ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ConcurrentLinkedDeque.java
Revision: 1.2
Committed: Wed Jun 1 21:04:30 2011 UTC (12 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +2 -2 lines
Log Message:
fix javac 7 warnings

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166y;
8    
9     import java.util.AbstractCollection;
10     import java.util.ArrayList;
11     import java.util.Collection;
12     import java.util.Deque;
13     import java.util.Iterator;
14     import java.util.NoSuchElementException;
15     import java.util.Queue;
16    
17     /**
18     * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
19     * Concurrent insertion, removal, and access operations execute safely
20     * across multiple threads.
21     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
22     * many threads will share access to a common collection.
23     * Like most other concurrent collection implementations, this class
24     * does not permit the use of {@code null} elements.
25     *
26     * <p>Iterators are <i>weakly consistent</i>, returning elements
27     * reflecting the state of the deque at some point at or since the
28     * creation of the iterator. They do <em>not</em> throw {@link
29     * java.util.ConcurrentModificationException
30     * ConcurrentModificationException}, and may proceed concurrently with
31     * other operations.
32     *
33     * <p>Beware that, unlike in most collections, the {@code size} method
34     * is <em>NOT</em> a constant-time operation. Because of the
35     * asynchronous nature of these deques, determining the current number
36     * of elements requires a traversal of the elements, and so may report
37     * inaccurate results if this collection is modified during traversal.
38     * Additionally, the bulk operations {@code addAll},
39     * {@code removeAll}, {@code retainAll}, {@code containsAll},
40     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
41     * to be performed atomically. For example, an iterator operating
42     * concurrently with an {@code addAll} operation might view only some
43     * of the added elements.
44     *
45     * <p>This class and its iterator implement all of the <em>optional</em>
46     * methods of the {@link Deque} and {@link Iterator} interfaces.
47     *
48     * <p>Memory consistency effects: As with other concurrent collections,
49     * actions in a thread prior to placing an object into a
50     * {@code ConcurrentLinkedDeque}
51     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52     * actions subsequent to the access or removal of that element from
53     * the {@code ConcurrentLinkedDeque} in another thread.
54     *
55     * <p>This class is a member of the
56     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57     * Java Collections Framework</a>.
58     *
59     * @since 1.7
60     * @author Doug Lea
61     * @author Martin Buchholz
62     * @param <E> the type of elements held in this collection
63     */
64    
65     public class ConcurrentLinkedDeque<E>
66     extends AbstractCollection<E>
67     implements Deque<E>, java.io.Serializable {
68    
69     /*
70     * This is an implementation of a concurrent lock-free deque
71     * supporting interior removes but not interior insertions, as
72     * required to support the entire Deque interface.
73     *
74     * We extend the techniques developed for ConcurrentLinkedQueue and
75     * LinkedTransferQueue (see the internal docs for those classes).
76     * Understanding the ConcurrentLinkedQueue implementation is a
77     * prerequisite for understanding the implementation of this class.
78     *
79     * The data structure is a symmetrical doubly-linked "GC-robust"
80     * linked list of nodes. We minimize the number of volatile writes
81     * using two techniques: advancing multiple hops with a single CAS
82     * and mixing volatile and non-volatile writes of the same memory
83     * locations.
84     *
85     * A node contains the expected E ("item") and links to predecessor
86     * ("prev") and successor ("next") nodes:
87     *
88     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
89     *
90     * A node p is considered "live" if it contains a non-null item
91     * (p.item != null). When an item is CASed to null, the item is
92     * atomically logically deleted from the collection.
93     *
94     * At any time, there is precisely one "first" node with a null
95     * prev reference that terminates any chain of prev references
96     * starting at a live node. Similarly there is precisely one
97     * "last" node terminating any chain of next references starting at
98     * a live node. The "first" and "last" nodes may or may not be live.
99     * The "first" and "last" nodes are always mutually reachable.
100     *
101     * A new element is added atomically by CASing the null prev or
102     * next reference in the first or last node to a fresh node
103     * containing the element. The element's node atomically becomes
104     * "live" at that point.
105     *
106     * A node is considered "active" if it is a live node, or the
107     * first or last node. Active nodes cannot be unlinked.
108     *
109     * A "self-link" is a next or prev reference that is the same node:
110     * p.prev == p or p.next == p
111     * Self-links are used in the node unlinking process. Active nodes
112     * never have self-links.
113     *
114     * A node p is active if and only if:
115     *
116     * p.item != null ||
117     * (p.prev == null && p.next != p) ||
118     * (p.next == null && p.prev != p)
119     *
120     * The deque object has two node references, "head" and "tail".
121     * The head and tail are only approximations to the first and last
122     * nodes of the deque. The first node can always be found by
123     * following prev pointers from head; likewise for tail. However,
124     * it is permissible for head and tail to be referring to deleted
125     * nodes that have been unlinked and so may not be reachable from
126     * any live node.
127     *
128     * There are 3 stages of node deletion;
129     * "logical deletion", "unlinking", and "gc-unlinking".
130     *
131     * 1. "logical deletion" by CASing item to null atomically removes
132     * the element from the collection, and makes the containing node
133     * eligible for unlinking.
134     *
135     * 2. "unlinking" makes a deleted node unreachable from active
136     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
137     * may remain reachable indefinitely from an iterator.
138     *
139     * Physical node unlinking is merely an optimization (albeit a
140     * critical one), and so can be performed at our convenience. At
141     * any time, the set of live nodes maintained by prev and next
142     * links are identical, that is, the live nodes found via next
143     * links from the first node is equal to the elements found via
144     * prev links from the last node. However, this is not true for
145     * nodes that have already been logically deleted - such nodes may
146     * be reachable in one direction only.
147     *
148     * 3. "gc-unlinking" takes unlinking further by making active
149     * nodes unreachable from deleted nodes, making it easier for the
150     * GC to reclaim future deleted nodes. This step makes the data
151     * structure "gc-robust", as first described in detail by Boehm
152     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
153     *
154     * GC-unlinked nodes may remain reachable indefinitely from an
155     * iterator, but unlike unlinked nodes, are never reachable from
156     * head or tail.
157     *
158     * Making the data structure GC-robust will eliminate the risk of
159     * unbounded memory retention with conservative GCs and is likely
160     * to improve performance with generational GCs.
161     *
162     * When a node is dequeued at either end, e.g. via poll(), we would
163     * like to break any references from the node to active nodes. We
164     * develop further the use of self-links that was very effective in
165     * other concurrent collection classes. The idea is to replace
166     * prev and next pointers with special values that are interpreted
167     * to mean off-the-list-at-one-end. These are approximations, but
168     * good enough to preserve the properties we want in our
169     * traversals, e.g. we guarantee that a traversal will never visit
170     * the same element twice, but we don't guarantee whether a
171     * traversal that runs out of elements will be able to see more
172     * elements later after enqueues at that end. Doing gc-unlinking
173     * safely is particularly tricky, since any node can be in use
174     * indefinitely (for example by an iterator). We must ensure that
175     * the nodes pointed at by head/tail never get gc-unlinked, since
176     * head/tail are needed to get "back on track" by other nodes that
177     * are gc-unlinked. gc-unlinking accounts for much of the
178     * implementation complexity.
179     *
180     * Since neither unlinking nor gc-unlinking are necessary for
181     * correctness, there are many implementation choices regarding
182     * frequency (eagerness) of these operations. Since volatile
183     * reads are likely to be much cheaper than CASes, saving CASes by
184     * unlinking multiple adjacent nodes at a time may be a win.
185     * gc-unlinking can be performed rarely and still be effective,
186     * since it is most important that long chains of deleted nodes
187     * are occasionally broken.
188     *
189     * The actual representation we use is that p.next == p means to
190     * goto the first node (which in turn is reached by following prev
191     * pointers from head), and p.next == null && p.prev == p means
192     * that the iteration is at an end and that p is a (static final)
193     * dummy node, NEXT_TERMINATOR, and not the last active node.
194     * Finishing the iteration when encountering such a TERMINATOR is
195     * good enough for read-only traversals, so such traversals can use
196     * p.next == null as the termination condition. When we need to
197     * find the last (active) node, for enqueueing a new node, we need
198     * to check whether we have reached a TERMINATOR node; if so,
199     * restart traversal from tail.
200     *
201     * The implementation is completely directionally symmetrical,
202     * except that most public methods that iterate through the list
203     * follow next pointers ("forward" direction).
204     *
205     * We believe (without full proof) that all single-element deque
206     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
207     * (see Herlihy and Shavit's book). However, some combinations of
208     * operations are known not to be linearizable. In particular,
209     * when an addFirst(A) is racing with pollFirst() removing B, it is
210     * possible for an observer iterating over the elements to observe
211     * A B C and subsequently observe A C, even though no interior
212     * removes are ever performed. Nevertheless, iterators behave
213     * reasonably, providing the "weakly consistent" guarantees.
214     *
215     * Empirically, microbenchmarks suggest that this class adds about
216     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
217     * good as we can hope for.
218     */
219    
220     private static final long serialVersionUID = 876323262645176354L;
221    
222     /**
223     * A node from which the first node on list (that is, the unique node p
224     * with p.prev == null && p.next != p) can be reached in O(1) time.
225     * Invariants:
226     * - the first node is always O(1) reachable from head via prev links
227     * - all live nodes are reachable from the first node via succ()
228     * - head != null
229     * - (tmp = head).next != tmp || tmp != head
230     * - head is never gc-unlinked (but may be unlinked)
231     * Non-invariants:
232     * - head.item may or may not be null
233     * - head may not be reachable from the first or last node, or from tail
234     */
235     private transient volatile Node<E> head;
236    
237     /**
238     * A node from which the last node on list (that is, the unique node p
239     * with p.next == null && p.prev != p) can be reached in O(1) time.
240     * Invariants:
241     * - the last node is always O(1) reachable from tail via next links
242     * - all live nodes are reachable from the last node via pred()
243     * - tail != null
244     * - tail is never gc-unlinked (but may be unlinked)
245     * Non-invariants:
246     * - tail.item may or may not be null
247     * - tail may not be reachable from the first or last node, or from head
248     */
249     private transient volatile Node<E> tail;
250    
251     private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
252    
253     @SuppressWarnings("unchecked")
254     Node<E> prevTerminator() {
255     return (Node<E>) PREV_TERMINATOR;
256     }
257    
258     @SuppressWarnings("unchecked")
259     Node<E> nextTerminator() {
260     return (Node<E>) NEXT_TERMINATOR;
261     }
262    
263     static final class Node<E> {
264     volatile Node<E> prev;
265     volatile E item;
266     volatile Node<E> next;
267    
268     Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
269     }
270    
271     /**
272     * Constructs a new node. Uses relaxed write because item can
273     * only be seen after publication via casNext or casPrev.
274     */
275     Node(E item) {
276     UNSAFE.putObject(this, itemOffset, item);
277     }
278    
279     boolean casItem(E cmp, E val) {
280     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
281     }
282    
283     void lazySetNext(Node<E> val) {
284     UNSAFE.putOrderedObject(this, nextOffset, val);
285     }
286    
287     boolean casNext(Node<E> cmp, Node<E> val) {
288     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
289     }
290    
291     void lazySetPrev(Node<E> val) {
292     UNSAFE.putOrderedObject(this, prevOffset, val);
293     }
294    
295     boolean casPrev(Node<E> cmp, Node<E> val) {
296     return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
297     }
298    
299     // Unsafe mechanics
300    
301     private static final sun.misc.Unsafe UNSAFE;
302     private static final long prevOffset;
303     private static final long itemOffset;
304     private static final long nextOffset;
305    
306     static {
307     try {
308     UNSAFE = getUnsafe();
309 jsr166 1.2 Class<?> k = Node.class;
310 dl 1.1 prevOffset = UNSAFE.objectFieldOffset
311     (k.getDeclaredField("prev"));
312     itemOffset = UNSAFE.objectFieldOffset
313     (k.getDeclaredField("item"));
314     nextOffset = UNSAFE.objectFieldOffset
315     (k.getDeclaredField("next"));
316     } catch (Exception e) {
317     throw new Error(e);
318     }
319     }
320     }
321    
322     /**
323     * Links e as first element.
324     */
325     private void linkFirst(E e) {
326     checkNotNull(e);
327     final Node<E> newNode = new Node<E>(e);
328    
329     restartFromHead:
330     for (;;)
331     for (Node<E> h = head, p = h, q;;) {
332     if ((q = p.prev) != null &&
333     (q = (p = q).prev) != null)
334     // Check for head updates every other hop.
335     // If p == q, we are sure to follow head instead.
336     p = (h != (h = head)) ? h : q;
337     else if (p.next == p) // PREV_TERMINATOR
338     continue restartFromHead;
339     else {
340     // p is first node
341     newNode.lazySetNext(p); // CAS piggyback
342     if (p.casPrev(null, newNode)) {
343     // Successful CAS is the linearization point
344     // for e to become an element of this deque,
345     // and for newNode to become "live".
346     if (p != h) // hop two nodes at a time
347     casHead(h, newNode); // Failure is OK.
348     return;
349     }
350     // Lost CAS race to another thread; re-read prev
351     }
352     }
353     }
354    
355     /**
356     * Links e as last element.
357     */
358     private void linkLast(E e) {
359     checkNotNull(e);
360     final Node<E> newNode = new Node<E>(e);
361    
362     restartFromTail:
363     for (;;)
364     for (Node<E> t = tail, p = t, q;;) {
365     if ((q = p.next) != null &&
366     (q = (p = q).next) != null)
367     // Check for tail updates every other hop.
368     // If p == q, we are sure to follow tail instead.
369     p = (t != (t = tail)) ? t : q;
370     else if (p.prev == p) // NEXT_TERMINATOR
371     continue restartFromTail;
372     else {
373     // p is last node
374     newNode.lazySetPrev(p); // CAS piggyback
375     if (p.casNext(null, newNode)) {
376     // Successful CAS is the linearization point
377     // for e to become an element of this deque,
378     // and for newNode to become "live".
379     if (p != t) // hop two nodes at a time
380     casTail(t, newNode); // Failure is OK.
381     return;
382     }
383     // Lost CAS race to another thread; re-read next
384     }
385     }
386     }
387    
388     private static final int HOPS = 2;
389    
390     /**
391     * Unlinks non-null node x.
392     */
393     void unlink(Node<E> x) {
394     // assert x != null;
395     // assert x.item == null;
396     // assert x != PREV_TERMINATOR;
397     // assert x != NEXT_TERMINATOR;
398    
399     final Node<E> prev = x.prev;
400     final Node<E> next = x.next;
401     if (prev == null) {
402     unlinkFirst(x, next);
403     } else if (next == null) {
404     unlinkLast(x, prev);
405     } else {
406     // Unlink interior node.
407     //
408     // This is the common case, since a series of polls at the
409     // same end will be "interior" removes, except perhaps for
410     // the first one, since end nodes cannot be unlinked.
411     //
412     // At any time, all active nodes are mutually reachable by
413     // following a sequence of either next or prev pointers.
414     //
415     // Our strategy is to find the unique active predecessor
416     // and successor of x. Try to fix up their links so that
417     // they point to each other, leaving x unreachable from
418     // active nodes. If successful, and if x has no live
419     // predecessor/successor, we additionally try to gc-unlink,
420     // leaving active nodes unreachable from x, by rechecking
421     // that the status of predecessor and successor are
422     // unchanged and ensuring that x is not reachable from
423     // tail/head, before setting x's prev/next links to their
424     // logical approximate replacements, self/TERMINATOR.
425     Node<E> activePred, activeSucc;
426     boolean isFirst, isLast;
427     int hops = 1;
428    
429     // Find active predecessor
430     for (Node<E> p = prev; ; ++hops) {
431     if (p.item != null) {
432     activePred = p;
433     isFirst = false;
434     break;
435     }
436     Node<E> q = p.prev;
437     if (q == null) {
438     if (p.next == p)
439     return;
440     activePred = p;
441     isFirst = true;
442     break;
443     }
444     else if (p == q)
445     return;
446     else
447     p = q;
448     }
449    
450     // Find active successor
451     for (Node<E> p = next; ; ++hops) {
452     if (p.item != null) {
453     activeSucc = p;
454     isLast = false;
455     break;
456     }
457     Node<E> q = p.next;
458     if (q == null) {
459     if (p.prev == p)
460     return;
461     activeSucc = p;
462     isLast = true;
463     break;
464     }
465     else if (p == q)
466     return;
467     else
468     p = q;
469     }
470    
471     // TODO: better HOP heuristics
472     if (hops < HOPS
473     // always squeeze out interior deleted nodes
474     && (isFirst | isLast))
475     return;
476    
477     // Squeeze out deleted nodes between activePred and
478     // activeSucc, including x.
479     skipDeletedSuccessors(activePred);
480     skipDeletedPredecessors(activeSucc);
481    
482     // Try to gc-unlink, if possible
483     if ((isFirst | isLast) &&
484    
485     // Recheck expected state of predecessor and successor
486     (activePred.next == activeSucc) &&
487     (activeSucc.prev == activePred) &&
488     (isFirst ? activePred.prev == null : activePred.item != null) &&
489     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
490    
491     updateHead(); // Ensure x is not reachable from head
492     updateTail(); // Ensure x is not reachable from tail
493    
494     // Finally, actually gc-unlink
495     x.lazySetPrev(isFirst ? prevTerminator() : x);
496     x.lazySetNext(isLast ? nextTerminator() : x);
497     }
498     }
499     }
500    
501     /**
502     * Unlinks non-null first node.
503     */
504     private void unlinkFirst(Node<E> first, Node<E> next) {
505     // assert first != null;
506     // assert next != null;
507     // assert first.item == null;
508     for (Node<E> o = null, p = next, q;;) {
509     if (p.item != null || (q = p.next) == null) {
510     if (o != null && p.prev != p && first.casNext(next, p)) {
511     skipDeletedPredecessors(p);
512     if (first.prev == null &&
513     (p.next == null || p.item != null) &&
514     p.prev == first) {
515    
516     updateHead(); // Ensure o is not reachable from head
517     updateTail(); // Ensure o is not reachable from tail
518    
519     // Finally, actually gc-unlink
520     o.lazySetNext(o);
521     o.lazySetPrev(prevTerminator());
522     }
523     }
524     return;
525     }
526     else if (p == q)
527     return;
528     else {
529     o = p;
530     p = q;
531     }
532     }
533     }
534    
535     /**
536     * Unlinks non-null last node.
537     */
538     private void unlinkLast(Node<E> last, Node<E> prev) {
539     // assert last != null;
540     // assert prev != null;
541     // assert last.item == null;
542     for (Node<E> o = null, p = prev, q;;) {
543     if (p.item != null || (q = p.prev) == null) {
544     if (o != null && p.next != p && last.casPrev(prev, p)) {
545     skipDeletedSuccessors(p);
546     if (last.next == null &&
547     (p.prev == null || p.item != null) &&
548     p.next == last) {
549    
550     updateHead(); // Ensure o is not reachable from head
551     updateTail(); // Ensure o is not reachable from tail
552    
553     // Finally, actually gc-unlink
554     o.lazySetPrev(o);
555     o.lazySetNext(nextTerminator());
556     }
557     }
558     return;
559     }
560     else if (p == q)
561     return;
562     else {
563     o = p;
564     p = q;
565     }
566     }
567     }
568    
569     /**
570     * Guarantees that any node which was unlinked before a call to
571     * this method will be unreachable from head after it returns.
572     * Does not guarantee to eliminate slack, only that head will
573     * point to a node that was active while this method was running.
574     */
575     private final void updateHead() {
576     // Either head already points to an active node, or we keep
577     // trying to cas it to the first node until it does.
578     Node<E> h, p, q;
579     restartFromHead:
580     while ((h = head).item == null && (p = h.prev) != null) {
581     for (;;) {
582     if ((q = p.prev) == null ||
583     (q = (p = q).prev) == null) {
584     // It is possible that p is PREV_TERMINATOR,
585     // but if so, the CAS is guaranteed to fail.
586     if (casHead(h, p))
587     return;
588     else
589     continue restartFromHead;
590     }
591     else if (h != head)
592     continue restartFromHead;
593     else
594     p = q;
595     }
596     }
597     }
598    
599     /**
600     * Guarantees that any node which was unlinked before a call to
601     * this method will be unreachable from tail after it returns.
602     * Does not guarantee to eliminate slack, only that tail will
603     * point to a node that was active while this method was running.
604     */
605     private final void updateTail() {
606     // Either tail already points to an active node, or we keep
607     // trying to cas it to the last node until it does.
608     Node<E> t, p, q;
609     restartFromTail:
610     while ((t = tail).item == null && (p = t.next) != null) {
611     for (;;) {
612     if ((q = p.next) == null ||
613     (q = (p = q).next) == null) {
614     // It is possible that p is NEXT_TERMINATOR,
615     // but if so, the CAS is guaranteed to fail.
616     if (casTail(t, p))
617     return;
618     else
619     continue restartFromTail;
620     }
621     else if (t != tail)
622     continue restartFromTail;
623     else
624     p = q;
625     }
626     }
627     }
628    
629     private void skipDeletedPredecessors(Node<E> x) {
630     whileActive:
631     do {
632     Node<E> prev = x.prev;
633     // assert prev != null;
634     // assert x != NEXT_TERMINATOR;
635     // assert x != PREV_TERMINATOR;
636     Node<E> p = prev;
637     findActive:
638     for (;;) {
639     if (p.item != null)
640     break findActive;
641     Node<E> q = p.prev;
642     if (q == null) {
643     if (p.next == p)
644     continue whileActive;
645     break findActive;
646     }
647     else if (p == q)
648     continue whileActive;
649     else
650     p = q;
651     }
652    
653     // found active CAS target
654     if (prev == p || x.casPrev(prev, p))
655     return;
656    
657     } while (x.item != null || x.next == null);
658     }
659    
660     private void skipDeletedSuccessors(Node<E> x) {
661     whileActive:
662     do {
663     Node<E> next = x.next;
664     // assert next != null;
665     // assert x != NEXT_TERMINATOR;
666     // assert x != PREV_TERMINATOR;
667     Node<E> p = next;
668     findActive:
669     for (;;) {
670     if (p.item != null)
671     break findActive;
672     Node<E> q = p.next;
673     if (q == null) {
674     if (p.prev == p)
675     continue whileActive;
676     break findActive;
677     }
678     else if (p == q)
679     continue whileActive;
680     else
681     p = q;
682     }
683    
684     // found active CAS target
685     if (next == p || x.casNext(next, p))
686     return;
687    
688     } while (x.item != null || x.prev == null);
689     }
690    
691     /**
692     * Returns the successor of p, or the first node if p.next has been
693     * linked to self, which will only be true if traversing with a
694     * stale pointer that is now off the list.
695     */
696     final Node<E> succ(Node<E> p) {
697     // TODO: should we skip deleted nodes here?
698     Node<E> q = p.next;
699     return (p == q) ? first() : q;
700     }
701    
702     /**
703     * Returns the predecessor of p, or the last node if p.prev has been
704     * linked to self, which will only be true if traversing with a
705     * stale pointer that is now off the list.
706     */
707     final Node<E> pred(Node<E> p) {
708     Node<E> q = p.prev;
709     return (p == q) ? last() : q;
710     }
711    
712     /**
713     * Returns the first node, the unique node p for which:
714     * p.prev == null && p.next != p
715     * The returned node may or may not be logically deleted.
716     * Guarantees that head is set to the returned node.
717     */
718     Node<E> first() {
719     restartFromHead:
720     for (;;)
721     for (Node<E> h = head, p = h, q;;) {
722     if ((q = p.prev) != null &&
723     (q = (p = q).prev) != null)
724     // Check for head updates every other hop.
725     // If p == q, we are sure to follow head instead.
726     p = (h != (h = head)) ? h : q;
727     else if (p == h
728     // It is possible that p is PREV_TERMINATOR,
729     // but if so, the CAS is guaranteed to fail.
730     || casHead(h, p))
731     return p;
732     else
733     continue restartFromHead;
734     }
735     }
736    
737     /**
738     * Returns the last node, the unique node p for which:
739     * p.next == null && p.prev != p
740     * The returned node may or may not be logically deleted.
741     * Guarantees that tail is set to the returned node.
742     */
743     Node<E> last() {
744     restartFromTail:
745     for (;;)
746     for (Node<E> t = tail, p = t, q;;) {
747     if ((q = p.next) != null &&
748     (q = (p = q).next) != null)
749     // Check for tail updates every other hop.
750     // If p == q, we are sure to follow tail instead.
751     p = (t != (t = tail)) ? t : q;
752     else if (p == t
753     // It is possible that p is NEXT_TERMINATOR,
754     // but if so, the CAS is guaranteed to fail.
755     || casTail(t, p))
756     return p;
757     else
758     continue restartFromTail;
759     }
760     }
761    
762     // Minor convenience utilities
763    
764     /**
765     * Throws NullPointerException if argument is null.
766     *
767     * @param v the element
768     */
769     private static void checkNotNull(Object v) {
770     if (v == null)
771     throw new NullPointerException();
772     }
773    
774     /**
775     * Returns element unless it is null, in which case throws
776     * NoSuchElementException.
777     *
778     * @param v the element
779     * @return the element
780     */
781     private E screenNullResult(E v) {
782     if (v == null)
783     throw new NoSuchElementException();
784     return v;
785     }
786    
787     /**
788     * Creates an array list and fills it with elements of this list.
789     * Used by toArray.
790     *
791     * @return the arrayList
792     */
793     private ArrayList<E> toArrayList() {
794     ArrayList<E> list = new ArrayList<E>();
795     for (Node<E> p = first(); p != null; p = succ(p)) {
796     E item = p.item;
797     if (item != null)
798     list.add(item);
799     }
800     return list;
801     }
802    
803     /**
804     * Constructs an empty deque.
805     */
806     public ConcurrentLinkedDeque() {
807     head = tail = new Node<E>(null);
808     }
809    
810     /**
811     * Constructs a deque initially containing the elements of
812     * the given collection, added in traversal order of the
813     * collection's iterator.
814     *
815     * @param c the collection of elements to initially contain
816     * @throws NullPointerException if the specified collection or any
817     * of its elements are null
818     */
819     public ConcurrentLinkedDeque(Collection<? extends E> c) {
820     // Copy c into a private chain of Nodes
821     Node<E> h = null, t = null;
822     for (E e : c) {
823     checkNotNull(e);
824     Node<E> newNode = new Node<E>(e);
825     if (h == null)
826     h = t = newNode;
827     else {
828     t.lazySetNext(newNode);
829     newNode.lazySetPrev(t);
830     t = newNode;
831     }
832     }
833     initHeadTail(h, t);
834     }
835    
836     /**
837     * Initializes head and tail, ensuring invariants hold.
838     */
839     private void initHeadTail(Node<E> h, Node<E> t) {
840     if (h == t) {
841     if (h == null)
842     h = t = new Node<E>(null);
843     else {
844     // Avoid edge case of a single Node with non-null item.
845     Node<E> newNode = new Node<E>(null);
846     t.lazySetNext(newNode);
847     newNode.lazySetPrev(t);
848     t = newNode;
849     }
850     }
851     head = h;
852     tail = t;
853     }
854    
855     /**
856     * Inserts the specified element at the front of this deque.
857     * As the deque is unbounded, this method will never throw
858     * {@link IllegalStateException}.
859     *
860     * @throws NullPointerException if the specified element is null
861     */
862     public void addFirst(E e) {
863     linkFirst(e);
864     }
865    
866     /**
867     * Inserts the specified element at the end of this deque.
868     * As the deque is unbounded, this method will never throw
869     * {@link IllegalStateException}.
870     *
871     * <p>This method is equivalent to {@link #add}.
872     *
873     * @throws NullPointerException if the specified element is null
874     */
875     public void addLast(E e) {
876     linkLast(e);
877     }
878    
879     /**
880     * Inserts the specified element at the front of this deque.
881     * As the deque is unbounded, this method will never return {@code false}.
882     *
883     * @return {@code true} (as specified by {@link Deque#offerFirst})
884     * @throws NullPointerException if the specified element is null
885     */
886     public boolean offerFirst(E e) {
887     linkFirst(e);
888     return true;
889     }
890    
891     /**
892     * Inserts the specified element at the end of this deque.
893     * As the deque is unbounded, this method will never return {@code false}.
894     *
895     * <p>This method is equivalent to {@link #add}.
896     *
897     * @return {@code true} (as specified by {@link Deque#offerLast})
898     * @throws NullPointerException if the specified element is null
899     */
900     public boolean offerLast(E e) {
901     linkLast(e);
902     return true;
903     }
904    
905     public E peekFirst() {
906     for (Node<E> p = first(); p != null; p = succ(p)) {
907     E item = p.item;
908     if (item != null)
909     return item;
910     }
911     return null;
912     }
913    
914     public E peekLast() {
915     for (Node<E> p = last(); p != null; p = pred(p)) {
916     E item = p.item;
917     if (item != null)
918     return item;
919     }
920     return null;
921     }
922    
923     /**
924     * @throws NoSuchElementException {@inheritDoc}
925     */
926     public E getFirst() {
927     return screenNullResult(peekFirst());
928     }
929    
930     /**
931     * @throws NoSuchElementException {@inheritDoc}
932     */
933     public E getLast() {
934     return screenNullResult(peekLast());
935     }
936    
937     public E pollFirst() {
938     for (Node<E> p = first(); p != null; p = succ(p)) {
939     E item = p.item;
940     if (item != null && p.casItem(item, null)) {
941     unlink(p);
942     return item;
943     }
944     }
945     return null;
946     }
947    
948     public E pollLast() {
949     for (Node<E> p = last(); p != null; p = pred(p)) {
950     E item = p.item;
951     if (item != null && p.casItem(item, null)) {
952     unlink(p);
953     return item;
954     }
955     }
956     return null;
957     }
958    
959     /**
960     * @throws NoSuchElementException {@inheritDoc}
961     */
962     public E removeFirst() {
963     return screenNullResult(pollFirst());
964     }
965    
966     /**
967     * @throws NoSuchElementException {@inheritDoc}
968     */
969     public E removeLast() {
970     return screenNullResult(pollLast());
971     }
972    
973     // *** Queue and stack methods ***
974    
975     /**
976     * Inserts the specified element at the tail of this deque.
977     * As the deque is unbounded, this method will never return {@code false}.
978     *
979     * @return {@code true} (as specified by {@link Queue#offer})
980     * @throws NullPointerException if the specified element is null
981     */
982     public boolean offer(E e) {
983     return offerLast(e);
984     }
985    
986     /**
987     * Inserts the specified element at the tail of this deque.
988     * As the deque is unbounded, this method will never throw
989     * {@link IllegalStateException} or return {@code false}.
990     *
991     * @return {@code true} (as specified by {@link Collection#add})
992     * @throws NullPointerException if the specified element is null
993     */
994     public boolean add(E e) {
995     return offerLast(e);
996     }
997    
998     public E poll() { return pollFirst(); }
999     public E remove() { return removeFirst(); }
1000     public E peek() { return peekFirst(); }
1001     public E element() { return getFirst(); }
1002     public void push(E e) { addFirst(e); }
1003     public E pop() { return removeFirst(); }
1004    
1005     /**
1006     * Removes the first element {@code e} such that
1007     * {@code o.equals(e)}, if such an element exists in this deque.
1008     * If the deque does not contain the element, it is unchanged.
1009     *
1010     * @param o element to be removed from this deque, if present
1011     * @return {@code true} if the deque contained the specified element
1012     * @throws NullPointerException if the specified element is null
1013     */
1014     public boolean removeFirstOccurrence(Object o) {
1015     checkNotNull(o);
1016     for (Node<E> p = first(); p != null; p = succ(p)) {
1017     E item = p.item;
1018     if (item != null && o.equals(item) && p.casItem(item, null)) {
1019     unlink(p);
1020     return true;
1021     }
1022     }
1023     return false;
1024     }
1025    
1026     /**
1027     * Removes the last element {@code e} such that
1028     * {@code o.equals(e)}, if such an element exists in this deque.
1029     * If the deque does not contain the element, it is unchanged.
1030     *
1031     * @param o element to be removed from this deque, if present
1032     * @return {@code true} if the deque contained the specified element
1033     * @throws NullPointerException if the specified element is null
1034     */
1035     public boolean removeLastOccurrence(Object o) {
1036     checkNotNull(o);
1037     for (Node<E> p = last(); p != null; p = pred(p)) {
1038     E item = p.item;
1039     if (item != null && o.equals(item) && p.casItem(item, null)) {
1040     unlink(p);
1041     return true;
1042     }
1043     }
1044     return false;
1045     }
1046    
1047     /**
1048     * Returns {@code true} if this deque contains at least one
1049     * element {@code e} such that {@code o.equals(e)}.
1050     *
1051     * @param o element whose presence in this deque is to be tested
1052     * @return {@code true} if this deque contains the specified element
1053     */
1054     public boolean contains(Object o) {
1055     if (o == null) return false;
1056     for (Node<E> p = first(); p != null; p = succ(p)) {
1057     E item = p.item;
1058     if (item != null && o.equals(item))
1059     return true;
1060     }
1061     return false;
1062     }
1063    
1064     /**
1065     * Returns {@code true} if this collection contains no elements.
1066     *
1067     * @return {@code true} if this collection contains no elements
1068     */
1069     public boolean isEmpty() {
1070     return peekFirst() == null;
1071     }
1072    
1073     /**
1074     * Returns the number of elements in this deque. If this deque
1075     * contains more than {@code Integer.MAX_VALUE} elements, it
1076     * returns {@code Integer.MAX_VALUE}.
1077     *
1078     * <p>Beware that, unlike in most collections, this method is
1079     * <em>NOT</em> a constant-time operation. Because of the
1080     * asynchronous nature of these deques, determining the current
1081     * number of elements requires traversing them all to count them.
1082     * Additionally, it is possible for the size to change during
1083     * execution of this method, in which case the returned result
1084     * will be inaccurate. Thus, this method is typically not very
1085     * useful in concurrent applications.
1086     *
1087     * @return the number of elements in this deque
1088     */
1089     public int size() {
1090     int count = 0;
1091     for (Node<E> p = first(); p != null; p = succ(p))
1092     if (p.item != null)
1093     // Collection.size() spec says to max out
1094     if (++count == Integer.MAX_VALUE)
1095     break;
1096     return count;
1097     }
1098    
1099     /**
1100     * Removes the first element {@code e} such that
1101     * {@code o.equals(e)}, if such an element exists in this deque.
1102     * If the deque does not contain the element, it is unchanged.
1103     *
1104     * @param o element to be removed from this deque, if present
1105     * @return {@code true} if the deque contained the specified element
1106     * @throws NullPointerException if the specified element is null
1107     */
1108     public boolean remove(Object o) {
1109     return removeFirstOccurrence(o);
1110     }
1111    
1112     /**
1113     * Appends all of the elements in the specified collection to the end of
1114     * this deque, in the order that they are returned by the specified
1115     * collection's iterator. Attempts to {@code addAll} of a deque to
1116     * itself result in {@code IllegalArgumentException}.
1117     *
1118     * @param c the elements to be inserted into this deque
1119     * @return {@code true} if this deque changed as a result of the call
1120     * @throws NullPointerException if the specified collection or any
1121     * of its elements are null
1122     * @throws IllegalArgumentException if the collection is this deque
1123     */
1124     public boolean addAll(Collection<? extends E> c) {
1125     if (c == this)
1126     // As historically specified in AbstractQueue#addAll
1127     throw new IllegalArgumentException();
1128    
1129     // Copy c into a private chain of Nodes
1130     Node<E> beginningOfTheEnd = null, last = null;
1131     for (E e : c) {
1132     checkNotNull(e);
1133     Node<E> newNode = new Node<E>(e);
1134     if (beginningOfTheEnd == null)
1135     beginningOfTheEnd = last = newNode;
1136     else {
1137     last.lazySetNext(newNode);
1138     newNode.lazySetPrev(last);
1139     last = newNode;
1140     }
1141     }
1142     if (beginningOfTheEnd == null)
1143     return false;
1144    
1145     // Atomically append the chain at the tail of this collection
1146     restartFromTail:
1147     for (;;)
1148     for (Node<E> t = tail, p = t, q;;) {
1149     if ((q = p.next) != null &&
1150     (q = (p = q).next) != null)
1151     // Check for tail updates every other hop.
1152     // If p == q, we are sure to follow tail instead.
1153     p = (t != (t = tail)) ? t : q;
1154     else if (p.prev == p) // NEXT_TERMINATOR
1155     continue restartFromTail;
1156     else {
1157     // p is last node
1158     beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1159     if (p.casNext(null, beginningOfTheEnd)) {
1160     // Successful CAS is the linearization point
1161     // for all elements to be added to this deque.
1162     if (!casTail(t, last)) {
1163     // Try a little harder to update tail,
1164     // since we may be adding many elements.
1165     t = tail;
1166     if (last.next == null)
1167     casTail(t, last);
1168     }
1169     return true;
1170     }
1171     // Lost CAS race to another thread; re-read next
1172     }
1173     }
1174     }
1175    
1176     /**
1177     * Removes all of the elements from this deque.
1178     */
1179     public void clear() {
1180     while (pollFirst() != null)
1181     ;
1182     }
1183    
1184     /**
1185     * Returns an array containing all of the elements in this deque, in
1186     * proper sequence (from first to last element).
1187     *
1188     * <p>The returned array will be "safe" in that no references to it are
1189     * maintained by this deque. (In other words, this method must allocate
1190     * a new array). The caller is thus free to modify the returned array.
1191     *
1192     * <p>This method acts as bridge between array-based and collection-based
1193     * APIs.
1194     *
1195     * @return an array containing all of the elements in this deque
1196     */
1197     public Object[] toArray() {
1198     return toArrayList().toArray();
1199     }
1200    
1201     /**
1202     * Returns an array containing all of the elements in this deque,
1203     * in proper sequence (from first to last element); the runtime
1204     * type of the returned array is that of the specified array. If
1205     * the deque fits in the specified array, it is returned therein.
1206     * Otherwise, a new array is allocated with the runtime type of
1207     * the specified array and the size of this deque.
1208     *
1209     * <p>If this deque fits in the specified array with room to spare
1210     * (i.e., the array has more elements than this deque), the element in
1211     * the array immediately following the end of the deque is set to
1212     * {@code null}.
1213     *
1214     * <p>Like the {@link #toArray()} method, this method acts as
1215     * bridge between array-based and collection-based APIs. Further,
1216     * this method allows precise control over the runtime type of the
1217     * output array, and may, under certain circumstances, be used to
1218     * save allocation costs.
1219     *
1220     * <p>Suppose {@code x} is a deque known to contain only strings.
1221     * The following code can be used to dump the deque into a newly
1222     * allocated array of {@code String}:
1223     *
1224     * <pre>
1225     * String[] y = x.toArray(new String[0]);</pre>
1226     *
1227     * Note that {@code toArray(new Object[0])} is identical in function to
1228     * {@code toArray()}.
1229     *
1230     * @param a the array into which the elements of the deque are to
1231     * be stored, if it is big enough; otherwise, a new array of the
1232     * same runtime type is allocated for this purpose
1233     * @return an array containing all of the elements in this deque
1234     * @throws ArrayStoreException if the runtime type of the specified array
1235     * is not a supertype of the runtime type of every element in
1236     * this deque
1237     * @throws NullPointerException if the specified array is null
1238     */
1239     public <T> T[] toArray(T[] a) {
1240     return toArrayList().toArray(a);
1241     }
1242    
1243     /**
1244     * Returns an iterator over the elements in this deque in proper sequence.
1245     * The elements will be returned in order from first (head) to last (tail).
1246     *
1247     * <p>The returned iterator is a "weakly consistent" iterator that
1248     * will never throw {@link java.util.ConcurrentModificationException
1249     * ConcurrentModificationException}, and guarantees to traverse
1250     * elements as they existed upon construction of the iterator, and
1251     * may (but is not guaranteed to) reflect any modifications
1252     * subsequent to construction.
1253     *
1254     * @return an iterator over the elements in this deque in proper sequence
1255     */
1256     public Iterator<E> iterator() {
1257     return new Itr();
1258     }
1259    
1260     /**
1261     * Returns an iterator over the elements in this deque in reverse
1262     * sequential order. The elements will be returned in order from
1263     * last (tail) to first (head).
1264     *
1265     * <p>The returned iterator is a "weakly consistent" iterator that
1266     * will never throw {@link java.util.ConcurrentModificationException
1267     * ConcurrentModificationException}, and guarantees to traverse
1268     * elements as they existed upon construction of the iterator, and
1269     * may (but is not guaranteed to) reflect any modifications
1270     * subsequent to construction.
1271     *
1272     * @return an iterator over the elements in this deque in reverse order
1273     */
1274     public Iterator<E> descendingIterator() {
1275     return new DescendingItr();
1276     }
1277    
1278     private abstract class AbstractItr implements Iterator<E> {
1279     /**
1280     * Next node to return item for.
1281     */
1282     private Node<E> nextNode;
1283    
1284     /**
1285     * nextItem holds on to item fields because once we claim
1286     * that an element exists in hasNext(), we must return it in
1287     * the following next() call even if it was in the process of
1288     * being removed when hasNext() was called.
1289     */
1290     private E nextItem;
1291    
1292     /**
1293     * Node returned by most recent call to next. Needed by remove.
1294     * Reset to null if this element is deleted by a call to remove.
1295     */
1296     private Node<E> lastRet;
1297    
1298     abstract Node<E> startNode();
1299     abstract Node<E> nextNode(Node<E> p);
1300    
1301     AbstractItr() {
1302     advance();
1303     }
1304    
1305     /**
1306     * Sets nextNode and nextItem to next valid node, or to null
1307     * if no such.
1308     */
1309     private void advance() {
1310     lastRet = nextNode;
1311    
1312     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1313     for (;; p = nextNode(p)) {
1314     if (p == null) {
1315     // p might be active end or TERMINATOR node; both are OK
1316     nextNode = null;
1317     nextItem = null;
1318     break;
1319     }
1320     E item = p.item;
1321     if (item != null) {
1322     nextNode = p;
1323     nextItem = item;
1324     break;
1325     }
1326     }
1327     }
1328    
1329     public boolean hasNext() {
1330     return nextItem != null;
1331     }
1332    
1333     public E next() {
1334     E item = nextItem;
1335     if (item == null) throw new NoSuchElementException();
1336     advance();
1337     return item;
1338     }
1339    
1340     public void remove() {
1341     Node<E> l = lastRet;
1342     if (l == null) throw new IllegalStateException();
1343     l.item = null;
1344     unlink(l);
1345     lastRet = null;
1346     }
1347     }
1348    
1349     /** Forward iterator */
1350     private class Itr extends AbstractItr {
1351     Node<E> startNode() { return first(); }
1352     Node<E> nextNode(Node<E> p) { return succ(p); }
1353     }
1354    
1355     /** Descending iterator */
1356     private class DescendingItr extends AbstractItr {
1357     Node<E> startNode() { return last(); }
1358     Node<E> nextNode(Node<E> p) { return pred(p); }
1359     }
1360    
1361     /**
1362     * Saves the state to a stream (that is, serializes it).
1363     *
1364     * @serialData All of the elements (each an {@code E}) in
1365     * the proper order, followed by a null
1366     * @param s the stream
1367     */
1368     private void writeObject(java.io.ObjectOutputStream s)
1369     throws java.io.IOException {
1370    
1371     // Write out any hidden stuff
1372     s.defaultWriteObject();
1373    
1374     // Write out all elements in the proper order.
1375     for (Node<E> p = first(); p != null; p = succ(p)) {
1376     E item = p.item;
1377     if (item != null)
1378     s.writeObject(item);
1379     }
1380    
1381     // Use trailing null as sentinel
1382     s.writeObject(null);
1383     }
1384    
1385     /**
1386     * Reconstitutes the instance from a stream (that is, deserializes it).
1387     * @param s the stream
1388     */
1389     private void readObject(java.io.ObjectInputStream s)
1390     throws java.io.IOException, ClassNotFoundException {
1391     s.defaultReadObject();
1392    
1393     // Read in elements until trailing null sentinel found
1394     Node<E> h = null, t = null;
1395     Object item;
1396     while ((item = s.readObject()) != null) {
1397     @SuppressWarnings("unchecked")
1398     Node<E> newNode = new Node<E>((E) item);
1399     if (h == null)
1400     h = t = newNode;
1401     else {
1402     t.lazySetNext(newNode);
1403     newNode.lazySetPrev(t);
1404     t = newNode;
1405     }
1406     }
1407     initHeadTail(h, t);
1408     }
1409    
1410    
1411     private boolean casHead(Node<E> cmp, Node<E> val) {
1412     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1413     }
1414    
1415     private boolean casTail(Node<E> cmp, Node<E> val) {
1416     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1417     }
1418    
1419     // Unsafe mechanics
1420    
1421     private static final sun.misc.Unsafe UNSAFE;
1422     private static final long headOffset;
1423     private static final long tailOffset;
1424     static {
1425     PREV_TERMINATOR = new Node<Object>();
1426     PREV_TERMINATOR.next = PREV_TERMINATOR;
1427     NEXT_TERMINATOR = new Node<Object>();
1428     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1429     try {
1430     UNSAFE = getUnsafe();
1431 jsr166 1.2 Class<?> k = ConcurrentLinkedDeque.class;
1432 dl 1.1 headOffset = UNSAFE.objectFieldOffset
1433     (k.getDeclaredField("head"));
1434     tailOffset = UNSAFE.objectFieldOffset
1435     (k.getDeclaredField("tail"));
1436     } catch (Exception e) {
1437     throw new Error(e);
1438     }
1439     }
1440    
1441     /**
1442     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1443     * Replace with a simple call to Unsafe.getUnsafe when integrating
1444     * into a jdk.
1445     *
1446     * @return a sun.misc.Unsafe
1447     */
1448     static sun.misc.Unsafe getUnsafe() {
1449     try {
1450     return sun.misc.Unsafe.getUnsafe();
1451     } catch (SecurityException se) {
1452     try {
1453     return java.security.AccessController.doPrivileged
1454     (new java.security
1455     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1456     public sun.misc.Unsafe run() throws Exception {
1457     java.lang.reflect.Field f = sun.misc
1458     .Unsafe.class.getDeclaredField("theUnsafe");
1459     f.setAccessible(true);
1460     return (sun.misc.Unsafe) f.get(null);
1461     }});
1462     } catch (java.security.PrivilegedActionException e) {
1463     throw new RuntimeException("Could not initialize intrinsics",
1464     e.getCause());
1465     }
1466     }
1467     }
1468    
1469     }