ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.39
Committed: Mon Aug 24 12:15:46 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.38: +13 -13 lines
Log Message:
Typos

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.20
11     import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82     * onAdvance} returns {@code true}. As illustrated below, when
83     * phasers control actions with a fixed number of iterations, it is
84     * often convenient to override this method to cause termination when
85     * the current phase number reaches a threshold. Method {@link
86     * #forceTermination} is also available to abruptly release waiting
87     * threads and allow them to terminate.
88 dl 1.4 *
89 dl 1.38 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90     * in tree structures) to reduce contention. Phasers with large
91 dl 1.4 * numbers of parties that would otherwise experience heavy
92 dl 1.38 * synchronization contention costs may instead be set up so that
93     * groups of sub-phasers share a common parent. This may greatly
94     * increase throughput even though it incurs greater per-operation
95     * overhead.
96     *
97     * <p><b>Monitoring.</b> While synchronization methods may be invoked
98     * only by registered parties, the current state of a phaser may be
99     * monitored by any caller. At any given moment there are {@link
100     * #getRegisteredParties}, where {@link #getArrivedParties} have
101     * arrived at the current phase ({@link #getPhase}). When the
102     * remaining {@link #getUnarrivedParties}) arrive, the phase
103     * advances. Method {@link #toString} returns snapshots of these state
104     * queries in a form convenient for informal monitoring.
105 dl 1.1 *
106 dl 1.4 * <p><b>Sample usages:</b>
107     *
108 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
109     * to control a one-shot action serving a variable number of
110     * parties. The typical idiom is for the method setting this up to
111     * first register, then start the actions, then deregister, as in:
112 dl 1.1 *
113 jsr166 1.13 * <pre> {@code
114 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
115 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
116 dl 1.27 * // create and start threads
117 jsr166 1.33 * for (Runnable task : tasks) {
118 jsr166 1.13 * phaser.register();
119     * new Thread() {
120     * public void run() {
121     * phaser.arriveAndAwaitAdvance(); // await all creation
122 jsr166 1.33 * task.run();
123 jsr166 1.13 * }
124     * }.start();
125 dl 1.4 * }
126 dl 1.6 *
127 dl 1.27 * // allow threads to start and deregister self
128     * phaser.arriveAndDeregister();
129 jsr166 1.13 * }}</pre>
130 dl 1.1 *
131 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
132 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
133 dl 1.1 *
134 jsr166 1.13 * <pre> {@code
135 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
136 jsr166 1.13 * final Phaser phaser = new Phaser() {
137 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
138 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
139     * }
140     * };
141     * phaser.register();
142 jsr166 1.33 * for (Runnable task : tasks) {
143 jsr166 1.13 * phaser.register();
144     * new Thread() {
145     * public void run() {
146     * do {
147 jsr166 1.33 * task.run();
148 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
149     * } while(!phaser.isTerminated();
150 dl 1.4 * }
151 jsr166 1.13 * }.start();
152 dl 1.1 * }
153 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
154 jsr166 1.13 * }}</pre>
155 dl 1.1 *
156 dl 1.38 * If the main task must later await termination, it
157     * may re-register and then execute a similar loop:
158     * <pre> {@code
159     * // ...
160     * phaser.register();
161     * while (!phaser.isTerminated())
162     * phaser.arriveAndAwaitAdvance();
163     * }</pre>
164     *
165     * Related constructions may be used to await particular phase numbers
166     * in contexts where you are sure that the phase will never wrap around
167     * {@code Integer.MAX_VALUE}. For example:
168     *
169     * <pre> {@code
170     * void awaitPhase(Phaser phaser, int phase) {
171     * int p = phaser.register(); // assumes caller not already registered
172     * while (p < phase) {
173     * if (phaser.isTerminated())
174     * // ... deal with unexpected termination
175     * else
176     * p = phaser.arriveAndAwaitAdvance();
177     * }
178     * phaser.arriveAndDeregister();
179     * }
180     * }</pre>
181     *
182     *
183 jsr166 1.25 * <p>To create a set of tasks using a tree of phasers,
184 dl 1.4 * you could use code of the following form, assuming a
185 jsr166 1.24 * Task class with a constructor accepting a phaser that
186 dl 1.4 * it registers for upon construction:
187 jsr166 1.13 * <pre> {@code
188     * void build(Task[] actions, int lo, int hi, Phaser b) {
189     * int step = (hi - lo) / TASKS_PER_PHASER;
190     * if (step > 1) {
191     * int i = lo;
192     * while (i < hi) {
193     * int r = Math.min(i + step, hi);
194     * build(actions, i, r, new Phaser(b));
195     * i = r;
196     * }
197     * } else {
198     * for (int i = lo; i < hi; ++i)
199     * actions[i] = new Task(b);
200     * // assumes new Task(b) performs b.register()
201     * }
202     * }
203     * // .. initially called, for n tasks via
204     * build(new Task[n], 0, n, new Phaser());}</pre>
205 dl 1.4 *
206 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
207 dl 1.4 * expected barrier synchronization rates. A value as low as four may
208     * be appropriate for extremely small per-barrier task bodies (thus
209     * high rates), or up to hundreds for extremely large ones.
210     *
211     * </pre>
212     *
213 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
214 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
215 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
216 dl 1.4 * should create tiered phasers to accommodate arbitrarily large sets
217     * of participants.
218 jsr166 1.16 *
219     * @since 1.7
220     * @author Doug Lea
221 dl 1.1 */
222     public class Phaser {
223     /*
224     * This class implements an extension of X10 "clocks". Thanks to
225 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
226     * enhancements to extend functionality.
227 dl 1.1 */
228    
229     /**
230     * Barrier state representation. Conceptually, a barrier contains
231     * four values:
232 jsr166 1.3 *
233 dl 1.1 * * parties -- the number of parties to wait (16 bits)
234     * * unarrived -- the number of parties yet to hit barrier (16 bits)
235     * * phase -- the generation of the barrier (31 bits)
236     * * terminated -- set if barrier is terminated (1 bit)
237     *
238     * However, to efficiently maintain atomicity, these values are
239 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
240     * bit of 32 bit representation of phase, so phase is set to -1 on
241 jsr166 1.8 * termination. Good performance relies on keeping state decoding
242 dl 1.4 * and encoding simple, and keeping race windows short.
243     *
244     * Note: there are some cheats in arrive() that rely on unarrived
245 dl 1.10 * count being lowest 16 bits.
246 dl 1.1 */
247 dl 1.4 private volatile long state;
248 dl 1.1
249     private static final int ushortBits = 16;
250 dl 1.10 private static final int ushortMask = 0xffff;
251     private static final int phaseMask = 0x7fffffff;
252 dl 1.1
253     private static int unarrivedOf(long s) {
254 jsr166 1.18 return (int) (s & ushortMask);
255 dl 1.1 }
256    
257     private static int partiesOf(long s) {
258 jsr166 1.17 return ((int) s) >>> 16;
259 dl 1.1 }
260    
261     private static int phaseOf(long s) {
262 jsr166 1.17 return (int) (s >>> 32);
263 dl 1.1 }
264    
265     private static int arrivedOf(long s) {
266     return partiesOf(s) - unarrivedOf(s);
267     }
268    
269     private static long stateFor(int phase, int parties, int unarrived) {
270 jsr166 1.17 return ((((long) phase) << 32) | (((long) parties) << 16) |
271     (long) unarrived);
272 dl 1.1 }
273    
274 dl 1.4 private static long trippedStateFor(int phase, int parties) {
275 jsr166 1.17 long lp = (long) parties;
276     return (((long) phase) << 32) | (lp << 16) | lp;
277 dl 1.4 }
278    
279 dl 1.10 /**
280 jsr166 1.14 * Returns message string for bad bounds exceptions.
281 dl 1.10 */
282     private static String badBounds(int parties, int unarrived) {
283     return ("Attempt to set " + unarrived +
284     " unarrived of " + parties + " parties");
285 dl 1.4 }
286    
287     /**
288     * The parent of this phaser, or null if none
289     */
290     private final Phaser parent;
291    
292     /**
293 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
294 dl 1.4 * support faster state push-down.
295     */
296     private final Phaser root;
297    
298     // Wait queues
299    
300     /**
301 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
302 dl 1.4 * contention while releasing some threads while adding others, we
303     * use two of them, alternating across even and odd phases.
304     */
305     private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
306     private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
307    
308     private AtomicReference<QNode> queueFor(int phase) {
309 jsr166 1.18 return ((phase & 1) == 0) ? evenQ : oddQ;
310 dl 1.4 }
311    
312     /**
313     * Returns current state, first resolving lagged propagation from
314     * root if necessary.
315     */
316     private long getReconciledState() {
317 jsr166 1.18 return (parent == null) ? state : reconcileState();
318 dl 1.4 }
319    
320     /**
321     * Recursively resolves state.
322     */
323     private long reconcileState() {
324     Phaser p = parent;
325     long s = state;
326     if (p != null) {
327     while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
328     long parentState = p.getReconciledState();
329     int parentPhase = phaseOf(parentState);
330     int phase = phaseOf(s = state);
331     if (phase != parentPhase) {
332     long next = trippedStateFor(parentPhase, partiesOf(s));
333     if (casState(s, next)) {
334     releaseWaiters(phase);
335     s = next;
336     }
337     }
338     }
339     }
340     return s;
341 dl 1.1 }
342    
343     /**
344 jsr166 1.24 * Creates a new phaser without any initially registered parties,
345 dl 1.10 * initial phase number 0, and no parent. Any thread using this
346 jsr166 1.24 * phaser will need to first register for it.
347 dl 1.1 */
348     public Phaser() {
349 dl 1.4 this(null);
350 dl 1.1 }
351    
352     /**
353 jsr166 1.24 * Creates a new phaser with the given numbers of registered
354 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
355 jsr166 1.14 *
356     * @param parties the number of parties required to trip barrier
357 dl 1.1 * @throws IllegalArgumentException if parties less than zero
358 jsr166 1.14 * or greater than the maximum number of parties supported
359 dl 1.1 */
360     public Phaser(int parties) {
361 dl 1.4 this(null, parties);
362     }
363    
364     /**
365 jsr166 1.24 * Creates a new phaser with the given parent, without any
366 dl 1.4 * initially registered parties. If parent is non-null this phaser
367     * is registered with the parent and its initial phase number is
368     * the same as that of parent phaser.
369 jsr166 1.14 *
370     * @param parent the parent phaser
371 dl 1.4 */
372     public Phaser(Phaser parent) {
373     int phase = 0;
374     this.parent = parent;
375     if (parent != null) {
376     this.root = parent.root;
377     phase = parent.register();
378     }
379     else
380     this.root = this;
381     this.state = trippedStateFor(phase, 0);
382     }
383    
384     /**
385 jsr166 1.24 * Creates a new phaser with the given parent and numbers of
386 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
387 dl 1.4 * is registered with the parent and its initial phase number is
388     * the same as that of parent phaser.
389 jsr166 1.14 *
390     * @param parent the parent phaser
391     * @param parties the number of parties required to trip barrier
392 dl 1.4 * @throws IllegalArgumentException if parties less than zero
393 jsr166 1.14 * or greater than the maximum number of parties supported
394 dl 1.4 */
395     public Phaser(Phaser parent, int parties) {
396 dl 1.1 if (parties < 0 || parties > ushortMask)
397     throw new IllegalArgumentException("Illegal number of parties");
398 dl 1.4 int phase = 0;
399     this.parent = parent;
400     if (parent != null) {
401     this.root = parent.root;
402     phase = parent.register();
403     }
404     else
405     this.root = this;
406     this.state = trippedStateFor(phase, parties);
407 dl 1.1 }
408    
409     /**
410     * Adds a new unarrived party to this phaser.
411 jsr166 1.14 *
412 dl 1.35 * @return the arrival phase number to which this registration applied
413 dl 1.1 * @throws IllegalStateException if attempting to register more
414 jsr166 1.14 * than the maximum supported number of parties
415 dl 1.1 */
416 dl 1.4 public int register() {
417     return doRegister(1);
418     }
419    
420     /**
421     * Adds the given number of new unarrived parties to this phaser.
422 jsr166 1.14 *
423     * @param parties the number of parties required to trip barrier
424 dl 1.35 * @return the arrival phase number to which this registration applied
425 dl 1.4 * @throws IllegalStateException if attempting to register more
426 jsr166 1.14 * than the maximum supported number of parties
427 dl 1.4 */
428     public int bulkRegister(int parties) {
429     if (parties < 0)
430     throw new IllegalArgumentException();
431     if (parties == 0)
432     return getPhase();
433     return doRegister(parties);
434     }
435    
436     /**
437     * Shared code for register, bulkRegister
438     */
439     private int doRegister(int registrations) {
440     int phase;
441 dl 1.1 for (;;) {
442 dl 1.4 long s = getReconciledState();
443     phase = phaseOf(s);
444     int unarrived = unarrivedOf(s) + registrations;
445     int parties = partiesOf(s) + registrations;
446 jsr166 1.12 if (phase < 0)
447 dl 1.4 break;
448 dl 1.1 if (parties > ushortMask || unarrived > ushortMask)
449 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
450 dl 1.4 if (phase == phaseOf(root.state) &&
451     casState(s, stateFor(phase, parties, unarrived)))
452     break;
453 dl 1.1 }
454 dl 1.4 return phase;
455 dl 1.1 }
456    
457     /**
458     * Arrives at the barrier, but does not wait for others. (You can
459 dl 1.38 * in turn wait for others via {@link #awaitAdvance}). It is an
460     * unenforced usage error for an unregistered party to invoke this
461     * method.
462 dl 1.1 *
463 dl 1.35 * @return the arrival phase number, or a negative value if terminated
464 dl 1.4 * @throws IllegalStateException if not terminated and the number
465 jsr166 1.14 * of unarrived parties would become negative
466 dl 1.1 */
467 dl 1.4 public int arrive() {
468     int phase;
469 dl 1.1 for (;;) {
470 dl 1.4 long s = state;
471     phase = phaseOf(s);
472 dl 1.10 if (phase < 0)
473     break;
474 dl 1.1 int parties = partiesOf(s);
475     int unarrived = unarrivedOf(s) - 1;
476 dl 1.4 if (unarrived > 0) { // Not the last arrival
477     if (casState(s, s - 1)) // s-1 adds one arrival
478     break;
479     }
480     else if (unarrived == 0) { // the last arrival
481     Phaser par = parent;
482     if (par == null) { // directly trip
483     if (casState
484     (s,
485 jsr166 1.18 trippedStateFor(onAdvance(phase, parties) ? -1 :
486 dl 1.4 ((phase + 1) & phaseMask), parties))) {
487     releaseWaiters(phase);
488     break;
489     }
490     }
491     else { // cascade to parent
492     if (casState(s, s - 1)) { // zeroes unarrived
493     par.arrive();
494     reconcileState();
495     break;
496     }
497     }
498     }
499     else if (phase != phaseOf(root.state)) // or if unreconciled
500     reconcileState();
501     else
502 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
503 dl 1.1 }
504 dl 1.4 return phase;
505 dl 1.1 }
506    
507     /**
508 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
509     * for others. Deregistration reduces the number of parties
510 dl 1.4 * required to trip the barrier in future phases. If this phaser
511     * has a parent, and deregistration causes this phaser to have
512 dl 1.27 * zero parties, this phaser also arrives at and is deregistered
513 dl 1.38 * from its parent. It is an unenforced usage error for an
514     * unregistered party to invoke this method.
515 dl 1.1 *
516 dl 1.35 * @return the arrival phase number, or a negative value if terminated
517 dl 1.4 * @throws IllegalStateException if not terminated and the number
518 jsr166 1.14 * of registered or unarrived parties would become negative
519 dl 1.1 */
520 dl 1.4 public int arriveAndDeregister() {
521     // similar code to arrive, but too different to merge
522     Phaser par = parent;
523     int phase;
524 dl 1.1 for (;;) {
525 dl 1.4 long s = state;
526     phase = phaseOf(s);
527 dl 1.10 if (phase < 0)
528     break;
529 dl 1.1 int parties = partiesOf(s) - 1;
530     int unarrived = unarrivedOf(s) - 1;
531 dl 1.4 if (parties >= 0) {
532     if (unarrived > 0 || (unarrived == 0 && par != null)) {
533     if (casState
534     (s,
535     stateFor(phase, parties, unarrived))) {
536     if (unarrived == 0) {
537     par.arriveAndDeregister();
538     reconcileState();
539     }
540     break;
541     }
542     continue;
543     }
544     if (unarrived == 0) {
545     if (casState
546     (s,
547 jsr166 1.18 trippedStateFor(onAdvance(phase, parties) ? -1 :
548 dl 1.4 ((phase + 1) & phaseMask), parties))) {
549     releaseWaiters(phase);
550     break;
551     }
552     continue;
553     }
554     if (par != null && phase != phaseOf(root.state)) {
555     reconcileState();
556     continue;
557     }
558 dl 1.1 }
559 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
560 dl 1.1 }
561 dl 1.4 return phase;
562 dl 1.1 }
563    
564     /**
565 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
566 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
567     * interruption or timeout, you can arrange this with an analogous
568     * construction using one of the other forms of the awaitAdvance
569     * method. If instead you need to deregister upon arrival use
570 dl 1.38 * {@code arriveAndDeregister}. It is an unenforced usage error
571     * for an unregistered party to invoke this method.
572 jsr166 1.14 *
573 dl 1.35 * @return the arrival phase number, or a negative number if terminated
574 dl 1.4 * @throws IllegalStateException if not terminated and the number
575 jsr166 1.14 * of unarrived parties would become negative
576 dl 1.1 */
577     public int arriveAndAwaitAdvance() {
578 dl 1.4 return awaitAdvance(arrive());
579 dl 1.1 }
580    
581     /**
582 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
583 dl 1.30 * value, returning immediately if the current phase of the
584     * barrier is not equal to the given phase value or this barrier
585 dl 1.38 * is terminated. It is an unenforced usage error for an
586     * unregistered party to invoke this method.
587 jsr166 1.14 *
588 dl 1.35 * @param phase an arrival phase number, or negative value if
589     * terminated; this argument is normally the value returned by a
590     * previous call to {@code arrive} or its variants
591     * @return the next arrival phase number, or a negative value
592     * if terminated or argument is negative
593 dl 1.1 */
594     public int awaitAdvance(int phase) {
595     if (phase < 0)
596     return phase;
597 dl 1.4 long s = getReconciledState();
598     int p = phaseOf(s);
599     if (p != phase)
600     return p;
601 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
602 dl 1.4 parent.awaitAdvance(phase);
603     // Fall here even if parent waited, to reconcile and help release
604     return untimedWait(phase);
605 dl 1.1 }
606    
607     /**
608 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
609 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
610     * while waiting, or returning immediately if the current phase of
611     * the barrier is not equal to the given phase value or this
612     * barrier is terminated. It is an unenforced usage error for an
613     * unregistered party to invoke this method.
614 jsr166 1.14 *
615 dl 1.35 * @param phase an arrival phase number, or negative value if
616     * terminated; this argument is normally the value returned by a
617     * previous call to {@code arrive} or its variants
618     * @return the next arrival phase number, or a negative value
619     * if terminated or argument is negative
620 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
621     */
622 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
623 dl 1.10 throws InterruptedException {
624 dl 1.1 if (phase < 0)
625     return phase;
626 dl 1.4 long s = getReconciledState();
627     int p = phaseOf(s);
628     if (p != phase)
629     return p;
630 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
631 dl 1.4 parent.awaitAdvanceInterruptibly(phase);
632     return interruptibleWait(phase);
633 dl 1.1 }
634    
635     /**
636 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
637 dl 1.38 * value or the given timeout to elapse, throwing {@code
638     * InterruptedException} if interrupted while waiting, or
639     * returning immediately if the current phase of the barrier is
640     * not equal to the given phase value or this barrier is
641     * terminated. It is an unenforced usage error for an
642     * unregistered party to invoke this method.
643 jsr166 1.14 *
644 dl 1.35 * @param phase an arrival phase number, or negative value if
645     * terminated; this argument is normally the value returned by a
646     * previous call to {@code arrive} or its variants
647 dl 1.31 * @param timeout how long to wait before giving up, in units of
648     * {@code unit}
649     * @param unit a {@code TimeUnit} determining how to interpret the
650     * {@code timeout} parameter
651 dl 1.35 * @return the next arrival phase number, or a negative value
652     * if terminated or argument is negative
653 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
654     * @throws TimeoutException if timed out while waiting
655     */
656 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
657     long timeout, TimeUnit unit)
658 dl 1.1 throws InterruptedException, TimeoutException {
659     if (phase < 0)
660     return phase;
661 dl 1.4 long s = getReconciledState();
662     int p = phaseOf(s);
663     if (p != phase)
664     return p;
665 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
666 dl 1.4 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
667     return timedWait(phase, unit.toNanos(timeout));
668 dl 1.1 }
669    
670     /**
671     * Forces this barrier to enter termination state. Counts of
672 dl 1.4 * arrived and registered parties are unaffected. If this phaser
673     * has a parent, it too is terminated. This method may be useful
674     * for coordinating recovery after one or more tasks encounter
675     * unexpected exceptions.
676 dl 1.1 */
677     public void forceTermination() {
678     for (;;) {
679 dl 1.4 long s = getReconciledState();
680 dl 1.1 int phase = phaseOf(s);
681     int parties = partiesOf(s);
682     int unarrived = unarrivedOf(s);
683     if (phase < 0 ||
684 dl 1.4 casState(s, stateFor(-1, parties, unarrived))) {
685     releaseWaiters(0);
686     releaseWaiters(1);
687     if (parent != null)
688     parent.forceTermination();
689 dl 1.1 return;
690     }
691     }
692     }
693    
694     /**
695 dl 1.4 * Returns the current phase number. The maximum phase number is
696 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
697 dl 1.4 * zero. Upon termination, the phase number is negative.
698 jsr166 1.14 *
699 dl 1.4 * @return the phase number, or a negative value if terminated
700 dl 1.1 */
701 dl 1.4 public final int getPhase() {
702     return phaseOf(getReconciledState());
703 dl 1.1 }
704    
705     /**
706     * Returns the number of parties registered at this barrier.
707 jsr166 1.14 *
708 dl 1.1 * @return the number of parties
709     */
710     public int getRegisteredParties() {
711 dl 1.4 return partiesOf(state);
712 dl 1.1 }
713    
714     /**
715 dl 1.36 * Returns the number of registered parties that have arrived at
716     * the current phase of this barrier.
717 jsr166 1.14 *
718 dl 1.1 * @return the number of arrived parties
719     */
720     public int getArrivedParties() {
721 dl 1.4 return arrivedOf(state);
722 dl 1.1 }
723    
724     /**
725     * Returns the number of registered parties that have not yet
726     * arrived at the current phase of this barrier.
727 jsr166 1.14 *
728 dl 1.1 * @return the number of unarrived parties
729     */
730     public int getUnarrivedParties() {
731 dl 1.4 return unarrivedOf(state);
732     }
733    
734     /**
735 jsr166 1.23 * Returns the parent of this phaser, or {@code null} if none.
736 jsr166 1.14 *
737 jsr166 1.23 * @return the parent of this phaser, or {@code null} if none
738 dl 1.4 */
739     public Phaser getParent() {
740     return parent;
741     }
742    
743     /**
744     * Returns the root ancestor of this phaser, which is the same as
745     * this phaser if it has no parent.
746 jsr166 1.14 *
747 jsr166 1.9 * @return the root ancestor of this phaser
748 dl 1.4 */
749     public Phaser getRoot() {
750     return root;
751 dl 1.1 }
752    
753     /**
754 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
755 jsr166 1.14 *
756 jsr166 1.9 * @return {@code true} if this barrier has been terminated
757 dl 1.1 */
758     public boolean isTerminated() {
759 dl 1.4 return getPhase() < 0;
760 dl 1.1 }
761    
762     /**
763     * Overridable method to perform an action upon phase advance, and
764     * to control termination. This method is invoked whenever the
765     * barrier is tripped (and thus all other waiting parties are
766 jsr166 1.23 * dormant). If it returns {@code true}, then, rather than advance
767     * the phase number, this barrier will be set to a final
768     * termination state, and subsequent calls to {@link #isTerminated}
769     * will return true.
770 jsr166 1.3 *
771 jsr166 1.25 * <p>The default version returns {@code true} when the number of
772 dl 1.1 * registered parties is zero. Normally, overrides that arrange
773     * termination for other reasons should also preserve this
774     * property.
775     *
776 jsr166 1.25 * <p>You may override this method to perform an action with side
777 dl 1.4 * effects visible to participating tasks, but it is in general
778     * only sensible to do so in designs where all parties register
779 jsr166 1.24 * before any arrive, and all {@link #awaitAdvance} at each phase.
780 dl 1.27 * Otherwise, you cannot ensure lack of interference from other
781 jsr166 1.29 * parties during the invocation of this method.
782 dl 1.4 *
783 dl 1.1 * @param phase the phase number on entering the barrier
784 jsr166 1.9 * @param registeredParties the current number of registered parties
785     * @return {@code true} if this barrier should terminate
786 dl 1.1 */
787     protected boolean onAdvance(int phase, int registeredParties) {
788     return registeredParties <= 0;
789     }
790    
791     /**
792 dl 1.4 * Returns a string identifying this phaser, as well as its
793 dl 1.1 * state. The state, in brackets, includes the String {@code
794 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
795 dl 1.1 * followed by the number of registered parties, and {@code
796 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
797 dl 1.1 *
798     * @return a string identifying this barrier, as well as its state
799     */
800     public String toString() {
801 dl 1.4 long s = getReconciledState();
802 jsr166 1.9 return super.toString() +
803     "[phase = " + phaseOf(s) +
804     " parties = " + partiesOf(s) +
805     " arrived = " + arrivedOf(s) + "]";
806 dl 1.1 }
807    
808 dl 1.4 // methods for waiting
809 dl 1.1
810     /**
811 dl 1.10 * Wait nodes for Treiber stack representing wait queue
812 dl 1.1 */
813 dl 1.10 static final class QNode implements ForkJoinPool.ManagedBlocker {
814     final Phaser phaser;
815     final int phase;
816     final long startTime;
817     final long nanos;
818     final boolean timed;
819     final boolean interruptible;
820     volatile boolean wasInterrupted = false;
821     volatile Thread thread; // nulled to cancel wait
822 dl 1.4 QNode next;
823 dl 1.10 QNode(Phaser phaser, int phase, boolean interruptible,
824     boolean timed, long startTime, long nanos) {
825     this.phaser = phaser;
826     this.phase = phase;
827     this.timed = timed;
828     this.interruptible = interruptible;
829     this.startTime = startTime;
830     this.nanos = nanos;
831 dl 1.4 thread = Thread.currentThread();
832     }
833 dl 1.10 public boolean isReleasable() {
834     return (thread == null ||
835     phaser.getPhase() != phase ||
836     (interruptible && wasInterrupted) ||
837     (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
838     }
839     public boolean block() {
840     if (Thread.interrupted()) {
841     wasInterrupted = true;
842     if (interruptible)
843     return true;
844     }
845     if (!timed)
846     LockSupport.park(this);
847     else {
848     long waitTime = nanos - (System.nanoTime() - startTime);
849     if (waitTime <= 0)
850     return true;
851     LockSupport.parkNanos(this, waitTime);
852     }
853     return isReleasable();
854     }
855 dl 1.4 void signal() {
856     Thread t = thread;
857     if (t != null) {
858     thread = null;
859     LockSupport.unpark(t);
860     }
861     }
862 dl 1.10 boolean doWait() {
863     if (thread != null) {
864     try {
865     ForkJoinPool.managedBlock(this, false);
866     } catch (InterruptedException ie) {
867 jsr166 1.12 }
868 dl 1.10 }
869     return wasInterrupted;
870     }
871    
872 dl 1.4 }
873    
874     /**
875 jsr166 1.14 * Removes and signals waiting threads from wait queue.
876 dl 1.4 */
877     private void releaseWaiters(int phase) {
878     AtomicReference<QNode> head = queueFor(phase);
879     QNode q;
880     while ((q = head.get()) != null) {
881     if (head.compareAndSet(q, q.next))
882     q.signal();
883     }
884     }
885    
886     /**
887 jsr166 1.14 * Tries to enqueue given node in the appropriate wait queue.
888     *
889 dl 1.10 * @return true if successful
890     */
891     private boolean tryEnqueue(QNode node) {
892     AtomicReference<QNode> head = queueFor(node.phase);
893     return head.compareAndSet(node.next = head.get(), node);
894     }
895    
896     /**
897 dl 1.1 * Enqueues node and waits unless aborted or signalled.
898 jsr166 1.14 *
899 dl 1.10 * @return current phase
900 dl 1.1 */
901 dl 1.4 private int untimedWait(int phase) {
902 dl 1.1 QNode node = null;
903 dl 1.10 boolean queued = false;
904 dl 1.4 boolean interrupted = false;
905     int p;
906     while ((p = getPhase()) == phase) {
907 dl 1.10 if (Thread.interrupted())
908     interrupted = true;
909     else if (node == null)
910     node = new QNode(this, phase, false, false, 0, 0);
911     else if (!queued)
912     queued = tryEnqueue(node);
913 dl 1.4 else
914 dl 1.10 interrupted = node.doWait();
915 dl 1.4 }
916     if (node != null)
917     node.thread = null;
918 dl 1.10 releaseWaiters(phase);
919 dl 1.4 if (interrupted)
920     Thread.currentThread().interrupt();
921     return p;
922     }
923    
924     /**
925 dl 1.10 * Interruptible version
926     * @return current phase
927 dl 1.4 */
928     private int interruptibleWait(int phase) throws InterruptedException {
929     QNode node = null;
930     boolean queued = false;
931     boolean interrupted = false;
932     int p;
933 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
934     if (Thread.interrupted())
935     interrupted = true;
936     else if (node == null)
937     node = new QNode(this, phase, true, false, 0, 0);
938     else if (!queued)
939     queued = tryEnqueue(node);
940 dl 1.1 else
941 dl 1.10 interrupted = node.doWait();
942 dl 1.1 }
943     if (node != null)
944     node.thread = null;
945 dl 1.10 if (p != phase || (p = getPhase()) != phase)
946     releaseWaiters(phase);
947 dl 1.4 if (interrupted)
948     throw new InterruptedException();
949     return p;
950 dl 1.1 }
951    
952     /**
953 dl 1.10 * Timeout version.
954     * @return current phase
955 dl 1.1 */
956 dl 1.4 private int timedWait(int phase, long nanos)
957 dl 1.1 throws InterruptedException, TimeoutException {
958 dl 1.10 long startTime = System.nanoTime();
959     QNode node = null;
960     boolean queued = false;
961     boolean interrupted = false;
962 dl 1.4 int p;
963 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
964     if (Thread.interrupted())
965     interrupted = true;
966     else if (nanos - (System.nanoTime() - startTime) <= 0)
967     break;
968     else if (node == null)
969     node = new QNode(this, phase, true, true, startTime, nanos);
970     else if (!queued)
971     queued = tryEnqueue(node);
972     else
973     interrupted = node.doWait();
974 dl 1.4 }
975 dl 1.10 if (node != null)
976     node.thread = null;
977     if (p != phase || (p = getPhase()) != phase)
978     releaseWaiters(phase);
979     if (interrupted)
980     throw new InterruptedException();
981     if (p == phase)
982     throw new TimeoutException();
983 dl 1.4 return p;
984     }
985    
986 jsr166 1.22 // Unsafe mechanics
987    
988     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
989     private static final long stateOffset =
990     objectFieldOffset("state", Phaser.class);
991    
992     private final boolean casState(long cmp, long val) {
993     return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
994     }
995    
996     private static long objectFieldOffset(String field, Class<?> klazz) {
997     try {
998     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
999     } catch (NoSuchFieldException e) {
1000     // Convert Exception to corresponding Error
1001     NoSuchFieldError error = new NoSuchFieldError(field);
1002     error.initCause(e);
1003     throw error;
1004     }
1005     }
1006    
1007     /**
1008     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1009     * Replace with a simple call to Unsafe.getUnsafe when integrating
1010     * into a jdk.
1011     *
1012     * @return a sun.misc.Unsafe
1013     */
1014 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1015 jsr166 1.11 try {
1016 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1017 jsr166 1.11 } catch (SecurityException se) {
1018     try {
1019     return java.security.AccessController.doPrivileged
1020 jsr166 1.22 (new java.security
1021     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1022 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1023 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1024     .Unsafe.class.getDeclaredField("theUnsafe");
1025     f.setAccessible(true);
1026     return (sun.misc.Unsafe) f.get(null);
1027 jsr166 1.11 }});
1028     } catch (java.security.PrivilegedActionException e) {
1029 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1030     e.getCause());
1031 jsr166 1.11 }
1032     }
1033     }
1034 dl 1.1 }