ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.14
Committed: Tue Jul 21 00:15:14 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.13: +37 -18 lines
Log Message:
j.u.c. coding standards

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.1 import java.util.concurrent.*;
10     import java.util.concurrent.atomic.*;
11     import java.util.concurrent.locks.LockSupport;
12 dl 1.4 import sun.misc.Unsafe;
13     import java.lang.reflect.*;
14 dl 1.1
15     /**
16     * A reusable synchronization barrier, similar in functionality to a
17 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19     * but supporting more flexible usage.
20 dl 1.1 *
21     * <ul>
22     *
23 dl 1.4 * <li> The number of parties synchronizing on a phaser may vary over
24     * time. A task may register to be a party at any time, and may
25     * deregister upon arriving at the barrier. As is the case with most
26     * basic synchronization constructs, registration and deregistration
27     * affect only internal counts; they do not establish any further
28     * internal bookkeeping, so tasks cannot query whether they are
29 jsr166 1.9 * registered. (However, you can introduce such bookkeeping by
30 dl 1.4 * subclassing this class.)
31 dl 1.1 *
32     * <li> Each generation has an associated phase value, starting at
33     * zero, and advancing when all parties reach the barrier (wrapping
34 jsr166 1.7 * around to zero after reaching {@code Integer.MAX_VALUE}).
35 jsr166 1.3 *
36 dl 1.1 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 jsr166 1.7 * Method {@code arriveAndAwaitAdvance} has effect analogous to
38     * {@code CyclicBarrier.await}. However, Phasers separate two
39 dl 1.4 * aspects of coordination, that may also be invoked independently:
40 dl 1.1 *
41     * <ul>
42     *
43 jsr166 1.7 * <li> Arriving at a barrier. Methods {@code arrive} and
44     * {@code arriveAndDeregister} do not block, but return
45 dl 1.4 * the phase value current upon entry to the method.
46 dl 1.1 *
47 jsr166 1.7 * <li> Awaiting others. Method {@code awaitAdvance} requires an
48 dl 1.1 * argument indicating the entry phase, and returns when the
49     * barrier advances to a new phase.
50     * </ul>
51     *
52     *
53     * <li> Barrier actions, performed by the task triggering a phase
54     * advance while others may be waiting, are arranged by overriding
55 jsr166 1.7 * method {@code onAdvance}, that also controls termination.
56 dl 1.5 * Overriding this method may be used to similar but more flexible
57 dl 1.4 * effect as providing a barrier action to a CyclicBarrier.
58 dl 1.1 *
59     * <li> Phasers may enter a <em>termination</em> state in which all
60 dl 1.10 * actions immediately return without updating phaser state or waiting
61     * for advance, and indicating (via a negative phase value) that
62     * execution is complete. Termination is triggered by executing the
63     * overridable {@code onAdvance} method that is invoked each time the
64     * barrier is about to be tripped. When a Phaser is controlling an
65     * action with a fixed number of iterations, it is often convenient to
66     * override this method to cause termination when the current phase
67     * number reaches a threshold. Method {@code forceTermination} is also
68     * available to abruptly release waiting threads and allow them to
69     * terminate.
70 dl 1.4 *
71     * <li> Phasers may be tiered to reduce contention. Phasers with large
72     * numbers of parties that would otherwise experience heavy
73     * synchronization contention costs may instead be arranged in trees.
74     * This will typically greatly increase throughput even though it
75     * incurs somewhat greater per-operation overhead.
76 jsr166 1.3 *
77 jsr166 1.7 * <li> By default, {@code awaitAdvance} continues to wait even if
78 dl 1.4 * the waiting thread is interrupted. And unlike the case in
79 dl 1.1 * CyclicBarriers, exceptions encountered while tasks wait
80     * interruptibly or with timeout do not change the state of the
81     * barrier. If necessary, you can perform any associated recovery
82 dl 1.4 * within handlers of those exceptions, often after invoking
83 jsr166 1.7 * {@code forceTermination}.
84 dl 1.1 *
85 dl 1.10 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
86     *
87 dl 1.1 * </ul>
88     *
89 dl 1.4 * <p><b>Sample usages:</b>
90     *
91 jsr166 1.8 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
92 dl 1.4 * a one-shot action serving a variable number of parties. The typical
93     * idiom is for the method setting this up to first register, then
94     * start the actions, then deregister, as in:
95 dl 1.1 *
96 jsr166 1.13 * <pre> {@code
97     * void runTasks(List<Runnable> list) {
98     * final Phaser phaser = new Phaser(1); // "1" to register self
99     * for (Runnable r : list) {
100     * phaser.register();
101     * new Thread() {
102     * public void run() {
103     * phaser.arriveAndAwaitAdvance(); // await all creation
104     * r.run();
105     * phaser.arriveAndDeregister(); // signal completion
106     * }
107     * }.start();
108 dl 1.4 * }
109 dl 1.6 *
110     * doSomethingOnBehalfOfWorkers();
111 dl 1.4 * phaser.arrive(); // allow threads to start
112 dl 1.6 * int p = phaser.arriveAndDeregister(); // deregister self ...
113     * p = phaser.awaitAdvance(p); // ... and await arrival
114 dl 1.4 * otherActions(); // do other things while tasks execute
115 jsr166 1.8 * phaser.awaitAdvance(p); // await final completion
116 jsr166 1.13 * }}</pre>
117 dl 1.1 *
118 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
119 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
120 dl 1.1 *
121 jsr166 1.13 * <pre> {@code
122     * void startTasks(List<Runnable> list, final int iterations) {
123     * final Phaser phaser = new Phaser() {
124     * public boolean onAdvance(int phase, int registeredParties) {
125     * return phase >= iterations || registeredParties == 0;
126     * }
127     * };
128     * phaser.register();
129     * for (Runnable r : list) {
130     * phaser.register();
131     * new Thread() {
132     * public void run() {
133     * do {
134     * r.run();
135     * phaser.arriveAndAwaitAdvance();
136     * } while(!phaser.isTerminated();
137 dl 1.4 * }
138 jsr166 1.13 * }.start();
139 dl 1.1 * }
140 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
141 jsr166 1.13 * }}</pre>
142 dl 1.1 *
143 dl 1.4 * <p> To create a set of tasks using a tree of Phasers,
144     * you could use code of the following form, assuming a
145     * Task class with a constructor accepting a Phaser that
146     * it registers for upon construction:
147 jsr166 1.13 * <pre> {@code
148     * void build(Task[] actions, int lo, int hi, Phaser b) {
149     * int step = (hi - lo) / TASKS_PER_PHASER;
150     * if (step > 1) {
151     * int i = lo;
152     * while (i < hi) {
153     * int r = Math.min(i + step, hi);
154     * build(actions, i, r, new Phaser(b));
155     * i = r;
156     * }
157     * } else {
158     * for (int i = lo; i < hi; ++i)
159     * actions[i] = new Task(b);
160     * // assumes new Task(b) performs b.register()
161     * }
162     * }
163     * // .. initially called, for n tasks via
164     * build(new Task[n], 0, n, new Phaser());}</pre>
165 dl 1.4 *
166 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
167 dl 1.4 * expected barrier synchronization rates. A value as low as four may
168     * be appropriate for extremely small per-barrier task bodies (thus
169     * high rates), or up to hundreds for extremely large ones.
170     *
171     * </pre>
172     *
173 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
174 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
175     * parties result in IllegalStateExceptions. However, you can and
176     * should create tiered phasers to accommodate arbitrarily large sets
177     * of participants.
178 dl 1.1 */
179     public class Phaser {
180     /*
181     * This class implements an extension of X10 "clocks". Thanks to
182 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183     * enhancements to extend functionality.
184 dl 1.1 */
185    
186     /**
187     * Barrier state representation. Conceptually, a barrier contains
188     * four values:
189 jsr166 1.3 *
190 dl 1.1 * * parties -- the number of parties to wait (16 bits)
191     * * unarrived -- the number of parties yet to hit barrier (16 bits)
192     * * phase -- the generation of the barrier (31 bits)
193     * * terminated -- set if barrier is terminated (1 bit)
194     *
195     * However, to efficiently maintain atomicity, these values are
196 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
197     * bit of 32 bit representation of phase, so phase is set to -1 on
198 jsr166 1.8 * termination. Good performance relies on keeping state decoding
199 dl 1.4 * and encoding simple, and keeping race windows short.
200     *
201     * Note: there are some cheats in arrive() that rely on unarrived
202 dl 1.10 * count being lowest 16 bits.
203 dl 1.1 */
204 dl 1.4 private volatile long state;
205 dl 1.1
206     private static final int ushortBits = 16;
207 dl 1.10 private static final int ushortMask = 0xffff;
208     private static final int phaseMask = 0x7fffffff;
209 dl 1.1
210     private static int unarrivedOf(long s) {
211     return (int)(s & ushortMask);
212     }
213    
214     private static int partiesOf(long s) {
215 dl 1.10 return ((int)s) >>> 16;
216 dl 1.1 }
217    
218     private static int phaseOf(long s) {
219     return (int)(s >>> 32);
220     }
221    
222     private static int arrivedOf(long s) {
223     return partiesOf(s) - unarrivedOf(s);
224     }
225    
226     private static long stateFor(int phase, int parties, int unarrived) {
227 dl 1.10 return ((((long)phase) << 32) | (((long)parties) << 16) |
228     (long)unarrived);
229 dl 1.1 }
230    
231 dl 1.4 private static long trippedStateFor(int phase, int parties) {
232 dl 1.10 long lp = (long)parties;
233     return (((long)phase) << 32) | (lp << 16) | lp;
234 dl 1.4 }
235    
236 dl 1.10 /**
237 jsr166 1.14 * Returns message string for bad bounds exceptions.
238 dl 1.10 */
239     private static String badBounds(int parties, int unarrived) {
240     return ("Attempt to set " + unarrived +
241     " unarrived of " + parties + " parties");
242 dl 1.4 }
243    
244     /**
245     * The parent of this phaser, or null if none
246     */
247     private final Phaser parent;
248    
249     /**
250     * The root of Phaser tree. Equals this if not in a tree. Used to
251     * support faster state push-down.
252     */
253     private final Phaser root;
254    
255     // Wait queues
256    
257     /**
258 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
259 dl 1.4 * contention while releasing some threads while adding others, we
260     * use two of them, alternating across even and odd phases.
261     */
262     private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263     private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264    
265     private AtomicReference<QNode> queueFor(int phase) {
266     return (phase & 1) == 0? evenQ : oddQ;
267     }
268    
269     /**
270     * Returns current state, first resolving lagged propagation from
271     * root if necessary.
272     */
273     private long getReconciledState() {
274     return parent == null? state : reconcileState();
275     }
276    
277     /**
278     * Recursively resolves state.
279     */
280     private long reconcileState() {
281     Phaser p = parent;
282     long s = state;
283     if (p != null) {
284     while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285     long parentState = p.getReconciledState();
286     int parentPhase = phaseOf(parentState);
287     int phase = phaseOf(s = state);
288     if (phase != parentPhase) {
289     long next = trippedStateFor(parentPhase, partiesOf(s));
290     if (casState(s, next)) {
291     releaseWaiters(phase);
292     s = next;
293     }
294     }
295     }
296     }
297     return s;
298 dl 1.1 }
299    
300     /**
301     * Creates a new Phaser without any initially registered parties,
302 dl 1.10 * initial phase number 0, and no parent. Any thread using this
303     * Phaser will need to first register for it.
304 dl 1.1 */
305     public Phaser() {
306 dl 1.4 this(null);
307 dl 1.1 }
308    
309     /**
310     * Creates a new Phaser with the given numbers of registered
311 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
312 jsr166 1.14 *
313     * @param parties the number of parties required to trip barrier
314 dl 1.1 * @throws IllegalArgumentException if parties less than zero
315 jsr166 1.14 * or greater than the maximum number of parties supported
316 dl 1.1 */
317     public Phaser(int parties) {
318 dl 1.4 this(null, parties);
319     }
320    
321     /**
322     * Creates a new Phaser with the given parent, without any
323     * initially registered parties. If parent is non-null this phaser
324     * is registered with the parent and its initial phase number is
325     * the same as that of parent phaser.
326 jsr166 1.14 *
327     * @param parent the parent phaser
328 dl 1.4 */
329     public Phaser(Phaser parent) {
330     int phase = 0;
331     this.parent = parent;
332     if (parent != null) {
333     this.root = parent.root;
334     phase = parent.register();
335     }
336     else
337     this.root = this;
338     this.state = trippedStateFor(phase, 0);
339     }
340    
341     /**
342     * Creates a new Phaser with the given parent and numbers of
343 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
344 dl 1.4 * is registered with the parent and its initial phase number is
345     * the same as that of parent phaser.
346 jsr166 1.14 *
347     * @param parent the parent phaser
348     * @param parties the number of parties required to trip barrier
349 dl 1.4 * @throws IllegalArgumentException if parties less than zero
350 jsr166 1.14 * or greater than the maximum number of parties supported
351 dl 1.4 */
352     public Phaser(Phaser parent, int parties) {
353 dl 1.1 if (parties < 0 || parties > ushortMask)
354     throw new IllegalArgumentException("Illegal number of parties");
355 dl 1.4 int phase = 0;
356     this.parent = parent;
357     if (parent != null) {
358     this.root = parent.root;
359     phase = parent.register();
360     }
361     else
362     this.root = this;
363     this.state = trippedStateFor(phase, parties);
364 dl 1.1 }
365    
366     /**
367     * Adds a new unarrived party to this phaser.
368 jsr166 1.14 *
369 dl 1.1 * @return the current barrier phase number upon registration
370     * @throws IllegalStateException if attempting to register more
371 jsr166 1.14 * than the maximum supported number of parties
372 dl 1.1 */
373 dl 1.4 public int register() {
374     return doRegister(1);
375     }
376    
377     /**
378     * Adds the given number of new unarrived parties to this phaser.
379 jsr166 1.14 *
380     * @param parties the number of parties required to trip barrier
381 dl 1.4 * @return the current barrier phase number upon registration
382     * @throws IllegalStateException if attempting to register more
383 jsr166 1.14 * than the maximum supported number of parties
384 dl 1.4 */
385     public int bulkRegister(int parties) {
386     if (parties < 0)
387     throw new IllegalArgumentException();
388     if (parties == 0)
389     return getPhase();
390     return doRegister(parties);
391     }
392    
393     /**
394     * Shared code for register, bulkRegister
395     */
396     private int doRegister(int registrations) {
397     int phase;
398 dl 1.1 for (;;) {
399 dl 1.4 long s = getReconciledState();
400     phase = phaseOf(s);
401     int unarrived = unarrivedOf(s) + registrations;
402     int parties = partiesOf(s) + registrations;
403 jsr166 1.12 if (phase < 0)
404 dl 1.4 break;
405 dl 1.1 if (parties > ushortMask || unarrived > ushortMask)
406 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
407 dl 1.4 if (phase == phaseOf(root.state) &&
408     casState(s, stateFor(phase, parties, unarrived)))
409     break;
410 dl 1.1 }
411 dl 1.4 return phase;
412 dl 1.1 }
413    
414     /**
415     * Arrives at the barrier, but does not wait for others. (You can
416     * in turn wait for others via {@link #awaitAdvance}).
417     *
418 dl 1.4 * @return the barrier phase number upon entry to this method, or a
419 jsr166 1.14 * negative value if terminated
420 dl 1.4 * @throws IllegalStateException if not terminated and the number
421 jsr166 1.14 * of unarrived parties would become negative
422 dl 1.1 */
423 dl 1.4 public int arrive() {
424     int phase;
425 dl 1.1 for (;;) {
426 dl 1.4 long s = state;
427     phase = phaseOf(s);
428 dl 1.10 if (phase < 0)
429     break;
430 dl 1.1 int parties = partiesOf(s);
431     int unarrived = unarrivedOf(s) - 1;
432 dl 1.4 if (unarrived > 0) { // Not the last arrival
433     if (casState(s, s - 1)) // s-1 adds one arrival
434     break;
435     }
436     else if (unarrived == 0) { // the last arrival
437     Phaser par = parent;
438     if (par == null) { // directly trip
439     if (casState
440     (s,
441     trippedStateFor(onAdvance(phase, parties)? -1 :
442     ((phase + 1) & phaseMask), parties))) {
443     releaseWaiters(phase);
444     break;
445     }
446     }
447     else { // cascade to parent
448     if (casState(s, s - 1)) { // zeroes unarrived
449     par.arrive();
450     reconcileState();
451     break;
452     }
453     }
454     }
455     else if (phase != phaseOf(root.state)) // or if unreconciled
456     reconcileState();
457     else
458 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
459 dl 1.1 }
460 dl 1.4 return phase;
461 dl 1.1 }
462    
463     /**
464     * Arrives at the barrier, and deregisters from it, without
465 dl 1.4 * waiting for others. Deregistration reduces number of parties
466     * required to trip the barrier in future phases. If this phaser
467     * has a parent, and deregistration causes this phaser to have
468     * zero parties, this phaser is also deregistered from its parent.
469 dl 1.1 *
470     * @return the current barrier phase number upon entry to
471 jsr166 1.14 * this method, or a negative value if terminated
472 dl 1.4 * @throws IllegalStateException if not terminated and the number
473 jsr166 1.14 * of registered or unarrived parties would become negative
474 dl 1.1 */
475 dl 1.4 public int arriveAndDeregister() {
476     // similar code to arrive, but too different to merge
477     Phaser par = parent;
478     int phase;
479 dl 1.1 for (;;) {
480 dl 1.4 long s = state;
481     phase = phaseOf(s);
482 dl 1.10 if (phase < 0)
483     break;
484 dl 1.1 int parties = partiesOf(s) - 1;
485     int unarrived = unarrivedOf(s) - 1;
486 dl 1.4 if (parties >= 0) {
487     if (unarrived > 0 || (unarrived == 0 && par != null)) {
488     if (casState
489     (s,
490     stateFor(phase, parties, unarrived))) {
491     if (unarrived == 0) {
492     par.arriveAndDeregister();
493     reconcileState();
494     }
495     break;
496     }
497     continue;
498     }
499     if (unarrived == 0) {
500     if (casState
501     (s,
502     trippedStateFor(onAdvance(phase, parties)? -1 :
503     ((phase + 1) & phaseMask), parties))) {
504     releaseWaiters(phase);
505     break;
506     }
507     continue;
508     }
509     if (par != null && phase != phaseOf(root.state)) {
510     reconcileState();
511     continue;
512     }
513 dl 1.1 }
514 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
515 dl 1.1 }
516 dl 1.4 return phase;
517 dl 1.1 }
518    
519     /**
520 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
521 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you instead need to
522 dl 1.4 * await with interruption of timeout, and/or deregister upon
523     * arrival, you can arrange them using analogous constructions.
524 jsr166 1.14 *
525 dl 1.4 * @return the phase on entry to this method
526     * @throws IllegalStateException if not terminated and the number
527 jsr166 1.14 * of unarrived parties would become negative
528 dl 1.1 */
529     public int arriveAndAwaitAdvance() {
530 dl 1.4 return awaitAdvance(arrive());
531 dl 1.1 }
532    
533     /**
534     * Awaits the phase of the barrier to advance from the given
535 dl 1.4 * value, or returns immediately if argument is negative or this
536     * barrier is terminated.
537 jsr166 1.14 *
538 dl 1.1 * @param phase the phase on entry to this method
539     * @return the phase on exit from this method
540     */
541     public int awaitAdvance(int phase) {
542     if (phase < 0)
543     return phase;
544 dl 1.4 long s = getReconciledState();
545     int p = phaseOf(s);
546     if (p != phase)
547     return p;
548 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
549 dl 1.4 parent.awaitAdvance(phase);
550     // Fall here even if parent waited, to reconcile and help release
551     return untimedWait(phase);
552 dl 1.1 }
553    
554     /**
555     * Awaits the phase of the barrier to advance from the given
556 jsr166 1.8 * value, or returns immediately if argument is negative or this
557 dl 1.4 * barrier is terminated, or throws InterruptedException if
558     * interrupted while waiting.
559 jsr166 1.14 *
560 dl 1.1 * @param phase the phase on entry to this method
561     * @return the phase on exit from this method
562     * @throws InterruptedException if thread interrupted while waiting
563     */
564 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
565 dl 1.10 throws InterruptedException {
566 dl 1.1 if (phase < 0)
567     return phase;
568 dl 1.4 long s = getReconciledState();
569     int p = phaseOf(s);
570     if (p != phase)
571     return p;
572 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
573 dl 1.4 parent.awaitAdvanceInterruptibly(phase);
574     return interruptibleWait(phase);
575 dl 1.1 }
576    
577     /**
578     * Awaits the phase of the barrier to advance from the given value
579 dl 1.4 * or the given timeout elapses, or returns immediately if
580     * argument is negative or this barrier is terminated.
581 jsr166 1.14 *
582 dl 1.1 * @param phase the phase on entry to this method
583     * @return the phase on exit from this method
584     * @throws InterruptedException if thread interrupted while waiting
585     * @throws TimeoutException if timed out while waiting
586     */
587 jsr166 1.3 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
588 dl 1.1 throws InterruptedException, TimeoutException {
589     if (phase < 0)
590     return phase;
591 dl 1.4 long s = getReconciledState();
592     int p = phaseOf(s);
593     if (p != phase)
594     return p;
595 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
596 dl 1.4 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
597     return timedWait(phase, unit.toNanos(timeout));
598 dl 1.1 }
599    
600     /**
601     * Forces this barrier to enter termination state. Counts of
602 dl 1.4 * arrived and registered parties are unaffected. If this phaser
603     * has a parent, it too is terminated. This method may be useful
604     * for coordinating recovery after one or more tasks encounter
605     * unexpected exceptions.
606 dl 1.1 */
607     public void forceTermination() {
608     for (;;) {
609 dl 1.4 long s = getReconciledState();
610 dl 1.1 int phase = phaseOf(s);
611     int parties = partiesOf(s);
612     int unarrived = unarrivedOf(s);
613     if (phase < 0 ||
614 dl 1.4 casState(s, stateFor(-1, parties, unarrived))) {
615     releaseWaiters(0);
616     releaseWaiters(1);
617     if (parent != null)
618     parent.forceTermination();
619 dl 1.1 return;
620     }
621     }
622     }
623    
624     /**
625 dl 1.4 * Returns the current phase number. The maximum phase number is
626 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
627 dl 1.4 * zero. Upon termination, the phase number is negative.
628 jsr166 1.14 *
629 dl 1.4 * @return the phase number, or a negative value if terminated
630 dl 1.1 */
631 dl 1.4 public final int getPhase() {
632     return phaseOf(getReconciledState());
633 dl 1.1 }
634    
635     /**
636 jsr166 1.9 * Returns {@code true} if the current phase number equals the given phase.
637 jsr166 1.14 *
638 dl 1.4 * @param phase the phase
639 jsr166 1.9 * @return {@code true} if the current phase number equals the given phase
640 dl 1.1 */
641 dl 1.4 public final boolean hasPhase(int phase) {
642     return phaseOf(getReconciledState()) == phase;
643 dl 1.1 }
644    
645     /**
646     * Returns the number of parties registered at this barrier.
647 jsr166 1.14 *
648 dl 1.1 * @return the number of parties
649     */
650     public int getRegisteredParties() {
651 dl 1.4 return partiesOf(state);
652 dl 1.1 }
653    
654     /**
655     * Returns the number of parties that have arrived at the current
656     * phase of this barrier.
657 jsr166 1.14 *
658 dl 1.1 * @return the number of arrived parties
659     */
660     public int getArrivedParties() {
661 dl 1.4 return arrivedOf(state);
662 dl 1.1 }
663    
664     /**
665     * Returns the number of registered parties that have not yet
666     * arrived at the current phase of this barrier.
667 jsr166 1.14 *
668 dl 1.1 * @return the number of unarrived parties
669     */
670     public int getUnarrivedParties() {
671 dl 1.4 return unarrivedOf(state);
672     }
673    
674     /**
675     * Returns the parent of this phaser, or null if none.
676 jsr166 1.14 *
677 jsr166 1.9 * @return the parent of this phaser, or null if none
678 dl 1.4 */
679     public Phaser getParent() {
680     return parent;
681     }
682    
683     /**
684     * Returns the root ancestor of this phaser, which is the same as
685     * this phaser if it has no parent.
686 jsr166 1.14 *
687 jsr166 1.9 * @return the root ancestor of this phaser
688 dl 1.4 */
689     public Phaser getRoot() {
690     return root;
691 dl 1.1 }
692    
693     /**
694 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
695 jsr166 1.14 *
696 jsr166 1.9 * @return {@code true} if this barrier has been terminated
697 dl 1.1 */
698     public boolean isTerminated() {
699 dl 1.4 return getPhase() < 0;
700 dl 1.1 }
701    
702     /**
703     * Overridable method to perform an action upon phase advance, and
704     * to control termination. This method is invoked whenever the
705     * barrier is tripped (and thus all other waiting parties are
706     * dormant). If it returns true, then, rather than advance the
707     * phase number, this barrier will be set to a final termination
708 jsr166 1.7 * state, and subsequent calls to {@code isTerminated} will
709 dl 1.1 * return true.
710 jsr166 1.3 *
711 dl 1.1 * <p> The default version returns true when the number of
712     * registered parties is zero. Normally, overrides that arrange
713     * termination for other reasons should also preserve this
714     * property.
715     *
716 dl 1.4 * <p> You may override this method to perform an action with side
717     * effects visible to participating tasks, but it is in general
718     * only sensible to do so in designs where all parties register
719 jsr166 1.7 * before any arrive, and all {@code awaitAdvance} at each phase.
720 dl 1.4 * Otherwise, you cannot ensure lack of interference. In
721     * particular, this method may be invoked more than once per
722     * transition if other parties successfully register while the
723     * invocation of this method is in progress, thus postponing the
724     * transition until those parties also arrive, re-triggering this
725     * method.
726     *
727 dl 1.1 * @param phase the phase number on entering the barrier
728 jsr166 1.9 * @param registeredParties the current number of registered parties
729     * @return {@code true} if this barrier should terminate
730 dl 1.1 */
731     protected boolean onAdvance(int phase, int registeredParties) {
732     return registeredParties <= 0;
733     }
734    
735     /**
736 dl 1.4 * Returns a string identifying this phaser, as well as its
737 dl 1.1 * state. The state, in brackets, includes the String {@code
738 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
739 dl 1.1 * followed by the number of registered parties, and {@code
740 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
741 dl 1.1 *
742     * @return a string identifying this barrier, as well as its state
743     */
744     public String toString() {
745 dl 1.4 long s = getReconciledState();
746 jsr166 1.9 return super.toString() +
747     "[phase = " + phaseOf(s) +
748     " parties = " + partiesOf(s) +
749     " arrived = " + arrivedOf(s) + "]";
750 dl 1.1 }
751    
752 dl 1.4 // methods for waiting
753 dl 1.1
754     /**
755 dl 1.10 * Wait nodes for Treiber stack representing wait queue
756 dl 1.1 */
757 dl 1.10 static final class QNode implements ForkJoinPool.ManagedBlocker {
758     final Phaser phaser;
759     final int phase;
760     final long startTime;
761     final long nanos;
762     final boolean timed;
763     final boolean interruptible;
764     volatile boolean wasInterrupted = false;
765     volatile Thread thread; // nulled to cancel wait
766 dl 1.4 QNode next;
767 dl 1.10 QNode(Phaser phaser, int phase, boolean interruptible,
768     boolean timed, long startTime, long nanos) {
769     this.phaser = phaser;
770     this.phase = phase;
771     this.timed = timed;
772     this.interruptible = interruptible;
773     this.startTime = startTime;
774     this.nanos = nanos;
775 dl 1.4 thread = Thread.currentThread();
776     }
777 dl 1.10 public boolean isReleasable() {
778     return (thread == null ||
779     phaser.getPhase() != phase ||
780     (interruptible && wasInterrupted) ||
781     (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
782     }
783     public boolean block() {
784     if (Thread.interrupted()) {
785     wasInterrupted = true;
786     if (interruptible)
787     return true;
788     }
789     if (!timed)
790     LockSupport.park(this);
791     else {
792     long waitTime = nanos - (System.nanoTime() - startTime);
793     if (waitTime <= 0)
794     return true;
795     LockSupport.parkNanos(this, waitTime);
796     }
797     return isReleasable();
798     }
799 dl 1.4 void signal() {
800     Thread t = thread;
801     if (t != null) {
802     thread = null;
803     LockSupport.unpark(t);
804     }
805     }
806 dl 1.10 boolean doWait() {
807     if (thread != null) {
808     try {
809     ForkJoinPool.managedBlock(this, false);
810     } catch (InterruptedException ie) {
811 jsr166 1.12 }
812 dl 1.10 }
813     return wasInterrupted;
814     }
815    
816 dl 1.4 }
817    
818     /**
819 jsr166 1.14 * Removes and signals waiting threads from wait queue.
820 dl 1.4 */
821     private void releaseWaiters(int phase) {
822     AtomicReference<QNode> head = queueFor(phase);
823     QNode q;
824     while ((q = head.get()) != null) {
825     if (head.compareAndSet(q, q.next))
826     q.signal();
827     }
828     }
829    
830     /**
831 jsr166 1.14 * Tries to enqueue given node in the appropriate wait queue.
832     *
833 dl 1.10 * @return true if successful
834     */
835     private boolean tryEnqueue(QNode node) {
836     AtomicReference<QNode> head = queueFor(node.phase);
837     return head.compareAndSet(node.next = head.get(), node);
838     }
839    
840     /**
841 dl 1.1 * Enqueues node and waits unless aborted or signalled.
842 jsr166 1.14 *
843 dl 1.10 * @return current phase
844 dl 1.1 */
845 dl 1.4 private int untimedWait(int phase) {
846 dl 1.1 QNode node = null;
847 dl 1.10 boolean queued = false;
848 dl 1.4 boolean interrupted = false;
849     int p;
850     while ((p = getPhase()) == phase) {
851 dl 1.10 if (Thread.interrupted())
852     interrupted = true;
853     else if (node == null)
854     node = new QNode(this, phase, false, false, 0, 0);
855     else if (!queued)
856     queued = tryEnqueue(node);
857 dl 1.4 else
858 dl 1.10 interrupted = node.doWait();
859 dl 1.4 }
860     if (node != null)
861     node.thread = null;
862 dl 1.10 releaseWaiters(phase);
863 dl 1.4 if (interrupted)
864     Thread.currentThread().interrupt();
865     return p;
866     }
867    
868     /**
869 dl 1.10 * Interruptible version
870     * @return current phase
871 dl 1.4 */
872     private int interruptibleWait(int phase) throws InterruptedException {
873     QNode node = null;
874     boolean queued = false;
875     boolean interrupted = false;
876     int p;
877 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
878     if (Thread.interrupted())
879     interrupted = true;
880     else if (node == null)
881     node = new QNode(this, phase, true, false, 0, 0);
882     else if (!queued)
883     queued = tryEnqueue(node);
884 dl 1.1 else
885 dl 1.10 interrupted = node.doWait();
886 dl 1.1 }
887     if (node != null)
888     node.thread = null;
889 dl 1.10 if (p != phase || (p = getPhase()) != phase)
890     releaseWaiters(phase);
891 dl 1.4 if (interrupted)
892     throw new InterruptedException();
893     return p;
894 dl 1.1 }
895    
896     /**
897 dl 1.10 * Timeout version.
898     * @return current phase
899 dl 1.1 */
900 dl 1.4 private int timedWait(int phase, long nanos)
901 dl 1.1 throws InterruptedException, TimeoutException {
902 dl 1.10 long startTime = System.nanoTime();
903     QNode node = null;
904     boolean queued = false;
905     boolean interrupted = false;
906 dl 1.4 int p;
907 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
908     if (Thread.interrupted())
909     interrupted = true;
910     else if (nanos - (System.nanoTime() - startTime) <= 0)
911     break;
912     else if (node == null)
913     node = new QNode(this, phase, true, true, startTime, nanos);
914     else if (!queued)
915     queued = tryEnqueue(node);
916     else
917     interrupted = node.doWait();
918 dl 1.4 }
919 dl 1.10 if (node != null)
920     node.thread = null;
921     if (p != phase || (p = getPhase()) != phase)
922     releaseWaiters(phase);
923     if (interrupted)
924     throw new InterruptedException();
925     if (p == phase)
926     throw new TimeoutException();
927 dl 1.4 return p;
928     }
929    
930     // Temporary Unsafe mechanics for preliminary release
931 jsr166 1.11 private static Unsafe getUnsafe() throws Throwable {
932     try {
933     return Unsafe.getUnsafe();
934     } catch (SecurityException se) {
935     try {
936     return java.security.AccessController.doPrivileged
937     (new java.security.PrivilegedExceptionAction<Unsafe>() {
938     public Unsafe run() throws Exception {
939     return getUnsafePrivileged();
940     }});
941     } catch (java.security.PrivilegedActionException e) {
942     throw e.getCause();
943     }
944     }
945     }
946    
947     private static Unsafe getUnsafePrivileged()
948     throws NoSuchFieldException, IllegalAccessException {
949     Field f = Unsafe.class.getDeclaredField("theUnsafe");
950     f.setAccessible(true);
951 jsr166 1.12 return (Unsafe) f.get(null);
952 jsr166 1.11 }
953    
954     private static long fieldOffset(String fieldName)
955     throws NoSuchFieldException {
956     return _unsafe.objectFieldOffset
957     (Phaser.class.getDeclaredField(fieldName));
958     }
959 dl 1.4
960     static final Unsafe _unsafe;
961     static final long stateOffset;
962    
963     static {
964     try {
965 jsr166 1.11 _unsafe = getUnsafe();
966     stateOffset = fieldOffset("state");
967 jsr166 1.12 } catch (Throwable e) {
968 dl 1.4 throw new RuntimeException("Could not initialize intrinsics", e);
969 dl 1.1 }
970     }
971    
972 dl 1.4 final boolean casState(long cmp, long val) {
973     return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
974     }
975 dl 1.1 }