ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.55
Committed: Mon Nov 15 12:51:54 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.54: +80 -68 lines
Log Message:
Incorporate review suggestions

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82     * onAdvance} returns {@code true}. As illustrated below, when
83     * phasers control actions with a fixed number of iterations, it is
84     * often convenient to override this method to cause termination when
85     * the current phase number reaches a threshold. Method {@link
86     * #forceTermination} is also available to abruptly release waiting
87     * threads and allow them to terminate.
88 dl 1.4 *
89 dl 1.38 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90     * in tree structures) to reduce contention. Phasers with large
91 dl 1.4 * numbers of parties that would otherwise experience heavy
92 dl 1.38 * synchronization contention costs may instead be set up so that
93     * groups of sub-phasers share a common parent. This may greatly
94     * increase throughput even though it incurs greater per-operation
95     * overhead.
96     *
97     * <p><b>Monitoring.</b> While synchronization methods may be invoked
98     * only by registered parties, the current state of a phaser may be
99     * monitored by any caller. At any given moment there are {@link
100 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
101     * #getArrivedParties} have arrived at the current phase ({@link
102     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 dl 1.42 * parties arrive, the phase advances. The values returned by these
104     * methods may reflect transient states and so are not in general
105     * useful for synchronization control. Method {@link #toString}
106     * returns snapshots of these state queries in a form convenient for
107     * informal monitoring.
108 dl 1.1 *
109 dl 1.4 * <p><b>Sample usages:</b>
110     *
111 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 dl 1.48 * to control a one-shot action serving a variable number of parties.
113     * The typical idiom is for the method setting this up to first
114     * register, then start the actions, then deregister, as in:
115 dl 1.1 *
116 jsr166 1.13 * <pre> {@code
117 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
118 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
119 dl 1.27 * // create and start threads
120 jsr166 1.33 * for (Runnable task : tasks) {
121 jsr166 1.13 * phaser.register();
122     * new Thread() {
123     * public void run() {
124     * phaser.arriveAndAwaitAdvance(); // await all creation
125 jsr166 1.33 * task.run();
126 jsr166 1.13 * }
127     * }.start();
128 dl 1.4 * }
129 dl 1.6 *
130 dl 1.27 * // allow threads to start and deregister self
131     * phaser.arriveAndDeregister();
132 jsr166 1.13 * }}</pre>
133 dl 1.1 *
134 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
135 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
136 dl 1.1 *
137 jsr166 1.13 * <pre> {@code
138 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
139 jsr166 1.13 * final Phaser phaser = new Phaser() {
140 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
141 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
142     * }
143     * };
144     * phaser.register();
145 jsr166 1.45 * for (final Runnable task : tasks) {
146 jsr166 1.13 * phaser.register();
147     * new Thread() {
148     * public void run() {
149     * do {
150 jsr166 1.33 * task.run();
151 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
152 jsr166 1.45 * } while (!phaser.isTerminated());
153 dl 1.4 * }
154 jsr166 1.13 * }.start();
155 dl 1.1 * }
156 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 jsr166 1.13 * }}</pre>
158 dl 1.1 *
159 dl 1.38 * If the main task must later await termination, it
160     * may re-register and then execute a similar loop:
161 jsr166 1.45 * <pre> {@code
162 dl 1.38 * // ...
163     * phaser.register();
164     * while (!phaser.isTerminated())
165 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
166 dl 1.38 *
167 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
168 dl 1.38 * in contexts where you are sure that the phase will never wrap around
169     * {@code Integer.MAX_VALUE}. For example:
170     *
171 jsr166 1.45 * <pre> {@code
172     * void awaitPhase(Phaser phaser, int phase) {
173     * int p = phaser.register(); // assumes caller not already registered
174     * while (p < phase) {
175     * if (phaser.isTerminated())
176     * // ... deal with unexpected termination
177     * else
178     * p = phaser.arriveAndAwaitAdvance();
179 dl 1.38 * }
180 jsr166 1.45 * phaser.arriveAndDeregister();
181     * }}</pre>
182 dl 1.38 *
183     *
184 jsr166 1.25 * <p>To create a set of tasks using a tree of phasers,
185 dl 1.4 * you could use code of the following form, assuming a
186 jsr166 1.24 * Task class with a constructor accepting a phaser that
187 dl 1.48 * it registers with upon construction:
188 jsr166 1.45 *
189 jsr166 1.13 * <pre> {@code
190 dl 1.44 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191     * if (hi - lo > TASKS_PER_PHASER) {
192     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193     * int j = Math.min(i + TASKS_PER_PHASER, hi);
194     * build(actions, i, j, new Phaser(ph));
195 jsr166 1.13 * }
196     * } else {
197     * for (int i = lo; i < hi; ++i)
198 dl 1.44 * actions[i] = new Task(ph);
199     * // assumes new Task(ph) performs ph.register()
200 jsr166 1.13 * }
201     * }
202     * // .. initially called, for n tasks via
203     * build(new Task[n], 0, n, new Phaser());}</pre>
204 dl 1.4 *
205 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 dl 1.4 * expected barrier synchronization rates. A value as low as four may
207     * be appropriate for extremely small per-barrier task bodies (thus
208     * high rates), or up to hundreds for extremely large ones.
209     *
210 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
211 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
212 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
213 dl 1.4 * should create tiered phasers to accommodate arbitrarily large sets
214     * of participants.
215 jsr166 1.16 *
216     * @since 1.7
217     * @author Doug Lea
218 dl 1.1 */
219     public class Phaser {
220     /*
221     * This class implements an extension of X10 "clocks". Thanks to
222 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223     * enhancements to extend functionality.
224 dl 1.1 */
225    
226     /**
227     * Barrier state representation. Conceptually, a barrier contains
228     * four values:
229 jsr166 1.3 *
230 dl 1.51 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231     * * parties -- the number of parties to wait (bits 16-31)
232     * * phase -- the generation of the barrier (bits 32-62)
233     * * terminated -- set if barrier is terminated (bit 63 / sign)
234 dl 1.1 *
235     * However, to efficiently maintain atomicity, these values are
236 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
237     * bit of 32 bit representation of phase, so phase is set to -1 on
238 jsr166 1.8 * termination. Good performance relies on keeping state decoding
239 dl 1.4 * and encoding simple, and keeping race windows short.
240 dl 1.1 */
241 dl 1.4 private volatile long state;
242 dl 1.1
243 dl 1.55 private static final int MAX_PARTIES = 0xffff;
244 dl 1.51 private static final int MAX_PHASE = 0x7fffffff;
245     private static final int PARTIES_SHIFT = 16;
246     private static final int PHASE_SHIFT = 32;
247 dl 1.55 private static final int UNARRIVED_MASK = 0xffff;
248     private static final int PARTIES_MASK = 0xffff0000;
249     private static final long LPARTIES_MASK = 0xffff0000L; // long version
250 dl 1.51 private static final long ONE_ARRIVAL = 1L;
251     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
252     private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
253    
254     // The following unpacking methods are usually manually inlined
255 dl 1.1
256     private static int unarrivedOf(long s) {
257 dl 1.55 return ((int) s) & UNARRIVED_MASK;
258 dl 1.1 }
259    
260     private static int partiesOf(long s) {
261 dl 1.55 return (((int) s) & PARTIES_MASK) >>> PARTIES_SHIFT;
262 dl 1.1 }
263    
264     private static int phaseOf(long s) {
265 dl 1.51 return (int) (s >>> PHASE_SHIFT);
266 dl 1.1 }
267    
268     private static int arrivedOf(long s) {
269     return partiesOf(s) - unarrivedOf(s);
270     }
271    
272 dl 1.4 /**
273     * The parent of this phaser, or null if none
274     */
275     private final Phaser parent;
276    
277     /**
278 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
279 dl 1.4 * support faster state push-down.
280     */
281     private final Phaser root;
282    
283     /**
284 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
285 dl 1.49 * contention when releasing some threads while adding others, we
286 dl 1.4 * use two of them, alternating across even and odd phases.
287 dl 1.49 * Subphasers share queues with root to speed up releases.
288 dl 1.4 */
289 dl 1.50 private final AtomicReference<QNode> evenQ;
290     private final AtomicReference<QNode> oddQ;
291 dl 1.4
292     private AtomicReference<QNode> queueFor(int phase) {
293 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
294 dl 1.4 }
295    
296     /**
297 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
298     * Manually tuned to speed up and minimize race windows for the
299     * common case of just decrementing unarrived field.
300     *
301     * @param adj - adjustment to apply to state -- either
302     * ONE_ARRIVAL (for arrive) or
303     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
304 dl 1.4 */
305 dl 1.51 private int doArrive(long adj) {
306 dl 1.54 for (;;) {
307     long s;
308     int phase, unarrived;
309     if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
310     return phase;
311 dl 1.55 else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0)
312 dl 1.54 checkBadArrive(s);
313 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 dl 1.54 if (unarrived == 1) {
315     Phaser par;
316 dl 1.55 long p = s & LPARTIES_MASK; // unshifted parties field
317 dl 1.54 long lu = p >>> PARTIES_SHIFT;
318     int u = (int)lu;
319     int nextPhase = (phase + 1) & MAX_PHASE;
320     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
321     if ((par = parent) == null) {
322 dl 1.55 if (onAdvance(phase, u))
323     next |= TERMINATION_PHASE; // obliterate phase
324     UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 dl 1.54 releaseWaiters(phase);
326     }
327     else {
328     par.doArrive(u == 0?
329     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330     if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
331     ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332     !UNSAFE.compareAndSwapLong(this, stateOffset,
333     s, next)))
334     reconcileState();
335 dl 1.51 }
336     }
337 dl 1.54 return phase;
338 dl 1.51 }
339     }
340     }
341    
342     /**
343 dl 1.54 * Rechecks state and throws bounds exceptions on arrival -- called
344     * only if unarrived is apparently zero.
345 dl 1.51 */
346 dl 1.54 private void checkBadArrive(long s) {
347     if (reconcileState() == s)
348     throw new IllegalStateException
349     ("Attempted arrival of unregistered party for " +
350     stateToString(s));
351 dl 1.4 }
352    
353     /**
354 dl 1.51 * Implementation of register, bulkRegister
355     *
356     * @param registrations number to add to both parties and unarrived fields
357     */
358     private int doRegister(int registrations) {
359     long adj = (long)registrations; // adjustment to state
360     adj |= adj << PARTIES_SHIFT;
361     Phaser par = parent;
362 dl 1.54 for (;;) {
363     int phase, parties;
364     long s = par == null? state : reconcileState();
365     if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
366     return phase;
367 dl 1.55 if ((parties = (((int)s) & PARTIES_MASK) >>> PARTIES_SHIFT) != 0 &&
368     (((int)s) & UNARRIVED_MASK) == 0)
369 dl 1.51 internalAwaitAdvance(phase, null); // wait for onAdvance
370 dl 1.55 else if (parties + registrations > MAX_PARTIES)
371 dl 1.54 throw new IllegalStateException(badRegister(s));
372 dl 1.51 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
373 dl 1.54 return phase;
374 dl 1.51 }
375     }
376    
377     /**
378 dl 1.55 * Returns message string for out of bounds exceptions on registration.
379 dl 1.51 */
380 dl 1.54 private String badRegister(long s) {
381     return "Attempt to register more than " +
382 dl 1.55 MAX_PARTIES + " parties for " + stateToString(s);
383 dl 1.51 }
384    
385     /**
386 dl 1.55 * Recursively resolves lagged phase propagation from root if necessary.
387 dl 1.4 */
388     private long reconcileState() {
389 dl 1.49 Phaser par = parent;
390 dl 1.51 if (par == null)
391     return state;
392     Phaser rt = root;
393 dl 1.54 for (;;) {
394     long s, u;
395     int phase, rPhase, pPhase;
396     if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398     return s;
399     long pState = par.parent == null? par.state : par.reconcileState();
400     if (state == s) {
401 dl 1.55 if ((rPhase < 0 || (((int)s) & UNARRIVED_MASK) == 0) &&
402 dl 1.54 ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403     pPhase == ((phase + 1) & MAX_PHASE)))
404     UNSAFE.compareAndSwapLong
405     (this, stateOffset, s,
406     (((long) pPhase) << PHASE_SHIFT) |
407 dl 1.55 (u = s & LPARTIES_MASK) |
408 dl 1.54 (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409     else
410     releaseWaiters(phase); // help release others
411 dl 1.4 }
412     }
413 dl 1.1 }
414    
415     /**
416 jsr166 1.24 * Creates a new phaser without any initially registered parties,
417 dl 1.10 * initial phase number 0, and no parent. Any thread using this
418 jsr166 1.24 * phaser will need to first register for it.
419 dl 1.1 */
420     public Phaser() {
421 dl 1.50 this(null, 0);
422 dl 1.1 }
423    
424     /**
425 dl 1.48 * Creates a new phaser with the given number of registered
426 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
427 jsr166 1.14 *
428     * @param parties the number of parties required to trip barrier
429 dl 1.1 * @throws IllegalArgumentException if parties less than zero
430 jsr166 1.14 * or greater than the maximum number of parties supported
431 dl 1.1 */
432     public Phaser(int parties) {
433 dl 1.4 this(null, parties);
434     }
435    
436     /**
437 jsr166 1.24 * Creates a new phaser with the given parent, without any
438 dl 1.4 * initially registered parties. If parent is non-null this phaser
439     * is registered with the parent and its initial phase number is
440     * the same as that of parent phaser.
441 jsr166 1.14 *
442     * @param parent the parent phaser
443 dl 1.4 */
444     public Phaser(Phaser parent) {
445 dl 1.50 this(parent, 0);
446 dl 1.4 }
447    
448     /**
449 dl 1.48 * Creates a new phaser with the given parent and number of
450 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
451 dl 1.4 * is registered with the parent and its initial phase number is
452     * the same as that of parent phaser.
453 jsr166 1.14 *
454     * @param parent the parent phaser
455     * @param parties the number of parties required to trip barrier
456 dl 1.4 * @throws IllegalArgumentException if parties less than zero
457 jsr166 1.14 * or greater than the maximum number of parties supported
458 dl 1.4 */
459     public Phaser(Phaser parent, int parties) {
460 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
461 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
462 dl 1.50 int phase;
463 dl 1.4 this.parent = parent;
464     if (parent != null) {
465 dl 1.50 Phaser r = parent.root;
466     this.root = r;
467     this.evenQ = r.evenQ;
468     this.oddQ = r.oddQ;
469 dl 1.4 phase = parent.register();
470     }
471 dl 1.50 else {
472 dl 1.4 this.root = this;
473 dl 1.50 this.evenQ = new AtomicReference<QNode>();
474     this.oddQ = new AtomicReference<QNode>();
475     phase = 0;
476     }
477 dl 1.51 long p = (long)parties;
478 dl 1.55 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479 dl 1.1 }
480    
481     /**
482     * Adds a new unarrived party to this phaser.
483 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
484 dl 1.50 * this method may wait until its completion before registering.
485 jsr166 1.14 *
486 dl 1.35 * @return the arrival phase number to which this registration applied
487 dl 1.1 * @throws IllegalStateException if attempting to register more
488 jsr166 1.14 * than the maximum supported number of parties
489 dl 1.1 */
490 dl 1.4 public int register() {
491     return doRegister(1);
492     }
493    
494     /**
495     * Adds the given number of new unarrived parties to this phaser.
496 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
497 dl 1.50 * this method may wait until its completion before registering.
498 jsr166 1.14 *
499 dl 1.48 * @param parties the number of additional parties required to trip barrier
500 dl 1.35 * @return the arrival phase number to which this registration applied
501 dl 1.4 * @throws IllegalStateException if attempting to register more
502 jsr166 1.14 * than the maximum supported number of parties
503 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
504 dl 1.4 */
505     public int bulkRegister(int parties) {
506     if (parties < 0)
507     throw new IllegalArgumentException();
508 dl 1.55 if (parties > MAX_PARTIES)
509 dl 1.54 throw new IllegalStateException(badRegister(state));
510 dl 1.4 if (parties == 0)
511     return getPhase();
512     return doRegister(parties);
513     }
514    
515     /**
516 dl 1.1 * Arrives at the barrier, but does not wait for others. (You can
517 dl 1.38 * in turn wait for others via {@link #awaitAdvance}). It is an
518     * unenforced usage error for an unregistered party to invoke this
519     * method.
520 dl 1.1 *
521 dl 1.35 * @return the arrival phase number, or a negative value if terminated
522 dl 1.4 * @throws IllegalStateException if not terminated and the number
523 jsr166 1.14 * of unarrived parties would become negative
524 dl 1.1 */
525 dl 1.4 public int arrive() {
526 dl 1.51 return doArrive(ONE_ARRIVAL);
527 dl 1.1 }
528    
529     /**
530 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
531     * for others. Deregistration reduces the number of parties
532 dl 1.4 * required to trip the barrier in future phases. If this phaser
533     * has a parent, and deregistration causes this phaser to have
534 dl 1.27 * zero parties, this phaser also arrives at and is deregistered
535 dl 1.38 * from its parent. It is an unenforced usage error for an
536     * unregistered party to invoke this method.
537 dl 1.1 *
538 dl 1.35 * @return the arrival phase number, or a negative value if terminated
539 dl 1.4 * @throws IllegalStateException if not terminated and the number
540 jsr166 1.14 * of registered or unarrived parties would become negative
541 dl 1.1 */
542 dl 1.4 public int arriveAndDeregister() {
543 dl 1.51 return doArrive(ONE_ARRIVAL|ONE_PARTY);
544 dl 1.1 }
545    
546     /**
547 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
548 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
549     * interruption or timeout, you can arrange this with an analogous
550 dl 1.48 * construction using one of the other forms of the {@code
551     * awaitAdvance} method. If instead you need to deregister upon
552     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553     * usage error for an unregistered party to invoke this method.
554 jsr166 1.14 *
555 dl 1.35 * @return the arrival phase number, or a negative number if terminated
556 dl 1.4 * @throws IllegalStateException if not terminated and the number
557 jsr166 1.14 * of unarrived parties would become negative
558 dl 1.1 */
559     public int arriveAndAwaitAdvance() {
560 dl 1.4 return awaitAdvance(arrive());
561 dl 1.1 }
562    
563     /**
564 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
565 dl 1.30 * value, returning immediately if the current phase of the
566     * barrier is not equal to the given phase value or this barrier
567 dl 1.50 * is terminated.
568 jsr166 1.14 *
569 dl 1.35 * @param phase an arrival phase number, or negative value if
570     * terminated; this argument is normally the value returned by a
571     * previous call to {@code arrive} or its variants
572     * @return the next arrival phase number, or a negative value
573     * if terminated or argument is negative
574 dl 1.1 */
575     public int awaitAdvance(int phase) {
576 dl 1.55 int p;
577 dl 1.1 if (phase < 0)
578     return phase;
579 dl 1.55 else if ((p = (int)((parent == null? state : reconcileState())
580     >>> PHASE_SHIFT)) == phase)
581     return internalAwaitAdvance(phase, null);
582     else
583 dl 1.4 return p;
584 dl 1.1 }
585    
586     /**
587 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
588 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
589     * while waiting, or returning immediately if the current phase of
590     * the barrier is not equal to the given phase value or this
591 dl 1.50 * barrier is terminated.
592 jsr166 1.14 *
593 dl 1.35 * @param phase an arrival phase number, or negative value if
594     * terminated; this argument is normally the value returned by a
595     * previous call to {@code arrive} or its variants
596     * @return the next arrival phase number, or a negative value
597     * if terminated or argument is negative
598 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
599     */
600 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
601 dl 1.10 throws InterruptedException {
602 dl 1.55 int p;
603 dl 1.1 if (phase < 0)
604     return phase;
605 dl 1.55 if ((p = (int)((parent == null? state : reconcileState())
606     >>> PHASE_SHIFT)) == phase) {
607     QNode node = new QNode(this, phase, true, false, 0L);
608     p = internalAwaitAdvance(phase, node);
609     if (node.wasInterrupted)
610     throw new InterruptedException();
611     }
612     return p;
613 dl 1.1 }
614    
615     /**
616 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
617 dl 1.38 * value or the given timeout to elapse, throwing {@code
618     * InterruptedException} if interrupted while waiting, or
619     * returning immediately if the current phase of the barrier is
620     * not equal to the given phase value or this barrier is
621 dl 1.50 * terminated.
622 jsr166 1.14 *
623 dl 1.35 * @param phase an arrival phase number, or negative value if
624     * terminated; this argument is normally the value returned by a
625     * previous call to {@code arrive} or its variants
626 dl 1.31 * @param timeout how long to wait before giving up, in units of
627     * {@code unit}
628     * @param unit a {@code TimeUnit} determining how to interpret the
629     * {@code timeout} parameter
630 dl 1.35 * @return the next arrival phase number, or a negative value
631     * if terminated or argument is negative
632 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
633     * @throws TimeoutException if timed out while waiting
634     */
635 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
636     long timeout, TimeUnit unit)
637 dl 1.1 throws InterruptedException, TimeoutException {
638 dl 1.49 long nanos = unit.toNanos(timeout);
639 dl 1.55 int p;
640 dl 1.1 if (phase < 0)
641     return phase;
642 dl 1.55 if ((p = (int)((parent == null? state : reconcileState())
643     >>> PHASE_SHIFT)) == phase) {
644     QNode node = new QNode(this, phase, true, true, nanos);
645     p = internalAwaitAdvance(phase, node);
646     if (node.wasInterrupted)
647     throw new InterruptedException();
648     else if (p == phase)
649     throw new TimeoutException();
650     }
651     return p;
652 dl 1.1 }
653    
654     /**
655 dl 1.55 * Forces this barrier to enter termination state. Counts of
656     * arrived and registered parties are unaffected. If this phaser
657     * is a member of a tiered set of phasers, then all of the phasers
658     * in the set are terminated. If this phaser is already
659     * terminated, this method has no effect. This method may be
660     * useful for coordinating recovery after one or more tasks
661     * encounter unexpected exceptions.
662 dl 1.1 */
663     public void forceTermination() {
664 dl 1.55 // Only need to change root state
665     final Phaser root = this.root;
666 dl 1.49 long s;
667 dl 1.55 while ((s = root.state) >= 0) {
668     if (UNSAFE.compareAndSwapLong(root, stateOffset,
669     s, s | TERMINATION_PHASE)) {
670     releaseWaiters(0); // signal all threads
671     releaseWaiters(1);
672     return;
673     }
674     }
675 dl 1.1 }
676    
677     /**
678 dl 1.4 * Returns the current phase number. The maximum phase number is
679 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
680 dl 1.4 * zero. Upon termination, the phase number is negative.
681 jsr166 1.14 *
682 dl 1.4 * @return the phase number, or a negative value if terminated
683 dl 1.1 */
684 dl 1.4 public final int getPhase() {
685 dl 1.54 return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
686 dl 1.1 }
687    
688     /**
689     * Returns the number of parties registered at this barrier.
690 jsr166 1.14 *
691 dl 1.1 * @return the number of parties
692     */
693     public int getRegisteredParties() {
694 dl 1.54 return partiesOf(parent==null? state : reconcileState());
695 dl 1.1 }
696    
697     /**
698 dl 1.36 * Returns the number of registered parties that have arrived at
699     * the current phase of this barrier.
700 jsr166 1.14 *
701 dl 1.1 * @return the number of arrived parties
702     */
703     public int getArrivedParties() {
704 dl 1.54 return arrivedOf(parent==null? state : reconcileState());
705 dl 1.1 }
706    
707     /**
708     * Returns the number of registered parties that have not yet
709     * arrived at the current phase of this barrier.
710 jsr166 1.14 *
711 dl 1.1 * @return the number of unarrived parties
712     */
713     public int getUnarrivedParties() {
714 dl 1.54 return unarrivedOf(parent==null? state : reconcileState());
715 dl 1.4 }
716    
717     /**
718 jsr166 1.23 * Returns the parent of this phaser, or {@code null} if none.
719 jsr166 1.14 *
720 jsr166 1.23 * @return the parent of this phaser, or {@code null} if none
721 dl 1.4 */
722     public Phaser getParent() {
723     return parent;
724     }
725    
726     /**
727     * Returns the root ancestor of this phaser, which is the same as
728     * this phaser if it has no parent.
729 jsr166 1.14 *
730 jsr166 1.9 * @return the root ancestor of this phaser
731 dl 1.4 */
732     public Phaser getRoot() {
733     return root;
734 dl 1.1 }
735    
736     /**
737 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
738 jsr166 1.14 *
739 jsr166 1.9 * @return {@code true} if this barrier has been terminated
740 dl 1.1 */
741     public boolean isTerminated() {
742 dl 1.51 return (parent == null? state : reconcileState()) < 0;
743 dl 1.1 }
744    
745     /**
746 dl 1.43 * Overridable method to perform an action upon impending phase
747     * advance, and to control termination. This method is invoked
748     * upon arrival of the party tripping the barrier (when all other
749     * waiting parties are dormant). If this method returns {@code
750     * true}, then, rather than advance the phase number, this barrier
751     * will be set to a final termination state, and subsequent calls
752     * to {@link #isTerminated} will return true. Any (unchecked)
753     * Exception or Error thrown by an invocation of this method is
754     * propagated to the party attempting to trip the barrier, in
755     * which case no advance occurs.
756 dl 1.42 *
757     * <p>The arguments to this method provide the state of the phaser
758 dl 1.51 * prevailing for the current transition. The effects of invoking
759     * arrival, registration, and waiting methods on this Phaser from
760 dl 1.50 * within {@code onAdvance} are unspecified and should not be
761 dl 1.51 * relied on.
762     *
763     * <p>If this Phaser is a member of a tiered set of Phasers, then
764     * {@code onAdvance} is invoked only for its root Phaser on each
765     * advance.
766 jsr166 1.3 *
767 jsr166 1.25 * <p>The default version returns {@code true} when the number of
768 dl 1.1 * registered parties is zero. Normally, overrides that arrange
769     * termination for other reasons should also preserve this
770     * property.
771     *
772     * @param phase the phase number on entering the barrier
773 jsr166 1.9 * @param registeredParties the current number of registered parties
774     * @return {@code true} if this barrier should terminate
775 dl 1.1 */
776     protected boolean onAdvance(int phase, int registeredParties) {
777     return registeredParties <= 0;
778     }
779    
780     /**
781 dl 1.4 * Returns a string identifying this phaser, as well as its
782 dl 1.1 * state. The state, in brackets, includes the String {@code
783 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
784 dl 1.1 * followed by the number of registered parties, and {@code
785 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
786 dl 1.1 *
787     * @return a string identifying this barrier, as well as its state
788     */
789     public String toString() {
790 dl 1.54 return stateToString(reconcileState());
791     }
792    
793     /**
794     * Implementation of toString and string-based error messages
795     */
796     private String stateToString(long s) {
797 jsr166 1.9 return super.toString() +
798     "[phase = " + phaseOf(s) +
799     " parties = " + partiesOf(s) +
800     " arrived = " + arrivedOf(s) + "]";
801 dl 1.1 }
802    
803 dl 1.54 // Waiting mechanics
804    
805 dl 1.4 /**
806 dl 1.51 * Removes and signals threads from queue for phase
807 dl 1.4 */
808     private void releaseWaiters(int phase) {
809     AtomicReference<QNode> head = queueFor(phase);
810     QNode q;
811 dl 1.51 int p;
812     while ((q = head.get()) != null &&
813     ((p = q.phase) == phase ||
814     (int)(root.state >>> PHASE_SHIFT) != p)) {
815 dl 1.4 if (head.compareAndSet(q, q.next))
816     q.signal();
817     }
818     }
819    
820     /**
821 jsr166 1.14 * Tries to enqueue given node in the appropriate wait queue.
822     *
823 dl 1.10 * @return true if successful
824     */
825 dl 1.51 private boolean tryEnqueue(int phase, QNode node) {
826     releaseWaiters(phase-1); // ensure old queue clean
827     AtomicReference<QNode> head = queueFor(phase);
828     QNode q = head.get();
829     return ((q == null || q.phase == phase) &&
830     (int)(root.state >>> PHASE_SHIFT) == phase &&
831     head.compareAndSet(node.next = q, node));
832 dl 1.10 }
833    
834 dl 1.51 /** The number of CPUs, for spin control */
835     private static final int NCPU = Runtime.getRuntime().availableProcessors();
836    
837 dl 1.10 /**
838 dl 1.51 * The number of times to spin before blocking while waiting for
839     * advance, per arrival while waiting. On multiprocessors, fully
840     * blocking and waking up a large number of threads all at once is
841     * usually a very slow process, so we use rechargeable spins to
842     * avoid it when threads regularly arrive: When a thread in
843     * internalAwaitAdvance notices another arrival before blocking,
844     * and there appear to be enough CPUs available, it spins
845 dl 1.55 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
846     * uniprocessors, there is at least one intervening Thread.yield
847     * before blocking. The value trades off good-citizenship vs big
848     * unnecessary slowdowns.
849 dl 1.50 */
850 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
851 dl 1.50
852     /**
853 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
854 jsr166 1.14 *
855 dl 1.51 * @param phase current phase
856 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
857 dl 1.51 * if null, denotes noninterruptible wait
858 dl 1.10 * @return current phase
859 dl 1.1 */
860 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
861     Phaser current = this; // to eventually wait at root if tiered
862 dl 1.54 boolean queued = false; // true when node is enqueued
863     int lastUnarrived = -1; // to increase spins upon change
864 dl 1.51 int spins = SPINS_PER_ARRIVAL;
865 dl 1.54 for (;;) {
866     int p, unarrived;
867     Phaser par;
868     long s = current.state;
869     if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
870     if (node != null)
871     node.onRelease();
872     releaseWaiters(phase);
873     return p;
874     }
875 dl 1.55 else if ((unarrived = ((int)s) & UNARRIVED_MASK) == 0 &&
876     (par = current.parent) != null) {
877     current = par; // if all arrived, use parent
878     par = par.parent;
879     lastUnarrived = -1;
880     }
881     else if (unarrived != lastUnarrived) {
882 dl 1.51 if ((lastUnarrived = unarrived) < NCPU)
883     spins += SPINS_PER_ARRIVAL;
884     }
885 dl 1.55 else if (spins > 0) {
886     if (--spins == (SPINS_PER_ARRIVAL >>> 1))
887     Thread.yield(); // yield midway through spin
888 dl 1.50 }
889 dl 1.54 else if (node == null) // must be noninterruptible
890 dl 1.51 node = new QNode(this, phase, false, false, 0L);
891 dl 1.54 else if (node.isReleasable()) {
892     if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
893     return phase; // aborted
894     }
895 dl 1.10 else if (!queued)
896 dl 1.51 queued = tryEnqueue(phase, node);
897     else {
898     try {
899     ForkJoinPool.managedBlock(node);
900     } catch (InterruptedException ie) {
901     node.wasInterrupted = true;
902     }
903     }
904 dl 1.4 }
905     }
906    
907     /**
908 dl 1.51 * Wait nodes for Treiber stack representing wait queue
909 dl 1.4 */
910 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
911     final Phaser phaser;
912     final int phase;
913     final boolean interruptible;
914     final boolean timed;
915     boolean wasInterrupted;
916     long nanos;
917     long lastTime;
918     volatile Thread thread; // nulled to cancel wait
919     QNode next;
920    
921     QNode(Phaser phaser, int phase, boolean interruptible,
922     boolean timed, long nanos) {
923     this.phaser = phaser;
924     this.phase = phase;
925     this.interruptible = interruptible;
926     this.nanos = nanos;
927     this.timed = timed;
928     this.lastTime = timed? System.nanoTime() : 0L;
929     thread = Thread.currentThread();
930     }
931    
932     public boolean isReleasable() {
933     Thread t = thread;
934     if (t != null) {
935     if (phaser.getPhase() != phase)
936     t = null;
937     else {
938     if (Thread.interrupted())
939     wasInterrupted = true;
940     if (interruptible && wasInterrupted)
941     t = null;
942     else if (timed) {
943     if (nanos > 0) {
944     long now = System.nanoTime();
945     nanos -= now - lastTime;
946     lastTime = now;
947     }
948     if (nanos <= 0)
949     t = null;
950     }
951     }
952     if (t != null)
953     return false;
954     thread = null;
955 dl 1.50 }
956 dl 1.51 return true;
957     }
958    
959     public boolean block() {
960     if (isReleasable())
961     return true;
962     else if (!timed)
963     LockSupport.park(this);
964     else if (nanos > 0)
965     LockSupport.parkNanos(this, nanos);
966     return isReleasable();
967 dl 1.1 }
968    
969 dl 1.51 void signal() {
970     Thread t = thread;
971     if (t != null) {
972     thread = null;
973     LockSupport.unpark(t);
974 dl 1.50 }
975 dl 1.4 }
976 dl 1.54
977     void onRelease() { // actions upon return from internalAwaitAdvance
978     if (!interruptible && wasInterrupted)
979     Thread.currentThread().interrupt();
980     if (thread != null)
981     thread = null;
982     }
983    
984 dl 1.4 }
985    
986 jsr166 1.22 // Unsafe mechanics
987    
988     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
989     private static final long stateOffset =
990     objectFieldOffset("state", Phaser.class);
991    
992     private static long objectFieldOffset(String field, Class<?> klazz) {
993     try {
994     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
995     } catch (NoSuchFieldException e) {
996     // Convert Exception to corresponding Error
997     NoSuchFieldError error = new NoSuchFieldError(field);
998     error.initCause(e);
999     throw error;
1000     }
1001     }
1002    
1003     /**
1004     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1005     * Replace with a simple call to Unsafe.getUnsafe when integrating
1006     * into a jdk.
1007     *
1008     * @return a sun.misc.Unsafe
1009     */
1010 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1011 jsr166 1.11 try {
1012 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1013 jsr166 1.11 } catch (SecurityException se) {
1014     try {
1015     return java.security.AccessController.doPrivileged
1016 jsr166 1.22 (new java.security
1017     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1018 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1019 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1020     .Unsafe.class.getDeclaredField("theUnsafe");
1021     f.setAccessible(true);
1022     return (sun.misc.Unsafe) f.get(null);
1023 jsr166 1.11 }});
1024     } catch (java.security.PrivilegedActionException e) {
1025 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1026     e.getCause());
1027 jsr166 1.11 }
1028     }
1029     }
1030 dl 1.1 }