ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.22
Committed: Sun Jul 26 17:33:37 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.21: +34 -30 lines
Log Message:
Unsafe mechanics

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.20
11     import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15     * A reusable synchronization barrier, similar in functionality to a
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20     * <ul>
21     *
22 dl 1.4 * <li> The number of parties synchronizing on a phaser may vary over
23     * time. A task may register to be a party at any time, and may
24     * deregister upon arriving at the barrier. As is the case with most
25     * basic synchronization constructs, registration and deregistration
26     * affect only internal counts; they do not establish any further
27     * internal bookkeeping, so tasks cannot query whether they are
28 jsr166 1.9 * registered. (However, you can introduce such bookkeeping by
29 dl 1.4 * subclassing this class.)
30 dl 1.1 *
31     * <li> Each generation has an associated phase value, starting at
32     * zero, and advancing when all parties reach the barrier (wrapping
33 jsr166 1.7 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 jsr166 1.3 *
35 dl 1.1 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 jsr166 1.7 * Method {@code arriveAndAwaitAdvance} has effect analogous to
37     * {@code CyclicBarrier.await}. However, Phasers separate two
38 dl 1.4 * aspects of coordination, that may also be invoked independently:
39 dl 1.1 *
40     * <ul>
41     *
42 jsr166 1.7 * <li> Arriving at a barrier. Methods {@code arrive} and
43     * {@code arriveAndDeregister} do not block, but return
44 dl 1.4 * the phase value current upon entry to the method.
45 dl 1.1 *
46 jsr166 1.7 * <li> Awaiting others. Method {@code awaitAdvance} requires an
47 dl 1.1 * argument indicating the entry phase, and returns when the
48     * barrier advances to a new phase.
49     * </ul>
50     *
51     *
52     * <li> Barrier actions, performed by the task triggering a phase
53     * advance while others may be waiting, are arranged by overriding
54 jsr166 1.7 * method {@code onAdvance}, that also controls termination.
55 dl 1.5 * Overriding this method may be used to similar but more flexible
56 dl 1.4 * effect as providing a barrier action to a CyclicBarrier.
57 dl 1.1 *
58     * <li> Phasers may enter a <em>termination</em> state in which all
59 dl 1.10 * actions immediately return without updating phaser state or waiting
60     * for advance, and indicating (via a negative phase value) that
61     * execution is complete. Termination is triggered by executing the
62     * overridable {@code onAdvance} method that is invoked each time the
63     * barrier is about to be tripped. When a Phaser is controlling an
64     * action with a fixed number of iterations, it is often convenient to
65     * override this method to cause termination when the current phase
66     * number reaches a threshold. Method {@code forceTermination} is also
67     * available to abruptly release waiting threads and allow them to
68     * terminate.
69 dl 1.4 *
70     * <li> Phasers may be tiered to reduce contention. Phasers with large
71     * numbers of parties that would otherwise experience heavy
72     * synchronization contention costs may instead be arranged in trees.
73     * This will typically greatly increase throughput even though it
74     * incurs somewhat greater per-operation overhead.
75 jsr166 1.3 *
76 jsr166 1.7 * <li> By default, {@code awaitAdvance} continues to wait even if
77 dl 1.4 * the waiting thread is interrupted. And unlike the case in
78 dl 1.1 * CyclicBarriers, exceptions encountered while tasks wait
79     * interruptibly or with timeout do not change the state of the
80     * barrier. If necessary, you can perform any associated recovery
81 dl 1.4 * within handlers of those exceptions, often after invoking
82 jsr166 1.7 * {@code forceTermination}.
83 dl 1.1 *
84 dl 1.10 * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
85     *
86 dl 1.1 * </ul>
87     *
88 dl 1.4 * <p><b>Sample usages:</b>
89     *
90 jsr166 1.8 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
91 dl 1.4 * a one-shot action serving a variable number of parties. The typical
92     * idiom is for the method setting this up to first register, then
93     * start the actions, then deregister, as in:
94 dl 1.1 *
95 jsr166 1.13 * <pre> {@code
96     * void runTasks(List<Runnable> list) {
97     * final Phaser phaser = new Phaser(1); // "1" to register self
98     * for (Runnable r : list) {
99     * phaser.register();
100     * new Thread() {
101     * public void run() {
102     * phaser.arriveAndAwaitAdvance(); // await all creation
103     * r.run();
104     * phaser.arriveAndDeregister(); // signal completion
105     * }
106     * }.start();
107 dl 1.4 * }
108 dl 1.6 *
109     * doSomethingOnBehalfOfWorkers();
110 dl 1.4 * phaser.arrive(); // allow threads to start
111 dl 1.6 * int p = phaser.arriveAndDeregister(); // deregister self ...
112     * p = phaser.awaitAdvance(p); // ... and await arrival
113 dl 1.4 * otherActions(); // do other things while tasks execute
114 jsr166 1.8 * phaser.awaitAdvance(p); // await final completion
115 jsr166 1.13 * }}</pre>
116 dl 1.1 *
117 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
118 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
119 dl 1.1 *
120 jsr166 1.13 * <pre> {@code
121     * void startTasks(List<Runnable> list, final int iterations) {
122     * final Phaser phaser = new Phaser() {
123     * public boolean onAdvance(int phase, int registeredParties) {
124     * return phase >= iterations || registeredParties == 0;
125     * }
126     * };
127     * phaser.register();
128     * for (Runnable r : list) {
129     * phaser.register();
130     * new Thread() {
131     * public void run() {
132     * do {
133     * r.run();
134     * phaser.arriveAndAwaitAdvance();
135     * } while(!phaser.isTerminated();
136 dl 1.4 * }
137 jsr166 1.13 * }.start();
138 dl 1.1 * }
139 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
140 jsr166 1.13 * }}</pre>
141 dl 1.1 *
142 dl 1.4 * <p> To create a set of tasks using a tree of Phasers,
143     * you could use code of the following form, assuming a
144     * Task class with a constructor accepting a Phaser that
145     * it registers for upon construction:
146 jsr166 1.13 * <pre> {@code
147     * void build(Task[] actions, int lo, int hi, Phaser b) {
148     * int step = (hi - lo) / TASKS_PER_PHASER;
149     * if (step > 1) {
150     * int i = lo;
151     * while (i < hi) {
152     * int r = Math.min(i + step, hi);
153     * build(actions, i, r, new Phaser(b));
154     * i = r;
155     * }
156     * } else {
157     * for (int i = lo; i < hi; ++i)
158     * actions[i] = new Task(b);
159     * // assumes new Task(b) performs b.register()
160     * }
161     * }
162     * // .. initially called, for n tasks via
163     * build(new Task[n], 0, n, new Phaser());}</pre>
164 dl 1.4 *
165 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
166 dl 1.4 * expected barrier synchronization rates. A value as low as four may
167     * be appropriate for extremely small per-barrier task bodies (thus
168     * high rates), or up to hundreds for extremely large ones.
169     *
170     * </pre>
171     *
172 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
173 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
174     * parties result in IllegalStateExceptions. However, you can and
175     * should create tiered phasers to accommodate arbitrarily large sets
176     * of participants.
177 jsr166 1.16 *
178     * @since 1.7
179     * @author Doug Lea
180 dl 1.1 */
181     public class Phaser {
182     /*
183     * This class implements an extension of X10 "clocks". Thanks to
184 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
185     * enhancements to extend functionality.
186 dl 1.1 */
187    
188     /**
189     * Barrier state representation. Conceptually, a barrier contains
190     * four values:
191 jsr166 1.3 *
192 dl 1.1 * * parties -- the number of parties to wait (16 bits)
193     * * unarrived -- the number of parties yet to hit barrier (16 bits)
194     * * phase -- the generation of the barrier (31 bits)
195     * * terminated -- set if barrier is terminated (1 bit)
196     *
197     * However, to efficiently maintain atomicity, these values are
198 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
199     * bit of 32 bit representation of phase, so phase is set to -1 on
200 jsr166 1.8 * termination. Good performance relies on keeping state decoding
201 dl 1.4 * and encoding simple, and keeping race windows short.
202     *
203     * Note: there are some cheats in arrive() that rely on unarrived
204 dl 1.10 * count being lowest 16 bits.
205 dl 1.1 */
206 dl 1.4 private volatile long state;
207 dl 1.1
208     private static final int ushortBits = 16;
209 dl 1.10 private static final int ushortMask = 0xffff;
210     private static final int phaseMask = 0x7fffffff;
211 dl 1.1
212     private static int unarrivedOf(long s) {
213 jsr166 1.18 return (int) (s & ushortMask);
214 dl 1.1 }
215    
216     private static int partiesOf(long s) {
217 jsr166 1.17 return ((int) s) >>> 16;
218 dl 1.1 }
219    
220     private static int phaseOf(long s) {
221 jsr166 1.17 return (int) (s >>> 32);
222 dl 1.1 }
223    
224     private static int arrivedOf(long s) {
225     return partiesOf(s) - unarrivedOf(s);
226     }
227    
228     private static long stateFor(int phase, int parties, int unarrived) {
229 jsr166 1.17 return ((((long) phase) << 32) | (((long) parties) << 16) |
230     (long) unarrived);
231 dl 1.1 }
232    
233 dl 1.4 private static long trippedStateFor(int phase, int parties) {
234 jsr166 1.17 long lp = (long) parties;
235     return (((long) phase) << 32) | (lp << 16) | lp;
236 dl 1.4 }
237    
238 dl 1.10 /**
239 jsr166 1.14 * Returns message string for bad bounds exceptions.
240 dl 1.10 */
241     private static String badBounds(int parties, int unarrived) {
242     return ("Attempt to set " + unarrived +
243     " unarrived of " + parties + " parties");
244 dl 1.4 }
245    
246     /**
247     * The parent of this phaser, or null if none
248     */
249     private final Phaser parent;
250    
251     /**
252     * The root of Phaser tree. Equals this if not in a tree. Used to
253     * support faster state push-down.
254     */
255     private final Phaser root;
256    
257     // Wait queues
258    
259     /**
260 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
261 dl 1.4 * contention while releasing some threads while adding others, we
262     * use two of them, alternating across even and odd phases.
263     */
264     private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
265     private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
266    
267     private AtomicReference<QNode> queueFor(int phase) {
268 jsr166 1.18 return ((phase & 1) == 0) ? evenQ : oddQ;
269 dl 1.4 }
270    
271     /**
272     * Returns current state, first resolving lagged propagation from
273     * root if necessary.
274     */
275     private long getReconciledState() {
276 jsr166 1.18 return (parent == null) ? state : reconcileState();
277 dl 1.4 }
278    
279     /**
280     * Recursively resolves state.
281     */
282     private long reconcileState() {
283     Phaser p = parent;
284     long s = state;
285     if (p != null) {
286     while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
287     long parentState = p.getReconciledState();
288     int parentPhase = phaseOf(parentState);
289     int phase = phaseOf(s = state);
290     if (phase != parentPhase) {
291     long next = trippedStateFor(parentPhase, partiesOf(s));
292     if (casState(s, next)) {
293     releaseWaiters(phase);
294     s = next;
295     }
296     }
297     }
298     }
299     return s;
300 dl 1.1 }
301    
302     /**
303     * Creates a new Phaser without any initially registered parties,
304 dl 1.10 * initial phase number 0, and no parent. Any thread using this
305     * Phaser will need to first register for it.
306 dl 1.1 */
307     public Phaser() {
308 dl 1.4 this(null);
309 dl 1.1 }
310    
311     /**
312     * Creates a new Phaser with the given numbers of registered
313 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
314 jsr166 1.14 *
315     * @param parties the number of parties required to trip barrier
316 dl 1.1 * @throws IllegalArgumentException if parties less than zero
317 jsr166 1.14 * or greater than the maximum number of parties supported
318 dl 1.1 */
319     public Phaser(int parties) {
320 dl 1.4 this(null, parties);
321     }
322    
323     /**
324     * Creates a new Phaser with the given parent, without any
325     * initially registered parties. If parent is non-null this phaser
326     * is registered with the parent and its initial phase number is
327     * the same as that of parent phaser.
328 jsr166 1.14 *
329     * @param parent the parent phaser
330 dl 1.4 */
331     public Phaser(Phaser parent) {
332     int phase = 0;
333     this.parent = parent;
334     if (parent != null) {
335     this.root = parent.root;
336     phase = parent.register();
337     }
338     else
339     this.root = this;
340     this.state = trippedStateFor(phase, 0);
341     }
342    
343     /**
344     * Creates a new Phaser with the given parent and numbers of
345 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
346 dl 1.4 * is registered with the parent and its initial phase number is
347     * the same as that of parent phaser.
348 jsr166 1.14 *
349     * @param parent the parent phaser
350     * @param parties the number of parties required to trip barrier
351 dl 1.4 * @throws IllegalArgumentException if parties less than zero
352 jsr166 1.14 * or greater than the maximum number of parties supported
353 dl 1.4 */
354     public Phaser(Phaser parent, int parties) {
355 dl 1.1 if (parties < 0 || parties > ushortMask)
356     throw new IllegalArgumentException("Illegal number of parties");
357 dl 1.4 int phase = 0;
358     this.parent = parent;
359     if (parent != null) {
360     this.root = parent.root;
361     phase = parent.register();
362     }
363     else
364     this.root = this;
365     this.state = trippedStateFor(phase, parties);
366 dl 1.1 }
367    
368     /**
369     * Adds a new unarrived party to this phaser.
370 jsr166 1.14 *
371 dl 1.1 * @return the current barrier phase number upon registration
372     * @throws IllegalStateException if attempting to register more
373 jsr166 1.14 * than the maximum supported number of parties
374 dl 1.1 */
375 dl 1.4 public int register() {
376     return doRegister(1);
377     }
378    
379     /**
380     * Adds the given number of new unarrived parties to this phaser.
381 jsr166 1.14 *
382     * @param parties the number of parties required to trip barrier
383 dl 1.4 * @return the current barrier phase number upon registration
384     * @throws IllegalStateException if attempting to register more
385 jsr166 1.14 * than the maximum supported number of parties
386 dl 1.4 */
387     public int bulkRegister(int parties) {
388     if (parties < 0)
389     throw new IllegalArgumentException();
390     if (parties == 0)
391     return getPhase();
392     return doRegister(parties);
393     }
394    
395     /**
396     * Shared code for register, bulkRegister
397     */
398     private int doRegister(int registrations) {
399     int phase;
400 dl 1.1 for (;;) {
401 dl 1.4 long s = getReconciledState();
402     phase = phaseOf(s);
403     int unarrived = unarrivedOf(s) + registrations;
404     int parties = partiesOf(s) + registrations;
405 jsr166 1.12 if (phase < 0)
406 dl 1.4 break;
407 dl 1.1 if (parties > ushortMask || unarrived > ushortMask)
408 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
409 dl 1.4 if (phase == phaseOf(root.state) &&
410     casState(s, stateFor(phase, parties, unarrived)))
411     break;
412 dl 1.1 }
413 dl 1.4 return phase;
414 dl 1.1 }
415    
416     /**
417     * Arrives at the barrier, but does not wait for others. (You can
418     * in turn wait for others via {@link #awaitAdvance}).
419     *
420 dl 1.4 * @return the barrier phase number upon entry to this method, or a
421 jsr166 1.14 * negative value if terminated
422 dl 1.4 * @throws IllegalStateException if not terminated and the number
423 jsr166 1.14 * of unarrived parties would become negative
424 dl 1.1 */
425 dl 1.4 public int arrive() {
426     int phase;
427 dl 1.1 for (;;) {
428 dl 1.4 long s = state;
429     phase = phaseOf(s);
430 dl 1.10 if (phase < 0)
431     break;
432 dl 1.1 int parties = partiesOf(s);
433     int unarrived = unarrivedOf(s) - 1;
434 dl 1.4 if (unarrived > 0) { // Not the last arrival
435     if (casState(s, s - 1)) // s-1 adds one arrival
436     break;
437     }
438     else if (unarrived == 0) { // the last arrival
439     Phaser par = parent;
440     if (par == null) { // directly trip
441     if (casState
442     (s,
443 jsr166 1.18 trippedStateFor(onAdvance(phase, parties) ? -1 :
444 dl 1.4 ((phase + 1) & phaseMask), parties))) {
445     releaseWaiters(phase);
446     break;
447     }
448     }
449     else { // cascade to parent
450     if (casState(s, s - 1)) { // zeroes unarrived
451     par.arrive();
452     reconcileState();
453     break;
454     }
455     }
456     }
457     else if (phase != phaseOf(root.state)) // or if unreconciled
458     reconcileState();
459     else
460 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
461 dl 1.1 }
462 dl 1.4 return phase;
463 dl 1.1 }
464    
465     /**
466     * Arrives at the barrier, and deregisters from it, without
467 dl 1.4 * waiting for others. Deregistration reduces number of parties
468     * required to trip the barrier in future phases. If this phaser
469     * has a parent, and deregistration causes this phaser to have
470     * zero parties, this phaser is also deregistered from its parent.
471 dl 1.1 *
472     * @return the current barrier phase number upon entry to
473 jsr166 1.14 * this method, or a negative value if terminated
474 dl 1.4 * @throws IllegalStateException if not terminated and the number
475 jsr166 1.14 * of registered or unarrived parties would become negative
476 dl 1.1 */
477 dl 1.4 public int arriveAndDeregister() {
478     // similar code to arrive, but too different to merge
479     Phaser par = parent;
480     int phase;
481 dl 1.1 for (;;) {
482 dl 1.4 long s = state;
483     phase = phaseOf(s);
484 dl 1.10 if (phase < 0)
485     break;
486 dl 1.1 int parties = partiesOf(s) - 1;
487     int unarrived = unarrivedOf(s) - 1;
488 dl 1.4 if (parties >= 0) {
489     if (unarrived > 0 || (unarrived == 0 && par != null)) {
490     if (casState
491     (s,
492     stateFor(phase, parties, unarrived))) {
493     if (unarrived == 0) {
494     par.arriveAndDeregister();
495     reconcileState();
496     }
497     break;
498     }
499     continue;
500     }
501     if (unarrived == 0) {
502     if (casState
503     (s,
504 jsr166 1.18 trippedStateFor(onAdvance(phase, parties) ? -1 :
505 dl 1.4 ((phase + 1) & phaseMask), parties))) {
506     releaseWaiters(phase);
507     break;
508     }
509     continue;
510     }
511     if (par != null && phase != phaseOf(root.state)) {
512     reconcileState();
513     continue;
514     }
515 dl 1.1 }
516 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
517 dl 1.1 }
518 dl 1.4 return phase;
519 dl 1.1 }
520    
521     /**
522 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
523 jsr166 1.7 * to {@code awaitAdvance(arrive())}. If you instead need to
524 dl 1.4 * await with interruption of timeout, and/or deregister upon
525     * arrival, you can arrange them using analogous constructions.
526 jsr166 1.14 *
527 dl 1.4 * @return the phase on entry to this method
528     * @throws IllegalStateException if not terminated and the number
529 jsr166 1.14 * of unarrived parties would become negative
530 dl 1.1 */
531     public int arriveAndAwaitAdvance() {
532 dl 1.4 return awaitAdvance(arrive());
533 dl 1.1 }
534    
535     /**
536     * Awaits the phase of the barrier to advance from the given
537 dl 1.4 * value, or returns immediately if argument is negative or this
538     * barrier is terminated.
539 jsr166 1.14 *
540 dl 1.1 * @param phase the phase on entry to this method
541     * @return the phase on exit from this method
542     */
543     public int awaitAdvance(int phase) {
544     if (phase < 0)
545     return phase;
546 dl 1.4 long s = getReconciledState();
547     int p = phaseOf(s);
548     if (p != phase)
549     return p;
550 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
551 dl 1.4 parent.awaitAdvance(phase);
552     // Fall here even if parent waited, to reconcile and help release
553     return untimedWait(phase);
554 dl 1.1 }
555    
556     /**
557     * Awaits the phase of the barrier to advance from the given
558 jsr166 1.8 * value, or returns immediately if argument is negative or this
559 dl 1.4 * barrier is terminated, or throws InterruptedException if
560     * interrupted while waiting.
561 jsr166 1.14 *
562 dl 1.1 * @param phase the phase on entry to this method
563     * @return the phase on exit from this method
564     * @throws InterruptedException if thread interrupted while waiting
565     */
566 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
567 dl 1.10 throws InterruptedException {
568 dl 1.1 if (phase < 0)
569     return phase;
570 dl 1.4 long s = getReconciledState();
571     int p = phaseOf(s);
572     if (p != phase)
573     return p;
574 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
575 dl 1.4 parent.awaitAdvanceInterruptibly(phase);
576     return interruptibleWait(phase);
577 dl 1.1 }
578    
579     /**
580     * Awaits the phase of the barrier to advance from the given value
581 dl 1.4 * or the given timeout elapses, or returns immediately if
582     * argument is negative or this barrier is terminated.
583 jsr166 1.14 *
584 dl 1.1 * @param phase the phase on entry to this method
585     * @return the phase on exit from this method
586     * @throws InterruptedException if thread interrupted while waiting
587     * @throws TimeoutException if timed out while waiting
588     */
589 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
590     long timeout, TimeUnit unit)
591 dl 1.1 throws InterruptedException, TimeoutException {
592     if (phase < 0)
593     return phase;
594 dl 1.4 long s = getReconciledState();
595     int p = phaseOf(s);
596     if (p != phase)
597     return p;
598 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
599 dl 1.4 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
600     return timedWait(phase, unit.toNanos(timeout));
601 dl 1.1 }
602    
603     /**
604     * Forces this barrier to enter termination state. Counts of
605 dl 1.4 * arrived and registered parties are unaffected. If this phaser
606     * has a parent, it too is terminated. This method may be useful
607     * for coordinating recovery after one or more tasks encounter
608     * unexpected exceptions.
609 dl 1.1 */
610     public void forceTermination() {
611     for (;;) {
612 dl 1.4 long s = getReconciledState();
613 dl 1.1 int phase = phaseOf(s);
614     int parties = partiesOf(s);
615     int unarrived = unarrivedOf(s);
616     if (phase < 0 ||
617 dl 1.4 casState(s, stateFor(-1, parties, unarrived))) {
618     releaseWaiters(0);
619     releaseWaiters(1);
620     if (parent != null)
621     parent.forceTermination();
622 dl 1.1 return;
623     }
624     }
625     }
626    
627     /**
628 dl 1.4 * Returns the current phase number. The maximum phase number is
629 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
630 dl 1.4 * zero. Upon termination, the phase number is negative.
631 jsr166 1.14 *
632 dl 1.4 * @return the phase number, or a negative value if terminated
633 dl 1.1 */
634 dl 1.4 public final int getPhase() {
635     return phaseOf(getReconciledState());
636 dl 1.1 }
637    
638     /**
639 jsr166 1.9 * Returns {@code true} if the current phase number equals the given phase.
640 jsr166 1.14 *
641 dl 1.4 * @param phase the phase
642 jsr166 1.9 * @return {@code true} if the current phase number equals the given phase
643 dl 1.1 */
644 dl 1.4 public final boolean hasPhase(int phase) {
645     return phaseOf(getReconciledState()) == phase;
646 dl 1.1 }
647    
648     /**
649     * Returns the number of parties registered at this barrier.
650 jsr166 1.14 *
651 dl 1.1 * @return the number of parties
652     */
653     public int getRegisteredParties() {
654 dl 1.4 return partiesOf(state);
655 dl 1.1 }
656    
657     /**
658     * Returns the number of parties that have arrived at the current
659     * phase of this barrier.
660 jsr166 1.14 *
661 dl 1.1 * @return the number of arrived parties
662     */
663     public int getArrivedParties() {
664 dl 1.4 return arrivedOf(state);
665 dl 1.1 }
666    
667     /**
668     * Returns the number of registered parties that have not yet
669     * arrived at the current phase of this barrier.
670 jsr166 1.14 *
671 dl 1.1 * @return the number of unarrived parties
672     */
673     public int getUnarrivedParties() {
674 dl 1.4 return unarrivedOf(state);
675     }
676    
677     /**
678     * Returns the parent of this phaser, or null if none.
679 jsr166 1.14 *
680 jsr166 1.9 * @return the parent of this phaser, or null if none
681 dl 1.4 */
682     public Phaser getParent() {
683     return parent;
684     }
685    
686     /**
687     * Returns the root ancestor of this phaser, which is the same as
688     * this phaser if it has no parent.
689 jsr166 1.14 *
690 jsr166 1.9 * @return the root ancestor of this phaser
691 dl 1.4 */
692     public Phaser getRoot() {
693     return root;
694 dl 1.1 }
695    
696     /**
697 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
698 jsr166 1.14 *
699 jsr166 1.9 * @return {@code true} if this barrier has been terminated
700 dl 1.1 */
701     public boolean isTerminated() {
702 dl 1.4 return getPhase() < 0;
703 dl 1.1 }
704    
705     /**
706     * Overridable method to perform an action upon phase advance, and
707     * to control termination. This method is invoked whenever the
708     * barrier is tripped (and thus all other waiting parties are
709     * dormant). If it returns true, then, rather than advance the
710     * phase number, this barrier will be set to a final termination
711 jsr166 1.7 * state, and subsequent calls to {@code isTerminated} will
712 dl 1.1 * return true.
713 jsr166 1.3 *
714 dl 1.1 * <p> The default version returns true when the number of
715     * registered parties is zero. Normally, overrides that arrange
716     * termination for other reasons should also preserve this
717     * property.
718     *
719 dl 1.4 * <p> You may override this method to perform an action with side
720     * effects visible to participating tasks, but it is in general
721     * only sensible to do so in designs where all parties register
722 jsr166 1.7 * before any arrive, and all {@code awaitAdvance} at each phase.
723 dl 1.4 * Otherwise, you cannot ensure lack of interference. In
724     * particular, this method may be invoked more than once per
725     * transition if other parties successfully register while the
726     * invocation of this method is in progress, thus postponing the
727     * transition until those parties also arrive, re-triggering this
728     * method.
729     *
730 dl 1.1 * @param phase the phase number on entering the barrier
731 jsr166 1.9 * @param registeredParties the current number of registered parties
732     * @return {@code true} if this barrier should terminate
733 dl 1.1 */
734     protected boolean onAdvance(int phase, int registeredParties) {
735     return registeredParties <= 0;
736     }
737    
738     /**
739 dl 1.4 * Returns a string identifying this phaser, as well as its
740 dl 1.1 * state. The state, in brackets, includes the String {@code
741 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
742 dl 1.1 * followed by the number of registered parties, and {@code
743 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
744 dl 1.1 *
745     * @return a string identifying this barrier, as well as its state
746     */
747     public String toString() {
748 dl 1.4 long s = getReconciledState();
749 jsr166 1.9 return super.toString() +
750     "[phase = " + phaseOf(s) +
751     " parties = " + partiesOf(s) +
752     " arrived = " + arrivedOf(s) + "]";
753 dl 1.1 }
754    
755 dl 1.4 // methods for waiting
756 dl 1.1
757     /**
758 dl 1.10 * Wait nodes for Treiber stack representing wait queue
759 dl 1.1 */
760 dl 1.10 static final class QNode implements ForkJoinPool.ManagedBlocker {
761     final Phaser phaser;
762     final int phase;
763     final long startTime;
764     final long nanos;
765     final boolean timed;
766     final boolean interruptible;
767     volatile boolean wasInterrupted = false;
768     volatile Thread thread; // nulled to cancel wait
769 dl 1.4 QNode next;
770 dl 1.10 QNode(Phaser phaser, int phase, boolean interruptible,
771     boolean timed, long startTime, long nanos) {
772     this.phaser = phaser;
773     this.phase = phase;
774     this.timed = timed;
775     this.interruptible = interruptible;
776     this.startTime = startTime;
777     this.nanos = nanos;
778 dl 1.4 thread = Thread.currentThread();
779     }
780 dl 1.10 public boolean isReleasable() {
781     return (thread == null ||
782     phaser.getPhase() != phase ||
783     (interruptible && wasInterrupted) ||
784     (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
785     }
786     public boolean block() {
787     if (Thread.interrupted()) {
788     wasInterrupted = true;
789     if (interruptible)
790     return true;
791     }
792     if (!timed)
793     LockSupport.park(this);
794     else {
795     long waitTime = nanos - (System.nanoTime() - startTime);
796     if (waitTime <= 0)
797     return true;
798     LockSupport.parkNanos(this, waitTime);
799     }
800     return isReleasable();
801     }
802 dl 1.4 void signal() {
803     Thread t = thread;
804     if (t != null) {
805     thread = null;
806     LockSupport.unpark(t);
807     }
808     }
809 dl 1.10 boolean doWait() {
810     if (thread != null) {
811     try {
812     ForkJoinPool.managedBlock(this, false);
813     } catch (InterruptedException ie) {
814 jsr166 1.12 }
815 dl 1.10 }
816     return wasInterrupted;
817     }
818    
819 dl 1.4 }
820    
821     /**
822 jsr166 1.14 * Removes and signals waiting threads from wait queue.
823 dl 1.4 */
824     private void releaseWaiters(int phase) {
825     AtomicReference<QNode> head = queueFor(phase);
826     QNode q;
827     while ((q = head.get()) != null) {
828     if (head.compareAndSet(q, q.next))
829     q.signal();
830     }
831     }
832    
833     /**
834 jsr166 1.14 * Tries to enqueue given node in the appropriate wait queue.
835     *
836 dl 1.10 * @return true if successful
837     */
838     private boolean tryEnqueue(QNode node) {
839     AtomicReference<QNode> head = queueFor(node.phase);
840     return head.compareAndSet(node.next = head.get(), node);
841     }
842    
843     /**
844 dl 1.1 * Enqueues node and waits unless aborted or signalled.
845 jsr166 1.14 *
846 dl 1.10 * @return current phase
847 dl 1.1 */
848 dl 1.4 private int untimedWait(int phase) {
849 dl 1.1 QNode node = null;
850 dl 1.10 boolean queued = false;
851 dl 1.4 boolean interrupted = false;
852     int p;
853     while ((p = getPhase()) == phase) {
854 dl 1.10 if (Thread.interrupted())
855     interrupted = true;
856     else if (node == null)
857     node = new QNode(this, phase, false, false, 0, 0);
858     else if (!queued)
859     queued = tryEnqueue(node);
860 dl 1.4 else
861 dl 1.10 interrupted = node.doWait();
862 dl 1.4 }
863     if (node != null)
864     node.thread = null;
865 dl 1.10 releaseWaiters(phase);
866 dl 1.4 if (interrupted)
867     Thread.currentThread().interrupt();
868     return p;
869     }
870    
871     /**
872 dl 1.10 * Interruptible version
873     * @return current phase
874 dl 1.4 */
875     private int interruptibleWait(int phase) throws InterruptedException {
876     QNode node = null;
877     boolean queued = false;
878     boolean interrupted = false;
879     int p;
880 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
881     if (Thread.interrupted())
882     interrupted = true;
883     else if (node == null)
884     node = new QNode(this, phase, true, false, 0, 0);
885     else if (!queued)
886     queued = tryEnqueue(node);
887 dl 1.1 else
888 dl 1.10 interrupted = node.doWait();
889 dl 1.1 }
890     if (node != null)
891     node.thread = null;
892 dl 1.10 if (p != phase || (p = getPhase()) != phase)
893     releaseWaiters(phase);
894 dl 1.4 if (interrupted)
895     throw new InterruptedException();
896     return p;
897 dl 1.1 }
898    
899     /**
900 dl 1.10 * Timeout version.
901     * @return current phase
902 dl 1.1 */
903 dl 1.4 private int timedWait(int phase, long nanos)
904 dl 1.1 throws InterruptedException, TimeoutException {
905 dl 1.10 long startTime = System.nanoTime();
906     QNode node = null;
907     boolean queued = false;
908     boolean interrupted = false;
909 dl 1.4 int p;
910 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
911     if (Thread.interrupted())
912     interrupted = true;
913     else if (nanos - (System.nanoTime() - startTime) <= 0)
914     break;
915     else if (node == null)
916     node = new QNode(this, phase, true, true, startTime, nanos);
917     else if (!queued)
918     queued = tryEnqueue(node);
919     else
920     interrupted = node.doWait();
921 dl 1.4 }
922 dl 1.10 if (node != null)
923     node.thread = null;
924     if (p != phase || (p = getPhase()) != phase)
925     releaseWaiters(phase);
926     if (interrupted)
927     throw new InterruptedException();
928     if (p == phase)
929     throw new TimeoutException();
930 dl 1.4 return p;
931     }
932    
933 jsr166 1.22 // Unsafe mechanics
934    
935     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
936     private static final long stateOffset =
937     objectFieldOffset("state", Phaser.class);
938    
939     private final boolean casState(long cmp, long val) {
940     return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
941     }
942    
943     private static long objectFieldOffset(String field, Class<?> klazz) {
944     try {
945     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
946     } catch (NoSuchFieldException e) {
947     // Convert Exception to corresponding Error
948     NoSuchFieldError error = new NoSuchFieldError(field);
949     error.initCause(e);
950     throw error;
951     }
952     }
953    
954     /**
955     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
956     * Replace with a simple call to Unsafe.getUnsafe when integrating
957     * into a jdk.
958     *
959     * @return a sun.misc.Unsafe
960     */
961 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
962 jsr166 1.11 try {
963 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
964 jsr166 1.11 } catch (SecurityException se) {
965     try {
966     return java.security.AccessController.doPrivileged
967 jsr166 1.22 (new java.security
968     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
969 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
970 jsr166 1.22 java.lang.reflect.Field f = sun.misc
971     .Unsafe.class.getDeclaredField("theUnsafe");
972     f.setAccessible(true);
973     return (sun.misc.Unsafe) f.get(null);
974 jsr166 1.11 }});
975     } catch (java.security.PrivilegedActionException e) {
976 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
977     e.getCause());
978 jsr166 1.11 }
979     }
980     }
981 dl 1.1 }