ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/CountedCompleter.java
Revision: 1.13
Committed: Sun Nov 18 18:03:10 2012 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +1 -1 lines
Log Message:
normalize whitespace after <p>

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/publicdomain/zero/1.0/
5     */
6    
7     package jsr166y;
8    
9     /**
10 dl 1.3 * A {@link ForkJoinTask} with a completion action
11 dl 1.1 * performed when triggered and there are no remaining pending
12     * actions. Uses of CountedCompleter are similar to those of other
13     * completion based components (such as {@link
14     * java.nio.channels.CompletionHandler}) except that multiple
15     * <em>pending</em> completions may be necessary to trigger the {@link
16     * #onCompletion} action, not just one. Unless initialized otherwise,
17     * the {@link #getPendingCount pending count} starts at zero, but may
18     * be (atomically) changed using methods {@link #setPendingCount},
19     * {@link #addToPendingCount}, and {@link
20     * #compareAndSetPendingCount}. Upon invocation of {@link
21     * #tryComplete}, if the pending action count is nonzero, it is
22     * decremented; otherwise, the completion action is performed, and if
23     * this completer itself has a completer, the process is continued
24 dl 1.2 * with its completer. As is the case with related synchronization
25 jsr166 1.4 * components such as {@link java.util.concurrent.Phaser Phaser} and
26     * {@link java.util.concurrent.Semaphore Semaphore}, these methods
27     * affect only internal counts; they do not establish any further
28     * internal bookkeeping. In particular, the identities of pending
29     * tasks are not maintained. As illustrated below, you can create
30 jsr166 1.5 * subclasses that do record some or all pending tasks or their
31     * results when needed.
32 dl 1.1 *
33     * <p>A concrete CountedCompleter class must define method {@link
34     * #compute}, that should, in almost all use cases, invoke {@code
35 dl 1.2 * tryComplete()} once before returning. The class may also optionally
36 dl 1.1 * override method {@link #onCompletion} to perform an action upon
37 dl 1.2 * normal completion, and method {@link #onExceptionalCompletion} to
38     * perform an action upon any exception.
39 dl 1.1 *
40 dl 1.3 * <p>CountedCompleters most often do not bear results, in which case
41     * they are normally declared as {@code CountedCompleter<Void>}, and
42     * will always return {@code null} as a result value. In other cases,
43     * you should override method {@link #getRawResult} to provide a
44     * result from {@code join(), invoke()}, and related methods. (Method
45     * {@link #setRawResult} by default plays no role in CountedCompleters
46     * but may be overridden for example to maintain fields holding result
47     * data.)
48     *
49 dl 1.1 * <p>A CountedCompleter that does not itself have a completer (i.e.,
50     * one for which {@link #getCompleter} returns {@code null}) can be
51     * used as a regular ForkJoinTask with this added functionality.
52     * However, any completer that in turn has another completer serves
53     * only as an internal helper for other computations, so its own task
54     * status (as reported in methods such as {@link ForkJoinTask#isDone})
55     * is arbitrary; this status changes only upon explicit invocations of
56     * {@link #complete}, {@link ForkJoinTask#cancel}, {@link
57     * ForkJoinTask#completeExceptionally} or upon exceptional completion
58     * of method {@code compute}. Upon any exceptional completion, the
59 dl 1.2 * exception may be relayed to a task's completer (and its completer,
60     * and so on), if one exists and it has not otherwise already
61     * completed.
62 dl 1.1 *
63     * <p><b>Sample Usages.</b>
64     *
65     * <p><b>Parallel recursive decomposition.</b> CountedCompleters may
66     * be arranged in trees similar to those often used with {@link
67     * RecursiveAction}s, although the constructions involved in setting
68 dl 1.3 * them up typically vary. Here, the completer of each task is its
69     * parent in the computation tree. Even though they entail a bit more
70 dl 1.1 * bookkeeping, CountedCompleters may be better choices when applying
71     * a possibly time-consuming operation (that cannot be further
72     * subdivided) to each element of an array or collection; especially
73     * when the operation takes a significantly different amount of time
74     * to complete for some elements than others, either because of
75     * intrinsic variation (for example IO) or auxiliary effects such as
76     * garbage collection. Because CountedCompleters provide their own
77     * continuations, other threads need not block waiting to perform
78     * them.
79     *
80 jsr166 1.13 * <p>For example, here is an initial version of a class that uses
81 dl 1.1 * divide-by-two recursive decomposition to divide work into single
82     * pieces (leaf tasks). Even when work is split into individual calls,
83     * tree-based techniques are usually preferable to directly forking
84     * leaf tasks, because they reduce inter-thread communication and
85     * improve load balancing. In the recursive case, the second of each
86     * pair of subtasks to finish triggers completion of its parent
87     * (because no result combination is performed, the default no-op
88     * implementation of method {@code onCompletion} is not overridden). A
89     * static utility method sets up the base task and invokes it:
90     *
91     * <pre> {@code
92     * class MyOperation<E> { void apply(E e) { ... } }
93     *
94 dl 1.3 * class ForEach<E> extends CountedCompleter<Void> {
95 dl 1.1 *
96     * public static <E> void forEach(ForkJoinPool pool, E[] array, MyOperation<E> op) {
97     * pool.invoke(new ForEach<E>(null, array, op, 0, array.length));
98     * }
99     *
100     * final E[] array; final MyOperation<E> op; final int lo, hi;
101 dl 1.3 * ForEach(CountedCompleter<?> p, E[] array, MyOperation<E> op, int lo, int hi) {
102 dl 1.1 * super(p);
103     * this.array = array; this.op = op; this.lo = lo; this.hi = hi;
104     * }
105     *
106     * public void compute() { // version 1
107     * if (hi - lo >= 2) {
108     * int mid = (lo + hi) >>> 1;
109     * setPendingCount(2); // must set pending count before fork
110     * new ForEach(this, array, op, mid, hi).fork(); // right child
111     * new ForEach(this, array, op, lo, mid).fork(); // left child
112     * }
113     * else if (hi > lo)
114     * op.apply(array[lo]);
115     * tryComplete();
116     * }
117     * } }</pre>
118     *
119     * This design can be improved by noticing that in the recursive case,
120     * the task has nothing to do after forking its right task, so can
121     * directly invoke its left task before returning. (This is an analog
122     * of tail recursion removal.) Also, because the task returns upon
123     * executing its left task (rather than falling through to invoke
124     * tryComplete) the pending count is set to one:
125     *
126     * <pre> {@code
127     * class ForEach<E> ...
128     * public void compute() { // version 2
129     * if (hi - lo >= 2) {
130     * int mid = (lo + hi) >>> 1;
131     * setPendingCount(1); // only one pending
132     * new ForEach(this, array, op, mid, hi).fork(); // right child
133     * new ForEach(this, array, op, lo, mid).compute(); // direct invoke
134     * }
135     * else {
136     * if (hi > lo)
137     * op.apply(array[lo]);
138     * tryComplete();
139     * }
140     * }
141     * }</pre>
142     *
143     * As a further improvement, notice that the left task need not even
144     * exist. Instead of creating a new one, we can iterate using the
145 jsr166 1.11 * original task, and add a pending count for each fork.
146 dl 1.1 *
147     * <pre> {@code
148     * class ForEach<E> ...
149     * public void compute() { // version 3
150     * int l = lo, h = hi;
151     * while (h - l >= 2) {
152     * int mid = (l + h) >>> 1;
153     * addToPendingCount(1);
154     * new ForEach(this, array, op, mid, h).fork(); // right child
155     * h = mid;
156     * }
157     * if (h > l)
158     * op.apply(array[l]);
159 dl 1.10 * tryComplete();
160 dl 1.1 * }
161     * }</pre>
162     *
163     * Additional improvements of such classes might entail precomputing
164     * pending counts so that they can be established in constructors,
165     * specializing classes for leaf steps, subdividing by say, four,
166     * instead of two per iteration, and using an adaptive threshold
167     * instead of always subdividing down to single elements.
168     *
169     * <p><b>Recording subtasks.</b> CountedCompleter tasks that combine
170     * results of multiple subtasks usually need to access these results
171     * in method {@link #onCompletion}. As illustrated in the following
172     * class (that performs a simplified form of map-reduce where mappings
173     * and reductions are all of type {@code E}), one way to do this in
174     * divide and conquer designs is to have each subtask record its
175     * sibling, so that it can be accessed in method {@code onCompletion}.
176 dl 1.3 * This technique applies to reductions in which the order of
177     * combining left and right results does not matter; ordered
178     * reductions require explicit left/right designations. Variants of
179     * other streamlinings seen in the above examples may also apply.
180 dl 1.1 *
181     * <pre> {@code
182     * class MyMapper<E> { E apply(E v) { ... } }
183     * class MyReducer<E> { E apply(E x, E y) { ... } }
184 dl 1.3 * class MapReducer<E> extends CountedCompleter<E> {
185 dl 1.1 * final E[] array; final MyMapper<E> mapper;
186     * final MyReducer<E> reducer; final int lo, hi;
187 dl 1.3 * MapReducer<E> sibling;
188 dl 1.1 * E result;
189     * MapReducer(CountedCompleter p, E[] array, MyMapper<E> mapper,
190     * MyReducer<E> reducer, int lo, int hi) {
191     * super(p);
192     * this.array = array; this.mapper = mapper;
193     * this.reducer = reducer; this.lo = lo; this.hi = hi;
194     * }
195     * public void compute() {
196     * if (hi - lo >= 2) {
197     * int mid = (lo + hi) >>> 1;
198     * MapReducer<E> left = new MapReducer(this, array, mapper, reducer, lo, mid);
199     * MapReducer<E> right = new MapReducer(this, array, mapper, reducer, mid, hi);
200     * left.sibling = right;
201     * right.sibling = left;
202     * setPendingCount(1); // only right is pending
203     * right.fork();
204     * left.compute(); // directly execute left
205     * }
206     * else {
207     * if (hi > lo)
208     * result = mapper.apply(array[lo]);
209     * tryComplete();
210     * }
211     * }
212     * public void onCompletion(CountedCompleter caller) {
213     * if (caller != this) {
214     * MapReducer<E> child = (MapReducer<E>)caller;
215     * MapReducer<E> sib = child.sibling;
216     * if (sib == null || sib.result == null)
217     * result = child.result;
218     * else
219     * result = reducer.apply(child.result, sib.result);
220     * }
221     * }
222 dl 1.3 * public E getRawResult() { return result; }
223 dl 1.1 *
224     * public static <E> E mapReduce(ForkJoinPool pool, E[] array,
225     * MyMapper<E> mapper, MyReducer<E> reducer) {
226 dl 1.3 * return pool.invoke(new MapReducer<E>(null, array, mapper,
227     * reducer, 0, array.length));
228 dl 1.1 * }
229     * } }</pre>
230     *
231     * <p><b>Triggers.</b> Some CountedCompleters are themselves never
232     * forked, but instead serve as bits of plumbing in other designs;
233     * including those in which the completion of one of more async tasks
234     * triggers another async task. For example:
235     *
236     * <pre> {@code
237 dl 1.3 * class HeaderBuilder extends CountedCompleter<...> { ... }
238     * class BodyBuilder extends CountedCompleter<...> { ... }
239     * class PacketSender extends CountedCompleter<...> {
240 dl 1.1 * PacketSender(...) { super(null, 1); ... } // trigger on second completion
241     * public void compute() { } // never called
242 dl 1.3 * public void onCompletion(CountedCompleter<?> caller) { sendPacket(); }
243 dl 1.1 * }
244     * // sample use:
245     * PacketSender p = new PacketSender();
246     * new HeaderBuilder(p, ...).fork();
247     * new BodyBuilder(p, ...).fork();
248     * }</pre>
249     *
250     * @since 1.8
251     * @author Doug Lea
252     */
253 dl 1.3 public abstract class CountedCompleter<T> extends ForkJoinTask<T> {
254 dl 1.2 private static final long serialVersionUID = 5232453752276485070L;
255    
256 dl 1.1 /** This task's completer, or null if none */
257 dl 1.3 final CountedCompleter<?> completer;
258 dl 1.1 /** The number of pending tasks until completion */
259     volatile int pending;
260    
261     /**
262     * Creates a new CountedCompleter with the given completer
263     * and initial pending count.
264     *
265     * @param completer this tasks completer, or {@code null} if none
266     * @param initialPendingCount the initial pending count
267     */
268 dl 1.3 protected CountedCompleter(CountedCompleter<?> completer,
269 dl 1.1 int initialPendingCount) {
270     this.completer = completer;
271     this.pending = initialPendingCount;
272     }
273    
274     /**
275     * Creates a new CountedCompleter with the given completer
276     * and an initial pending count of zero.
277     *
278     * @param completer this tasks completer, or {@code null} if none
279     */
280 dl 1.3 protected CountedCompleter(CountedCompleter<?> completer) {
281 dl 1.1 this.completer = completer;
282     }
283    
284     /**
285     * Creates a new CountedCompleter with no completer
286     * and an initial pending count of zero.
287     */
288     protected CountedCompleter() {
289     this.completer = null;
290     }
291    
292     /**
293     * The main computation performed by this task.
294     */
295     public abstract void compute();
296    
297     /**
298 dl 1.2 * Performs an action when method {@link #tryComplete} is invoked
299     * and there are no pending counts, or when the unconditional
300     * method {@link #complete} is invoked. By default, this method
301     * does nothing.
302 dl 1.1 *
303     * @param caller the task invoking this method (which may
304     * be this task itself).
305     */
306 dl 1.3 public void onCompletion(CountedCompleter<?> caller) {
307 dl 1.1 }
308    
309     /**
310 dl 1.2 * Performs an action when method {@link #completeExceptionally}
311     * is invoked or method {@link #compute} throws an exception, and
312     * this task has not otherwise already completed normally. On
313     * entry to this method, this task {@link
314     * ForkJoinTask#isCompletedAbnormally}. The return value of this
315     * method controls further propagation: If {@code true} and this
316     * task has a completer, then this completer is also completed
317     * exceptionally. The default implementation of this method does
318     * nothing except return {@code true}.
319     *
320     * @param ex the exception
321     * @param caller the task invoking this method (which may
322     * be this task itself).
323     * @return true if this exception should be propagated to this
324     * tasks completer, if one exists.
325     */
326 dl 1.3 public boolean onExceptionalCompletion(Throwable ex, CountedCompleter<?> caller) {
327 dl 1.2 return true;
328     }
329    
330     /**
331 dl 1.1 * Returns the completer established in this task's constructor,
332     * or {@code null} if none.
333     *
334     * @return the completer
335     */
336 dl 1.3 public final CountedCompleter<?> getCompleter() {
337 dl 1.1 return completer;
338     }
339    
340     /**
341     * Returns the current pending count.
342     *
343     * @return the current pending count
344     */
345     public final int getPendingCount() {
346     return pending;
347     }
348    
349     /**
350     * Sets the pending count to the given value.
351     *
352     * @param count the count
353     */
354     public final void setPendingCount(int count) {
355     pending = count;
356     }
357    
358     /**
359     * Adds (atomically) the given value to the pending count.
360     *
361     * @param delta the value to add
362     */
363     public final void addToPendingCount(int delta) {
364     int c; // note: can replace with intrinsic in jdk8
365     do {} while (!U.compareAndSwapInt(this, PENDING, c = pending, c+delta));
366     }
367    
368     /**
369     * Sets (atomically) the pending count to the given count only if
370     * it currently holds the given expected value.
371     *
372     * @param expected the expected value
373     * @param count the new value
374     * @return true is successful
375     */
376     public final boolean compareAndSetPendingCount(int expected, int count) {
377     return U.compareAndSwapInt(this, PENDING, expected, count);
378     }
379    
380     /**
381 dl 1.6 * Returns the root of the current computation; i.e., this
382     * task if it has no completer, else its completer's root.
383     *
384     * @return the root of the current computation
385     */
386     public final CountedCompleter<?> getRoot() {
387     CountedCompleter<?> a = this, p;
388     while ((p = a.completer) != null)
389     a = p;
390     return a;
391     }
392    
393     /**
394 dl 1.1 * If the pending count is nonzero, decrements the count;
395     * otherwise invokes {@link #onCompletion} and then similarly
396     * tries to complete this task's completer, if one exists,
397     * else marks this task as complete.
398     */
399     public final void tryComplete() {
400 dl 1.3 CountedCompleter<?> a = this, s = a;
401 dl 1.2 for (int c;;) {
402 dl 1.1 if ((c = a.pending) == 0) {
403     a.onCompletion(s);
404     if ((a = (s = a).completer) == null) {
405     s.quietlyComplete();
406     return;
407     }
408     }
409     else if (U.compareAndSwapInt(a, PENDING, c, c - 1))
410     return;
411     }
412     }
413    
414     /**
415     * Regardless of pending count, invokes {@link #onCompletion},
416 dl 1.3 * marks this task as complete and further triggers {@link
417     * #tryComplete} on this task's completer, if one exists. This
418     * method may be useful when forcing completion as soon as any one
419     * (versus all) of several subtask results are obtained. The
420     * given rawResult is used as an argument to {@link #setRawResult}
421     * before marking this task as complete; its value is meaningful
422     * only for classes overriding {@code setRawResult}.
423 dl 1.1 *
424 dl 1.3 * @param rawResult the raw result
425 dl 1.1 */
426 dl 1.3 public void complete(T rawResult) {
427     CountedCompleter<?> p;
428 dl 1.1 onCompletion(this);
429 dl 1.3 setRawResult(rawResult);
430 dl 1.1 quietlyComplete();
431     if ((p = completer) != null)
432     p.tryComplete();
433     }
434    
435     /**
436 dl 1.2 * Support for FJT exception propagation
437     */
438     void internalPropagateException(Throwable ex) {
439 dl 1.3 CountedCompleter<?> a = this, s = a;
440 dl 1.2 while (a.onExceptionalCompletion(ex, s) &&
441     (a = (s = a).completer) != null && a.status >= 0)
442     a.recordExceptionalCompletion(ex);
443     }
444    
445     /**
446 dl 1.1 * Implements execution conventions for CountedCompleters
447     */
448     protected final boolean exec() {
449     compute();
450     return false;
451     }
452    
453     /**
454 dl 1.3 * Returns the result of the computation. By default
455     * returns {@code null}, which is appropriate for {@code Void}
456     * actions, but in other cases should be overridden.
457 dl 1.1 *
458 dl 1.3 * @return the result of the computation
459 dl 1.1 */
460 dl 1.3 public T getRawResult() { return null; }
461 dl 1.1
462     /**
463 dl 1.3 * A method that result-bearing CountedCompleters may optionally
464     * use to help maintain result data. By default, does nothing.
465 dl 1.1 */
466 dl 1.3 protected void setRawResult(T t) { }
467 dl 1.1
468     // Unsafe mechanics
469     private static final sun.misc.Unsafe U;
470     private static final long PENDING;
471     static {
472     try {
473     U = getUnsafe();
474     PENDING = U.objectFieldOffset
475     (CountedCompleter.class.getDeclaredField("pending"));
476     } catch (Exception e) {
477     throw new Error(e);
478     }
479     }
480 jsr166 1.12
481 dl 1.1 /**
482     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
483     * Replace with a simple call to Unsafe.getUnsafe when integrating
484     * into a jdk.
485     *
486     * @return a sun.misc.Unsafe
487     */
488     private static sun.misc.Unsafe getUnsafe() {
489     try {
490     return sun.misc.Unsafe.getUnsafe();
491     } catch (SecurityException se) {
492     try {
493     return java.security.AccessController.doPrivileged
494     (new java.security
495     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
496     public sun.misc.Unsafe run() throws Exception {
497     java.lang.reflect.Field f = sun.misc
498     .Unsafe.class.getDeclaredField("theUnsafe");
499     f.setAccessible(true);
500     return (sun.misc.Unsafe) f.get(null);
501     }});
502     } catch (java.security.PrivilegedActionException e) {
503     throw new RuntimeException("Could not initialize intrinsics",
504     e.getCause());
505     }
506     }
507     }
508     }