ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166x/ConcurrentSkipListMap.java
Revision: 1.4
Committed: Sat Oct 16 14:49:45 2004 UTC (19 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.3: +218 -175 lines
Log Message:
Improve pollLast* implementation; other minor touchups

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166x;
8    
9     import java.util.*;
10     import java.util.concurrent.*;
11     import java.util.concurrent.atomic.*;
12    
13     /**
14 dl 1.2 * A scalable {@link ConcurrentNavigableMap} implementation. This
15     * class maintains a map in ascending key order, sorted according to
16     * the <i>natural order</i> for the key's class (see {@link
17     * Comparable}), or by the {@link Comparator} provided at creation
18     * time, depending on which constructor is used.
19 dl 1.1 *
20     * <p>This class implements a concurrent variant of <a
21     * href="http://www.cs.umd.edu/~pugh/">SkipLists</a> providing
22     * expected average <i>log(n)</i> time cost for the
23     * <tt>containsKey</tt>, <tt>get</tt>, <tt>put</tt> and
24     * <tt>remove</tt> operations and their variants. Insertion, removal,
25     * update, and access operations safely execute concurrently by
26     * multiple threads. Iterators are <i>weakly consistent</i>, returning
27     * elements reflecting the state of the map at some point at or since
28     * the creation of the iterator. They do <em>not</em> throw {@link
29     * ConcurrentModificationException}, and may proceed concurrently with
30     * other operations.
31     *
32 dl 1.4 * <p>All <tt>Map.Entry</tt> pairs returned by methods in this class
33 dl 1.1 * and its views represent snapshots of mappings at the time they were
34     * produced. They do <em>not</em> support the <tt>Entry.setValue</tt>
35     * method. (Note however that it is possible to change mappings in the
36     * associated map using <tt>put</tt>, <tt>putIfAbsent</tt>, or
37     * <tt>replace</tt>, depending on exactly which effect you need.)
38     *
39     * <p>Beware that, unlike in most collections, the <tt>size</tt>
40     * method is <em>not</em> a constant-time operation. Because of the
41     * asynchronous nature of these maps, determining the current number
42 dl 1.4 * of elements requires a traversal of the elements. Additionally,
43     * the bulk operations <tt>putAll</tt>, <tt>equals</tt>, and
44     * <tt>clear</tt> are <em>not</em> guaranteed to be performed
45     * atomically. For example, an iterator operating concurrently with a
46     * <tt>putAll</tt> operation might view only some of the added
47     * elements.
48 dl 1.1 *
49     * <p>This class and its views and iterators implement all of the
50     * <em>optional</em> methods of the {@link Map} and {@link Iterator}
51     * interfaces. Like most other concurrent collections, this class does
52     * not permit the use of <tt>null</tt> keys or values because some
53     * null return values cannot be reliably distinguished from the
54     * absence of elements.
55     *
56     * @author Doug Lea
57     * @param <K> the type of keys maintained by this map
58     * @param <V> the type of mapped values
59     */
60     public class ConcurrentSkipListMap<K,V> extends AbstractMap<K,V>
61 dl 1.2 implements ConcurrentNavigableMap<K,V>,
62 dl 1.1 Cloneable,
63     java.io.Serializable {
64     /*
65     * This class implements a tree-like two-dimensionally linked skip
66     * list in which the index levels are represented in separate
67     * nodes from the base nodes holding data. There are two reasons
68     * for taking this approach instead of the usual array-based
69     * structure: 1) Array based implementations seem to encounter
70     * more complexity and overhead 2) We can use cheaper algorithms
71     * for the heavily-traversed index lists than can be used for the
72     * base lists. Here's a picture of some of the basics for a
73     * possible list with 2 levels of index:
74     *
75     * Head nodes Index nodes
76 dl 1.4 * +-+ right +-+ +-+
77 dl 1.1 * |2|---------------->| |--------------------->| |->null
78     * +-+ +-+ +-+
79     * | down | |
80     * v v v
81     * +-+ +-+ +-+ +-+ +-+ +-+
82     * |1|----------->| |->| |------>| |----------->| |------>| |->null
83     * +-+ +-+ +-+ +-+ +-+ +-+
84 dl 1.4 * v | | | | |
85     * Nodes next v v v v v
86 dl 1.1 * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
87     * | |->|A|->|B|->|C|->|D|->|E|->|F|->|G|->|H|->|I|->|J|->|K|->null
88     * +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+ +-+
89     *
90     * The base lists use a variant of the HM linked ordered set
91 dl 1.4 * algorithm. See Tim Harris, "A pragmatic implementation of
92 dl 1.1 * non-blocking linked lists"
93     * http://www.cl.cam.ac.uk/~tlh20/publications.html and Maged
94     * Michael "High Performance Dynamic Lock-Free Hash Tables and
95     * List-Based Sets"
96 dl 1.4 * http://www.research.ibm.com/people/m/michael/pubs.htm. The
97     * basic idea in these lists is to mark the "next" pointers of
98     * deleted nodes when deleting to avoid conflicts with concurrent
99     * insertions, and when traversing to keep track of triples
100 dl 1.1 * (predecessor, node, successor) in order to detect when and how
101     * to unlink these deleted nodes.
102     *
103     * Rather than using mark-bits to mark list deletions (which can
104     * be slow and space-intensive using AtomicMarkedReference), nodes
105     * use direct CAS'able next pointers. On deletion, instead of
106     * marking a pointer, they splice in another node that can be
107     * thought of as standing for a marked pointer (indicating this by
108     * using otherwise impossible field values). Using plain nodes
109     * acts roughly like "boxed" implementations of marked pointers,
110     * but uses new nodes only when nodes are deleted, not for every
111     * link. This requires less space and supports faster
112     * traversal. Even if marked references were better supported by
113     * JVMs, traversal using this technique might still be faster
114     * because any search need only read ahead one more node than
115     * otherwise required (to check for trailing marker) rather than
116     * unmasking mark bits or whatever on each read.
117     *
118     * This approach maintains the essential property needed in the HM
119     * algorithm of changing the next-pointer of a deleted node so
120     * that any other CAS of it will fail, but implements the idea by
121     * changing the pointer to point to a different node, not by
122     * marking it. While it would be possible to further squeeze
123     * space by defining marker nodes not to have key/value fields, it
124     * isn't worth the extra type-testing overhead. The deletion
125     * markers are rarely encountered during traversal and are
126 dl 1.2 * normally quickly garbage collected. (Note that this technique
127     * would not work well in systems without garbage collection.)
128 dl 1.1 *
129     * In addition to using deletion markers, the lists also use
130     * nullness of value fields to indicate deletion, in a style
131     * similar to typical lazy-deletion schemes. If a node's value is
132     * null, then it is considered logically deleted and ignored even
133     * though it is still reachable. This maintains proper control of
134     * concurrent replace vs delete operations -- an attempted replace
135     * must fail if a delete beat it by nulling field, and a delete
136     * must return the last non-null value held in the field. (Note:
137     * Null, rather than some special marker, is used for value fields
138     * here because it just so happens to mesh with the Map API
139     * requirement that method get returns null if there is no
140     * mapping, which allows nodes to remain concurrently readable
141     * even when deleted. Using any other marker value here would be
142     * messy at best.)
143     *
144     * Here's the sequence of events for a deletion of node n with
145     * predecessor b and successor f, initially:
146     *
147     * +------+ +------+ +------+
148     * ... | b |------>| n |----->| f | ...
149     * +------+ +------+ +------+
150     *
151     * 1. CAS n's value field from non-null to null.
152     * From this point on, no public operations encountering
153     * the node consider this mapping to exist. However, other
154     * ongoing insertions and deletions might still modify
155     * n's next pointer.
156     *
157     * 2. CAS n's next pointer to point to a new marker node.
158     * From this point on, no other nodes can be appended to n.
159     * which avoids deletion errors in CAS-based linked lists.
160     *
161     * +------+ +------+ +------+ +------+
162     * ... | b |------>| n |----->|marker|------>| f | ...
163     * +------+ +------+ +------+ +------+
164     *
165     * 3. CAS b's next pointer over both n and its marker.
166     * From this point on, no new traversals will encounter n,
167     * and it can eventually be GCed.
168     * +------+ +------+
169     * ... | b |----------------------------------->| f | ...
170     * +------+ +------+
171     *
172     * A failure at step 1 leads to simple retry due to a lost race
173     * with another operation. Steps 2-3 can fail because some other
174     * thread noticed during a traversal a node with null value and
175     * helped out by marking and/or unlinking. This helping-out
176     * ensures that no thread can become stuck waiting for progress of
177     * the deleting thread. The use of marker nodes slightly
178     * complicates helping-out code because traversals must track
179     * consistent reads of up to four nodes (b, n, marker, f), not
180     * just (b, n, f), although the next field of a marker is
181     * immutable, and once a next field is CAS'ed to point to a
182     * marker, it never again changes, so this requires less care.
183     *
184     * Skip lists add indexing to this scheme, so that the base-level
185     * traversals start close to the locations being found, inserted
186     * or deleted -- usually base level traversals only traverse a few
187     * nodes. This doesn't change the basic algorithm except for the
188     * need to make sure base traversals start at predecessors (here,
189     * b) that are not (structurally) deleted, otherwise retrying
190     * after processing the deletion.
191     *
192     * Index levels are maintained as lists with volatile next fields,
193     * using CAS to link and unlink. Races are allowed in index-list
194     * operations that can (rarely) fail to link in a new index node
195     * or delete one. (We can't do this of course for data nodes.)
196     * However, even when this happens, the index lists remain sorted,
197     * so correctly serve as indices. This can impact performance,
198     * but since skip lists are probabilistic anyway, the net result
199     * is that under contention, the effective "p" value may be lower
200     * than its nominal value. And race windows are kept small enough
201     * that in practice these failures are rare, even under a lot of
202     * contention.
203     *
204     * The fact that retries (for both base and index lists) are
205     * relatively cheap due to indexing allows some minor
206     * simplifications of retry logic. Traversal restarts are
207     * performed after most "helping-out" CASes. This isn't always
208     * strictly necessary, but the implicit backoffs tend to help
209     * reduce other downstream failed CAS's enough to outweigh restart
210     * cost. This worsens the worst case, but seems to improve even
211     * highly contended cases.
212     *
213     * Unlike most skip-list implementations, index insertion and
214     * deletion here require a separate traversal pass occuring after
215     * the base-level action, to add or remove index nodes. This adds
216     * to single-threaded overhead, but improves contended
217     * multithreaded performance by narrowing interference windows,
218     * and allows deletion to ensure that all index nodes will be made
219     * unreachable upon return from a public remove operation, thus
220     * avoiding unwanted garbage retention. This is more important
221     * here than in some other data structures because we cannot null
222     * out node fields referencing user keys since they might still be
223     * read by other ongoing traversals.
224     *
225     * Indexing uses skip list parameters that maintain good search
226     * performance while using sparser-than-usual indices: The
227     * hardwired parameters k=1, p=0.5 (see method randomLevel) mean
228     * that about one-quarter of the nodes have indices. Of those that
229     * do, half have one level, a quarter have two, and so on (see
230     * Pugh's Skip List Cookbook, sec 3.4). The expected total space
231     * requirement for a map is slightly less than for the current
232     * implementation of java.util.TreeMap.
233     *
234     * Changing the level of the index (i.e, the height of the
235     * tree-like structure) also uses CAS. The head index has initial
236     * level/height of one. Creation of an index with height greater
237     * than the current level adds a level to the head index by
238     * CAS'ing on a new top-most head. To maintain good performance
239     * after a lot of removals, deletion methods heuristically try to
240     * reduce the height if the topmost levels appear to be empty.
241     * This may encounter races in which it possible (but rare) to
242     * reduce and "lose" a level just as it is about to contain an
243     * index (that will then never be encountered). This does no
244     * structural harm, and in practice appears to be a better option
245     * than allowing unrestrained growth of levels.
246     *
247     * The code for all this is more verbose than you'd like. Most
248     * operations entail locating an element (or position to insert an
249     * element). The code to do this can't be nicely factored out
250     * because subsequent uses require a snapshot of predecessor
251     * and/or successor and/or value fields which can't be returned
252     * all at once, at least not without creating yet another object
253     * to hold them -- creating such little objects is an especially
254     * bad idea for basic internal search operations because it adds
255     * to GC overhead. (This is one of the few times I've wished Java
256     * had macros.) Instead, some traversal code is interleaved within
257     * insertion and removal operations. The control logic to handle
258     * all the retry conditions is sometimes twisty. Most search is
259     * broken into 2 parts. findPredecessor() searches index nodes
260     * only, returning a base-level predecessor of the key. findNode()
261     * finishes out the base-level search. Even with this factoring,
262     * there is a fair amount of near-duplication of code to handle
263     * variants.
264     *
265     * For explanation of algorithms sharing at least a couple of
266     * features with this one, see Mikhail Fomitchev's thesis
267 dl 1.2 * (http://www.cs.yorku.ca/~mikhail/), Keir Fraser's thesis
268     * (http://www.cl.cam.ac.uk/users/kaf24/), and papers by
269     * Håkan Sundell (http://www.cs.chalmers.se/~phs/).
270 dl 1.1 *
271     * Given the use of tree-like index nodes, you might wonder why
272     * this doesn't use some kind of search tree instead, which would
273     * support somewhat faster search operations. The reason is that
274     * there are no known efficient lock-free insertion and deletion
275     * algorithms for search trees. The immutability of the "down"
276     * links of index nodes (as opposed to mutable "left" fields in
277     * true trees) makes this tractable using only CAS operations.
278     *
279     * Notation guide for local variables
280     * Node: b, n, f for predecessor, node, successor
281     * Index: q, r, d for index node, right, down.
282     * t for another index node
283     * Head: h
284     * Levels: j
285     * Keys: k, key
286     * Values: v, value
287     * Comparisons: c
288     */
289    
290     private static final long serialVersionUID = -8627078645895051609L;
291    
292     /**
293     * Special value used to identify base-level header
294     */
295     private static final Object BASE_HEADER = new Object();
296    
297     /**
298     * The topmost head index of the skiplist.
299     */
300     private transient volatile HeadIndex<K,V> head;
301    
302     /**
303     * The Comparator used to maintain order in this Map, or null
304     * if using natural order.
305     * @serial
306     */
307     private final Comparator<? super K> comparator;
308    
309     /**
310     * Seed for simple random number generator. Not volatile since it
311     * doesn't matter too much if different threads don't see updates.
312     */
313     private transient int randomSeed;
314    
315     /** Lazily initialized key set */
316     private transient KeySet keySet;
317     /** Lazily initialized entry set */
318     private transient EntrySet entrySet;
319     /** Lazily initialized values collection */
320     private transient Values values;
321    
322     /**
323     * Initialize or reset state. Needed by constructors, clone,
324     * clear, readObject. and ConcurrentSkipListSet.clone.
325     * (Note that comparator must be separately initialized.)
326     */
327     final void initialize() {
328     keySet = null;
329     entrySet = null;
330     values = null;
331     randomSeed = (int) System.nanoTime();
332     head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null),
333     null, null, 1);
334     }
335    
336     /** Updater for casHead */
337     private static final
338     AtomicReferenceFieldUpdater<ConcurrentSkipListMap, HeadIndex>
339     headUpdater = AtomicReferenceFieldUpdater.newUpdater
340     (ConcurrentSkipListMap.class, HeadIndex.class, "head");
341    
342     /**
343     * compareAndSet head node
344     */
345     private boolean casHead(HeadIndex<K,V> cmp, HeadIndex<K,V> val) {
346     return headUpdater.compareAndSet(this, cmp, val);
347     }
348    
349     /* ---------------- Nodes -------------- */
350    
351     /**
352     * Nodes hold keys and values, and are singly linked in sorted
353     * order, possibly with some intervening marker nodes. The list is
354     * headed by a dummy node accessible as head.node. The value field
355     * is declared only as Object because it takes special non-V
356     * values for marker and header nodes.
357     */
358     static final class Node<K,V> {
359     final K key;
360     volatile Object value;
361     volatile Node<K,V> next;
362    
363     /**
364     * Creates a new regular node.
365     */
366     Node(K key, Object value, Node<K,V> next) {
367     this.key = key;
368     this.value = value;
369     this.next = next;
370     }
371    
372     /**
373     * Creates a new marker node. A marker is distinguished by
374     * having its value field point to itself. Marker nodes also
375     * have null keys, a fact that is exploited in a few places,
376     * but this doesn't distinguish markers from the base-level
377     * header node (head.node), which also has a null key.
378     */
379     Node(Node<K,V> next) {
380     this.key = null;
381     this.value = this;
382     this.next = next;
383     }
384    
385     /** Updater for casNext */
386     static final AtomicReferenceFieldUpdater<Node, Node>
387     nextUpdater = AtomicReferenceFieldUpdater.newUpdater
388     (Node.class, Node.class, "next");
389    
390     /** Updater for casValue */
391     static final AtomicReferenceFieldUpdater<Node, Object>
392     valueUpdater = AtomicReferenceFieldUpdater.newUpdater
393     (Node.class, Object.class, "value");
394    
395    
396     /**
397     * compareAndSet value field
398     */
399     boolean casValue(Object cmp, Object val) {
400     return valueUpdater.compareAndSet(this, cmp, val);
401     }
402    
403     /**
404     * compareAndSet next field
405     */
406     boolean casNext(Node<K,V> cmp, Node<K,V> val) {
407     return nextUpdater.compareAndSet(this, cmp, val);
408     }
409    
410     /**
411     * Return true if this node is a marker. This method isn't
412     * actually called in an any current code checking for markers
413     * because callers will have already read value field and need
414     * to use that read (not another done here) and so directly
415     * test if value points to node.
416     * @param n a possibly null reference to a node
417     * @return true if this node is a marker node
418     */
419     boolean isMarker() {
420     return value == this;
421     }
422    
423     /**
424     * Return true if this node is the header of base-level list.
425     * @return true if this node is header node
426     */
427     boolean isBaseHeader() {
428     return value == BASE_HEADER;
429     }
430    
431     /**
432     * Tries to append a deletion marker to this node.
433     * @param f the assumed current successor of this node
434     * @return true if successful
435     */
436     boolean appendMarker(Node<K,V> f) {
437     return casNext(f, new Node<K,V>(f));
438     }
439    
440     /**
441     * Helps out a deletion by appending marker or unlinking from
442     * predecessor. This is called during traversals when value
443     * field seen to be null.
444     * @param b predecessor
445     * @param f successor
446     */
447     void helpDelete(Node<K,V> b, Node<K,V> f) {
448     /*
449     * Rechecking links and then doing only one of the
450     * help-out stages per call tends to minimize CAS
451     * interference among helping threads.
452     */
453     if (f == next && this == b.next) {
454     if (f == null || f.value != f) // not already marked
455     appendMarker(f);
456     else
457     b.casNext(this, f.next);
458     }
459     }
460    
461     /**
462     * Return value if this node contains a valid key-value pair,
463     * else null.
464     * @return this node's value if it isn't a marker or header or
465     * is deleted, else null.
466     */
467     V getValidValue() {
468     Object v = value;
469     if (v == this || v == BASE_HEADER)
470     return null;
471     return (V)v;
472     }
473    
474     /**
475     * Create and return a new SnapshotEntry holding current
476     * mapping if this node holds a valid value, else null
477     * @return new entry or null
478     */
479     SnapshotEntry<K,V> createSnapshot() {
480     V v = getValidValue();
481     if (v == null)
482     return null;
483     return new SnapshotEntry(key, v);
484     }
485     }
486    
487     /* ---------------- Indexing -------------- */
488    
489     /**
490     * Index nodes represent the levels of the skip list. To improve
491     * search performance, keys of the underlying nodes are cached.
492     * Note that even though both Nodes and Indexes have
493     * forward-pointing fields, they have different types and are
494     * handled in different ways, that can't nicely be captured by
495     * placing field in a shared abstract class.
496     */
497     static class Index<K,V> {
498     final K key;
499     final Node<K,V> node;
500     final Index<K,V> down;
501     volatile Index<K,V> right;
502    
503     /**
504 dl 1.4 * Creates index node with given values
505 dl 1.1 */
506     Index(Node<K,V> node, Index<K,V> down, Index<K,V> right) {
507     this.node = node;
508     this.key = node.key;
509     this.down = down;
510     this.right = right;
511     }
512    
513     /** Updater for casRight */
514     static final AtomicReferenceFieldUpdater<Index, Index>
515     rightUpdater = AtomicReferenceFieldUpdater.newUpdater
516     (Index.class, Index.class, "right");
517    
518     /**
519     * compareAndSet right field
520     */
521     final boolean casRight(Index<K,V> cmp, Index<K,V> val) {
522     return rightUpdater.compareAndSet(this, cmp, val);
523     }
524    
525     /**
526     * Returns true if the node this indexes has been deleted.
527     * @return true if indexed node is known to be deleted
528     */
529     final boolean indexesDeletedNode() {
530     return node.value == null;
531     }
532    
533     /**
534     * Tries to CAS newSucc as successor. To minimize races with
535     * unlink that may lose this index node, if the node being
536     * indexed is known to be deleted, it doesn't try to link in.
537     * @param succ the expected current successor
538     * @param newSucc the new successor
539     * @return true if successful
540     */
541     final boolean link(Index<K,V> succ, Index<K,V> newSucc) {
542     Node<K,V> n = node;
543     newSucc.right = succ;
544     return n.value != null && casRight(succ, newSucc);
545     }
546    
547     /**
548     * Tries to CAS right field to skip over apparent successor
549     * succ. Fails (forcing a retraversal by caller) if this node
550     * is known to be deleted.
551     * @param succ the expected current successor
552     * @return true if successful
553     */
554     final boolean unlink(Index<K,V> succ) {
555     return !indexesDeletedNode() && casRight(succ, succ.right);
556     }
557     }
558    
559     /* ---------------- Head nodes -------------- */
560    
561     /**
562     * Nodes heading each level keep track of their level.
563     */
564     static final class HeadIndex<K,V> extends Index<K,V> {
565     final int level;
566 dl 1.4 HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
567 dl 1.1 super(node, down, right);
568     this.level = level;
569     }
570     }
571    
572     /* ---------------- Map.Entry support -------------- */
573    
574     /**
575     * An immutable representation of a key-value mapping as it
576     * existed at some point in time. This class does <em>not</em>
577     * support the <tt>Map.Entry.setValue</tt> method.
578     */
579     static class SnapshotEntry<K,V> implements Map.Entry<K,V> {
580     private final K key;
581     private final V value;
582    
583     /**
584     * Creates a new entry representing the given key and value.
585     * @param key the key
586     * @param value the value
587     */
588     SnapshotEntry(K key, V value) {
589     this.key = key;
590     this.value = value;
591     }
592    
593     /**
594     * Returns the key corresponding to this entry.
595     *
596     * @return the key corresponding to this entry.
597     */
598     public K getKey() {
599     return key;
600     }
601    
602     /**
603     * Returns the value corresponding to this entry.
604     *
605     * @return the value corresponding to this entry.
606     */
607     public V getValue() {
608     return value;
609     }
610    
611     /**
612     * Always fails, throwing <tt>UnsupportedOperationException</tt>.
613     * @throws UnsupportedOperationException always.
614     */
615     public V setValue(V value) {
616     throw new UnsupportedOperationException();
617     }
618    
619     // inherit javadoc
620     public boolean equals(Object o) {
621     if (!(o instanceof Map.Entry))
622     return false;
623     Map.Entry e = (Map.Entry)o;
624     // As mandated by Map.Entry spec:
625     return ((key==null ?
626     e.getKey()==null : key.equals(e.getKey())) &&
627     (value==null ?
628     e.getValue()==null : value.equals(e.getValue())));
629     }
630    
631    
632     // inherit javadoc
633     public int hashCode() {
634     // As mandated by Map.Entry spec:
635     return ((key==null ? 0 : key.hashCode()) ^
636     (value==null ? 0 : value.hashCode()));
637     }
638    
639     /**
640     * Returns a String consisting of the key followed by an
641     * equals sign (<tt>"="</tt>) followed by the associated
642     * value.
643     * @return a String representation of this entry.
644     */
645     public String toString() {
646     return getKey() + "=" + getValue();
647     }
648     }
649    
650     /* ---------------- Comparison utilities -------------- */
651    
652     /**
653     * Represents a key with a comparator as a Comparable.
654     *
655     * Because most sorted collections seem to use natural order on
656     * Comparables (Strings, Integers, etc), most internal methods are
657     * geared to use them. This is generally faster than checking
658     * per-comparison whether to use comparator or comparable because
659     * it doesn't require a (Comparable) cast for each comparison.
660     * (Optimizers can only sometimes remove such redundant checks
661     * themselves.) When Comparators are used,
662     * ComparableUsingComparators are created so that they act in the
663     * same way as natural orderings. This penalizes use of
664     * Comparators vs Comparables, which seems like the right
665     * tradeoff.
666     */
667     static final class ComparableUsingComparator<K> implements Comparable<K> {
668     final K actualKey;
669     final Comparator<? super K> cmp;
670     ComparableUsingComparator(K key, Comparator<? super K> cmp) {
671     this.actualKey = key;
672     this.cmp = cmp;
673     }
674     public int compareTo(K k2) {
675     return cmp.compare(actualKey, k2);
676     }
677     }
678    
679     /**
680     * If using comparator, return a ComparableUsingComparator, else
681     * cast key as Comparator, which may cause ClassCastException,
682     * which is propagated back to caller.
683     */
684     private Comparable<K> comparable(Object key) throws ClassCastException {
685     if (key == null)
686     throw new NullPointerException();
687     return (comparator != null)
688     ? new ComparableUsingComparator(key, comparator)
689     : (Comparable<K>)key;
690     }
691    
692     /**
693     * Compare using comparator or natural ordering. Used when the
694     * ComparableUsingComparator approach doesn't apply.
695     */
696     int compare(K k1, K k2) throws ClassCastException {
697     Comparator<? super K> cmp = comparator;
698     if (cmp != null)
699     return cmp.compare(k1, k2);
700     else
701     return ((Comparable<K>)k1).compareTo(k2);
702     }
703    
704     /**
705     * Return true if given key greater than or equal to least and
706 dl 1.4 * strictly less than fence, bypassing either test if least or
707     * fence oare null. Needed mainly in submap operations.
708 dl 1.1 */
709     boolean inHalfOpenRange(K key, K least, K fence) {
710     if (key == null)
711     throw new NullPointerException();
712     return ((least == null || compare(key, least) >= 0) &&
713     (fence == null || compare(key, fence) < 0));
714     }
715    
716     /**
717     * Return true if given key greater than or equal to least and less
718     * or equal to fence. Needed mainly in submap operations.
719     */
720     boolean inOpenRange(K key, K least, K fence) {
721     if (key == null)
722     throw new NullPointerException();
723     return ((least == null || compare(key, least) >= 0) &&
724     (fence == null || compare(key, fence) <= 0));
725     }
726    
727     /* ---------------- Traversal -------------- */
728    
729     /**
730     * Return a base-level node with key strictly less than given key,
731     * or the base-level header if there is no such node. Also
732     * unlinks indexes to deleted nodes found along the way. Callers
733     * rely on this side-effect of clearing indices to deleted nodes.
734     * @param key the key
735     * @return a predecessor of key
736     */
737     private Node<K,V> findPredecessor(Comparable<K> key) {
738     for (;;) {
739     Index<K,V> q = head;
740     for (;;) {
741     Index<K,V> d, r;
742     if ((r = q.right) != null) {
743     if (r.indexesDeletedNode()) {
744     if (q.unlink(r))
745     continue; // reread r
746     else
747     break; // restart
748     }
749     if (key.compareTo(r.key) > 0) {
750     q = r;
751     continue;
752     }
753     }
754     if ((d = q.down) != null)
755     q = d;
756     else
757     return q.node;
758     }
759     }
760     }
761    
762     /**
763     * Return node holding key or null if no such, clearing out any
764     * deleted nodes seen along the way. Repeatedly traverses at
765     * base-level looking for key starting at predecessor returned
766     * from findPredecessor, processing base-level deletions as
767     * encountered. Some callers rely on this side-effect of clearing
768     * deleted nodes.
769     *
770     * Restarts occur, at traversal step centered on node n, if:
771     *
772     * (1) After reading n's next field, n is no longer assumed
773     * predecessor b's current successor, which means that
774     * we don't have a consistent 3-node snapshot and so cannot
775     * unlink any subsequent deleted nodes encountered.
776     *
777     * (2) n's value field is null, indicating n is deleted, in
778     * which case we help out an ongoing structural deletion
779     * before retrying. Even though there are cases where such
780     * unlinking doesn't require restart, they aren't sorted out
781     * here because doing so would not usually outweigh cost of
782     * restarting.
783     *
784     * (3) n is a marker or n's predecessor's value field is null,
785     * indicating (among other possibilities) that
786     * findPredecessor returned a deleted node. We can't unlink
787     * the node because we don't know its predecessor, so rely
788     * on another call to findPredecessor to notice and return
789     * some earlier predecessor, which it will do. This check is
790     * only strictly needed at beginning of loop, (and the
791     * b.value check isn't strictly needed at all) but is done
792     * each iteration to help avoid contention with other
793     * threads by callers that will fail to be able to change
794     * links, and so will retry anyway.
795     *
796     * The traversal loops in doPut, doRemove, and findNear all
797 dl 1.4 * include the same three kinds of checks. And specialized
798     * versions appear in doRemoveFirst, doRemoveLast, findFirst, and
799 dl 1.1 * findLast. They can't easily share code because each uses the
800     * reads of fields held in locals occurring in the orders they
801     * were performed.
802     *
803     * @param key the key
804     * @return node holding key, or null if no such.
805     */
806     private Node<K,V> findNode(Comparable<K> key) {
807     for (;;) {
808     Node<K,V> b = findPredecessor(key);
809     Node<K,V> n = b.next;
810     for (;;) {
811     if (n == null)
812     return null;
813     Node<K,V> f = n.next;
814     if (n != b.next) // inconsistent read
815     break;
816     Object v = n.value;
817     if (v == null) { // n is deleted
818     n.helpDelete(b, f);
819     break;
820     }
821     if (v == n || b.value == null) // b is deleted
822     break;
823     int c = key.compareTo(n.key);
824     if (c < 0)
825     return null;
826     if (c == 0)
827     return n;
828     b = n;
829     n = f;
830     }
831     }
832     }
833    
834     /**
835     * Specialized variant of findNode to perform map.get. Does a weak
836     * traversal, not bothering to fix any deleted index nodes,
837     * returning early if it happens to see key in index, and passing
838     * over any deleted base nodes, falling back to getUsingFindNode
839     * only if it would otherwise return value from an ongoing
840     * deletion. Also uses "bound" to eliminate need for some
841     * comparisons (see Pugh Cookbook). Also folds uses of null checks
842     * and node-skipping because markers have null keys.
843     * @param okey the key
844     * @return the value, or null if absent
845     */
846     private V doGet(Object okey) {
847     Comparable<K> key = comparable(okey);
848     K bound = null;
849     Index<K,V> q = head;
850     for (;;) {
851     K rk;
852     Index<K,V> d, r;
853     if ((r = q.right) != null &&
854     (rk = r.key) != null && rk != bound) {
855     int c = key.compareTo(rk);
856     if (c > 0) {
857     q = r;
858     continue;
859     }
860     if (c == 0) {
861     Object v = r.node.value;
862     return (v != null)? (V)v : getUsingFindNode(key);
863     }
864     bound = rk;
865     }
866     if ((d = q.down) != null)
867     q = d;
868     else {
869     for (Node<K,V> n = q.node.next; n != null; n = n.next) {
870     K nk = n.key;
871     if (nk != null) {
872     int c = key.compareTo(nk);
873     if (c == 0) {
874     Object v = n.value;
875     return (v != null)? (V)v : getUsingFindNode(key);
876     }
877     if (c < 0)
878     return null;
879     }
880     }
881     return null;
882     }
883     }
884     }
885    
886     /**
887     * Perform map.get via findNode. Used as a backup if doGet
888     * encounters an in-progress deletion.
889     * @param key the key
890     * @return the value, or null if absent
891     */
892     private V getUsingFindNode(Comparable<K> key) {
893 dl 1.4 /*
894     * Loop needed here and elsewhere in case value field goes
895     * null just as it is about to be returned, in which case we
896     * lost a race with a deletion, so must retry.
897     */
898 dl 1.1 for (;;) {
899     Node<K,V> n = findNode(key);
900     if (n == null)
901     return null;
902     Object v = n.value;
903     if (v != null)
904     return (V)v;
905     }
906     }
907    
908     /* ---------------- Insertion -------------- */
909    
910     /**
911     * Main insertion method. Adds element if not present, or
912     * replaces value if present and onlyIfAbsent is false.
913     * @param kkey the key
914     * @param value the value that must be associated with key
915     * @param onlyIfAbsent if should not insert if already present
916     * @return the old value, or null if newly inserted
917     */
918     private V doPut(K kkey, V value, boolean onlyIfAbsent) {
919     Comparable<K> key = comparable(kkey);
920     for (;;) {
921     Node<K,V> b = findPredecessor(key);
922     Node<K,V> n = b.next;
923     for (;;) {
924     if (n != null) {
925     Node<K,V> f = n.next;
926     if (n != b.next) // inconsistent read
927     break;;
928     Object v = n.value;
929     if (v == null) { // n is deleted
930     n.helpDelete(b, f);
931     break;
932     }
933     if (v == n || b.value == null) // b is deleted
934     break;
935     int c = key.compareTo(n.key);
936     if (c > 0) {
937     b = n;
938     n = f;
939     continue;
940     }
941     if (c == 0) {
942     if (onlyIfAbsent || n.casValue(v, value))
943     return (V)v;
944     else
945     break; // restart if lost race to replace value
946     }
947     // else c < 0; fall through
948     }
949    
950     Node<K,V> z = new Node<K,V>(kkey, value, n);
951     if (!b.casNext(n, z))
952     break; // restart if lost race to append to b
953     int level = randomLevel();
954     if (level > 0)
955     insertIndex(z, level);
956     return null;
957     }
958     }
959     }
960    
961     /**
962     * Return a random level for inserting a new node.
963     * Hardwired to k=1, p=0.5, max 31.
964     *
965     * This uses a cheap pseudo-random function that according to
966     * http://home1.gte.net/deleyd/random/random4.html was used in
967     * Turbo Pascal. It seems the fastest usable one here. The low
968     * bits are apparently not very random (the original used only
969     * upper 16 bits) so we traverse from highest bit down (i.e., test
970     * sign), thus hardly ever use lower bits.
971     */
972     private int randomLevel() {
973     int level = 0;
974     int r = randomSeed;
975     randomSeed = r * 134775813 + 1;
976     if (r < 0) {
977     while ((r <<= 1) > 0)
978     ++level;
979     }
980     return level;
981     }
982    
983     /**
984     * Create and add index nodes for given node.
985     * @param z the node
986     * @param level the level of the index
987     */
988     private void insertIndex(Node<K,V> z, int level) {
989     HeadIndex<K,V> h = head;
990     int max = h.level;
991    
992     if (level <= max) {
993     Index<K,V> idx = null;
994     for (int i = 1; i <= level; ++i)
995 dl 1.4 idx = new Index<K,V>(z, idx, null);
996 dl 1.1 addIndex(idx, h, level);
997    
998     } else { // Add a new level
999     /*
1000     * To reduce interference by other threads checking for
1001     * empty levels in tryReduceLevel, new levels are added
1002     * with initialized right pointers. Which in turn requires
1003     * keeping levels in an array to access them while
1004     * creating new head index nodes from the opposite
1005     * direction.
1006     */
1007     level = max + 1;
1008     Index<K,V>[] idxs = (Index<K,V>[])new Index[level+1];
1009     Index<K,V> idx = null;
1010     for (int i = 1; i <= level; ++i)
1011 dl 1.4 idxs[i] = idx = new Index<K,V>(z, idx, null);
1012 dl 1.1
1013     HeadIndex<K,V> oldh;
1014     int k;
1015     for (;;) {
1016     oldh = head;
1017     int oldLevel = oldh.level;
1018     if (level <= oldLevel) { // lost race to add level
1019     k = level;
1020     break;
1021     }
1022     HeadIndex<K,V> newh = oldh;
1023     Node<K,V> oldbase = oldh.node;
1024     for (int j = oldLevel+1; j <= level; ++j)
1025     newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
1026     if (casHead(oldh, newh)) {
1027     k = oldLevel;
1028     break;
1029     }
1030     }
1031     addIndex(idxs[k], oldh, k);
1032     }
1033     }
1034    
1035     /**
1036     * Add given index nodes from given level down to 1.
1037     * @param idx the topmost index node being inserted
1038     * @param h the value of head to use to insert. This must be
1039     * snapshotted by callers to provide correct insertion level
1040     * @param indexLevel the level of the index
1041     */
1042     private void addIndex(Index<K,V> idx, HeadIndex<K,V> h, int indexLevel) {
1043     // Track next level to insert in case of retries
1044     int insertionLevel = indexLevel;
1045     Comparable<K> key = comparable(idx.key);
1046    
1047     // Similar to findPredecessor, but adding index nodes along
1048     // path to key.
1049     for (;;) {
1050     Index<K,V> q = h;
1051     Index<K,V> t = idx;
1052     int j = h.level;
1053     for (;;) {
1054     Index<K,V> r = q.right;
1055     if (r != null) {
1056     // compare before deletion check avoids needing recheck
1057     int c = key.compareTo(r.key);
1058     if (r.indexesDeletedNode()) {
1059     if (q.unlink(r))
1060     continue;
1061     else
1062     break;
1063     }
1064     if (c > 0) {
1065     q = r;
1066     continue;
1067     }
1068     }
1069    
1070     if (j == insertionLevel) {
1071     // Don't insert index if node already deleted
1072     if (t.indexesDeletedNode()) {
1073     findNode(key); // cleans up
1074     return;
1075     }
1076     if (!q.link(r, t))
1077     break; // restart
1078     if (--insertionLevel == 0) {
1079     // need final deletion check before return
1080     if (t.indexesDeletedNode())
1081     findNode(key);
1082     return;
1083     }
1084     }
1085    
1086     if (j > insertionLevel && j <= indexLevel)
1087     t = t.down;
1088     q = q.down;
1089     --j;
1090     }
1091     }
1092     }
1093    
1094     /* ---------------- Deletion -------------- */
1095    
1096     /**
1097     * Main deletion method. Locates node, nulls value, appends a
1098     * deletion marker, unlinks predecessor, removes associated index
1099     * nodes, and possibly reduces head index level.
1100     *
1101     * Index node are cleared out simply by calling findPredecessor.
1102     * which unlinks indexes to deleted nodes found along path to key,
1103     * which will include the indexes to this node. This is done
1104     * unconditionally. We can't check beforehand whether there are
1105     * index nodes because it might be the case that some or all
1106     * indexes hadn't been inserted yet for this node during initial
1107     * search for it, and we'd like to ensure lack of garbage
1108     * retention, so must call to be sure.
1109     *
1110     * @param okey the key
1111     * @param value if non-null, the value that must be
1112     * associated with key
1113     * @return the node, or null if not found
1114     */
1115     private V doRemove(Object okey, Object value) {
1116     Comparable<K> key = comparable(okey);
1117     for (;;) {
1118     Node<K,V> b = findPredecessor(key);
1119     Node<K,V> n = b.next;
1120     for (;;) {
1121     if (n == null)
1122     return null;
1123     Node<K,V> f = n.next;
1124     if (n != b.next) // inconsistent read
1125     break;
1126     Object v = n.value;
1127     if (v == null) { // n is deleted
1128     n.helpDelete(b, f);
1129     break;
1130     }
1131     if (v == n || b.value == null) // b is deleted
1132     break;
1133     int c = key.compareTo(n.key);
1134     if (c < 0)
1135     return null;
1136     if (c > 0) {
1137     b = n;
1138     n = f;
1139     continue;
1140     }
1141     if (value != null && !value.equals(v))
1142     return null;
1143     if (!n.casValue(v, null))
1144     break;
1145     if (!n.appendMarker(f) || !b.casNext(n, f))
1146     findNode(key); // Retry via findNode
1147     else {
1148     findPredecessor(key); // Clean index
1149     if (head.right == null)
1150     tryReduceLevel();
1151     }
1152     return (V)v;
1153     }
1154     }
1155     }
1156    
1157     /**
1158     * Possibly reduce head level if it has no nodes. This method can
1159     * (rarely) make mistakes, in which case levels can disappear even
1160     * though they are about to contain index nodes. This impacts
1161 dl 1.4 * performance, not correctness. To minimize mistakes as well as
1162     * to reduce hysteresis, the level is reduced by one only if the
1163 dl 1.1 * topmost three levels look empty. Also, if the removed level
1164     * looks non-empty after CAS, we try to change it back quick
1165     * before anyone notices our mistake! (This trick works pretty
1166     * well because this method will practically never make mistakes
1167     * unless current thread stalls immediately before first CAS, in
1168     * which case it is very unlikely to stall again immediately
1169     * afterwards, so will recover.)
1170     *
1171     * We put up with all this rather than just let levels grow
1172     * because otherwise, even a small map that has undergone a large
1173     * number of insertions and removals will have a lot of levels,
1174     * slowing down access more than would an occasional unwanted
1175     * reduction.
1176     */
1177     private void tryReduceLevel() {
1178     HeadIndex<K,V> h = head;
1179     HeadIndex<K,V> d;
1180     HeadIndex<K,V> e;
1181     if (h.level > 3 &&
1182     (d = (HeadIndex<K,V>)h.down) != null &&
1183     (e = (HeadIndex<K,V>)d.down) != null &&
1184     e.right == null &&
1185     d.right == null &&
1186     h.right == null &&
1187     casHead(h, d) && // try to set
1188     h.right != null) // recheck
1189     casHead(d, h); // try to backout
1190     }
1191    
1192    
1193 dl 1.4 /* ---------------- Finding and removing first element -------------- */
1194 dl 1.1
1195     /**
1196 dl 1.4 * Specialized variant of findNode to get first valid node
1197 dl 1.1 * @return first node or null if empty
1198     */
1199     Node<K,V> findFirst() {
1200     for (;;) {
1201     Node<K,V> b = head.node;
1202     Node<K,V> n = b.next;
1203     if (n == null)
1204     return null;
1205     if (n.value != null)
1206     return n;
1207     n.helpDelete(b, n.next);
1208     }
1209     }
1210    
1211     /**
1212 dl 1.4 * Remove first entry; return either its key or a snapshot.
1213     * @param keyOnly if true return key, else return SnapshotEntry
1214     * (This is a little ugly, but avoids code duplication.)
1215     * @return null if empty, first key if keyOnly true, else key,value entry
1216 dl 1.1 */
1217 dl 1.4 Object doRemoveFirst(boolean keyOnly) {
1218 dl 1.1 for (;;) {
1219     Node<K,V> b = head.node;
1220     Node<K,V> n = b.next;
1221     if (n == null)
1222     return null;
1223     Node<K,V> f = n.next;
1224     if (n != b.next)
1225     continue;
1226     Object v = n.value;
1227     if (v == null) {
1228     n.helpDelete(b, f);
1229     continue;
1230     }
1231     if (!n.casValue(v, null))
1232     continue;
1233     if (!n.appendMarker(f) || !b.casNext(n, f))
1234     findFirst(); // retry
1235     clearIndexToFirst();
1236 dl 1.4 K key = n.key;
1237     return (keyOnly)? key : new SnapshotEntry<K,V>(key, (V)v);
1238 dl 1.1 }
1239     }
1240    
1241     /**
1242     * Clear out index nodes associated with deleted first entry.
1243 dl 1.4 * Needed by doRemoveFirst
1244 dl 1.1 */
1245     private void clearIndexToFirst() {
1246     for (;;) {
1247     Index<K,V> q = head;
1248     for (;;) {
1249     Index<K,V> r = q.right;
1250     if (r != null && r.indexesDeletedNode() && !q.unlink(r))
1251     break;
1252     if ((q = q.down) == null) {
1253     if (head.right == null)
1254     tryReduceLevel();
1255     return;
1256     }
1257     }
1258     }
1259     }
1260    
1261 dl 1.4 /* ---------------- Finding and removing last element -------------- */
1262    
1263 dl 1.1 /**
1264     * Specialized version of find to get last valid node
1265     * @return last node or null if empty
1266     */
1267     Node<K,V> findLast() {
1268     /*
1269     * findPredecessor can't be used to traverse index level
1270     * because this doesn't use comparisons. So traversals of
1271     * both levels are folded together.
1272     */
1273     Index<K,V> q = head;
1274     for (;;) {
1275     Index<K,V> d, r;
1276     if ((r = q.right) != null) {
1277     if (r.indexesDeletedNode()) {
1278     q.unlink(r);
1279     q = head; // restart
1280     }
1281     else
1282     q = r;
1283     } else if ((d = q.down) != null) {
1284     q = d;
1285     } else {
1286     Node<K,V> b = q.node;
1287     Node<K,V> n = b.next;
1288     for (;;) {
1289     if (n == null)
1290     return (b.isBaseHeader())? null : b;
1291     Node<K,V> f = n.next; // inconsistent read
1292     if (n != b.next)
1293     break;
1294     Object v = n.value;
1295     if (v == null) { // n is deleted
1296     n.helpDelete(b, f);
1297     break;
1298     }
1299     if (v == n || b.value == null) // b is deleted
1300     break;
1301     b = n;
1302     n = f;
1303     }
1304     q = head; // restart
1305     }
1306     }
1307     }
1308    
1309 dl 1.4
1310 dl 1.2 /**
1311 dl 1.4 * Specialized version of doRemove for last entry.
1312     * @param keyOnly if true return key, else return SnapshotEntry
1313     * @return null if empty, last key if keyOnly true, else key,value entry
1314 dl 1.2 */
1315 dl 1.4 Object doRemoveLast(boolean keyOnly) {
1316 dl 1.2 for (;;) {
1317 dl 1.4 Node<K,V> b = findPredecessorOfLast();
1318 dl 1.2 Node<K,V> n = b.next;
1319 dl 1.4 if (n == null) {
1320     if (b.isBaseHeader()) // empty
1321     return null;
1322     else
1323     continue; // all b's successors are deleted; retry
1324     }
1325 dl 1.2 for (;;) {
1326     Node<K,V> f = n.next;
1327     if (n != b.next) // inconsistent read
1328     break;
1329     Object v = n.value;
1330     if (v == null) { // n is deleted
1331     n.helpDelete(b, f);
1332     break;
1333     }
1334     if (v == n || b.value == null) // b is deleted
1335     break;
1336 dl 1.4 if (f != null) {
1337 dl 1.2 b = n;
1338     n = f;
1339     continue;
1340     }
1341     if (!n.casValue(v, null))
1342 dl 1.4 break;
1343     K key = n.key;
1344     Comparable<K> ck = comparable(key);
1345 dl 1.2 if (!n.appendMarker(f) || !b.casNext(n, f))
1346 dl 1.4 findNode(ck); // Retry via findNode
1347 dl 1.2 else {
1348 dl 1.4 findPredecessor(ck); // Clean index
1349 dl 1.2 if (head.right == null)
1350     tryReduceLevel();
1351     }
1352 dl 1.4 return (keyOnly)? key : new SnapshotEntry<K,V>(key, (V)v);
1353 dl 1.2 }
1354     }
1355     }
1356    
1357     /**
1358 dl 1.4 * Specialized variant of findPredecessor to get predecessor of
1359     * last valid node. Needed by doRemoveLast. It is possible that
1360     * all successors of returned node will have been deleted upon
1361     * return, in which case this method can be retried.
1362     * @return likely predecessor of last node.
1363 dl 1.2 */
1364 dl 1.4 private Node<K,V> findPredecessorOfLast() {
1365 dl 1.2 for (;;) {
1366 dl 1.4 Index<K,V> q = head;
1367     for (;;) {
1368     Index<K,V> d, r;
1369     if ((r = q.right) != null) {
1370     if (r.indexesDeletedNode()) {
1371     q.unlink(r);
1372     break; // must restart
1373     }
1374     // proceed as far across as possible without overshooting
1375     if (r.node.next != null) {
1376     q = r;
1377     continue;
1378     }
1379     }
1380     if ((d = q.down) != null)
1381     q = d;
1382     else
1383     return q.node;
1384     }
1385 dl 1.2 }
1386     }
1387    
1388 dl 1.1 /* ---------------- Relational operations -------------- */
1389    
1390     // Control values OR'ed as arguments to findNear
1391    
1392     private static final int EQ = 1;
1393     private static final int LT = 2;
1394     private static final int GT = 0;
1395    
1396     /**
1397     * Utility for ceiling, floor, lower, higher methods.
1398     * @param kkey the key
1399     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1400     * @return nearest node fitting relation, or null if no such
1401     */
1402     Node<K,V> findNear(K kkey, int rel) {
1403     Comparable<K> key = comparable(kkey);
1404     for (;;) {
1405     Node<K,V> b = findPredecessor(key);
1406     Node<K,V> n = b.next;
1407     for (;;) {
1408     if (n == null)
1409     return ((rel & LT) == 0 || b.isBaseHeader())? null : b;
1410     Node<K,V> f = n.next;
1411     if (n != b.next) // inconsistent read
1412     break;
1413     Object v = n.value;
1414     if (v == null) { // n is deleted
1415     n.helpDelete(b, f);
1416     break;
1417     }
1418     if (v == n || b.value == null) // b is deleted
1419     break;
1420     int c = key.compareTo(n.key);
1421     if ((c == 0 && (rel & EQ) != 0) ||
1422     (c < 0 && (rel & LT) == 0))
1423     return n;
1424     if ( c <= 0 && (rel & LT) != 0)
1425     return (b.isBaseHeader())? null : b;
1426     b = n;
1427     n = f;
1428     }
1429     }
1430     }
1431    
1432     /**
1433     * Return SnapshotEntry for results of findNear.
1434     * @param kkey the key
1435     * @param rel the relation -- OR'ed combination of EQ, LT, GT
1436     * @return Entry fitting relation, or null if no such
1437     */
1438     SnapshotEntry<K,V> getNear(K kkey, int rel) {
1439     for (;;) {
1440     Node<K,V> n = findNear(kkey, rel);
1441     if (n == null)
1442     return null;
1443     SnapshotEntry<K,V> e = n.createSnapshot();
1444     if (e != null)
1445     return e;
1446     }
1447     }
1448    
1449     /* ---------------- Constructors -------------- */
1450    
1451     /**
1452     * Constructs a new empty map, sorted according to the keys' natural
1453     * order.
1454     */
1455     public ConcurrentSkipListMap() {
1456     this.comparator = null;
1457     initialize();
1458     }
1459    
1460     /**
1461     * Constructs a new empty map, sorted according to the given comparator.
1462     *
1463     * @param c the comparator that will be used to sort this map. A
1464     * <tt>null</tt> value indicates that the keys' <i>natural
1465     * ordering</i> should be used.
1466     */
1467     public ConcurrentSkipListMap(Comparator<? super K> c) {
1468     this.comparator = c;
1469     initialize();
1470     }
1471    
1472     /**
1473     * Constructs a new map containing the same mappings as the given map,
1474     * sorted according to the keys' <i>natural order</i>.
1475     *
1476     * @param m the map whose mappings are to be placed in this map.
1477     * @throws ClassCastException if the keys in m are not Comparable, or
1478     * are not mutually comparable.
1479 dl 1.3 * @throws NullPointerException if the specified map is <tt>null</tt>.
1480 dl 1.1 */
1481     public ConcurrentSkipListMap(Map<? extends K, ? extends V> m) {
1482     this.comparator = null;
1483     initialize();
1484     putAll(m);
1485     }
1486    
1487     /**
1488     * Constructs a new map containing the same mappings as the given
1489     * <tt>SortedMap</tt>, sorted according to the same ordering.
1490 dl 1.4 * @param m the sorted map whose mappings are to be placed in this
1491     * map, and whose comparator is to be used to sort this map.
1492     * @throws NullPointerException if the specified sorted map is
1493     * <tt>null</tt>.
1494 dl 1.1 */
1495     public ConcurrentSkipListMap(SortedMap<K, ? extends V> m) {
1496     this.comparator = m.comparator();
1497     initialize();
1498     buildFromSorted(m);
1499     }
1500    
1501     /**
1502     * Returns a shallow copy of this <tt>Map</tt> instance. (The keys and
1503     * values themselves are not cloned.)
1504     *
1505     * @return a shallow copy of this Map.
1506     */
1507     public Object clone() {
1508     ConcurrentSkipListMap<K,V> clone = null;
1509     try {
1510     clone = (ConcurrentSkipListMap<K,V>) super.clone();
1511     } catch (CloneNotSupportedException e) {
1512     throw new InternalError();
1513     }
1514    
1515     clone.initialize();
1516     clone.buildFromSorted(this);
1517     return clone;
1518     }
1519    
1520     /**
1521     * Streamlined bulk insertion to initialize from elements of
1522     * given sorted map. Call only from constructor or clone
1523     * method.
1524     */
1525     private void buildFromSorted(SortedMap<K, ? extends V> map) {
1526     if (map == null)
1527     throw new NullPointerException();
1528    
1529     HeadIndex<K,V> h = head;
1530     Node<K,V> basepred = h.node;
1531    
1532     // Track the current rightmost node at each level. Uses an
1533     // ArrayList to avoid committing to initial or maximum level.
1534     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1535    
1536     // initialize
1537     for (int i = 0; i <= h.level; ++i)
1538     preds.add(null);
1539     Index<K,V> q = h;
1540     for (int i = h.level; i > 0; --i) {
1541     preds.set(i, q);
1542     q = q.down;
1543     }
1544    
1545     Iterator<? extends Map.Entry<? extends K, ? extends V>> it =
1546     map.entrySet().iterator();
1547     while (it.hasNext()) {
1548     Map.Entry<? extends K, ? extends V> e = it.next();
1549     int j = randomLevel();
1550     if (j > h.level) j = h.level + 1;
1551     K k = e.getKey();
1552     V v = e.getValue();
1553     if (k == null || v == null)
1554     throw new NullPointerException();
1555     Node<K,V> z = new Node<K,V>(k, v, null);
1556     basepred.next = z;
1557     basepred = z;
1558     if (j > 0) {
1559     Index<K,V> idx = null;
1560     for (int i = 1; i <= j; ++i) {
1561 dl 1.4 idx = new Index<K,V>(z, idx, null);
1562 dl 1.1 if (i > h.level)
1563     h = new HeadIndex<K,V>(h.node, h, idx, i);
1564    
1565     if (i < preds.size()) {
1566     preds.get(i).right = idx;
1567     preds.set(i, idx);
1568     } else
1569     preds.add(idx);
1570     }
1571     }
1572     }
1573     head = h;
1574     }
1575    
1576     /* ---------------- Serialization -------------- */
1577    
1578     /**
1579     * Save the state of the <tt>Map</tt> instance to a stream.
1580     *
1581     * @serialData The key (Object) and value (Object) for each
1582     * key-value mapping represented by the Map, followed by
1583     * <tt>null</tt>. The key-value mappings are emitted in key-order
1584     * (as determined by the Comparator, or by the keys' natural
1585     * ordering if no Comparator).
1586     */
1587     private void writeObject(java.io.ObjectOutputStream s)
1588     throws java.io.IOException {
1589     // Write out the Comparator and any hidden stuff
1590     s.defaultWriteObject();
1591    
1592     // Write out keys and values (alternating)
1593     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1594     V v = n.getValidValue();
1595     if (v != null) {
1596     s.writeObject(n.key);
1597     s.writeObject(v);
1598     }
1599     }
1600     s.writeObject(null);
1601     }
1602    
1603     /**
1604     * Reconstitute the <tt>Map</tt> instance from a stream.
1605     */
1606     private void readObject(final java.io.ObjectInputStream s)
1607     throws java.io.IOException, ClassNotFoundException {
1608     // Read in the Comparator and any hidden stuff
1609     s.defaultReadObject();
1610     // Reset transients
1611     initialize();
1612    
1613     /*
1614 dl 1.4 * This is nearly identical to buildFromSorted, but is
1615 dl 1.1 * distinct because readObject calls can't be nicely adapted
1616     * as the kind of iterator needed by buildFromSorted. (They
1617     * can be, but doing so requires type cheats and/or creation
1618     * of adaptor classes.) It is simpler to just adapt the code.
1619     */
1620    
1621     HeadIndex<K,V> h = head;
1622     Node<K,V> basepred = h.node;
1623     ArrayList<Index<K,V>> preds = new ArrayList<Index<K,V>>();
1624     for (int i = 0; i <= h.level; ++i)
1625     preds.add(null);
1626     Index<K,V> q = h;
1627     for (int i = h.level; i > 0; --i) {
1628     preds.set(i, q);
1629     q = q.down;
1630     }
1631    
1632     for (;;) {
1633     Object k = s.readObject();
1634     if (k == null)
1635     break;
1636     Object v = s.readObject();
1637     if (v == null)
1638     throw new NullPointerException();
1639     K key = (K) k;
1640     V val = (V) v;
1641     int j = randomLevel();
1642     if (j > h.level) j = h.level + 1;
1643     Node<K,V> z = new Node<K,V>(key, val, null);
1644     basepred.next = z;
1645     basepred = z;
1646     if (j > 0) {
1647     Index<K,V> idx = null;
1648     for (int i = 1; i <= j; ++i) {
1649 dl 1.4 idx = new Index<K,V>(z, idx, null);
1650 dl 1.1 if (i > h.level)
1651     h = new HeadIndex<K,V>(h.node, h, idx, i);
1652    
1653     if (i < preds.size()) {
1654     preds.get(i).right = idx;
1655     preds.set(i, idx);
1656     } else
1657     preds.add(idx);
1658     }
1659     }
1660     }
1661     head = h;
1662     }
1663    
1664     /* ------ Map API methods ------ */
1665    
1666     /**
1667     * Returns <tt>true</tt> if this map contains a mapping for the specified
1668     * key.
1669     * @param key key whose presence in this map is to be tested.
1670     * @return <tt>true</tt> if this map contains a mapping for the
1671     * specified key.
1672     * @throws ClassCastException if the key cannot be compared with the keys
1673     * currently in the map.
1674     * @throws NullPointerException if the key is <tt>null</tt>.
1675     */
1676     public boolean containsKey(Object key) {
1677     return doGet(key) != null;
1678     }
1679    
1680     /**
1681     * Returns the value to which this map maps the specified key. Returns
1682     * <tt>null</tt> if the map contains no mapping for this key.
1683     *
1684     * @param key key whose associated value is to be returned.
1685     * @return the value to which this map maps the specified key, or
1686     * <tt>null</tt> if the map contains no mapping for the key.
1687     * @throws ClassCastException if the key cannot be compared with the keys
1688     * currently in the map.
1689     * @throws NullPointerException if the key is <tt>null</tt>.
1690     */
1691     public V get(Object key) {
1692     return doGet(key);
1693     }
1694    
1695     /**
1696     * Associates the specified value with the specified key in this map.
1697     * If the map previously contained a mapping for this key, the old
1698     * value is replaced.
1699     *
1700     * @param key key with which the specified value is to be associated.
1701     * @param value value to be associated with the specified key.
1702     *
1703     * @return previous value associated with specified key, or <tt>null</tt>
1704     * if there was no mapping for key.
1705     * @throws ClassCastException if the key cannot be compared with the keys
1706     * currently in the map.
1707     * @throws NullPointerException if the key or value are <tt>null</tt>.
1708     */
1709     public V put(K key, V value) {
1710     if (value == null)
1711     throw new NullPointerException();
1712     return doPut(key, value, false);
1713     }
1714    
1715     /**
1716     * Removes the mapping for this key from this Map if present.
1717     *
1718     * @param key key for which mapping should be removed
1719     * @return previous value associated with specified key, or <tt>null</tt>
1720     * if there was no mapping for key.
1721     *
1722     * @throws ClassCastException if the key cannot be compared with the keys
1723     * currently in the map.
1724     * @throws NullPointerException if the key is <tt>null</tt>.
1725     */
1726     public V remove(Object key) {
1727     return doRemove(key, null);
1728     }
1729    
1730     /**
1731     * Returns <tt>true</tt> if this map maps one or more keys to the
1732     * specified value. This operation requires time linear in the
1733     * Map size.
1734     *
1735     * @param value value whose presence in this Map is to be tested.
1736     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
1737     * <tt>false</tt> otherwise.
1738     * @throws NullPointerException if the value is <tt>null</tt>.
1739     */
1740     public boolean containsValue(Object value) {
1741     if (value == null)
1742     throw new NullPointerException();
1743     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1744     V v = n.getValidValue();
1745     if (v != null && value.equals(v))
1746     return true;
1747     }
1748     return false;
1749     }
1750    
1751     /**
1752     * Returns the number of elements in this map. If this map
1753     * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
1754     * returns <tt>Integer.MAX_VALUE</tt>.
1755     *
1756     * <p>Beware that, unlike in most collections, this method is
1757     * <em>NOT</em> a constant-time operation. Because of the
1758     * asynchronous nature of these maps, determining the current
1759     * number of elements requires traversing them all to count them.
1760     * Additionally, it is possible for the size to change during
1761     * execution of this method, in which case the returned result
1762     * will be inaccurate. Thus, this method is typically not very
1763     * useful in concurrent applications.
1764     *
1765     * @return the number of elements in this map.
1766     */
1767     public int size() {
1768     long count = 0;
1769     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
1770     if (n.getValidValue() != null)
1771     ++count;
1772     }
1773     return (count >= Integer.MAX_VALUE)? Integer.MAX_VALUE : (int)count;
1774     }
1775    
1776     /**
1777     * Returns <tt>true</tt> if this map contains no key-value mappings.
1778     * @return <tt>true</tt> if this map contains no key-value mappings.
1779     */
1780     public boolean isEmpty() {
1781     return findFirst() == null;
1782     }
1783    
1784     /**
1785     * Removes all mappings from this map.
1786     */
1787     public void clear() {
1788     initialize();
1789     }
1790    
1791     /**
1792     * Returns a set view of the keys contained in this map. The set is
1793     * backed by the map, so changes to the map are reflected in the set, and
1794     * vice-versa. The set supports element removal, which removes the
1795     * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
1796     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1797     * <tt>clear</tt> operations. It does not support the <tt>add</tt> or
1798     * <tt>addAll</tt> operations.
1799     * The view's <tt>iterator</tt> is a "weakly consistent" iterator that
1800     * will never throw {@link java.util.ConcurrentModificationException},
1801     * and guarantees to traverse elements as they existed upon
1802     * construction of the iterator, and may (but is not guaranteed to)
1803     * reflect any modifications subsequent to construction.
1804     *
1805     * @return a set view of the keys contained in this map.
1806     */
1807     public Set<K> keySet() {
1808     /*
1809     * Note: Lazy intialization works here and for other views
1810     * because view classes are stateless/immutable so it doesn't
1811     * matter wrt correctness if more than one is created (which
1812     * will only rarely happen). Even so, the following idiom
1813     * conservatively ensures that the method returns the one it
1814     * created if it does so, not one created by another racing
1815     * thread.
1816     */
1817     KeySet ks = keySet;
1818     return (ks != null) ? ks : (keySet = new KeySet());
1819     }
1820    
1821     /**
1822     * Returns a collection view of the values contained in this map.
1823     * The collection is backed by the map, so changes to the map are
1824     * reflected in the collection, and vice-versa. The collection
1825     * supports element removal, which removes the corresponding
1826     * mapping from this map, via the <tt>Iterator.remove</tt>,
1827     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1828     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
1829     * support the <tt>add</tt> or <tt>addAll</tt> operations. The
1830     * view's <tt>iterator</tt> is a "weakly consistent" iterator that
1831     * will never throw {@link
1832     * java.util.ConcurrentModificationException}, and guarantees to
1833     * traverse elements as they existed upon construction of the
1834     * iterator, and may (but is not guaranteed to) reflect any
1835     * modifications subsequent to construction.
1836     *
1837     * @return a collection view of the values contained in this map.
1838     */
1839     public Collection<V> values() {
1840     Values vs = values;
1841     return (vs != null) ? vs : (values = new Values());
1842     }
1843    
1844     /**
1845     * Returns a collection view of the mappings contained in this
1846     * map. Each element in the returned collection is a
1847     * <tt>Map.Entry</tt>. The collection is backed by the map, so
1848     * changes to the map are reflected in the collection, and
1849     * vice-versa. The collection supports element removal, which
1850     * removes the corresponding mapping from the map, via the
1851     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
1852     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
1853     * operations. It does not support the <tt>add</tt> or
1854     * <tt>addAll</tt> operations. The view's <tt>iterator</tt> is a
1855     * "weakly consistent" iterator that will never throw {@link
1856     * java.util.ConcurrentModificationException}, and guarantees to
1857     * traverse elements as they existed upon construction of the
1858     * iterator, and may (but is not guaranteed to) reflect any
1859     * modifications subsequent to construction. The
1860     * <tt>Map.Entry</tt> elements returned by
1861     * <tt>iterator.next()</tt> do <em>not</em> support the
1862     * <tt>setValue</tt> operation.
1863     *
1864     * @return a collection view of the mappings contained in this map.
1865     */
1866     public Set<Map.Entry<K,V>> entrySet() {
1867     EntrySet es = entrySet;
1868     return (es != null) ? es : (entrySet = new EntrySet());
1869     }
1870    
1871 dl 1.4 /* ---------------- AbstractMap Overrides -------------- */
1872    
1873     /**
1874     * Compares the specified object with this map for equality.
1875     * Returns <tt>true</tt> if the given object is also a map and the
1876     * two maps represent the same mappings. More formally, two maps
1877     * <tt>t1</tt> and <tt>t2</tt> represent the same mappings if
1878     * <tt>t1.keySet().equals(t2.keySet())</tt> and for every key
1879     * <tt>k</tt> in <tt>t1.keySet()</tt>, <tt> (t1.get(k)==null ?
1880     * t2.get(k)==null : t1.get(k).equals(t2.get(k))) </tt>. This
1881     * operation may return misleading results if either map is
1882     * concurrently modified during execution of this method.
1883     *
1884     * @param o object to be compared for equality with this map.
1885     * @return <tt>true</tt> if the specified object is equal to this map.
1886     */
1887     public boolean equals(Object o) {
1888     if (o == this)
1889     return true;
1890     if (!(o instanceof Map))
1891     return false;
1892     Map<K,V> t = (Map<K,V>) o;
1893     try {
1894     return (containsAllMappings(this, t) &&
1895     containsAllMappings(t, this));
1896     } catch(ClassCastException unused) {
1897     return false;
1898     } catch(NullPointerException unused) {
1899     return false;
1900     }
1901     }
1902    
1903     /**
1904     * Helper for equals -- check for containment, avoiding nulls.
1905     */
1906     static <K,V> boolean containsAllMappings(Map<K,V> a, Map<K,V> b) {
1907     Iterator<Entry<K,V>> it = b.entrySet().iterator();
1908     while (it.hasNext()) {
1909     Entry<K,V> e = it.next();
1910     Object k = e.getKey();
1911     Object v = e.getValue();
1912     if (k == null || v == null || !v.equals(a.get(k)))
1913     return false;
1914     }
1915     return true;
1916     }
1917    
1918 dl 1.1 /* ------ ConcurrentMap API methods ------ */
1919    
1920     /**
1921     * If the specified key is not already associated
1922     * with a value, associate it with the given value.
1923     * This is equivalent to
1924     * <pre>
1925     * if (!map.containsKey(key))
1926     * return map.put(key, value);
1927     * else
1928     * return map.get(key);
1929     * </pre>
1930 dl 1.4 * except that the action is performed atomically.
1931 dl 1.1 * @param key key with which the specified value is to be associated.
1932     * @param value value to be associated with the specified key.
1933     * @return previous value associated with specified key, or <tt>null</tt>
1934     * if there was no mapping for key.
1935     *
1936     * @throws ClassCastException if the key cannot be compared with the keys
1937     * currently in the map.
1938     * @throws NullPointerException if the key or value are <tt>null</tt>.
1939     */
1940     public V putIfAbsent(K key, V value) {
1941     if (value == null)
1942     throw new NullPointerException();
1943     return doPut(key, value, true);
1944     }
1945    
1946     /**
1947     * Remove entry for key only if currently mapped to given value.
1948     * Acts as
1949     * <pre>
1950     * if ((map.containsKey(key) && map.get(key).equals(value)) {
1951     * map.remove(key);
1952     * return true;
1953     * } else return false;
1954     * </pre>
1955     * except that the action is performed atomically.
1956     * @param key key with which the specified value is associated.
1957     * @param value value associated with the specified key.
1958     * @return true if the value was removed, false otherwise
1959     * @throws ClassCastException if the key cannot be compared with the keys
1960     * currently in the map.
1961     * @throws NullPointerException if the key or value are <tt>null</tt>.
1962     */
1963     public boolean remove(Object key, Object value) {
1964     if (value == null)
1965     throw new NullPointerException();
1966     return doRemove(key, value) != null;
1967     }
1968    
1969     /**
1970     * Replace entry for key only if currently mapped to given value.
1971     * Acts as
1972     * <pre>
1973     * if ((map.containsKey(key) && map.get(key).equals(oldValue)) {
1974     * map.put(key, newValue);
1975     * return true;
1976     * } else return false;
1977     * </pre>
1978     * except that the action is performed atomically.
1979     * @param key key with which the specified value is associated.
1980     * @param oldValue value expected to be associated with the specified key.
1981     * @param newValue value to be associated with the specified key.
1982     * @return true if the value was replaced
1983     * @throws ClassCastException if the key cannot be compared with the keys
1984     * currently in the map.
1985     * @throws NullPointerException if key, oldValue or newValue are
1986     * <tt>null</tt>.
1987     */
1988     public boolean replace(K key, V oldValue, V newValue) {
1989     if (oldValue == null || newValue == null)
1990     throw new NullPointerException();
1991     Comparable<K> k = comparable(key);
1992     for (;;) {
1993     Node<K,V> n = findNode(k);
1994     if (n == null)
1995     return false;
1996     Object v = n.value;
1997     if (v != null) {
1998     if (!oldValue.equals(v))
1999     return false;
2000     if (n.casValue(v, newValue))
2001     return true;
2002     }
2003     }
2004     }
2005    
2006     /**
2007     * Replace entry for key only if currently mapped to some value.
2008     * Acts as
2009     * <pre>
2010     * if ((map.containsKey(key)) {
2011     * return map.put(key, value);
2012     * } else return null;
2013     * </pre>
2014     * except that the action is performed atomically.
2015     * @param key key with which the specified value is associated.
2016     * @param value value to be associated with the specified key.
2017     * @return previous value associated with specified key, or <tt>null</tt>
2018     * if there was no mapping for key.
2019     * @throws ClassCastException if the key cannot be compared with the keys
2020     * currently in the map.
2021     * @throws NullPointerException if the key or value are <tt>null</tt>.
2022     */
2023     public V replace(K key, V value) {
2024     if (value == null)
2025     throw new NullPointerException();
2026     Comparable<K> k = comparable(key);
2027     for (;;) {
2028     Node<K,V> n = findNode(k);
2029     if (n == null)
2030     return null;
2031     Object v = n.value;
2032     if (v != null && n.casValue(v, value))
2033     return (V)v;
2034     }
2035     }
2036    
2037     /* ------ SortedMap API methods ------ */
2038    
2039     /**
2040     * Returns the comparator used to order this map, or <tt>null</tt>
2041     * if this map uses its keys' natural order.
2042     *
2043     * @return the comparator associated with this map, or
2044     * <tt>null</tt> if it uses its keys' natural sort method.
2045     */
2046     public Comparator<? super K> comparator() {
2047     return comparator;
2048     }
2049    
2050     /**
2051     * Returns the first (lowest) key currently in this map.
2052     *
2053     * @return the first (lowest) key currently in this map.
2054     * @throws NoSuchElementException Map is empty.
2055     */
2056     public K firstKey() {
2057     Node<K,V> n = findFirst();
2058     if (n == null)
2059     throw new NoSuchElementException();
2060     return n.key;
2061     }
2062    
2063     /**
2064     * Returns the last (highest) key currently in this map.
2065     *
2066     * @return the last (highest) key currently in this map.
2067     * @throws NoSuchElementException Map is empty.
2068     */
2069     public K lastKey() {
2070     Node<K,V> n = findLast();
2071     if (n == null)
2072     throw new NoSuchElementException();
2073     return n.key;
2074     }
2075    
2076     /**
2077     * Returns a view of the portion of this map whose keys range from
2078     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive. (If
2079     * <tt>fromKey</tt> and <tt>toKey</tt> are equal, the returned sorted map
2080     * is empty.) The returned sorted map is backed by this map, so changes
2081     * in the returned sorted map are reflected in this map, and vice-versa.
2082    
2083     * @param fromKey low endpoint (inclusive) of the subMap.
2084     * @param toKey high endpoint (exclusive) of the subMap.
2085     *
2086     * @return a view of the portion of this map whose keys range from
2087     * <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>, exclusive.
2088     *
2089     * @throws ClassCastException if <tt>fromKey</tt> and <tt>toKey</tt>
2090     * cannot be compared to one another using this map's comparator
2091     * (or, if the map has no comparator, using natural ordering).
2092     * @throws IllegalArgumentException if <tt>fromKey</tt> is greater than
2093     * <tt>toKey</tt>.
2094     * @throws NullPointerException if <tt>fromKey</tt> or <tt>toKey</tt> is
2095     * <tt>null</tt>.
2096     */
2097 dl 1.2 public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
2098 dl 1.1 if (fromKey == null || toKey == null)
2099     throw new NullPointerException();
2100     return new ConcurrentSkipListSubMap(this, fromKey, toKey);
2101     }
2102    
2103     /**
2104 dl 1.4 * Returns a view of the portion of this map whose keys are
2105     * strictly less than <tt>toKey</tt>. The returned sorted map is
2106     * backed by this map, so changes in the returned sorted map are
2107     * reflected in this map, and vice-versa.
2108 dl 1.1 * @param toKey high endpoint (exclusive) of the headMap.
2109 dl 1.4 * @return a view of the portion of this map whose keys are
2110     * strictly less than <tt>toKey</tt>.
2111 dl 1.1 *
2112     * @throws ClassCastException if <tt>toKey</tt> is not compatible
2113 dl 1.4 * with this map's comparator (or, if the map has no comparator,
2114     * if <tt>toKey</tt> does not implement <tt>Comparable</tt>).
2115 dl 1.1 * @throws NullPointerException if <tt>toKey</tt> is <tt>null</tt>.
2116     */
2117 dl 1.2 public ConcurrentNavigableMap<K,V> headMap(K toKey) {
2118 dl 1.1 if (toKey == null)
2119     throw new NullPointerException();
2120     return new ConcurrentSkipListSubMap(this, null, toKey);
2121     }
2122    
2123     /**
2124     * Returns a view of the portion of this map whose keys are
2125     * greater than or equal to <tt>fromKey</tt>. The returned sorted
2126     * map is backed by this map, so changes in the returned sorted
2127     * map are reflected in this map, and vice-versa.
2128     * @param fromKey low endpoint (inclusive) of the tailMap.
2129 dl 1.4 * @return a view of the portion of this map whose keys are
2130     * greater than or equal to <tt>fromKey</tt>.
2131     * @throws ClassCastException if <tt>fromKey</tt> is not
2132     * compatible with this map's comparator (or, if the map has no
2133     * comparator, if <tt>fromKey</tt> does not implement
2134     * <tt>Comparable</tt>).
2135 dl 1.1 * @throws NullPointerException if <tt>fromKey</tt> is <tt>null</tt>.
2136     */
2137 dl 1.2 public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
2138 dl 1.1 if (fromKey == null)
2139     throw new NullPointerException();
2140     return new ConcurrentSkipListSubMap(this, fromKey, null);
2141     }
2142    
2143     /* ---------------- Relational operations -------------- */
2144    
2145     /**
2146     * Returns a key-value mapping associated with the least key
2147 dl 1.4 * greater than or equal to the given key, or <tt>null</tt> if
2148     * there is no such entry. The returned entry does <em>not</em>
2149     * support the <tt>Entry.setValue</tt> method.
2150 dl 1.1 *
2151     * @param key the key.
2152 dl 1.4 * @return an Entry associated with ceiling of given key, or
2153     * <tt>null</tt> if there is no such Entry.
2154     * @throws ClassCastException if key cannot be compared with the
2155     * keys currently in the map.
2156 dl 1.1 * @throws NullPointerException if key is <tt>null</tt>.
2157     */
2158     public Map.Entry<K,V> ceilingEntry(K key) {
2159     return getNear(key, GT|EQ);
2160     }
2161    
2162     /**
2163     * Returns a key-value mapping associated with the greatest
2164 dl 1.3 * key strictly less than the given key, or <tt>null</tt> if there is no
2165 dl 1.1 * such entry. The returned entry does <em>not</em> support
2166     * the <tt>Entry.setValue</tt> method.
2167     *
2168     * @param key the key.
2169     * @return an Entry with greatest key less than the given
2170 dl 1.3 * key, or <tt>null</tt> if there is no such Entry.
2171 dl 1.1 * @throws ClassCastException if key cannot be compared with the keys
2172     * currently in the map.
2173     * @throws NullPointerException if key is <tt>null</tt>.
2174     */
2175     public Map.Entry<K,V> lowerEntry(K key) {
2176     return getNear(key, LT);
2177     }
2178    
2179     /**
2180 dl 1.4 * Returns a key-value mapping associated with the greatest key
2181     * less than or equal to the given key, or <tt>null</tt> if there
2182     * is no such entry. The returned entry does <em>not</em> support
2183 dl 1.1 * the <tt>Entry.setValue</tt> method.
2184     *
2185     * @param key the key.
2186 dl 1.3 * @return an Entry associated with floor of given key, or <tt>null</tt>
2187 dl 1.1 * if there is no such Entry.
2188     * @throws ClassCastException if key cannot be compared with the keys
2189     * currently in the map.
2190     * @throws NullPointerException if key is <tt>null</tt>.
2191     */
2192     public Map.Entry<K,V> floorEntry(K key) {
2193     return getNear(key, LT|EQ);
2194     }
2195    
2196     /**
2197 dl 1.4 * Returns a key-value mapping associated with the least key
2198     * strictly greater than the given key, or <tt>null</tt> if there
2199     * is no such entry. The returned entry does <em>not</em> support
2200 dl 1.1 * the <tt>Entry.setValue</tt> method.
2201     *
2202     * @param key the key.
2203     * @return an Entry with least key greater than the given key, or
2204 dl 1.3 * <tt>null</tt> if there is no such Entry.
2205 dl 1.1 * @throws ClassCastException if key cannot be compared with the keys
2206     * currently in the map.
2207     * @throws NullPointerException if key is <tt>null</tt>.
2208     */
2209     public Map.Entry<K,V> higherEntry(K key) {
2210     return getNear(key, GT);
2211     }
2212    
2213     /**
2214     * Returns a key-value mapping associated with the least
2215 dl 1.3 * key in this map, or <tt>null</tt> if the map is empty.
2216 dl 1.1 * The returned entry does <em>not</em> support
2217     * the <tt>Entry.setValue</tt> method.
2218     *
2219 dl 1.3 * @return an Entry with least key, or <tt>null</tt>
2220 dl 1.1 * if the map is empty.
2221     */
2222     public Map.Entry<K,V> firstEntry() {
2223     for (;;) {
2224     Node<K,V> n = findFirst();
2225     if (n == null)
2226     return null;
2227     SnapshotEntry<K,V> e = n.createSnapshot();
2228     if (e != null)
2229     return e;
2230     }
2231     }
2232    
2233     /**
2234     * Returns a key-value mapping associated with the greatest
2235 dl 1.3 * key in this map, or <tt>null</tt> if the map is empty.
2236 dl 1.1 * The returned entry does <em>not</em> support
2237     * the <tt>Entry.setValue</tt> method.
2238     *
2239 dl 1.3 * @return an Entry with greatest key, or <tt>null</tt>
2240 dl 1.1 * if the map is empty.
2241     */
2242     public Map.Entry<K,V> lastEntry() {
2243     for (;;) {
2244     Node<K,V> n = findLast();
2245     if (n == null)
2246     return null;
2247     SnapshotEntry<K,V> e = n.createSnapshot();
2248     if (e != null)
2249     return e;
2250     }
2251     }
2252    
2253     /**
2254     * Removes and returns a key-value mapping associated with
2255 dl 1.3 * the least key in this map, or <tt>null</tt> if the map is empty.
2256 dl 1.1 * The returned entry does <em>not</em> support
2257     * the <tt>Entry.setValue</tt> method.
2258     *
2259 dl 1.3 * @return the removed first entry of this map, or <tt>null</tt>
2260 dl 1.1 * if the map is empty.
2261     */
2262 dl 1.2 public Map.Entry<K,V> pollFirstEntry() {
2263 dl 1.4 return (SnapshotEntry<K,V>)doRemoveFirst(false);
2264 dl 1.1 }
2265    
2266 dl 1.2 /**
2267     * Removes and returns a key-value mapping associated with
2268 dl 1.3 * the greatest key in this map, or <tt>null</tt> if the map is empty.
2269 dl 1.2 * The returned entry does <em>not</em> support
2270     * the <tt>Entry.setValue</tt> method.
2271     *
2272 dl 1.3 * @return the removed last entry of this map, or <tt>null</tt>
2273 dl 1.2 * if the map is empty.
2274     */
2275     public Map.Entry<K,V> pollLastEntry() {
2276 dl 1.4 return (SnapshotEntry<K,V>)doRemoveLast(false);
2277 dl 1.2 }
2278    
2279 dl 1.1 /* ---------------- Iterators -------------- */
2280    
2281     /**
2282     * Base of iterator classes.
2283     * (Six kinds: {key, value, entry} X {map, submap})
2284     */
2285     abstract class ConcurrentSkipListMapIterator {
2286     /** the last node returned by next() */
2287     Node<K,V> last;
2288     /** the next node to return from next(); */
2289     Node<K,V> next;
2290     /** Cache of next value field to maintain weak consistency */
2291     Object nextValue;
2292    
2293     /** Create normal iterator for entire range */
2294     ConcurrentSkipListMapIterator() {
2295     for (;;) {
2296     next = findFirst();
2297     if (next == null)
2298     break;
2299     nextValue = next.value;
2300     if (nextValue != null && nextValue != next)
2301     break;
2302     }
2303     }
2304    
2305     /**
2306     * Create a submap iterator starting at given least key, or
2307 dl 1.3 * first node if least is <tt>null</tt>, but not greater or equal to
2308     * fence, or end if fence is <tt>null</tt>.
2309 dl 1.1 */
2310     ConcurrentSkipListMapIterator(K least, K fence) {
2311     for (;;) {
2312     next = findCeiling(least);
2313     if (next == null)
2314     break;
2315     nextValue = next.value;
2316     if (nextValue != null && nextValue != next) {
2317     if (fence != null && compare(fence, next.key) <= 0) {
2318     next = null;
2319     nextValue = null;
2320     }
2321     break;
2322     }
2323     }
2324     }
2325    
2326     public final boolean hasNext() {
2327     return next != null;
2328     }
2329    
2330     final void advance() {
2331     if ((last = next) == null)
2332     throw new NoSuchElementException();
2333     for (;;) {
2334     next = next.next;
2335     if (next == null)
2336     break;
2337     nextValue = next.value;
2338     if (nextValue != null && nextValue != next)
2339     break;
2340     }
2341     }
2342    
2343     /**
2344     * Version of advance for submaps to stop at fence
2345     */
2346     final void advance(K fence) {
2347     if ((last = next) == null)
2348     throw new NoSuchElementException();
2349     for (;;) {
2350     next = next.next;
2351     if (next == null)
2352     break;
2353     nextValue = next.value;
2354     if (nextValue != null && nextValue != next) {
2355     if (fence != null && compare(fence, next.key) <= 0) {
2356     next = null;
2357     nextValue = null;
2358     }
2359     break;
2360     }
2361     }
2362     }
2363    
2364     public void remove() {
2365     Node<K,V> l = last;
2366     if (l == null)
2367     throw new IllegalStateException();
2368     // It would not be worth all of the overhead to directly
2369     // unlink from here. Using remove is fast enough.
2370     ConcurrentSkipListMap.this.remove(l.key);
2371     }
2372     }
2373    
2374     final class ValueIterator extends ConcurrentSkipListMapIterator
2375     implements Iterator<V> {
2376     public V next() {
2377     Object v = nextValue;
2378     advance();
2379     return (V)v;
2380     }
2381     }
2382    
2383     final class KeyIterator extends ConcurrentSkipListMapIterator
2384     implements Iterator<K> {
2385     public K next() {
2386     Node<K,V> n = next;
2387     advance();
2388     return n.key;
2389     }
2390     }
2391    
2392     /**
2393     * Entry iterators use the same trick as in ConcurrentHashMap and
2394     * elsewhere of using the iterator itself to represent entries,
2395     * thus avoiding having to create entry objects in next().
2396     */
2397     class EntryIterator extends ConcurrentSkipListMapIterator
2398     implements Map.Entry<K,V>, Iterator<Map.Entry<K,V>> {
2399     /** Cache of last value returned */
2400     Object lastValue;
2401    
2402     EntryIterator() {
2403     super();
2404     }
2405    
2406     EntryIterator(K least, K fence) {
2407     super(least, fence);
2408     }
2409    
2410     public Map.Entry<K,V> next() {
2411     lastValue = nextValue;
2412     advance();
2413     return this;
2414     }
2415    
2416     public K getKey() {
2417     Node<K,V> l = last;
2418     if (l == null)
2419     throw new IllegalStateException();
2420     return l.key;
2421     }
2422    
2423     public V getValue() {
2424     Object v = lastValue;
2425     if (last == null || v == null)
2426     throw new IllegalStateException();
2427     return (V)v;
2428     }
2429    
2430     public V setValue(V value) {
2431     throw new UnsupportedOperationException();
2432     }
2433    
2434     public boolean equals(Object o) {
2435     // If not acting as entry, just use default.
2436     if (last == null)
2437     return super.equals(o);
2438     if (!(o instanceof Map.Entry))
2439     return false;
2440     Map.Entry e = (Map.Entry)o;
2441     return (getKey().equals(e.getKey()) &&
2442     getValue().equals(e.getValue()));
2443     }
2444    
2445     public int hashCode() {
2446     // If not acting as entry, just use default.
2447     if (last == null)
2448     return super.hashCode();
2449     return getKey().hashCode() ^ getValue().hashCode();
2450     }
2451    
2452     public String toString() {
2453     // If not acting as entry, just use default.
2454     if (last == null)
2455     return super.toString();
2456     return getKey() + "=" + getValue();
2457     }
2458     }
2459    
2460     /**
2461     * Submap iterators start at given starting point at beginning of
2462     * submap range, and advance until they are at end of range.
2463     */
2464     class SubMapEntryIterator extends EntryIterator {
2465     final K fence;
2466     SubMapEntryIterator(K least, K fence) {
2467     super(least, fence);
2468     this.fence = fence;
2469     }
2470    
2471     public Map.Entry<K,V> next() {
2472     lastValue = nextValue;
2473     advance(fence);
2474     return this;
2475     }
2476     }
2477    
2478     class SubMapValueIterator extends ConcurrentSkipListMapIterator
2479     implements Iterator<V> {
2480     final K fence;
2481     SubMapValueIterator(K least, K fence) {
2482     super(least, fence);
2483     this.fence = fence;
2484     }
2485    
2486     public V next() {
2487     Object v = nextValue;
2488     advance(fence);
2489     return (V)v;
2490     }
2491     }
2492    
2493     class SubMapKeyIterator extends ConcurrentSkipListMapIterator
2494     implements Iterator<K> {
2495     final K fence;
2496     SubMapKeyIterator(K least, K fence) {
2497     super(least, fence);
2498     this.fence = fence;
2499     }
2500    
2501     public K next() {
2502     Node<K,V> n = next;
2503     advance(fence);
2504     return n.key;
2505     }
2506     }
2507    
2508     /* ---------------- Utilities for views, sets, submaps -------------- */
2509    
2510     // Factory methods for iterators needed by submaps and/or
2511     // ConcurrentSkipListSet
2512    
2513     Iterator<K> keyIterator() {
2514     return new KeyIterator();
2515     }
2516    
2517     SubMapEntryIterator subMapEntryIterator(K least, K fence) {
2518     return new SubMapEntryIterator(least, fence);
2519     }
2520    
2521     SubMapKeyIterator subMapKeyIterator(K least, K fence) {
2522     return new SubMapKeyIterator(least, fence);
2523     }
2524    
2525     SubMapValueIterator subMapValueIterator(K least, K fence) {
2526     return new SubMapValueIterator(least, fence);
2527     }
2528    
2529    
2530     /**
2531     * Version of remove with boolean return. Needed by
2532     * view classes and ConcurrentSkipListSet
2533     */
2534     boolean removep(Object key) {
2535     return doRemove(key, null) != null;
2536     }
2537    
2538     /**
2539 dl 1.4 * Remove first entry; return key or null if empty.
2540     */
2541     K removeFirstKey() {
2542     return (K)doRemoveFirst(true);
2543     }
2544    
2545     /**
2546     * Remove last entry; return key or null if empty.
2547     */
2548     K removeLastKey() {
2549     return (K)doRemoveLast(true);
2550     }
2551    
2552     /**
2553 dl 1.1 * Return SnapshotEntry for results of findNear ofter screening
2554     * to ensure result is in given range. Needed by submaps.
2555     * @param kkey the key
2556     * @param rel the relation -- OR'ed combination of EQ, LT, GT
2557     * @param least minimum allowed key value
2558     * @param fence key greater than maximum allowed key value
2559 dl 1.3 * @return Entry fitting relation, or <tt>null</tt> if no such
2560 dl 1.1 */
2561     SnapshotEntry<K,V> getNear(K kkey, int rel, K least, K fence) {
2562     K key = kkey;
2563     // Don't return keys less than least
2564     if ((rel & LT) == 0) {
2565     if (compare(key, least) < 0) {
2566     key = least;
2567     rel = rel | EQ;
2568     }
2569     }
2570    
2571     for (;;) {
2572     Node<K,V> n = findNear(key, rel);
2573     if (n == null || !inHalfOpenRange(n.key, least, fence))
2574     return null;
2575     SnapshotEntry<K,V> e = n.createSnapshot();
2576     if (e != null)
2577     return e;
2578     }
2579     }
2580    
2581     // Methods expanding out relational operations for submaps
2582    
2583     /**
2584 dl 1.3 * Return ceiling, or first node if key is <tt>null</tt>
2585 dl 1.1 */
2586     Node<K,V> findCeiling(K key) {
2587     return (key == null)? findFirst() : findNear(key, GT|EQ);
2588     }
2589    
2590     /**
2591 dl 1.3 * Return lower node, or last node if key is <tt>null</tt>
2592 dl 1.1 */
2593     Node<K,V> findLower(K key) {
2594     return (key == null)? findLast() : findNear(key, LT);
2595     }
2596    
2597     /**
2598     * Find and remove least element of subrange.
2599     */
2600     SnapshotEntry<K,V> removeFirstEntryOfSubrange(K least, K fence) {
2601     for (;;) {
2602     Node<K,V> n = findCeiling(least);
2603     if (n == null)
2604     return null;
2605     K k = n.key;
2606     if (fence != null && compare(k, fence) >= 0)
2607     return null;
2608     V v = doRemove(k, null);
2609     if (v != null)
2610     return new SnapshotEntry<K,V>(k,v);
2611     }
2612     }
2613    
2614 dl 1.2
2615     /**
2616     * Find and remove greatest element of subrange.
2617     */
2618     SnapshotEntry<K,V> removeLastEntryOfSubrange(K least, K fence) {
2619     for (;;) {
2620     Node<K,V> n = findLower(fence);
2621     if (n == null)
2622     return null;
2623     K k = n.key;
2624     if (least != null && compare(k, least) < 0)
2625     return null;
2626     V v = doRemove(k, null);
2627     if (v != null)
2628     return new SnapshotEntry<K,V>(k,v);
2629     }
2630     }
2631    
2632    
2633 dl 1.1 SnapshotEntry<K,V> getCeiling(K key, K least, K fence) {
2634     return getNear(key, GT|EQ, least, fence);
2635     }
2636    
2637     SnapshotEntry<K,V> getLower(K key, K least, K fence) {
2638     return getNear(key, LT, least, fence);
2639     }
2640    
2641     SnapshotEntry<K,V> getFloor(K key, K least, K fence) {
2642     return getNear(key, LT|EQ, least, fence);
2643     }
2644    
2645     SnapshotEntry<K,V> getHigher(K key, K least, K fence) {
2646     return getNear(key, GT, least, fence);
2647     }
2648    
2649     // Key-returning relational methods for ConcurrentSkipListSet
2650    
2651     K ceilingKey(K key) {
2652     Node<K,V> n = findNear(key, GT|EQ);
2653     return (n == null)? null : n.key;
2654     }
2655    
2656     K lowerKey(K key) {
2657     Node<K,V> n = findNear(key, LT);
2658     return (n == null)? null : n.key;
2659     }
2660    
2661     K floorKey(K key) {
2662     Node<K,V> n = findNear(key, LT|EQ);
2663     return (n == null)? null : n.key;
2664     }
2665    
2666     K higherKey(K key) {
2667     Node<K,V> n = findNear(key, GT);
2668     return (n == null)? null : n.key;
2669     }
2670    
2671     K lowestKey() {
2672     Node<K,V> n = findFirst();
2673     return (n == null)? null : n.key;
2674     }
2675    
2676     K highestKey() {
2677     Node<K,V> n = findLast();
2678     return (n == null)? null : n.key;
2679     }
2680    
2681     /* ---------------- Views -------------- */
2682    
2683     final class KeySet extends AbstractSet<K> {
2684     public Iterator<K> iterator() {
2685     return new KeyIterator();
2686     }
2687     public boolean isEmpty() {
2688     return ConcurrentSkipListMap.this.isEmpty();
2689     }
2690     public int size() {
2691     return ConcurrentSkipListMap.this.size();
2692     }
2693     public boolean contains(Object o) {
2694     return ConcurrentSkipListMap.this.containsKey(o);
2695     }
2696     public boolean remove(Object o) {
2697     return ConcurrentSkipListMap.this.removep(o);
2698     }
2699     public void clear() {
2700     ConcurrentSkipListMap.this.clear();
2701     }
2702     public Object[] toArray() {
2703     Collection<K> c = new ArrayList<K>();
2704     for (Iterator<K> i = iterator(); i.hasNext(); )
2705     c.add(i.next());
2706     return c.toArray();
2707     }
2708     public <T> T[] toArray(T[] a) {
2709     Collection<K> c = new ArrayList<K>();
2710     for (Iterator<K> i = iterator(); i.hasNext(); )
2711     c.add(i.next());
2712     return c.toArray(a);
2713     }
2714     }
2715    
2716    
2717     final class Values extends AbstractCollection<V> {
2718     public Iterator<V> iterator() {
2719     return new ValueIterator();
2720     }
2721     public boolean isEmpty() {
2722     return ConcurrentSkipListMap.this.isEmpty();
2723     }
2724     public int size() {
2725     return ConcurrentSkipListMap.this.size();
2726     }
2727     public boolean contains(Object o) {
2728     return ConcurrentSkipListMap.this.containsValue(o);
2729     }
2730     public void clear() {
2731     ConcurrentSkipListMap.this.clear();
2732     }
2733     public Object[] toArray() {
2734     Collection<V> c = new ArrayList<V>();
2735     for (Iterator<V> i = iterator(); i.hasNext(); )
2736     c.add(i.next());
2737     return c.toArray();
2738     }
2739     public <T> T[] toArray(T[] a) {
2740     Collection<V> c = new ArrayList<V>();
2741     for (Iterator<V> i = iterator(); i.hasNext(); )
2742     c.add(i.next());
2743     return c.toArray(a);
2744     }
2745     }
2746    
2747     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
2748     public Iterator<Map.Entry<K,V>> iterator() {
2749     return new EntryIterator();
2750     }
2751     public boolean contains(Object o) {
2752     if (!(o instanceof Map.Entry))
2753     return false;
2754     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2755     V v = ConcurrentSkipListMap.this.get(e.getKey());
2756     return v != null && v.equals(e.getValue());
2757     }
2758     public boolean remove(Object o) {
2759     if (!(o instanceof Map.Entry))
2760     return false;
2761     Map.Entry<K,V> e = (Map.Entry<K,V>)o;
2762 dl 1.4 return ConcurrentSkipListMap.this.remove(e.getKey(),
2763     e.getValue());
2764 dl 1.1 }
2765     public boolean isEmpty() {
2766     return ConcurrentSkipListMap.this.isEmpty();
2767     }
2768     public int size() {
2769     return ConcurrentSkipListMap.this.size();
2770     }
2771     public void clear() {
2772     ConcurrentSkipListMap.this.clear();
2773     }
2774    
2775     public Object[] toArray() {
2776     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2777     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
2778     Map.Entry<K,V> e = n.createSnapshot();
2779     if (e != null)
2780     c.add(e);
2781     }
2782     return c.toArray();
2783     }
2784     public <T> T[] toArray(T[] a) {
2785     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
2786     for (Node<K,V> n = findFirst(); n != null; n = n.next) {
2787     Map.Entry<K,V> e = n.createSnapshot();
2788     if (e != null)
2789     c.add(e);
2790     }
2791     return c.toArray(a);
2792     }
2793     }
2794 dl 1.2
2795     /**
2796     * Submaps returned by {@link ConcurrentSkipListMap} submap operations
2797     * represent a subrange of mappings of their underlying
2798     * maps. Instances of this class support all methods of their
2799     * underlying maps, differing in that mappings outside their range are
2800     * ignored, and attempts to add mappings outside their ranges result
2801     * in {@link IllegalArgumentException}. Instances of this class are
2802     * constructed only using the <tt>subMap</tt>, <tt>headMap</tt>, and
2803     * <tt>tailMap</tt> methods of their underlying maps.
2804     */
2805     static class ConcurrentSkipListSubMap<K,V> extends AbstractMap<K,V>
2806     implements ConcurrentNavigableMap<K,V>, java.io.Serializable {
2807    
2808     private static final long serialVersionUID = -7647078645895051609L;
2809    
2810     /** Underlying map */
2811     private final ConcurrentSkipListMap<K,V> m;
2812     /** lower bound key, or null if from start */
2813     private final K least;
2814     /** upper fence key, or null if to end */
2815     private final K fence;
2816     // Lazily initialized view holders
2817     private transient Set<K> keySetView;
2818     private transient Set<Map.Entry<K,V>> entrySetView;
2819     private transient Collection<V> valuesView;
2820    
2821     /**
2822     * Creates a new submap.
2823 dl 1.3 * @param least inclusive least value, or <tt>null</tt> if from start
2824     * @param fence exclusive upper bound or <tt>null</tt> if to end
2825 dl 1.2 * @throws IllegalArgumentException if least and fence nonnull
2826     * and least greater than fence
2827     */
2828     ConcurrentSkipListSubMap(ConcurrentSkipListMap<K,V> map,
2829     K least, K fence) {
2830 dl 1.4 if (least != null &&
2831     fence != null &&
2832     map.compare(least, fence) > 0)
2833 dl 1.2 throw new IllegalArgumentException("inconsistent range");
2834     this.m = map;
2835     this.least = least;
2836     this.fence = fence;
2837     }
2838    
2839     /* ---------------- Utilities -------------- */
2840    
2841     boolean inHalfOpenRange(K key) {
2842     return m.inHalfOpenRange(key, least, fence);
2843     }
2844    
2845     boolean inOpenRange(K key) {
2846     return m.inOpenRange(key, least, fence);
2847     }
2848    
2849     ConcurrentSkipListMap.Node<K,V> firstNode() {
2850     return m.findCeiling(least);
2851     }
2852    
2853     ConcurrentSkipListMap.Node<K,V> lastNode() {
2854     return m.findLower(fence);
2855     }
2856    
2857     boolean isBeforeEnd(ConcurrentSkipListMap.Node<K,V> n) {
2858     return (n != null &&
2859     (fence == null ||
2860     n.key == null || // pass by markers and headers
2861     m.compare(fence, n.key) > 0));
2862     }
2863    
2864     void checkKey(K key) throws IllegalArgumentException {
2865     if (!inHalfOpenRange(key))
2866     throw new IllegalArgumentException("key out of range");
2867     }
2868    
2869     /**
2870     * Returns underlying map. Needed by ConcurrentSkipListSet
2871     * @return the backing map
2872     */
2873     ConcurrentSkipListMap<K,V> getMap() {
2874     return m;
2875     }
2876    
2877     /**
2878     * Returns least key. Needed by ConcurrentSkipListSet
2879 dl 1.3 * @return least key or <tt>null</tt> if from start
2880 dl 1.2 */
2881     K getLeast() {
2882     return least;
2883     }
2884    
2885     /**
2886     * Returns fence key. Needed by ConcurrentSkipListSet
2887 dl 1.3 * @return fence key or <tt>null</tt> of to end
2888 dl 1.2 */
2889     K getFence() {
2890     return fence;
2891     }
2892    
2893     /**
2894     * Non-exception throwing version of firstKey needed by
2895     * ConcurrentSkipListSubSet
2896 dl 1.3 * @return first key, or <tt>null</tt> if empty
2897 dl 1.2 */
2898     K lowestKey() {
2899     ConcurrentSkipListMap.Node<K,V> n = firstNode();
2900     if (isBeforeEnd(n))
2901     return n.key;
2902     else
2903     return null;
2904     }
2905    
2906     /**
2907     * Non-exception throwing version of highestKey needed by
2908     * ConcurrentSkipListSubSet
2909 dl 1.3 * @return last key, or <tt>null</tt> if empty
2910 dl 1.2 */
2911     K highestKey() {
2912     ConcurrentSkipListMap.Node<K,V> n = lastNode();
2913     if (isBeforeEnd(n))
2914     return n.key;
2915     else
2916     return null;
2917     }
2918    
2919     /* ---------------- Map API methods -------------- */
2920    
2921     /**
2922     * Returns <tt>true</tt> if this map contains a mapping for
2923     * the specified key.
2924     * @param key key whose presence in this map is to be tested.
2925     * @return <tt>true</tt> if this map contains a mapping for
2926     * the specified key.
2927     * @throws ClassCastException if the key cannot be compared
2928     * with the keys currently in the map.
2929     * @throws NullPointerException if the key is <tt>null</tt>.
2930     */
2931     public boolean containsKey(Object key) {
2932     K k = (K)key;
2933     return inHalfOpenRange(k) && m.containsKey(k);
2934     }
2935    
2936     /**
2937     * Returns the value to which this map maps the specified key.
2938     * Returns <tt>null</tt> if the map contains no mapping for
2939     * this key.
2940     *
2941     * @param key key whose associated value is to be returned.
2942     * @return the value to which this map maps the specified key,
2943     * or <tt>null</tt> if the map contains no mapping for the
2944     * key.
2945     * @throws ClassCastException if the key cannot be compared
2946     * with the keys currently in the map.
2947     * @throws NullPointerException if the key is <tt>null</tt>.
2948     */
2949     public V get(Object key) {
2950     K k = (K)key;
2951     return ((!inHalfOpenRange(k)) ? null : m.get(k));
2952     }
2953    
2954     /**
2955     * Associates the specified value with the specified key in
2956     * this map. If the map previously contained a mapping for
2957     * this key, the old value is replaced.
2958     *
2959     * @param key key with which the specified value is to be associated.
2960     * @param value value to be associated with the specified key.
2961     *
2962     * @return previous value associated with specified key, or
2963     * <tt>null</tt> if there was no mapping for key.
2964     * @throws ClassCastException if the key cannot be compared
2965     * with the keys currently in the map.
2966     * @throws IllegalArgumentException if key outside range of
2967     * this submap.
2968     * @throws NullPointerException if the key or value are <tt>null</tt>.
2969     */
2970     public V put(K key, V value) {
2971     checkKey(key);
2972     return m.put(key, value);
2973     }
2974    
2975     /**
2976     * Removes the mapping for this key from this Map if present.
2977     *
2978     * @param key key for which mapping should be removed
2979     * @return previous value associated with specified key, or
2980     * <tt>null</tt> if there was no mapping for key.
2981     *
2982     * @throws ClassCastException if the key cannot be compared
2983     * with the keys currently in the map.
2984     * @throws NullPointerException if the key is <tt>null</tt>.
2985     */
2986     public V remove(Object key) {
2987     K k = (K)key;
2988     return (!inHalfOpenRange(k))? null : m.remove(k);
2989     }
2990    
2991     /**
2992     * Returns the number of elements in this map. If this map
2993     * contains more than <tt>Integer.MAX_VALUE</tt> elements, it
2994     * returns <tt>Integer.MAX_VALUE</tt>.
2995     *
2996     * <p>Beware that, unlike in most collections, this method is
2997     * <em>NOT</em> a constant-time operation. Because of the
2998     * asynchronous nature of these maps, determining the current
2999     * number of elements requires traversing them all to count them.
3000     * Additionally, it is possible for the size to change during
3001     * execution of this method, in which case the returned result
3002     * will be inaccurate. Thus, this method is typically not very
3003     * useful in concurrent applications.
3004     *
3005     * @return the number of elements in this map.
3006     */
3007     public int size() {
3008     long count = 0;
3009     for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3010     isBeforeEnd(n);
3011     n = n.next) {
3012     if (n.getValidValue() != null)
3013     ++count;
3014     }
3015     return count >= Integer.MAX_VALUE? Integer.MAX_VALUE : (int)count;
3016     }
3017    
3018     /**
3019     * Returns <tt>true</tt> if this map contains no key-value mappings.
3020     * @return <tt>true</tt> if this map contains no key-value mappings.
3021     */
3022     public boolean isEmpty() {
3023     return !isBeforeEnd(firstNode());
3024     }
3025    
3026     /**
3027     * Returns <tt>true</tt> if this map maps one or more keys to the
3028     * specified value. This operation requires time linear in the
3029     * Map size.
3030     *
3031     * @param value value whose presence in this Map is to be tested.
3032     * @return <tt>true</tt> if a mapping to <tt>value</tt> exists;
3033     * <tt>false</tt> otherwise.
3034     * @throws NullPointerException if the value is <tt>null</tt>.
3035     */
3036     public boolean containsValue(Object value) {
3037     if (value == null)
3038     throw new NullPointerException();
3039     for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3040     isBeforeEnd(n);
3041     n = n.next) {
3042     V v = n.getValidValue();
3043     if (v != null && value.equals(v))
3044     return true;
3045     }
3046     return false;
3047     }
3048    
3049     /**
3050     * Removes all mappings from this map.
3051     */
3052     public void clear() {
3053     for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3054     isBeforeEnd(n);
3055     n = n.next) {
3056     if (n.getValidValue() != null)
3057     m.remove(n.key);
3058     }
3059     }
3060    
3061     /* ---------------- ConcurrentMap API methods -------------- */
3062    
3063     /**
3064     * If the specified key is not already associated
3065     * with a value, associate it with the given value.
3066     * This is equivalent to
3067     * <pre>
3068     * if (!map.containsKey(key))
3069     * return map.put(key, value);
3070     * else
3071     * return map.get(key);
3072     * </pre>
3073     * Except that the action is performed atomically.
3074     * @param key key with which the specified value is to be associated.
3075     * @param value value to be associated with the specified key.
3076     * @return previous value associated with specified key, or
3077     * <tt>null</tt> if there was no mapping for key.
3078     *
3079     * @throws ClassCastException if the key cannot be compared
3080     * with the keys currently in the map.
3081     * @throws IllegalArgumentException if key outside range of
3082     * this submap.
3083     * @throws NullPointerException if the key or value are <tt>null</tt>.
3084     */
3085     public V putIfAbsent(K key, V value) {
3086     checkKey(key);
3087     return m.putIfAbsent(key, value);
3088     }
3089    
3090     /**
3091     * Remove entry for key only if currently mapped to given value.
3092     * Acts as
3093     * <pre>
3094     * if ((map.containsKey(key) && map.get(key).equals(value)) {
3095     * map.remove(key);
3096     * return true;
3097     * } else return false;
3098     * </pre>
3099     * except that the action is performed atomically.
3100     * @param key key with which the specified value is associated.
3101     * @param value value associated with the specified key.
3102     * @return true if the value was removed, false otherwise
3103     * @throws ClassCastException if the key cannot be compared
3104     * with the keys currently in the map.
3105     * @throws NullPointerException if the key or value are
3106     * <tt>null</tt>.
3107     */
3108     public boolean remove(Object key, Object value) {
3109     K k = (K)key;
3110     return inHalfOpenRange(k) && m.remove(k, value);
3111     }
3112    
3113     /**
3114     * Replace entry for key only if currently mapped to given value.
3115     * Acts as
3116     * <pre>
3117     * if ((map.containsKey(key) && map.get(key).equals(oldValue)) {
3118     * map.put(key, newValue);
3119     * return true;
3120     * } else return false;
3121     * </pre>
3122     * except that the action is performed atomically.
3123     * @param key key with which the specified value is associated.
3124 dl 1.4 * @param oldValue value expected to be associated with the
3125     * specified key.
3126 dl 1.2 * @param newValue value to be associated with the specified key.
3127     * @return true if the value was replaced
3128     * @throws ClassCastException if the key cannot be compared
3129     * with the keys currently in the map.
3130     * @throws IllegalArgumentException if key outside range of
3131     * this submap.
3132     * @throws NullPointerException if key, oldValue or newValue
3133     * are <tt>null</tt>.
3134     */
3135     public boolean replace(K key, V oldValue, V newValue) {
3136     checkKey(key);
3137     return m.replace(key, oldValue, newValue);
3138     }
3139    
3140     /**
3141     * Replace entry for key only if currently mapped to some value.
3142     * Acts as
3143     * <pre>
3144     * if ((map.containsKey(key)) {
3145     * return map.put(key, value);
3146     * } else return null;
3147     * </pre>
3148     * except that the action is performed atomically.
3149     * @param key key with which the specified value is associated.
3150     * @param value value to be associated with the specified key.
3151     * @return previous value associated with specified key, or
3152     * <tt>null</tt> if there was no mapping for key.
3153     * @throws ClassCastException if the key cannot be compared
3154     * with the keys currently in the map.
3155     * @throws IllegalArgumentException if key outside range of
3156     * this submap.
3157     * @throws NullPointerException if the key or value are
3158     * <tt>null</tt>.
3159     */
3160     public V replace(K key, V value) {
3161     checkKey(key);
3162     return m.replace(key, value);
3163     }
3164    
3165     /* ---------------- SortedMap API methods -------------- */
3166    
3167     /**
3168     * Returns the comparator used to order this map, or <tt>null</tt>
3169     * if this map uses its keys' natural order.
3170     *
3171     * @return the comparator associated with this map, or
3172     * <tt>null</tt> if it uses its keys' natural sort method.
3173     */
3174     public Comparator<? super K> comparator() {
3175     return m.comparator();
3176     }
3177    
3178     /**
3179     * Returns the first (lowest) key currently in this map.
3180     *
3181     * @return the first (lowest) key currently in this map.
3182     * @throws NoSuchElementException Map is empty.
3183     */
3184     public K firstKey() {
3185     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3186     if (isBeforeEnd(n))
3187     return n.key;
3188     else
3189     throw new NoSuchElementException();
3190     }
3191    
3192     /**
3193     * Returns the last (highest) key currently in this map.
3194     *
3195     * @return the last (highest) key currently in this map.
3196     * @throws NoSuchElementException Map is empty.
3197     */
3198     public K lastKey() {
3199     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3200     if (n != null) {
3201     K last = n.key;
3202     if (inHalfOpenRange(last))
3203     return last;
3204     }
3205     throw new NoSuchElementException();
3206     }
3207    
3208     /**
3209     * Returns a view of the portion of this map whose keys range
3210     * from <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>,
3211     * exclusive. (If <tt>fromKey</tt> and <tt>toKey</tt> are
3212     * equal, the returned sorted map is empty.) The returned
3213     * sorted map is backed by this map, so changes in the
3214     * returned sorted map are reflected in this map, and
3215     * vice-versa.
3216    
3217     * @param fromKey low endpoint (inclusive) of the subMap.
3218     * @param toKey high endpoint (exclusive) of the subMap.
3219     *
3220     * @return a view of the portion of this map whose keys range
3221     * from <tt>fromKey</tt>, inclusive, to <tt>toKey</tt>,
3222     * exclusive.
3223     *
3224     * @throws ClassCastException if <tt>fromKey</tt> and
3225     * <tt>toKey</tt> cannot be compared to one another using this
3226     * map's comparator (or, if the map has no comparator, using
3227     * natural ordering).
3228     * @throws IllegalArgumentException if <tt>fromKey</tt> is
3229     * greater than <tt>toKey</tt> or either key is outside of
3230     * the range of this submap.
3231     * @throws NullPointerException if <tt>fromKey</tt> or
3232     * <tt>toKey</tt> is <tt>null</tt>.
3233     */
3234     public ConcurrentNavigableMap<K,V> subMap(K fromKey, K toKey) {
3235     if (fromKey == null || toKey == null)
3236     throw new NullPointerException();
3237     if (!inOpenRange(fromKey) || !inOpenRange(toKey))
3238     throw new IllegalArgumentException("key out of range");
3239     return new ConcurrentSkipListSubMap(m, fromKey, toKey);
3240     }
3241    
3242     /**
3243     * Returns a view of the portion of this map whose keys are
3244     * strictly less than <tt>toKey</tt>. The returned sorted map
3245     * is backed by this map, so changes in the returned sorted
3246     * map are reflected in this map, and vice-versa.
3247     * @param toKey high endpoint (exclusive) of the headMap.
3248     * @return a view of the portion of this map whose keys are
3249     * strictly less than <tt>toKey</tt>.
3250     *
3251     * @throws ClassCastException if <tt>toKey</tt> is not
3252     * compatible with this map's comparator (or, if the map has
3253     * no comparator, if <tt>toKey</tt> does not implement
3254     * <tt>Comparable</tt>).
3255     * @throws IllegalArgumentException if <tt>toKey</tt> is
3256     * outside of the range of this submap.
3257     * @throws NullPointerException if <tt>toKey</tt> is
3258     * <tt>null</tt>.
3259     */
3260     public ConcurrentNavigableMap<K,V> headMap(K toKey) {
3261     if (toKey == null)
3262     throw new NullPointerException();
3263     if (!inOpenRange(toKey))
3264     throw new IllegalArgumentException("key out of range");
3265     return new ConcurrentSkipListSubMap(m, least, toKey);
3266     }
3267    
3268     /**
3269     * Returns a view of the portion of this map whose keys are
3270     * greater than or equal to <tt>fromKey</tt>. The returned sorted
3271     * map is backed by this map, so changes in the returned sorted
3272     * map are reflected in this map, and vice-versa.
3273     * @param fromKey low endpoint (inclusive) of the tailMap.
3274     * @return a view of the portion of this map whose keys are
3275     * greater than or equal to <tt>fromKey</tt>.
3276     * @throws ClassCastException if <tt>fromKey</tt> is not
3277     * compatible with this map's comparator (or, if the map has
3278     * no comparator, if <tt>fromKey</tt> does not implement
3279     * <tt>Comparable</tt>).
3280     * @throws IllegalArgumentException if <tt>fromKey</tt> is
3281     * outside of the range of this submap.
3282     * @throws NullPointerException if <tt>fromKey</tt> is
3283     * <tt>null</tt>.
3284     */
3285     public ConcurrentNavigableMap<K,V> tailMap(K fromKey) {
3286     if (fromKey == null)
3287     throw new NullPointerException();
3288     if (!inOpenRange(fromKey))
3289     throw new IllegalArgumentException("key out of range");
3290     return new ConcurrentSkipListSubMap(m, fromKey, fence);
3291     }
3292    
3293     /* ---------------- Relational methods -------------- */
3294    
3295     /**
3296     * Returns a key-value mapping associated with the least key
3297 dl 1.4 * greater than or equal to the given key, or <tt>null</tt> if
3298     * there is no such entry. The returned entry does
3299     * <em>not</em> support the <tt>Entry.setValue</tt> method.
3300 dl 1.2 *
3301     * @param key the key.
3302 dl 1.4 * @return an Entry associated with ceiling of given key, or
3303     * <tt>null</tt> if there is no such Entry.
3304 dl 1.2 * @throws ClassCastException if key cannot be compared with the keys
3305     * currently in the map.
3306     * @throws NullPointerException if key is <tt>null</tt>.
3307     */
3308     public Map.Entry<K,V> ceilingEntry(K key) {
3309     return m.getCeiling(key, least, fence);
3310     }
3311    
3312     /**
3313     * Returns a key-value mapping associated with the greatest
3314 dl 1.4 * key strictly less than the given key, or <tt>null</tt> if
3315     * there is no such entry. The returned entry does
3316     * <em>not</em> support the <tt>Entry.setValue</tt> method.
3317 dl 1.2 *
3318     * @param key the key.
3319     * @return an Entry with greatest key less than the given
3320 dl 1.3 * key, or <tt>null</tt> if there is no such Entry.
3321 dl 1.4 * @throws ClassCastException if key cannot be compared with
3322     * the keys currently in the map.
3323 dl 1.2 * @throws NullPointerException if key is <tt>null</tt>.
3324     */
3325     public Map.Entry<K,V> lowerEntry(K key) {
3326     return m.getLower(key, least, fence);
3327     }
3328    
3329     /**
3330     * Returns a key-value mapping associated with the greatest
3331 dl 1.4 * key less than or equal to the given key, or <tt>null</tt>
3332     * if there is no such entry. The returned entry does
3333     * <em>not</em> support the <tt>Entry.setValue</tt> method.
3334 dl 1.2 *
3335     * @param key the key.
3336 dl 1.4 * @return an Entry associated with floor of given key, or
3337     * <tt>null</tt> if there is no such Entry.
3338     * @throws ClassCastException if key cannot be compared with
3339     * the keys currently in the map.
3340 dl 1.2 * @throws NullPointerException if key is <tt>null</tt>.
3341     */
3342     public Map.Entry<K,V> floorEntry(K key) {
3343     return m.getFloor(key, least, fence);
3344     }
3345    
3346     /**
3347 dl 1.4 * Returns a key-value mapping associated with the least key
3348     * strictly greater than the given key, or <tt>null</tt> if
3349     * there is no such entry. The returned entry does
3350     * <em>not</em> support the <tt>Entry.setValue</tt> method.
3351 dl 1.2 *
3352     * @param key the key.
3353     * @return an Entry with least key greater than the given key, or
3354 dl 1.3 * <tt>null</tt> if there is no such Entry.
3355 dl 1.4 * @throws ClassCastException if key cannot be compared with
3356     * the keys currently in the map.
3357 dl 1.2 * @throws NullPointerException if key is <tt>null</tt>.
3358     */
3359     public Map.Entry<K,V> higherEntry(K key) {
3360     return m.getHigher(key, least, fence);
3361     }
3362    
3363     /**
3364     * Returns a key-value mapping associated with the least
3365 dl 1.3 * key in this map, or <tt>null</tt> if the map is empty.
3366 dl 1.2 * The returned entry does <em>not</em> support
3367     * the <tt>Entry.setValue</tt> method.
3368     *
3369 dl 1.3 * @return an Entry with least key, or <tt>null</tt>
3370 dl 1.2 * if the map is empty.
3371     */
3372     public Map.Entry<K,V> firstEntry() {
3373     for (;;) {
3374     ConcurrentSkipListMap.Node<K,V> n = firstNode();
3375     if (!isBeforeEnd(n))
3376     return null;
3377     Map.Entry<K,V> e = n.createSnapshot();
3378     if (e != null)
3379     return e;
3380     }
3381     }
3382    
3383     /**
3384     * Returns a key-value mapping associated with the greatest
3385 dl 1.3 * key in this map, or <tt>null</tt> if the map is empty.
3386 dl 1.2 * The returned entry does <em>not</em> support
3387     * the <tt>Entry.setValue</tt> method.
3388     *
3389 dl 1.3 * @return an Entry with greatest key, or <tt>null</tt>
3390 dl 1.2 * if the map is empty.
3391     */
3392     public Map.Entry<K,V> lastEntry() {
3393     for (;;) {
3394     ConcurrentSkipListMap.Node<K,V> n = lastNode();
3395     if (n == null || !inHalfOpenRange(n.key))
3396     return null;
3397     Map.Entry<K,V> e = n.createSnapshot();
3398     if (e != null)
3399     return e;
3400     }
3401     }
3402    
3403     /**
3404     * Removes and returns a key-value mapping associated with
3405 dl 1.3 * the least key in this map, or <tt>null</tt> if the map is empty.
3406 dl 1.2 * The returned entry does <em>not</em> support
3407     * the <tt>Entry.setValue</tt> method.
3408     *
3409 dl 1.3 * @return the removed first entry of this map, or <tt>null</tt>
3410 dl 1.2 * if the map is empty.
3411     */
3412     public Map.Entry<K,V> pollFirstEntry() {
3413     return m.removeFirstEntryOfSubrange(least, fence);
3414     }
3415    
3416     /**
3417 dl 1.4 * Removes and returns a key-value mapping associated with the
3418     * greatest key in this map, or <tt>null</tt> if the map is
3419     * empty. The returned entry does <em>not</em> support the
3420     * <tt>Entry.setValue</tt> method.
3421 dl 1.2 *
3422 dl 1.3 * @return the removed last entry of this map, or <tt>null</tt>
3423 dl 1.2 * if the map is empty.
3424     */
3425     public Map.Entry<K,V> pollLastEntry() {
3426     return m.removeLastEntryOfSubrange(least, fence);
3427     }
3428    
3429     /* ---------------- Submap Views -------------- */
3430    
3431     /**
3432     * Returns a set view of the keys contained in this map. The
3433     * set is backed by the map, so changes to the map are
3434     * reflected in the set, and vice-versa. The set supports
3435     * element removal, which removes the corresponding mapping
3436     * from this map, via the <tt>Iterator.remove</tt>,
3437     * <tt>Set.remove</tt>, <tt>removeAll</tt>,
3438     * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does
3439     * not support the <tt>add</tt> or <tt>addAll</tt> operations.
3440     * The view's <tt>iterator</tt> is a "weakly consistent"
3441     * iterator that will never throw {@link
3442     * java.util.ConcurrentModificationException}, and guarantees
3443     * to traverse elements as they existed upon construction of
3444     * the iterator, and may (but is not guaranteed to) reflect
3445     * any modifications subsequent to construction.
3446     *
3447     * @return a set view of the keys contained in this map.
3448     */
3449     public Set<K> keySet() {
3450     Set<K> ks = keySetView;
3451     return (ks != null) ? ks : (keySetView = new KeySetView());
3452     }
3453    
3454     class KeySetView extends AbstractSet<K> {
3455     public Iterator<K> iterator() {
3456     return m.subMapKeyIterator(least, fence);
3457     }
3458     public int size() {
3459     return ConcurrentSkipListSubMap.this.size();
3460     }
3461     public boolean isEmpty() {
3462     return ConcurrentSkipListSubMap.this.isEmpty();
3463     }
3464     public boolean contains(Object k) {
3465     return ConcurrentSkipListSubMap.this.containsKey(k);
3466     }
3467     public Object[] toArray() {
3468     Collection<K> c = new ArrayList<K>();
3469     for (Iterator<K> i = iterator(); i.hasNext(); )
3470     c.add(i.next());
3471     return c.toArray();
3472     }
3473     public <T> T[] toArray(T[] a) {
3474     Collection<K> c = new ArrayList<K>();
3475     for (Iterator<K> i = iterator(); i.hasNext(); )
3476     c.add(i.next());
3477     return c.toArray(a);
3478     }
3479     }
3480    
3481     /**
3482     * Returns a collection view of the values contained in this
3483     * map. The collection is backed by the map, so changes to
3484     * the map are reflected in the collection, and vice-versa.
3485     * The collection supports element removal, which removes the
3486     * corresponding mapping from this map, via the
3487     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
3488     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3489     * operations. It does not support the <tt>add</tt> or
3490     * <tt>addAll</tt> operations. The view's <tt>iterator</tt>
3491     * is a "weakly consistent" iterator that will never throw
3492     * {@link java.util.ConcurrentModificationException}, and
3493     * guarantees to traverse elements as they existed upon
3494     * construction of the iterator, and may (but is not
3495     * guaranteed to) reflect any modifications subsequent to
3496     * construction.
3497     *
3498     * @return a collection view of the values contained in this map.
3499     */
3500     public Collection<V> values() {
3501     Collection<V> vs = valuesView;
3502     return (vs != null) ? vs : (valuesView = new ValuesView());
3503     }
3504    
3505     class ValuesView extends AbstractCollection<V> {
3506     public Iterator<V> iterator() {
3507     return m.subMapValueIterator(least, fence);
3508     }
3509     public int size() {
3510     return ConcurrentSkipListSubMap.this.size();
3511     }
3512     public boolean isEmpty() {
3513     return ConcurrentSkipListSubMap.this.isEmpty();
3514     }
3515     public boolean contains(Object v) {
3516     return ConcurrentSkipListSubMap.this.containsValue(v);
3517     }
3518     public Object[] toArray() {
3519     Collection<V> c = new ArrayList<V>();
3520     for (Iterator<V> i = iterator(); i.hasNext(); )
3521     c.add(i.next());
3522     return c.toArray();
3523     }
3524     public <T> T[] toArray(T[] a) {
3525     Collection<V> c = new ArrayList<V>();
3526     for (Iterator<V> i = iterator(); i.hasNext(); )
3527     c.add(i.next());
3528     return c.toArray(a);
3529     }
3530     }
3531    
3532     /**
3533     * Returns a collection view of the mappings contained in this
3534     * map. Each element in the returned collection is a
3535     * <tt>Map.Entry</tt>. The collection is backed by the map,
3536     * so changes to the map are reflected in the collection, and
3537     * vice-versa. The collection supports element removal, which
3538     * removes the corresponding mapping from the map, via the
3539     * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>,
3540     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
3541     * operations. It does not support the <tt>add</tt> or
3542     * <tt>addAll</tt> operations. The view's <tt>iterator</tt>
3543     * is a "weakly consistent" iterator that will never throw
3544     * {@link java.util.ConcurrentModificationException}, and
3545     * guarantees to traverse elements as they existed upon
3546     * construction of the iterator, and may (but is not
3547     * guaranteed to) reflect any modifications subsequent to
3548     * construction. The <tt>Map.Entry</tt> elements returned by
3549     * <tt>iterator.next()</tt> do <em>not</em> support the
3550     * <tt>setValue</tt> operation.
3551     *
3552     * @return a collection view of the mappings contained in this map.
3553     */
3554     public Set<Map.Entry<K,V>> entrySet() {
3555     Set<Map.Entry<K,V>> es = entrySetView;
3556     return (es != null) ? es : (entrySetView = new EntrySetView());
3557     }
3558    
3559     class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
3560     public Iterator<Map.Entry<K,V>> iterator() {
3561     return m.subMapEntryIterator(least, fence);
3562     }
3563     public int size() {
3564     return ConcurrentSkipListSubMap.this.size();
3565     }
3566     public boolean isEmpty() {
3567     return ConcurrentSkipListSubMap.this.isEmpty();
3568     }
3569     public boolean contains(Object o) {
3570     if (!(o instanceof Map.Entry))
3571     return false;
3572     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3573     K key = e.getKey();
3574     if (!inHalfOpenRange(key))
3575     return false;
3576     V v = m.get(key);
3577     return v != null && v.equals(e.getValue());
3578     }
3579     public boolean remove(Object o) {
3580     if (!(o instanceof Map.Entry))
3581     return false;
3582     Map.Entry<K,V> e = (Map.Entry<K,V>) o;
3583     K key = e.getKey();
3584     if (!inHalfOpenRange(key))
3585     return false;
3586     return m.remove(key, e.getValue());
3587     }
3588     public Object[] toArray() {
3589     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3590     for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3591     isBeforeEnd(n);
3592     n = n.next) {
3593     Map.Entry<K,V> e = n.createSnapshot();
3594     if (e != null)
3595     c.add(e);
3596     }
3597     return c.toArray();
3598     }
3599     public <T> T[] toArray(T[] a) {
3600     Collection<Map.Entry<K,V>> c = new ArrayList<Map.Entry<K,V>>();
3601     for (ConcurrentSkipListMap.Node<K,V> n = firstNode();
3602     isBeforeEnd(n);
3603     n = n.next) {
3604     Map.Entry<K,V> e = n.createSnapshot();
3605     if (e != null)
3606     c.add(e);
3607     }
3608     return c.toArray(a);
3609     }
3610     }
3611     }
3612 dl 1.1 }