ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.57
Committed: Fri Nov 19 16:03:24 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.56: +83 -92 lines
Log Message:
Reduce need for and improve reconcileState

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82     * onAdvance} returns {@code true}. As illustrated below, when
83     * phasers control actions with a fixed number of iterations, it is
84     * often convenient to override this method to cause termination when
85     * the current phase number reaches a threshold. Method {@link
86     * #forceTermination} is also available to abruptly release waiting
87     * threads and allow them to terminate.
88 dl 1.4 *
89 dl 1.38 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90     * in tree structures) to reduce contention. Phasers with large
91 dl 1.4 * numbers of parties that would otherwise experience heavy
92 dl 1.38 * synchronization contention costs may instead be set up so that
93     * groups of sub-phasers share a common parent. This may greatly
94     * increase throughput even though it incurs greater per-operation
95     * overhead.
96     *
97     * <p><b>Monitoring.</b> While synchronization methods may be invoked
98     * only by registered parties, the current state of a phaser may be
99     * monitored by any caller. At any given moment there are {@link
100 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
101     * #getArrivedParties} have arrived at the current phase ({@link
102     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 dl 1.42 * parties arrive, the phase advances. The values returned by these
104     * methods may reflect transient states and so are not in general
105     * useful for synchronization control. Method {@link #toString}
106     * returns snapshots of these state queries in a form convenient for
107     * informal monitoring.
108 dl 1.1 *
109 dl 1.4 * <p><b>Sample usages:</b>
110     *
111 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 dl 1.48 * to control a one-shot action serving a variable number of parties.
113     * The typical idiom is for the method setting this up to first
114     * register, then start the actions, then deregister, as in:
115 dl 1.1 *
116 jsr166 1.13 * <pre> {@code
117 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
118 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
119 dl 1.27 * // create and start threads
120 jsr166 1.33 * for (Runnable task : tasks) {
121 jsr166 1.13 * phaser.register();
122     * new Thread() {
123     * public void run() {
124     * phaser.arriveAndAwaitAdvance(); // await all creation
125 jsr166 1.33 * task.run();
126 jsr166 1.13 * }
127     * }.start();
128 dl 1.4 * }
129 dl 1.6 *
130 dl 1.27 * // allow threads to start and deregister self
131     * phaser.arriveAndDeregister();
132 jsr166 1.13 * }}</pre>
133 dl 1.1 *
134 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
135 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
136 dl 1.1 *
137 jsr166 1.13 * <pre> {@code
138 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
139 jsr166 1.13 * final Phaser phaser = new Phaser() {
140 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
141 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
142     * }
143     * };
144     * phaser.register();
145 jsr166 1.45 * for (final Runnable task : tasks) {
146 jsr166 1.13 * phaser.register();
147     * new Thread() {
148     * public void run() {
149     * do {
150 jsr166 1.33 * task.run();
151 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
152 jsr166 1.45 * } while (!phaser.isTerminated());
153 dl 1.4 * }
154 jsr166 1.13 * }.start();
155 dl 1.1 * }
156 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 jsr166 1.13 * }}</pre>
158 dl 1.1 *
159 dl 1.38 * If the main task must later await termination, it
160     * may re-register and then execute a similar loop:
161 jsr166 1.45 * <pre> {@code
162 dl 1.38 * // ...
163     * phaser.register();
164     * while (!phaser.isTerminated())
165 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
166 dl 1.38 *
167 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
168 dl 1.38 * in contexts where you are sure that the phase will never wrap around
169     * {@code Integer.MAX_VALUE}. For example:
170     *
171 jsr166 1.45 * <pre> {@code
172     * void awaitPhase(Phaser phaser, int phase) {
173     * int p = phaser.register(); // assumes caller not already registered
174     * while (p < phase) {
175     * if (phaser.isTerminated())
176     * // ... deal with unexpected termination
177     * else
178     * p = phaser.arriveAndAwaitAdvance();
179 dl 1.38 * }
180 jsr166 1.45 * phaser.arriveAndDeregister();
181     * }}</pre>
182 dl 1.38 *
183     *
184 jsr166 1.25 * <p>To create a set of tasks using a tree of phasers,
185 dl 1.4 * you could use code of the following form, assuming a
186 jsr166 1.24 * Task class with a constructor accepting a phaser that
187 dl 1.48 * it registers with upon construction:
188 jsr166 1.45 *
189 jsr166 1.13 * <pre> {@code
190 dl 1.44 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191     * if (hi - lo > TASKS_PER_PHASER) {
192     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193     * int j = Math.min(i + TASKS_PER_PHASER, hi);
194     * build(actions, i, j, new Phaser(ph));
195 jsr166 1.13 * }
196     * } else {
197     * for (int i = lo; i < hi; ++i)
198 dl 1.44 * actions[i] = new Task(ph);
199     * // assumes new Task(ph) performs ph.register()
200 jsr166 1.13 * }
201     * }
202     * // .. initially called, for n tasks via
203     * build(new Task[n], 0, n, new Phaser());}</pre>
204 dl 1.4 *
205 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 dl 1.4 * expected barrier synchronization rates. A value as low as four may
207     * be appropriate for extremely small per-barrier task bodies (thus
208     * high rates), or up to hundreds for extremely large ones.
209     *
210 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
211 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
212 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
213 dl 1.4 * should create tiered phasers to accommodate arbitrarily large sets
214     * of participants.
215 jsr166 1.16 *
216     * @since 1.7
217     * @author Doug Lea
218 dl 1.1 */
219     public class Phaser {
220     /*
221     * This class implements an extension of X10 "clocks". Thanks to
222 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223     * enhancements to extend functionality.
224 dl 1.1 */
225    
226     /**
227     * Barrier state representation. Conceptually, a barrier contains
228     * four values:
229 jsr166 1.3 *
230 dl 1.51 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231     * * parties -- the number of parties to wait (bits 16-31)
232     * * phase -- the generation of the barrier (bits 32-62)
233     * * terminated -- set if barrier is terminated (bit 63 / sign)
234 dl 1.1 *
235     * However, to efficiently maintain atomicity, these values are
236 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
237     * bit of 32 bit representation of phase, so phase is set to -1 on
238 jsr166 1.8 * termination. Good performance relies on keeping state decoding
239 dl 1.4 * and encoding simple, and keeping race windows short.
240 dl 1.1 */
241 dl 1.4 private volatile long state;
242 dl 1.1
243 dl 1.55 private static final int MAX_PARTIES = 0xffff;
244 dl 1.51 private static final int MAX_PHASE = 0x7fffffff;
245     private static final int PARTIES_SHIFT = 16;
246     private static final int PHASE_SHIFT = 32;
247 dl 1.55 private static final int UNARRIVED_MASK = 0xffff;
248 dl 1.57 private static final long PARTIES_MASK = 0xffff0000L; // for masking long
249 dl 1.51 private static final long ONE_ARRIVAL = 1L;
250     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251     private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252    
253     // The following unpacking methods are usually manually inlined
254 dl 1.1
255     private static int unarrivedOf(long s) {
256 dl 1.56 return (int)s & UNARRIVED_MASK;
257 dl 1.1 }
258    
259     private static int partiesOf(long s) {
260 dl 1.56 return (int)s >>> PARTIES_SHIFT;
261 dl 1.1 }
262    
263     private static int phaseOf(long s) {
264 dl 1.51 return (int) (s >>> PHASE_SHIFT);
265 dl 1.1 }
266    
267     private static int arrivedOf(long s) {
268     return partiesOf(s) - unarrivedOf(s);
269     }
270    
271 dl 1.4 /**
272     * The parent of this phaser, or null if none
273     */
274     private final Phaser parent;
275    
276     /**
277 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
278 dl 1.4 * support faster state push-down.
279     */
280     private final Phaser root;
281    
282     /**
283 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
284 dl 1.49 * contention when releasing some threads while adding others, we
285 dl 1.4 * use two of them, alternating across even and odd phases.
286 dl 1.49 * Subphasers share queues with root to speed up releases.
287 dl 1.4 */
288 dl 1.50 private final AtomicReference<QNode> evenQ;
289     private final AtomicReference<QNode> oddQ;
290 dl 1.4
291     private AtomicReference<QNode> queueFor(int phase) {
292 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
293 dl 1.4 }
294    
295     /**
296 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
297     * Manually tuned to speed up and minimize race windows for the
298     * common case of just decrementing unarrived field.
299     *
300     * @param adj - adjustment to apply to state -- either
301     * ONE_ARRIVAL (for arrive) or
302     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 dl 1.4 */
304 dl 1.51 private int doArrive(long adj) {
305 dl 1.54 for (;;) {
306 dl 1.57 long s = state;
307     int phase = (int)(s >>> PHASE_SHIFT);
308     if (phase < 0)
309 dl 1.54 return phase;
310 dl 1.57 int unarrived = (int)s & UNARRIVED_MASK;
311     if (unarrived == 0)
312 dl 1.54 checkBadArrive(s);
313 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 dl 1.54 if (unarrived == 1) {
315 dl 1.57 long p = s & PARTIES_MASK; // unshifted parties field
316 dl 1.54 long lu = p >>> PARTIES_SHIFT;
317     int u = (int)lu;
318     int nextPhase = (phase + 1) & MAX_PHASE;
319     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 dl 1.57 final Phaser parent = this.parent;
321     if (parent == null) {
322 dl 1.55 if (onAdvance(phase, u))
323     next |= TERMINATION_PHASE; // obliterate phase
324     UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 dl 1.54 releaseWaiters(phase);
326     }
327     else {
328 dl 1.57 parent.doArrive((u == 0) ?
329     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330     if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 dl 1.54 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332     !UNSAFE.compareAndSwapLong(this, stateOffset,
333     s, next)))
334     reconcileState();
335 dl 1.51 }
336     }
337 dl 1.54 return phase;
338 dl 1.51 }
339     }
340     }
341    
342     /**
343 dl 1.54 * Rechecks state and throws bounds exceptions on arrival -- called
344     * only if unarrived is apparently zero.
345 dl 1.51 */
346 dl 1.54 private void checkBadArrive(long s) {
347     if (reconcileState() == s)
348     throw new IllegalStateException
349     ("Attempted arrival of unregistered party for " +
350     stateToString(s));
351 dl 1.4 }
352    
353     /**
354 dl 1.51 * Implementation of register, bulkRegister
355     *
356     * @param registrations number to add to both parties and unarrived fields
357     */
358     private int doRegister(int registrations) {
359 dl 1.57 // assert registrations > 0;
360     // adjustment to state
361     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362     final Phaser parent = this.parent;
363 dl 1.54 for (;;) {
364 dl 1.57 long s = (parent == null) ? state : reconcileState();
365     int phase = (int)(s >>> PHASE_SHIFT);
366     if (phase < 0)
367 dl 1.54 return phase;
368 dl 1.57 int parties = (int)s >>> PARTIES_SHIFT;
369     if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 dl 1.51 internalAwaitAdvance(phase, null); // wait for onAdvance
371 dl 1.57 else if (registrations > MAX_PARTIES - parties)
372 dl 1.54 throw new IllegalStateException(badRegister(s));
373 dl 1.51 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 dl 1.54 return phase;
375 dl 1.51 }
376     }
377    
378     /**
379 dl 1.55 * Returns message string for out of bounds exceptions on registration.
380 dl 1.51 */
381 dl 1.54 private String badRegister(long s) {
382     return "Attempt to register more than " +
383 dl 1.55 MAX_PARTIES + " parties for " + stateToString(s);
384 dl 1.51 }
385    
386     /**
387 dl 1.55 * Recursively resolves lagged phase propagation from root if necessary.
388 dl 1.4 */
389     private long reconcileState() {
390 dl 1.49 Phaser par = parent;
391 dl 1.57 long s = state;
392     if (par != null) {
393     Phaser rt = root;
394     int phase, rPhase;
395     while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397     if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398     par.reconcileState();
399     else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400     long u = s & PARTIES_MASK; // reset unarrived to parties
401     long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402     (u >>> PARTIES_SHIFT));
403     if (state == s &&
404     UNSAFE.compareAndSwapLong(this, stateOffset,
405     s, s = next))
406     break;
407     }
408     s = state;
409 dl 1.4 }
410     }
411 dl 1.57 return s;
412 dl 1.1 }
413    
414     /**
415 jsr166 1.24 * Creates a new phaser without any initially registered parties,
416 dl 1.10 * initial phase number 0, and no parent. Any thread using this
417 jsr166 1.24 * phaser will need to first register for it.
418 dl 1.1 */
419     public Phaser() {
420 dl 1.50 this(null, 0);
421 dl 1.1 }
422    
423     /**
424 dl 1.48 * Creates a new phaser with the given number of registered
425 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
426 jsr166 1.14 *
427     * @param parties the number of parties required to trip barrier
428 dl 1.1 * @throws IllegalArgumentException if parties less than zero
429 jsr166 1.14 * or greater than the maximum number of parties supported
430 dl 1.1 */
431     public Phaser(int parties) {
432 dl 1.4 this(null, parties);
433     }
434    
435     /**
436 jsr166 1.24 * Creates a new phaser with the given parent, without any
437 dl 1.4 * initially registered parties. If parent is non-null this phaser
438     * is registered with the parent and its initial phase number is
439     * the same as that of parent phaser.
440 jsr166 1.14 *
441     * @param parent the parent phaser
442 dl 1.4 */
443     public Phaser(Phaser parent) {
444 dl 1.50 this(parent, 0);
445 dl 1.4 }
446    
447     /**
448 dl 1.48 * Creates a new phaser with the given parent and number of
449 jsr166 1.14 * registered unarrived parties. If parent is non-null, this phaser
450 dl 1.4 * is registered with the parent and its initial phase number is
451     * the same as that of parent phaser.
452 jsr166 1.14 *
453     * @param parent the parent phaser
454     * @param parties the number of parties required to trip barrier
455 dl 1.4 * @throws IllegalArgumentException if parties less than zero
456 jsr166 1.14 * or greater than the maximum number of parties supported
457 dl 1.4 */
458     public Phaser(Phaser parent, int parties) {
459 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
460 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
461 dl 1.50 int phase;
462 dl 1.4 this.parent = parent;
463     if (parent != null) {
464 dl 1.50 Phaser r = parent.root;
465     this.root = r;
466     this.evenQ = r.evenQ;
467     this.oddQ = r.oddQ;
468 dl 1.4 phase = parent.register();
469     }
470 dl 1.50 else {
471 dl 1.4 this.root = this;
472 dl 1.50 this.evenQ = new AtomicReference<QNode>();
473     this.oddQ = new AtomicReference<QNode>();
474     phase = 0;
475     }
476 dl 1.51 long p = (long)parties;
477 dl 1.55 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478 dl 1.1 }
479    
480     /**
481     * Adds a new unarrived party to this phaser.
482 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
483 dl 1.50 * this method may wait until its completion before registering.
484 jsr166 1.14 *
485 dl 1.35 * @return the arrival phase number to which this registration applied
486 dl 1.1 * @throws IllegalStateException if attempting to register more
487 jsr166 1.14 * than the maximum supported number of parties
488 dl 1.1 */
489 dl 1.4 public int register() {
490     return doRegister(1);
491     }
492    
493     /**
494     * Adds the given number of new unarrived parties to this phaser.
495 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
496 dl 1.50 * this method may wait until its completion before registering.
497 jsr166 1.14 *
498 dl 1.48 * @param parties the number of additional parties required to trip barrier
499 dl 1.35 * @return the arrival phase number to which this registration applied
500 dl 1.4 * @throws IllegalStateException if attempting to register more
501 jsr166 1.14 * than the maximum supported number of parties
502 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
503 dl 1.4 */
504     public int bulkRegister(int parties) {
505     if (parties < 0)
506     throw new IllegalArgumentException();
507     if (parties == 0)
508     return getPhase();
509     return doRegister(parties);
510     }
511    
512     /**
513 dl 1.1 * Arrives at the barrier, but does not wait for others. (You can
514 dl 1.38 * in turn wait for others via {@link #awaitAdvance}). It is an
515     * unenforced usage error for an unregistered party to invoke this
516     * method.
517 dl 1.1 *
518 dl 1.35 * @return the arrival phase number, or a negative value if terminated
519 dl 1.4 * @throws IllegalStateException if not terminated and the number
520 jsr166 1.14 * of unarrived parties would become negative
521 dl 1.1 */
522 dl 1.4 public int arrive() {
523 dl 1.51 return doArrive(ONE_ARRIVAL);
524 dl 1.1 }
525    
526     /**
527 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
528     * for others. Deregistration reduces the number of parties
529 dl 1.4 * required to trip the barrier in future phases. If this phaser
530     * has a parent, and deregistration causes this phaser to have
531 dl 1.27 * zero parties, this phaser also arrives at and is deregistered
532 dl 1.38 * from its parent. It is an unenforced usage error for an
533     * unregistered party to invoke this method.
534 dl 1.1 *
535 dl 1.35 * @return the arrival phase number, or a negative value if terminated
536 dl 1.4 * @throws IllegalStateException if not terminated and the number
537 jsr166 1.14 * of registered or unarrived parties would become negative
538 dl 1.1 */
539 dl 1.4 public int arriveAndDeregister() {
540 dl 1.51 return doArrive(ONE_ARRIVAL|ONE_PARTY);
541 dl 1.1 }
542    
543     /**
544 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
545 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
546     * interruption or timeout, you can arrange this with an analogous
547 dl 1.48 * construction using one of the other forms of the {@code
548     * awaitAdvance} method. If instead you need to deregister upon
549     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
550     * usage error for an unregistered party to invoke this method.
551 jsr166 1.14 *
552 dl 1.35 * @return the arrival phase number, or a negative number if terminated
553 dl 1.4 * @throws IllegalStateException if not terminated and the number
554 jsr166 1.14 * of unarrived parties would become negative
555 dl 1.1 */
556     public int arriveAndAwaitAdvance() {
557 dl 1.4 return awaitAdvance(arrive());
558 dl 1.1 }
559    
560     /**
561 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
562 dl 1.30 * value, returning immediately if the current phase of the
563     * barrier is not equal to the given phase value or this barrier
564 dl 1.50 * is terminated.
565 jsr166 1.14 *
566 dl 1.35 * @param phase an arrival phase number, or negative value if
567     * terminated; this argument is normally the value returned by a
568     * previous call to {@code arrive} or its variants
569     * @return the next arrival phase number, or a negative value
570     * if terminated or argument is negative
571 dl 1.1 */
572     public int awaitAdvance(int phase) {
573     if (phase < 0)
574     return phase;
575 dl 1.57 long s = (parent == null) ? state : reconcileState();
576     int p = (int)(s >>> PHASE_SHIFT);
577     return (p != phase) ? p : internalAwaitAdvance(phase, null);
578 dl 1.1 }
579    
580     /**
581 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
582 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
583     * while waiting, or returning immediately if the current phase of
584     * the barrier is not equal to the given phase value or this
585 dl 1.50 * barrier is terminated.
586 jsr166 1.14 *
587 dl 1.35 * @param phase an arrival phase number, or negative value if
588     * terminated; this argument is normally the value returned by a
589     * previous call to {@code arrive} or its variants
590     * @return the next arrival phase number, or a negative value
591     * if terminated or argument is negative
592 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
593     */
594 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
595 dl 1.10 throws InterruptedException {
596 dl 1.1 if (phase < 0)
597     return phase;
598 dl 1.57 long s = (parent == null) ? state : reconcileState();
599     int p = (int)(s >>> PHASE_SHIFT);
600     if (p == phase) {
601 dl 1.55 QNode node = new QNode(this, phase, true, false, 0L);
602     p = internalAwaitAdvance(phase, node);
603     if (node.wasInterrupted)
604     throw new InterruptedException();
605     }
606     return p;
607 dl 1.1 }
608    
609     /**
610 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
611 dl 1.38 * value or the given timeout to elapse, throwing {@code
612     * InterruptedException} if interrupted while waiting, or
613     * returning immediately if the current phase of the barrier is
614     * not equal to the given phase value or this barrier is
615 dl 1.50 * terminated.
616 jsr166 1.14 *
617 dl 1.35 * @param phase an arrival phase number, or negative value if
618     * terminated; this argument is normally the value returned by a
619     * previous call to {@code arrive} or its variants
620 dl 1.31 * @param timeout how long to wait before giving up, in units of
621     * {@code unit}
622     * @param unit a {@code TimeUnit} determining how to interpret the
623     * {@code timeout} parameter
624 dl 1.35 * @return the next arrival phase number, or a negative value
625     * if terminated or argument is negative
626 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
627     * @throws TimeoutException if timed out while waiting
628     */
629 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
630     long timeout, TimeUnit unit)
631 dl 1.1 throws InterruptedException, TimeoutException {
632     if (phase < 0)
633     return phase;
634 dl 1.57 long s = (parent == null) ? state : reconcileState();
635     int p = (int)(s >>> PHASE_SHIFT);
636     if (p == phase) {
637     long nanos = unit.toNanos(timeout);
638 dl 1.55 QNode node = new QNode(this, phase, true, true, nanos);
639     p = internalAwaitAdvance(phase, node);
640     if (node.wasInterrupted)
641     throw new InterruptedException();
642     else if (p == phase)
643     throw new TimeoutException();
644     }
645     return p;
646 dl 1.1 }
647    
648     /**
649 dl 1.55 * Forces this barrier to enter termination state. Counts of
650     * arrived and registered parties are unaffected. If this phaser
651     * is a member of a tiered set of phasers, then all of the phasers
652     * in the set are terminated. If this phaser is already
653     * terminated, this method has no effect. This method may be
654     * useful for coordinating recovery after one or more tasks
655     * encounter unexpected exceptions.
656 dl 1.1 */
657     public void forceTermination() {
658 dl 1.55 // Only need to change root state
659     final Phaser root = this.root;
660 dl 1.49 long s;
661 dl 1.55 while ((s = root.state) >= 0) {
662     if (UNSAFE.compareAndSwapLong(root, stateOffset,
663     s, s | TERMINATION_PHASE)) {
664     releaseWaiters(0); // signal all threads
665     releaseWaiters(1);
666     return;
667     }
668     }
669 dl 1.1 }
670    
671     /**
672 dl 1.4 * Returns the current phase number. The maximum phase number is
673 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
674 dl 1.4 * zero. Upon termination, the phase number is negative.
675 jsr166 1.14 *
676 dl 1.4 * @return the phase number, or a negative value if terminated
677 dl 1.1 */
678 dl 1.4 public final int getPhase() {
679 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
680 dl 1.1 }
681    
682     /**
683     * Returns the number of parties registered at this barrier.
684 jsr166 1.14 *
685 dl 1.1 * @return the number of parties
686     */
687     public int getRegisteredParties() {
688 dl 1.57 return partiesOf(state);
689 dl 1.1 }
690    
691     /**
692 dl 1.36 * Returns the number of registered parties that have arrived at
693     * the current phase of this barrier.
694 jsr166 1.14 *
695 dl 1.1 * @return the number of arrived parties
696     */
697     public int getArrivedParties() {
698 dl 1.54 return arrivedOf(parent==null? state : reconcileState());
699 dl 1.1 }
700    
701     /**
702     * Returns the number of registered parties that have not yet
703     * arrived at the current phase of this barrier.
704 jsr166 1.14 *
705 dl 1.1 * @return the number of unarrived parties
706     */
707     public int getUnarrivedParties() {
708 dl 1.54 return unarrivedOf(parent==null? state : reconcileState());
709 dl 1.4 }
710    
711     /**
712 jsr166 1.23 * Returns the parent of this phaser, or {@code null} if none.
713 jsr166 1.14 *
714 jsr166 1.23 * @return the parent of this phaser, or {@code null} if none
715 dl 1.4 */
716     public Phaser getParent() {
717     return parent;
718     }
719    
720     /**
721     * Returns the root ancestor of this phaser, which is the same as
722     * this phaser if it has no parent.
723 jsr166 1.14 *
724 jsr166 1.9 * @return the root ancestor of this phaser
725 dl 1.4 */
726     public Phaser getRoot() {
727     return root;
728 dl 1.1 }
729    
730     /**
731 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
732 jsr166 1.14 *
733 jsr166 1.9 * @return {@code true} if this barrier has been terminated
734 dl 1.1 */
735     public boolean isTerminated() {
736 dl 1.57 return root.state < 0L;
737 dl 1.1 }
738    
739     /**
740 dl 1.43 * Overridable method to perform an action upon impending phase
741     * advance, and to control termination. This method is invoked
742     * upon arrival of the party tripping the barrier (when all other
743     * waiting parties are dormant). If this method returns {@code
744     * true}, then, rather than advance the phase number, this barrier
745     * will be set to a final termination state, and subsequent calls
746     * to {@link #isTerminated} will return true. Any (unchecked)
747     * Exception or Error thrown by an invocation of this method is
748     * propagated to the party attempting to trip the barrier, in
749     * which case no advance occurs.
750 dl 1.42 *
751     * <p>The arguments to this method provide the state of the phaser
752 dl 1.51 * prevailing for the current transition. The effects of invoking
753     * arrival, registration, and waiting methods on this Phaser from
754 dl 1.50 * within {@code onAdvance} are unspecified and should not be
755 dl 1.51 * relied on.
756     *
757     * <p>If this Phaser is a member of a tiered set of Phasers, then
758     * {@code onAdvance} is invoked only for its root Phaser on each
759     * advance.
760 jsr166 1.3 *
761 jsr166 1.25 * <p>The default version returns {@code true} when the number of
762 dl 1.1 * registered parties is zero. Normally, overrides that arrange
763     * termination for other reasons should also preserve this
764     * property.
765     *
766     * @param phase the phase number on entering the barrier
767 jsr166 1.9 * @param registeredParties the current number of registered parties
768     * @return {@code true} if this barrier should terminate
769 dl 1.1 */
770     protected boolean onAdvance(int phase, int registeredParties) {
771     return registeredParties <= 0;
772     }
773    
774     /**
775 dl 1.4 * Returns a string identifying this phaser, as well as its
776 dl 1.1 * state. The state, in brackets, includes the String {@code
777 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
778 dl 1.1 * followed by the number of registered parties, and {@code
779 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
780 dl 1.1 *
781     * @return a string identifying this barrier, as well as its state
782     */
783     public String toString() {
784 dl 1.54 return stateToString(reconcileState());
785     }
786    
787     /**
788     * Implementation of toString and string-based error messages
789     */
790     private String stateToString(long s) {
791 jsr166 1.9 return super.toString() +
792     "[phase = " + phaseOf(s) +
793     " parties = " + partiesOf(s) +
794     " arrived = " + arrivedOf(s) + "]";
795 dl 1.1 }
796    
797 dl 1.54 // Waiting mechanics
798    
799 dl 1.4 /**
800 dl 1.57 * Removes and signals threads from queue for phase.
801 dl 1.4 */
802     private void releaseWaiters(int phase) {
803     AtomicReference<QNode> head = queueFor(phase);
804     QNode q;
805 dl 1.51 int p;
806     while ((q = head.get()) != null &&
807     ((p = q.phase) == phase ||
808     (int)(root.state >>> PHASE_SHIFT) != p)) {
809 dl 1.4 if (head.compareAndSet(q, q.next))
810     q.signal();
811     }
812     }
813    
814 dl 1.51 /** The number of CPUs, for spin control */
815     private static final int NCPU = Runtime.getRuntime().availableProcessors();
816    
817 dl 1.10 /**
818 dl 1.51 * The number of times to spin before blocking while waiting for
819     * advance, per arrival while waiting. On multiprocessors, fully
820     * blocking and waking up a large number of threads all at once is
821     * usually a very slow process, so we use rechargeable spins to
822     * avoid it when threads regularly arrive: When a thread in
823     * internalAwaitAdvance notices another arrival before blocking,
824     * and there appear to be enough CPUs available, it spins
825 dl 1.55 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826     * uniprocessors, there is at least one intervening Thread.yield
827     * before blocking. The value trades off good-citizenship vs big
828     * unnecessary slowdowns.
829 dl 1.50 */
830 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831 dl 1.50
832     /**
833 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
834 jsr166 1.14 *
835 dl 1.51 * @param phase current phase
836 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
837 dl 1.51 * if null, denotes noninterruptible wait
838 dl 1.10 * @return current phase
839 dl 1.1 */
840 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
841     Phaser current = this; // to eventually wait at root if tiered
842 dl 1.54 boolean queued = false; // true when node is enqueued
843     int lastUnarrived = -1; // to increase spins upon change
844 dl 1.51 int spins = SPINS_PER_ARRIVAL;
845 dl 1.57 long s;
846     int p;
847     while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 dl 1.54 Phaser par;
849 dl 1.57 int unarrived = (int)s & UNARRIVED_MASK;
850     if (unarrived != lastUnarrived) {
851     if (lastUnarrived == -1) // ensure old queue clean
852     releaseWaiters(phase-1);
853     if ((lastUnarrived = unarrived) < NCPU)
854     spins += SPINS_PER_ARRIVAL;
855 dl 1.54 }
856 dl 1.57 else if (unarrived == 0 && (par = current.parent) != null) {
857 dl 1.55 current = par; // if all arrived, use parent
858     par = par.parent;
859     lastUnarrived = -1;
860     }
861     else if (spins > 0) {
862     if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863     Thread.yield(); // yield midway through spin
864 dl 1.50 }
865 dl 1.54 else if (node == null) // must be noninterruptible
866 dl 1.51 node = new QNode(this, phase, false, false, 0L);
867 dl 1.54 else if (node.isReleasable()) {
868 dl 1.57 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869     break;
870     else
871 dl 1.54 return phase; // aborted
872     }
873 dl 1.57 else if (!queued) { // push onto queue
874     AtomicReference<QNode> head = queueFor(phase);
875     QNode q = head.get();
876     if (q == null || q.phase == phase) {
877     node.next = q;
878     if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879     break; // recheck to avoid stale enqueue
880     else
881     queued = head.compareAndSet(q, node);
882     }
883     }
884 dl 1.51 else {
885     try {
886     ForkJoinPool.managedBlock(node);
887     } catch (InterruptedException ie) {
888     node.wasInterrupted = true;
889     }
890     }
891 dl 1.4 }
892 dl 1.57 releaseWaiters(phase);
893     if (node != null)
894     node.onRelease();
895     return p;
896 dl 1.4 }
897    
898     /**
899 dl 1.51 * Wait nodes for Treiber stack representing wait queue
900 dl 1.4 */
901 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
902     final Phaser phaser;
903     final int phase;
904     final boolean interruptible;
905     final boolean timed;
906     boolean wasInterrupted;
907     long nanos;
908     long lastTime;
909     volatile Thread thread; // nulled to cancel wait
910     QNode next;
911    
912     QNode(Phaser phaser, int phase, boolean interruptible,
913     boolean timed, long nanos) {
914     this.phaser = phaser;
915     this.phase = phase;
916     this.interruptible = interruptible;
917     this.nanos = nanos;
918     this.timed = timed;
919     this.lastTime = timed? System.nanoTime() : 0L;
920     thread = Thread.currentThread();
921     }
922    
923     public boolean isReleasable() {
924     Thread t = thread;
925     if (t != null) {
926     if (phaser.getPhase() != phase)
927     t = null;
928     else {
929     if (Thread.interrupted())
930     wasInterrupted = true;
931     if (interruptible && wasInterrupted)
932     t = null;
933     else if (timed) {
934     if (nanos > 0) {
935     long now = System.nanoTime();
936     nanos -= now - lastTime;
937     lastTime = now;
938     }
939     if (nanos <= 0)
940     t = null;
941     }
942     }
943     if (t != null)
944     return false;
945     thread = null;
946 dl 1.50 }
947 dl 1.51 return true;
948     }
949    
950     public boolean block() {
951     if (isReleasable())
952     return true;
953     else if (!timed)
954     LockSupport.park(this);
955     else if (nanos > 0)
956     LockSupport.parkNanos(this, nanos);
957     return isReleasable();
958 dl 1.1 }
959    
960 dl 1.51 void signal() {
961     Thread t = thread;
962     if (t != null) {
963     thread = null;
964     LockSupport.unpark(t);
965 dl 1.50 }
966 dl 1.4 }
967 dl 1.54
968     void onRelease() { // actions upon return from internalAwaitAdvance
969     if (!interruptible && wasInterrupted)
970     Thread.currentThread().interrupt();
971     if (thread != null)
972     thread = null;
973     }
974    
975 dl 1.4 }
976    
977 jsr166 1.22 // Unsafe mechanics
978    
979     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
980     private static final long stateOffset =
981     objectFieldOffset("state", Phaser.class);
982    
983     private static long objectFieldOffset(String field, Class<?> klazz) {
984     try {
985     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
986     } catch (NoSuchFieldException e) {
987     // Convert Exception to corresponding Error
988     NoSuchFieldError error = new NoSuchFieldError(field);
989     error.initCause(e);
990     throw error;
991     }
992     }
993    
994     /**
995     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
996     * Replace with a simple call to Unsafe.getUnsafe when integrating
997     * into a jdk.
998     *
999     * @return a sun.misc.Unsafe
1000     */
1001 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1002 jsr166 1.11 try {
1003 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1004 jsr166 1.11 } catch (SecurityException se) {
1005     try {
1006     return java.security.AccessController.doPrivileged
1007 jsr166 1.22 (new java.security
1008     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1009 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1010 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1011     .Unsafe.class.getDeclaredField("theUnsafe");
1012     f.setAccessible(true);
1013     return (sun.misc.Unsafe) f.get(null);
1014 jsr166 1.11 }});
1015     } catch (java.security.PrivilegedActionException e) {
1016 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1017     e.getCause());
1018 jsr166 1.11 }
1019     }
1020     }
1021 dl 1.1 }