ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.51
Committed: Sat Nov 13 00:55:51 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.50: +297 -329 lines
Log Message:
Overhaul to remove onAdvance disclaimer

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82     * onAdvance} returns {@code true}. As illustrated below, when
83     * phasers control actions with a fixed number of iterations, it is
84     * often convenient to override this method to cause termination when
85     * the current phase number reaches a threshold. Method {@link
86     * #forceTermination} is also available to abruptly release waiting
87     * threads and allow them to terminate.
88 dl 1.4 *
89 dl 1.38 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90     * in tree structures) to reduce contention. Phasers with large
91 dl 1.4 * numbers of parties that would otherwise experience heavy
92 dl 1.38 * synchronization contention costs may instead be set up so that
93     * groups of sub-phasers share a common parent. This may greatly
94     * increase throughput even though it incurs greater per-operation
95     * overhead.
96     *
97     * <p><b>Monitoring.</b> While synchronization methods may be invoked
98     * only by registered parties, the current state of a phaser may be
99     * monitored by any caller. At any given moment there are {@link
100 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
101     * #getArrivedParties} have arrived at the current phase ({@link
102     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 dl 1.42 * parties arrive, the phase advances. The values returned by these
104     * methods may reflect transient states and so are not in general
105     * useful for synchronization control. Method {@link #toString}
106     * returns snapshots of these state queries in a form convenient for
107     * informal monitoring.
108 dl 1.1 *
109 dl 1.4 * <p><b>Sample usages:</b>
110     *
111 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 dl 1.48 * to control a one-shot action serving a variable number of parties.
113     * The typical idiom is for the method setting this up to first
114     * register, then start the actions, then deregister, as in:
115 dl 1.1 *
116 jsr166 1.13 * <pre> {@code
117 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
118 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
119 dl 1.27 * // create and start threads
120 jsr166 1.33 * for (Runnable task : tasks) {
121 jsr166 1.13 * phaser.register();
122     * new Thread() {
123     * public void run() {
124     * phaser.arriveAndAwaitAdvance(); // await all creation
125 jsr166 1.33 * task.run();
126 jsr166 1.13 * }
127     * }.start();
128 dl 1.4 * }
129 dl 1.6 *
130 dl 1.27 * // allow threads to start and deregister self
131     * phaser.arriveAndDeregister();
132 jsr166 1.13 * }}</pre>
133 dl 1.1 *
134 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
135 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
136 dl 1.1 *
137 jsr166 1.13 * <pre> {@code
138 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
139 jsr166 1.13 * final Phaser phaser = new Phaser() {
140 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
141 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
142     * }
143     * };
144     * phaser.register();
145 jsr166 1.45 * for (final Runnable task : tasks) {
146 jsr166 1.13 * phaser.register();
147     * new Thread() {
148     * public void run() {
149     * do {
150 jsr166 1.33 * task.run();
151 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
152 jsr166 1.45 * } while (!phaser.isTerminated());
153 dl 1.4 * }
154 jsr166 1.13 * }.start();
155 dl 1.1 * }
156 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 jsr166 1.13 * }}</pre>
158 dl 1.1 *
159 dl 1.38 * If the main task must later await termination, it
160     * may re-register and then execute a similar loop:
161 jsr166 1.45 * <pre> {@code
162 dl 1.38 * // ...
163     * phaser.register();
164     * while (!phaser.isTerminated())
165 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
166 dl 1.38 *
167 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
168 dl 1.38 * in contexts where you are sure that the phase will never wrap around
169     * {@code Integer.MAX_VALUE}. For example:
170     *
171 jsr166 1.45 * <pre> {@code
172     * void awaitPhase(Phaser phaser, int phase) {
173     * int p = phaser.register(); // assumes caller not already registered
174     * while (p < phase) {
175     * if (phaser.isTerminated())
176     * // ... deal with unexpected termination
177     * else
178     * p = phaser.arriveAndAwaitAdvance();
179 dl 1.38 * }
180 jsr166 1.45 * phaser.arriveAndDeregister();
181     * }}</pre>
182 dl 1.38 *
183     *
184 jsr166 1.25 * <p>To create a set of tasks using a tree of phasers,
185 dl 1.4 * you could use code of the following form, assuming a
186 jsr166 1.24 * Task class with a constructor accepting a phaser that
187 dl 1.48 * it registers with upon construction:
188 jsr166 1.45 *
189 jsr166 1.13 * <pre> {@code
190 dl 1.44 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191     * if (hi - lo > TASKS_PER_PHASER) {
192     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193     * int j = Math.min(i + TASKS_PER_PHASER, hi);
194     * build(actions, i, j, new Phaser(ph));
195 jsr166 1.13 * }
196     * } else {
197     * for (int i = lo; i < hi; ++i)
198 dl 1.44 * actions[i] = new Task(ph);
199     * // assumes new Task(ph) performs ph.register()
200 jsr166 1.13 * }
201     * }
202     * // .. initially called, for n tasks via
203     * build(new Task[n], 0, n, new Phaser());}</pre>
204 dl 1.4 *
205 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 dl 1.4 * expected barrier synchronization rates. A value as low as four may
207     * be appropriate for extremely small per-barrier task bodies (thus
208     * high rates), or up to hundreds for extremely large ones.
209     *
210 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
211 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
212 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
213 dl 1.4 * should create tiered phasers to accommodate arbitrarily large sets
214     * of participants.
215 jsr166 1.16 *
216     * @since 1.7
217     * @author Doug Lea
218 dl 1.1 */
219     public class Phaser {
220     /*
221     * This class implements an extension of X10 "clocks". Thanks to
222 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223     * enhancements to extend functionality.
224 dl 1.1 */
225    
226     /**
227     * Barrier state representation. Conceptually, a barrier contains
228     * four values:
229 jsr166 1.3 *
230 dl 1.51 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231     * * parties -- the number of parties to wait (bits 16-31)
232     * * phase -- the generation of the barrier (bits 32-62)
233     * * terminated -- set if barrier is terminated (bit 63 / sign)
234 dl 1.1 *
235     * However, to efficiently maintain atomicity, these values are
236 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
237     * bit of 32 bit representation of phase, so phase is set to -1 on
238 jsr166 1.8 * termination. Good performance relies on keeping state decoding
239 dl 1.4 * and encoding simple, and keeping race windows short.
240 dl 1.1 */
241 dl 1.4 private volatile long state;
242 dl 1.1
243 dl 1.51 private static final int MAX_COUNT = 0xffff;
244     private static final int MAX_PHASE = 0x7fffffff;
245     private static final int PARTIES_SHIFT = 16;
246     private static final int PHASE_SHIFT = 32;
247     private static final long UNARRIVED_MASK = 0xffffL;
248     private static final long PARTIES_MASK = 0xffff0000L;
249     private static final long ONE_ARRIVAL = 1L;
250     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251     private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252    
253     // The following unpacking methods are usually manually inlined
254 dl 1.1
255     private static int unarrivedOf(long s) {
256 dl 1.51 return (int) (s & UNARRIVED_MASK);
257 dl 1.1 }
258    
259     private static int partiesOf(long s) {
260 dl 1.51 return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261 dl 1.1 }
262    
263     private static int phaseOf(long s) {
264 dl 1.51 return (int) (s >>> PHASE_SHIFT);
265 dl 1.1 }
266    
267     private static int arrivedOf(long s) {
268     return partiesOf(s) - unarrivedOf(s);
269     }
270    
271 dl 1.4 /**
272     * The parent of this phaser, or null if none
273     */
274     private final Phaser parent;
275    
276     /**
277 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
278 dl 1.4 * support faster state push-down.
279     */
280     private final Phaser root;
281    
282     /**
283 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
284 dl 1.49 * contention when releasing some threads while adding others, we
285 dl 1.4 * use two of them, alternating across even and odd phases.
286 dl 1.49 * Subphasers share queues with root to speed up releases.
287 dl 1.4 */
288 dl 1.50 private final AtomicReference<QNode> evenQ;
289     private final AtomicReference<QNode> oddQ;
290 dl 1.4
291     private AtomicReference<QNode> queueFor(int phase) {
292 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
293 dl 1.4 }
294    
295     /**
296 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
297     * Manually tuned to speed up and minimize race windows for the
298     * common case of just decrementing unarrived field.
299     *
300     * @param adj - adjustment to apply to state -- either
301     * ONE_ARRIVAL (for arrive) or
302     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 dl 1.4 */
304 dl 1.51 private int doArrive(long adj) {
305     long s;
306     int phase, unarrived;
307     while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
308     if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
309     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
310     if (unarrived == 1) {
311     Phaser par;
312     long p = s & PARTIES_MASK; // unshifted parties field
313     long lu = p >>> PARTIES_SHIFT;
314     int u = (int)lu;
315     int nextPhase = (phase + 1) & MAX_PHASE;
316     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
317     if ((par = parent) == null) {
318     UNSAFE.compareAndSwapLong
319     (this, stateOffset, s, onAdvance(phase, u)?
320     next | TERMINATION_PHASE : next);
321     releaseWaiters(phase);
322     }
323     else {
324     par.doArrive(u == 0?
325     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
326     if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
327     ((int)(state >>> PHASE_SHIFT) != nextPhase &&
328     !UNSAFE.compareAndSwapLong(this, stateOffset,
329     s, next)))
330     reconcileState();
331     }
332     }
333     break;
334     }
335     }
336     else if (state == s && reconcileState() == s) // recheck
337     throw new IllegalStateException(badArrive());
338     }
339     return phase;
340     }
341    
342     /**
343     * Returns message string for bounds exceptions on arrival.
344     * Declared out of-line from doArrive to reduce string op bulk.
345     */
346     private String badArrive() {
347     return ("Attempted arrival of unregistered party for " +
348     this.toString());
349 dl 1.4 }
350    
351     /**
352 dl 1.51 * Implementation of register, bulkRegister
353     *
354     * @param registrations number to add to both parties and unarrived fields
355     */
356     private int doRegister(int registrations) {
357     long adj = (long)registrations; // adjustment to state
358     adj |= adj << PARTIES_SHIFT;
359     Phaser par = parent;
360     long s;
361     int phase;
362     while ((phase = (int)((s = (par == null? state : reconcileState()))
363     >>> PHASE_SHIFT)) >= 0) {
364     int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
365     if (parties != 0 && (s & UNARRIVED_MASK) == 0)
366     internalAwaitAdvance(phase, null); // wait for onAdvance
367     else if (parties + registrations > MAX_COUNT)
368     throw new IllegalStateException(badRegister());
369     else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
370     break;
371     }
372     return phase;
373     }
374    
375     /**
376     * Returns message string for bounds exceptions on registration
377     */
378     private String badRegister() {
379     return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380     this.toString());
381     }
382    
383     /**
384     * Recursively resolves lagged phase propagation from root if
385     * necessary.
386 dl 1.4 */
387     private long reconcileState() {
388 dl 1.49 Phaser par = parent;
389 dl 1.51 if (par == null)
390     return state;
391     Phaser rt = root;
392     long s;
393     int phase, rPhase;
394     while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
395     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
396     if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
397     long ps = par.parent == null? par.state : par.reconcileState();
398     int pPhase = (int)(ps >>> PHASE_SHIFT);
399     if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
400     if (state != s)
401     continue;
402     long p = s & PARTIES_MASK;
403     long next = ((((long) pPhase) << PHASE_SHIFT) |
404     (p >>> PARTIES_SHIFT) | p);
405     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406     return next;
407 dl 1.4 }
408     }
409 dl 1.51 if (state == s)
410     releaseWaiters(phase); // help release others
411 dl 1.4 }
412     return s;
413 dl 1.1 }
414    
415     /**
416 jsr166 1.24 * Creates a new phaser without any initially registered parties,
417 dl 1.10 * initial phase number 0, and no parent. Any thread using this
418 jsr166 1.24 * phaser will need to first register for it.
419 dl 1.1 */
420     public Phaser() {
421 dl 1.50 this(null, 0);
422 dl 1.1 }
423    
424     /**
425 dl 1.48 * Creates a new phaser with the given number of registered
426 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
427 jsr166 1.14 *
428     * @param parties the number of parties required to trip barrier
429 dl 1.1 * @throws IllegalArgumentException if parties less than zero
430 jsr166 1.14 * or greater than the maximum number of parties supported
431 dl 1.1 */
432     public Phaser(int parties) {
433 dl 1.4 this(null, parties);
434     }
435    
436     /**
437 jsr166 1.24 * Creates a new phaser with the given parent, without any
438 dl 1.4 * initially registered parties. If parent is non-null this phaser
439     * is registered with the parent and its initial phase number is
440     * the same as that of parent phaser.
441 jsr166 1.14 *
442     * @param parent the parent phaser
443 dl 1.4 */
444     public Phaser(Phaser parent) {
445 dl 1.50 this(parent, 0);
446 dl 1.4 }
447    
448     /**
449 dl 1.48 * Creates a new phaser with the given parent and number of
450 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
451 dl 1.4 * is registered with the parent and its initial phase number is
452     * the same as that of parent phaser.
453 jsr166 1.14 *
454     * @param parent the parent phaser
455     * @param parties the number of parties required to trip barrier
456 dl 1.4 * @throws IllegalArgumentException if parties less than zero
457 jsr166 1.14 * or greater than the maximum number of parties supported
458 dl 1.4 */
459     public Phaser(Phaser parent, int parties) {
460 dl 1.51 if (parties < 0 || parties > MAX_COUNT)
461 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
462 dl 1.50 int phase;
463 dl 1.4 this.parent = parent;
464     if (parent != null) {
465 dl 1.50 Phaser r = parent.root;
466     this.root = r;
467     this.evenQ = r.evenQ;
468     this.oddQ = r.oddQ;
469 dl 1.4 phase = parent.register();
470     }
471 dl 1.50 else {
472 dl 1.4 this.root = this;
473 dl 1.50 this.evenQ = new AtomicReference<QNode>();
474     this.oddQ = new AtomicReference<QNode>();
475     phase = 0;
476     }
477 dl 1.51 long p = (long)parties;
478     this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479 dl 1.1 }
480    
481     /**
482     * Adds a new unarrived party to this phaser.
483 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
484 dl 1.50 * this method may wait until its completion before registering.
485 jsr166 1.14 *
486 dl 1.35 * @return the arrival phase number to which this registration applied
487 dl 1.1 * @throws IllegalStateException if attempting to register more
488 jsr166 1.14 * than the maximum supported number of parties
489 dl 1.1 */
490 dl 1.4 public int register() {
491     return doRegister(1);
492     }
493    
494     /**
495     * Adds the given number of new unarrived parties to this phaser.
496 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
497 dl 1.50 * this method may wait until its completion before registering.
498 jsr166 1.14 *
499 dl 1.48 * @param parties the number of additional parties required to trip barrier
500 dl 1.35 * @return the arrival phase number to which this registration applied
501 dl 1.4 * @throws IllegalStateException if attempting to register more
502 jsr166 1.14 * than the maximum supported number of parties
503 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
504 dl 1.4 */
505     public int bulkRegister(int parties) {
506     if (parties < 0)
507     throw new IllegalArgumentException();
508 dl 1.51 if (parties > MAX_COUNT)
509     throw new IllegalStateException(badRegister());
510 dl 1.4 if (parties == 0)
511     return getPhase();
512     return doRegister(parties);
513     }
514    
515     /**
516 dl 1.1 * Arrives at the barrier, but does not wait for others. (You can
517 dl 1.38 * in turn wait for others via {@link #awaitAdvance}). It is an
518     * unenforced usage error for an unregistered party to invoke this
519     * method.
520 dl 1.1 *
521 dl 1.35 * @return the arrival phase number, or a negative value if terminated
522 dl 1.4 * @throws IllegalStateException if not terminated and the number
523 jsr166 1.14 * of unarrived parties would become negative
524 dl 1.1 */
525 dl 1.4 public int arrive() {
526 dl 1.51 return doArrive(ONE_ARRIVAL);
527 dl 1.1 }
528    
529     /**
530 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
531     * for others. Deregistration reduces the number of parties
532 dl 1.4 * required to trip the barrier in future phases. If this phaser
533     * has a parent, and deregistration causes this phaser to have
534 dl 1.27 * zero parties, this phaser also arrives at and is deregistered
535 dl 1.38 * from its parent. It is an unenforced usage error for an
536     * unregistered party to invoke this method.
537 dl 1.1 *
538 dl 1.35 * @return the arrival phase number, or a negative value if terminated
539 dl 1.4 * @throws IllegalStateException if not terminated and the number
540 jsr166 1.14 * of registered or unarrived parties would become negative
541 dl 1.1 */
542 dl 1.4 public int arriveAndDeregister() {
543 dl 1.51 return doArrive(ONE_ARRIVAL|ONE_PARTY);
544 dl 1.1 }
545    
546     /**
547 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
548 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
549     * interruption or timeout, you can arrange this with an analogous
550 dl 1.48 * construction using one of the other forms of the {@code
551     * awaitAdvance} method. If instead you need to deregister upon
552     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553     * usage error for an unregistered party to invoke this method.
554 jsr166 1.14 *
555 dl 1.35 * @return the arrival phase number, or a negative number if terminated
556 dl 1.4 * @throws IllegalStateException if not terminated and the number
557 jsr166 1.14 * of unarrived parties would become negative
558 dl 1.1 */
559     public int arriveAndAwaitAdvance() {
560 dl 1.4 return awaitAdvance(arrive());
561 dl 1.1 }
562    
563     /**
564 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
565 dl 1.30 * value, returning immediately if the current phase of the
566     * barrier is not equal to the given phase value or this barrier
567 dl 1.50 * is terminated.
568 jsr166 1.14 *
569 dl 1.35 * @param phase an arrival phase number, or negative value if
570     * terminated; this argument is normally the value returned by a
571     * previous call to {@code arrive} or its variants
572     * @return the next arrival phase number, or a negative value
573     * if terminated or argument is negative
574 dl 1.1 */
575     public int awaitAdvance(int phase) {
576     if (phase < 0)
577     return phase;
578 dl 1.51 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579 dl 1.4 if (p != phase)
580     return p;
581 dl 1.51 return internalAwaitAdvance(phase, null);
582 dl 1.1 }
583    
584     /**
585 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
586 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
587     * while waiting, or returning immediately if the current phase of
588     * the barrier is not equal to the given phase value or this
589 dl 1.50 * barrier is terminated.
590 jsr166 1.14 *
591 dl 1.35 * @param phase an arrival phase number, or negative value if
592     * terminated; this argument is normally the value returned by a
593     * previous call to {@code arrive} or its variants
594     * @return the next arrival phase number, or a negative value
595     * if terminated or argument is negative
596 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
597     */
598 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
599 dl 1.10 throws InterruptedException {
600 dl 1.1 if (phase < 0)
601     return phase;
602 dl 1.51 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603 dl 1.4 if (p != phase)
604     return p;
605 dl 1.51 QNode node = new QNode(this, phase, true, false, 0L);
606     p = internalAwaitAdvance(phase, node);
607     if (node.wasInterrupted)
608     throw new InterruptedException();
609     else
610     return p;
611 dl 1.1 }
612    
613     /**
614 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
615 dl 1.38 * value or the given timeout to elapse, throwing {@code
616     * InterruptedException} if interrupted while waiting, or
617     * returning immediately if the current phase of the barrier is
618     * not equal to the given phase value or this barrier is
619 dl 1.50 * terminated.
620 jsr166 1.14 *
621 dl 1.35 * @param phase an arrival phase number, or negative value if
622     * terminated; this argument is normally the value returned by a
623     * previous call to {@code arrive} or its variants
624 dl 1.31 * @param timeout how long to wait before giving up, in units of
625     * {@code unit}
626     * @param unit a {@code TimeUnit} determining how to interpret the
627     * {@code timeout} parameter
628 dl 1.35 * @return the next arrival phase number, or a negative value
629     * if terminated or argument is negative
630 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
631     * @throws TimeoutException if timed out while waiting
632     */
633 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
634     long timeout, TimeUnit unit)
635 dl 1.1 throws InterruptedException, TimeoutException {
636 dl 1.49 long nanos = unit.toNanos(timeout);
637 dl 1.1 if (phase < 0)
638     return phase;
639 dl 1.51 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640 dl 1.4 if (p != phase)
641     return p;
642 dl 1.51 QNode node = new QNode(this, phase, true, true, nanos);
643     p = internalAwaitAdvance(phase, node);
644     if (node.wasInterrupted)
645     throw new InterruptedException();
646     else if (p == phase)
647     throw new TimeoutException();
648     else
649     return p;
650 dl 1.1 }
651    
652     /**
653     * Forces this barrier to enter termination state. Counts of
654 dl 1.4 * arrived and registered parties are unaffected. If this phaser
655     * has a parent, it too is terminated. This method may be useful
656     * for coordinating recovery after one or more tasks encounter
657     * unexpected exceptions.
658 dl 1.1 */
659     public void forceTermination() {
660 dl 1.49 Phaser r = root; // force at root then reconcile
661     long s;
662 dl 1.51 while ((s = r.state) >= 0)
663     UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 dl 1.49 reconcileState();
665 dl 1.51 releaseWaiters(0); // signal all threads
666 dl 1.49 releaseWaiters(1);
667 dl 1.1 }
668    
669     /**
670 dl 1.4 * Returns the current phase number. The maximum phase number is
671 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
672 dl 1.4 * zero. Upon termination, the phase number is negative.
673 jsr166 1.14 *
674 dl 1.4 * @return the phase number, or a negative value if terminated
675 dl 1.1 */
676 dl 1.4 public final int getPhase() {
677 dl 1.51 return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
678 dl 1.1 }
679    
680     /**
681     * Returns the number of parties registered at this barrier.
682 jsr166 1.14 *
683 dl 1.1 * @return the number of parties
684     */
685     public int getRegisteredParties() {
686 dl 1.51 return partiesOf(parent == null? state : reconcileState());
687 dl 1.1 }
688    
689     /**
690 dl 1.36 * Returns the number of registered parties that have arrived at
691     * the current phase of this barrier.
692 jsr166 1.14 *
693 dl 1.1 * @return the number of arrived parties
694     */
695     public int getArrivedParties() {
696 dl 1.51 return arrivedOf(parent == null? state : reconcileState());
697 dl 1.1 }
698    
699     /**
700     * Returns the number of registered parties that have not yet
701     * arrived at the current phase of this barrier.
702 jsr166 1.14 *
703 dl 1.1 * @return the number of unarrived parties
704     */
705     public int getUnarrivedParties() {
706 dl 1.51 return unarrivedOf(parent == null? state : reconcileState());
707 dl 1.4 }
708    
709     /**
710 jsr166 1.23 * Returns the parent of this phaser, or {@code null} if none.
711 jsr166 1.14 *
712 jsr166 1.23 * @return the parent of this phaser, or {@code null} if none
713 dl 1.4 */
714     public Phaser getParent() {
715     return parent;
716     }
717    
718     /**
719     * Returns the root ancestor of this phaser, which is the same as
720     * this phaser if it has no parent.
721 jsr166 1.14 *
722 jsr166 1.9 * @return the root ancestor of this phaser
723 dl 1.4 */
724     public Phaser getRoot() {
725     return root;
726 dl 1.1 }
727    
728     /**
729 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
730 jsr166 1.14 *
731 jsr166 1.9 * @return {@code true} if this barrier has been terminated
732 dl 1.1 */
733     public boolean isTerminated() {
734 dl 1.51 return (parent == null? state : reconcileState()) < 0;
735 dl 1.1 }
736    
737     /**
738 dl 1.43 * Overridable method to perform an action upon impending phase
739     * advance, and to control termination. This method is invoked
740     * upon arrival of the party tripping the barrier (when all other
741     * waiting parties are dormant). If this method returns {@code
742     * true}, then, rather than advance the phase number, this barrier
743     * will be set to a final termination state, and subsequent calls
744     * to {@link #isTerminated} will return true. Any (unchecked)
745     * Exception or Error thrown by an invocation of this method is
746     * propagated to the party attempting to trip the barrier, in
747     * which case no advance occurs.
748 dl 1.42 *
749     * <p>The arguments to this method provide the state of the phaser
750 dl 1.51 * prevailing for the current transition. The effects of invoking
751     * arrival, registration, and waiting methods on this Phaser from
752 dl 1.50 * within {@code onAdvance} are unspecified and should not be
753 dl 1.51 * relied on.
754     *
755     * <p>If this Phaser is a member of a tiered set of Phasers, then
756     * {@code onAdvance} is invoked only for its root Phaser on each
757     * advance.
758 jsr166 1.3 *
759 jsr166 1.25 * <p>The default version returns {@code true} when the number of
760 dl 1.1 * registered parties is zero. Normally, overrides that arrange
761     * termination for other reasons should also preserve this
762     * property.
763     *
764     * @param phase the phase number on entering the barrier
765 jsr166 1.9 * @param registeredParties the current number of registered parties
766     * @return {@code true} if this barrier should terminate
767 dl 1.1 */
768     protected boolean onAdvance(int phase, int registeredParties) {
769     return registeredParties <= 0;
770     }
771    
772     /**
773 dl 1.4 * Returns a string identifying this phaser, as well as its
774 dl 1.1 * state. The state, in brackets, includes the String {@code
775 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
776 dl 1.1 * followed by the number of registered parties, and {@code
777 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
778 dl 1.1 *
779     * @return a string identifying this barrier, as well as its state
780     */
781     public String toString() {
782 dl 1.51 long s = reconcileState();
783 jsr166 1.9 return super.toString() +
784     "[phase = " + phaseOf(s) +
785     " parties = " + partiesOf(s) +
786     " arrived = " + arrivedOf(s) + "]";
787 dl 1.1 }
788    
789 dl 1.4 /**
790 dl 1.51 * Removes and signals threads from queue for phase
791 dl 1.4 */
792     private void releaseWaiters(int phase) {
793     AtomicReference<QNode> head = queueFor(phase);
794     QNode q;
795 dl 1.51 int p;
796     while ((q = head.get()) != null &&
797     ((p = q.phase) == phase ||
798     (int)(root.state >>> PHASE_SHIFT) != p)) {
799 dl 1.4 if (head.compareAndSet(q, q.next))
800     q.signal();
801     }
802     }
803    
804     /**
805 jsr166 1.14 * Tries to enqueue given node in the appropriate wait queue.
806     *
807 dl 1.10 * @return true if successful
808     */
809 dl 1.51 private boolean tryEnqueue(int phase, QNode node) {
810     releaseWaiters(phase-1); // ensure old queue clean
811     AtomicReference<QNode> head = queueFor(phase);
812     QNode q = head.get();
813     return ((q == null || q.phase == phase) &&
814     (int)(root.state >>> PHASE_SHIFT) == phase &&
815     head.compareAndSet(node.next = q, node));
816 dl 1.10 }
817    
818 dl 1.51 /** The number of CPUs, for spin control */
819     private static final int NCPU = Runtime.getRuntime().availableProcessors();
820    
821 dl 1.10 /**
822 dl 1.51 * The number of times to spin before blocking while waiting for
823     * advance, per arrival while waiting. On multiprocessors, fully
824     * blocking and waking up a large number of threads all at once is
825     * usually a very slow process, so we use rechargeable spins to
826     * avoid it when threads regularly arrive: When a thread in
827     * internalAwaitAdvance notices another arrival before blocking,
828     * and there appear to be enough CPUs available, it spins
829     * SPINS_PER_ARRIVAL more times before continuing to try to
830     * block. The value trades off good-citizenship vs big unnecessary
831     * slowdowns.
832 dl 1.50 */
833 dl 1.51 static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
834 dl 1.50
835     /**
836 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
837 jsr166 1.14 *
838 dl 1.51 * @param phase current phase
839     * @param node if nonnull, the wait node to track interrupt and timeout;
840     * if null, denotes noninterruptible wait
841 dl 1.10 * @return current phase
842 dl 1.1 */
843 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
844     Phaser current = this; // to eventually wait at root if tiered
845     Phaser par = parent;
846 dl 1.10 boolean queued = false;
847 dl 1.51 int spins = SPINS_PER_ARRIVAL;
848     int lastUnarrived = -1; // to increase spins upon change
849     long s;
850 dl 1.4 int p;
851 dl 1.51 while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
852     int unarrived = (int)(s & UNARRIVED_MASK);
853     if (unarrived != lastUnarrived) {
854     if ((lastUnarrived = unarrived) < NCPU)
855     spins += SPINS_PER_ARRIVAL;
856     }
857     else if (unarrived == 0 && par != null) {
858     current = par; // if all arrived, use parent
859     par = par.parent;
860 dl 1.50 }
861 dl 1.51 else if (spins > 0)
862     --spins;
863 dl 1.10 else if (node == null)
864 dl 1.51 node = new QNode(this, phase, false, false, 0L);
865     else if (node.isReleasable())
866     break;
867 dl 1.10 else if (!queued)
868 dl 1.51 queued = tryEnqueue(phase, node);
869     else {
870     try {
871     ForkJoinPool.managedBlock(node);
872     } catch (InterruptedException ie) {
873     node.wasInterrupted = true;
874     }
875     }
876 dl 1.4 }
877 dl 1.51 if (node != null) {
878     if (node.thread != null)
879     node.thread = null;
880     if (!node.interruptible && node.wasInterrupted)
881     Thread.currentThread().interrupt();
882     }
883     if (p == phase && parent != null)
884     p = (int)(reconcileState() >>> PHASE_SHIFT);
885     if (p != phase)
886     releaseWaiters(phase);
887 dl 1.4 return p;
888     }
889    
890     /**
891 dl 1.51 * Wait nodes for Treiber stack representing wait queue
892 dl 1.4 */
893 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
894     final Phaser phaser;
895     final int phase;
896     final boolean interruptible;
897     final boolean timed;
898     boolean wasInterrupted;
899     long nanos;
900     long lastTime;
901     volatile Thread thread; // nulled to cancel wait
902     QNode next;
903    
904     QNode(Phaser phaser, int phase, boolean interruptible,
905     boolean timed, long nanos) {
906     this.phaser = phaser;
907     this.phase = phase;
908     this.interruptible = interruptible;
909     this.nanos = nanos;
910     this.timed = timed;
911     this.lastTime = timed? System.nanoTime() : 0L;
912     thread = Thread.currentThread();
913     }
914    
915     public boolean isReleasable() {
916     Thread t = thread;
917     if (t != null) {
918     if (phaser.getPhase() != phase)
919     t = null;
920     else {
921     if (Thread.interrupted())
922     wasInterrupted = true;
923     if (interruptible && wasInterrupted)
924     t = null;
925     else if (timed) {
926     if (nanos > 0) {
927     long now = System.nanoTime();
928     nanos -= now - lastTime;
929     lastTime = now;
930     }
931     if (nanos <= 0)
932     t = null;
933     }
934     }
935     if (t != null)
936     return false;
937     thread = null;
938 dl 1.50 }
939 dl 1.51 return true;
940     }
941    
942     public boolean block() {
943     if (isReleasable())
944     return true;
945     else if (!timed)
946     LockSupport.park(this);
947     else if (nanos > 0)
948     LockSupport.parkNanos(this, nanos);
949     return isReleasable();
950 dl 1.1 }
951    
952 dl 1.51 void signal() {
953     Thread t = thread;
954     if (t != null) {
955     thread = null;
956     LockSupport.unpark(t);
957 dl 1.50 }
958 dl 1.4 }
959     }
960    
961 jsr166 1.22 // Unsafe mechanics
962    
963     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
964     private static final long stateOffset =
965     objectFieldOffset("state", Phaser.class);
966    
967     private static long objectFieldOffset(String field, Class<?> klazz) {
968     try {
969     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
970     } catch (NoSuchFieldException e) {
971     // Convert Exception to corresponding Error
972     NoSuchFieldError error = new NoSuchFieldError(field);
973     error.initCause(e);
974     throw error;
975     }
976     }
977    
978     /**
979     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
980     * Replace with a simple call to Unsafe.getUnsafe when integrating
981     * into a jdk.
982     *
983     * @return a sun.misc.Unsafe
984     */
985 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
986 jsr166 1.11 try {
987 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
988 jsr166 1.11 } catch (SecurityException se) {
989     try {
990     return java.security.AccessController.doPrivileged
991 jsr166 1.22 (new java.security
992     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
993 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
994 jsr166 1.22 java.lang.reflect.Field f = sun.misc
995     .Unsafe.class.getDeclaredField("theUnsafe");
996     f.setAccessible(true);
997     return (sun.misc.Unsafe) f.get(null);
998 jsr166 1.11 }});
999     } catch (java.security.PrivilegedActionException e) {
1000 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1001     e.getCause());
1002 jsr166 1.11 }
1003     }
1004     }
1005 dl 1.1 }