToLong reducer) {
4117 return fjp.invoke(ForkJoinTasks.reduceEntriesToLong
4118 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4119 }
4120
4121 /**
4122 * Returns the result of accumulating the given transformation
4123 * of all entries using the given reducer to combine values,
4124 * and the given basis as an identity value.
4125 *
4126 * @param transformer a function returning the transformation
4127 * for an element
4128 * @param basis the identity (initial default value) for the reduction
4129 * @param reducer a commutative associative combining function
4130 * @return the result of accumulating the given transformation
4131 * of all entries
4132 */
4133 public int reduceEntriesToInt(ObjectToInt<Map.Entry<K,V>> transformer,
4134 int basis,
4135 IntByIntToInt reducer) {
4136 return fjp.invoke(ForkJoinTasks.reduceEntriesToInt
4137 (ConcurrentHashMapV8.this, transformer, basis, reducer));
4138 }
4139 }
4140
4141 // ---------------------------------------------------------------------
4142
4143 /**
4144 * Predefined tasks for performing bulk parallel operations on
4145 * ConcurrentHashMaps. These tasks follow the forms and rules used
4146 * in class {@link Parallel}. Each method has the same name, but
4147 * returns a task rather than invoking it. These methods may be
4148 * useful in custom applications such as submitting a task without
4149 * waiting for completion, or combining with other tasks.
4150 */
4151 public static class ForkJoinTasks {
4152 private ForkJoinTasks() {}
4153
4154 /**
4155 * Returns a task that when invoked, performs the given
4156 * action for each (key, value)
4157 *
4158 * @param map the map
4159 * @param action the action
4160 * @return the task
4161 */
4162 public static <K,V> ForkJoinTask<Void> forEach
4163 (ConcurrentHashMapV8<K,V> map,
4164 BiAction<K,V> action) {
4165 if (action == null) throw new NullPointerException();
4166 return new ForEachMappingTask<K,V>(map, action);
4167 }
4168
4169 /**
4170 * Returns a task that when invoked, performs the given
4171 * action for each non-null transformation of each (key, value)
4172 *
4173 * @param map the map
4174 * @param transformer a function returning the transformation
4175 * for an element, or null of there is no transformation (in
4176 * which case the action is not applied).
4177 * @param action the action
4178 * @return the task
4179 */
4180 public static <K,V,U> ForkJoinTask<Void> forEach
4181 (ConcurrentHashMapV8<K,V> map,
4182 BiFun<? super K, ? super V, ? extends U> transformer,
4183 Action<U> action) {
4184 if (transformer == null || action == null)
4185 throw new NullPointerException();
4186 return new ForEachTransformedMappingTask<K,V,U>
4187 (map, transformer, action);
4188 }
4189
4190 /**
4191 * Returns a task that when invoked, returns a non-null
4192 * result from applying the given search function on each
4193 * (key, value), or null if none. Further element processing
4194 * is suppressed upon success. However, this method does not
4195 * return until other in-progress parallel invocations of the
4196 * search function also complete.
4197 *
4198 * @param map the map
4199 * @param searchFunction a function returning a non-null
4200 * result on success, else null
4201 * @return the task
4202 */
4203 public static <K,V,U> ForkJoinTask<U> search
4204 (ConcurrentHashMapV8<K,V> map,
4205 BiFun<? super K, ? super V, ? extends U> searchFunction) {
4206 if (searchFunction == null) throw new NullPointerException();
4207 return new SearchMappingsTask<K,V,U>
4208 (map, searchFunction,
4209 new AtomicReference<U>());
4210 }
4211
4212 /**
4213 * Returns a task that when invoked, returns the result of
4214 * accumulating the given transformation of all (key, value) pairs
4215 * using the given reducer to combine values, or null if none.
4216 *
4217 * @param map the map
4218 * @param transformer a function returning the transformation
4219 * for an element, or null of there is no transformation (in
4220 * which case it is not combined).
4221 * @param reducer a commutative associative combining function
4222 * @return the task
4223 */
4224 public static <K,V,U> ForkJoinTask<U> reduce
4225 (ConcurrentHashMapV8<K,V> map,
4226 BiFun<? super K, ? super V, ? extends U> transformer,
4227 BiFun<? super U, ? super U, ? extends U> reducer) {
4228 if (transformer == null || reducer == null)
4229 throw new NullPointerException();
4230 return new MapReduceMappingsTask<K,V,U>
4231 (map, transformer, reducer);
4232 }
4233
4234 /**
4235 * Returns a task that when invoked, returns the result of
4236 * accumulating the given transformation of all (key, value) pairs
4237 * using the given reducer to combine values, and the given
4238 * basis as an identity value.
4239 *
4240 * @param map the map
4241 * @param transformer a function returning the transformation
4242 * for an element
4243 * @param basis the identity (initial default value) for the reduction
4244 * @param reducer a commutative associative combining function
4245 * @return the task
4246 */
4247 public static <K,V> ForkJoinTask<Double> reduceToDouble
4248 (ConcurrentHashMapV8<K,V> map,
4249 ObjectByObjectToDouble<? super K, ? super V> transformer,
4250 double basis,
4251 DoubleByDoubleToDouble reducer) {
4252 if (transformer == null || reducer == null)
4253 throw new NullPointerException();
4254 return new MapReduceMappingsToDoubleTask<K,V>
4255 (map, transformer, basis, reducer);
4256 }
4257
4258 /**
4259 * Returns a task that when invoked, returns the result of
4260 * accumulating the given transformation of all (key, value) pairs
4261 * using the given reducer to combine values, and the given
4262 * basis as an identity value.
4263 *
4264 * @param map the map
4265 * @param transformer a function returning the transformation
4266 * for an element
4267 * @param basis the identity (initial default value) for the reduction
4268 * @param reducer a commutative associative combining function
4269 * @return the task
4270 */
4271 public static <K,V> ForkJoinTask<Long> reduceToLong
4272 (ConcurrentHashMapV8<K,V> map,
4273 ObjectByObjectToLong<? super K, ? super V> transformer,
4274 long basis,
4275 LongByLongToLong reducer) {
4276 if (transformer == null || reducer == null)
4277 throw new NullPointerException();
4278 return new MapReduceMappingsToLongTask<K,V>
4279 (map, transformer, basis, reducer);
4280 }
4281
4282 /**
4283 * Returns a task that when invoked, returns the result of
4284 * accumulating the given transformation of all (key, value) pairs
4285 * using the given reducer to combine values, and the given
4286 * basis as an identity value.
4287 *
4288 * @param transformer a function returning the transformation
4289 * for an element
4290 * @param basis the identity (initial default value) for the reduction
4291 * @param reducer a commutative associative combining function
4292 * @return the task
4293 */
4294 public static <K,V> ForkJoinTask<Integer> reduceToInt
4295 (ConcurrentHashMapV8<K,V> map,
4296 ObjectByObjectToInt<? super K, ? super V> transformer,
4297 int basis,
4298 IntByIntToInt reducer) {
4299 if (transformer == null || reducer == null)
4300 throw new NullPointerException();
4301 return new MapReduceMappingsToIntTask<K,V>
4302 (map, transformer, basis, reducer);
4303 }
4304
4305 /**
4306 * Returns a task that when invoked, performs the given action
4307 * for each key
4308 *
4309 * @param map the map
4310 * @param action the action
4311 * @return the task
4312 */
4313 public static <K,V> ForkJoinTask<Void> forEachKey
4314 (ConcurrentHashMapV8<K,V> map,
4315 Action<K> action) {
4316 if (action == null) throw new NullPointerException();
4317 return new ForEachKeyTask<K,V>(map, action);
4318 }
4319
4320 /**
4321 * Returns a task that when invoked, performs the given action
4322 * for each non-null transformation of each key
4323 *
4324 * @param map the map
4325 * @param transformer a function returning the transformation
4326 * for an element, or null of there is no transformation (in
4327 * which case the action is not applied).
4328 * @param action the action
4329 * @return the task
4330 */
4331 public static <K,V,U> ForkJoinTask<Void> forEachKey
4332 (ConcurrentHashMapV8<K,V> map,
4333 Fun<? super K, ? extends U> transformer,
4334 Action<U> action) {
4335 if (transformer == null || action == null)
4336 throw new NullPointerException();
4337 return new ForEachTransformedKeyTask<K,V,U>
4338 (map, transformer, action);
4339 }
4340
4341 /**
4342 * Returns a task that when invoked, returns a non-null result
4343 * from applying the given search function on each key, or
4344 * null if none. Further element processing is suppressed
4345 * upon success. However, this method does not return until
4346 * other in-progress parallel invocations of the search
4347 * function also complete.
4348 *
4349 * @param map the map
4350 * @param searchFunction a function returning a non-null
4351 * result on success, else null
4352 * @return the task
4353 */
4354 public static <K,V,U> ForkJoinTask<U> searchKeys
4355 (ConcurrentHashMapV8<K,V> map,
4356 Fun<? super K, ? extends U> searchFunction) {
4357 if (searchFunction == null) throw new NullPointerException();
4358 return new SearchKeysTask<K,V,U>
4359 (map, searchFunction,
4360 new AtomicReference<U>());
4361 }
4362
4363 /**
4364 * Returns a task that when invoked, returns the result of
4365 * accumulating all keys using the given reducer to combine
4366 * values, or null if none.
4367 *
4368 * @param map the map
4369 * @param reducer a commutative associative combining function
4370 * @return the task
4371 */
4372 public static <K,V> ForkJoinTask<K> reduceKeys
4373 (ConcurrentHashMapV8<K,V> map,
4374 BiFun<? super K, ? super K, ? extends K> reducer) {
4375 if (reducer == null) throw new NullPointerException();
4376 return new ReduceKeysTask<K,V>
4377 (map, reducer);
4378 }
4379 /**
4380 * Returns a task that when invoked, returns the result of
4381 * accumulating the given transformation of all keys using the given
4382 * reducer to combine values, or null if none.
4383 *
4384 * @param map the map
4385 * @param transformer a function returning the transformation
4386 * for an element, or null of there is no transformation (in
4387 * which case it is not combined).
4388 * @param reducer a commutative associative combining function
4389 * @return the task
4390 */
4391 public static <K,V,U> ForkJoinTask<U> reduceKeys
4392 (ConcurrentHashMapV8<K,V> map,
4393 Fun<? super K, ? extends U> transformer,
4394 BiFun<? super U, ? super U, ? extends U> reducer) {
4395 if (transformer == null || reducer == null)
4396 throw new NullPointerException();
4397 return new MapReduceKeysTask<K,V,U>
4398 (map, transformer, reducer);
4399 }
4400
4401 /**
4402 * Returns a task that when invoked, returns the result of
4403 * accumulating the given transformation of all keys using the given
4404 * reducer to combine values, and the given basis as an
4405 * identity value.
4406 *
4407 * @param map the map
4408 * @param transformer a function returning the transformation
4409 * for an element
4410 * @param basis the identity (initial default value) for the reduction
4411 * @param reducer a commutative associative combining function
4412 * @return the task
4413 */
4414 public static <K,V> ForkJoinTask<Double> reduceKeysToDouble
4415 (ConcurrentHashMapV8<K,V> map,
4416 ObjectToDouble<? super K> transformer,
4417 double basis,
4418 DoubleByDoubleToDouble reducer) {
4419 if (transformer == null || reducer == null)
4420 throw new NullPointerException();
4421 return new MapReduceKeysToDoubleTask<K,V>
4422 (map, transformer, basis, reducer);
4423 }
4424
4425 /**
4426 * Returns a task that when invoked, returns the result of
4427 * accumulating the given transformation of all keys using the given
4428 * reducer to combine values, and the given basis as an
4429 * identity value.
4430 *
4431 * @param map the map
4432 * @param transformer a function returning the transformation
4433 * for an element
4434 * @param basis the identity (initial default value) for the reduction
4435 * @param reducer a commutative associative combining function
4436 * @return the task
4437 */
4438 public static <K,V> ForkJoinTask<Long> reduceKeysToLong
4439 (ConcurrentHashMapV8<K,V> map,
4440 ObjectToLong<? super K> transformer,
4441 long basis,
4442 LongByLongToLong reducer) {
4443 if (transformer == null || reducer == null)
4444 throw new NullPointerException();
4445 return new MapReduceKeysToLongTask<K,V>
4446 (map, transformer, basis, reducer);
4447 }
4448
4449 /**
4450 * Returns a task that when invoked, returns the result of
4451 * accumulating the given transformation of all keys using the given
4452 * reducer to combine values, and the given basis as an
4453 * identity value.
4454 *
4455 * @param map the map
4456 * @param transformer a function returning the transformation
4457 * for an element
4458 * @param basis the identity (initial default value) for the reduction
4459 * @param reducer a commutative associative combining function
4460 * @return the task
4461 */
4462 public static <K,V> ForkJoinTask<Integer> reduceKeysToInt
4463 (ConcurrentHashMapV8<K,V> map,
4464 ObjectToInt<? super K> transformer,
4465 int basis,
4466 IntByIntToInt reducer) {
4467 if (transformer == null || reducer == null)
4468 throw new NullPointerException();
4469 return new MapReduceKeysToIntTask<K,V>
4470 (map, transformer, basis, reducer);
4471 }
4472
4473 /**
4474 * Returns a task that when invoked, performs the given action
4475 * for each value
4476 *
4477 * @param map the map
4478 * @param action the action
4479 */
4480 public static <K,V> ForkJoinTask<Void> forEachValue
4481 (ConcurrentHashMapV8<K,V> map,
4482 Action<V> action) {
4483 if (action == null) throw new NullPointerException();
4484 return new ForEachValueTask<K,V>(map, action);
4485 }
4486
4487 /**
4488 * Returns a task that when invoked, performs the given action
4489 * for each non-null transformation of each value
4490 *
4491 * @param map the map
4492 * @param transformer a function returning the transformation
4493 * for an element, or null of there is no transformation (in
4494 * which case the action is not applied).
4495 * @param action the action
4496 */
4497 public static <K,V,U> ForkJoinTask<Void> forEachValue
4498 (ConcurrentHashMapV8<K,V> map,
4499 Fun<? super V, ? extends U> transformer,
4500 Action<U> action) {
4501 if (transformer == null || action == null)
4502 throw new NullPointerException();
4503 return new ForEachTransformedValueTask<K,V,U>
4504 (map, transformer, action);
4505 }
4506
4507 /**
4508 * Returns a task that when invoked, returns a non-null result
4509 * from applying the given search function on each value, or
4510 * null if none. Further element processing is suppressed
4511 * upon success. However, this method does not return until
4512 * other in-progress parallel invocations of the search
4513 * function also complete.
4514 *
4515 * @param map the map
4516 * @param searchFunction a function returning a non-null
4517 * result on success, else null
4518 * @return the task
4519 *
4520 */
4521 public static <K,V,U> ForkJoinTask<U> searchValues
4522 (ConcurrentHashMapV8<K,V> map,
4523 Fun<? super V, ? extends U> searchFunction) {
4524 if (searchFunction == null) throw new NullPointerException();
4525 return new SearchValuesTask<K,V,U>
4526 (map, searchFunction,
4527 new AtomicReference<U>());
4528 }
4529
4530 /**
4531 * Returns a task that when invoked, returns the result of
4532 * accumulating all values using the given reducer to combine
4533 * values, or null if none.
4534 *
4535 * @param map the map
4536 * @param reducer a commutative associative combining function
4537 * @return the task
4538 */
4539 public static <K,V> ForkJoinTask<V> reduceValues
4540 (ConcurrentHashMapV8<K,V> map,
4541 BiFun<? super V, ? super V, ? extends V> reducer) {
4542 if (reducer == null) throw new NullPointerException();
4543 return new ReduceValuesTask<K,V>
4544 (map, reducer);
4545 }
4546
4547 /**
4548 * Returns a task that when invoked, returns the result of
4549 * accumulating the given transformation of all values using the
4550 * given reducer to combine values, or null if none.
4551 *
4552 * @param map the map
4553 * @param transformer a function returning the transformation
4554 * for an element, or null of there is no transformation (in
4555 * which case it is not combined).
4556 * @param reducer a commutative associative combining function
4557 * @return the task
4558 */
4559 public static <K,V,U> ForkJoinTask<U> reduceValues
4560 (ConcurrentHashMapV8<K,V> map,
4561 Fun<? super V, ? extends U> transformer,
4562 BiFun<? super U, ? super U, ? extends U> reducer) {
4563 if (transformer == null || reducer == null)
4564 throw new NullPointerException();
4565 return new MapReduceValuesTask<K,V,U>
4566 (map, transformer, reducer);
4567 }
4568
4569 /**
4570 * Returns a task that when invoked, returns the result of
4571 * accumulating the given transformation of all values using the
4572 * given reducer to combine values, and the given basis as an
4573 * identity value.
4574 *
4575 * @param map the map
4576 * @param transformer a function returning the transformation
4577 * for an element
4578 * @param basis the identity (initial default value) for the reduction
4579 * @param reducer a commutative associative combining function
4580 * @return the task
4581 */
4582 public static <K,V> ForkJoinTask<Double> reduceValuesToDouble
4583 (ConcurrentHashMapV8<K,V> map,
4584 ObjectToDouble<? super V> transformer,
4585 double basis,
4586 DoubleByDoubleToDouble reducer) {
4587 if (transformer == null || reducer == null)
4588 throw new NullPointerException();
4589 return new MapReduceValuesToDoubleTask<K,V>
4590 (map, transformer, basis, reducer);
4591 }
4592
4593 /**
4594 * Returns a task that when invoked, returns the result of
4595 * accumulating the given transformation of all values using the
4596 * given reducer to combine values, and the given basis as an
4597 * identity value.
4598 *
4599 * @param map the map
4600 * @param transformer a function returning the transformation
4601 * for an element
4602 * @param basis the identity (initial default value) for the reduction
4603 * @param reducer a commutative associative combining function
4604 * @return the task
4605 */
4606 public static <K,V> ForkJoinTask<Long> reduceValuesToLong
4607 (ConcurrentHashMapV8<K,V> map,
4608 ObjectToLong<? super V> transformer,
4609 long basis,
4610 LongByLongToLong reducer) {
4611 if (transformer == null || reducer == null)
4612 throw new NullPointerException();
4613 return new MapReduceValuesToLongTask<K,V>
4614 (map, transformer, basis, reducer);
4615 }
4616
4617 /**
4618 * Returns a task that when invoked, returns the result of
4619 * accumulating the given transformation of all values using the
4620 * given reducer to combine values, and the given basis as an
4621 * identity value.
4622 *
4623 * @param map the map
4624 * @param transformer a function returning the transformation
4625 * for an element
4626 * @param basis the identity (initial default value) for the reduction
4627 * @param reducer a commutative associative combining function
4628 * @return the task
4629 */
4630 public static <K,V> ForkJoinTask<Integer> reduceValuesToInt
4631 (ConcurrentHashMapV8<K,V> map,
4632 ObjectToInt<? super V> transformer,
4633 int basis,
4634 IntByIntToInt reducer) {
4635 if (transformer == null || reducer == null)
4636 throw new NullPointerException();
4637 return new MapReduceValuesToIntTask<K,V>
4638 (map, transformer, basis, reducer);
4639 }
4640
4641 /**
4642 * Returns a task that when invoked, perform the given action
4643 * for each entry
4644 *
4645 * @param map the map
4646 * @param action the action
4647 */
4648 public static <K,V> ForkJoinTask<Void> forEachEntry
4649 (ConcurrentHashMapV8<K,V> map,
4650 Action<Map.Entry<K,V>> action) {
4651 if (action == null) throw new NullPointerException();
4652 return new ForEachEntryTask<K,V>(map, action);
4653 }
4654
4655 /**
4656 * Returns a task that when invoked, perform the given action
4657 * for each non-null transformation of each entry
4658 *
4659 * @param map the map
4660 * @param transformer a function returning the transformation
4661 * for an element, or null of there is no transformation (in
4662 * which case the action is not applied).
4663 * @param action the action
4664 */
4665 public static <K,V,U> ForkJoinTask<Void> forEachEntry
4666 (ConcurrentHashMapV8<K,V> map,
4667 Fun<Map.Entry<K,V>, ? extends U> transformer,
4668 Action<U> action) {
4669 if (transformer == null || action == null)
4670 throw new NullPointerException();
4671 return new ForEachTransformedEntryTask<K,V,U>
4672 (map, transformer, action);
4673 }
4674
4675 /**
4676 * Returns a task that when invoked, returns a non-null result
4677 * from applying the given search function on each entry, or
4678 * null if none. Further element processing is suppressed
4679 * upon success. However, this method does not return until
4680 * other in-progress parallel invocations of the search
4681 * function also complete.
4682 *
4683 * @param map the map
4684 * @param searchFunction a function returning a non-null
4685 * result on success, else null
4686 * @return the task
4687 *
4688 */
4689 public static <K,V,U> ForkJoinTask<U> searchEntries
4690 (ConcurrentHashMapV8<K,V> map,
4691 Fun<Map.Entry<K,V>, ? extends U> searchFunction) {
4692 if (searchFunction == null) throw new NullPointerException();
4693 return new SearchEntriesTask<K,V,U>
4694 (map, searchFunction,
4695 new AtomicReference<U>());
4696 }
4697
4698 /**
4699 * Returns a task that when invoked, returns the result of
4700 * accumulating all entries using the given reducer to combine
4701 * values, or null if none.
4702 *
4703 * @param map the map
4704 * @param reducer a commutative associative combining function
4705 * @return the task
4706 */
4707 public static <K,V> ForkJoinTask<Map.Entry<K,V>> reduceEntries
4708 (ConcurrentHashMapV8<K,V> map,
4709 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
4710 if (reducer == null) throw new NullPointerException();
4711 return new ReduceEntriesTask<K,V>
4712 (map, reducer);
4713 }
4714
4715 /**
4716 * Returns a task that when invoked, returns the result of
4717 * accumulating the given transformation of all entries using the
4718 * given reducer to combine values, or null if none.
4719 *
4720 * @param map the map
4721 * @param transformer a function returning the transformation
4722 * for an element, or null of there is no transformation (in
4723 * which case it is not combined).
4724 * @param reducer a commutative associative combining function
4725 * @return the task
4726 */
4727 public static <K,V,U> ForkJoinTask<U> reduceEntries
4728 (ConcurrentHashMapV8<K,V> map,
4729 Fun<Map.Entry<K,V>, ? extends U> transformer,
4730 BiFun<? super U, ? super U, ? extends U> reducer) {
4731 if (transformer == null || reducer == null)
4732 throw new NullPointerException();
4733 return new MapReduceEntriesTask<K,V,U>
4734 (map, transformer, reducer);
4735 }
4736
4737 /**
4738 * Returns a task that when invoked, returns the result of
4739 * accumulating the given transformation of all entries using the
4740 * given reducer to combine values, and the given basis as an
4741 * identity value.
4742 *
4743 * @param map the map
4744 * @param transformer a function returning the transformation
4745 * for an element
4746 * @param basis the identity (initial default value) for the reduction
4747 * @param reducer a commutative associative combining function
4748 * @return the task
4749 */
4750 public static <K,V> ForkJoinTask<Double> reduceEntriesToDouble
4751 (ConcurrentHashMapV8<K,V> map,
4752 ObjectToDouble<Map.Entry<K,V>> transformer,
4753 double basis,
4754 DoubleByDoubleToDouble reducer) {
4755 if (transformer == null || reducer == null)
4756 throw new NullPointerException();
4757 return new MapReduceEntriesToDoubleTask<K,V>
4758 (map, transformer, basis, reducer);
4759 }
4760
4761 /**
4762 * Returns a task that when invoked, returns the result of
4763 * accumulating the given transformation of all entries using the
4764 * given reducer to combine values, and the given basis as an
4765 * identity value.
4766 *
4767 * @param map the map
4768 * @param transformer a function returning the transformation
4769 * for an element
4770 * @param basis the identity (initial default value) for the reduction
4771 * @param reducer a commutative associative combining function
4772 * @return the task
4773 */
4774 public static <K,V> ForkJoinTask<Long> reduceEntriesToLong
4775 (ConcurrentHashMapV8<K,V> map,
4776 ObjectToLong<Map.Entry<K,V>> transformer,
4777 long basis,
4778 LongByLongToLong reducer) {
4779 if (transformer == null || reducer == null)
4780 throw new NullPointerException();
4781 return new MapReduceEntriesToLongTask<K,V>
4782 (map, transformer, basis, reducer);
4783 }
4784
4785 /**
4786 * Returns a task that when invoked, returns the result of
4787 * accumulating the given transformation of all entries using the
4788 * given reducer to combine values, and the given basis as an
4789 * identity value.
4790 *
4791 * @param map the map
4792 * @param transformer a function returning the transformation
4793 * for an element
4794 * @param basis the identity (initial default value) for the reduction
4795 * @param reducer a commutative associative combining function
4796 * @return the task
4797 */
4798 public static <K,V> ForkJoinTask<Integer> reduceEntriesToInt
4799 (ConcurrentHashMapV8<K,V> map,
4800 ObjectToInt<Map.Entry<K,V>> transformer,
4801 int basis,
4802 IntByIntToInt reducer) {
4803 if (transformer == null || reducer == null)
4804 throw new NullPointerException();
4805 return new MapReduceEntriesToIntTask<K,V>
4806 (map, transformer, basis, reducer);
4807 }
4808 }
4809
4810 // -------------------------------------------------------
4811
4812 /**
4813 * Base for FJ tasks for bulk operations. This adds a variant of
4814 * CountedCompleters and some split and merge bookeeping to
4815 * iterator functionality. The forEach and reduce methods are
4816 * similar to those illustrated in CountedCompleter documentation,
4817 * except that bottom-up reduction completions perform them within
4818 * their compute methods. The search methods are like forEach
4819 * except they continually poll for success and exit early. Also,
4820 * exceptions are handled in a simpler manner, by just trying to
4821 * complete root task exceptionally.
4822 */
4823 static abstract class BulkTask<K,V,R> extends Traverser<K,V,R> {
4824 final BulkTask<K,V,?> parent; // completion target
4825 int batch; // split control
4826 int pending; // completion control
4827
4828 /** Constructor for root tasks */
4829 BulkTask(ConcurrentHashMapV8<K,V> map) {
4830 super(map);
4831 this.parent = null;
4832 this.batch = -1; // force call to batch() on execution
4833 }
4834
4835 /** Constructor for subtasks */
4836 BulkTask(BulkTask<K,V,?> parent, int batch, boolean split) {
4837 super(parent, split);
4838 this.parent = parent;
4839 this.batch = batch;
4840 }
4841
4842 // FJ methods
4843
4844 /**
4845 * Propagate completion. Note that all reduce actions
4846 * bypass this method to combine while completing.
4847 */
4848 final void tryComplete() {
4849 BulkTask<K,V,?> a = this, s = a;
4850 for (int c;;) {
4851 if ((c = a.pending) == 0) {
4852 if ((a = (s = a).parent) == null) {
4853 s.quietlyComplete();
4854 break;
4855 }
4856 }
4857 else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
4858 break;
4859 }
4860 }
4861
4862 /**
4863 * Force root task to throw exception unless already complete.
4864 */
4865 final void tryAbortComputation(Throwable ex) {
4866 for (BulkTask<K,V,?> a = this;;) {
4867 BulkTask<K,V,?> p = a.parent;
4868 if (p == null) {
4869 a.completeExceptionally(ex);
4870 break;
4871 }
4872 a = p;
4873 }
4874 }
4875
4876 public final boolean exec() {
4877 try {
4878 compute();
4879 }
4880 catch (Throwable ex) {
4881 tryAbortComputation(ex);
4882 }
4883 return false;
4884 }
4885
4886 public abstract void compute();
4887
4888 // utilities
4889
4890 /** CompareAndSet pending count */
4891 final boolean casPending(int cmp, int val) {
4892 return U.compareAndSwapInt(this, PENDING, cmp, val);
4893 }
4894
4895 /**
4896 * Return approx exp2 of the number of times (minus one) to
4897 * split task by two before executing leaf action. This value
4898 * is faster to compute and more convenient to use as a guide
4899 * to splitting than is the depth, since it is used while
4900 * dividing by two anyway.
4901 */
4902 final int batch() {
4903 int b = batch;
4904 if (b < 0) {
4905 long n = map.counter.sum();
4906 int sp = getPool().getParallelism() << 3; // slack of 8
4907 b = batch = (n <= 0L) ? 0 : (n < (long)sp) ? (int)n : sp;
4908 }
4909 return b;
4910 }
4911
4912 /**
4913 * Error message for hoisted null checks of functions
4914 */
4915 static final String NullFunctionMessage =
4916 "Unexpected null function";
4917
4918 /**
4919 * Return exportable snapshot entry
4920 */
4921 static <K,V> AbstractMap.SimpleEntry<K,V> entryFor(K k, V v) {
4922 return new AbstractMap.SimpleEntry(k, v);
4923 }
4924
4925 // Unsafe mechanics
4926 private static final sun.misc.Unsafe U;
4927 private static final long PENDING;
4928 static {
4929 try {
4930 U = sun.misc.Unsafe.getUnsafe();
4931 PENDING = U.objectFieldOffset
4932 (BulkTask.class.getDeclaredField("pending"));
4933 } catch (Exception e) {
4934 throw new Error(e);
4935 }
4936 }
4937 }
4938
4939 /*
4940 * Task classes. Coded in a regular but ugly format/style to
4941 * simplify checks that each variant differs in the right way from
4942 * others.
4943 */
4944
4945 static final class ForEachKeyTask<K,V>
4946 extends BulkTask<K,V,Void> {
4947 final Action<K> action;
4948 ForEachKeyTask
4949 (ConcurrentHashMapV8<K,V> m,
4950 Action<K> action) {
4951 super(m);
4952 this.action = action;
4953 }
4954 ForEachKeyTask
4955 (BulkTask<K,V,?> p, int b, boolean split,
4956 Action<K> action) {
4957 super(p, b, split);
4958 this.action = action;
4959 }
4960 public final void compute() {
4961 final Action<K> action = this.action;
4962 if (action == null)
4963 throw new Error(NullFunctionMessage);
4964 int b = batch(), c;
4965 while (b > 1 && baseIndex != baseLimit) {
4966 do {} while (!casPending(c = pending, c+1));
4967 new ForEachKeyTask<K,V>(this, b >>>= 1, true, action).fork();
4968 }
4969 while (advance() != null)
4970 action.apply((K)nextKey);
4971 tryComplete();
4972 }
4973 }
4974
4975 static final class ForEachValueTask<K,V>
4976 extends BulkTask<K,V,Void> {
4977 final Action<V> action;
4978 ForEachValueTask
4979 (ConcurrentHashMapV8<K,V> m,
4980 Action<V> action) {
4981 super(m);
4982 this.action = action;
4983 }
4984 ForEachValueTask
4985 (BulkTask<K,V,?> p, int b, boolean split,
4986 Action<V> action) {
4987 super(p, b, split);
4988 this.action = action;
4989 }
4990 public final void compute() {
4991 final Action<V> action = this.action;
4992 if (action == null)
4993 throw new Error(NullFunctionMessage);
4994 int b = batch(), c;
4995 while (b > 1 && baseIndex != baseLimit) {
4996 do {} while (!casPending(c = pending, c+1));
4997 new ForEachValueTask<K,V>(this, b >>>= 1, true, action).fork();
4998 }
4999 Object v;
5000 while ((v = advance()) != null)
5001 action.apply((V)v);
5002 tryComplete();
5003 }
5004 }
5005
5006 static final class ForEachEntryTask<K,V>
5007 extends BulkTask<K,V,Void> {
5008 final Action<Entry<K,V>> action;
5009 ForEachEntryTask
5010 (ConcurrentHashMapV8<K,V> m,
5011 Action<Entry<K,V>> action) {
5012 super(m);
5013 this.action = action;
5014 }
5015 ForEachEntryTask
5016 (BulkTask<K,V,?> p, int b, boolean split,
5017 Action<Entry<K,V>> action) {
5018 super(p, b, split);
5019 this.action = action;
5020 }
5021 public final void compute() {
5022 final Action<Entry<K,V>> action = this.action;
5023 if (action == null)
5024 throw new Error(NullFunctionMessage);
5025 int b = batch(), c;
5026 while (b > 1 && baseIndex != baseLimit) {
5027 do {} while (!casPending(c = pending, c+1));
5028 new ForEachEntryTask<K,V>(this, b >>>= 1, true, action).fork();
5029 }
5030 Object v;
5031 while ((v = advance()) != null)
5032 action.apply(entryFor((K)nextKey, (V)v));
5033 tryComplete();
5034 }
5035 }
5036
5037 static final class ForEachMappingTask<K,V>
5038 extends BulkTask<K,V,Void> {
5039 final BiAction<K,V> action;
5040 ForEachMappingTask
5041 (ConcurrentHashMapV8<K,V> m,
5042 BiAction<K,V> action) {
5043 super(m);
5044 this.action = action;
5045 }
5046 ForEachMappingTask
5047 (BulkTask<K,V,?> p, int b, boolean split,
5048 BiAction<K,V> action) {
5049 super(p, b, split);
5050 this.action = action;
5051 }
5052
5053 public final void compute() {
5054 final BiAction<K,V> action = this.action;
5055 if (action == null)
5056 throw new Error(NullFunctionMessage);
5057 int b = batch(), c;
5058 while (b > 1 && baseIndex != baseLimit) {
5059 do {} while (!casPending(c = pending, c+1));
5060 new ForEachMappingTask<K,V>(this, b >>>= 1, true,
5061 action).fork();
5062 }
5063 Object v;
5064 while ((v = advance()) != null)
5065 action.apply((K)nextKey, (V)v);
5066 tryComplete();
5067 }
5068 }
5069
5070 static final class ForEachTransformedKeyTask<K,V,U>
5071 extends BulkTask<K,V,Void> {
5072 final Fun<? super K, ? extends U> transformer;
5073 final Action<U> action;
5074 ForEachTransformedKeyTask
5075 (ConcurrentHashMapV8<K,V> m,
5076 Fun<? super K, ? extends U> transformer,
5077 Action<U> action) {
5078 super(m);
5079 this.transformer = transformer;
5080 this.action = action;
5081
5082 }
5083 ForEachTransformedKeyTask
5084 (BulkTask<K,V,?> p, int b, boolean split,
5085 Fun<? super K, ? extends U> transformer,
5086 Action<U> action) {
5087 super(p, b, split);
5088 this.transformer = transformer;
5089 this.action = action;
5090 }
5091 public final void compute() {
5092 final Fun<? super K, ? extends U> transformer =
5093 this.transformer;
5094 final Action<U> action = this.action;
5095 if (transformer == null || action == null)
5096 throw new Error(NullFunctionMessage);
5097 int b = batch(), c;
5098 while (b > 1 && baseIndex != baseLimit) {
5099 do {} while (!casPending(c = pending, c+1));
5100 new ForEachTransformedKeyTask<K,V,U>
5101 (this, b >>>= 1, true, transformer, action).fork();
5102 }
5103 U u;
5104 while (advance() != null) {
5105 if ((u = transformer.apply((K)nextKey)) != null)
5106 action.apply(u);
5107 }
5108 tryComplete();
5109 }
5110 }
5111
5112 static final class ForEachTransformedValueTask<K,V,U>
5113 extends BulkTask<K,V,Void> {
5114 final Fun<? super V, ? extends U> transformer;
5115 final Action<U> action;
5116 ForEachTransformedValueTask
5117 (ConcurrentHashMapV8<K,V> m,
5118 Fun<? super V, ? extends U> transformer,
5119 Action<U> action) {
5120 super(m);
5121 this.transformer = transformer;
5122 this.action = action;
5123
5124 }
5125 ForEachTransformedValueTask
5126 (BulkTask<K,V,?> p, int b, boolean split,
5127 Fun<? super V, ? extends U> transformer,
5128 Action<U> action) {
5129 super(p, b, split);
5130 this.transformer = transformer;
5131 this.action = action;
5132 }
5133 public final void compute() {
5134 final Fun<? super V, ? extends U> transformer =
5135 this.transformer;
5136 final Action<U> action = this.action;
5137 if (transformer == null || action == null)
5138 throw new Error(NullFunctionMessage);
5139 int b = batch(), c;
5140 while (b > 1 && baseIndex != baseLimit) {
5141 do {} while (!casPending(c = pending, c+1));
5142 new ForEachTransformedValueTask<K,V,U>
5143 (this, b >>>= 1, true, transformer, action).fork();
5144 }
5145 Object v; U u;
5146 while ((v = advance()) != null) {
5147 if ((u = transformer.apply((V)v)) != null)
5148 action.apply(u);
5149 }
5150 tryComplete();
5151 }
5152 }
5153
5154 static final class ForEachTransformedEntryTask<K,V,U>
5155 extends BulkTask<K,V,Void> {
5156 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5157 final Action<U> action;
5158 ForEachTransformedEntryTask
5159 (ConcurrentHashMapV8<K,V> m,
5160 Fun<Map.Entry<K,V>, ? extends U> transformer,
5161 Action<U> action) {
5162 super(m);
5163 this.transformer = transformer;
5164 this.action = action;
5165
5166 }
5167 ForEachTransformedEntryTask
5168 (BulkTask<K,V,?> p, int b, boolean split,
5169 Fun<Map.Entry<K,V>, ? extends U> transformer,
5170 Action<U> action) {
5171 super(p, b, split);
5172 this.transformer = transformer;
5173 this.action = action;
5174 }
5175 public final void compute() {
5176 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5177 this.transformer;
5178 final Action<U> action = this.action;
5179 if (transformer == null || action == null)
5180 throw new Error(NullFunctionMessage);
5181 int b = batch(), c;
5182 while (b > 1 && baseIndex != baseLimit) {
5183 do {} while (!casPending(c = pending, c+1));
5184 new ForEachTransformedEntryTask<K,V,U>
5185 (this, b >>>= 1, true, transformer, action).fork();
5186 }
5187 Object v; U u;
5188 while ((v = advance()) != null) {
5189 if ((u = transformer.apply(entryFor((K)nextKey, (V)v))) != null)
5190 action.apply(u);
5191 }
5192 tryComplete();
5193 }
5194 }
5195
5196 static final class ForEachTransformedMappingTask<K,V,U>
5197 extends BulkTask<K,V,Void> {
5198 final BiFun<? super K, ? super V, ? extends U> transformer;
5199 final Action<U> action;
5200 ForEachTransformedMappingTask
5201 (ConcurrentHashMapV8<K,V> m,
5202 BiFun<? super K, ? super V, ? extends U> transformer,
5203 Action<U> action) {
5204 super(m);
5205 this.transformer = transformer;
5206 this.action = action;
5207
5208 }
5209 ForEachTransformedMappingTask
5210 (BulkTask<K,V,?> p, int b, boolean split,
5211 BiFun<? super K, ? super V, ? extends U> transformer,
5212 Action<U> action) {
5213 super(p, b, split);
5214 this.transformer = transformer;
5215 this.action = action;
5216 }
5217 public final void compute() {
5218 final BiFun<? super K, ? super V, ? extends U> transformer =
5219 this.transformer;
5220 final Action<U> action = this.action;
5221 if (transformer == null || action == null)
5222 throw new Error(NullFunctionMessage);
5223 int b = batch(), c;
5224 while (b > 1 && baseIndex != baseLimit) {
5225 do {} while (!casPending(c = pending, c+1));
5226 new ForEachTransformedMappingTask<K,V,U>
5227 (this, b >>>= 1, true, transformer, action).fork();
5228 }
5229 Object v; U u;
5230 while ((v = advance()) != null) {
5231 if ((u = transformer.apply((K)nextKey, (V)v)) != null)
5232 action.apply(u);
5233 }
5234 tryComplete();
5235 }
5236 }
5237
5238 static final class SearchKeysTask<K,V,U>
5239 extends BulkTask<K,V,U> {
5240 final Fun<? super K, ? extends U> searchFunction;
5241 final AtomicReference<U> result;
5242 SearchKeysTask
5243 (ConcurrentHashMapV8<K,V> m,
5244 Fun<? super K, ? extends U> searchFunction,
5245 AtomicReference<U> result) {
5246 super(m);
5247 this.searchFunction = searchFunction; this.result = result;
5248 }
5249 SearchKeysTask
5250 (BulkTask<K,V,?> p, int b, boolean split,
5251 Fun<? super K, ? extends U> searchFunction,
5252 AtomicReference<U> result) {
5253 super(p, b, split);
5254 this.searchFunction = searchFunction; this.result = result;
5255 }
5256 public final void compute() {
5257 AtomicReference<U> result = this.result;
5258 final Fun<? super K, ? extends U> searchFunction =
5259 this.searchFunction;
5260 if (searchFunction == null || result == null)
5261 throw new Error(NullFunctionMessage);
5262 int b = batch(), c;
5263 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5264 do {} while (!casPending(c = pending, c+1));
5265 new SearchKeysTask<K,V,U>(this, b >>>= 1, true,
5266 searchFunction, result).fork();
5267 }
5268 U u;
5269 while (result.get() == null && advance() != null) {
5270 if ((u = searchFunction.apply((K)nextKey)) != null) {
5271 result.compareAndSet(null, u);
5272 break;
5273 }
5274 }
5275 tryComplete();
5276 }
5277 public final U getRawResult() { return result.get(); }
5278 }
5279
5280 static final class SearchValuesTask<K,V,U>
5281 extends BulkTask<K,V,U> {
5282 final Fun<? super V, ? extends U> searchFunction;
5283 final AtomicReference<U> result;
5284 SearchValuesTask
5285 (ConcurrentHashMapV8<K,V> m,
5286 Fun<? super V, ? extends U> searchFunction,
5287 AtomicReference<U> result) {
5288 super(m);
5289 this.searchFunction = searchFunction; this.result = result;
5290 }
5291 SearchValuesTask
5292 (BulkTask<K,V,?> p, int b, boolean split,
5293 Fun<? super V, ? extends U> searchFunction,
5294 AtomicReference<U> result) {
5295 super(p, b, split);
5296 this.searchFunction = searchFunction; this.result = result;
5297 }
5298 public final void compute() {
5299 AtomicReference<U> result = this.result;
5300 final Fun<? super V, ? extends U> searchFunction =
5301 this.searchFunction;
5302 if (searchFunction == null || result == null)
5303 throw new Error(NullFunctionMessage);
5304 int b = batch(), c;
5305 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5306 do {} while (!casPending(c = pending, c+1));
5307 new SearchValuesTask<K,V,U>(this, b >>>= 1, true,
5308 searchFunction, result).fork();
5309 }
5310 Object v; U u;
5311 while (result.get() == null && (v = advance()) != null) {
5312 if ((u = searchFunction.apply((V)v)) != null) {
5313 result.compareAndSet(null, u);
5314 break;
5315 }
5316 }
5317 tryComplete();
5318 }
5319 public final U getRawResult() { return result.get(); }
5320 }
5321
5322 static final class SearchEntriesTask<K,V,U>
5323 extends BulkTask<K,V,U> {
5324 final Fun<Entry<K,V>, ? extends U> searchFunction;
5325 final AtomicReference<U> result;
5326 SearchEntriesTask
5327 (ConcurrentHashMapV8<K,V> m,
5328 Fun<Entry<K,V>, ? extends U> searchFunction,
5329 AtomicReference<U> result) {
5330 super(m);
5331 this.searchFunction = searchFunction; this.result = result;
5332 }
5333 SearchEntriesTask
5334 (BulkTask<K,V,?> p, int b, boolean split,
5335 Fun<Entry<K,V>, ? extends U> searchFunction,
5336 AtomicReference<U> result) {
5337 super(p, b, split);
5338 this.searchFunction = searchFunction; this.result = result;
5339 }
5340 public final void compute() {
5341 AtomicReference<U> result = this.result;
5342 final Fun<Entry<K,V>, ? extends U> searchFunction =
5343 this.searchFunction;
5344 if (searchFunction == null || result == null)
5345 throw new Error(NullFunctionMessage);
5346 int b = batch(), c;
5347 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5348 do {} while (!casPending(c = pending, c+1));
5349 new SearchEntriesTask<K,V,U>(this, b >>>= 1, true,
5350 searchFunction, result).fork();
5351 }
5352 Object v; U u;
5353 while (result.get() == null && (v = advance()) != null) {
5354 if ((u = searchFunction.apply(entryFor((K)nextKey, (V)v))) != null) {
5355 result.compareAndSet(null, u);
5356 break;
5357 }
5358 }
5359 tryComplete();
5360 }
5361 public final U getRawResult() { return result.get(); }
5362 }
5363
5364 static final class SearchMappingsTask<K,V,U>
5365 extends BulkTask<K,V,U> {
5366 final BiFun<? super K, ? super V, ? extends U> searchFunction;
5367 final AtomicReference<U> result;
5368 SearchMappingsTask
5369 (ConcurrentHashMapV8<K,V> m,
5370 BiFun<? super K, ? super V, ? extends U> searchFunction,
5371 AtomicReference<U> result) {
5372 super(m);
5373 this.searchFunction = searchFunction; this.result = result;
5374 }
5375 SearchMappingsTask
5376 (BulkTask<K,V,?> p, int b, boolean split,
5377 BiFun<? super K, ? super V, ? extends U> searchFunction,
5378 AtomicReference<U> result) {
5379 super(p, b, split);
5380 this.searchFunction = searchFunction; this.result = result;
5381 }
5382 public final void compute() {
5383 AtomicReference<U> result = this.result;
5384 final BiFun<? super K, ? super V, ? extends U> searchFunction =
5385 this.searchFunction;
5386 if (searchFunction == null || result == null)
5387 throw new Error(NullFunctionMessage);
5388 int b = batch(), c;
5389 while (b > 1 && baseIndex != baseLimit && result.get() == null) {
5390 do {} while (!casPending(c = pending, c+1));
5391 new SearchMappingsTask<K,V,U>(this, b >>>= 1, true,
5392 searchFunction, result).fork();
5393 }
5394 Object v; U u;
5395 while (result.get() == null && (v = advance()) != null) {
5396 if ((u = searchFunction.apply((K)nextKey, (V)v)) != null) {
5397 result.compareAndSet(null, u);
5398 break;
5399 }
5400 }
5401 tryComplete();
5402 }
5403 public final U getRawResult() { return result.get(); }
5404 }
5405
5406 static final class ReduceKeysTask<K,V>
5407 extends BulkTask<K,V,K> {
5408 final BiFun<? super K, ? super K, ? extends K> reducer;
5409 K result;
5410 ReduceKeysTask<K,V> sibling;
5411 ReduceKeysTask
5412 (ConcurrentHashMapV8<K,V> m,
5413 BiFun<? super K, ? super K, ? extends K> reducer) {
5414 super(m);
5415 this.reducer = reducer;
5416 }
5417 ReduceKeysTask
5418 (BulkTask<K,V,?> p, int b, boolean split,
5419 BiFun<? super K, ? super K, ? extends K> reducer) {
5420 super(p, b, split);
5421 this.reducer = reducer;
5422 }
5423
5424 public final void compute() {
5425 ReduceKeysTask<K,V> t = this;
5426 final BiFun<? super K, ? super K, ? extends K> reducer =
5427 this.reducer;
5428 if (reducer == null)
5429 throw new Error(NullFunctionMessage);
5430 int b = batch();
5431 while (b > 1 && t.baseIndex != t.baseLimit) {
5432 b >>>= 1;
5433 t.pending = 1;
5434 ReduceKeysTask<K,V> rt =
5435 new ReduceKeysTask<K,V>
5436 (t, b, true, reducer);
5437 t = new ReduceKeysTask<K,V>
5438 (t, b, false, reducer);
5439 t.sibling = rt;
5440 rt.sibling = t;
5441 rt.fork();
5442 }
5443 K r = null;
5444 while (t.advance() != null) {
5445 K u = (K)t.nextKey;
5446 r = (r == null) ? u : reducer.apply(r, u);
5447 }
5448 t.result = r;
5449 for (;;) {
5450 int c; BulkTask<K,V,?> par; ReduceKeysTask<K,V> s, p; K u;
5451 if ((par = t.parent) == null ||
5452 !(par instanceof ReduceKeysTask)) {
5453 t.quietlyComplete();
5454 break;
5455 }
5456 else if ((c = (p = (ReduceKeysTask<K,V>)par).pending) == 0) {
5457 if ((s = t.sibling) != null && (u = s.result) != null)
5458 r = (r == null) ? u : reducer.apply(r, u);
5459 (t = p).result = r;
5460 }
5461 else if (p.casPending(c, 0))
5462 break;
5463 }
5464 }
5465 public final K getRawResult() { return result; }
5466 }
5467
5468 static final class ReduceValuesTask<K,V>
5469 extends BulkTask<K,V,V> {
5470 final BiFun<? super V, ? super V, ? extends V> reducer;
5471 V result;
5472 ReduceValuesTask<K,V> sibling;
5473 ReduceValuesTask
5474 (ConcurrentHashMapV8<K,V> m,
5475 BiFun<? super V, ? super V, ? extends V> reducer) {
5476 super(m);
5477 this.reducer = reducer;
5478 }
5479 ReduceValuesTask
5480 (BulkTask<K,V,?> p, int b, boolean split,
5481 BiFun<? super V, ? super V, ? extends V> reducer) {
5482 super(p, b, split);
5483 this.reducer = reducer;
5484 }
5485
5486 public final void compute() {
5487 ReduceValuesTask<K,V> t = this;
5488 final BiFun<? super V, ? super V, ? extends V> reducer =
5489 this.reducer;
5490 if (reducer == null)
5491 throw new Error(NullFunctionMessage);
5492 int b = batch();
5493 while (b > 1 && t.baseIndex != t.baseLimit) {
5494 b >>>= 1;
5495 t.pending = 1;
5496 ReduceValuesTask<K,V> rt =
5497 new ReduceValuesTask<K,V>
5498 (t, b, true, reducer);
5499 t = new ReduceValuesTask<K,V>
5500 (t, b, false, reducer);
5501 t.sibling = rt;
5502 rt.sibling = t;
5503 rt.fork();
5504 }
5505 V r = null;
5506 Object v;
5507 while ((v = t.advance()) != null) {
5508 V u = (V)v;
5509 r = (r == null) ? u : reducer.apply(r, u);
5510 }
5511 t.result = r;
5512 for (;;) {
5513 int c; BulkTask<K,V,?> par; ReduceValuesTask<K,V> s, p; V u;
5514 if ((par = t.parent) == null ||
5515 !(par instanceof ReduceValuesTask)) {
5516 t.quietlyComplete();
5517 break;
5518 }
5519 else if ((c = (p = (ReduceValuesTask<K,V>)par).pending) == 0) {
5520 if ((s = t.sibling) != null && (u = s.result) != null)
5521 r = (r == null) ? u : reducer.apply(r, u);
5522 (t = p).result = r;
5523 }
5524 else if (p.casPending(c, 0))
5525 break;
5526 }
5527 }
5528 public final V getRawResult() { return result; }
5529 }
5530
5531 static final class ReduceEntriesTask<K,V>
5532 extends BulkTask<K,V,Map.Entry<K,V>> {
5533 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer;
5534 Map.Entry<K,V> result;
5535 ReduceEntriesTask<K,V> sibling;
5536 ReduceEntriesTask
5537 (ConcurrentHashMapV8<K,V> m,
5538 BiFun<Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5539 super(m);
5540 this.reducer = reducer;
5541 }
5542 ReduceEntriesTask
5543 (BulkTask<K,V,?> p, int b, boolean split,
5544 BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer) {
5545 super(p, b, split);
5546 this.reducer = reducer;
5547 }
5548
5549 public final void compute() {
5550 ReduceEntriesTask<K,V> t = this;
5551 final BiFun<Map.Entry<K,V>, Map.Entry<K,V>, ? extends Map.Entry<K,V>> reducer =
5552 this.reducer;
5553 if (reducer == null)
5554 throw new Error(NullFunctionMessage);
5555 int b = batch();
5556 while (b > 1 && t.baseIndex != t.baseLimit) {
5557 b >>>= 1;
5558 t.pending = 1;
5559 ReduceEntriesTask<K,V> rt =
5560 new ReduceEntriesTask<K,V>
5561 (t, b, true, reducer);
5562 t = new ReduceEntriesTask<K,V>
5563 (t, b, false, reducer);
5564 t.sibling = rt;
5565 rt.sibling = t;
5566 rt.fork();
5567 }
5568 Map.Entry<K,V> r = null;
5569 Object v;
5570 while ((v = t.advance()) != null) {
5571 Map.Entry<K,V> u = entryFor((K)t.nextKey, (V)v);
5572 r = (r == null) ? u : reducer.apply(r, u);
5573 }
5574 t.result = r;
5575 for (;;) {
5576 int c; BulkTask<K,V,?> par; ReduceEntriesTask<K,V> s, p;
5577 Map.Entry<K,V> u;
5578 if ((par = t.parent) == null ||
5579 !(par instanceof ReduceEntriesTask)) {
5580 t.quietlyComplete();
5581 break;
5582 }
5583 else if ((c = (p = (ReduceEntriesTask<K,V>)par).pending) == 0) {
5584 if ((s = t.sibling) != null && (u = s.result) != null)
5585 r = (r == null) ? u : reducer.apply(r, u);
5586 (t = p).result = r;
5587 }
5588 else if (p.casPending(c, 0))
5589 break;
5590 }
5591 }
5592 public final Map.Entry<K,V> getRawResult() { return result; }
5593 }
5594
5595 static final class MapReduceKeysTask<K,V,U>
5596 extends BulkTask<K,V,U> {
5597 final Fun<? super K, ? extends U> transformer;
5598 final BiFun<? super U, ? super U, ? extends U> reducer;
5599 U result;
5600 MapReduceKeysTask<K,V,U> sibling;
5601 MapReduceKeysTask
5602 (ConcurrentHashMapV8<K,V> m,
5603 Fun<? super K, ? extends U> transformer,
5604 BiFun<? super U, ? super U, ? extends U> reducer) {
5605 super(m);
5606 this.transformer = transformer;
5607 this.reducer = reducer;
5608 }
5609 MapReduceKeysTask
5610 (BulkTask<K,V,?> p, int b, boolean split,
5611 Fun<? super K, ? extends U> transformer,
5612 BiFun<? super U, ? super U, ? extends U> reducer) {
5613 super(p, b, split);
5614 this.transformer = transformer;
5615 this.reducer = reducer;
5616 }
5617 public final void compute() {
5618 MapReduceKeysTask<K,V,U> t = this;
5619 final Fun<? super K, ? extends U> transformer =
5620 this.transformer;
5621 final BiFun<? super U, ? super U, ? extends U> reducer =
5622 this.reducer;
5623 if (transformer == null || reducer == null)
5624 throw new Error(NullFunctionMessage);
5625 int b = batch();
5626 while (b > 1 && t.baseIndex != t.baseLimit) {
5627 b >>>= 1;
5628 t.pending = 1;
5629 MapReduceKeysTask<K,V,U> rt =
5630 new MapReduceKeysTask<K,V,U>
5631 (t, b, true, transformer, reducer);
5632 t = new MapReduceKeysTask<K,V,U>
5633 (t, b, false, transformer, reducer);
5634 t.sibling = rt;
5635 rt.sibling = t;
5636 rt.fork();
5637 }
5638 U r = null, u;
5639 while (t.advance() != null) {
5640 if ((u = transformer.apply((K)t.nextKey)) != null)
5641 r = (r == null) ? u : reducer.apply(r, u);
5642 }
5643 t.result = r;
5644 for (;;) {
5645 int c; BulkTask<K,V,?> par; MapReduceKeysTask<K,V,U> s, p;
5646 if ((par = t.parent) == null ||
5647 !(par instanceof MapReduceKeysTask)) {
5648 t.quietlyComplete();
5649 break;
5650 }
5651 else if ((c = (p = (MapReduceKeysTask<K,V,U>)par).pending) == 0) {
5652 if ((s = t.sibling) != null && (u = s.result) != null)
5653 r = (r == null) ? u : reducer.apply(r, u);
5654 (t = p).result = r;
5655 }
5656 else if (p.casPending(c, 0))
5657 break;
5658 }
5659 }
5660 public final U getRawResult() { return result; }
5661 }
5662
5663 static final class MapReduceValuesTask<K,V,U>
5664 extends BulkTask<K,V,U> {
5665 final Fun<? super V, ? extends U> transformer;
5666 final BiFun<? super U, ? super U, ? extends U> reducer;
5667 U result;
5668 MapReduceValuesTask<K,V,U> sibling;
5669 MapReduceValuesTask
5670 (ConcurrentHashMapV8<K,V> m,
5671 Fun<? super V, ? extends U> transformer,
5672 BiFun<? super U, ? super U, ? extends U> reducer) {
5673 super(m);
5674 this.transformer = transformer;
5675 this.reducer = reducer;
5676 }
5677 MapReduceValuesTask
5678 (BulkTask<K,V,?> p, int b, boolean split,
5679 Fun<? super V, ? extends U> transformer,
5680 BiFun<? super U, ? super U, ? extends U> reducer) {
5681 super(p, b, split);
5682 this.transformer = transformer;
5683 this.reducer = reducer;
5684 }
5685 public final void compute() {
5686 MapReduceValuesTask<K,V,U> t = this;
5687 final Fun<? super V, ? extends U> transformer =
5688 this.transformer;
5689 final BiFun<? super U, ? super U, ? extends U> reducer =
5690 this.reducer;
5691 if (transformer == null || reducer == null)
5692 throw new Error(NullFunctionMessage);
5693 int b = batch();
5694 while (b > 1 && t.baseIndex != t.baseLimit) {
5695 b >>>= 1;
5696 t.pending = 1;
5697 MapReduceValuesTask<K,V,U> rt =
5698 new MapReduceValuesTask<K,V,U>
5699 (t, b, true, transformer, reducer);
5700 t = new MapReduceValuesTask<K,V,U>
5701 (t, b, false, transformer, reducer);
5702 t.sibling = rt;
5703 rt.sibling = t;
5704 rt.fork();
5705 }
5706 U r = null, u;
5707 Object v;
5708 while ((v = t.advance()) != null) {
5709 if ((u = transformer.apply((V)v)) != null)
5710 r = (r == null) ? u : reducer.apply(r, u);
5711 }
5712 t.result = r;
5713 for (;;) {
5714 int c; BulkTask<K,V,?> par; MapReduceValuesTask<K,V,U> s, p;
5715 if ((par = t.parent) == null ||
5716 !(par instanceof MapReduceValuesTask)) {
5717 t.quietlyComplete();
5718 break;
5719 }
5720 else if ((c = (p = (MapReduceValuesTask<K,V,U>)par).pending) == 0) {
5721 if ((s = t.sibling) != null && (u = s.result) != null)
5722 r = (r == null) ? u : reducer.apply(r, u);
5723 (t = p).result = r;
5724 }
5725 else if (p.casPending(c, 0))
5726 break;
5727 }
5728 }
5729 public final U getRawResult() { return result; }
5730 }
5731
5732 static final class MapReduceEntriesTask<K,V,U>
5733 extends BulkTask<K,V,U> {
5734 final Fun<Map.Entry<K,V>, ? extends U> transformer;
5735 final BiFun<? super U, ? super U, ? extends U> reducer;
5736 U result;
5737 MapReduceEntriesTask<K,V,U> sibling;
5738 MapReduceEntriesTask
5739 (ConcurrentHashMapV8<K,V> m,
5740 Fun<Map.Entry<K,V>, ? extends U> transformer,
5741 BiFun<? super U, ? super U, ? extends U> reducer) {
5742 super(m);
5743 this.transformer = transformer;
5744 this.reducer = reducer;
5745 }
5746 MapReduceEntriesTask
5747 (BulkTask<K,V,?> p, int b, boolean split,
5748 Fun<Map.Entry<K,V>, ? extends U> transformer,
5749 BiFun<? super U, ? super U, ? extends U> reducer) {
5750 super(p, b, split);
5751 this.transformer = transformer;
5752 this.reducer = reducer;
5753 }
5754 public final void compute() {
5755 MapReduceEntriesTask<K,V,U> t = this;
5756 final Fun<Map.Entry<K,V>, ? extends U> transformer =
5757 this.transformer;
5758 final BiFun<? super U, ? super U, ? extends U> reducer =
5759 this.reducer;
5760 if (transformer == null || reducer == null)
5761 throw new Error(NullFunctionMessage);
5762 int b = batch();
5763 while (b > 1 && t.baseIndex != t.baseLimit) {
5764 b >>>= 1;
5765 t.pending = 1;
5766 MapReduceEntriesTask<K,V,U> rt =
5767 new MapReduceEntriesTask<K,V,U>
5768 (t, b, true, transformer, reducer);
5769 t = new MapReduceEntriesTask<K,V,U>
5770 (t, b, false, transformer, reducer);
5771 t.sibling = rt;
5772 rt.sibling = t;
5773 rt.fork();
5774 }
5775 U r = null, u;
5776 Object v;
5777 while ((v = t.advance()) != null) {
5778 if ((u = transformer.apply(entryFor((K)t.nextKey, (V)v))) != null)
5779 r = (r == null) ? u : reducer.apply(r, u);
5780 }
5781 t.result = r;
5782 for (;;) {
5783 int c; BulkTask<K,V,?> par; MapReduceEntriesTask<K,V,U> s, p;
5784 if ((par = t.parent) == null ||
5785 !(par instanceof MapReduceEntriesTask)) {
5786 t.quietlyComplete();
5787 break;
5788 }
5789 else if ((c = (p = (MapReduceEntriesTask<K,V,U>)par).pending) == 0) {
5790 if ((s = t.sibling) != null && (u = s.result) != null)
5791 r = (r == null) ? u : reducer.apply(r, u);
5792 (t = p).result = r;
5793 }
5794 else if (p.casPending(c, 0))
5795 break;
5796 }
5797 }
5798 public final U getRawResult() { return result; }
5799 }
5800
5801 static final class MapReduceMappingsTask<K,V,U>
5802 extends BulkTask<K,V,U> {
5803 final BiFun<? super K, ? super V, ? extends U> transformer;
5804 final BiFun<? super U, ? super U, ? extends U> reducer;
5805 U result;
5806 MapReduceMappingsTask<K,V,U> sibling;
5807 MapReduceMappingsTask
5808 (ConcurrentHashMapV8<K,V> m,
5809 BiFun<? super K, ? super V, ? extends U> transformer,
5810 BiFun<? super U, ? super U, ? extends U> reducer) {
5811 super(m);
5812 this.transformer = transformer;
5813 this.reducer = reducer;
5814 }
5815 MapReduceMappingsTask
5816 (BulkTask<K,V,?> p, int b, boolean split,
5817 BiFun<? super K, ? super V, ? extends U> transformer,
5818 BiFun<? super U, ? super U, ? extends U> reducer) {
5819 super(p, b, split);
5820 this.transformer = transformer;
5821 this.reducer = reducer;
5822 }
5823 public final void compute() {
5824 MapReduceMappingsTask<K,V,U> t = this;
5825 final BiFun<? super K, ? super V, ? extends U> transformer =
5826 this.transformer;
5827 final BiFun<? super U, ? super U, ? extends U> reducer =
5828 this.reducer;
5829 if (transformer == null || reducer == null)
5830 throw new Error(NullFunctionMessage);
5831 int b = batch();
5832 while (b > 1 && t.baseIndex != t.baseLimit) {
5833 b >>>= 1;
5834 t.pending = 1;
5835 MapReduceMappingsTask<K,V,U> rt =
5836 new MapReduceMappingsTask<K,V,U>
5837 (t, b, true, transformer, reducer);
5838 t = new MapReduceMappingsTask<K,V,U>
5839 (t, b, false, transformer, reducer);
5840 t.sibling = rt;
5841 rt.sibling = t;
5842 rt.fork();
5843 }
5844 U r = null, u;
5845 Object v;
5846 while ((v = t.advance()) != null) {
5847 if ((u = transformer.apply((K)t.nextKey, (V)v)) != null)
5848 r = (r == null) ? u : reducer.apply(r, u);
5849 }
5850 for (;;) {
5851 int c; BulkTask<K,V,?> par; MapReduceMappingsTask<K,V,U> s, p;
5852 if ((par = t.parent) == null ||
5853 !(par instanceof MapReduceMappingsTask)) {
5854 t.quietlyComplete();
5855 break;
5856 }
5857 else if ((c = (p = (MapReduceMappingsTask<K,V,U>)par).pending) == 0) {
5858 if ((s = t.sibling) != null && (u = s.result) != null)
5859 r = (r == null) ? u : reducer.apply(r, u);
5860 (t = p).result = r;
5861 }
5862 else if (p.casPending(c, 0))
5863 break;
5864 }
5865 }
5866 public final U getRawResult() { return result; }
5867 }
5868
5869 static final class MapReduceKeysToDoubleTask<K,V>
5870 extends BulkTask<K,V,Double> {
5871 final ObjectToDouble<? super K> transformer;
5872 final DoubleByDoubleToDouble reducer;
5873 final double basis;
5874 double result;
5875 MapReduceKeysToDoubleTask<K,V> sibling;
5876 MapReduceKeysToDoubleTask
5877 (ConcurrentHashMapV8<K,V> m,
5878 ObjectToDouble<? super K> transformer,
5879 double basis,
5880 DoubleByDoubleToDouble reducer) {
5881 super(m);
5882 this.transformer = transformer;
5883 this.basis = basis; this.reducer = reducer;
5884 }
5885 MapReduceKeysToDoubleTask
5886 (BulkTask<K,V,?> p, int b, boolean split,
5887 ObjectToDouble<? super K> transformer,
5888 double basis,
5889 DoubleByDoubleToDouble reducer) {
5890 super(p, b, split);
5891 this.transformer = transformer;
5892 this.basis = basis; this.reducer = reducer;
5893 }
5894 public final void compute() {
5895 MapReduceKeysToDoubleTask<K,V> t = this;
5896 final ObjectToDouble<? super K> transformer =
5897 this.transformer;
5898 final DoubleByDoubleToDouble reducer = this.reducer;
5899 if (transformer == null || reducer == null)
5900 throw new Error(NullFunctionMessage);
5901 final double id = this.basis;
5902 int b = batch();
5903 while (b > 1 && t.baseIndex != t.baseLimit) {
5904 b >>>= 1;
5905 t.pending = 1;
5906 MapReduceKeysToDoubleTask<K,V> rt =
5907 new MapReduceKeysToDoubleTask<K,V>
5908 (t, b, true, transformer, id, reducer);
5909 t = new MapReduceKeysToDoubleTask<K,V>
5910 (t, b, false, transformer, id, reducer);
5911 t.sibling = rt;
5912 rt.sibling = t;
5913 rt.fork();
5914 }
5915 double r = id;
5916 while (t.advance() != null)
5917 r = reducer.apply(r, transformer.apply((K)t.nextKey));
5918 t.result = r;
5919 for (;;) {
5920 int c; BulkTask<K,V,?> par; MapReduceKeysToDoubleTask<K,V> s, p;
5921 if ((par = t.parent) == null ||
5922 !(par instanceof MapReduceKeysToDoubleTask)) {
5923 t.quietlyComplete();
5924 break;
5925 }
5926 else if ((c = (p = (MapReduceKeysToDoubleTask<K,V>)par).pending) == 0) {
5927 if ((s = t.sibling) != null)
5928 r = reducer.apply(r, s.result);
5929 (t = p).result = r;
5930 }
5931 else if (p.casPending(c, 0))
5932 break;
5933 }
5934 }
5935 public final Double getRawResult() { return result; }
5936 }
5937
5938 static final class MapReduceValuesToDoubleTask<K,V>
5939 extends BulkTask<K,V,Double> {
5940 final ObjectToDouble<? super V> transformer;
5941 final DoubleByDoubleToDouble reducer;
5942 final double basis;
5943 double result;
5944 MapReduceValuesToDoubleTask<K,V> sibling;
5945 MapReduceValuesToDoubleTask
5946 (ConcurrentHashMapV8<K,V> m,
5947 ObjectToDouble<? super V> transformer,
5948 double basis,
5949 DoubleByDoubleToDouble reducer) {
5950 super(m);
5951 this.transformer = transformer;
5952 this.basis = basis; this.reducer = reducer;
5953 }
5954 MapReduceValuesToDoubleTask
5955 (BulkTask<K,V,?> p, int b, boolean split,
5956 ObjectToDouble<? super V> transformer,
5957 double basis,
5958 DoubleByDoubleToDouble reducer) {
5959 super(p, b, split);
5960 this.transformer = transformer;
5961 this.basis = basis; this.reducer = reducer;
5962 }
5963 public final void compute() {
5964 MapReduceValuesToDoubleTask<K,V> t = this;
5965 final ObjectToDouble<? super V> transformer =
5966 this.transformer;
5967 final DoubleByDoubleToDouble reducer = this.reducer;
5968 if (transformer == null || reducer == null)
5969 throw new Error(NullFunctionMessage);
5970 final double id = this.basis;
5971 int b = batch();
5972 while (b > 1 && t.baseIndex != t.baseLimit) {
5973 b >>>= 1;
5974 t.pending = 1;
5975 MapReduceValuesToDoubleTask<K,V> rt =
5976 new MapReduceValuesToDoubleTask<K,V>
5977 (t, b, true, transformer, id, reducer);
5978 t = new MapReduceValuesToDoubleTask<K,V>
5979 (t, b, false, transformer, id, reducer);
5980 t.sibling = rt;
5981 rt.sibling = t;
5982 rt.fork();
5983 }
5984 double r = id;
5985 Object v;
5986 while ((v = t.advance()) != null)
5987 r = reducer.apply(r, transformer.apply((V)v));
5988 t.result = r;
5989 for (;;) {
5990 int c; BulkTask<K,V,?> par; MapReduceValuesToDoubleTask<K,V> s, p;
5991 if ((par = t.parent) == null ||
5992 !(par instanceof MapReduceValuesToDoubleTask)) {
5993 t.quietlyComplete();
5994 break;
5995 }
5996 else if ((c = (p = (MapReduceValuesToDoubleTask<K,V>)par).pending) == 0) {
5997 if ((s = t.sibling) != null)
5998 r = reducer.apply(r, s.result);
5999 (t = p).result = r;
6000 }
6001 else if (p.casPending(c, 0))
6002 break;
6003 }
6004 }
6005 public final Double getRawResult() { return result; }
6006 }
6007
6008 static final class MapReduceEntriesToDoubleTask<K,V>
6009 extends BulkTask<K,V,Double> {
6010 final ObjectToDouble<Map.Entry<K,V>> transformer;
6011 final DoubleByDoubleToDouble reducer;
6012 final double basis;
6013 double result;
6014 MapReduceEntriesToDoubleTask<K,V> sibling;
6015 MapReduceEntriesToDoubleTask
6016 (ConcurrentHashMapV8<K,V> m,
6017 ObjectToDouble<Map.Entry<K,V>> transformer,
6018 double basis,
6019 DoubleByDoubleToDouble reducer) {
6020 super(m);
6021 this.transformer = transformer;
6022 this.basis = basis; this.reducer = reducer;
6023 }
6024 MapReduceEntriesToDoubleTask
6025 (BulkTask<K,V,?> p, int b, boolean split,
6026 ObjectToDouble<Map.Entry<K,V>> transformer,
6027 double basis,
6028 DoubleByDoubleToDouble reducer) {
6029 super(p, b, split);
6030 this.transformer = transformer;
6031 this.basis = basis; this.reducer = reducer;
6032 }
6033 public final void compute() {
6034 MapReduceEntriesToDoubleTask<K,V> t = this;
6035 final ObjectToDouble<Map.Entry<K,V>> transformer =
6036 this.transformer;
6037 final DoubleByDoubleToDouble reducer = this.reducer;
6038 if (transformer == null || reducer == null)
6039 throw new Error(NullFunctionMessage);
6040 final double id = this.basis;
6041 int b = batch();
6042 while (b > 1 && t.baseIndex != t.baseLimit) {
6043 b >>>= 1;
6044 t.pending = 1;
6045 MapReduceEntriesToDoubleTask<K,V> rt =
6046 new MapReduceEntriesToDoubleTask<K,V>
6047 (t, b, true, transformer, id, reducer);
6048 t = new MapReduceEntriesToDoubleTask<K,V>
6049 (t, b, false, transformer, id, reducer);
6050 t.sibling = rt;
6051 rt.sibling = t;
6052 rt.fork();
6053 }
6054 double r = id;
6055 Object v;
6056 while ((v = t.advance()) != null)
6057 r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6058 t.result = r;
6059 for (;;) {
6060 int c; BulkTask<K,V,?> par; MapReduceEntriesToDoubleTask<K,V> s, p;
6061 if ((par = t.parent) == null ||
6062 !(par instanceof MapReduceEntriesToDoubleTask)) {
6063 t.quietlyComplete();
6064 break;
6065 }
6066 else if ((c = (p = (MapReduceEntriesToDoubleTask<K,V>)par).pending) == 0) {
6067 if ((s = t.sibling) != null)
6068 r = reducer.apply(r, s.result);
6069 (t = p).result = r;
6070 }
6071 else if (p.casPending(c, 0))
6072 break;
6073 }
6074 }
6075 public final Double getRawResult() { return result; }
6076 }
6077
6078 static final class MapReduceMappingsToDoubleTask<K,V>
6079 extends BulkTask<K,V,Double> {
6080 final ObjectByObjectToDouble<? super K, ? super V> transformer;
6081 final DoubleByDoubleToDouble reducer;
6082 final double basis;
6083 double result;
6084 MapReduceMappingsToDoubleTask<K,V> sibling;
6085 MapReduceMappingsToDoubleTask
6086 (ConcurrentHashMapV8<K,V> m,
6087 ObjectByObjectToDouble<? super K, ? super V> transformer,
6088 double basis,
6089 DoubleByDoubleToDouble reducer) {
6090 super(m);
6091 this.transformer = transformer;
6092 this.basis = basis; this.reducer = reducer;
6093 }
6094 MapReduceMappingsToDoubleTask
6095 (BulkTask<K,V,?> p, int b, boolean split,
6096 ObjectByObjectToDouble<? super K, ? super V> transformer,
6097 double basis,
6098 DoubleByDoubleToDouble reducer) {
6099 super(p, b, split);
6100 this.transformer = transformer;
6101 this.basis = basis; this.reducer = reducer;
6102 }
6103 public final void compute() {
6104 MapReduceMappingsToDoubleTask<K,V> t = this;
6105 final ObjectByObjectToDouble<? super K, ? super V> transformer =
6106 this.transformer;
6107 final DoubleByDoubleToDouble reducer = this.reducer;
6108 if (transformer == null || reducer == null)
6109 throw new Error(NullFunctionMessage);
6110 final double id = this.basis;
6111 int b = batch();
6112 while (b > 1 && t.baseIndex != t.baseLimit) {
6113 b >>>= 1;
6114 t.pending = 1;
6115 MapReduceMappingsToDoubleTask<K,V> rt =
6116 new MapReduceMappingsToDoubleTask<K,V>
6117 (t, b, true, transformer, id, reducer);
6118 t = new MapReduceMappingsToDoubleTask<K,V>
6119 (t, b, false, transformer, id, reducer);
6120 t.sibling = rt;
6121 rt.sibling = t;
6122 rt.fork();
6123 }
6124 double r = id;
6125 Object v;
6126 while ((v = t.advance()) != null)
6127 r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6128 t.result = r;
6129 for (;;) {
6130 int c; BulkTask<K,V,?> par; MapReduceMappingsToDoubleTask<K,V> s, p;
6131 if ((par = t.parent) == null ||
6132 !(par instanceof MapReduceMappingsToDoubleTask)) {
6133 t.quietlyComplete();
6134 break;
6135 }
6136 else if ((c = (p = (MapReduceMappingsToDoubleTask<K,V>)par).pending) == 0) {
6137 if ((s = t.sibling) != null)
6138 r = reducer.apply(r, s.result);
6139 (t = p).result = r;
6140 }
6141 else if (p.casPending(c, 0))
6142 break;
6143 }
6144 }
6145 public final Double getRawResult() { return result; }
6146 }
6147
6148 static final class MapReduceKeysToLongTask<K,V>
6149 extends BulkTask<K,V,Long> {
6150 final ObjectToLong<? super K> transformer;
6151 final LongByLongToLong reducer;
6152 final long basis;
6153 long result;
6154 MapReduceKeysToLongTask<K,V> sibling;
6155 MapReduceKeysToLongTask
6156 (ConcurrentHashMapV8<K,V> m,
6157 ObjectToLong<? super K> transformer,
6158 long basis,
6159 LongByLongToLong reducer) {
6160 super(m);
6161 this.transformer = transformer;
6162 this.basis = basis; this.reducer = reducer;
6163 }
6164 MapReduceKeysToLongTask
6165 (BulkTask<K,V,?> p, int b, boolean split,
6166 ObjectToLong<? super K> transformer,
6167 long basis,
6168 LongByLongToLong reducer) {
6169 super(p, b, split);
6170 this.transformer = transformer;
6171 this.basis = basis; this.reducer = reducer;
6172 }
6173 public final void compute() {
6174 MapReduceKeysToLongTask<K,V> t = this;
6175 final ObjectToLong<? super K> transformer =
6176 this.transformer;
6177 final LongByLongToLong reducer = this.reducer;
6178 if (transformer == null || reducer == null)
6179 throw new Error(NullFunctionMessage);
6180 final long id = this.basis;
6181 int b = batch();
6182 while (b > 1 && t.baseIndex != t.baseLimit) {
6183 b >>>= 1;
6184 t.pending = 1;
6185 MapReduceKeysToLongTask<K,V> rt =
6186 new MapReduceKeysToLongTask<K,V>
6187 (t, b, true, transformer, id, reducer);
6188 t = new MapReduceKeysToLongTask<K,V>
6189 (t, b, false, transformer, id, reducer);
6190 t.sibling = rt;
6191 rt.sibling = t;
6192 rt.fork();
6193 }
6194 long r = id;
6195 while (t.advance() != null)
6196 r = reducer.apply(r, transformer.apply((K)t.nextKey));
6197 t.result = r;
6198 for (;;) {
6199 int c; BulkTask<K,V,?> par; MapReduceKeysToLongTask<K,V> s, p;
6200 if ((par = t.parent) == null ||
6201 !(par instanceof MapReduceKeysToLongTask)) {
6202 t.quietlyComplete();
6203 break;
6204 }
6205 else if ((c = (p = (MapReduceKeysToLongTask<K,V>)par).pending) == 0) {
6206 if ((s = t.sibling) != null)
6207 r = reducer.apply(r, s.result);
6208 (t = p).result = r;
6209 }
6210 else if (p.casPending(c, 0))
6211 break;
6212 }
6213 }
6214 public final Long getRawResult() { return result; }
6215 }
6216
6217 static final class MapReduceValuesToLongTask<K,V>
6218 extends BulkTask<K,V,Long> {
6219 final ObjectToLong<? super V> transformer;
6220 final LongByLongToLong reducer;
6221 final long basis;
6222 long result;
6223 MapReduceValuesToLongTask<K,V> sibling;
6224 MapReduceValuesToLongTask
6225 (ConcurrentHashMapV8<K,V> m,
6226 ObjectToLong<? super V> transformer,
6227 long basis,
6228 LongByLongToLong reducer) {
6229 super(m);
6230 this.transformer = transformer;
6231 this.basis = basis; this.reducer = reducer;
6232 }
6233 MapReduceValuesToLongTask
6234 (BulkTask<K,V,?> p, int b, boolean split,
6235 ObjectToLong<? super V> transformer,
6236 long basis,
6237 LongByLongToLong reducer) {
6238 super(p, b, split);
6239 this.transformer = transformer;
6240 this.basis = basis; this.reducer = reducer;
6241 }
6242 public final void compute() {
6243 MapReduceValuesToLongTask<K,V> t = this;
6244 final ObjectToLong<? super V> transformer =
6245 this.transformer;
6246 final LongByLongToLong reducer = this.reducer;
6247 if (transformer == null || reducer == null)
6248 throw new Error(NullFunctionMessage);
6249 final long id = this.basis;
6250 int b = batch();
6251 while (b > 1 && t.baseIndex != t.baseLimit) {
6252 b >>>= 1;
6253 t.pending = 1;
6254 MapReduceValuesToLongTask<K,V> rt =
6255 new MapReduceValuesToLongTask<K,V>
6256 (t, b, true, transformer, id, reducer);
6257 t = new MapReduceValuesToLongTask<K,V>
6258 (t, b, false, transformer, id, reducer);
6259 t.sibling = rt;
6260 rt.sibling = t;
6261 rt.fork();
6262 }
6263 long r = id;
6264 Object v;
6265 while ((v = t.advance()) != null)
6266 r = reducer.apply(r, transformer.apply((V)v));
6267 t.result = r;
6268 for (;;) {
6269 int c; BulkTask<K,V,?> par; MapReduceValuesToLongTask<K,V> s, p;
6270 if ((par = t.parent) == null ||
6271 !(par instanceof MapReduceValuesToLongTask)) {
6272 t.quietlyComplete();
6273 break;
6274 }
6275 else if ((c = (p = (MapReduceValuesToLongTask<K,V>)par).pending) == 0) {
6276 if ((s = t.sibling) != null)
6277 r = reducer.apply(r, s.result);
6278 (t = p).result = r;
6279 }
6280 else if (p.casPending(c, 0))
6281 break;
6282 }
6283 }
6284 public final Long getRawResult() { return result; }
6285 }
6286
6287 static final class MapReduceEntriesToLongTask<K,V>
6288 extends BulkTask<K,V,Long> {
6289 final ObjectToLong<Map.Entry<K,V>> transformer;
6290 final LongByLongToLong reducer;
6291 final long basis;
6292 long result;
6293 MapReduceEntriesToLongTask<K,V> sibling;
6294 MapReduceEntriesToLongTask
6295 (ConcurrentHashMapV8<K,V> m,
6296 ObjectToLong<Map.Entry<K,V>> transformer,
6297 long basis,
6298 LongByLongToLong reducer) {
6299 super(m);
6300 this.transformer = transformer;
6301 this.basis = basis; this.reducer = reducer;
6302 }
6303 MapReduceEntriesToLongTask
6304 (BulkTask<K,V,?> p, int b, boolean split,
6305 ObjectToLong<Map.Entry<K,V>> transformer,
6306 long basis,
6307 LongByLongToLong reducer) {
6308 super(p, b, split);
6309 this.transformer = transformer;
6310 this.basis = basis; this.reducer = reducer;
6311 }
6312 public final void compute() {
6313 MapReduceEntriesToLongTask<K,V> t = this;
6314 final ObjectToLong<Map.Entry<K,V>> transformer =
6315 this.transformer;
6316 final LongByLongToLong reducer = this.reducer;
6317 if (transformer == null || reducer == null)
6318 throw new Error(NullFunctionMessage);
6319 final long id = this.basis;
6320 int b = batch();
6321 while (b > 1 && t.baseIndex != t.baseLimit) {
6322 b >>>= 1;
6323 t.pending = 1;
6324 MapReduceEntriesToLongTask<K,V> rt =
6325 new MapReduceEntriesToLongTask<K,V>
6326 (t, b, true, transformer, id, reducer);
6327 t = new MapReduceEntriesToLongTask<K,V>
6328 (t, b, false, transformer, id, reducer);
6329 t.sibling = rt;
6330 rt.sibling = t;
6331 rt.fork();
6332 }
6333 long r = id;
6334 Object v;
6335 while ((v = t.advance()) != null)
6336 r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6337 t.result = r;
6338 for (;;) {
6339 int c; BulkTask<K,V,?> par; MapReduceEntriesToLongTask<K,V> s, p;
6340 if ((par = t.parent) == null ||
6341 !(par instanceof MapReduceEntriesToLongTask)) {
6342 t.quietlyComplete();
6343 break;
6344 }
6345 else if ((c = (p = (MapReduceEntriesToLongTask<K,V>)par).pending) == 0) {
6346 if ((s = t.sibling) != null)
6347 r = reducer.apply(r, s.result);
6348 (t = p).result = r;
6349 }
6350 else if (p.casPending(c, 0))
6351 break;
6352 }
6353 }
6354 public final Long getRawResult() { return result; }
6355 }
6356
6357 static final class MapReduceMappingsToLongTask<K,V>
6358 extends BulkTask<K,V,Long> {
6359 final ObjectByObjectToLong<? super K, ? super V> transformer;
6360 final LongByLongToLong reducer;
6361 final long basis;
6362 long result;
6363 MapReduceMappingsToLongTask<K,V> sibling;
6364 MapReduceMappingsToLongTask
6365 (ConcurrentHashMapV8<K,V> m,
6366 ObjectByObjectToLong<? super K, ? super V> transformer,
6367 long basis,
6368 LongByLongToLong reducer) {
6369 super(m);
6370 this.transformer = transformer;
6371 this.basis = basis; this.reducer = reducer;
6372 }
6373 MapReduceMappingsToLongTask
6374 (BulkTask<K,V,?> p, int b, boolean split,
6375 ObjectByObjectToLong<? super K, ? super V> transformer,
6376 long basis,
6377 LongByLongToLong reducer) {
6378 super(p, b, split);
6379 this.transformer = transformer;
6380 this.basis = basis; this.reducer = reducer;
6381 }
6382 public final void compute() {
6383 MapReduceMappingsToLongTask<K,V> t = this;
6384 final ObjectByObjectToLong<? super K, ? super V> transformer =
6385 this.transformer;
6386 final LongByLongToLong reducer = this.reducer;
6387 if (transformer == null || reducer == null)
6388 throw new Error(NullFunctionMessage);
6389 final long id = this.basis;
6390 int b = batch();
6391 while (b > 1 && t.baseIndex != t.baseLimit) {
6392 b >>>= 1;
6393 t.pending = 1;
6394 MapReduceMappingsToLongTask<K,V> rt =
6395 new MapReduceMappingsToLongTask<K,V>
6396 (t, b, true, transformer, id, reducer);
6397 t = new MapReduceMappingsToLongTask<K,V>
6398 (t, b, false, transformer, id, reducer);
6399 t.sibling = rt;
6400 rt.sibling = t;
6401 rt.fork();
6402 }
6403 long r = id;
6404 Object v;
6405 while ((v = t.advance()) != null)
6406 r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6407 t.result = r;
6408 for (;;) {
6409 int c; BulkTask<K,V,?> par; MapReduceMappingsToLongTask<K,V> s, p;
6410 if ((par = t.parent) == null ||
6411 !(par instanceof MapReduceMappingsToLongTask)) {
6412 t.quietlyComplete();
6413 break;
6414 }
6415 else if ((c = (p = (MapReduceMappingsToLongTask<K,V>)par).pending) == 0) {
6416 if ((s = t.sibling) != null)
6417 r = reducer.apply(r, s.result);
6418 (t = p).result = r;
6419 }
6420 else if (p.casPending(c, 0))
6421 break;
6422 }
6423 }
6424 public final Long getRawResult() { return result; }
6425 }
6426
6427 static final class MapReduceKeysToIntTask<K,V>
6428 extends BulkTask<K,V,Integer> {
6429 final ObjectToInt<? super K> transformer;
6430 final IntByIntToInt reducer;
6431 final int basis;
6432 int result;
6433 MapReduceKeysToIntTask<K,V> sibling;
6434 MapReduceKeysToIntTask
6435 (ConcurrentHashMapV8<K,V> m,
6436 ObjectToInt<? super K> transformer,
6437 int basis,
6438 IntByIntToInt reducer) {
6439 super(m);
6440 this.transformer = transformer;
6441 this.basis = basis; this.reducer = reducer;
6442 }
6443 MapReduceKeysToIntTask
6444 (BulkTask<K,V,?> p, int b, boolean split,
6445 ObjectToInt<? super K> transformer,
6446 int basis,
6447 IntByIntToInt reducer) {
6448 super(p, b, split);
6449 this.transformer = transformer;
6450 this.basis = basis; this.reducer = reducer;
6451 }
6452 public final void compute() {
6453 MapReduceKeysToIntTask<K,V> t = this;
6454 final ObjectToInt<? super K> transformer =
6455 this.transformer;
6456 final IntByIntToInt reducer = this.reducer;
6457 if (transformer == null || reducer == null)
6458 throw new Error(NullFunctionMessage);
6459 final int id = this.basis;
6460 int b = batch();
6461 while (b > 1 && t.baseIndex != t.baseLimit) {
6462 b >>>= 1;
6463 t.pending = 1;
6464 MapReduceKeysToIntTask<K,V> rt =
6465 new MapReduceKeysToIntTask<K,V>
6466 (t, b, true, transformer, id, reducer);
6467 t = new MapReduceKeysToIntTask<K,V>
6468 (t, b, false, transformer, id, reducer);
6469 t.sibling = rt;
6470 rt.sibling = t;
6471 rt.fork();
6472 }
6473 int r = id;
6474 while (t.advance() != null)
6475 r = reducer.apply(r, transformer.apply((K)t.nextKey));
6476 t.result = r;
6477 for (;;) {
6478 int c; BulkTask<K,V,?> par; MapReduceKeysToIntTask<K,V> s, p;
6479 if ((par = t.parent) == null ||
6480 !(par instanceof MapReduceKeysToIntTask)) {
6481 t.quietlyComplete();
6482 break;
6483 }
6484 else if ((c = (p = (MapReduceKeysToIntTask<K,V>)par).pending) == 0) {
6485 if ((s = t.sibling) != null)
6486 r = reducer.apply(r, s.result);
6487 (t = p).result = r;
6488 }
6489 else if (p.casPending(c, 0))
6490 break;
6491 }
6492 }
6493 public final Integer getRawResult() { return result; }
6494 }
6495
6496 static final class MapReduceValuesToIntTask<K,V>
6497 extends BulkTask<K,V,Integer> {
6498 final ObjectToInt<? super V> transformer;
6499 final IntByIntToInt reducer;
6500 final int basis;
6501 int result;
6502 MapReduceValuesToIntTask<K,V> sibling;
6503 MapReduceValuesToIntTask
6504 (ConcurrentHashMapV8<K,V> m,
6505 ObjectToInt<? super V> transformer,
6506 int basis,
6507 IntByIntToInt reducer) {
6508 super(m);
6509 this.transformer = transformer;
6510 this.basis = basis; this.reducer = reducer;
6511 }
6512 MapReduceValuesToIntTask
6513 (BulkTask<K,V,?> p, int b, boolean split,
6514 ObjectToInt<? super V> transformer,
6515 int basis,
6516 IntByIntToInt reducer) {
6517 super(p, b, split);
6518 this.transformer = transformer;
6519 this.basis = basis; this.reducer = reducer;
6520 }
6521 public final void compute() {
6522 MapReduceValuesToIntTask<K,V> t = this;
6523 final ObjectToInt<? super V> transformer =
6524 this.transformer;
6525 final IntByIntToInt reducer = this.reducer;
6526 if (transformer == null || reducer == null)
6527 throw new Error(NullFunctionMessage);
6528 final int id = this.basis;
6529 int b = batch();
6530 while (b > 1 && t.baseIndex != t.baseLimit) {
6531 b >>>= 1;
6532 t.pending = 1;
6533 MapReduceValuesToIntTask<K,V> rt =
6534 new MapReduceValuesToIntTask<K,V>
6535 (t, b, true, transformer, id, reducer);
6536 t = new MapReduceValuesToIntTask<K,V>
6537 (t, b, false, transformer, id, reducer);
6538 t.sibling = rt;
6539 rt.sibling = t;
6540 rt.fork();
6541 }
6542 int r = id;
6543 Object v;
6544 while ((v = t.advance()) != null)
6545 r = reducer.apply(r, transformer.apply((V)v));
6546 t.result = r;
6547 for (;;) {
6548 int c; BulkTask<K,V,?> par; MapReduceValuesToIntTask<K,V> s, p;
6549 if ((par = t.parent) == null ||
6550 !(par instanceof MapReduceValuesToIntTask)) {
6551 t.quietlyComplete();
6552 break;
6553 }
6554 else if ((c = (p = (MapReduceValuesToIntTask<K,V>)par).pending) == 0) {
6555 if ((s = t.sibling) != null)
6556 r = reducer.apply(r, s.result);
6557 (t = p).result = r;
6558 }
6559 else if (p.casPending(c, 0))
6560 break;
6561 }
6562 }
6563 public final Integer getRawResult() { return result; }
6564 }
6565
6566 static final class MapReduceEntriesToIntTask<K,V>
6567 extends BulkTask<K,V,Integer> {
6568 final ObjectToInt<Map.Entry<K,V>> transformer;
6569 final IntByIntToInt reducer;
6570 final int basis;
6571 int result;
6572 MapReduceEntriesToIntTask<K,V> sibling;
6573 MapReduceEntriesToIntTask
6574 (ConcurrentHashMapV8<K,V> m,
6575 ObjectToInt<Map.Entry<K,V>> transformer,
6576 int basis,
6577 IntByIntToInt reducer) {
6578 super(m);
6579 this.transformer = transformer;
6580 this.basis = basis; this.reducer = reducer;
6581 }
6582 MapReduceEntriesToIntTask
6583 (BulkTask<K,V,?> p, int b, boolean split,
6584 ObjectToInt<Map.Entry<K,V>> transformer,
6585 int basis,
6586 IntByIntToInt reducer) {
6587 super(p, b, split);
6588 this.transformer = transformer;
6589 this.basis = basis; this.reducer = reducer;
6590 }
6591 public final void compute() {
6592 MapReduceEntriesToIntTask<K,V> t = this;
6593 final ObjectToInt<Map.Entry<K,V>> transformer =
6594 this.transformer;
6595 final IntByIntToInt reducer = this.reducer;
6596 if (transformer == null || reducer == null)
6597 throw new Error(NullFunctionMessage);
6598 final int id = this.basis;
6599 int b = batch();
6600 while (b > 1 && t.baseIndex != t.baseLimit) {
6601 b >>>= 1;
6602 t.pending = 1;
6603 MapReduceEntriesToIntTask<K,V> rt =
6604 new MapReduceEntriesToIntTask<K,V>
6605 (t, b, true, transformer, id, reducer);
6606 t = new MapReduceEntriesToIntTask<K,V>
6607 (t, b, false, transformer, id, reducer);
6608 t.sibling = rt;
6609 rt.sibling = t;
6610 rt.fork();
6611 }
6612 int r = id;
6613 Object v;
6614 while ((v = t.advance()) != null)
6615 r = reducer.apply(r, transformer.apply(entryFor((K)t.nextKey, (V)v)));
6616 t.result = r;
6617 for (;;) {
6618 int c; BulkTask<K,V,?> par; MapReduceEntriesToIntTask<K,V> s, p;
6619 if ((par = t.parent) == null ||
6620 !(par instanceof MapReduceEntriesToIntTask)) {
6621 t.quietlyComplete();
6622 break;
6623 }
6624 else if ((c = (p = (MapReduceEntriesToIntTask<K,V>)par).pending) == 0) {
6625 if ((s = t.sibling) != null)
6626 r = reducer.apply(r, s.result);
6627 (t = p).result = r;
6628 }
6629 else if (p.casPending(c, 0))
6630 break;
6631 }
6632 }
6633 public final Integer getRawResult() { return result; }
6634 }
6635
6636 static final class MapReduceMappingsToIntTask<K,V>
6637 extends BulkTask<K,V,Integer> {
6638 final ObjectByObjectToInt<? super K, ? super V> transformer;
6639 final IntByIntToInt reducer;
6640 final int basis;
6641 int result;
6642 MapReduceMappingsToIntTask<K,V> sibling;
6643 MapReduceMappingsToIntTask
6644 (ConcurrentHashMapV8<K,V> m,
6645 ObjectByObjectToInt<? super K, ? super V> transformer,
6646 int basis,
6647 IntByIntToInt reducer) {
6648 super(m);
6649 this.transformer = transformer;
6650 this.basis = basis; this.reducer = reducer;
6651 }
6652 MapReduceMappingsToIntTask
6653 (BulkTask<K,V,?> p, int b, boolean split,
6654 ObjectByObjectToInt<? super K, ? super V> transformer,
6655 int basis,
6656 IntByIntToInt reducer) {
6657 super(p, b, split);
6658 this.transformer = transformer;
6659 this.basis = basis; this.reducer = reducer;
6660 }
6661 public final void compute() {
6662 MapReduceMappingsToIntTask<K,V> t = this;
6663 final ObjectByObjectToInt<? super K, ? super V> transformer =
6664 this.transformer;
6665 final IntByIntToInt reducer = this.reducer;
6666 if (transformer == null || reducer == null)
6667 throw new Error(NullFunctionMessage);
6668 final int id = this.basis;
6669 int b = batch();
6670 while (b > 1 && t.baseIndex != t.baseLimit) {
6671 b >>>= 1;
6672 t.pending = 1;
6673 MapReduceMappingsToIntTask<K,V> rt =
6674 new MapReduceMappingsToIntTask<K,V>
6675 (t, b, true, transformer, id, reducer);
6676 t = new MapReduceMappingsToIntTask<K,V>
6677 (t, b, false, transformer, id, reducer);
6678 t.sibling = rt;
6679 rt.sibling = t;
6680 rt.fork();
6681 }
6682 int r = id;
6683 Object v;
6684 while ((v = t.advance()) != null)
6685 r = reducer.apply(r, transformer.apply((K)t.nextKey, (V)v));
6686 t.result = r;
6687 for (;;) {
6688 int c; BulkTask<K,V,?> par; MapReduceMappingsToIntTask<K,V> s, p;
6689 if ((par = t.parent) == null ||
6690 !(par instanceof MapReduceMappingsToIntTask)) {
6691 t.quietlyComplete();
6692 break;
6693 }
6694 else if ((c = (p = (MapReduceMappingsToIntTask<K,V>)par).pending) == 0) {
6695 if ((s = t.sibling) != null)
6696 r = reducer.apply(r, s.result);
6697 (t = p).result = r;
6698 }
6699 else if (p.casPending(c, 0))
6700 break;
6701 }
6702 }
6703 public final Integer getRawResult() { return result; }
6704 }
6705
6706
6707 // Unsafe mechanics
6708 private static final sun.misc.Unsafe UNSAFE;
6709 private static final long counterOffset;
6710 private static final long sizeCtlOffset;
6711 private static final long ABASE;
6712 private static final int ASHIFT;
6713
6714 static {
6715 int ss;
6716 try {
6717 UNSAFE = getUnsafe();
6718 Class<?> k = ConcurrentHashMapV8.class;
6719 counterOffset = UNSAFE.objectFieldOffset
6720 (k.getDeclaredField("counter"));
6721 sizeCtlOffset = UNSAFE.objectFieldOffset
6722 (k.getDeclaredField("sizeCtl"));
6723 Class<?> sc = Node[].class;
6724 ABASE = UNSAFE.arrayBaseOffset(sc);
6725 ss = UNSAFE.arrayIndexScale(sc);
6726 } catch (Exception e) {
6727 throw new Error(e);
6728 }
6729 if ((ss & (ss-1)) != 0)
6730 throw new Error("data type scale not a power of two");
6731 ASHIFT = 31 - Integer.numberOfLeadingZeros(ss);
6732 }
6733
6734 /**
6735 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
6736 * Replace with a simple call to Unsafe.getUnsafe when integrating
6737 * into a jdk.
6738 *
6739 * @return a sun.misc.Unsafe
6740 */
6741 private static sun.misc.Unsafe getUnsafe() {
6742 try {
6743 return sun.misc.Unsafe.getUnsafe();
6744 } catch (SecurityException se) {
6745 try {
6746 return java.security.AccessController.doPrivileged
6747 (new java.security
6748 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
6749 public sun.misc.Unsafe run() throws Exception {
6750 java.lang.reflect.Field f = sun.misc
6751 .Unsafe.class.getDeclaredField("theUnsafe");
6752 f.setAccessible(true);
6753 return (sun.misc.Unsafe) f.get(null);
6754 }});
6755 } catch (java.security.PrivilegedActionException e) {
6756 throw new RuntimeException("Could not initialize intrinsics",
6757 e.getCause());
6758 }
6759 }
6760 }
6761 }