ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
Revision: 1.189
Committed: Sat Sep 12 19:16:45 2015 UTC (8 years, 7 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.188: +6 -2 lines
Log Message:
code readability

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.97 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 dl 1.135
9 jsr166 1.22 import java.util.ArrayList;
10     import java.util.Arrays;
11     import java.util.Collection;
12     import java.util.Collections;
13     import java.util.List;
14 dl 1.78 import java.util.concurrent.AbstractExecutorService;
15     import java.util.concurrent.Callable;
16     import java.util.concurrent.ExecutorService;
17     import java.util.concurrent.Future;
18     import java.util.concurrent.RejectedExecutionException;
19     import java.util.concurrent.RunnableFuture;
20     import java.util.concurrent.TimeUnit;
21 dl 1.1
22     /**
23 jsr166 1.29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 jsr166 1.39 * A {@code ForkJoinPool} provides the entry point for submissions
25 dl 1.57 * from non-{@code ForkJoinTask} clients, as well as management and
26 jsr166 1.48 * monitoring operations.
27 dl 1.1 *
28 dl 1.42 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29     * ExecutorService} mainly by virtue of employing
30     * <em>work-stealing</em>: all threads in the pool attempt to find and
31 dl 1.111 * execute tasks submitted to the pool and/or created by other active
32     * tasks (eventually blocking waiting for work if none exist). This
33     * enables efficient processing when most tasks spawn other subtasks
34     * (as do most {@code ForkJoinTask}s), as well as when many small
35     * tasks are submitted to the pool from external clients. Especially
36     * when setting <em>asyncMode</em> to true in constructors, {@code
37     * ForkJoinPool}s may also be appropriate for use with event-style
38     * tasks that are never joined.
39 dl 1.1 *
40 dl 1.146 * <p>A static {@link #commonPool()} is available and appropriate for
41 dl 1.136 * most applications. The common pool is used by any ForkJoinTask that
42     * is not explicitly submitted to a specified pool. Using the common
43     * pool normally reduces resource usage (its threads are slowly
44     * reclaimed during periods of non-use, and reinstated upon subsequent
45 dl 1.140 * use).
46 dl 1.135 *
47     * <p>For applications that require separate or custom pools, a {@code
48     * ForkJoinPool} may be constructed with a given target parallelism
49     * level; by default, equal to the number of available processors. The
50     * pool attempts to maintain enough active (or available) threads by
51     * dynamically adding, suspending, or resuming internal worker
52     * threads, even if some tasks are stalled waiting to join
53     * others. However, no such adjustments are guaranteed in the face of
54 jsr166 1.153 * blocked I/O or other unmanaged synchronization. The nested {@link
55 dl 1.135 * ManagedBlocker} interface enables extension of the kinds of
56 dl 1.57 * synchronization accommodated.
57 dl 1.1 *
58     * <p>In addition to execution and lifecycle control methods, this
59     * class provides status check methods (for example
60 jsr166 1.29 * {@link #getStealCount}) that are intended to aid in developing,
61 dl 1.1 * tuning, and monitoring fork/join applications. Also, method
62 jsr166 1.29 * {@link #toString} returns indications of pool state in a
63 dl 1.2 * convenient form for informal monitoring.
64 dl 1.1 *
65 jsr166 1.144 * <p>As is the case with other ExecutorServices, there are three
66 jsr166 1.117 * main task execution methods summarized in the following table.
67     * These are designed to be used primarily by clients not already
68     * engaged in fork/join computations in the current pool. The main
69     * forms of these methods accept instances of {@code ForkJoinTask},
70     * but overloaded forms also allow mixed execution of plain {@code
71     * Runnable}- or {@code Callable}- based activities as well. However,
72     * tasks that are already executing in a pool should normally instead
73     * use the within-computation forms listed in the table unless using
74     * async event-style tasks that are not usually joined, in which case
75     * there is little difference among choice of methods.
76 dl 1.57 *
77     * <table BORDER CELLPADDING=3 CELLSPACING=1>
78     * <tr>
79     * <td></td>
80     * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81     * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82     * </tr>
83     * <tr>
84 jsr166 1.67 * <td> <b>Arrange async execution</td>
85 dl 1.57 * <td> {@link #execute(ForkJoinTask)}</td>
86     * <td> {@link ForkJoinTask#fork}</td>
87     * </tr>
88     * <tr>
89     * <td> <b>Await and obtain result</td>
90     * <td> {@link #invoke(ForkJoinTask)}</td>
91     * <td> {@link ForkJoinTask#invoke}</td>
92     * </tr>
93     * <tr>
94     * <td> <b>Arrange exec and obtain Future</td>
95     * <td> {@link #submit(ForkJoinTask)}</td>
96     * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97     * </tr>
98     * </table>
99 dl 1.59 *
100 dl 1.140 * <p>The common pool is by default constructed with default
101     * parameters, but these may be controlled by setting three {@link
102 jsr166 1.151 * System#getProperty system properties} with prefix {@code
103 dl 1.140 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104     * an integer greater than zero, {@code threadFactory} -- the class
105     * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106     * exceptionHandler} -- the class name of a {@link
107 jsr166 1.143 * java.lang.Thread.UncaughtExceptionHandler
108 dl 1.140 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109     * these settings, default parameters are used.
110     *
111 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
112 dl 1.2 * maximum number of running threads to 32767. Attempts to create
113 jsr166 1.48 * pools with greater than the maximum number result in
114 jsr166 1.39 * {@code IllegalArgumentException}.
115 jsr166 1.16 *
116 jsr166 1.48 * <p>This implementation rejects submitted tasks (that is, by throwing
117 dl 1.58 * {@link RejectedExecutionException}) only when the pool is shut down
118 dl 1.62 * or internal resources have been exhausted.
119 jsr166 1.48 *
120 jsr166 1.16 * @since 1.7
121     * @author Doug Lea
122 dl 1.1 */
123 dl 1.2 public class ForkJoinPool extends AbstractExecutorService {
124 dl 1.1
125     /*
126 dl 1.53 * Implementation Overview
127     *
128 dl 1.111 * This class and its nested classes provide the main
129     * functionality and control for a set of worker threads:
130 jsr166 1.117 * Submissions from non-FJ threads enter into submission queues.
131     * Workers take these tasks and typically split them into subtasks
132     * that may be stolen by other workers. Preference rules give
133     * first priority to processing tasks from their own queues (LIFO
134     * or FIFO, depending on mode), then to randomized FIFO steals of
135     * tasks in other queues.
136 dl 1.111 *
137 jsr166 1.117 * WorkQueues
138 dl 1.111 * ==========
139     *
140     * Most operations occur within work-stealing queues (in nested
141     * class WorkQueue). These are special forms of Deques that
142     * support only three of the four possible end-operations -- push,
143     * pop, and poll (aka steal), under the further constraints that
144     * push and pop are called only from the owning thread (or, as
145     * extended here, under a lock), while poll may be called from
146     * other threads. (If you are unfamiliar with them, you probably
147     * want to read Herlihy and Shavit's book "The Art of
148     * Multiprocessor programming", chapter 16 describing these in
149     * more detail before proceeding.) The main work-stealing queue
150     * design is roughly similar to those in the papers "Dynamic
151     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152     * (http://research.sun.com/scalable/pubs/index.html) and
153     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 jsr166 1.117 * The main differences ultimately stem from GC requirements that
156 dl 1.111 * we null out taken slots as soon as we can, to maintain as small
157     * a footprint as possible even in programs generating huge
158     * numbers of tasks. To accomplish this, we shift the CAS
159     * arbitrating pop vs poll (steal) from being on the indices
160     * ("base" and "top") to the slots themselves. So, both a
161     * successful pop and poll mainly entail a CAS of a slot from
162     * non-null to null. Because we rely on CASes of references, we
163     * do not need tag bits on base or top. They are simple ints as
164     * used in any circular array-based queue (see for example
165     * ArrayDeque). Updates to the indices must still be ordered in a
166     * way that guarantees that top == base means the queue is empty,
167     * but otherwise may err on the side of possibly making the queue
168     * appear nonempty when a push, pop, or poll have not fully
169     * committed. Note that this means that the poll operation,
170     * considered individually, is not wait-free. One thief cannot
171     * successfully continue until another in-progress one (or, if
172     * previously empty, a push) completes. However, in the
173     * aggregate, we ensure at least probabilistic non-blockingness.
174     * If an attempted steal fails, a thief always chooses a different
175     * random victim target to try next. So, in order for one thief to
176     * progress, it suffices for any in-progress poll or new push on
177 dl 1.123 * any empty queue to complete. (This is why we normally use
178     * method pollAt and its variants that try once at the apparent
179     * base index, else consider alternative actions, rather than
180     * method poll.)
181 dl 1.111 *
182 dl 1.112 * This approach also enables support of a user mode in which local
183 dl 1.111 * task processing is in FIFO, not LIFO order, simply by using
184     * poll rather than pop. This can be useful in message-passing
185     * frameworks in which tasks are never joined. However neither
186     * mode considers affinities, loads, cache localities, etc, so
187     * rarely provide the best possible performance on a given
188     * machine, but portably provide good throughput by averaging over
189     * these factors. (Further, even if we did try to use such
190 jsr166 1.117 * information, we do not usually have a basis for exploiting it.
191     * For example, some sets of tasks profit from cache affinities,
192     * but others are harmed by cache pollution effects.)
193 dl 1.111 *
194     * WorkQueues are also used in a similar way for tasks submitted
195     * to the pool. We cannot mix these tasks in the same queues used
196     * for work-stealing (this would contaminate lifo/fifo
197 dl 1.140 * processing). Instead, we randomly associate submission queues
198 dl 1.116 * with submitting threads, using a form of hashing. The
199     * ThreadLocal Submitter class contains a value initially used as
200     * a hash code for choosing existing queues, but may be randomly
201     * repositioned upon contention with other submitters. In
202 dl 1.140 * essence, submitters act like workers except that they are
203     * restricted to executing local tasks that they submitted (or in
204     * the case of CountedCompleters, others with the same root task).
205     * However, because most shared/external queue operations are more
206     * expensive than internal, and because, at steady state, external
207     * submitters will compete for CPU with workers, ForkJoinTask.join
208     * and related methods disable them from repeatedly helping to
209     * process tasks if all workers are active. Insertion of tasks in
210     * shared mode requires a lock (mainly to protect in the case of
211     * resizing) but we use only a simple spinlock (using bits in
212     * field qlock), because submitters encountering a busy queue move
213     * on to try or create other queues -- they block only when
214     * creating and registering new queues.
215 dl 1.111 *
216 jsr166 1.117 * Management
217 dl 1.111 * ==========
218 dl 1.91 *
219     * The main throughput advantages of work-stealing stem from
220     * decentralized control -- workers mostly take tasks from
221     * themselves or each other. We cannot negate this in the
222     * implementation of other management responsibilities. The main
223     * tactic for avoiding bottlenecks is packing nearly all
224 dl 1.111 * essentially atomic control state into two volatile variables
225     * that are by far most often read (not written) as status and
226 jsr166 1.117 * consistency checks.
227 dl 1.111 *
228     * Field "ctl" contains 64 bits holding all the information needed
229     * to atomically decide to add, inactivate, enqueue (on an event
230     * queue), dequeue, and/or re-activate workers. To enable this
231     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232     * far in excess of normal operating range) to allow ids, counts,
233     * and their negations (used for thresholding) to fit into 16bit
234     * fields.
235     *
236 dl 1.140 * Field "plock" is a form of sequence lock with a saturating
237     * shutdown bit (similarly for per-queue "qlocks"), mainly
238     * protecting updates to the workQueues array, as well as to
239     * enable shutdown. When used as a lock, it is normally only very
240     * briefly held, so is nearly always available after at most a
241     * brief spin, but we use a monitor-based backup strategy to
242 dl 1.146 * block when needed.
243 dl 1.111 *
244     * Recording WorkQueues. WorkQueues are recorded in the
245 dl 1.136 * "workQueues" array that is created upon first use and expanded
246     * if necessary. Updates to the array while recording new workers
247     * and unrecording terminated ones are protected from each other
248     * by a lock but the array is otherwise concurrently readable, and
249     * accessed directly. To simplify index-based operations, the
250     * array size is always a power of two, and all readers must
251 dl 1.146 * tolerate null slots. Worker queues are at odd indices. Shared
252 dl 1.140 * (submission) queues are at even indices, up to a maximum of 64
253     * slots, to limit growth even if array needs to expand to add
254     * more workers. Grouping them together in this way simplifies and
255     * speeds up task scanning.
256 dl 1.119 *
257     * All worker thread creation is on-demand, triggered by task
258     * submissions, replacement of terminated workers, and/or
259 dl 1.111 * compensation for blocked workers. However, all other support
260     * code is set up to work with other policies. To ensure that we
261     * do not hold on to worker references that would prevent GC, ALL
262     * accesses to workQueues are via indices into the workQueues
263     * array (which is one source of some of the messy code
264     * constructions here). In essence, the workQueues array serves as
265     * a weak reference mechanism. Thus for example the wait queue
266     * field of ctl stores indices, not references. Access to the
267     * workQueues in associated methods (for example signalWork) must
268     * both index-check and null-check the IDs. All such accesses
269     * ignore bad IDs by returning out early from what they are doing,
270     * since this can only be associated with termination, in which
271 dl 1.119 * case it is OK to give up. All uses of the workQueues array
272     * also check that it is non-null (even if previously
273     * non-null). This allows nulling during termination, which is
274     * currently not necessary, but remains an option for
275     * resource-revocation-based shutdown schemes. It also helps
276     * reduce JIT issuance of uncommon-trap code, which tends to
277 dl 1.111 * unnecessarily complicate control flow in some methods.
278 dl 1.91 *
279 dl 1.111 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 dl 1.95 * let workers spin indefinitely scanning for tasks when none can
281     * be found immediately, and we cannot start/resume workers unless
282     * there appear to be tasks available. On the other hand, we must
283     * quickly prod them into action when new tasks are submitted or
284 dl 1.111 * generated. In many usages, ramp-up time to activate workers is
285     * the main limiting factor in overall performance (this is
286     * compounded at program start-up by JIT compilation and
287     * allocation). So we try to streamline this as much as possible.
288     * We park/unpark workers after placing in an event wait queue
289     * when they cannot find work. This "queue" is actually a simple
290     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291     * counter value (that reflects the number of times a worker has
292     * been inactivated) to avoid ABA effects (we need only as many
293     * version numbers as worker threads). Successors are held in
294     * field WorkQueue.nextWait. Queuing deals with several intrinsic
295     * races, mainly that a task-producing thread can miss seeing (and
296 dl 1.95 * signalling) another thread that gave up looking for work but
297     * has not yet entered the wait queue. We solve this by requiring
298 dl 1.111 * a full sweep of all workers (via repeated calls to method
299     * scan()) both before and after a newly waiting worker is added
300     * to the wait queue. During a rescan, the worker might release
301     * some other queued worker rather than itself, which has the same
302     * net effect. Because enqueued workers may actually be rescanning
303     * rather than waiting, we set and clear the "parker" field of
304 jsr166 1.117 * WorkQueues to reduce unnecessary calls to unpark. (This
305 dl 1.111 * requires a secondary recheck to avoid missed signals.) Note
306     * the unusual conventions about Thread.interrupts surrounding
307     * parking and other blocking: Because interrupts are used solely
308     * to alert threads to check termination, which is checked anyway
309     * upon blocking, we clear status (using Thread.interrupted)
310     * before any call to park, so that park does not immediately
311     * return due to status being set via some other unrelated call to
312     * interrupt in user code.
313 dl 1.91 *
314     * Signalling. We create or wake up workers only when there
315     * appears to be at least one task they might be able to find and
316 dl 1.140 * execute. However, many other threads may notice the same task
317     * and each signal to wake up a thread that might take it. So in
318     * general, pools will be over-signalled. When a submission is
319 dl 1.149 * added or another worker adds a task to a queue that has fewer
320     * than two tasks, they signal waiting workers (or trigger
321     * creation of new ones if fewer than the given parallelism level
322     * -- signalWork), and may leave a hint to the unparked worker to
323     * help signal others upon wakeup). These primary signals are
324     * buttressed by others (see method helpSignal) whenever other
325     * threads scan for work or do not have a task to process. On
326     * most platforms, signalling (unpark) overhead time is noticeably
327     * long, and the time between signalling a thread and it actually
328     * making progress can be very noticeably long, so it is worth
329     * offloading these delays from critical paths as much as
330     * possible.
331 dl 1.91 *
332     * Trimming workers. To release resources after periods of lack of
333     * use, a worker starting to wait when the pool is quiescent will
334 dl 1.135 * time out and terminate if the pool has remained quiescent for a
335     * given period -- a short period if there are more threads than
336     * parallelism, longer as the number of threads decreases. This
337     * will slowly propagate, eventually terminating all workers after
338     * periods of non-use.
339 dl 1.91 *
340 dl 1.111 * Shutdown and Termination. A call to shutdownNow atomically sets
341 dl 1.140 * a plock bit and then (non-atomically) sets each worker's
342     * qlock status, cancels all unprocessed tasks, and wakes up
343 dl 1.111 * all waiting workers. Detecting whether termination should
344     * commence after a non-abrupt shutdown() call requires more work
345     * and bookkeeping. We need consensus about quiescence (i.e., that
346     * there is no more work). The active count provides a primary
347     * indication but non-abrupt shutdown still requires a rechecking
348     * scan for any workers that are inactive but not queued.
349     *
350 jsr166 1.117 * Joining Tasks
351     * =============
352 dl 1.111 *
353     * Any of several actions may be taken when one worker is waiting
354 jsr166 1.117 * to join a task stolen (or always held) by another. Because we
355 dl 1.111 * are multiplexing many tasks on to a pool of workers, we can't
356     * just let them block (as in Thread.join). We also cannot just
357     * reassign the joiner's run-time stack with another and replace
358     * it later, which would be a form of "continuation", that even if
359     * possible is not necessarily a good idea since we sometimes need
360 jsr166 1.117 * both an unblocked task and its continuation to progress.
361     * Instead we combine two tactics:
362 dl 1.58 *
363 dl 1.60 * Helping: Arranging for the joiner to execute some task that it
364 dl 1.111 * would be running if the steal had not occurred.
365 dl 1.58 *
366 dl 1.61 * Compensating: Unless there are already enough live threads,
367 dl 1.111 * method tryCompensate() may create or re-activate a spare
368     * thread to compensate for blocked joiners until they unblock.
369     *
370 dl 1.140 * A third form (implemented in tryRemoveAndExec) amounts to
371     * helping a hypothetical compensator: If we can readily tell that
372     * a possible action of a compensator is to steal and execute the
373     * task being joined, the joining thread can do so directly,
374     * without the need for a compensation thread (although at the
375     * expense of larger run-time stacks, but the tradeoff is
376     * typically worthwhile).
377 dl 1.91 *
378     * The ManagedBlocker extension API can't use helping so relies
379     * only on compensation in method awaitBlocker.
380 dl 1.58 *
381 dl 1.111 * The algorithm in tryHelpStealer entails a form of "linear"
382     * helping: Each worker records (in field currentSteal) the most
383     * recent task it stole from some other worker. Plus, it records
384     * (in field currentJoin) the task it is currently actively
385     * joining. Method tryHelpStealer uses these markers to try to
386     * find a worker to help (i.e., steal back a task from and execute
387     * it) that could hasten completion of the actively joined task.
388     * In essence, the joiner executes a task that would be on its own
389     * local deque had the to-be-joined task not been stolen. This may
390     * be seen as a conservative variant of the approach in Wagner &
391     * Calder "Leapfrogging: a portable technique for implementing
392     * efficient futures" SIGPLAN Notices, 1993
393     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394     * that: (1) We only maintain dependency links across workers upon
395     * steals, rather than use per-task bookkeeping. This sometimes
396 dl 1.123 * requires a linear scan of workQueues array to locate stealers,
397     * but often doesn't because stealers leave hints (that may become
398 dl 1.146 * stale/wrong) of where to locate them. It is only a hint
399     * because a worker might have had multiple steals and the hint
400     * records only one of them (usually the most current). Hinting
401     * isolates cost to when it is needed, rather than adding to
402     * per-task overhead. (2) It is "shallow", ignoring nesting and
403     * potentially cyclic mutual steals. (3) It is intentionally
404 dl 1.111 * racy: field currentJoin is updated only while actively joining,
405     * which means that we miss links in the chain during long-lived
406     * tasks, GC stalls etc (which is OK since blocking in such cases
407     * is usually a good idea). (4) We bound the number of attempts
408 dl 1.123 * to find work (see MAX_HELP) and fall back to suspending the
409     * worker and if necessary replacing it with another.
410 dl 1.111 *
411 dl 1.140 * Helping actions for CountedCompleters are much simpler: Method
412     * helpComplete can take and execute any task with the same root
413     * as the task being waited on. However, this still entails some
414     * traversal of completer chains, so is less efficient than using
415     * CountedCompleters without explicit joins.
416     *
417 dl 1.91 * It is impossible to keep exactly the target parallelism number
418     * of threads running at any given time. Determining the
419 dl 1.66 * existence of conservatively safe helping targets, the
420     * availability of already-created spares, and the apparent need
421 dl 1.111 * to create new spares are all racy, so we rely on multiple
422 dl 1.123 * retries of each. Compensation in the apparent absence of
423     * helping opportunities is challenging to control on JVMs, where
424     * GC and other activities can stall progress of tasks that in
425     * turn stall out many other dependent tasks, without us being
426     * able to determine whether they will ever require compensation.
427     * Even though work-stealing otherwise encounters little
428     * degradation in the presence of more threads than cores,
429     * aggressively adding new threads in such cases entails risk of
430     * unwanted positive feedback control loops in which more threads
431     * cause more dependent stalls (as well as delayed progress of
432     * unblocked threads to the point that we know they are available)
433     * leading to more situations requiring more threads, and so
434     * on. This aspect of control can be seen as an (analytically
435 jsr166 1.125 * intractable) game with an opponent that may choose the worst
436 dl 1.123 * (for us) active thread to stall at any time. We take several
437     * precautions to bound losses (and thus bound gains), mainly in
438 dl 1.140 * methods tryCompensate and awaitJoin.
439     *
440     * Common Pool
441     * ===========
442     *
443 dl 1.168 * The static common Pool always exists after static
444 dl 1.140 * initialization. Since it (or any other created pool) need
445     * never be used, we minimize initial construction overhead and
446     * footprint to the setup of about a dozen fields, with no nested
447     * allocation. Most bootstrapping occurs within method
448     * fullExternalPush during the first submission to the pool.
449     *
450     * When external threads submit to the common pool, they can
451     * perform some subtask processing (see externalHelpJoin and
452     * related methods). We do not need to record whether these
453     * submissions are to the common pool -- if not, externalHelpJoin
454 jsr166 1.142 * returns quickly (at the most helping to signal some common pool
455 dl 1.140 * workers). These submitters would otherwise be blocked waiting
456     * for completion, so the extra effort (with liberally sprinkled
457     * task status checks) in inapplicable cases amounts to an odd
458     * form of limited spin-wait before blocking in ForkJoinTask.join.
459     *
460     * Style notes
461     * ===========
462     *
463     * There is a lot of representation-level coupling among classes
464     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465     * fields of WorkQueue maintain data structures managed by
466     * ForkJoinPool, so are directly accessed. There is little point
467     * trying to reduce this, since any associated future changes in
468     * representations will need to be accompanied by algorithmic
469     * changes anyway. Several methods intrinsically sprawl because
470     * they must accumulate sets of consistent reads of volatiles held
471     * in local variables. Methods signalWork() and scan() are the
472     * main bottlenecks, so are especially heavily
473 dl 1.119 * micro-optimized/mangled. There are lots of inline assignments
474     * (of form "while ((local = field) != 0)") which are usually the
475     * simplest way to ensure the required read orderings (which are
476     * sometimes critical). This leads to a "C"-like style of listing
477     * declarations of these locals at the heads of methods or blocks.
478     * There are several occurrences of the unusual "do {} while
479     * (!cas...)" which is the simplest way to force an update of a
480 dl 1.140 * CAS'ed variable. There are also other coding oddities (including
481     * several unnecessary-looking hoisted null checks) that help
482 dl 1.119 * some methods perform reasonably even when interpreted (not
483     * compiled).
484 dl 1.91 *
485 jsr166 1.117 * The order of declarations in this file is:
486 dl 1.119 * (1) Static utility functions
487     * (2) Nested (static) classes
488     * (3) Static fields
489     * (4) Fields, along with constants used when unpacking some of them
490     * (5) Internal control methods
491     * (6) Callbacks and other support for ForkJoinTask methods
492     * (7) Exported methods
493     * (8) Static block initializing statics in minimally dependent order
494     */
495    
496     // Static utilities
497    
498     /**
499     * If there is a security manager, makes sure caller has
500     * permission to modify threads.
501 dl 1.1 */
502 dl 1.119 private static void checkPermission() {
503     SecurityManager security = System.getSecurityManager();
504     if (security != null)
505     security.checkPermission(modifyThreadPermission);
506     }
507    
508     // Nested classes
509 dl 1.1
510     /**
511 jsr166 1.35 * Factory for creating new {@link ForkJoinWorkerThread}s.
512     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513     * for {@code ForkJoinWorkerThread} subclasses that extend base
514     * functionality or initialize threads with different contexts.
515 dl 1.1 */
516     public static interface ForkJoinWorkerThreadFactory {
517     /**
518     * Returns a new worker thread operating in the given pool.
519     *
520     * @param pool the pool this thread works in
521 jsr166 1.48 * @throws NullPointerException if the pool is null
522 dl 1.1 */
523     public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524     }
525    
526     /**
527 jsr166 1.17 * Default ForkJoinWorkerThreadFactory implementation; creates a
528 dl 1.1 * new ForkJoinWorkerThread.
529     */
530 dl 1.146 static final class DefaultForkJoinWorkerThreadFactory
531 dl 1.1 implements ForkJoinWorkerThreadFactory {
532 dl 1.146 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 dl 1.53 return new ForkJoinWorkerThread(pool);
534 dl 1.1 }
535     }
536    
537     /**
538 dl 1.149 * Per-thread records for threads that submit to pools. Currently
539     * holds only pseudo-random seed / index that is used to choose
540     * submission queues in method externalPush. In the future, this may
541     * also incorporate a means to implement different task rejection
542     * and resubmission policies.
543     *
544     * Seeds for submitters and workers/workQueues work in basically
545     * the same way but are initialized and updated using slightly
546     * different mechanics. Both are initialized using the same
547     * approach as in class ThreadLocal, where successive values are
548     * unlikely to collide with previous values. Seeds are then
549     * randomly modified upon collisions using xorshifts, which
550     * requires a non-zero seed.
551     */
552     static final class Submitter {
553     int seed;
554     Submitter(int s) { seed = s; }
555     }
556    
557     /**
558 dl 1.119 * Class for artificial tasks that are used to replace the target
559     * of local joins if they are removed from an interior queue slot
560     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561     * actually do anything beyond having a unique identity.
562 dl 1.1 */
563 dl 1.119 static final class EmptyTask extends ForkJoinTask<Void> {
564 dl 1.140 private static final long serialVersionUID = -7721805057305804111L;
565 dl 1.119 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566     public final Void getRawResult() { return null; }
567     public final void setRawResult(Void x) {}
568     public final boolean exec() { return true; }
569 dl 1.1 }
570    
571     /**
572 dl 1.111 * Queues supporting work-stealing as well as external task
573     * submission. See above for main rationale and algorithms.
574     * Implementation relies heavily on "Unsafe" intrinsics
575     * and selective use of "volatile":
576     *
577     * Field "base" is the index (mod array.length) of the least valid
578     * queue slot, which is always the next position to steal (poll)
579     * from if nonempty. Reads and writes require volatile orderings
580     * but not CAS, because updates are only performed after slot
581     * CASes.
582     *
583     * Field "top" is the index (mod array.length) of the next queue
584     * slot to push to or pop from. It is written only by owner thread
585 dl 1.140 * for push, or under lock for external/shared push, and accessed
586     * by other threads only after reading (volatile) base. Both top
587     * and base are allowed to wrap around on overflow, but (top -
588     * base) (or more commonly -(base - top) to force volatile read of
589     * base before top) still estimates size. The lock ("qlock") is
590     * forced to -1 on termination, causing all further lock attempts
591     * to fail. (Note: we don't need CAS for termination state because
592     * upon pool shutdown, all shared-queues will stop being used
593     * anyway.) Nearly all lock bodies are set up so that exceptions
594     * within lock bodies are "impossible" (modulo JVM errors that
595     * would cause failure anyway.)
596 dl 1.111 *
597     * The array slots are read and written using the emulation of
598     * volatiles/atomics provided by Unsafe. Insertions must in
599     * general use putOrderedObject as a form of releasing store to
600     * ensure that all writes to the task object are ordered before
601 dl 1.140 * its publication in the queue. All removals entail a CAS to
602     * null. The array is always a power of two. To ensure safety of
603     * Unsafe array operations, all accesses perform explicit null
604     * checks and implicit bounds checks via power-of-two masking.
605 dl 1.111 *
606     * In addition to basic queuing support, this class contains
607     * fields described elsewhere to control execution. It turns out
608 dl 1.140 * to work better memory-layout-wise to include them in this class
609     * rather than a separate class.
610 dl 1.111 *
611     * Performance on most platforms is very sensitive to placement of
612     * instances of both WorkQueues and their arrays -- we absolutely
613     * do not want multiple WorkQueue instances or multiple queue
614     * arrays sharing cache lines. (It would be best for queue objects
615     * and their arrays to share, but there is nothing available to
616     * help arrange that). Unfortunately, because they are recorded
617     * in a common array, WorkQueue instances are often moved to be
618     * adjacent by garbage collectors. To reduce impact, we use field
619     * padding that works OK on common platforms; this effectively
620     * trades off slightly slower average field access for the sake of
621     * avoiding really bad worst-case access. (Until better JVM
622     * support is in place, this padding is dependent on transient
623 dl 1.149 * properties of JVM field layout rules.) We also take care in
624     * allocating, sizing and resizing the array. Non-shared queue
625     * arrays are initialized by workers before use. Others are
626     * allocated on first use.
627 dl 1.53 */
628 dl 1.111 static final class WorkQueue {
629     /**
630     * Capacity of work-stealing queue array upon initialization.
631 dl 1.123 * Must be a power of two; at least 4, but should be larger to
632     * reduce or eliminate cacheline sharing among queues.
633     * Currently, it is much larger, as a partial workaround for
634     * the fact that JVMs often place arrays in locations that
635     * share GC bookkeeping (especially cardmarks) such that
636     * per-write accesses encounter serious memory contention.
637 dl 1.111 */
638 dl 1.123 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639 dl 1.111
640     /**
641     * Maximum size for queue arrays. Must be a power of two less
642     * than or equal to 1 << (31 - width of array entry) to ensure
643     * lack of wraparound of index calculations, but defined to a
644     * value a bit less than this to help users trap runaway
645     * programs before saturating systems.
646     */
647     static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648    
649 dl 1.149 // Heuristic padding to ameliorate unfortunate memory placements
650     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651    
652 dl 1.111 int seed; // for random scanning; initialize nonzero
653     volatile int eventCount; // encoded inactivation count; < 0 if inactive
654     int nextWait; // encoded record of next event waiter
655 dl 1.146 int hint; // steal or signal hint (index)
656 dl 1.111 int poolIndex; // index of this queue in pool (or 0)
657 dl 1.146 final int mode; // 0: lifo, > 0: fifo, < 0: shared
658     int nsteals; // number of steals
659 dl 1.140 volatile int qlock; // 1: locked, -1: terminate; else 0
660 dl 1.111 volatile int base; // index of next slot for poll
661     int top; // index of next slot for push
662     ForkJoinTask<?>[] array; // the elements (initially unallocated)
663 dl 1.123 final ForkJoinPool pool; // the containing pool (may be null)
664 dl 1.111 final ForkJoinWorkerThread owner; // owning thread or null if shared
665     volatile Thread parker; // == owner during call to park; else null
666 dl 1.128 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
667 dl 1.111 ForkJoinTask<?> currentSteal; // current non-local task being executed
668 dl 1.146
669 dl 1.149 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670     volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 dl 1.111
672 dl 1.146 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673     int seed) {
674 dl 1.123 this.pool = pool;
675 dl 1.111 this.owner = owner;
676 dl 1.146 this.mode = mode;
677     this.seed = seed;
678 dl 1.149 // Place indices in the center of array (that is not yet allocated)
679 dl 1.111 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680     }
681    
682     /**
683 dl 1.149 * Returns the approximate number of tasks in the queue.
684     */
685     final int queueSize() {
686     int n = base - top; // non-owner callers must read base first
687     return (n >= 0) ? 0 : -n; // ignore transient negative
688     }
689    
690 jsr166 1.187 /**
691 dl 1.149 * Provides a more accurate estimate of whether this queue has
692     * any tasks than does queueSize, by checking whether a
693     * near-empty queue has at least one unclaimed task.
694     */
695     final boolean isEmpty() {
696     ForkJoinTask<?>[] a; int m, s;
697     int n = base - (s = top);
698     return (n >= 0 ||
699     (n == -1 &&
700     ((a = array) == null ||
701     (m = a.length - 1) < 0 ||
702     U.getObject
703     (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704     }
705    
706     /**
707     * Pushes a task. Call only by owner in unshared queues. (The
708     * shared-queue version is embedded in method externalPush.)
709 dl 1.111 *
710     * @param task the task. Caller must ensure non-null.
711 jsr166 1.179 * @throws RejectedExecutionException if array cannot be resized
712 dl 1.111 */
713 dl 1.123 final void push(ForkJoinTask<?> task) {
714 dl 1.146 ForkJoinTask<?>[] a; ForkJoinPool p;
715     int s = top, m, n;
716     if ((a = array) != null) { // ignore if queue removed
717 dl 1.149 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718     U.putOrderedObject(a, j, task);
719     if ((n = (top = s + 1) - base) <= 2) {
720 dl 1.146 if ((p = pool) != null)
721 dl 1.149 p.signalWork(this);
722 dl 1.146 }
723     else if (n >= m)
724     growArray();
725 dl 1.111 }
726     }
727    
728 jsr166 1.188 /**
729 dl 1.146 * Initializes or doubles the capacity of array. Call either
730     * by owner or with lock held -- it is OK for base, but not
731     * top, to move while resizings are in progress.
732     */
733     final ForkJoinTask<?>[] growArray() {
734     ForkJoinTask<?>[] oldA = array;
735     int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736     if (size > MAXIMUM_QUEUE_CAPACITY)
737     throw new RejectedExecutionException("Queue capacity exceeded");
738     int oldMask, t, b;
739     ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740     if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741     (t = top) - (b = base) > 0) {
742     int mask = size - 1;
743     do {
744     ForkJoinTask<?> x;
745     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746     int j = ((b & mask) << ASHIFT) + ABASE;
747     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748     if (x != null &&
749     U.compareAndSwapObject(oldA, oldj, x, null))
750     U.putObjectVolatile(a, j, x);
751     } while (++b != t);
752 dl 1.111 }
753 dl 1.146 return a;
754 dl 1.111 }
755    
756     /**
757 dl 1.123 * Takes next task, if one exists, in LIFO order. Call only
758 dl 1.137 * by owner in unshared queues.
759 dl 1.123 */
760     final ForkJoinTask<?> pop() {
761 dl 1.127 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762     if ((a = array) != null && (m = a.length - 1) >= 0) {
763 dl 1.123 for (int s; (s = top - 1) - base >= 0;) {
764 dl 1.127 long j = ((m & s) << ASHIFT) + ABASE;
765     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 dl 1.123 break;
767     if (U.compareAndSwapObject(a, j, t, null)) {
768     top = s;
769     return t;
770     }
771     }
772     }
773     return null;
774     }
775    
776     /**
777     * Takes a task in FIFO order if b is base of queue and a task
778     * can be claimed without contention. Specialized versions
779     * appear in ForkJoinPool methods scan and tryHelpStealer.
780 dl 1.111 */
781 dl 1.123 final ForkJoinTask<?> pollAt(int b) {
782     ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783     if ((a = array) != null) {
784 dl 1.119 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785     if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786     base == b &&
787 dl 1.111 U.compareAndSwapObject(a, j, t, null)) {
788     base = b + 1;
789     return t;
790     }
791     }
792     return null;
793     }
794    
795     /**
796 dl 1.123 * Takes next task, if one exists, in FIFO order.
797 dl 1.111 */
798 dl 1.123 final ForkJoinTask<?> poll() {
799     ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800     while ((b = base) - top < 0 && (a = array) != null) {
801     int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803     if (t != null) {
804     if (base == b &&
805     U.compareAndSwapObject(a, j, t, null)) {
806     base = b + 1;
807 dl 1.111 return t;
808     }
809     }
810 dl 1.123 else if (base == b) {
811     if (b + 1 == top)
812     break;
813 dl 1.140 Thread.yield(); // wait for lagging update (very rare)
814 dl 1.123 }
815 dl 1.111 }
816     return null;
817     }
818    
819     /**
820     * Takes next task, if one exists, in order specified by mode.
821     */
822     final ForkJoinTask<?> nextLocalTask() {
823     return mode == 0 ? pop() : poll();
824     }
825    
826     /**
827     * Returns next task, if one exists, in order specified by mode.
828     */
829     final ForkJoinTask<?> peek() {
830     ForkJoinTask<?>[] a = array; int m;
831     if (a == null || (m = a.length - 1) < 0)
832     return null;
833     int i = mode == 0 ? top - 1 : base;
834     int j = ((i & m) << ASHIFT) + ABASE;
835     return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836     }
837    
838     /**
839     * Pops the given task only if it is at the current top.
840 dl 1.140 * (A shared version is available only via FJP.tryExternalUnpush)
841 dl 1.111 */
842     final boolean tryUnpush(ForkJoinTask<?> t) {
843     ForkJoinTask<?>[] a; int s;
844     if ((a = array) != null && (s = top) != base &&
845     U.compareAndSwapObject
846     (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847     top = s;
848     return true;
849     }
850     return false;
851     }
852    
853     /**
854 jsr166 1.117 * Removes and cancels all known tasks, ignoring any exceptions.
855 dl 1.111 */
856     final void cancelAll() {
857     ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858     ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859     for (ForkJoinTask<?> t; (t = poll()) != null; )
860     ForkJoinTask.cancelIgnoringExceptions(t);
861     }
862    
863 dl 1.119 /**
864     * Computes next value for random probes. Scans don't require
865     * a very high quality generator, but also not a crummy one.
866     * Marsaglia xor-shift is cheap and works well enough. Note:
867 dl 1.123 * This is manually inlined in its usages in ForkJoinPool to
868     * avoid writes inside busy scan loops.
869 dl 1.119 */
870     final int nextSeed() {
871     int r = seed;
872     r ^= r << 13;
873     r ^= r >>> 17;
874     return seed = r ^= r << 5;
875     }
876    
877 dl 1.139 // Specialized execution methods
878 dl 1.111
879     /**
880 dl 1.127 * Pops and runs tasks until empty.
881 dl 1.111 */
882 dl 1.127 private void popAndExecAll() {
883     // A bit faster than repeated pop calls
884     ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885     while ((a = array) != null && (m = a.length - 1) >= 0 &&
886     (s = top - 1) - base >= 0 &&
887     (t = ((ForkJoinTask<?>)
888     U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889     != null) {
890     if (U.compareAndSwapObject(a, j, t, null)) {
891     top = s;
892     t.doExec();
893 dl 1.123 }
894 dl 1.127 }
895     }
896    
897     /**
898     * Polls and runs tasks until empty.
899     */
900     private void pollAndExecAll() {
901     for (ForkJoinTask<?> t; (t = poll()) != null;)
902     t.doExec();
903     }
904    
905     /**
906 dl 1.140 * If present, removes from queue and executes the given task,
907     * or any other cancelled task. Returns (true) on any CAS
908 dl 1.127 * or consistency check failure so caller can retry.
909     *
910 jsr166 1.183 * @return false if no progress can be made, else true
911 dl 1.127 */
912 dl 1.140 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913     boolean stat = true, removed = false, empty = true;
914 dl 1.127 ForkJoinTask<?>[] a; int m, s, b, n;
915     if ((a = array) != null && (m = a.length - 1) >= 0 &&
916     (n = (s = top) - (b = base)) > 0) {
917     for (ForkJoinTask<?> t;;) { // traverse from s to b
918     int j = ((--s & m) << ASHIFT) + ABASE;
919     t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920     if (t == null) // inconsistent length
921     break;
922     else if (t == task) {
923     if (s + 1 == top) { // pop
924     if (!U.compareAndSwapObject(a, j, task, null))
925 dl 1.123 break;
926 dl 1.127 top = s;
927     removed = true;
928 dl 1.123 }
929 dl 1.127 else if (base == b) // replace with proxy
930     removed = U.compareAndSwapObject(a, j, task,
931     new EmptyTask());
932     break;
933     }
934     else if (t.status >= 0)
935     empty = false;
936     else if (s + 1 == top) { // pop and throw away
937     if (U.compareAndSwapObject(a, j, t, null))
938     top = s;
939     break;
940     }
941     if (--n == 0) {
942     if (!empty && base == b)
943 dl 1.140 stat = false;
944 dl 1.127 break;
945 dl 1.123 }
946     }
947 dl 1.111 }
948 dl 1.127 if (removed)
949     task.doExec();
950 dl 1.128 return stat;
951 dl 1.111 }
952    
953     /**
954 dl 1.140 * Polls for and executes the given task or any other task in
955 jsr166 1.181 * its CountedCompleter computation.
956 dl 1.139 */
957 dl 1.140 final boolean pollAndExecCC(ForkJoinTask<?> root) {
958     ForkJoinTask<?>[] a; int b; Object o;
959     outer: while ((b = base) - top < 0 && (a = array) != null) {
960     long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961     if ((o = U.getObject(a, j)) == null ||
962     !(o instanceof CountedCompleter))
963     break;
964     for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965     if (r == root) {
966     if (base == b &&
967     U.compareAndSwapObject(a, j, t, null)) {
968     base = b + 1;
969     t.doExec();
970     return true;
971 dl 1.139 }
972 dl 1.140 else
973     break; // restart
974 dl 1.139 }
975 dl 1.140 if ((r = r.completer) == null)
976     break outer; // not part of root computation
977 dl 1.139 }
978     }
979 dl 1.140 return false;
980 dl 1.139 }
981    
982     /**
983 dl 1.111 * Executes a top-level task and any local tasks remaining
984     * after execution.
985     */
986 dl 1.127 final void runTask(ForkJoinTask<?> t) {
987 dl 1.111 if (t != null) {
988 dl 1.140 (currentSteal = t).doExec();
989     currentSteal = null;
990 dl 1.160 ++nsteals;
991 dl 1.149 if (base - top < 0) { // process remaining local tasks
992 dl 1.127 if (mode == 0)
993     popAndExecAll();
994     else
995     pollAndExecAll();
996     }
997 dl 1.111 }
998     }
999    
1000     /**
1001 jsr166 1.117 * Executes a non-top-level (stolen) task.
1002 dl 1.111 */
1003     final void runSubtask(ForkJoinTask<?> t) {
1004     if (t != null) {
1005     ForkJoinTask<?> ps = currentSteal;
1006 dl 1.140 (currentSteal = t).doExec();
1007 dl 1.111 currentSteal = ps;
1008     }
1009     }
1010    
1011     /**
1012 dl 1.119 * Returns true if owned and not known to be blocked.
1013     */
1014     final boolean isApparentlyUnblocked() {
1015     Thread wt; Thread.State s;
1016     return (eventCount >= 0 &&
1017     (wt = owner) != null &&
1018     (s = wt.getState()) != Thread.State.BLOCKED &&
1019     s != Thread.State.WAITING &&
1020     s != Thread.State.TIMED_WAITING);
1021     }
1022    
1023 dl 1.111 // Unsafe mechanics
1024     private static final sun.misc.Unsafe U;
1025 dl 1.140 private static final long QLOCK;
1026 dl 1.111 private static final int ABASE;
1027     private static final int ASHIFT;
1028     static {
1029     try {
1030     U = getUnsafe();
1031     Class<?> k = WorkQueue.class;
1032     Class<?> ak = ForkJoinTask[].class;
1033 dl 1.140 QLOCK = U.objectFieldOffset
1034     (k.getDeclaredField("qlock"));
1035 dl 1.111 ABASE = U.arrayBaseOffset(ak);
1036 jsr166 1.175 int scale = U.arrayIndexScale(ak);
1037     if ((scale & (scale - 1)) != 0)
1038     throw new Error("data type scale not a power of two");
1039     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1040 dl 1.111 } catch (Exception e) {
1041     throw new Error(e);
1042     }
1043     }
1044     }
1045 jsr166 1.131
1046 dl 1.146 // static fields (initialized in static initializer below)
1047    
1048     /**
1049     * Creates a new ForkJoinWorkerThread. This factory is used unless
1050     * overridden in ForkJoinPool constructors.
1051     */
1052     public static final ForkJoinWorkerThreadFactory
1053     defaultForkJoinWorkerThreadFactory;
1054    
1055 dl 1.1 /**
1056 dl 1.146 * Per-thread submission bookkeeping. Shared across all pools
1057     * to reduce ThreadLocal pollution and because random motion
1058     * to avoid contention in one pool is likely to hold for others.
1059     * Lazily initialized on first submission (but null-checked
1060     * in other contexts to avoid unnecessary initialization).
1061 dl 1.119 */
1062 dl 1.146 static final ThreadLocal<Submitter> submitters;
1063 dl 1.119
1064 dl 1.136 /**
1065 dl 1.149 * Permission required for callers of methods that may start or
1066     * kill threads.
1067     */
1068     private static final RuntimePermission modifyThreadPermission;
1069    
1070     /**
1071 dl 1.136 * Common (static) pool. Non-null for public use unless a static
1072 dl 1.140 * construction exception, but internal usages null-check on use
1073     * to paranoically avoid potential initialization circularities
1074     * as well as to simplify generated code.
1075 dl 1.136 */
1076 dl 1.168 static final ForkJoinPool common;
1077 dl 1.136
1078     /**
1079 dl 1.168 * Common pool parallelism. Must equal common.parallelism.
1080 dl 1.123 */
1081 dl 1.168 static final int commonParallelism;
1082 dl 1.123
1083     /**
1084 dl 1.140 * Sequence number for creating workerNamePrefix.
1085 dl 1.119 */
1086 dl 1.140 private static int poolNumberSequence;
1087 dl 1.119
1088 dl 1.1 /**
1089 jsr166 1.166 * Returns the next sequence number. We don't expect this to
1090     * ever contend, so use simple builtin sync.
1091 dl 1.116 */
1092 dl 1.140 private static final synchronized int nextPoolId() {
1093     return ++poolNumberSequence;
1094     }
1095 dl 1.119
1096     // static constants
1097    
1098     /**
1099 dl 1.140 * Initial timeout value (in nanoseconds) for the thread
1100     * triggering quiescence to park waiting for new work. On timeout,
1101     * the thread will instead try to shrink the number of
1102     * workers. The value should be large enough to avoid overly
1103     * aggressive shrinkage during most transient stalls (long GCs
1104     * etc).
1105 dl 1.119 */
1106 dl 1.140 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1107 dl 1.119
1108     /**
1109 dl 1.135 * Timeout value when there are more threads than parallelism level
1110 dl 1.119 */
1111 dl 1.140 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1112 dl 1.119
1113     /**
1114 dl 1.154 * Tolerance for idle timeouts, to cope with timer undershoots
1115     */
1116 dl 1.161 private static final long TIMEOUT_SLOP = 2000000L;
1117 dl 1.154
1118     /**
1119 dl 1.123 * The maximum stolen->joining link depth allowed in method
1120 dl 1.140 * tryHelpStealer. Must be a power of two. Depths for legitimate
1121 dl 1.123 * chains are unbounded, but we use a fixed constant to avoid
1122     * (otherwise unchecked) cycles and to bound staleness of
1123     * traversal parameters at the expense of sometimes blocking when
1124     * we could be helping.
1125     */
1126 dl 1.128 private static final int MAX_HELP = 64;
1127 dl 1.123
1128     /**
1129     * Increment for seed generators. See class ThreadLocal for
1130     * explanation.
1131 dl 1.119 */
1132 dl 1.123 private static final int SEED_INCREMENT = 0x61c88647;
1133 dl 1.116
1134 jsr166 1.185 /*
1135 dl 1.119 * Bits and masks for control variables
1136     *
1137     * Field ctl is a long packed with:
1138     * AC: Number of active running workers minus target parallelism (16 bits)
1139     * TC: Number of total workers minus target parallelism (16 bits)
1140     * ST: true if pool is terminating (1 bit)
1141     * EC: the wait count of top waiting thread (15 bits)
1142     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1143     *
1144     * When convenient, we can extract the upper 32 bits of counts and
1145     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1146     * (int)ctl. The ec field is never accessed alone, but always
1147     * together with id and st. The offsets of counts by the target
1148     * parallelism and the positionings of fields makes it possible to
1149     * perform the most common checks via sign tests of fields: When
1150     * ac is negative, there are not enough active workers, when tc is
1151     * negative, there are not enough total workers, and when e is
1152     * negative, the pool is terminating. To deal with these possibly
1153     * negative fields, we use casts in and out of "short" and/or
1154     * signed shifts to maintain signedness.
1155     *
1156     * When a thread is queued (inactivated), its eventCount field is
1157     * set negative, which is the only way to tell if a worker is
1158     * prevented from executing tasks, even though it must continue to
1159     * scan for them to avoid queuing races. Note however that
1160     * eventCount updates lag releases so usage requires care.
1161     *
1162 dl 1.140 * Field plock is an int packed with:
1163 dl 1.119 * SHUTDOWN: true if shutdown is enabled (1 bit)
1164 dl 1.140 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1165     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1166 dl 1.119 *
1167 dl 1.123 * The sequence number enables simple consistency checks:
1168     * Staleness of read-only operations on the workQueues array can
1169 dl 1.140 * be checked by comparing plock before vs after the reads.
1170 dl 1.119 */
1171    
1172     // bit positions/shifts for fields
1173     private static final int AC_SHIFT = 48;
1174     private static final int TC_SHIFT = 32;
1175     private static final int ST_SHIFT = 31;
1176     private static final int EC_SHIFT = 16;
1177    
1178     // bounds
1179     private static final int SMASK = 0xffff; // short bits
1180 dl 1.123 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1181 dl 1.140 private static final int EVENMASK = 0xfffe; // even short bits
1182     private static final int SQMASK = 0x007e; // max 64 (even) slots
1183 dl 1.119 private static final int SHORT_SIGN = 1 << 15;
1184     private static final int INT_SIGN = 1 << 31;
1185    
1186     // masks
1187     private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1188     private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1189     private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1190    
1191     // units for incrementing and decrementing
1192     private static final long TC_UNIT = 1L << TC_SHIFT;
1193     private static final long AC_UNIT = 1L << AC_SHIFT;
1194    
1195     // masks and units for dealing with u = (int)(ctl >>> 32)
1196     private static final int UAC_SHIFT = AC_SHIFT - 32;
1197     private static final int UTC_SHIFT = TC_SHIFT - 32;
1198     private static final int UAC_MASK = SMASK << UAC_SHIFT;
1199     private static final int UTC_MASK = SMASK << UTC_SHIFT;
1200     private static final int UAC_UNIT = 1 << UAC_SHIFT;
1201     private static final int UTC_UNIT = 1 << UTC_SHIFT;
1202    
1203     // masks and units for dealing with e = (int)ctl
1204     private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1205     private static final int E_SEQ = 1 << EC_SHIFT;
1206    
1207 dl 1.140 // plock bits
1208 dl 1.119 private static final int SHUTDOWN = 1 << 31;
1209 dl 1.140 private static final int PL_LOCK = 2;
1210     private static final int PL_SIGNAL = 1;
1211     private static final int PL_SPINS = 1 << 8;
1212 dl 1.119
1213     // access mode for WorkQueue
1214     static final int LIFO_QUEUE = 0;
1215     static final int FIFO_QUEUE = 1;
1216     static final int SHARED_QUEUE = -1;
1217    
1218 dl 1.146 // bounds for #steps in scan loop -- must be power 2 minus 1
1219     private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1220     private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1221    
1222 dl 1.119 // Instance fields
1223    
1224     /*
1225 dl 1.146 * Field layout of this class tends to matter more than one would
1226     * like. Runtime layout order is only loosely related to
1227 dl 1.119 * declaration order and may differ across JVMs, but the following
1228     * empirically works OK on current JVMs.
1229 dl 1.1 */
1230 dl 1.149
1231     // Heuristic padding to ameliorate unfortunate memory placements
1232     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1233    
1234 dl 1.136 volatile long stealCount; // collects worker counts
1235 dl 1.119 volatile long ctl; // main pool control
1236 dl 1.146 volatile int plock; // shutdown status and seqLock
1237 dl 1.140 volatile int indexSeed; // worker/submitter index seed
1238 dl 1.146 final int config; // mode and parallelism level
1239 dl 1.119 WorkQueue[] workQueues; // main registry
1240 dl 1.146 final ForkJoinWorkerThreadFactory factory;
1241 dl 1.119 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1242 dl 1.136 final String workerNamePrefix; // to create worker name string
1243    
1244 dl 1.149 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245     volatile Object pad18, pad19, pad1a, pad1b;
1246    
1247 jsr166 1.178 /**
1248 dl 1.140 * Acquires the plock lock to protect worker array and related
1249     * updates. This method is called only if an initial CAS on plock
1250 jsr166 1.174 * fails. This acts as a spinlock for normal cases, but falls back
1251 dl 1.140 * to builtin monitor to block when (rarely) needed. This would be
1252     * a terrible idea for a highly contended lock, but works fine as
1253 dl 1.160 * a more conservative alternative to a pure spinlock.
1254 dl 1.140 */
1255     private int acquirePlock() {
1256     int spins = PL_SPINS, r = 0, ps, nps;
1257     for (;;) {
1258     if (((ps = plock) & PL_LOCK) == 0 &&
1259     U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260     return nps;
1261 dl 1.146 else if (r == 0) { // randomize spins if possible
1262     Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1263     if ((t instanceof ForkJoinWorkerThread) &&
1264     (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1265     r = w.seed;
1266     else if ((z = submitters.get()) != null)
1267     r = z.seed;
1268     else
1269     r = 1;
1270     }
1271 dl 1.136 else if (spins >= 0) {
1272     r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1273     if (r >= 0)
1274     --spins;
1275     }
1276 dl 1.140 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1277 jsr166 1.141 synchronized (this) {
1278 dl 1.140 if ((plock & PL_SIGNAL) != 0) {
1279 dl 1.136 try {
1280     wait();
1281     } catch (InterruptedException ie) {
1282 dl 1.139 try {
1283     Thread.currentThread().interrupt();
1284     } catch (SecurityException ignore) {
1285     }
1286 dl 1.136 }
1287     }
1288     else
1289 dl 1.140 notifyAll();
1290 dl 1.136 }
1291     }
1292     }
1293     }
1294 dl 1.111
1295 dl 1.6 /**
1296 dl 1.140 * Unlocks and signals any thread waiting for plock. Called only
1297     * when CAS of seq value for unlock fails.
1298 dl 1.1 */
1299 dl 1.140 private void releasePlock(int ps) {
1300     plock = ps;
1301 jsr166 1.141 synchronized (this) { notifyAll(); }
1302 dl 1.111 }
1303 dl 1.1
1304 dl 1.146 /**
1305 dl 1.154 * Tries to create and start one worker if fewer than target
1306     * parallelism level exist. Adjusts counts etc on failure.
1307 dl 1.149 */
1308     private void tryAddWorker() {
1309 dl 1.146 long c; int u;
1310 dl 1.149 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1311     (u & SHORT_SIGN) != 0 && (int)c == 0) {
1312 dl 1.146 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1313     ((u + UAC_UNIT) & UAC_MASK)) << 32;
1314 dl 1.149 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1315     ForkJoinWorkerThreadFactory fac;
1316     Throwable ex = null;
1317     ForkJoinWorkerThread wt = null;
1318     try {
1319     if ((fac = factory) != null &&
1320     (wt = fac.newThread(this)) != null) {
1321     wt.start();
1322     break;
1323     }
1324     } catch (Throwable e) {
1325     ex = e;
1326     }
1327     deregisterWorker(wt, ex);
1328     break;
1329     }
1330 dl 1.146 }
1331     }
1332    
1333     // Registering and deregistering workers
1334    
1335     /**
1336     * Callback from ForkJoinWorkerThread to establish and record its
1337     * WorkQueue. To avoid scanning bias due to packing entries in
1338     * front of the workQueues array, we treat the array as a simple
1339     * power-of-two hash table using per-thread seed as hash,
1340     * expanding as needed.
1341     *
1342     * @param wt the worker thread
1343 dl 1.149 * @return the worker's queue
1344 dl 1.146 */
1345 dl 1.149 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1346     Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1347     wt.setDaemon(true);
1348     if ((handler = ueh) != null)
1349     wt.setUncaughtExceptionHandler(handler);
1350     do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1351     s += SEED_INCREMENT) ||
1352     s == 0); // skip 0
1353     WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1354     if (((ps = plock) & PL_LOCK) != 0 ||
1355     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1356     ps = acquirePlock();
1357     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1358     try {
1359     if ((ws = workQueues) != null) { // skip if shutting down
1360     int n = ws.length, m = n - 1;
1361     int r = (s << 1) | 1; // use odd-numbered indices
1362     if (ws[r &= m] != null) { // collision
1363     int probes = 0; // step by approx half size
1364     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1365     while (ws[r = (r + step) & m] != null) {
1366     if (++probes >= n) {
1367     workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1368     m = n - 1;
1369     probes = 0;
1370 dl 1.127 }
1371     }
1372     }
1373 dl 1.149 w.eventCount = w.poolIndex = r; // volatile write orders
1374     ws[r] = w;
1375 dl 1.111 }
1376 dl 1.149 } finally {
1377     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1378     releasePlock(nps);
1379 dl 1.111 }
1380 dl 1.149 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1381     return w;
1382 dl 1.111 }
1383 dl 1.58
1384 dl 1.1 /**
1385 dl 1.119 * Final callback from terminating worker, as well as upon failure
1386 dl 1.140 * to construct or start a worker. Removes record of worker from
1387     * array, and adjusts counts. If pool is shutting down, tries to
1388     * complete termination.
1389 dl 1.111 *
1390 dl 1.140 * @param wt the worker thread or null if construction failed
1391 dl 1.111 * @param ex the exception causing failure, or null if none
1392 dl 1.85 */
1393 dl 1.111 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1394     WorkQueue w = null;
1395     if (wt != null && (w = wt.workQueue) != null) {
1396 dl 1.140 int ps;
1397     w.qlock = -1; // ensure set
1398 dl 1.146 long ns = w.nsteals, sc; // collect steal count
1399     do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1400     sc = stealCount, sc + ns));
1401 dl 1.140 if (((ps = plock) & PL_LOCK) != 0 ||
1402     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1403     ps = acquirePlock();
1404     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1405 dl 1.136 try {
1406 dl 1.140 int idx = w.poolIndex;
1407 dl 1.111 WorkQueue[] ws = workQueues;
1408 dl 1.123 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1409 dl 1.119 ws[idx] = null;
1410 dl 1.111 } finally {
1411 dl 1.140 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412     releasePlock(nps);
1413 dl 1.111 }
1414     }
1415    
1416 dl 1.160 long c; // adjust ctl counts
1417 dl 1.111 do {} while (!U.compareAndSwapLong
1418     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1419     ((c - TC_UNIT) & TC_MASK) |
1420     (c & ~(AC_MASK|TC_MASK)))));
1421    
1422 dl 1.154 if (!tryTerminate(false, false) && w != null && w.array != null) {
1423 dl 1.160 w.cancelAll(); // cancel remaining tasks
1424     WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1425     while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1426     if (e > 0) { // activate or create replacement
1427     if ((ws = workQueues) == null ||
1428     (i = e & SMASK) >= ws.length ||
1429 dl 1.164 (v = ws[i]) == null)
1430 dl 1.160 break;
1431     long nc = (((long)(v.nextWait & E_MASK)) |
1432     ((long)(u + UAC_UNIT) << 32));
1433     if (v.eventCount != (e | INT_SIGN))
1434     break;
1435     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1436     v.eventCount = (e + E_SEQ) & E_MASK;
1437     if ((p = v.parker) != null)
1438     U.unpark(p);
1439     break;
1440 dl 1.154 }
1441     }
1442     else {
1443     if ((short)u < 0)
1444     tryAddWorker();
1445     break;
1446     }
1447     }
1448 dl 1.111 }
1449 dl 1.154 if (ex == null) // help clean refs on way out
1450     ForkJoinTask.helpExpungeStaleExceptions();
1451     else // rethrow
1452 dl 1.139 ForkJoinTask.rethrow(ex);
1453 dl 1.111 }
1454 dl 1.91
1455 dl 1.119 // Submissions
1456    
1457     /**
1458     * Unless shutting down, adds the given task to a submission queue
1459     * at submitter's current queue index (modulo submission
1460 dl 1.140 * range). Only the most common path is directly handled in this
1461     * method. All others are relayed to fullExternalPush.
1462 dl 1.123 *
1463     * @param task the task. Caller must ensure non-null.
1464 dl 1.119 */
1465 dl 1.140 final void externalPush(ForkJoinTask<?> task) {
1466     WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1467     if ((z = submitters.get()) != null && plock > 0 &&
1468     (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1469     (q = ws[m & z.seed & SQMASK]) != null &&
1470     U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1471 dl 1.146 int b = q.base, s = q.top, n, an;
1472     if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1473 dl 1.149 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1474     U.putOrderedObject(a, j, task);
1475 dl 1.140 q.top = s + 1; // push on to deque
1476     q.qlock = 0;
1477 dl 1.146 if (n <= 2)
1478 dl 1.149 signalWork(q);
1479 dl 1.123 return;
1480     }
1481 dl 1.140 q.qlock = 0;
1482 dl 1.116 }
1483 dl 1.140 fullExternalPush(task);
1484 dl 1.116 }
1485 dl 1.85
1486 dl 1.135 /**
1487 dl 1.140 * Full version of externalPush. This method is called, among
1488     * other times, upon the first submission of the first task to the
1489 dl 1.165 * pool, so must perform secondary initialization. It also
1490     * detects first submission by an external thread by looking up
1491     * its ThreadLocal, and creates a new shared queue if the one at
1492     * index if empty or contended. The plock lock body must be
1493     * exception-free (so no try/finally) so we optimistically
1494     * allocate new queues outside the lock and throw them away if
1495     * (very rarely) not needed.
1496     *
1497     * Secondary initialization occurs when plock is zero, to create
1498     * workQueue array and set plock to a valid value. This lock body
1499     * must also be exception-free. Because the plock seq value can
1500     * eventually wrap around zero, this method harmlessly fails to
1501     * reinitialize if workQueues exists, while still advancing plock.
1502 dl 1.140 */
1503     private void fullExternalPush(ForkJoinTask<?> task) {
1504 dl 1.149 int r = 0; // random index seed
1505 dl 1.146 for (Submitter z = submitters.get();;) {
1506     WorkQueue[] ws; WorkQueue q; int ps, m, k;
1507     if (z == null) {
1508     if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1509     r += SEED_INCREMENT) && r != 0)
1510     submitters.set(z = new Submitter(r));
1511     }
1512 dl 1.165 else if (r == 0) { // move to a different index
1513 dl 1.146 r = z.seed;
1514 dl 1.165 r ^= r << 13; // same xorshift as WorkQueues
1515 dl 1.146 r ^= r >>> 17;
1516     z.seed = r ^ (r << 5);
1517     }
1518     else if ((ps = plock) < 0)
1519 dl 1.140 throw new RejectedExecutionException();
1520 dl 1.146 else if (ps == 0 || (ws = workQueues) == null ||
1521 dl 1.165 (m = ws.length - 1) < 0) { // initialize workQueues
1522     int p = config & SMASK; // find power of two table size
1523     int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1524 jsr166 1.189 n |= n >>> 1;
1525     n |= n >>> 2;
1526     n |= n >>> 4;
1527     n |= n >>> 8;
1528     n |= n >>> 16;
1529     n = (n + 1) << 1;
1530 dl 1.165 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1531     new WorkQueue[n] : null);
1532     if (((ps = plock) & PL_LOCK) != 0 ||
1533     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1534     ps = acquirePlock();
1535     if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1536     workQueues = nws;
1537     int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1538     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1539     releasePlock(nps);
1540     }
1541 dl 1.146 else if ((q = ws[k = r & m & SQMASK]) != null) {
1542 dl 1.149 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1543     ForkJoinTask<?>[] a = q.array;
1544     int s = q.top;
1545     boolean submitted = false;
1546     try { // locked version of push
1547     if ((a != null && a.length > s + 1 - q.base) ||
1548     (a = q.growArray()) != null) { // must presize
1549     int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1550     U.putOrderedObject(a, j, task);
1551     q.top = s + 1;
1552     submitted = true;
1553     }
1554     } finally {
1555     q.qlock = 0; // unlock
1556     }
1557     if (submitted) {
1558     signalWork(q);
1559     return;
1560     }
1561     }
1562     r = 0; // move on failure
1563 dl 1.146 }
1564     else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1565     q = new WorkQueue(this, null, SHARED_QUEUE, r);
1566     if (((ps = plock) & PL_LOCK) != 0 ||
1567 dl 1.140 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1568     ps = acquirePlock();
1569 dl 1.146 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1570     ws[k] = q;
1571 dl 1.140 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1572     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1573     releasePlock(nps);
1574     }
1575 dl 1.146 else
1576     r = 0; // try elsewhere while lock held
1577 dl 1.139 }
1578 dl 1.137 }
1579    
1580 dl 1.111 // Maintaining ctl counts
1581 dl 1.56
1582     /**
1583 jsr166 1.117 * Increments active count; mainly called upon return from blocking.
1584 dl 1.58 */
1585 dl 1.111 final void incrementActiveCount() {
1586 dl 1.91 long c;
1587 dl 1.111 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1588 dl 1.61 }
1589    
1590     /**
1591 dl 1.149 * Tries to create or activate a worker if too few are active.
1592     *
1593     * @param q the (non-null) queue holding tasks to be signalled
1594 dl 1.140 */
1595 dl 1.149 final void signalWork(WorkQueue q) {
1596     int hint = q.poolIndex;
1597     long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1598 dl 1.140 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1599     if ((e = (int)c) > 0) {
1600     if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1601 dl 1.119 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1602     long nc = (((long)(w.nextWait & E_MASK)) |
1603     ((long)(u + UAC_UNIT) << 32));
1604     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1605 dl 1.149 w.hint = hint;
1606 dl 1.119 w.eventCount = (e + E_SEQ) & E_MASK;
1607 dl 1.149 if ((p = w.parker) != null)
1608 dl 1.140 U.unpark(p);
1609 dl 1.149 break;
1610 dl 1.140 }
1611 dl 1.149 if (q.top - q.base <= 0)
1612 dl 1.119 break;
1613     }
1614     else
1615 dl 1.91 break;
1616 dl 1.111 }
1617 dl 1.149 else {
1618     if ((short)u < 0)
1619     tryAddWorker();
1620     break;
1621 dl 1.91 }
1622     }
1623 dl 1.53 }
1624    
1625 dl 1.123 // Scanning for tasks
1626    
1627 dl 1.53 /**
1628 dl 1.123 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1629 dl 1.53 */
1630 dl 1.123 final void runWorker(WorkQueue w) {
1631 dl 1.149 w.growArray(); // allocate queue
1632     do { w.runTask(scan(w)); } while (w.qlock >= 0);
1633 dl 1.53 }
1634    
1635     /**
1636 dl 1.111 * Scans for and, if found, returns one task, else possibly
1637     * inactivates the worker. This method operates on single reads of
1638 dl 1.123 * volatile state and is designed to be re-invoked continuously,
1639     * in part because it returns upon detecting inconsistencies,
1640 dl 1.111 * contention, or state changes that indicate possible success on
1641     * re-invocation.
1642     *
1643 dl 1.146 * The scan searches for tasks across queues (starting at a random
1644     * index, and relying on registerWorker to irregularly scatter
1645     * them within array to avoid bias), checking each at least twice.
1646     * The scan terminates upon either finding a non-empty queue, or
1647     * completing the sweep. If the worker is not inactivated, it
1648     * takes and returns a task from this queue. Otherwise, if not
1649     * activated, it signals workers (that may include itself) and
1650     * returns so caller can retry. Also returns for true if the
1651     * worker array may have changed during an empty scan. On failure
1652     * to find a task, we take one of the following actions, after
1653     * which the caller will retry calling this method unless
1654     * terminated.
1655 dl 1.111 *
1656 dl 1.119 * * If pool is terminating, terminate the worker.
1657     *
1658 dl 1.111 * * If not already enqueued, try to inactivate and enqueue the
1659 dl 1.123 * worker on wait queue. Or, if inactivating has caused the pool
1660 dl 1.160 * to be quiescent, relay to idleAwaitWork to possibly shrink
1661     * pool.
1662 dl 1.123 *
1663 dl 1.140 * * If already enqueued and none of the above apply, possibly
1664 dl 1.160 * park awaiting signal, else lingering to help scan and signal.
1665     *
1666     * * If a non-empty queue discovered or left as a hint,
1667 jsr166 1.167 * help wake up other workers before return.
1668 dl 1.111 *
1669     * @param w the worker (via its WorkQueue)
1670 jsr166 1.133 * @return a task or null if none found
1671 dl 1.111 */
1672     private final ForkJoinTask<?> scan(WorkQueue w) {
1673 dl 1.149 WorkQueue[] ws; int m;
1674 dl 1.146 int ps = plock; // read plock before ws
1675     if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1676     int ec = w.eventCount; // ec is negative if inactive
1677     int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1678 dl 1.160 w.hint = -1; // update seed and clear hint
1679 dl 1.149 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1680     do {
1681 dl 1.146 WorkQueue q; ForkJoinTask<?>[] a; int b;
1682     if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1683     (a = q.array) != null) { // probably nonempty
1684 dl 1.123 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1685 dl 1.146 ForkJoinTask<?> t = (ForkJoinTask<?>)
1686     U.getObjectVolatile(a, i);
1687 dl 1.123 if (q.base == b && ec >= 0 && t != null &&
1688     U.compareAndSwapObject(a, i, t, null)) {
1689 dl 1.146 if ((q.base = b + 1) - q.top < 0)
1690 dl 1.149 signalWork(q);
1691 dl 1.146 return t; // taken
1692     }
1693 dl 1.149 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1694     w.hint = (r + j) & m; // help signal below
1695     break; // cannot take
1696     }
1697     }
1698     } while (--j >= 0);
1699    
1700 dl 1.160 int h, e, ns; long c, sc; WorkQueue q;
1701     if ((ns = w.nsteals) != 0) {
1702     if (U.compareAndSwapLong(this, STEALCOUNT,
1703     sc = stealCount, sc + ns))
1704     w.nsteals = 0; // collect steals and rescan
1705     }
1706     else if (plock != ps) // consistency check
1707     ; // skip
1708     else if ((e = (int)(c = ctl)) < 0)
1709     w.qlock = -1; // pool is terminating
1710     else {
1711     if ((h = w.hint) < 0) {
1712     if (ec >= 0) { // try to enqueue/inactivate
1713     long nc = (((long)ec |
1714     ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1715     w.nextWait = e; // link and mark inactive
1716     w.eventCount = ec | INT_SIGN;
1717     if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1718     w.eventCount = ec; // unmark on CAS failure
1719     else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1720     idleAwaitWork(w, nc, c);
1721     }
1722 dl 1.165 else if (w.eventCount < 0 && ctl == c) {
1723 dl 1.160 Thread wt = Thread.currentThread();
1724     Thread.interrupted(); // clear status
1725     U.putObject(wt, PARKBLOCKER, this);
1726     w.parker = wt; // emulate LockSupport.park
1727     if (w.eventCount < 0) // recheck
1728 dl 1.165 U.park(false, 0L); // block
1729 dl 1.160 w.parker = null;
1730     U.putObject(wt, PARKBLOCKER, null);
1731     }
1732     }
1733     if ((h >= 0 || (h = w.hint) >= 0) &&
1734     (ws = workQueues) != null && h < ws.length &&
1735     (q = ws[h]) != null) { // signal others before retry
1736     WorkQueue v; Thread p; int u, i, s;
1737 dl 1.165 for (int n = (config & SMASK) - 1;;) {
1738 dl 1.160 int idleCount = (w.eventCount < 0) ? 0 : -1;
1739     if (((s = idleCount - q.base + q.top) <= n &&
1740     (n = s) <= 0) ||
1741     (u = (int)((c = ctl) >>> 32)) >= 0 ||
1742     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1743     (v = ws[i]) == null)
1744     break;
1745     long nc = (((long)(v.nextWait & E_MASK)) |
1746     ((long)(u + UAC_UNIT) << 32));
1747     if (v.eventCount != (e | INT_SIGN) ||
1748     !U.compareAndSwapLong(this, CTL, c, nc))
1749     break;
1750     v.hint = h;
1751     v.eventCount = (e + E_SEQ) & E_MASK;
1752     if ((p = v.parker) != null)
1753     U.unpark(p);
1754     if (--n <= 0)
1755     break;
1756     }
1757 dl 1.149 }
1758     }
1759 dl 1.91 }
1760 dl 1.111 return null;
1761 dl 1.53 }
1762    
1763     /**
1764 dl 1.123 * If inactivating worker w has caused the pool to become
1765     * quiescent, checks for pool termination, and, so long as this is
1766 dl 1.135 * not the only worker, waits for event for up to a given
1767     * duration. On timeout, if ctl has not changed, terminates the
1768 dl 1.123 * worker, which will in turn wake up another worker to possibly
1769     * repeat this process.
1770 dl 1.91 *
1771 dl 1.111 * @param w the calling worker
1772 dl 1.123 * @param currentCtl the ctl value triggering possible quiescence
1773     * @param prevCtl the ctl value to restore if thread is terminated
1774 dl 1.53 */
1775 dl 1.123 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1776 dl 1.146 if (w != null && w.eventCount < 0 &&
1777 dl 1.165 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1778     ctl == currentCtl) {
1779 dl 1.135 int dc = -(short)(currentCtl >>> TC_SHIFT);
1780     long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1781 dl 1.154 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1782 dl 1.123 Thread wt = Thread.currentThread();
1783     while (ctl == currentCtl) {
1784 dl 1.111 Thread.interrupted(); // timed variant of version in scan()
1785     U.putObject(wt, PARKBLOCKER, this);
1786     w.parker = wt;
1787 dl 1.123 if (ctl == currentCtl)
1788 dl 1.135 U.park(false, parkTime);
1789 dl 1.111 w.parker = null;
1790     U.putObject(wt, PARKBLOCKER, null);
1791 dl 1.123 if (ctl != currentCtl)
1792 dl 1.111 break;
1793 dl 1.135 if (deadline - System.nanoTime() <= 0L &&
1794 dl 1.123 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1795     w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1796 dl 1.165 w.hint = -1;
1797 dl 1.140 w.qlock = -1; // shrink
1798 dl 1.111 break;
1799     }
1800 dl 1.66 }
1801 dl 1.53 }
1802     }
1803    
1804     /**
1805 dl 1.154 * Scans through queues looking for work while joining a task; if
1806     * any present, signals. May return early if more signalling is
1807     * detectably unneeded.
1808 dl 1.140 *
1809 dl 1.154 * @param task return early if done
1810 dl 1.140 * @param origin an index to start scan
1811     */
1812 dl 1.154 private void helpSignal(ForkJoinTask<?> task, int origin) {
1813 dl 1.149 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1814 dl 1.154 if (task != null && task.status >= 0 &&
1815     (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1816 dl 1.149 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1817 dl 1.154 outer: for (int k = origin, j = m; j >= 0; --j) {
1818 dl 1.149 WorkQueue q = ws[k++ & m];
1819     for (int n = m;;) { // limit to at most m signals
1820 dl 1.154 if (task.status < 0)
1821 dl 1.149 break outer;
1822     if (q == null ||
1823 dl 1.154 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1824 dl 1.140 break;
1825 dl 1.149 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1826     (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1827     (w = ws[i]) == null)
1828     break outer;
1829     long nc = (((long)(w.nextWait & E_MASK)) |
1830     ((long)(u + UAC_UNIT) << 32));
1831 dl 1.160 if (w.eventCount != (e | INT_SIGN))
1832     break outer;
1833     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1834 dl 1.156 w.eventCount = (e + E_SEQ) & E_MASK;
1835     if ((p = w.parker) != null)
1836     U.unpark(p);
1837     if (--n <= 0)
1838     break;
1839     }
1840 dl 1.154 }
1841     }
1842     }
1843     }
1844    
1845     /**
1846 dl 1.111 * Tries to locate and execute tasks for a stealer of the given
1847     * task, or in turn one of its stealers, Traces currentSteal ->
1848     * currentJoin links looking for a thread working on a descendant
1849     * of the given task and with a non-empty queue to steal back and
1850     * execute tasks from. The first call to this method upon a
1851     * waiting join will often entail scanning/search, (which is OK
1852     * because the joiner has nothing better to do), but this method
1853     * leaves hints in workers to speed up subsequent calls. The
1854     * implementation is very branchy to cope with potential
1855     * inconsistencies or loops encountering chains that are stale,
1856 dl 1.128 * unknown, or so long that they are likely cyclic.
1857 dl 1.111 *
1858     * @param joiner the joining worker
1859     * @param task the task to join
1860 dl 1.128 * @return 0 if no progress can be made, negative if task
1861     * known complete, else positive
1862 dl 1.111 */
1863 dl 1.128 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1864     int stat = 0, steps = 0; // bound to avoid cycles
1865     if (joiner != null && task != null) { // hoist null checks
1866     restart: for (;;) {
1867     ForkJoinTask<?> subtask = task; // current target
1868     for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1869     WorkQueue[] ws; int m, s, h;
1870     if ((s = task.status) < 0) {
1871     stat = s;
1872     break restart;
1873     }
1874     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1875     break restart; // shutting down
1876 dl 1.146 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1877 dl 1.128 v.currentSteal != subtask) {
1878     for (int origin = h;;) { // find stealer
1879     if (((h = (h + 2) & m) & 15) == 1 &&
1880     (subtask.status < 0 || j.currentJoin != subtask))
1881     continue restart; // occasional staleness check
1882     if ((v = ws[h]) != null &&
1883     v.currentSteal == subtask) {
1884 dl 1.146 j.hint = h; // save hint
1885 dl 1.128 break;
1886     }
1887     if (h == origin)
1888     break restart; // cannot find stealer
1889 dl 1.111 }
1890     }
1891 dl 1.128 for (;;) { // help stealer or descend to its stealer
1892     ForkJoinTask[] a; int b;
1893     if (subtask.status < 0) // surround probes with
1894     continue restart; // consistency checks
1895     if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1896     int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1897     ForkJoinTask<?> t =
1898     (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1899     if (subtask.status < 0 || j.currentJoin != subtask ||
1900     v.currentSteal != subtask)
1901     continue restart; // stale
1902     stat = 1; // apparent progress
1903     if (t != null && v.base == b &&
1904     U.compareAndSwapObject(a, i, t, null)) {
1905     v.base = b + 1; // help stealer
1906     joiner.runSubtask(t);
1907     }
1908     else if (v.base == b && ++steps == MAX_HELP)
1909     break restart; // v apparently stalled
1910     }
1911     else { // empty -- try to descend
1912     ForkJoinTask<?> next = v.currentJoin;
1913     if (subtask.status < 0 || j.currentJoin != subtask ||
1914     v.currentSteal != subtask)
1915     continue restart; // stale
1916     else if (next == null || ++steps == MAX_HELP)
1917     break restart; // dead-end or maybe cyclic
1918     else {
1919     subtask = next;
1920     j = v;
1921     break;
1922     }
1923 dl 1.111 }
1924 dl 1.91 }
1925 dl 1.61 }
1926 dl 1.111 }
1927 dl 1.53 }
1928 dl 1.128 return stat;
1929 dl 1.64 }
1930    
1931 dl 1.91 /**
1932 dl 1.140 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1933 jsr166 1.145 * and run tasks within the target's computation.
1934 dl 1.140 *
1935     * @param task the task to join
1936     * @param mode if shared, exit upon completing any task
1937     * if all workers are active
1938 dl 1.61 */
1939 dl 1.140 private int helpComplete(ForkJoinTask<?> task, int mode) {
1940 dl 1.146 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1941 dl 1.140 if (task != null && (ws = workQueues) != null &&
1942     (m = ws.length - 1) >= 0) {
1943     for (int j = 1, origin = j;;) {
1944     if ((s = task.status) < 0)
1945     return s;
1946     if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1947     origin = j;
1948 dl 1.146 if (mode == SHARED_QUEUE &&
1949     ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1950 dl 1.140 break;
1951     }
1952     else if ((j = (j + 2) & m) == origin)
1953 dl 1.111 break;
1954 dl 1.91 }
1955     }
1956 dl 1.140 return 0;
1957 dl 1.61 }
1958    
1959     /**
1960 dl 1.123 * Tries to decrement active count (sometimes implicitly) and
1961     * possibly release or create a compensating worker in preparation
1962     * for blocking. Fails on contention or termination. Otherwise,
1963 dl 1.140 * adds a new thread if no idle workers are available and pool
1964     * may become starved.
1965 dl 1.123 */
1966 dl 1.140 final boolean tryCompensate() {
1967 dl 1.146 int pc = config & SMASK, e, i, tc; long c;
1968 dl 1.140 WorkQueue[] ws; WorkQueue w; Thread p;
1969 dl 1.146 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1970 dl 1.140 if (e != 0 && (i = e & SMASK) < ws.length &&
1971     (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1972     long nc = ((long)(w.nextWait & E_MASK) |
1973     (c & (AC_MASK|TC_MASK)));
1974     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1975     w.eventCount = (e + E_SEQ) & E_MASK;
1976     if ((p = w.parker) != null)
1977     U.unpark(p);
1978     return true; // replace with idle worker
1979 dl 1.123 }
1980     }
1981 dl 1.146 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1982     (int)(c >> AC_SHIFT) + pc > 1) {
1983 dl 1.140 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1984     if (U.compareAndSwapLong(this, CTL, c, nc))
1985 dl 1.146 return true; // no compensation
1986 dl 1.140 }
1987 dl 1.146 else if (tc + pc < MAX_CAP) {
1988 dl 1.140 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1989     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1990 dl 1.149 ForkJoinWorkerThreadFactory fac;
1991     Throwable ex = null;
1992     ForkJoinWorkerThread wt = null;
1993     try {
1994     if ((fac = factory) != null &&
1995     (wt = fac.newThread(this)) != null) {
1996     wt.start();
1997     return true;
1998     }
1999     } catch (Throwable rex) {
2000     ex = rex;
2001     }
2002     deregisterWorker(wt, ex); // clean up and return false
2003 dl 1.123 }
2004     }
2005     }
2006     return false;
2007     }
2008    
2009     /**
2010 jsr166 1.126 * Helps and/or blocks until the given task is done.
2011 dl 1.123 *
2012     * @param joiner the joining worker
2013     * @param task the task
2014     * @return task status on exit
2015     */
2016     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2017 dl 1.140 int s = 0;
2018     if (joiner != null && task != null && (s = task.status) >= 0) {
2019 dl 1.128 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2020 dl 1.127 joiner.currentJoin = task;
2021 dl 1.149 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2022 dl 1.140 joiner.tryRemoveAndExec(task)); // process local tasks
2023 dl 1.149 if (s >= 0 && (s = task.status) >= 0) {
2024 dl 1.154 helpSignal(task, joiner.poolIndex);
2025 dl 1.149 if ((s = task.status) >= 0 &&
2026     (task instanceof CountedCompleter))
2027     s = helpComplete(task, LIFO_QUEUE);
2028     }
2029 dl 1.140 while (s >= 0 && (s = task.status) >= 0) {
2030 dl 1.149 if ((!joiner.isEmpty() || // try helping
2031 dl 1.140 (s = tryHelpStealer(joiner, task)) == 0) &&
2032 dl 1.146 (s = task.status) >= 0) {
2033 dl 1.154 helpSignal(task, joiner.poolIndex);
2034 dl 1.149 if ((s = task.status) >= 0 && tryCompensate()) {
2035 dl 1.146 if (task.trySetSignal() && (s = task.status) >= 0) {
2036     synchronized (task) {
2037     if (task.status >= 0) {
2038     try { // see ForkJoinTask
2039     task.wait(); // for explanation
2040     } catch (InterruptedException ie) {
2041     }
2042 dl 1.123 }
2043 dl 1.146 else
2044     task.notifyAll();
2045 dl 1.123 }
2046     }
2047 dl 1.146 long c; // re-activate
2048     do {} while (!U.compareAndSwapLong
2049     (this, CTL, c = ctl, c + AC_UNIT));
2050 dl 1.123 }
2051     }
2052     }
2053 dl 1.140 joiner.currentJoin = prevJoin;
2054 dl 1.123 }
2055 dl 1.127 return s;
2056 dl 1.123 }
2057    
2058     /**
2059     * Stripped-down variant of awaitJoin used by timed joins. Tries
2060     * to help join only while there is continuous progress. (Caller
2061     * will then enter a timed wait.)
2062     *
2063     * @param joiner the joining worker
2064     * @param task the task
2065     */
2066 dl 1.140 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2067 dl 1.123 int s;
2068 dl 1.140 if (joiner != null && task != null && (s = task.status) >= 0) {
2069     ForkJoinTask<?> prevJoin = joiner.currentJoin;
2070     joiner.currentJoin = task;
2071 dl 1.149 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2072 dl 1.140 joiner.tryRemoveAndExec(task));
2073 dl 1.149 if (s >= 0 && (s = task.status) >= 0) {
2074 dl 1.154 helpSignal(task, joiner.poolIndex);
2075 dl 1.149 if ((s = task.status) >= 0 &&
2076     (task instanceof CountedCompleter))
2077     s = helpComplete(task, LIFO_QUEUE);
2078     }
2079     if (s >= 0 && joiner.isEmpty()) {
2080 dl 1.140 do {} while (task.status >= 0 &&
2081     tryHelpStealer(joiner, task) > 0);
2082     }
2083     joiner.currentJoin = prevJoin;
2084     }
2085 dl 1.123 }
2086    
2087     /**
2088     * Returns a (probably) non-empty steal queue, if one is found
2089 dl 1.165 * during a scan, else null. This method must be retried by
2090     * caller if, by the time it tries to use the queue, it is empty.
2091 dl 1.140 * @param r a (random) seed for scanning
2092 dl 1.111 */
2093 dl 1.140 private WorkQueue findNonEmptyStealQueue(int r) {
2094 dl 1.165 for (;;) {
2095     int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2096     if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2097     for (int j = (m + 1) << 2; j >= 0; --j) {
2098     if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2099     q.base - q.top < 0)
2100     return q;
2101 dl 1.91 }
2102     }
2103 dl 1.165 if (plock == ps)
2104     return null;
2105 dl 1.64 }
2106     }
2107    
2108     /**
2109 dl 1.111 * Runs tasks until {@code isQuiescent()}. We piggyback on
2110     * active count ctl maintenance, but rather than blocking
2111     * when tasks cannot be found, we rescan until all others cannot
2112     * find tasks either.
2113     */
2114     final void helpQuiescePool(WorkQueue w) {
2115     for (boolean active = true;;) {
2116 dl 1.165 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2117     while ((t = w.nextLocalTask()) != null) {
2118     if (w.base - w.top < 0)
2119     signalWork(w);
2120     t.doExec();
2121     }
2122     if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2123 dl 1.111 if (!active) { // re-establish active count
2124     active = true;
2125     do {} while (!U.compareAndSwapLong
2126     (this, CTL, c = ctl, c + AC_UNIT));
2127     }
2128 dl 1.164 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2129     if (q.base - q.top < 0)
2130     signalWork(q);
2131 dl 1.111 w.runSubtask(t);
2132 dl 1.164 }
2133 dl 1.111 }
2134 jsr166 1.186 else if (active) { // decrement active count without queuing
2135 dl 1.165 long nc = (c = ctl) - AC_UNIT;
2136     if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2137 jsr166 1.186 return; // bypass decrement-then-increment
2138 dl 1.165 if (U.compareAndSwapLong(this, CTL, c, nc))
2139 dl 1.111 active = false;
2140 dl 1.64 }
2141 dl 1.165 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2142     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2143     return;
2144 dl 1.64 }
2145     }
2146    
2147     /**
2148 jsr166 1.117 * Gets and removes a local or stolen task for the given worker.
2149 dl 1.111 *
2150     * @return a task, if available
2151 dl 1.64 */
2152 dl 1.111 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2153     for (ForkJoinTask<?> t;;) {
2154 dl 1.123 WorkQueue q; int b;
2155 dl 1.111 if ((t = w.nextLocalTask()) != null)
2156     return t;
2157 dl 1.140 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2158 dl 1.111 return null;
2159 dl 1.164 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2160     if (q.base - q.top < 0)
2161     signalWork(q);
2162 dl 1.111 return t;
2163 dl 1.164 }
2164 dl 1.91 }
2165 dl 1.61 }
2166    
2167 dl 1.53 /**
2168 dl 1.140 * Returns a cheap heuristic guide for task partitioning when
2169     * programmers, frameworks, tools, or languages have little or no
2170     * idea about task granularity. In essence by offering this
2171     * method, we ask users only about tradeoffs in overhead vs
2172     * expected throughput and its variance, rather than how finely to
2173     * partition tasks.
2174     *
2175     * In a steady state strict (tree-structured) computation, each
2176     * thread makes available for stealing enough tasks for other
2177     * threads to remain active. Inductively, if all threads play by
2178     * the same rules, each thread should make available only a
2179     * constant number of tasks.
2180     *
2181     * The minimum useful constant is just 1. But using a value of 1
2182     * would require immediate replenishment upon each steal to
2183     * maintain enough tasks, which is infeasible. Further,
2184     * partitionings/granularities of offered tasks should minimize
2185     * steal rates, which in general means that threads nearer the top
2186     * of computation tree should generate more than those nearer the
2187     * bottom. In perfect steady state, each thread is at
2188     * approximately the same level of computation tree. However,
2189     * producing extra tasks amortizes the uncertainty of progress and
2190     * diffusion assumptions.
2191     *
2192 jsr166 1.184 * So, users will want to use values larger (but not much larger)
2193 dl 1.140 * than 1 to both smooth over transient shortages and hedge
2194     * against uneven progress; as traded off against the cost of
2195     * extra task overhead. We leave the user to pick a threshold
2196     * value to compare with the results of this call to guide
2197     * decisions, but recommend values such as 3.
2198     *
2199     * When all threads are active, it is on average OK to estimate
2200     * surplus strictly locally. In steady-state, if one thread is
2201     * maintaining say 2 surplus tasks, then so are others. So we can
2202     * just use estimated queue length. However, this strategy alone
2203     * leads to serious mis-estimates in some non-steady-state
2204     * conditions (ramp-up, ramp-down, other stalls). We can detect
2205     * many of these by further considering the number of "idle"
2206     * threads, that are known to have zero queued tasks, so
2207     * compensate by a factor of (#idle/#active) threads.
2208     *
2209     * Note: The approximation of #busy workers as #active workers is
2210     * not very good under current signalling scheme, and should be
2211     * improved.
2212     */
2213     static int getSurplusQueuedTaskCount() {
2214     Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2215     if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2216 dl 1.146 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2217     int n = (q = wt.workQueue).top - q.base;
2218 dl 1.140 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2219 dl 1.146 return n - (a > (p >>>= 1) ? 0 :
2220     a > (p >>>= 1) ? 1 :
2221     a > (p >>>= 1) ? 2 :
2222     a > (p >>>= 1) ? 4 :
2223     8);
2224 dl 1.140 }
2225     return 0;
2226 dl 1.135 }
2227    
2228 dl 1.119 // Termination
2229 dl 1.53
2230     /**
2231 dl 1.119 * Possibly initiates and/or completes termination. The caller
2232     * triggering termination runs three passes through workQueues:
2233     * (0) Setting termination status, followed by wakeups of queued
2234     * workers; (1) cancelling all tasks; (2) interrupting lagging
2235     * threads (likely in external tasks, but possibly also blocked in
2236     * joins). Each pass repeats previous steps because of potential
2237     * lagging thread creation.
2238 dl 1.53 *
2239     * @param now if true, unconditionally terminate, else only
2240 dl 1.111 * if no work and no active workers
2241 jsr166 1.120 * @param enable if true, enable shutdown when next possible
2242 dl 1.53 * @return true if now terminating or terminated
2243 dl 1.1 */
2244 dl 1.119 private boolean tryTerminate(boolean now, boolean enable) {
2245 dl 1.165 int ps;
2246 dl 1.168 if (this == common) // cannot shut down
2247 dl 1.140 return false;
2248 dl 1.165 if ((ps = plock) >= 0) { // enable by setting plock
2249     if (!enable)
2250     return false;
2251     if ((ps & PL_LOCK) != 0 ||
2252     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2253     ps = acquirePlock();
2254     int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2255     if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2256     releasePlock(nps);
2257     }
2258 dl 1.111 for (long c;;) {
2259 dl 1.165 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2260 dl 1.146 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2261 jsr166 1.138 synchronized (this) {
2262 dl 1.165 notifyAll(); // signal when 0 workers
2263 dl 1.136 }
2264 dl 1.111 }
2265     return true;
2266     }
2267 dl 1.165 if (!now) { // check if idle & no tasks
2268     WorkQueue[] ws; WorkQueue w;
2269     if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2270 dl 1.119 return false;
2271 dl 1.165 if ((ws = workQueues) != null) {
2272     for (int i = 0; i < ws.length; ++i) {
2273     if ((w = ws[i]) != null) {
2274     if (!w.isEmpty()) { // signal unprocessed tasks
2275     signalWork(w);
2276     return false;
2277     }
2278     if ((i & 1) != 0 && w.eventCount >= 0)
2279     return false; // unqueued inactive worker
2280     }
2281 dl 1.111 }
2282 dl 1.91 }
2283     }
2284 dl 1.119 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2285     for (int pass = 0; pass < 3; ++pass) {
2286 dl 1.165 WorkQueue[] ws; WorkQueue w; Thread wt;
2287     if ((ws = workQueues) != null) {
2288 dl 1.119 int n = ws.length;
2289     for (int i = 0; i < n; ++i) {
2290     if ((w = ws[i]) != null) {
2291 dl 1.140 w.qlock = -1;
2292 dl 1.119 if (pass > 0) {
2293     w.cancelAll();
2294 dl 1.160 if (pass > 1 && (wt = w.owner) != null) {
2295     if (!wt.isInterrupted()) {
2296     try {
2297     wt.interrupt();
2298 dl 1.165 } catch (Throwable ignore) {
2299 dl 1.160 }
2300     }
2301     U.unpark(wt);
2302     }
2303 dl 1.91 }
2304 dl 1.61 }
2305     }
2306 dl 1.119 // Wake up workers parked on event queue
2307     int i, e; long cc; Thread p;
2308     while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2309 dl 1.165 (i = e & SMASK) < n && i >= 0 &&
2310 dl 1.119 (w = ws[i]) != null) {
2311     long nc = ((long)(w.nextWait & E_MASK) |
2312     ((cc + AC_UNIT) & AC_MASK) |
2313     (cc & (TC_MASK|STOP_BIT)));
2314     if (w.eventCount == (e | INT_SIGN) &&
2315     U.compareAndSwapLong(this, CTL, cc, nc)) {
2316     w.eventCount = (e + E_SEQ) & E_MASK;
2317 dl 1.140 w.qlock = -1;
2318 dl 1.119 if ((p = w.parker) != null)
2319     U.unpark(p);
2320     }
2321     }
2322 dl 1.111 }
2323 dl 1.91 }
2324 dl 1.53 }
2325     }
2326 dl 1.56 }
2327    
2328 dl 1.140 // external operations on common pool
2329    
2330     /**
2331     * Returns common pool queue for a thread that has submitted at
2332     * least one task.
2333     */
2334     static WorkQueue commonSubmitterQueue() {
2335     ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2336     return ((z = submitters.get()) != null &&
2337 dl 1.168 (p = common) != null &&
2338 dl 1.140 (ws = p.workQueues) != null &&
2339     (m = ws.length - 1) >= 0) ?
2340     ws[m & z.seed & SQMASK] : null;
2341     }
2342    
2343     /**
2344     * Tries to pop the given task from submitter's queue in common pool.
2345     */
2346     static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2347     ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2348 dl 1.149 ForkJoinTask<?>[] a; int m, s;
2349     if (t != null &&
2350     (z = submitters.get()) != null &&
2351 dl 1.168 (p = common) != null &&
2352 dl 1.140 (ws = p.workQueues) != null &&
2353     (m = ws.length - 1) >= 0 &&
2354     (q = ws[m & z.seed & SQMASK]) != null &&
2355     (s = q.top) != q.base &&
2356 dl 1.149 (a = q.array) != null) {
2357     long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2358     if (U.getObject(a, j) == t &&
2359     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2360     if (q.array == a && q.top == s && // recheck
2361     U.compareAndSwapObject(a, j, t, null)) {
2362     q.top = s - 1;
2363     q.qlock = 0;
2364     return true;
2365     }
2366 dl 1.140 q.qlock = 0;
2367     }
2368     }
2369     return false;
2370     }
2371    
2372     /**
2373     * Tries to pop and run local tasks within the same computation
2374     * as the given root. On failure, tries to help complete from
2375     * other queues via helpComplete.
2376     */
2377     private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2378     ForkJoinTask<?>[] a; int m;
2379     if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2380     root != null && root.status >= 0) {
2381     for (;;) {
2382 dl 1.146 int s, u; Object o; CountedCompleter<?> task = null;
2383 dl 1.140 if ((s = q.top) - q.base > 0) {
2384     long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2385     if ((o = U.getObject(a, j)) != null &&
2386     (o instanceof CountedCompleter)) {
2387     CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2388     do {
2389     if (r == root) {
2390     if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391     if (q.array == a && q.top == s &&
2392     U.compareAndSwapObject(a, j, t, null)) {
2393     q.top = s - 1;
2394     task = t;
2395     }
2396     q.qlock = 0;
2397     }
2398     break;
2399     }
2400 jsr166 1.141 } while ((r = r.completer) != null);
2401 dl 1.140 }
2402     }
2403     if (task != null)
2404     task.doExec();
2405 dl 1.146 if (root.status < 0 ||
2406     (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2407 dl 1.140 break;
2408     if (task == null) {
2409 dl 1.154 helpSignal(root, q.poolIndex);
2410 dl 1.149 if (root.status >= 0)
2411 dl 1.140 helpComplete(root, SHARED_QUEUE);
2412     break;
2413     }
2414     }
2415     }
2416     }
2417    
2418     /**
2419     * Tries to help execute or signal availability of the given task
2420     * from submitter's queue in common pool.
2421     */
2422     static void externalHelpJoin(ForkJoinTask<?> t) {
2423     // Some hard-to-avoid overlap with tryExternalUnpush
2424     ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2425 dl 1.149 ForkJoinTask<?>[] a; int m, s, n;
2426 dl 1.146 if (t != null &&
2427 dl 1.140 (z = submitters.get()) != null &&
2428 dl 1.168 (p = common) != null &&
2429 dl 1.140 (ws = p.workQueues) != null &&
2430     (m = ws.length - 1) >= 0 &&
2431     (q = ws[m & z.seed & SQMASK]) != null &&
2432 dl 1.149 (a = q.array) != null) {
2433     int am = a.length - 1;
2434     if ((s = q.top) != q.base) {
2435     long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2436     if (U.getObject(a, j) == t &&
2437     U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2438     if (q.array == a && q.top == s &&
2439     U.compareAndSwapObject(a, j, t, null)) {
2440     q.top = s - 1;
2441     q.qlock = 0;
2442     t.doExec();
2443     }
2444     else
2445     q.qlock = 0;
2446 dl 1.140 }
2447     }
2448     if (t.status >= 0) {
2449     if (t instanceof CountedCompleter)
2450     p.externalHelpComplete(q, t);
2451     else
2452 dl 1.154 p.helpSignal(t, q.poolIndex);
2453 dl 1.140 }
2454     }
2455     }
2456    
2457 dl 1.91 // Exported methods
2458 dl 1.1
2459     // Constructors
2460    
2461     /**
2462 dl 1.42 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2463 dl 1.57 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2464     * #defaultForkJoinWorkerThreadFactory default thread factory},
2465     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2466 jsr166 1.17 *
2467 dl 1.1 * @throws SecurityException if a security manager exists and
2468     * the caller is not permitted to modify threads
2469     * because it does not hold {@link
2470 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2471 dl 1.1 */
2472     public ForkJoinPool() {
2473 jsr166 1.180 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2474 dl 1.57 defaultForkJoinWorkerThreadFactory, null, false);
2475 dl 1.1 }
2476    
2477     /**
2478 dl 1.42 * Creates a {@code ForkJoinPool} with the indicated parallelism
2479 dl 1.57 * level, the {@linkplain
2480     * #defaultForkJoinWorkerThreadFactory default thread factory},
2481     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2482 jsr166 1.17 *
2483 dl 1.42 * @param parallelism the parallelism level
2484 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2485 jsr166 1.47 * equal to zero, or greater than implementation limit
2486 dl 1.1 * @throws SecurityException if a security manager exists and
2487     * the caller is not permitted to modify threads
2488     * because it does not hold {@link
2489 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2490 dl 1.1 */
2491     public ForkJoinPool(int parallelism) {
2492 dl 1.57 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2493 dl 1.1 }
2494    
2495     /**
2496 dl 1.57 * Creates a {@code ForkJoinPool} with the given parameters.
2497 jsr166 1.17 *
2498 dl 1.57 * @param parallelism the parallelism level. For default value,
2499     * use {@link java.lang.Runtime#availableProcessors}.
2500     * @param factory the factory for creating new threads. For default value,
2501     * use {@link #defaultForkJoinWorkerThreadFactory}.
2502 dl 1.59 * @param handler the handler for internal worker threads that
2503     * terminate due to unrecoverable errors encountered while executing
2504 jsr166 1.73 * tasks. For default value, use {@code null}.
2505 dl 1.59 * @param asyncMode if true,
2506 dl 1.57 * establishes local first-in-first-out scheduling mode for forked
2507     * tasks that are never joined. This mode may be more appropriate
2508     * than default locally stack-based mode in applications in which
2509     * worker threads only process event-style asynchronous tasks.
2510 jsr166 1.73 * For default value, use {@code false}.
2511 dl 1.1 * @throws IllegalArgumentException if parallelism less than or
2512 jsr166 1.47 * equal to zero, or greater than implementation limit
2513 jsr166 1.48 * @throws NullPointerException if the factory is null
2514 dl 1.1 * @throws SecurityException if a security manager exists and
2515     * the caller is not permitted to modify threads
2516     * because it does not hold {@link
2517 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
2518 dl 1.1 */
2519 dl 1.59 public ForkJoinPool(int parallelism,
2520 dl 1.57 ForkJoinWorkerThreadFactory factory,
2521     Thread.UncaughtExceptionHandler handler,
2522     boolean asyncMode) {
2523 dl 1.53 checkPermission();
2524     if (factory == null)
2525     throw new NullPointerException();
2526 dl 1.123 if (parallelism <= 0 || parallelism > MAX_CAP)
2527 dl 1.1 throw new IllegalArgumentException();
2528     this.factory = factory;
2529 dl 1.57 this.ueh = handler;
2530 jsr166 1.147 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2531 dl 1.91 long np = (long)(-parallelism); // offset ctl counts
2532     this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2533 dl 1.140 int pn = nextPoolId();
2534 dl 1.91 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2535 dl 1.123 sb.append(Integer.toString(pn));
2536 dl 1.91 sb.append("-worker-");
2537     this.workerNamePrefix = sb.toString();
2538 dl 1.1 }
2539    
2540 dl 1.135 /**
2541 dl 1.136 * Constructor for common pool, suitable only for static initialization.
2542     * Basically the same as above, but uses smallest possible initial footprint.
2543     */
2544 dl 1.140 ForkJoinPool(int parallelism, long ctl,
2545 dl 1.136 ForkJoinWorkerThreadFactory factory,
2546     Thread.UncaughtExceptionHandler handler) {
2547 dl 1.146 this.config = parallelism;
2548 dl 1.140 this.ctl = ctl;
2549 dl 1.136 this.factory = factory;
2550     this.ueh = handler;
2551     this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2552     }
2553    
2554     /**
2555 dl 1.162 * Returns the common pool instance. This pool is statically
2556 dl 1.168 * constructed; its run state is unaffected by attempts to {@link
2557     * #shutdown} or {@link #shutdownNow}. However this pool and any
2558     * ongoing processing are automatically terminated upon program
2559     * {@link System#exit}. Any program that relies on asynchronous
2560     * task processing to complete before program termination should
2561 dl 1.170 * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2562     * exit.
2563 dl 1.135 *
2564     * @return the common pool instance
2565 jsr166 1.172 * @since 1.8
2566 dl 1.135 */
2567     public static ForkJoinPool commonPool() {
2568 dl 1.168 // assert common != null : "static init error";
2569     return common;
2570 dl 1.135 }
2571    
2572 dl 1.1 // Execution methods
2573    
2574     /**
2575 jsr166 1.17 * Performs the given task, returning its result upon completion.
2576 dl 1.91 * If the computation encounters an unchecked Exception or Error,
2577     * it is rethrown as the outcome of this invocation. Rethrown
2578     * exceptions behave in the same way as regular exceptions, but,
2579     * when possible, contain stack traces (as displayed for example
2580     * using {@code ex.printStackTrace()}) of both the current thread
2581     * as well as the thread actually encountering the exception;
2582     * minimally only the latter.
2583 jsr166 1.17 *
2584 dl 1.1 * @param task the task
2585     * @return the task's result
2586 jsr166 1.48 * @throws NullPointerException if the task is null
2587     * @throws RejectedExecutionException if the task cannot be
2588     * scheduled for execution
2589 dl 1.1 */
2590     public <T> T invoke(ForkJoinTask<T> task) {
2591 dl 1.123 if (task == null)
2592     throw new NullPointerException();
2593 dl 1.140 externalPush(task);
2594 dl 1.111 return task.join();
2595 dl 1.1 }
2596    
2597     /**
2598     * Arranges for (asynchronous) execution of the given task.
2599 jsr166 1.17 *
2600 dl 1.1 * @param task the task
2601 jsr166 1.48 * @throws NullPointerException if the task is null
2602     * @throws RejectedExecutionException if the task cannot be
2603     * scheduled for execution
2604 dl 1.1 */
2605 dl 1.37 public void execute(ForkJoinTask<?> task) {
2606 dl 1.123 if (task == null)
2607     throw new NullPointerException();
2608 dl 1.140 externalPush(task);
2609 dl 1.1 }
2610    
2611     // AbstractExecutorService methods
2612    
2613 jsr166 1.48 /**
2614     * @throws NullPointerException if the task is null
2615     * @throws RejectedExecutionException if the task cannot be
2616     * scheduled for execution
2617     */
2618 dl 1.1 public void execute(Runnable task) {
2619 dl 1.82 if (task == null)
2620     throw new NullPointerException();
2621 dl 1.23 ForkJoinTask<?> job;
2622 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2623     job = (ForkJoinTask<?>) task;
2624 dl 1.23 else
2625 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2626 dl 1.140 externalPush(job);
2627 dl 1.1 }
2628    
2629 jsr166 1.48 /**
2630 dl 1.57 * Submits a ForkJoinTask for execution.
2631     *
2632     * @param task the task to submit
2633     * @return the task
2634     * @throws NullPointerException if the task is null
2635     * @throws RejectedExecutionException if the task cannot be
2636     * scheduled for execution
2637     */
2638     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2639 dl 1.123 if (task == null)
2640     throw new NullPointerException();
2641 dl 1.140 externalPush(task);
2642 dl 1.57 return task;
2643     }
2644    
2645     /**
2646 jsr166 1.48 * @throws NullPointerException if the task is null
2647     * @throws RejectedExecutionException if the task cannot be
2648     * scheduled for execution
2649     */
2650 dl 1.1 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2651 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2652 dl 1.140 externalPush(job);
2653 dl 1.1 return job;
2654     }
2655    
2656 jsr166 1.48 /**
2657     * @throws NullPointerException if the task is null
2658     * @throws RejectedExecutionException if the task cannot be
2659     * scheduled for execution
2660     */
2661 dl 1.1 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2662 dl 1.123 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2663 dl 1.140 externalPush(job);
2664 dl 1.1 return job;
2665     }
2666    
2667 jsr166 1.48 /**
2668     * @throws NullPointerException if the task is null
2669     * @throws RejectedExecutionException if the task cannot be
2670     * scheduled for execution
2671     */
2672 dl 1.1 public ForkJoinTask<?> submit(Runnable task) {
2673 dl 1.82 if (task == null)
2674     throw new NullPointerException();
2675 dl 1.23 ForkJoinTask<?> job;
2676 jsr166 1.26 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2677     job = (ForkJoinTask<?>) task;
2678 dl 1.23 else
2679 dl 1.123 job = new ForkJoinTask.AdaptedRunnableAction(task);
2680 dl 1.140 externalPush(job);
2681 dl 1.1 return job;
2682     }
2683    
2684     /**
2685 jsr166 1.48 * @throws NullPointerException {@inheritDoc}
2686     * @throws RejectedExecutionException {@inheritDoc}
2687     */
2688 dl 1.1 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2689 dl 1.119 // In previous versions of this class, this method constructed
2690     // a task to run ForkJoinTask.invokeAll, but now external
2691     // invocation of multiple tasks is at least as efficient.
2692 jsr166 1.176 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2693 dl 1.1
2694 dl 1.119 boolean done = false;
2695     try {
2696     for (Callable<T> t : tasks) {
2697 dl 1.123 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2698 jsr166 1.177 futures.add(f);
2699 dl 1.140 externalPush(f);
2700 dl 1.119 }
2701 jsr166 1.176 for (int i = 0, size = futures.size(); i < size; i++)
2702     ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2703 dl 1.119 done = true;
2704     return futures;
2705     } finally {
2706     if (!done)
2707 jsr166 1.176 for (int i = 0, size = futures.size(); i < size; i++)
2708     futures.get(i).cancel(false);
2709 dl 1.1 }
2710     }
2711    
2712     /**
2713 jsr166 1.17 * Returns the factory used for constructing new workers.
2714 dl 1.1 *
2715     * @return the factory used for constructing new workers
2716     */
2717     public ForkJoinWorkerThreadFactory getFactory() {
2718     return factory;
2719     }
2720    
2721     /**
2722 dl 1.2 * Returns the handler for internal worker threads that terminate
2723     * due to unrecoverable errors encountered while executing tasks.
2724 jsr166 1.17 *
2725 jsr166 1.28 * @return the handler, or {@code null} if none
2726 dl 1.2 */
2727     public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2728 dl 1.53 return ueh;
2729 dl 1.2 }
2730    
2731     /**
2732 dl 1.42 * Returns the targeted parallelism level of this pool.
2733 dl 1.1 *
2734 dl 1.42 * @return the targeted parallelism level of this pool
2735 dl 1.1 */
2736     public int getParallelism() {
2737 dl 1.146 return config & SMASK;
2738 dl 1.1 }
2739    
2740     /**
2741 dl 1.135 * Returns the targeted parallelism level of the common pool.
2742     *
2743     * @return the targeted parallelism level of the common pool
2744 jsr166 1.172 * @since 1.8
2745 dl 1.135 */
2746     public static int getCommonPoolParallelism() {
2747 dl 1.168 return commonParallelism;
2748 dl 1.135 }
2749    
2750     /**
2751 dl 1.1 * Returns the number of worker threads that have started but not
2752 jsr166 1.76 * yet terminated. The result returned by this method may differ
2753 jsr166 1.29 * from {@link #getParallelism} when threads are created to
2754 dl 1.1 * maintain parallelism when others are cooperatively blocked.
2755     *
2756     * @return the number of worker threads
2757     */
2758     public int getPoolSize() {
2759 dl 1.146 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2760 dl 1.1 }
2761    
2762     /**
2763 jsr166 1.28 * Returns {@code true} if this pool uses local first-in-first-out
2764 jsr166 1.16 * scheduling mode for forked tasks that are never joined.
2765 dl 1.6 *
2766 jsr166 1.28 * @return {@code true} if this pool uses async mode
2767 dl 1.6 */
2768     public boolean getAsyncMode() {
2769 dl 1.146 return (config >>> 16) == FIFO_QUEUE;
2770 dl 1.6 }
2771    
2772     /**
2773 dl 1.2 * Returns an estimate of the number of worker threads that are
2774     * not blocked waiting to join tasks or for other managed
2775 dl 1.53 * synchronization. This method may overestimate the
2776     * number of running threads.
2777 dl 1.1 *
2778     * @return the number of worker threads
2779     */
2780     public int getRunningThreadCount() {
2781 dl 1.111 int rc = 0;
2782     WorkQueue[] ws; WorkQueue w;
2783     if ((ws = workQueues) != null) {
2784 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2785     if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2786 dl 1.111 ++rc;
2787     }
2788     }
2789     return rc;
2790 dl 1.1 }
2791    
2792     /**
2793 dl 1.2 * Returns an estimate of the number of threads that are currently
2794 dl 1.1 * stealing or executing tasks. This method may overestimate the
2795     * number of active threads.
2796 jsr166 1.17 *
2797 jsr166 1.16 * @return the number of active threads
2798 dl 1.1 */
2799     public int getActiveThreadCount() {
2800 dl 1.146 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2801 jsr166 1.102 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2802 dl 1.1 }
2803    
2804     /**
2805 jsr166 1.28 * Returns {@code true} if all worker threads are currently idle.
2806     * An idle worker is one that cannot obtain a task to execute
2807     * because none are available to steal from other threads, and
2808     * there are no pending submissions to the pool. This method is
2809     * conservative; it might not return {@code true} immediately upon
2810     * idleness of all threads, but will eventually become true if
2811     * threads remain inactive.
2812 jsr166 1.17 *
2813 jsr166 1.28 * @return {@code true} if all threads are currently idle
2814 dl 1.1 */
2815     public boolean isQuiescent() {
2816 dl 1.146 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2817 dl 1.1 }
2818    
2819     /**
2820     * Returns an estimate of the total number of tasks stolen from
2821     * one thread's work queue by another. The reported value
2822     * underestimates the actual total number of steals when the pool
2823     * is not quiescent. This value may be useful for monitoring and
2824 jsr166 1.17 * tuning fork/join programs: in general, steal counts should be
2825 dl 1.1 * high enough to keep threads busy, but low enough to avoid
2826     * overhead and contention across threads.
2827 jsr166 1.17 *
2828 jsr166 1.16 * @return the number of steals
2829 dl 1.1 */
2830     public long getStealCount() {
2831 dl 1.136 long count = stealCount;
2832 dl 1.111 WorkQueue[] ws; WorkQueue w;
2833     if ((ws = workQueues) != null) {
2834 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2835 dl 1.111 if ((w = ws[i]) != null)
2836 dl 1.140 count += w.nsteals;
2837 dl 1.111 }
2838     }
2839     return count;
2840 dl 1.1 }
2841    
2842     /**
2843 dl 1.2 * Returns an estimate of the total number of tasks currently held
2844     * in queues by worker threads (but not including tasks submitted
2845     * to the pool that have not begun executing). This value is only
2846     * an approximation, obtained by iterating across all threads in
2847     * the pool. This method may be useful for tuning task
2848     * granularities.
2849 jsr166 1.17 *
2850 jsr166 1.16 * @return the number of queued tasks
2851 dl 1.1 */
2852     public long getQueuedTaskCount() {
2853     long count = 0;
2854 dl 1.111 WorkQueue[] ws; WorkQueue w;
2855     if ((ws = workQueues) != null) {
2856 dl 1.119 for (int i = 1; i < ws.length; i += 2) {
2857 dl 1.111 if ((w = ws[i]) != null)
2858     count += w.queueSize();
2859     }
2860 dl 1.91 }
2861 dl 1.1 return count;
2862     }
2863    
2864     /**
2865 jsr166 1.40 * Returns an estimate of the number of tasks submitted to this
2866 dl 1.94 * pool that have not yet begun executing. This method may take
2867 dl 1.91 * time proportional to the number of submissions.
2868 jsr166 1.17 *
2869 jsr166 1.16 * @return the number of queued submissions
2870 dl 1.1 */
2871     public int getQueuedSubmissionCount() {
2872 dl 1.111 int count = 0;
2873     WorkQueue[] ws; WorkQueue w;
2874     if ((ws = workQueues) != null) {
2875 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2876 dl 1.111 if ((w = ws[i]) != null)
2877     count += w.queueSize();
2878     }
2879     }
2880     return count;
2881 dl 1.1 }
2882    
2883     /**
2884 jsr166 1.28 * Returns {@code true} if there are any tasks submitted to this
2885     * pool that have not yet begun executing.
2886 jsr166 1.17 *
2887 jsr166 1.16 * @return {@code true} if there are any queued submissions
2888 dl 1.1 */
2889     public boolean hasQueuedSubmissions() {
2890 dl 1.111 WorkQueue[] ws; WorkQueue w;
2891     if ((ws = workQueues) != null) {
2892 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2893 dl 1.149 if ((w = ws[i]) != null && !w.isEmpty())
2894 dl 1.111 return true;
2895     }
2896     }
2897     return false;
2898 dl 1.1 }
2899    
2900     /**
2901     * Removes and returns the next unexecuted submission if one is
2902     * available. This method may be useful in extensions to this
2903     * class that re-assign work in systems with multiple pools.
2904 jsr166 1.17 *
2905 jsr166 1.28 * @return the next submission, or {@code null} if none
2906 dl 1.1 */
2907     protected ForkJoinTask<?> pollSubmission() {
2908 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2909     if ((ws = workQueues) != null) {
2910 dl 1.119 for (int i = 0; i < ws.length; i += 2) {
2911 dl 1.111 if ((w = ws[i]) != null && (t = w.poll()) != null)
2912     return t;
2913 dl 1.91 }
2914     }
2915     return null;
2916 dl 1.1 }
2917    
2918     /**
2919 dl 1.6 * Removes all available unexecuted submitted and forked tasks
2920     * from scheduling queues and adds them to the given collection,
2921     * without altering their execution status. These may include
2922 jsr166 1.41 * artificially generated or wrapped tasks. This method is
2923     * designed to be invoked only when the pool is known to be
2924 dl 1.6 * quiescent. Invocations at other times may not remove all
2925     * tasks. A failure encountered while attempting to add elements
2926 jsr166 1.16 * to collection {@code c} may result in elements being in
2927 dl 1.6 * neither, either or both collections when the associated
2928     * exception is thrown. The behavior of this operation is
2929     * undefined if the specified collection is modified while the
2930     * operation is in progress.
2931 jsr166 1.17 *
2932 dl 1.6 * @param c the collection to transfer elements into
2933     * @return the number of elements transferred
2934     */
2935 dl 1.30 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2936 dl 1.91 int count = 0;
2937 dl 1.111 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2938     if ((ws = workQueues) != null) {
2939 dl 1.119 for (int i = 0; i < ws.length; ++i) {
2940 dl 1.111 if ((w = ws[i]) != null) {
2941     while ((t = w.poll()) != null) {
2942     c.add(t);
2943     ++count;
2944     }
2945     }
2946 dl 1.91 }
2947     }
2948 dl 1.57 return count;
2949     }
2950    
2951     /**
2952 dl 1.1 * Returns a string identifying this pool, as well as its state,
2953     * including indications of run state, parallelism level, and
2954     * worker and task counts.
2955     *
2956     * @return a string identifying this pool, as well as its state
2957     */
2958     public String toString() {
2959 dl 1.119 // Use a single pass through workQueues to collect counts
2960     long qt = 0L, qs = 0L; int rc = 0;
2961 dl 1.136 long st = stealCount;
2962 dl 1.119 long c = ctl;
2963     WorkQueue[] ws; WorkQueue w;
2964     if ((ws = workQueues) != null) {
2965     for (int i = 0; i < ws.length; ++i) {
2966     if ((w = ws[i]) != null) {
2967     int size = w.queueSize();
2968     if ((i & 1) == 0)
2969     qs += size;
2970     else {
2971     qt += size;
2972 dl 1.140 st += w.nsteals;
2973 dl 1.119 if (w.isApparentlyUnblocked())
2974     ++rc;
2975     }
2976     }
2977     }
2978     }
2979 dl 1.146 int pc = (config & SMASK);
2980 dl 1.91 int tc = pc + (short)(c >>> TC_SHIFT);
2981 dl 1.111 int ac = pc + (int)(c >> AC_SHIFT);
2982     if (ac < 0) // ignore transient negative
2983     ac = 0;
2984 dl 1.91 String level;
2985     if ((c & STOP_BIT) != 0)
2986 jsr166 1.102 level = (tc == 0) ? "Terminated" : "Terminating";
2987 dl 1.91 else
2988 dl 1.140 level = plock < 0 ? "Shutting down" : "Running";
2989 dl 1.1 return super.toString() +
2990 dl 1.91 "[" + level +
2991 dl 1.53 ", parallelism = " + pc +
2992     ", size = " + tc +
2993     ", active = " + ac +
2994     ", running = " + rc +
2995 dl 1.1 ", steals = " + st +
2996     ", tasks = " + qt +
2997     ", submissions = " + qs +
2998     "]";
2999     }
3000    
3001     /**
3002 dl 1.135 * Possibly initiates an orderly shutdown in which previously
3003     * submitted tasks are executed, but no new tasks will be
3004     * accepted. Invocation has no effect on execution state if this
3005 jsr166 1.171 * is the {@link #commonPool()}, and no additional effect if
3006 dl 1.135 * already shut down. Tasks that are in the process of being
3007     * submitted concurrently during the course of this method may or
3008     * may not be rejected.
3009 jsr166 1.17 *
3010 dl 1.1 * @throws SecurityException if a security manager exists and
3011     * the caller is not permitted to modify threads
3012     * because it does not hold {@link
3013 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
3014 dl 1.1 */
3015     public void shutdown() {
3016     checkPermission();
3017 dl 1.140 tryTerminate(false, true);
3018 dl 1.1 }
3019    
3020     /**
3021 dl 1.135 * Possibly attempts to cancel and/or stop all tasks, and reject
3022     * all subsequently submitted tasks. Invocation has no effect on
3023 jsr166 1.171 * execution state if this is the {@link #commonPool()}, and no
3024 dl 1.135 * additional effect if already shut down. Otherwise, tasks that
3025     * are in the process of being submitted or executed concurrently
3026     * during the course of this method may or may not be
3027     * rejected. This method cancels both existing and unexecuted
3028     * tasks, in order to permit termination in the presence of task
3029     * dependencies. So the method always returns an empty list
3030     * (unlike the case for some other Executors).
3031 jsr166 1.17 *
3032 dl 1.1 * @return an empty list
3033     * @throws SecurityException if a security manager exists and
3034     * the caller is not permitted to modify threads
3035     * because it does not hold {@link
3036 jsr166 1.17 * java.lang.RuntimePermission}{@code ("modifyThread")}
3037 dl 1.1 */
3038     public List<Runnable> shutdownNow() {
3039     checkPermission();
3040 dl 1.140 tryTerminate(true, true);
3041 dl 1.1 return Collections.emptyList();
3042     }
3043    
3044     /**
3045 jsr166 1.16 * Returns {@code true} if all tasks have completed following shut down.
3046 dl 1.1 *
3047 jsr166 1.16 * @return {@code true} if all tasks have completed following shut down
3048 dl 1.1 */
3049     public boolean isTerminated() {
3050 dl 1.91 long c = ctl;
3051     return ((c & STOP_BIT) != 0L &&
3052 dl 1.146 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3053 dl 1.1 }
3054    
3055     /**
3056 jsr166 1.16 * Returns {@code true} if the process of termination has
3057 dl 1.42 * commenced but not yet completed. This method may be useful for
3058     * debugging. A return of {@code true} reported a sufficient
3059     * period after shutdown may indicate that submitted tasks have
3060 jsr166 1.153 * ignored or suppressed interruption, or are waiting for I/O,
3061 dl 1.88 * causing this executor not to properly terminate. (See the
3062     * advisory notes for class {@link ForkJoinTask} stating that
3063     * tasks should not normally entail blocking operations. But if
3064     * they do, they must abort them on interrupt.)
3065 dl 1.1 *
3066 dl 1.42 * @return {@code true} if terminating but not yet terminated
3067 dl 1.1 */
3068     public boolean isTerminating() {
3069 dl 1.91 long c = ctl;
3070     return ((c & STOP_BIT) != 0L &&
3071 dl 1.146 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3072 dl 1.1 }
3073    
3074     /**
3075 jsr166 1.16 * Returns {@code true} if this pool has been shut down.
3076 dl 1.1 *
3077 jsr166 1.16 * @return {@code true} if this pool has been shut down
3078 dl 1.1 */
3079     public boolean isShutdown() {
3080 dl 1.140 return plock < 0;
3081 dl 1.42 }
3082    
3083     /**
3084 dl 1.140 * Blocks until all tasks have completed execution after a
3085     * shutdown request, or the timeout occurs, or the current thread
3086 dl 1.168 * is interrupted, whichever happens first. Because the {@link
3087     * #commonPool()} never terminates until program shutdown, when
3088     * applied to the common pool, this method is equivalent to {@link
3089     * #awaitQuiescence} but always returns {@code false}.
3090 dl 1.1 *
3091     * @param timeout the maximum time to wait
3092     * @param unit the time unit of the timeout argument
3093 jsr166 1.16 * @return {@code true} if this executor terminated and
3094     * {@code false} if the timeout elapsed before termination
3095 dl 1.1 * @throws InterruptedException if interrupted while waiting
3096     */
3097     public boolean awaitTermination(long timeout, TimeUnit unit)
3098     throws InterruptedException {
3099 dl 1.168 if (Thread.interrupted())
3100     throw new InterruptedException();
3101     if (this == common) {
3102     awaitQuiescence(timeout, unit);
3103     return false;
3104     }
3105 dl 1.91 long nanos = unit.toNanos(timeout);
3106 dl 1.136 if (isTerminated())
3107     return true;
3108     long startTime = System.nanoTime();
3109     boolean terminated = false;
3110 jsr166 1.138 synchronized (this) {
3111 dl 1.136 for (long waitTime = nanos, millis = 0L;;) {
3112     if (terminated = isTerminated() ||
3113     waitTime <= 0L ||
3114     (millis = unit.toMillis(waitTime)) <= 0L)
3115     break;
3116     wait(millis);
3117     waitTime = nanos - (System.nanoTime() - startTime);
3118 dl 1.91 }
3119 dl 1.57 }
3120 dl 1.136 return terminated;
3121 dl 1.1 }
3122    
3123     /**
3124 dl 1.168 * If called by a ForkJoinTask operating in this pool, equivalent
3125     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3126     * waits and/or attempts to assist performing tasks until this
3127     * pool {@link #isQuiescent} or the indicated timeout elapses.
3128     *
3129     * @param timeout the maximum time to wait
3130     * @param unit the time unit of the timeout argument
3131     * @return {@code true} if quiescent; {@code false} if the
3132     * timeout elapsed.
3133     */
3134     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3135     long nanos = unit.toNanos(timeout);
3136     ForkJoinWorkerThread wt;
3137     Thread thread = Thread.currentThread();
3138     if ((thread instanceof ForkJoinWorkerThread) &&
3139     (wt = (ForkJoinWorkerThread)thread).pool == this) {
3140     helpQuiescePool(wt.workQueue);
3141     return true;
3142     }
3143     long startTime = System.nanoTime();
3144     WorkQueue[] ws;
3145     int r = 0, m;
3146     boolean found = true;
3147     while (!isQuiescent() && (ws = workQueues) != null &&
3148     (m = ws.length - 1) >= 0) {
3149     if (!found) {
3150     if ((System.nanoTime() - startTime) > nanos)
3151     return false;
3152     Thread.yield(); // cannot block
3153     }
3154     found = false;
3155     for (int j = (m + 1) << 2; j >= 0; --j) {
3156     ForkJoinTask<?> t; WorkQueue q; int b;
3157     if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3158     found = true;
3159     if ((t = q.pollAt(b)) != null) {
3160     if (q.base - q.top < 0)
3161     signalWork(q);
3162     t.doExec();
3163     }
3164     break;
3165     }
3166     }
3167     }
3168     return true;
3169     }
3170    
3171     /**
3172     * Waits and/or attempts to assist performing tasks indefinitely
3173 jsr166 1.182 * until the {@link #commonPool()} {@link #isQuiescent}.
3174 dl 1.168 */
3175 dl 1.170 static void quiesceCommonPool() {
3176 dl 1.168 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3177     }
3178    
3179     /**
3180 dl 1.1 * Interface for extending managed parallelism for tasks running
3181 jsr166 1.35 * in {@link ForkJoinPool}s.
3182     *
3183 dl 1.61 * <p>A {@code ManagedBlocker} provides two methods. Method
3184     * {@code isReleasable} must return {@code true} if blocking is
3185     * not necessary. Method {@code block} blocks the current thread
3186     * if necessary (perhaps internally invoking {@code isReleasable}
3187 dl 1.93 * before actually blocking). These actions are performed by any
3188     * thread invoking {@link ForkJoinPool#managedBlock}. The
3189     * unusual methods in this API accommodate synchronizers that may,
3190     * but don't usually, block for long periods. Similarly, they
3191     * allow more efficient internal handling of cases in which
3192     * additional workers may be, but usually are not, needed to
3193     * ensure sufficient parallelism. Toward this end,
3194     * implementations of method {@code isReleasable} must be amenable
3195     * to repeated invocation.
3196 jsr166 1.17 *
3197 dl 1.1 * <p>For example, here is a ManagedBlocker based on a
3198     * ReentrantLock:
3199 jsr166 1.17 * <pre> {@code
3200     * class ManagedLocker implements ManagedBlocker {
3201     * final ReentrantLock lock;
3202     * boolean hasLock = false;
3203     * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3204     * public boolean block() {
3205     * if (!hasLock)
3206     * lock.lock();
3207     * return true;
3208     * }
3209     * public boolean isReleasable() {
3210     * return hasLock || (hasLock = lock.tryLock());
3211 dl 1.1 * }
3212 jsr166 1.17 * }}</pre>
3213 dl 1.61 *
3214     * <p>Here is a class that possibly blocks waiting for an
3215     * item on a given queue:
3216     * <pre> {@code
3217     * class QueueTaker<E> implements ManagedBlocker {
3218     * final BlockingQueue<E> queue;
3219     * volatile E item = null;
3220     * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3221     * public boolean block() throws InterruptedException {
3222     * if (item == null)
3223 dl 1.65 * item = queue.take();
3224 dl 1.61 * return true;
3225     * }
3226     * public boolean isReleasable() {
3227 dl 1.65 * return item != null || (item = queue.poll()) != null;
3228 dl 1.61 * }
3229     * public E getItem() { // call after pool.managedBlock completes
3230     * return item;
3231     * }
3232     * }}</pre>
3233 dl 1.1 */
3234     public static interface ManagedBlocker {
3235     /**
3236     * Possibly blocks the current thread, for example waiting for
3237     * a lock or condition.
3238 jsr166 1.17 *
3239 jsr166 1.28 * @return {@code true} if no additional blocking is necessary
3240     * (i.e., if isReleasable would return true)
3241 dl 1.1 * @throws InterruptedException if interrupted while waiting
3242 jsr166 1.17 * (the method is not required to do so, but is allowed to)
3243 dl 1.1 */
3244     boolean block() throws InterruptedException;
3245    
3246     /**
3247 jsr166 1.28 * Returns {@code true} if blocking is unnecessary.
3248 dl 1.1 */
3249     boolean isReleasable();
3250     }
3251    
3252     /**
3253     * Blocks in accord with the given blocker. If the current thread
3254 jsr166 1.38 * is a {@link ForkJoinWorkerThread}, this method possibly
3255     * arranges for a spare thread to be activated if necessary to
3256 dl 1.57 * ensure sufficient parallelism while the current thread is blocked.
3257 jsr166 1.38 *
3258     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3259     * behaviorally equivalent to
3260 jsr166 1.115 * <pre> {@code
3261 jsr166 1.17 * while (!blocker.isReleasable())
3262     * if (blocker.block())
3263     * return;
3264     * }</pre>
3265 jsr166 1.38 *
3266     * If the caller is a {@code ForkJoinTask}, then the pool may
3267     * first be expanded to ensure parallelism, and later adjusted.
3268 dl 1.1 *
3269     * @param blocker the blocker
3270 jsr166 1.16 * @throws InterruptedException if blocker.block did so
3271 dl 1.1 */
3272 dl 1.57 public static void managedBlock(ManagedBlocker blocker)
3273 dl 1.1 throws InterruptedException {
3274     Thread t = Thread.currentThread();
3275 dl 1.140 if (t instanceof ForkJoinWorkerThread) {
3276     ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3277     while (!blocker.isReleasable()) { // variant of helpSignal
3278 dl 1.149 WorkQueue[] ws; WorkQueue q; int m, u;
3279 dl 1.140 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3280     for (int i = 0; i <= m; ++i) {
3281     if (blocker.isReleasable())
3282     return;
3283 dl 1.149 if ((q = ws[i]) != null && q.base - q.top < 0) {
3284     p.signalWork(q);
3285 dl 1.146 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3286     (u >> UAC_SHIFT) >= 0)
3287 dl 1.140 break;
3288     }
3289     }
3290     }
3291     if (p.tryCompensate()) {
3292     try {
3293     do {} while (!blocker.isReleasable() &&
3294     !blocker.block());
3295     } finally {
3296 dl 1.111 p.incrementActiveCount();
3297 dl 1.140 }
3298     break;
3299 dl 1.111 }
3300     }
3301 dl 1.57 }
3302 dl 1.140 else {
3303     do {} while (!blocker.isReleasable() &&
3304     !blocker.block());
3305     }
3306 dl 1.1 }
3307    
3308 dl 1.33 // AbstractExecutorService overrides. These rely on undocumented
3309     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3310     // implement RunnableFuture.
3311 dl 1.2
3312     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3313 dl 1.123 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3314 dl 1.2 }
3315    
3316     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3317 dl 1.123 return new ForkJoinTask.AdaptedCallable<T>(callable);
3318 dl 1.2 }
3319    
3320 jsr166 1.27 // Unsafe mechanics
3321 dl 1.111 private static final sun.misc.Unsafe U;
3322     private static final long CTL;
3323     private static final long PARKBLOCKER;
3324 dl 1.123 private static final int ABASE;
3325     private static final int ASHIFT;
3326 dl 1.136 private static final long STEALCOUNT;
3327 dl 1.140 private static final long PLOCK;
3328     private static final long INDEXSEED;
3329     private static final long QLOCK;
3330 dl 1.91
3331     static {
3332 jsr166 1.175 // initialize field offsets for CAS etc
3333 jsr166 1.27 try {
3334 dl 1.111 U = getUnsafe();
3335 jsr166 1.103 Class<?> k = ForkJoinPool.class;
3336 dl 1.111 CTL = U.objectFieldOffset
3337 dl 1.91 (k.getDeclaredField("ctl"));
3338 dl 1.136 STEALCOUNT = U.objectFieldOffset
3339     (k.getDeclaredField("stealCount"));
3340 dl 1.140 PLOCK = U.objectFieldOffset
3341     (k.getDeclaredField("plock"));
3342     INDEXSEED = U.objectFieldOffset
3343     (k.getDeclaredField("indexSeed"));
3344 dl 1.119 Class<?> tk = Thread.class;
3345 dl 1.111 PARKBLOCKER = U.objectFieldOffset
3346     (tk.getDeclaredField("parkBlocker"));
3347 dl 1.140 Class<?> wk = WorkQueue.class;
3348     QLOCK = U.objectFieldOffset
3349     (wk.getDeclaredField("qlock"));
3350     Class<?> ak = ForkJoinTask[].class;
3351 dl 1.123 ABASE = U.arrayBaseOffset(ak);
3352 jsr166 1.175 int scale = U.arrayIndexScale(ak);
3353     if ((scale & (scale - 1)) != 0)
3354     throw new Error("data type scale not a power of two");
3355     ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3356 dl 1.91 } catch (Exception e) {
3357     throw new Error(e);
3358     }
3359 dl 1.140
3360 dl 1.146 submitters = new ThreadLocal<Submitter>();
3361     ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3362     new DefaultForkJoinWorkerThreadFactory();
3363 dl 1.149 modifyThreadPermission = new RuntimePermission("modifyThread");
3364    
3365 dl 1.140 /*
3366 dl 1.146 * Establish common pool parameters. For extra caution,
3367     * computations to set up common pool state are here; the
3368     * constructor just assigns these values to fields.
3369 dl 1.140 */
3370 dl 1.146
3371     int par = 0;
3372     Thread.UncaughtExceptionHandler handler = null;
3373     try { // TBD: limit or report ignored exceptions?
3374     String pp = System.getProperty
3375     ("java.util.concurrent.ForkJoinPool.common.parallelism");
3376     String hp = System.getProperty
3377     ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3378     String fp = System.getProperty
3379     ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3380     if (fp != null)
3381     fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3382     getSystemClassLoader().loadClass(fp).newInstance());
3383     if (hp != null)
3384     handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3385     getSystemClassLoader().loadClass(hp).newInstance());
3386     if (pp != null)
3387     par = Integer.parseInt(pp);
3388     } catch (Exception ignore) {
3389     }
3390    
3391 dl 1.140 if (par <= 0)
3392     par = Runtime.getRuntime().availableProcessors();
3393     if (par > MAX_CAP)
3394     par = MAX_CAP;
3395 dl 1.168 commonParallelism = par;
3396 dl 1.140 long np = (long)(-par); // precompute initial ctl value
3397     long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3398    
3399 dl 1.168 common = new ForkJoinPool(par, ct, fac, handler);
3400 jsr166 1.27 }
3401    
3402     /**
3403     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
3404     * Replace with a simple call to Unsafe.getUnsafe when integrating
3405     * into a jdk.
3406     *
3407     * @return a sun.misc.Unsafe
3408     */
3409     private static sun.misc.Unsafe getUnsafe() {
3410     try {
3411     return sun.misc.Unsafe.getUnsafe();
3412 jsr166 1.173 } catch (SecurityException tryReflectionInstead) {}
3413     try {
3414     return java.security.AccessController.doPrivileged
3415     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3416     public sun.misc.Unsafe run() throws Exception {
3417     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3418     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3419     f.setAccessible(true);
3420     Object x = f.get(null);
3421     if (k.isInstance(x))
3422     return k.cast(x);
3423     }
3424     throw new NoSuchFieldError("the Unsafe");
3425     }});
3426     } catch (java.security.PrivilegedActionException e) {
3427     throw new RuntimeException("Could not initialize intrinsics",
3428     e.getCause());
3429 jsr166 1.27 }
3430     }
3431 dl 1.1 }