ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.40
Committed: Mon Aug 24 12:49:39 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.39: +9 -5 lines
Log Message:
Wording improvements

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.1 import java.util.concurrent.*;
10 jsr166 1.20
11     import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82     * onAdvance} returns {@code true}. As illustrated below, when
83     * phasers control actions with a fixed number of iterations, it is
84     * often convenient to override this method to cause termination when
85     * the current phase number reaches a threshold. Method {@link
86     * #forceTermination} is also available to abruptly release waiting
87     * threads and allow them to terminate.
88 dl 1.4 *
89 dl 1.38 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90     * in tree structures) to reduce contention. Phasers with large
91 dl 1.4 * numbers of parties that would otherwise experience heavy
92 dl 1.38 * synchronization contention costs may instead be set up so that
93     * groups of sub-phasers share a common parent. This may greatly
94     * increase throughput even though it incurs greater per-operation
95     * overhead.
96     *
97     * <p><b>Monitoring.</b> While synchronization methods may be invoked
98     * only by registered parties, the current state of a phaser may be
99     * monitored by any caller. At any given moment there are {@link
100 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
101     * #getArrivedParties} have arrived at the current phase ({@link
102     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103     * parties arrive, the phase advances; thus, this value is always
104     * greater than zero if there are any registered parties. The values
105     * returned by these methods may reflect transient states and so are
106     * not in general useful for synchronization control. Method {@link
107     * #toString} returns snapshots of these state queries in a form
108     * convenient for informal monitoring.
109 dl 1.1 *
110 dl 1.4 * <p><b>Sample usages:</b>
111     *
112 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113     * to control a one-shot action serving a variable number of
114     * parties. The typical idiom is for the method setting this up to
115     * first register, then start the actions, then deregister, as in:
116 dl 1.1 *
117 jsr166 1.13 * <pre> {@code
118 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
119 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
120 dl 1.27 * // create and start threads
121 jsr166 1.33 * for (Runnable task : tasks) {
122 jsr166 1.13 * phaser.register();
123     * new Thread() {
124     * public void run() {
125     * phaser.arriveAndAwaitAdvance(); // await all creation
126 jsr166 1.33 * task.run();
127 jsr166 1.13 * }
128     * }.start();
129 dl 1.4 * }
130 dl 1.6 *
131 dl 1.27 * // allow threads to start and deregister self
132     * phaser.arriveAndDeregister();
133 jsr166 1.13 * }}</pre>
134 dl 1.1 *
135 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
136 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
137 dl 1.1 *
138 jsr166 1.13 * <pre> {@code
139 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
140 jsr166 1.13 * final Phaser phaser = new Phaser() {
141 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
142 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
143     * }
144     * };
145     * phaser.register();
146 jsr166 1.33 * for (Runnable task : tasks) {
147 jsr166 1.13 * phaser.register();
148     * new Thread() {
149     * public void run() {
150     * do {
151 jsr166 1.33 * task.run();
152 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
153     * } while(!phaser.isTerminated();
154 dl 1.4 * }
155 jsr166 1.13 * }.start();
156 dl 1.1 * }
157 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
158 jsr166 1.13 * }}</pre>
159 dl 1.1 *
160 dl 1.38 * If the main task must later await termination, it
161     * may re-register and then execute a similar loop:
162     * <pre> {@code
163     * // ...
164     * phaser.register();
165     * while (!phaser.isTerminated())
166     * phaser.arriveAndAwaitAdvance();
167     * }</pre>
168     *
169     * Related constructions may be used to await particular phase numbers
170     * in contexts where you are sure that the phase will never wrap around
171     * {@code Integer.MAX_VALUE}. For example:
172     *
173     * <pre> {@code
174     * void awaitPhase(Phaser phaser, int phase) {
175     * int p = phaser.register(); // assumes caller not already registered
176     * while (p < phase) {
177     * if (phaser.isTerminated())
178     * // ... deal with unexpected termination
179     * else
180     * p = phaser.arriveAndAwaitAdvance();
181     * }
182     * phaser.arriveAndDeregister();
183     * }
184     * }</pre>
185     *
186     *
187 jsr166 1.25 * <p>To create a set of tasks using a tree of phasers,
188 dl 1.4 * you could use code of the following form, assuming a
189 jsr166 1.24 * Task class with a constructor accepting a phaser that
190 dl 1.4 * it registers for upon construction:
191 jsr166 1.13 * <pre> {@code
192     * void build(Task[] actions, int lo, int hi, Phaser b) {
193     * int step = (hi - lo) / TASKS_PER_PHASER;
194     * if (step > 1) {
195     * int i = lo;
196     * while (i < hi) {
197     * int r = Math.min(i + step, hi);
198     * build(actions, i, r, new Phaser(b));
199     * i = r;
200     * }
201     * } else {
202     * for (int i = lo; i < hi; ++i)
203     * actions[i] = new Task(b);
204     * // assumes new Task(b) performs b.register()
205     * }
206     * }
207     * // .. initially called, for n tasks via
208     * build(new Task[n], 0, n, new Phaser());}</pre>
209 dl 1.4 *
210 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
211 dl 1.4 * expected barrier synchronization rates. A value as low as four may
212     * be appropriate for extremely small per-barrier task bodies (thus
213     * high rates), or up to hundreds for extremely large ones.
214     *
215     * </pre>
216     *
217 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
218 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
219 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
220 dl 1.4 * should create tiered phasers to accommodate arbitrarily large sets
221     * of participants.
222 jsr166 1.16 *
223     * @since 1.7
224     * @author Doug Lea
225 dl 1.1 */
226     public class Phaser {
227     /*
228     * This class implements an extension of X10 "clocks". Thanks to
229 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
230     * enhancements to extend functionality.
231 dl 1.1 */
232    
233     /**
234     * Barrier state representation. Conceptually, a barrier contains
235     * four values:
236 jsr166 1.3 *
237 dl 1.1 * * parties -- the number of parties to wait (16 bits)
238     * * unarrived -- the number of parties yet to hit barrier (16 bits)
239     * * phase -- the generation of the barrier (31 bits)
240     * * terminated -- set if barrier is terminated (1 bit)
241     *
242     * However, to efficiently maintain atomicity, these values are
243 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
244     * bit of 32 bit representation of phase, so phase is set to -1 on
245 jsr166 1.8 * termination. Good performance relies on keeping state decoding
246 dl 1.4 * and encoding simple, and keeping race windows short.
247     *
248     * Note: there are some cheats in arrive() that rely on unarrived
249 dl 1.10 * count being lowest 16 bits.
250 dl 1.1 */
251 dl 1.4 private volatile long state;
252 dl 1.1
253     private static final int ushortBits = 16;
254 dl 1.10 private static final int ushortMask = 0xffff;
255     private static final int phaseMask = 0x7fffffff;
256 dl 1.1
257     private static int unarrivedOf(long s) {
258 jsr166 1.18 return (int) (s & ushortMask);
259 dl 1.1 }
260    
261     private static int partiesOf(long s) {
262 jsr166 1.17 return ((int) s) >>> 16;
263 dl 1.1 }
264    
265     private static int phaseOf(long s) {
266 jsr166 1.17 return (int) (s >>> 32);
267 dl 1.1 }
268    
269     private static int arrivedOf(long s) {
270     return partiesOf(s) - unarrivedOf(s);
271     }
272    
273     private static long stateFor(int phase, int parties, int unarrived) {
274 jsr166 1.17 return ((((long) phase) << 32) | (((long) parties) << 16) |
275     (long) unarrived);
276 dl 1.1 }
277    
278 dl 1.4 private static long trippedStateFor(int phase, int parties) {
279 jsr166 1.17 long lp = (long) parties;
280     return (((long) phase) << 32) | (lp << 16) | lp;
281 dl 1.4 }
282    
283 dl 1.10 /**
284 jsr166 1.14 * Returns message string for bad bounds exceptions.
285 dl 1.10 */
286     private static String badBounds(int parties, int unarrived) {
287     return ("Attempt to set " + unarrived +
288     " unarrived of " + parties + " parties");
289 dl 1.4 }
290    
291     /**
292     * The parent of this phaser, or null if none
293     */
294     private final Phaser parent;
295    
296     /**
297 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
298 dl 1.4 * support faster state push-down.
299     */
300     private final Phaser root;
301    
302     // Wait queues
303    
304     /**
305 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
306 dl 1.4 * contention while releasing some threads while adding others, we
307     * use two of them, alternating across even and odd phases.
308     */
309     private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
310     private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
311    
312     private AtomicReference<QNode> queueFor(int phase) {
313 jsr166 1.18 return ((phase & 1) == 0) ? evenQ : oddQ;
314 dl 1.4 }
315    
316     /**
317     * Returns current state, first resolving lagged propagation from
318     * root if necessary.
319     */
320     private long getReconciledState() {
321 jsr166 1.18 return (parent == null) ? state : reconcileState();
322 dl 1.4 }
323    
324     /**
325     * Recursively resolves state.
326     */
327     private long reconcileState() {
328     Phaser p = parent;
329     long s = state;
330     if (p != null) {
331     while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
332     long parentState = p.getReconciledState();
333     int parentPhase = phaseOf(parentState);
334     int phase = phaseOf(s = state);
335     if (phase != parentPhase) {
336     long next = trippedStateFor(parentPhase, partiesOf(s));
337     if (casState(s, next)) {
338     releaseWaiters(phase);
339     s = next;
340     }
341     }
342     }
343     }
344     return s;
345 dl 1.1 }
346    
347     /**
348 jsr166 1.24 * Creates a new phaser without any initially registered parties,
349 dl 1.10 * initial phase number 0, and no parent. Any thread using this
350 jsr166 1.24 * phaser will need to first register for it.
351 dl 1.1 */
352     public Phaser() {
353 dl 1.4 this(null);
354 dl 1.1 }
355    
356     /**
357 jsr166 1.24 * Creates a new phaser with the given numbers of registered
358 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
359 jsr166 1.14 *
360     * @param parties the number of parties required to trip barrier
361 dl 1.1 * @throws IllegalArgumentException if parties less than zero
362 jsr166 1.14 * or greater than the maximum number of parties supported
363 dl 1.1 */
364     public Phaser(int parties) {
365 dl 1.4 this(null, parties);
366     }
367    
368     /**
369 jsr166 1.24 * Creates a new phaser with the given parent, without any
370 dl 1.4 * initially registered parties. If parent is non-null this phaser
371     * is registered with the parent and its initial phase number is
372     * the same as that of parent phaser.
373 jsr166 1.14 *
374     * @param parent the parent phaser
375 dl 1.4 */
376     public Phaser(Phaser parent) {
377     int phase = 0;
378     this.parent = parent;
379     if (parent != null) {
380     this.root = parent.root;
381     phase = parent.register();
382     }
383     else
384     this.root = this;
385     this.state = trippedStateFor(phase, 0);
386     }
387    
388     /**
389 jsr166 1.24 * Creates a new phaser with the given parent and numbers of
390 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
391 dl 1.4 * is registered with the parent and its initial phase number is
392     * the same as that of parent phaser.
393 jsr166 1.14 *
394     * @param parent the parent phaser
395     * @param parties the number of parties required to trip barrier
396 dl 1.4 * @throws IllegalArgumentException if parties less than zero
397 jsr166 1.14 * or greater than the maximum number of parties supported
398 dl 1.4 */
399     public Phaser(Phaser parent, int parties) {
400 dl 1.1 if (parties < 0 || parties > ushortMask)
401     throw new IllegalArgumentException("Illegal number of parties");
402 dl 1.4 int phase = 0;
403     this.parent = parent;
404     if (parent != null) {
405     this.root = parent.root;
406     phase = parent.register();
407     }
408     else
409     this.root = this;
410     this.state = trippedStateFor(phase, parties);
411 dl 1.1 }
412    
413     /**
414     * Adds a new unarrived party to this phaser.
415 jsr166 1.14 *
416 dl 1.35 * @return the arrival phase number to which this registration applied
417 dl 1.1 * @throws IllegalStateException if attempting to register more
418 jsr166 1.14 * than the maximum supported number of parties
419 dl 1.1 */
420 dl 1.4 public int register() {
421     return doRegister(1);
422     }
423    
424     /**
425     * Adds the given number of new unarrived parties to this phaser.
426 jsr166 1.14 *
427     * @param parties the number of parties required to trip barrier
428 dl 1.35 * @return the arrival phase number to which this registration applied
429 dl 1.4 * @throws IllegalStateException if attempting to register more
430 jsr166 1.14 * than the maximum supported number of parties
431 dl 1.4 */
432     public int bulkRegister(int parties) {
433     if (parties < 0)
434     throw new IllegalArgumentException();
435     if (parties == 0)
436     return getPhase();
437     return doRegister(parties);
438     }
439    
440     /**
441     * Shared code for register, bulkRegister
442     */
443     private int doRegister(int registrations) {
444     int phase;
445 dl 1.1 for (;;) {
446 dl 1.4 long s = getReconciledState();
447     phase = phaseOf(s);
448     int unarrived = unarrivedOf(s) + registrations;
449     int parties = partiesOf(s) + registrations;
450 jsr166 1.12 if (phase < 0)
451 dl 1.4 break;
452 dl 1.1 if (parties > ushortMask || unarrived > ushortMask)
453 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
454 dl 1.4 if (phase == phaseOf(root.state) &&
455     casState(s, stateFor(phase, parties, unarrived)))
456     break;
457 dl 1.1 }
458 dl 1.4 return phase;
459 dl 1.1 }
460    
461     /**
462     * Arrives at the barrier, but does not wait for others. (You can
463 dl 1.38 * in turn wait for others via {@link #awaitAdvance}). It is an
464     * unenforced usage error for an unregistered party to invoke this
465     * method.
466 dl 1.1 *
467 dl 1.35 * @return the arrival phase number, or a negative value if terminated
468 dl 1.4 * @throws IllegalStateException if not terminated and the number
469 jsr166 1.14 * of unarrived parties would become negative
470 dl 1.1 */
471 dl 1.4 public int arrive() {
472     int phase;
473 dl 1.1 for (;;) {
474 dl 1.4 long s = state;
475     phase = phaseOf(s);
476 dl 1.10 if (phase < 0)
477     break;
478 dl 1.1 int parties = partiesOf(s);
479     int unarrived = unarrivedOf(s) - 1;
480 dl 1.4 if (unarrived > 0) { // Not the last arrival
481     if (casState(s, s - 1)) // s-1 adds one arrival
482     break;
483     }
484     else if (unarrived == 0) { // the last arrival
485     Phaser par = parent;
486     if (par == null) { // directly trip
487     if (casState
488     (s,
489 jsr166 1.18 trippedStateFor(onAdvance(phase, parties) ? -1 :
490 dl 1.4 ((phase + 1) & phaseMask), parties))) {
491     releaseWaiters(phase);
492     break;
493     }
494     }
495     else { // cascade to parent
496     if (casState(s, s - 1)) { // zeroes unarrived
497     par.arrive();
498     reconcileState();
499     break;
500     }
501     }
502     }
503     else if (phase != phaseOf(root.state)) // or if unreconciled
504     reconcileState();
505     else
506 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
507 dl 1.1 }
508 dl 1.4 return phase;
509 dl 1.1 }
510    
511     /**
512 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
513     * for others. Deregistration reduces the number of parties
514 dl 1.4 * required to trip the barrier in future phases. If this phaser
515     * has a parent, and deregistration causes this phaser to have
516 dl 1.27 * zero parties, this phaser also arrives at and is deregistered
517 dl 1.38 * from its parent. It is an unenforced usage error for an
518     * unregistered party to invoke this method.
519 dl 1.1 *
520 dl 1.35 * @return the arrival phase number, or a negative value if terminated
521 dl 1.4 * @throws IllegalStateException if not terminated and the number
522 jsr166 1.14 * of registered or unarrived parties would become negative
523 dl 1.1 */
524 dl 1.4 public int arriveAndDeregister() {
525     // similar code to arrive, but too different to merge
526     Phaser par = parent;
527     int phase;
528 dl 1.1 for (;;) {
529 dl 1.4 long s = state;
530     phase = phaseOf(s);
531 dl 1.10 if (phase < 0)
532     break;
533 dl 1.1 int parties = partiesOf(s) - 1;
534     int unarrived = unarrivedOf(s) - 1;
535 dl 1.4 if (parties >= 0) {
536     if (unarrived > 0 || (unarrived == 0 && par != null)) {
537     if (casState
538     (s,
539     stateFor(phase, parties, unarrived))) {
540     if (unarrived == 0) {
541     par.arriveAndDeregister();
542     reconcileState();
543     }
544     break;
545     }
546     continue;
547     }
548     if (unarrived == 0) {
549     if (casState
550     (s,
551 jsr166 1.18 trippedStateFor(onAdvance(phase, parties) ? -1 :
552 dl 1.4 ((phase + 1) & phaseMask), parties))) {
553     releaseWaiters(phase);
554     break;
555     }
556     continue;
557     }
558     if (par != null && phase != phaseOf(root.state)) {
559     reconcileState();
560     continue;
561     }
562 dl 1.1 }
563 dl 1.10 throw new IllegalStateException(badBounds(parties, unarrived));
564 dl 1.1 }
565 dl 1.4 return phase;
566 dl 1.1 }
567    
568     /**
569 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
570 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
571     * interruption or timeout, you can arrange this with an analogous
572     * construction using one of the other forms of the awaitAdvance
573     * method. If instead you need to deregister upon arrival use
574 dl 1.38 * {@code arriveAndDeregister}. It is an unenforced usage error
575     * for an unregistered party to invoke this method.
576 jsr166 1.14 *
577 dl 1.35 * @return the arrival phase number, or a negative number if terminated
578 dl 1.4 * @throws IllegalStateException if not terminated and the number
579 jsr166 1.14 * of unarrived parties would become negative
580 dl 1.1 */
581     public int arriveAndAwaitAdvance() {
582 dl 1.4 return awaitAdvance(arrive());
583 dl 1.1 }
584    
585     /**
586 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
587 dl 1.30 * value, returning immediately if the current phase of the
588     * barrier is not equal to the given phase value or this barrier
589 dl 1.38 * is terminated. It is an unenforced usage error for an
590     * unregistered party to invoke this method.
591 jsr166 1.14 *
592 dl 1.35 * @param phase an arrival phase number, or negative value if
593     * terminated; this argument is normally the value returned by a
594     * previous call to {@code arrive} or its variants
595     * @return the next arrival phase number, or a negative value
596     * if terminated or argument is negative
597 dl 1.1 */
598     public int awaitAdvance(int phase) {
599     if (phase < 0)
600     return phase;
601 dl 1.4 long s = getReconciledState();
602     int p = phaseOf(s);
603     if (p != phase)
604     return p;
605 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
606 dl 1.4 parent.awaitAdvance(phase);
607     // Fall here even if parent waited, to reconcile and help release
608     return untimedWait(phase);
609 dl 1.1 }
610    
611     /**
612 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
613 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
614     * while waiting, or returning immediately if the current phase of
615     * the barrier is not equal to the given phase value or this
616     * barrier is terminated. It is an unenforced usage error for an
617     * unregistered party to invoke this method.
618 jsr166 1.14 *
619 dl 1.35 * @param phase an arrival phase number, or negative value if
620     * terminated; this argument is normally the value returned by a
621     * previous call to {@code arrive} or its variants
622     * @return the next arrival phase number, or a negative value
623     * if terminated or argument is negative
624 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
625     */
626 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
627 dl 1.10 throws InterruptedException {
628 dl 1.1 if (phase < 0)
629     return phase;
630 dl 1.4 long s = getReconciledState();
631     int p = phaseOf(s);
632     if (p != phase)
633     return p;
634 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
635 dl 1.4 parent.awaitAdvanceInterruptibly(phase);
636     return interruptibleWait(phase);
637 dl 1.1 }
638    
639     /**
640 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
641 dl 1.38 * value or the given timeout to elapse, throwing {@code
642     * InterruptedException} if interrupted while waiting, or
643     * returning immediately if the current phase of the barrier is
644     * not equal to the given phase value or this barrier is
645     * terminated. It is an unenforced usage error for an
646     * unregistered party to invoke this method.
647 jsr166 1.14 *
648 dl 1.35 * @param phase an arrival phase number, or negative value if
649     * terminated; this argument is normally the value returned by a
650     * previous call to {@code arrive} or its variants
651 dl 1.31 * @param timeout how long to wait before giving up, in units of
652     * {@code unit}
653     * @param unit a {@code TimeUnit} determining how to interpret the
654     * {@code timeout} parameter
655 dl 1.35 * @return the next arrival phase number, or a negative value
656     * if terminated or argument is negative
657 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
658     * @throws TimeoutException if timed out while waiting
659     */
660 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
661     long timeout, TimeUnit unit)
662 dl 1.1 throws InterruptedException, TimeoutException {
663     if (phase < 0)
664     return phase;
665 dl 1.4 long s = getReconciledState();
666     int p = phaseOf(s);
667     if (p != phase)
668     return p;
669 dl 1.10 if (unarrivedOf(s) == 0 && parent != null)
670 dl 1.4 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
671     return timedWait(phase, unit.toNanos(timeout));
672 dl 1.1 }
673    
674     /**
675     * Forces this barrier to enter termination state. Counts of
676 dl 1.4 * arrived and registered parties are unaffected. If this phaser
677     * has a parent, it too is terminated. This method may be useful
678     * for coordinating recovery after one or more tasks encounter
679     * unexpected exceptions.
680 dl 1.1 */
681     public void forceTermination() {
682     for (;;) {
683 dl 1.4 long s = getReconciledState();
684 dl 1.1 int phase = phaseOf(s);
685     int parties = partiesOf(s);
686     int unarrived = unarrivedOf(s);
687     if (phase < 0 ||
688 dl 1.4 casState(s, stateFor(-1, parties, unarrived))) {
689     releaseWaiters(0);
690     releaseWaiters(1);
691     if (parent != null)
692     parent.forceTermination();
693 dl 1.1 return;
694     }
695     }
696     }
697    
698     /**
699 dl 1.4 * Returns the current phase number. The maximum phase number is
700 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
701 dl 1.4 * zero. Upon termination, the phase number is negative.
702 jsr166 1.14 *
703 dl 1.4 * @return the phase number, or a negative value if terminated
704 dl 1.1 */
705 dl 1.4 public final int getPhase() {
706     return phaseOf(getReconciledState());
707 dl 1.1 }
708    
709     /**
710     * Returns the number of parties registered at this barrier.
711 jsr166 1.14 *
712 dl 1.1 * @return the number of parties
713     */
714     public int getRegisteredParties() {
715 dl 1.4 return partiesOf(state);
716 dl 1.1 }
717    
718     /**
719 dl 1.36 * Returns the number of registered parties that have arrived at
720     * the current phase of this barrier.
721 jsr166 1.14 *
722 dl 1.1 * @return the number of arrived parties
723     */
724     public int getArrivedParties() {
725 dl 1.4 return arrivedOf(state);
726 dl 1.1 }
727    
728     /**
729     * Returns the number of registered parties that have not yet
730     * arrived at the current phase of this barrier.
731 jsr166 1.14 *
732 dl 1.1 * @return the number of unarrived parties
733     */
734     public int getUnarrivedParties() {
735 dl 1.4 return unarrivedOf(state);
736     }
737    
738     /**
739 jsr166 1.23 * Returns the parent of this phaser, or {@code null} if none.
740 jsr166 1.14 *
741 jsr166 1.23 * @return the parent of this phaser, or {@code null} if none
742 dl 1.4 */
743     public Phaser getParent() {
744     return parent;
745     }
746    
747     /**
748     * Returns the root ancestor of this phaser, which is the same as
749     * this phaser if it has no parent.
750 jsr166 1.14 *
751 jsr166 1.9 * @return the root ancestor of this phaser
752 dl 1.4 */
753     public Phaser getRoot() {
754     return root;
755 dl 1.1 }
756    
757     /**
758 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
759 jsr166 1.14 *
760 jsr166 1.9 * @return {@code true} if this barrier has been terminated
761 dl 1.1 */
762     public boolean isTerminated() {
763 dl 1.4 return getPhase() < 0;
764 dl 1.1 }
765    
766     /**
767     * Overridable method to perform an action upon phase advance, and
768     * to control termination. This method is invoked whenever the
769     * barrier is tripped (and thus all other waiting parties are
770 jsr166 1.23 * dormant). If it returns {@code true}, then, rather than advance
771     * the phase number, this barrier will be set to a final
772     * termination state, and subsequent calls to {@link #isTerminated}
773     * will return true.
774 jsr166 1.3 *
775 jsr166 1.25 * <p>The default version returns {@code true} when the number of
776 dl 1.1 * registered parties is zero. Normally, overrides that arrange
777     * termination for other reasons should also preserve this
778     * property.
779     *
780 jsr166 1.25 * <p>You may override this method to perform an action with side
781 dl 1.4 * effects visible to participating tasks, but it is in general
782     * only sensible to do so in designs where all parties register
783 jsr166 1.24 * before any arrive, and all {@link #awaitAdvance} at each phase.
784 dl 1.27 * Otherwise, you cannot ensure lack of interference from other
785 jsr166 1.29 * parties during the invocation of this method.
786 dl 1.4 *
787 dl 1.1 * @param phase the phase number on entering the barrier
788 jsr166 1.9 * @param registeredParties the current number of registered parties
789     * @return {@code true} if this barrier should terminate
790 dl 1.1 */
791     protected boolean onAdvance(int phase, int registeredParties) {
792     return registeredParties <= 0;
793     }
794    
795     /**
796 dl 1.4 * Returns a string identifying this phaser, as well as its
797 dl 1.1 * state. The state, in brackets, includes the String {@code
798 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
799 dl 1.1 * followed by the number of registered parties, and {@code
800 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
801 dl 1.1 *
802     * @return a string identifying this barrier, as well as its state
803     */
804     public String toString() {
805 dl 1.4 long s = getReconciledState();
806 jsr166 1.9 return super.toString() +
807     "[phase = " + phaseOf(s) +
808     " parties = " + partiesOf(s) +
809     " arrived = " + arrivedOf(s) + "]";
810 dl 1.1 }
811    
812 dl 1.4 // methods for waiting
813 dl 1.1
814     /**
815 dl 1.10 * Wait nodes for Treiber stack representing wait queue
816 dl 1.1 */
817 dl 1.10 static final class QNode implements ForkJoinPool.ManagedBlocker {
818     final Phaser phaser;
819     final int phase;
820     final long startTime;
821     final long nanos;
822     final boolean timed;
823     final boolean interruptible;
824     volatile boolean wasInterrupted = false;
825     volatile Thread thread; // nulled to cancel wait
826 dl 1.4 QNode next;
827 dl 1.10 QNode(Phaser phaser, int phase, boolean interruptible,
828     boolean timed, long startTime, long nanos) {
829     this.phaser = phaser;
830     this.phase = phase;
831     this.timed = timed;
832     this.interruptible = interruptible;
833     this.startTime = startTime;
834     this.nanos = nanos;
835 dl 1.4 thread = Thread.currentThread();
836     }
837 dl 1.10 public boolean isReleasable() {
838     return (thread == null ||
839     phaser.getPhase() != phase ||
840     (interruptible && wasInterrupted) ||
841     (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
842     }
843     public boolean block() {
844     if (Thread.interrupted()) {
845     wasInterrupted = true;
846     if (interruptible)
847     return true;
848     }
849     if (!timed)
850     LockSupport.park(this);
851     else {
852     long waitTime = nanos - (System.nanoTime() - startTime);
853     if (waitTime <= 0)
854     return true;
855     LockSupport.parkNanos(this, waitTime);
856     }
857     return isReleasable();
858     }
859 dl 1.4 void signal() {
860     Thread t = thread;
861     if (t != null) {
862     thread = null;
863     LockSupport.unpark(t);
864     }
865     }
866 dl 1.10 boolean doWait() {
867     if (thread != null) {
868     try {
869     ForkJoinPool.managedBlock(this, false);
870     } catch (InterruptedException ie) {
871 jsr166 1.12 }
872 dl 1.10 }
873     return wasInterrupted;
874     }
875    
876 dl 1.4 }
877    
878     /**
879 jsr166 1.14 * Removes and signals waiting threads from wait queue.
880 dl 1.4 */
881     private void releaseWaiters(int phase) {
882     AtomicReference<QNode> head = queueFor(phase);
883     QNode q;
884     while ((q = head.get()) != null) {
885     if (head.compareAndSet(q, q.next))
886     q.signal();
887     }
888     }
889    
890     /**
891 jsr166 1.14 * Tries to enqueue given node in the appropriate wait queue.
892     *
893 dl 1.10 * @return true if successful
894     */
895     private boolean tryEnqueue(QNode node) {
896     AtomicReference<QNode> head = queueFor(node.phase);
897     return head.compareAndSet(node.next = head.get(), node);
898     }
899    
900     /**
901 dl 1.1 * Enqueues node and waits unless aborted or signalled.
902 jsr166 1.14 *
903 dl 1.10 * @return current phase
904 dl 1.1 */
905 dl 1.4 private int untimedWait(int phase) {
906 dl 1.1 QNode node = null;
907 dl 1.10 boolean queued = false;
908 dl 1.4 boolean interrupted = false;
909     int p;
910     while ((p = getPhase()) == phase) {
911 dl 1.10 if (Thread.interrupted())
912     interrupted = true;
913     else if (node == null)
914     node = new QNode(this, phase, false, false, 0, 0);
915     else if (!queued)
916     queued = tryEnqueue(node);
917 dl 1.4 else
918 dl 1.10 interrupted = node.doWait();
919 dl 1.4 }
920     if (node != null)
921     node.thread = null;
922 dl 1.10 releaseWaiters(phase);
923 dl 1.4 if (interrupted)
924     Thread.currentThread().interrupt();
925     return p;
926     }
927    
928     /**
929 dl 1.10 * Interruptible version
930     * @return current phase
931 dl 1.4 */
932     private int interruptibleWait(int phase) throws InterruptedException {
933     QNode node = null;
934     boolean queued = false;
935     boolean interrupted = false;
936     int p;
937 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
938     if (Thread.interrupted())
939     interrupted = true;
940     else if (node == null)
941     node = new QNode(this, phase, true, false, 0, 0);
942     else if (!queued)
943     queued = tryEnqueue(node);
944 dl 1.1 else
945 dl 1.10 interrupted = node.doWait();
946 dl 1.1 }
947     if (node != null)
948     node.thread = null;
949 dl 1.10 if (p != phase || (p = getPhase()) != phase)
950     releaseWaiters(phase);
951 dl 1.4 if (interrupted)
952     throw new InterruptedException();
953     return p;
954 dl 1.1 }
955    
956     /**
957 dl 1.10 * Timeout version.
958     * @return current phase
959 dl 1.1 */
960 dl 1.4 private int timedWait(int phase, long nanos)
961 dl 1.1 throws InterruptedException, TimeoutException {
962 dl 1.10 long startTime = System.nanoTime();
963     QNode node = null;
964     boolean queued = false;
965     boolean interrupted = false;
966 dl 1.4 int p;
967 dl 1.10 while ((p = getPhase()) == phase && !interrupted) {
968     if (Thread.interrupted())
969     interrupted = true;
970     else if (nanos - (System.nanoTime() - startTime) <= 0)
971     break;
972     else if (node == null)
973     node = new QNode(this, phase, true, true, startTime, nanos);
974     else if (!queued)
975     queued = tryEnqueue(node);
976     else
977     interrupted = node.doWait();
978 dl 1.4 }
979 dl 1.10 if (node != null)
980     node.thread = null;
981     if (p != phase || (p = getPhase()) != phase)
982     releaseWaiters(phase);
983     if (interrupted)
984     throw new InterruptedException();
985     if (p == phase)
986     throw new TimeoutException();
987 dl 1.4 return p;
988     }
989    
990 jsr166 1.22 // Unsafe mechanics
991    
992     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
993     private static final long stateOffset =
994     objectFieldOffset("state", Phaser.class);
995    
996     private final boolean casState(long cmp, long val) {
997     return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
998     }
999    
1000     private static long objectFieldOffset(String field, Class<?> klazz) {
1001     try {
1002     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1003     } catch (NoSuchFieldException e) {
1004     // Convert Exception to corresponding Error
1005     NoSuchFieldError error = new NoSuchFieldError(field);
1006     error.initCause(e);
1007     throw error;
1008     }
1009     }
1010    
1011     /**
1012     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1013     * Replace with a simple call to Unsafe.getUnsafe when integrating
1014     * into a jdk.
1015     *
1016     * @return a sun.misc.Unsafe
1017     */
1018 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1019 jsr166 1.11 try {
1020 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1021 jsr166 1.11 } catch (SecurityException se) {
1022     try {
1023     return java.security.AccessController.doPrivileged
1024 jsr166 1.22 (new java.security
1025     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1026 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1027 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1028     .Unsafe.class.getDeclaredField("theUnsafe");
1029     f.setAccessible(true);
1030     return (sun.misc.Unsafe) f.get(null);
1031 jsr166 1.11 }});
1032     } catch (java.security.PrivilegedActionException e) {
1033 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1034     e.getCause());
1035 jsr166 1.11 }
1036     }
1037     }
1038 dl 1.1 }