ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ConcurrentLinkedDeque.java
Revision: 1.6
Committed: Sun Jan 13 18:03:32 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.5: +1 -1 lines
Log Message:
javadoc style

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea and Martin Buchholz with assistance from members of
3     * JCP JSR-166 Expert Group and released to the public domain, as explained
4     * at http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166y;
8    
9     import java.util.AbstractCollection;
10     import java.util.ArrayList;
11     import java.util.Collection;
12     import java.util.Deque;
13     import java.util.Iterator;
14     import java.util.NoSuchElementException;
15     import java.util.Queue;
16    
17     /**
18     * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
19     * Concurrent insertion, removal, and access operations execute safely
20     * across multiple threads.
21     * A {@code ConcurrentLinkedDeque} is an appropriate choice when
22     * many threads will share access to a common collection.
23     * Like most other concurrent collection implementations, this class
24     * does not permit the use of {@code null} elements.
25     *
26     * <p>Iterators are <i>weakly consistent</i>, returning elements
27     * reflecting the state of the deque at some point at or since the
28     * creation of the iterator. They do <em>not</em> throw {@link
29     * java.util.ConcurrentModificationException
30     * ConcurrentModificationException}, and may proceed concurrently with
31     * other operations.
32     *
33     * <p>Beware that, unlike in most collections, the {@code size} method
34     * is <em>NOT</em> a constant-time operation. Because of the
35     * asynchronous nature of these deques, determining the current number
36     * of elements requires a traversal of the elements, and so may report
37     * inaccurate results if this collection is modified during traversal.
38     * Additionally, the bulk operations {@code addAll},
39     * {@code removeAll}, {@code retainAll}, {@code containsAll},
40     * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
41     * to be performed atomically. For example, an iterator operating
42     * concurrently with an {@code addAll} operation might view only some
43     * of the added elements.
44     *
45     * <p>This class and its iterator implement all of the <em>optional</em>
46     * methods of the {@link Deque} and {@link Iterator} interfaces.
47     *
48     * <p>Memory consistency effects: As with other concurrent collections,
49     * actions in a thread prior to placing an object into a
50     * {@code ConcurrentLinkedDeque}
51     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52     * actions subsequent to the access or removal of that element from
53     * the {@code ConcurrentLinkedDeque} in another thread.
54     *
55     * <p>This class is a member of the
56     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57     * Java Collections Framework</a>.
58     *
59     * @since 1.7
60     * @author Doug Lea
61     * @author Martin Buchholz
62     * @param <E> the type of elements held in this collection
63     */
64     public class ConcurrentLinkedDeque<E>
65     extends AbstractCollection<E>
66     implements Deque<E>, java.io.Serializable {
67    
68     /*
69     * This is an implementation of a concurrent lock-free deque
70     * supporting interior removes but not interior insertions, as
71     * required to support the entire Deque interface.
72     *
73     * We extend the techniques developed for ConcurrentLinkedQueue and
74     * LinkedTransferQueue (see the internal docs for those classes).
75     * Understanding the ConcurrentLinkedQueue implementation is a
76     * prerequisite for understanding the implementation of this class.
77     *
78     * The data structure is a symmetrical doubly-linked "GC-robust"
79     * linked list of nodes. We minimize the number of volatile writes
80     * using two techniques: advancing multiple hops with a single CAS
81     * and mixing volatile and non-volatile writes of the same memory
82     * locations.
83     *
84     * A node contains the expected E ("item") and links to predecessor
85     * ("prev") and successor ("next") nodes:
86     *
87     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
88     *
89     * A node p is considered "live" if it contains a non-null item
90     * (p.item != null). When an item is CASed to null, the item is
91     * atomically logically deleted from the collection.
92     *
93     * At any time, there is precisely one "first" node with a null
94     * prev reference that terminates any chain of prev references
95     * starting at a live node. Similarly there is precisely one
96     * "last" node terminating any chain of next references starting at
97     * a live node. The "first" and "last" nodes may or may not be live.
98     * The "first" and "last" nodes are always mutually reachable.
99     *
100     * A new element is added atomically by CASing the null prev or
101     * next reference in the first or last node to a fresh node
102     * containing the element. The element's node atomically becomes
103     * "live" at that point.
104     *
105     * A node is considered "active" if it is a live node, or the
106     * first or last node. Active nodes cannot be unlinked.
107     *
108     * A "self-link" is a next or prev reference that is the same node:
109     * p.prev == p or p.next == p
110     * Self-links are used in the node unlinking process. Active nodes
111     * never have self-links.
112     *
113     * A node p is active if and only if:
114     *
115     * p.item != null ||
116     * (p.prev == null && p.next != p) ||
117     * (p.next == null && p.prev != p)
118     *
119     * The deque object has two node references, "head" and "tail".
120     * The head and tail are only approximations to the first and last
121     * nodes of the deque. The first node can always be found by
122     * following prev pointers from head; likewise for tail. However,
123     * it is permissible for head and tail to be referring to deleted
124     * nodes that have been unlinked and so may not be reachable from
125     * any live node.
126     *
127     * There are 3 stages of node deletion;
128     * "logical deletion", "unlinking", and "gc-unlinking".
129     *
130     * 1. "logical deletion" by CASing item to null atomically removes
131     * the element from the collection, and makes the containing node
132     * eligible for unlinking.
133     *
134     * 2. "unlinking" makes a deleted node unreachable from active
135     * nodes, and thus eventually reclaimable by GC. Unlinked nodes
136     * may remain reachable indefinitely from an iterator.
137     *
138     * Physical node unlinking is merely an optimization (albeit a
139     * critical one), and so can be performed at our convenience. At
140     * any time, the set of live nodes maintained by prev and next
141     * links are identical, that is, the live nodes found via next
142     * links from the first node is equal to the elements found via
143     * prev links from the last node. However, this is not true for
144     * nodes that have already been logically deleted - such nodes may
145     * be reachable in one direction only.
146     *
147     * 3. "gc-unlinking" takes unlinking further by making active
148     * nodes unreachable from deleted nodes, making it easier for the
149     * GC to reclaim future deleted nodes. This step makes the data
150     * structure "gc-robust", as first described in detail by Boehm
151     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
152     *
153     * GC-unlinked nodes may remain reachable indefinitely from an
154     * iterator, but unlike unlinked nodes, are never reachable from
155     * head or tail.
156     *
157     * Making the data structure GC-robust will eliminate the risk of
158     * unbounded memory retention with conservative GCs and is likely
159     * to improve performance with generational GCs.
160     *
161     * When a node is dequeued at either end, e.g. via poll(), we would
162     * like to break any references from the node to active nodes. We
163     * develop further the use of self-links that was very effective in
164     * other concurrent collection classes. The idea is to replace
165     * prev and next pointers with special values that are interpreted
166     * to mean off-the-list-at-one-end. These are approximations, but
167     * good enough to preserve the properties we want in our
168     * traversals, e.g. we guarantee that a traversal will never visit
169     * the same element twice, but we don't guarantee whether a
170     * traversal that runs out of elements will be able to see more
171     * elements later after enqueues at that end. Doing gc-unlinking
172     * safely is particularly tricky, since any node can be in use
173     * indefinitely (for example by an iterator). We must ensure that
174     * the nodes pointed at by head/tail never get gc-unlinked, since
175     * head/tail are needed to get "back on track" by other nodes that
176     * are gc-unlinked. gc-unlinking accounts for much of the
177     * implementation complexity.
178     *
179     * Since neither unlinking nor gc-unlinking are necessary for
180     * correctness, there are many implementation choices regarding
181     * frequency (eagerness) of these operations. Since volatile
182     * reads are likely to be much cheaper than CASes, saving CASes by
183     * unlinking multiple adjacent nodes at a time may be a win.
184     * gc-unlinking can be performed rarely and still be effective,
185     * since it is most important that long chains of deleted nodes
186     * are occasionally broken.
187     *
188     * The actual representation we use is that p.next == p means to
189     * goto the first node (which in turn is reached by following prev
190     * pointers from head), and p.next == null && p.prev == p means
191     * that the iteration is at an end and that p is a (static final)
192     * dummy node, NEXT_TERMINATOR, and not the last active node.
193     * Finishing the iteration when encountering such a TERMINATOR is
194     * good enough for read-only traversals, so such traversals can use
195     * p.next == null as the termination condition. When we need to
196     * find the last (active) node, for enqueueing a new node, we need
197     * to check whether we have reached a TERMINATOR node; if so,
198     * restart traversal from tail.
199     *
200     * The implementation is completely directionally symmetrical,
201     * except that most public methods that iterate through the list
202     * follow next pointers ("forward" direction).
203     *
204     * We believe (without full proof) that all single-element deque
205     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
206     * (see Herlihy and Shavit's book). However, some combinations of
207     * operations are known not to be linearizable. In particular,
208     * when an addFirst(A) is racing with pollFirst() removing B, it is
209     * possible for an observer iterating over the elements to observe
210     * A B C and subsequently observe A C, even though no interior
211     * removes are ever performed. Nevertheless, iterators behave
212     * reasonably, providing the "weakly consistent" guarantees.
213     *
214     * Empirically, microbenchmarks suggest that this class adds about
215     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
216     * good as we can hope for.
217     */
218    
219     private static final long serialVersionUID = 876323262645176354L;
220    
221     /**
222     * A node from which the first node on list (that is, the unique node p
223     * with p.prev == null && p.next != p) can be reached in O(1) time.
224     * Invariants:
225     * - the first node is always O(1) reachable from head via prev links
226     * - all live nodes are reachable from the first node via succ()
227     * - head != null
228     * - (tmp = head).next != tmp || tmp != head
229     * - head is never gc-unlinked (but may be unlinked)
230     * Non-invariants:
231     * - head.item may or may not be null
232     * - head may not be reachable from the first or last node, or from tail
233     */
234     private transient volatile Node<E> head;
235    
236     /**
237     * A node from which the last node on list (that is, the unique node p
238     * with p.next == null && p.prev != p) can be reached in O(1) time.
239     * Invariants:
240     * - the last node is always O(1) reachable from tail via next links
241     * - all live nodes are reachable from the last node via pred()
242     * - tail != null
243     * - tail is never gc-unlinked (but may be unlinked)
244     * Non-invariants:
245     * - tail.item may or may not be null
246     * - tail may not be reachable from the first or last node, or from head
247     */
248     private transient volatile Node<E> tail;
249    
250     private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
251    
252     @SuppressWarnings("unchecked")
253     Node<E> prevTerminator() {
254     return (Node<E>) PREV_TERMINATOR;
255     }
256    
257     @SuppressWarnings("unchecked")
258     Node<E> nextTerminator() {
259     return (Node<E>) NEXT_TERMINATOR;
260     }
261    
262     static final class Node<E> {
263     volatile Node<E> prev;
264     volatile E item;
265     volatile Node<E> next;
266    
267     Node() { // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
268     }
269    
270     /**
271     * Constructs a new node. Uses relaxed write because item can
272     * only be seen after publication via casNext or casPrev.
273     */
274     Node(E item) {
275     UNSAFE.putObject(this, itemOffset, item);
276     }
277    
278     boolean casItem(E cmp, E val) {
279     return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
280     }
281    
282     void lazySetNext(Node<E> val) {
283     UNSAFE.putOrderedObject(this, nextOffset, val);
284     }
285    
286     boolean casNext(Node<E> cmp, Node<E> val) {
287     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
288     }
289    
290     void lazySetPrev(Node<E> val) {
291     UNSAFE.putOrderedObject(this, prevOffset, val);
292     }
293    
294     boolean casPrev(Node<E> cmp, Node<E> val) {
295     return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
296     }
297    
298     // Unsafe mechanics
299    
300     private static final sun.misc.Unsafe UNSAFE;
301     private static final long prevOffset;
302     private static final long itemOffset;
303     private static final long nextOffset;
304    
305     static {
306     try {
307     UNSAFE = getUnsafe();
308 jsr166 1.2 Class<?> k = Node.class;
309 dl 1.1 prevOffset = UNSAFE.objectFieldOffset
310     (k.getDeclaredField("prev"));
311     itemOffset = UNSAFE.objectFieldOffset
312     (k.getDeclaredField("item"));
313     nextOffset = UNSAFE.objectFieldOffset
314     (k.getDeclaredField("next"));
315     } catch (Exception e) {
316     throw new Error(e);
317     }
318     }
319     }
320    
321     /**
322     * Links e as first element.
323     */
324     private void linkFirst(E e) {
325     checkNotNull(e);
326     final Node<E> newNode = new Node<E>(e);
327    
328     restartFromHead:
329     for (;;)
330     for (Node<E> h = head, p = h, q;;) {
331     if ((q = p.prev) != null &&
332     (q = (p = q).prev) != null)
333     // Check for head updates every other hop.
334     // If p == q, we are sure to follow head instead.
335     p = (h != (h = head)) ? h : q;
336     else if (p.next == p) // PREV_TERMINATOR
337     continue restartFromHead;
338     else {
339     // p is first node
340     newNode.lazySetNext(p); // CAS piggyback
341     if (p.casPrev(null, newNode)) {
342     // Successful CAS is the linearization point
343     // for e to become an element of this deque,
344     // and for newNode to become "live".
345     if (p != h) // hop two nodes at a time
346     casHead(h, newNode); // Failure is OK.
347     return;
348     }
349     // Lost CAS race to another thread; re-read prev
350     }
351     }
352     }
353    
354     /**
355     * Links e as last element.
356     */
357     private void linkLast(E e) {
358     checkNotNull(e);
359     final Node<E> newNode = new Node<E>(e);
360    
361     restartFromTail:
362     for (;;)
363     for (Node<E> t = tail, p = t, q;;) {
364     if ((q = p.next) != null &&
365     (q = (p = q).next) != null)
366     // Check for tail updates every other hop.
367     // If p == q, we are sure to follow tail instead.
368     p = (t != (t = tail)) ? t : q;
369     else if (p.prev == p) // NEXT_TERMINATOR
370     continue restartFromTail;
371     else {
372     // p is last node
373     newNode.lazySetPrev(p); // CAS piggyback
374     if (p.casNext(null, newNode)) {
375     // Successful CAS is the linearization point
376     // for e to become an element of this deque,
377     // and for newNode to become "live".
378     if (p != t) // hop two nodes at a time
379     casTail(t, newNode); // Failure is OK.
380     return;
381     }
382     // Lost CAS race to another thread; re-read next
383     }
384     }
385     }
386    
387     private static final int HOPS = 2;
388    
389     /**
390     * Unlinks non-null node x.
391     */
392     void unlink(Node<E> x) {
393     // assert x != null;
394     // assert x.item == null;
395     // assert x != PREV_TERMINATOR;
396     // assert x != NEXT_TERMINATOR;
397    
398     final Node<E> prev = x.prev;
399     final Node<E> next = x.next;
400     if (prev == null) {
401     unlinkFirst(x, next);
402     } else if (next == null) {
403     unlinkLast(x, prev);
404     } else {
405     // Unlink interior node.
406     //
407     // This is the common case, since a series of polls at the
408     // same end will be "interior" removes, except perhaps for
409     // the first one, since end nodes cannot be unlinked.
410     //
411     // At any time, all active nodes are mutually reachable by
412     // following a sequence of either next or prev pointers.
413     //
414     // Our strategy is to find the unique active predecessor
415     // and successor of x. Try to fix up their links so that
416     // they point to each other, leaving x unreachable from
417     // active nodes. If successful, and if x has no live
418     // predecessor/successor, we additionally try to gc-unlink,
419     // leaving active nodes unreachable from x, by rechecking
420     // that the status of predecessor and successor are
421     // unchanged and ensuring that x is not reachable from
422     // tail/head, before setting x's prev/next links to their
423     // logical approximate replacements, self/TERMINATOR.
424     Node<E> activePred, activeSucc;
425     boolean isFirst, isLast;
426     int hops = 1;
427    
428     // Find active predecessor
429     for (Node<E> p = prev; ; ++hops) {
430     if (p.item != null) {
431     activePred = p;
432     isFirst = false;
433     break;
434     }
435     Node<E> q = p.prev;
436     if (q == null) {
437     if (p.next == p)
438     return;
439     activePred = p;
440     isFirst = true;
441     break;
442     }
443     else if (p == q)
444     return;
445     else
446     p = q;
447     }
448    
449     // Find active successor
450     for (Node<E> p = next; ; ++hops) {
451     if (p.item != null) {
452     activeSucc = p;
453     isLast = false;
454     break;
455     }
456     Node<E> q = p.next;
457     if (q == null) {
458     if (p.prev == p)
459     return;
460     activeSucc = p;
461     isLast = true;
462     break;
463     }
464     else if (p == q)
465     return;
466     else
467     p = q;
468     }
469    
470     // TODO: better HOP heuristics
471     if (hops < HOPS
472     // always squeeze out interior deleted nodes
473     && (isFirst | isLast))
474     return;
475    
476     // Squeeze out deleted nodes between activePred and
477     // activeSucc, including x.
478     skipDeletedSuccessors(activePred);
479     skipDeletedPredecessors(activeSucc);
480    
481     // Try to gc-unlink, if possible
482     if ((isFirst | isLast) &&
483    
484     // Recheck expected state of predecessor and successor
485     (activePred.next == activeSucc) &&
486     (activeSucc.prev == activePred) &&
487     (isFirst ? activePred.prev == null : activePred.item != null) &&
488     (isLast ? activeSucc.next == null : activeSucc.item != null)) {
489    
490     updateHead(); // Ensure x is not reachable from head
491     updateTail(); // Ensure x is not reachable from tail
492    
493     // Finally, actually gc-unlink
494     x.lazySetPrev(isFirst ? prevTerminator() : x);
495     x.lazySetNext(isLast ? nextTerminator() : x);
496     }
497     }
498     }
499    
500     /**
501     * Unlinks non-null first node.
502     */
503     private void unlinkFirst(Node<E> first, Node<E> next) {
504     // assert first != null;
505     // assert next != null;
506     // assert first.item == null;
507     for (Node<E> o = null, p = next, q;;) {
508     if (p.item != null || (q = p.next) == null) {
509     if (o != null && p.prev != p && first.casNext(next, p)) {
510     skipDeletedPredecessors(p);
511     if (first.prev == null &&
512     (p.next == null || p.item != null) &&
513     p.prev == first) {
514    
515     updateHead(); // Ensure o is not reachable from head
516     updateTail(); // Ensure o is not reachable from tail
517    
518     // Finally, actually gc-unlink
519     o.lazySetNext(o);
520     o.lazySetPrev(prevTerminator());
521     }
522     }
523     return;
524     }
525     else if (p == q)
526     return;
527     else {
528     o = p;
529     p = q;
530     }
531     }
532     }
533    
534     /**
535     * Unlinks non-null last node.
536     */
537     private void unlinkLast(Node<E> last, Node<E> prev) {
538     // assert last != null;
539     // assert prev != null;
540     // assert last.item == null;
541     for (Node<E> o = null, p = prev, q;;) {
542     if (p.item != null || (q = p.prev) == null) {
543     if (o != null && p.next != p && last.casPrev(prev, p)) {
544     skipDeletedSuccessors(p);
545     if (last.next == null &&
546     (p.prev == null || p.item != null) &&
547     p.next == last) {
548    
549     updateHead(); // Ensure o is not reachable from head
550     updateTail(); // Ensure o is not reachable from tail
551    
552     // Finally, actually gc-unlink
553     o.lazySetPrev(o);
554     o.lazySetNext(nextTerminator());
555     }
556     }
557     return;
558     }
559     else if (p == q)
560     return;
561     else {
562     o = p;
563     p = q;
564     }
565     }
566     }
567    
568     /**
569     * Guarantees that any node which was unlinked before a call to
570     * this method will be unreachable from head after it returns.
571     * Does not guarantee to eliminate slack, only that head will
572     * point to a node that was active while this method was running.
573     */
574     private final void updateHead() {
575     // Either head already points to an active node, or we keep
576     // trying to cas it to the first node until it does.
577     Node<E> h, p, q;
578     restartFromHead:
579     while ((h = head).item == null && (p = h.prev) != null) {
580     for (;;) {
581     if ((q = p.prev) == null ||
582     (q = (p = q).prev) == null) {
583     // It is possible that p is PREV_TERMINATOR,
584     // but if so, the CAS is guaranteed to fail.
585     if (casHead(h, p))
586     return;
587     else
588     continue restartFromHead;
589     }
590     else if (h != head)
591     continue restartFromHead;
592     else
593     p = q;
594     }
595     }
596     }
597    
598     /**
599     * Guarantees that any node which was unlinked before a call to
600     * this method will be unreachable from tail after it returns.
601     * Does not guarantee to eliminate slack, only that tail will
602     * point to a node that was active while this method was running.
603     */
604     private final void updateTail() {
605     // Either tail already points to an active node, or we keep
606     // trying to cas it to the last node until it does.
607     Node<E> t, p, q;
608     restartFromTail:
609     while ((t = tail).item == null && (p = t.next) != null) {
610     for (;;) {
611     if ((q = p.next) == null ||
612     (q = (p = q).next) == null) {
613     // It is possible that p is NEXT_TERMINATOR,
614     // but if so, the CAS is guaranteed to fail.
615     if (casTail(t, p))
616     return;
617     else
618     continue restartFromTail;
619     }
620     else if (t != tail)
621     continue restartFromTail;
622     else
623     p = q;
624     }
625     }
626     }
627    
628     private void skipDeletedPredecessors(Node<E> x) {
629     whileActive:
630     do {
631     Node<E> prev = x.prev;
632     // assert prev != null;
633     // assert x != NEXT_TERMINATOR;
634     // assert x != PREV_TERMINATOR;
635     Node<E> p = prev;
636     findActive:
637     for (;;) {
638     if (p.item != null)
639     break findActive;
640     Node<E> q = p.prev;
641     if (q == null) {
642     if (p.next == p)
643     continue whileActive;
644     break findActive;
645     }
646     else if (p == q)
647     continue whileActive;
648     else
649     p = q;
650     }
651    
652     // found active CAS target
653     if (prev == p || x.casPrev(prev, p))
654     return;
655    
656     } while (x.item != null || x.next == null);
657     }
658    
659     private void skipDeletedSuccessors(Node<E> x) {
660     whileActive:
661     do {
662     Node<E> next = x.next;
663     // assert next != null;
664     // assert x != NEXT_TERMINATOR;
665     // assert x != PREV_TERMINATOR;
666     Node<E> p = next;
667     findActive:
668     for (;;) {
669     if (p.item != null)
670     break findActive;
671     Node<E> q = p.next;
672     if (q == null) {
673     if (p.prev == p)
674     continue whileActive;
675     break findActive;
676     }
677     else if (p == q)
678     continue whileActive;
679     else
680     p = q;
681     }
682    
683     // found active CAS target
684     if (next == p || x.casNext(next, p))
685     return;
686    
687     } while (x.item != null || x.prev == null);
688     }
689    
690     /**
691     * Returns the successor of p, or the first node if p.next has been
692     * linked to self, which will only be true if traversing with a
693     * stale pointer that is now off the list.
694     */
695     final Node<E> succ(Node<E> p) {
696     // TODO: should we skip deleted nodes here?
697     Node<E> q = p.next;
698     return (p == q) ? first() : q;
699     }
700    
701     /**
702     * Returns the predecessor of p, or the last node if p.prev has been
703     * linked to self, which will only be true if traversing with a
704     * stale pointer that is now off the list.
705     */
706     final Node<E> pred(Node<E> p) {
707     Node<E> q = p.prev;
708     return (p == q) ? last() : q;
709     }
710    
711     /**
712     * Returns the first node, the unique node p for which:
713     * p.prev == null && p.next != p
714     * The returned node may or may not be logically deleted.
715     * Guarantees that head is set to the returned node.
716     */
717     Node<E> first() {
718     restartFromHead:
719     for (;;)
720     for (Node<E> h = head, p = h, q;;) {
721     if ((q = p.prev) != null &&
722     (q = (p = q).prev) != null)
723     // Check for head updates every other hop.
724     // If p == q, we are sure to follow head instead.
725     p = (h != (h = head)) ? h : q;
726     else if (p == h
727     // It is possible that p is PREV_TERMINATOR,
728     // but if so, the CAS is guaranteed to fail.
729     || casHead(h, p))
730     return p;
731     else
732     continue restartFromHead;
733     }
734     }
735    
736     /**
737     * Returns the last node, the unique node p for which:
738     * p.next == null && p.prev != p
739     * The returned node may or may not be logically deleted.
740     * Guarantees that tail is set to the returned node.
741     */
742     Node<E> last() {
743     restartFromTail:
744     for (;;)
745     for (Node<E> t = tail, p = t, q;;) {
746     if ((q = p.next) != null &&
747     (q = (p = q).next) != null)
748     // Check for tail updates every other hop.
749     // If p == q, we are sure to follow tail instead.
750     p = (t != (t = tail)) ? t : q;
751     else if (p == t
752     // It is possible that p is NEXT_TERMINATOR,
753     // but if so, the CAS is guaranteed to fail.
754     || casTail(t, p))
755     return p;
756     else
757     continue restartFromTail;
758     }
759     }
760    
761     // Minor convenience utilities
762    
763     /**
764     * Throws NullPointerException if argument is null.
765     *
766     * @param v the element
767     */
768     private static void checkNotNull(Object v) {
769     if (v == null)
770     throw new NullPointerException();
771     }
772    
773     /**
774     * Returns element unless it is null, in which case throws
775     * NoSuchElementException.
776     *
777     * @param v the element
778     * @return the element
779     */
780     private E screenNullResult(E v) {
781     if (v == null)
782     throw new NoSuchElementException();
783     return v;
784     }
785    
786     /**
787     * Creates an array list and fills it with elements of this list.
788     * Used by toArray.
789     *
790 jsr166 1.6 * @return the array list
791 dl 1.1 */
792     private ArrayList<E> toArrayList() {
793     ArrayList<E> list = new ArrayList<E>();
794     for (Node<E> p = first(); p != null; p = succ(p)) {
795     E item = p.item;
796     if (item != null)
797     list.add(item);
798     }
799     return list;
800     }
801    
802     /**
803     * Constructs an empty deque.
804     */
805     public ConcurrentLinkedDeque() {
806     head = tail = new Node<E>(null);
807     }
808    
809     /**
810     * Constructs a deque initially containing the elements of
811     * the given collection, added in traversal order of the
812     * collection's iterator.
813     *
814     * @param c the collection of elements to initially contain
815     * @throws NullPointerException if the specified collection or any
816     * of its elements are null
817     */
818     public ConcurrentLinkedDeque(Collection<? extends E> c) {
819     // Copy c into a private chain of Nodes
820     Node<E> h = null, t = null;
821     for (E e : c) {
822     checkNotNull(e);
823     Node<E> newNode = new Node<E>(e);
824     if (h == null)
825     h = t = newNode;
826     else {
827     t.lazySetNext(newNode);
828     newNode.lazySetPrev(t);
829     t = newNode;
830     }
831     }
832     initHeadTail(h, t);
833     }
834    
835     /**
836     * Initializes head and tail, ensuring invariants hold.
837     */
838     private void initHeadTail(Node<E> h, Node<E> t) {
839     if (h == t) {
840     if (h == null)
841     h = t = new Node<E>(null);
842     else {
843     // Avoid edge case of a single Node with non-null item.
844     Node<E> newNode = new Node<E>(null);
845     t.lazySetNext(newNode);
846     newNode.lazySetPrev(t);
847     t = newNode;
848     }
849     }
850     head = h;
851     tail = t;
852     }
853    
854     /**
855     * Inserts the specified element at the front of this deque.
856     * As the deque is unbounded, this method will never throw
857     * {@link IllegalStateException}.
858     *
859     * @throws NullPointerException if the specified element is null
860     */
861     public void addFirst(E e) {
862     linkFirst(e);
863     }
864    
865     /**
866     * Inserts the specified element at the end of this deque.
867     * As the deque is unbounded, this method will never throw
868     * {@link IllegalStateException}.
869     *
870     * <p>This method is equivalent to {@link #add}.
871     *
872     * @throws NullPointerException if the specified element is null
873     */
874     public void addLast(E e) {
875     linkLast(e);
876     }
877    
878     /**
879     * Inserts the specified element at the front of this deque.
880     * As the deque is unbounded, this method will never return {@code false}.
881     *
882     * @return {@code true} (as specified by {@link Deque#offerFirst})
883     * @throws NullPointerException if the specified element is null
884     */
885     public boolean offerFirst(E e) {
886     linkFirst(e);
887     return true;
888     }
889    
890     /**
891     * Inserts the specified element at the end of this deque.
892     * As the deque is unbounded, this method will never return {@code false}.
893     *
894     * <p>This method is equivalent to {@link #add}.
895     *
896     * @return {@code true} (as specified by {@link Deque#offerLast})
897     * @throws NullPointerException if the specified element is null
898     */
899     public boolean offerLast(E e) {
900     linkLast(e);
901     return true;
902     }
903    
904     public E peekFirst() {
905     for (Node<E> p = first(); p != null; p = succ(p)) {
906     E item = p.item;
907     if (item != null)
908     return item;
909     }
910     return null;
911     }
912    
913     public E peekLast() {
914     for (Node<E> p = last(); p != null; p = pred(p)) {
915     E item = p.item;
916     if (item != null)
917     return item;
918     }
919     return null;
920     }
921    
922     /**
923     * @throws NoSuchElementException {@inheritDoc}
924     */
925     public E getFirst() {
926     return screenNullResult(peekFirst());
927     }
928    
929     /**
930     * @throws NoSuchElementException {@inheritDoc}
931     */
932     public E getLast() {
933     return screenNullResult(peekLast());
934     }
935    
936     public E pollFirst() {
937     for (Node<E> p = first(); p != null; p = succ(p)) {
938     E item = p.item;
939     if (item != null && p.casItem(item, null)) {
940     unlink(p);
941     return item;
942     }
943     }
944     return null;
945     }
946    
947     public E pollLast() {
948     for (Node<E> p = last(); p != null; p = pred(p)) {
949     E item = p.item;
950     if (item != null && p.casItem(item, null)) {
951     unlink(p);
952     return item;
953     }
954     }
955     return null;
956     }
957    
958     /**
959     * @throws NoSuchElementException {@inheritDoc}
960     */
961     public E removeFirst() {
962     return screenNullResult(pollFirst());
963     }
964    
965     /**
966     * @throws NoSuchElementException {@inheritDoc}
967     */
968     public E removeLast() {
969     return screenNullResult(pollLast());
970     }
971    
972     // *** Queue and stack methods ***
973    
974     /**
975     * Inserts the specified element at the tail of this deque.
976     * As the deque is unbounded, this method will never return {@code false}.
977     *
978     * @return {@code true} (as specified by {@link Queue#offer})
979     * @throws NullPointerException if the specified element is null
980     */
981     public boolean offer(E e) {
982     return offerLast(e);
983     }
984    
985     /**
986     * Inserts the specified element at the tail of this deque.
987     * As the deque is unbounded, this method will never throw
988     * {@link IllegalStateException} or return {@code false}.
989     *
990     * @return {@code true} (as specified by {@link Collection#add})
991     * @throws NullPointerException if the specified element is null
992     */
993     public boolean add(E e) {
994     return offerLast(e);
995     }
996    
997     public E poll() { return pollFirst(); }
998     public E remove() { return removeFirst(); }
999     public E peek() { return peekFirst(); }
1000     public E element() { return getFirst(); }
1001     public void push(E e) { addFirst(e); }
1002     public E pop() { return removeFirst(); }
1003    
1004     /**
1005     * Removes the first element {@code e} such that
1006     * {@code o.equals(e)}, if such an element exists in this deque.
1007     * If the deque does not contain the element, it is unchanged.
1008     *
1009     * @param o element to be removed from this deque, if present
1010     * @return {@code true} if the deque contained the specified element
1011     * @throws NullPointerException if the specified element is null
1012     */
1013     public boolean removeFirstOccurrence(Object o) {
1014     checkNotNull(o);
1015     for (Node<E> p = first(); p != null; p = succ(p)) {
1016     E item = p.item;
1017     if (item != null && o.equals(item) && p.casItem(item, null)) {
1018     unlink(p);
1019     return true;
1020     }
1021     }
1022     return false;
1023     }
1024    
1025     /**
1026     * Removes the last element {@code e} such that
1027     * {@code o.equals(e)}, if such an element exists in this deque.
1028     * If the deque does not contain the element, it is unchanged.
1029     *
1030     * @param o element to be removed from this deque, if present
1031     * @return {@code true} if the deque contained the specified element
1032     * @throws NullPointerException if the specified element is null
1033     */
1034     public boolean removeLastOccurrence(Object o) {
1035     checkNotNull(o);
1036     for (Node<E> p = last(); p != null; p = pred(p)) {
1037     E item = p.item;
1038     if (item != null && o.equals(item) && p.casItem(item, null)) {
1039     unlink(p);
1040     return true;
1041     }
1042     }
1043     return false;
1044     }
1045    
1046     /**
1047     * Returns {@code true} if this deque contains at least one
1048     * element {@code e} such that {@code o.equals(e)}.
1049     *
1050     * @param o element whose presence in this deque is to be tested
1051     * @return {@code true} if this deque contains the specified element
1052     */
1053     public boolean contains(Object o) {
1054     if (o == null) return false;
1055     for (Node<E> p = first(); p != null; p = succ(p)) {
1056     E item = p.item;
1057     if (item != null && o.equals(item))
1058     return true;
1059     }
1060     return false;
1061     }
1062    
1063     /**
1064     * Returns {@code true} if this collection contains no elements.
1065     *
1066     * @return {@code true} if this collection contains no elements
1067     */
1068     public boolean isEmpty() {
1069     return peekFirst() == null;
1070     }
1071    
1072     /**
1073     * Returns the number of elements in this deque. If this deque
1074     * contains more than {@code Integer.MAX_VALUE} elements, it
1075     * returns {@code Integer.MAX_VALUE}.
1076     *
1077     * <p>Beware that, unlike in most collections, this method is
1078     * <em>NOT</em> a constant-time operation. Because of the
1079     * asynchronous nature of these deques, determining the current
1080     * number of elements requires traversing them all to count them.
1081     * Additionally, it is possible for the size to change during
1082     * execution of this method, in which case the returned result
1083     * will be inaccurate. Thus, this method is typically not very
1084     * useful in concurrent applications.
1085     *
1086     * @return the number of elements in this deque
1087     */
1088     public int size() {
1089     int count = 0;
1090     for (Node<E> p = first(); p != null; p = succ(p))
1091     if (p.item != null)
1092     // Collection.size() spec says to max out
1093     if (++count == Integer.MAX_VALUE)
1094     break;
1095     return count;
1096     }
1097    
1098     /**
1099     * Removes the first element {@code e} such that
1100     * {@code o.equals(e)}, if such an element exists in this deque.
1101     * If the deque does not contain the element, it is unchanged.
1102     *
1103     * @param o element to be removed from this deque, if present
1104     * @return {@code true} if the deque contained the specified element
1105     * @throws NullPointerException if the specified element is null
1106     */
1107     public boolean remove(Object o) {
1108     return removeFirstOccurrence(o);
1109     }
1110    
1111     /**
1112     * Appends all of the elements in the specified collection to the end of
1113     * this deque, in the order that they are returned by the specified
1114     * collection's iterator. Attempts to {@code addAll} of a deque to
1115     * itself result in {@code IllegalArgumentException}.
1116     *
1117     * @param c the elements to be inserted into this deque
1118     * @return {@code true} if this deque changed as a result of the call
1119     * @throws NullPointerException if the specified collection or any
1120     * of its elements are null
1121     * @throws IllegalArgumentException if the collection is this deque
1122     */
1123     public boolean addAll(Collection<? extends E> c) {
1124     if (c == this)
1125     // As historically specified in AbstractQueue#addAll
1126     throw new IllegalArgumentException();
1127    
1128     // Copy c into a private chain of Nodes
1129     Node<E> beginningOfTheEnd = null, last = null;
1130     for (E e : c) {
1131     checkNotNull(e);
1132     Node<E> newNode = new Node<E>(e);
1133     if (beginningOfTheEnd == null)
1134     beginningOfTheEnd = last = newNode;
1135     else {
1136     last.lazySetNext(newNode);
1137     newNode.lazySetPrev(last);
1138     last = newNode;
1139     }
1140     }
1141     if (beginningOfTheEnd == null)
1142     return false;
1143    
1144     // Atomically append the chain at the tail of this collection
1145     restartFromTail:
1146     for (;;)
1147     for (Node<E> t = tail, p = t, q;;) {
1148     if ((q = p.next) != null &&
1149     (q = (p = q).next) != null)
1150     // Check for tail updates every other hop.
1151     // If p == q, we are sure to follow tail instead.
1152     p = (t != (t = tail)) ? t : q;
1153     else if (p.prev == p) // NEXT_TERMINATOR
1154     continue restartFromTail;
1155     else {
1156     // p is last node
1157     beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
1158     if (p.casNext(null, beginningOfTheEnd)) {
1159     // Successful CAS is the linearization point
1160     // for all elements to be added to this deque.
1161     if (!casTail(t, last)) {
1162     // Try a little harder to update tail,
1163     // since we may be adding many elements.
1164     t = tail;
1165     if (last.next == null)
1166     casTail(t, last);
1167     }
1168     return true;
1169     }
1170     // Lost CAS race to another thread; re-read next
1171     }
1172     }
1173     }
1174    
1175     /**
1176     * Removes all of the elements from this deque.
1177     */
1178     public void clear() {
1179     while (pollFirst() != null)
1180     ;
1181     }
1182    
1183     /**
1184     * Returns an array containing all of the elements in this deque, in
1185     * proper sequence (from first to last element).
1186     *
1187     * <p>The returned array will be "safe" in that no references to it are
1188     * maintained by this deque. (In other words, this method must allocate
1189     * a new array). The caller is thus free to modify the returned array.
1190     *
1191     * <p>This method acts as bridge between array-based and collection-based
1192     * APIs.
1193     *
1194     * @return an array containing all of the elements in this deque
1195     */
1196     public Object[] toArray() {
1197     return toArrayList().toArray();
1198     }
1199    
1200     /**
1201     * Returns an array containing all of the elements in this deque,
1202     * in proper sequence (from first to last element); the runtime
1203     * type of the returned array is that of the specified array. If
1204     * the deque fits in the specified array, it is returned therein.
1205     * Otherwise, a new array is allocated with the runtime type of
1206     * the specified array and the size of this deque.
1207     *
1208     * <p>If this deque fits in the specified array with room to spare
1209     * (i.e., the array has more elements than this deque), the element in
1210     * the array immediately following the end of the deque is set to
1211     * {@code null}.
1212     *
1213     * <p>Like the {@link #toArray()} method, this method acts as
1214     * bridge between array-based and collection-based APIs. Further,
1215     * this method allows precise control over the runtime type of the
1216     * output array, and may, under certain circumstances, be used to
1217     * save allocation costs.
1218     *
1219     * <p>Suppose {@code x} is a deque known to contain only strings.
1220     * The following code can be used to dump the deque into a newly
1221     * allocated array of {@code String}:
1222     *
1223 jsr166 1.3 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1224 dl 1.1 *
1225     * Note that {@code toArray(new Object[0])} is identical in function to
1226     * {@code toArray()}.
1227     *
1228     * @param a the array into which the elements of the deque are to
1229     * be stored, if it is big enough; otherwise, a new array of the
1230     * same runtime type is allocated for this purpose
1231     * @return an array containing all of the elements in this deque
1232     * @throws ArrayStoreException if the runtime type of the specified array
1233     * is not a supertype of the runtime type of every element in
1234     * this deque
1235     * @throws NullPointerException if the specified array is null
1236     */
1237     public <T> T[] toArray(T[] a) {
1238     return toArrayList().toArray(a);
1239     }
1240    
1241     /**
1242     * Returns an iterator over the elements in this deque in proper sequence.
1243     * The elements will be returned in order from first (head) to last (tail).
1244     *
1245     * <p>The returned iterator is a "weakly consistent" iterator that
1246     * will never throw {@link java.util.ConcurrentModificationException
1247     * ConcurrentModificationException}, and guarantees to traverse
1248     * elements as they existed upon construction of the iterator, and
1249     * may (but is not guaranteed to) reflect any modifications
1250     * subsequent to construction.
1251     *
1252     * @return an iterator over the elements in this deque in proper sequence
1253     */
1254     public Iterator<E> iterator() {
1255     return new Itr();
1256     }
1257    
1258     /**
1259     * Returns an iterator over the elements in this deque in reverse
1260     * sequential order. The elements will be returned in order from
1261     * last (tail) to first (head).
1262     *
1263     * <p>The returned iterator is a "weakly consistent" iterator that
1264     * will never throw {@link java.util.ConcurrentModificationException
1265     * ConcurrentModificationException}, and guarantees to traverse
1266     * elements as they existed upon construction of the iterator, and
1267     * may (but is not guaranteed to) reflect any modifications
1268     * subsequent to construction.
1269     *
1270     * @return an iterator over the elements in this deque in reverse order
1271     */
1272     public Iterator<E> descendingIterator() {
1273     return new DescendingItr();
1274     }
1275    
1276     private abstract class AbstractItr implements Iterator<E> {
1277     /**
1278     * Next node to return item for.
1279     */
1280     private Node<E> nextNode;
1281    
1282     /**
1283     * nextItem holds on to item fields because once we claim
1284     * that an element exists in hasNext(), we must return it in
1285     * the following next() call even if it was in the process of
1286     * being removed when hasNext() was called.
1287     */
1288     private E nextItem;
1289    
1290     /**
1291     * Node returned by most recent call to next. Needed by remove.
1292     * Reset to null if this element is deleted by a call to remove.
1293     */
1294     private Node<E> lastRet;
1295    
1296     abstract Node<E> startNode();
1297     abstract Node<E> nextNode(Node<E> p);
1298    
1299     AbstractItr() {
1300     advance();
1301     }
1302    
1303     /**
1304     * Sets nextNode and nextItem to next valid node, or to null
1305     * if no such.
1306     */
1307     private void advance() {
1308     lastRet = nextNode;
1309    
1310     Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
1311     for (;; p = nextNode(p)) {
1312     if (p == null) {
1313     // p might be active end or TERMINATOR node; both are OK
1314     nextNode = null;
1315     nextItem = null;
1316     break;
1317     }
1318     E item = p.item;
1319     if (item != null) {
1320     nextNode = p;
1321     nextItem = item;
1322     break;
1323     }
1324     }
1325     }
1326    
1327     public boolean hasNext() {
1328     return nextItem != null;
1329     }
1330    
1331     public E next() {
1332     E item = nextItem;
1333     if (item == null) throw new NoSuchElementException();
1334     advance();
1335     return item;
1336     }
1337    
1338     public void remove() {
1339     Node<E> l = lastRet;
1340     if (l == null) throw new IllegalStateException();
1341     l.item = null;
1342     unlink(l);
1343     lastRet = null;
1344     }
1345     }
1346    
1347     /** Forward iterator */
1348     private class Itr extends AbstractItr {
1349     Node<E> startNode() { return first(); }
1350     Node<E> nextNode(Node<E> p) { return succ(p); }
1351     }
1352    
1353     /** Descending iterator */
1354     private class DescendingItr extends AbstractItr {
1355     Node<E> startNode() { return last(); }
1356     Node<E> nextNode(Node<E> p) { return pred(p); }
1357     }
1358    
1359     /**
1360     * Saves the state to a stream (that is, serializes it).
1361     *
1362     * @serialData All of the elements (each an {@code E}) in
1363     * the proper order, followed by a null
1364     * @param s the stream
1365     */
1366     private void writeObject(java.io.ObjectOutputStream s)
1367     throws java.io.IOException {
1368    
1369     // Write out any hidden stuff
1370     s.defaultWriteObject();
1371    
1372     // Write out all elements in the proper order.
1373     for (Node<E> p = first(); p != null; p = succ(p)) {
1374     E item = p.item;
1375     if (item != null)
1376     s.writeObject(item);
1377     }
1378    
1379     // Use trailing null as sentinel
1380     s.writeObject(null);
1381     }
1382    
1383     /**
1384     * Reconstitutes the instance from a stream (that is, deserializes it).
1385     * @param s the stream
1386     */
1387     private void readObject(java.io.ObjectInputStream s)
1388     throws java.io.IOException, ClassNotFoundException {
1389     s.defaultReadObject();
1390    
1391     // Read in elements until trailing null sentinel found
1392     Node<E> h = null, t = null;
1393     Object item;
1394     while ((item = s.readObject()) != null) {
1395     @SuppressWarnings("unchecked")
1396     Node<E> newNode = new Node<E>((E) item);
1397     if (h == null)
1398     h = t = newNode;
1399     else {
1400     t.lazySetNext(newNode);
1401     newNode.lazySetPrev(t);
1402     t = newNode;
1403     }
1404     }
1405     initHeadTail(h, t);
1406     }
1407    
1408    
1409     private boolean casHead(Node<E> cmp, Node<E> val) {
1410     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
1411     }
1412    
1413     private boolean casTail(Node<E> cmp, Node<E> val) {
1414     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
1415     }
1416    
1417     // Unsafe mechanics
1418    
1419     private static final sun.misc.Unsafe UNSAFE;
1420     private static final long headOffset;
1421     private static final long tailOffset;
1422     static {
1423     PREV_TERMINATOR = new Node<Object>();
1424     PREV_TERMINATOR.next = PREV_TERMINATOR;
1425     NEXT_TERMINATOR = new Node<Object>();
1426     NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
1427     try {
1428     UNSAFE = getUnsafe();
1429 jsr166 1.2 Class<?> k = ConcurrentLinkedDeque.class;
1430 dl 1.1 headOffset = UNSAFE.objectFieldOffset
1431     (k.getDeclaredField("head"));
1432     tailOffset = UNSAFE.objectFieldOffset
1433     (k.getDeclaredField("tail"));
1434     } catch (Exception e) {
1435     throw new Error(e);
1436     }
1437     }
1438    
1439     /**
1440     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1441     * Replace with a simple call to Unsafe.getUnsafe when integrating
1442     * into a jdk.
1443     *
1444     * @return a sun.misc.Unsafe
1445     */
1446     static sun.misc.Unsafe getUnsafe() {
1447     try {
1448     return sun.misc.Unsafe.getUnsafe();
1449 jsr166 1.5 } catch (SecurityException tryReflectionInstead) {}
1450     try {
1451     return java.security.AccessController.doPrivileged
1452     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1453     public sun.misc.Unsafe run() throws Exception {
1454     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1455     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1456     f.setAccessible(true);
1457     Object x = f.get(null);
1458     if (k.isInstance(x))
1459     return k.cast(x);
1460     }
1461     throw new NoSuchFieldError("the Unsafe");
1462     }});
1463     } catch (java.security.PrivilegedActionException e) {
1464     throw new RuntimeException("Could not initialize intrinsics",
1465     e.getCause());
1466 dl 1.1 }
1467     }
1468     }