ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.59
Committed: Sat Nov 27 16:46:53 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.58: +105 -72 lines
Log Message:
Remove constraints on tiered deregistration

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21     * number of parties <em>registered</em> to synchronize on a phaser
22     * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79     * immediately return without updating phaser state or waiting for
80     * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82 dl 1.59 * onAdvance} returns {@code true}. The default implementation returns
83     * {@code true} if a deregistration has caused the number of
84     * registered parties to become zero. As illustrated below, when
85 dl 1.39 * phasers control actions with a fixed number of iterations, it is
86     * often convenient to override this method to cause termination when
87     * the current phase number reaches a threshold. Method {@link
88     * #forceTermination} is also available to abruptly release waiting
89     * threads and allow them to terminate.
90 dl 1.4 *
91 dl 1.58 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92     * constructed in tree structures) to reduce contention. Phasers with
93     * large numbers of parties that would otherwise experience heavy
94 dl 1.38 * synchronization contention costs may instead be set up so that
95     * groups of sub-phasers share a common parent. This may greatly
96     * increase throughput even though it incurs greater per-operation
97     * overhead.
98     *
99     * <p><b>Monitoring.</b> While synchronization methods may be invoked
100     * only by registered parties, the current state of a phaser may be
101     * monitored by any caller. At any given moment there are {@link
102 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
103     * #getArrivedParties} have arrived at the current phase ({@link
104     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105 dl 1.42 * parties arrive, the phase advances. The values returned by these
106     * methods may reflect transient states and so are not in general
107     * useful for synchronization control. Method {@link #toString}
108     * returns snapshots of these state queries in a form convenient for
109     * informal monitoring.
110 dl 1.1 *
111 dl 1.4 * <p><b>Sample usages:</b>
112     *
113 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 dl 1.48 * to control a one-shot action serving a variable number of parties.
115     * The typical idiom is for the method setting this up to first
116     * register, then start the actions, then deregister, as in:
117 dl 1.1 *
118 jsr166 1.13 * <pre> {@code
119 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
120 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
121 dl 1.27 * // create and start threads
122 jsr166 1.33 * for (Runnable task : tasks) {
123 jsr166 1.13 * phaser.register();
124     * new Thread() {
125     * public void run() {
126     * phaser.arriveAndAwaitAdvance(); // await all creation
127 jsr166 1.33 * task.run();
128 jsr166 1.13 * }
129     * }.start();
130 dl 1.4 * }
131 dl 1.6 *
132 dl 1.27 * // allow threads to start and deregister self
133     * phaser.arriveAndDeregister();
134 jsr166 1.13 * }}</pre>
135 dl 1.1 *
136 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
137 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
138 dl 1.1 *
139 jsr166 1.13 * <pre> {@code
140 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
141 jsr166 1.13 * final Phaser phaser = new Phaser() {
142 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
143 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
144     * }
145     * };
146     * phaser.register();
147 jsr166 1.45 * for (final Runnable task : tasks) {
148 jsr166 1.13 * phaser.register();
149     * new Thread() {
150     * public void run() {
151     * do {
152 jsr166 1.33 * task.run();
153 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
154 jsr166 1.45 * } while (!phaser.isTerminated());
155 dl 1.4 * }
156 jsr166 1.13 * }.start();
157 dl 1.1 * }
158 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
159 jsr166 1.13 * }}</pre>
160 dl 1.1 *
161 dl 1.38 * If the main task must later await termination, it
162     * may re-register and then execute a similar loop:
163 jsr166 1.45 * <pre> {@code
164 dl 1.38 * // ...
165     * phaser.register();
166     * while (!phaser.isTerminated())
167 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
168 dl 1.38 *
169 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
170 dl 1.38 * in contexts where you are sure that the phase will never wrap around
171     * {@code Integer.MAX_VALUE}. For example:
172     *
173 jsr166 1.45 * <pre> {@code
174     * void awaitPhase(Phaser phaser, int phase) {
175     * int p = phaser.register(); // assumes caller not already registered
176     * while (p < phase) {
177     * if (phaser.isTerminated())
178     * // ... deal with unexpected termination
179     * else
180     * p = phaser.arriveAndAwaitAdvance();
181 dl 1.38 * }
182 jsr166 1.45 * phaser.arriveAndDeregister();
183     * }}</pre>
184 dl 1.38 *
185     *
186 jsr166 1.25 * <p>To create a set of tasks using a tree of phasers,
187 dl 1.4 * you could use code of the following form, assuming a
188 jsr166 1.24 * Task class with a constructor accepting a phaser that
189 dl 1.48 * it registers with upon construction:
190 jsr166 1.45 *
191 jsr166 1.13 * <pre> {@code
192 dl 1.44 * void build(Task[] actions, int lo, int hi, Phaser ph) {
193     * if (hi - lo > TASKS_PER_PHASER) {
194     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195     * int j = Math.min(i + TASKS_PER_PHASER, hi);
196     * build(actions, i, j, new Phaser(ph));
197 jsr166 1.13 * }
198     * } else {
199     * for (int i = lo; i < hi; ++i)
200 dl 1.44 * actions[i] = new Task(ph);
201     * // assumes new Task(ph) performs ph.register()
202 jsr166 1.13 * }
203     * }
204     * // .. initially called, for n tasks via
205     * build(new Task[n], 0, n, new Phaser());}</pre>
206 dl 1.4 *
207 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 dl 1.4 * expected barrier synchronization rates. A value as low as four may
209     * be appropriate for extremely small per-barrier task bodies (thus
210     * high rates), or up to hundreds for extremely large ones.
211     *
212 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
213 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
214 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
215 dl 1.4 * should create tiered phasers to accommodate arbitrarily large sets
216     * of participants.
217 jsr166 1.16 *
218     * @since 1.7
219     * @author Doug Lea
220 dl 1.1 */
221     public class Phaser {
222     /*
223     * This class implements an extension of X10 "clocks". Thanks to
224 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225     * enhancements to extend functionality.
226 dl 1.1 */
227    
228     /**
229     * Barrier state representation. Conceptually, a barrier contains
230     * four values:
231 jsr166 1.3 *
232 dl 1.51 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
233     * * parties -- the number of parties to wait (bits 16-31)
234     * * phase -- the generation of the barrier (bits 32-62)
235     * * terminated -- set if barrier is terminated (bit 63 / sign)
236 dl 1.1 *
237     * However, to efficiently maintain atomicity, these values are
238 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
239     * bit of 32 bit representation of phase, so phase is set to -1 on
240 jsr166 1.8 * termination. Good performance relies on keeping state decoding
241 dl 1.4 * and encoding simple, and keeping race windows short.
242 dl 1.1 */
243 dl 1.4 private volatile long state;
244 dl 1.1
245 dl 1.59 private static final int MAX_PARTIES = 0xffff;
246     private static final int MAX_PHASE = 0x7fffffff;
247     private static final int PARTIES_SHIFT = 16;
248     private static final int PHASE_SHIFT = 32;
249     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
250     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
251     private static final long ONE_ARRIVAL = 1L;
252     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
253     private static final long TERMINATION_BIT = 1L << 63;
254 dl 1.51
255     // The following unpacking methods are usually manually inlined
256 dl 1.1
257     private static int unarrivedOf(long s) {
258 dl 1.56 return (int)s & UNARRIVED_MASK;
259 dl 1.1 }
260    
261     private static int partiesOf(long s) {
262 dl 1.56 return (int)s >>> PARTIES_SHIFT;
263 dl 1.1 }
264    
265     private static int phaseOf(long s) {
266 dl 1.51 return (int) (s >>> PHASE_SHIFT);
267 dl 1.1 }
268    
269     private static int arrivedOf(long s) {
270     return partiesOf(s) - unarrivedOf(s);
271     }
272    
273 dl 1.4 /**
274     * The parent of this phaser, or null if none
275     */
276     private final Phaser parent;
277    
278     /**
279 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
280 dl 1.4 * support faster state push-down.
281     */
282     private final Phaser root;
283    
284     /**
285 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
286 dl 1.49 * contention when releasing some threads while adding others, we
287 dl 1.4 * use two of them, alternating across even and odd phases.
288 dl 1.49 * Subphasers share queues with root to speed up releases.
289 dl 1.4 */
290 dl 1.50 private final AtomicReference<QNode> evenQ;
291     private final AtomicReference<QNode> oddQ;
292 dl 1.4
293     private AtomicReference<QNode> queueFor(int phase) {
294 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
295 dl 1.4 }
296    
297     /**
298 dl 1.59 * Returns message string for bounds exceptions on arrival.
299     */
300     private String badArrive(long s) {
301     return "Attempted arrival of unregistered party for " +
302     stateToString(s);
303     }
304    
305     /**
306     * Returns message string for bounds exceptions on registration.
307     */
308     private String badRegister(long s) {
309     return "Attempt to register more than " +
310     MAX_PARTIES + " parties for " + stateToString(s);
311     }
312    
313     /**
314 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
315     * Manually tuned to speed up and minimize race windows for the
316     * common case of just decrementing unarrived field.
317     *
318     * @param adj - adjustment to apply to state -- either
319     * ONE_ARRIVAL (for arrive) or
320     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 dl 1.4 */
322 dl 1.51 private int doArrive(long adj) {
323 dl 1.54 for (;;) {
324 dl 1.57 long s = state;
325 dl 1.59 int unarrived = (int)s & UNARRIVED_MASK;
326 dl 1.57 int phase = (int)(s >>> PHASE_SHIFT);
327     if (phase < 0)
328 dl 1.54 return phase;
329 dl 1.59 else if (unarrived == 0) {
330     if (reconcileState() == s) // recheck
331     throw new IllegalStateException(badArrive(s));
332     }
333 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 dl 1.54 if (unarrived == 1) {
335 dl 1.57 long p = s & PARTIES_MASK; // unshifted parties field
336 dl 1.54 long lu = p >>> PARTIES_SHIFT;
337     int u = (int)lu;
338     int nextPhase = (phase + 1) & MAX_PHASE;
339     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 dl 1.57 final Phaser parent = this.parent;
341     if (parent == null) {
342 dl 1.55 if (onAdvance(phase, u))
343 dl 1.59 next |= TERMINATION_BIT;
344 dl 1.55 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345 dl 1.54 releaseWaiters(phase);
346     }
347     else {
348 dl 1.57 parent.doArrive((u == 0) ?
349     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350     if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 dl 1.54 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352     !UNSAFE.compareAndSwapLong(this, stateOffset,
353     s, next)))
354     reconcileState();
355 dl 1.51 }
356     }
357 dl 1.54 return phase;
358 dl 1.51 }
359     }
360     }
361    
362     /**
363     * Implementation of register, bulkRegister
364     *
365 dl 1.58 * @param registrations number to add to both parties and
366     * unarrived fields. Must be greater than zero.
367 dl 1.51 */
368     private int doRegister(int registrations) {
369 dl 1.57 // adjustment to state
370     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371     final Phaser parent = this.parent;
372 dl 1.54 for (;;) {
373 dl 1.57 long s = (parent == null) ? state : reconcileState();
374 dl 1.58 int parties = (int)s >>> PARTIES_SHIFT;
375 dl 1.57 int phase = (int)(s >>> PHASE_SHIFT);
376     if (phase < 0)
377 dl 1.54 return phase;
378 dl 1.57 else if (registrations > MAX_PARTIES - parties)
379 dl 1.54 throw new IllegalStateException(badRegister(s));
380 dl 1.59 else if ((parties == 0 && parent == null) || // first reg of root
381     ((int)s & UNARRIVED_MASK) != 0) { // not advancing
382     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383     return phase;
384     }
385     else if (parties != 0) // wait for onAdvance
386     internalAwaitAdvance(phase, null);
387     else { // 1st registration of child
388     synchronized(this) { // register parent first
389     if (reconcileState() == s) { // recheck under lock
390     parent.doRegister(1); // OK if throws IllegalState
391     for (;;) { // simpler form of outer loop
392     s = reconcileState();
393     phase = (int)(s >>> PHASE_SHIFT);
394     if (phase < 0 ||
395     UNSAFE.compareAndSwapLong(this, stateOffset,
396     s, s + adj))
397     return phase;
398     }
399     }
400     }
401     }
402 dl 1.51 }
403     }
404    
405     /**
406 dl 1.55 * Recursively resolves lagged phase propagation from root if necessary.
407 dl 1.4 */
408     private long reconcileState() {
409 dl 1.49 Phaser par = parent;
410 dl 1.57 long s = state;
411     if (par != null) {
412     Phaser rt = root;
413     int phase, rPhase;
414     while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416     if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417     par.reconcileState();
418     else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419     long u = s & PARTIES_MASK; // reset unarrived to parties
420     long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421     (u >>> PARTIES_SHIFT));
422 dl 1.59 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 dl 1.57 }
424     s = state;
425 dl 1.4 }
426     }
427 dl 1.57 return s;
428 dl 1.1 }
429    
430     /**
431 jsr166 1.24 * Creates a new phaser without any initially registered parties,
432 dl 1.10 * initial phase number 0, and no parent. Any thread using this
433 jsr166 1.24 * phaser will need to first register for it.
434 dl 1.1 */
435     public Phaser() {
436 dl 1.50 this(null, 0);
437 dl 1.1 }
438    
439     /**
440 dl 1.48 * Creates a new phaser with the given number of registered
441 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
442 jsr166 1.14 *
443     * @param parties the number of parties required to trip barrier
444 dl 1.1 * @throws IllegalArgumentException if parties less than zero
445 jsr166 1.14 * or greater than the maximum number of parties supported
446 dl 1.1 */
447     public Phaser(int parties) {
448 dl 1.4 this(null, parties);
449     }
450    
451     /**
452 dl 1.59 * Creates a new phaser with the given parent, and without any
453     * initially registered parties. Any thread using this phaser
454     * will need to first register for it, at which point, if the
455     * given parent is non-null, this phaser will also be registered
456     * with the parent.
457     *
458 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
459 jsr166 1.14 *
460     * @param parent the parent phaser
461 dl 1.4 */
462     public Phaser(Phaser parent) {
463 dl 1.50 this(parent, 0);
464 dl 1.4 }
465    
466     /**
467 dl 1.48 * Creates a new phaser with the given parent and number of
468 dl 1.59 * registered unarrived parties. If parent is non-null and
469     * the number of parties is non-zero, this phaser is registered
470     * with the parent.
471 jsr166 1.14 *
472     * @param parent the parent phaser
473     * @param parties the number of parties required to trip barrier
474 dl 1.4 * @throws IllegalArgumentException if parties less than zero
475 jsr166 1.14 * or greater than the maximum number of parties supported
476 dl 1.4 */
477     public Phaser(Phaser parent, int parties) {
478 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
479 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
480 dl 1.50 int phase;
481 dl 1.4 this.parent = parent;
482     if (parent != null) {
483 dl 1.50 Phaser r = parent.root;
484     this.root = r;
485     this.evenQ = r.evenQ;
486     this.oddQ = r.oddQ;
487 dl 1.59 phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1);
488 dl 1.4 }
489 dl 1.50 else {
490 dl 1.4 this.root = this;
491 dl 1.50 this.evenQ = new AtomicReference<QNode>();
492     this.oddQ = new AtomicReference<QNode>();
493     phase = 0;
494     }
495 dl 1.51 long p = (long)parties;
496 dl 1.55 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
497 dl 1.1 }
498    
499     /**
500 dl 1.59 * Adds a new unarrived party to this phaser. If an ongoing
501     * invocation of {@link #onAdvance} is in progress, this method
502     * may wait until its completion before registering. If this
503     * phaser has a parent, and this phaser previously had no
504     * registered parties, this phaser is also registered with its
505     * parent.
506 jsr166 1.14 *
507 dl 1.35 * @return the arrival phase number to which this registration applied
508 dl 1.1 * @throws IllegalStateException if attempting to register more
509 jsr166 1.14 * than the maximum supported number of parties
510 dl 1.1 */
511 dl 1.4 public int register() {
512     return doRegister(1);
513     }
514    
515     /**
516     * Adds the given number of new unarrived parties to this phaser.
517 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
518 dl 1.50 * this method may wait until its completion before registering.
519 dl 1.59 * If this phaser has a parent, and the given number of parities
520     * is greater than zero, and this phaser previously had no
521     * registered parties, this phaser is also registered with its
522     * parent.
523 jsr166 1.14 *
524 dl 1.48 * @param parties the number of additional parties required to trip barrier
525 dl 1.35 * @return the arrival phase number to which this registration applied
526 dl 1.4 * @throws IllegalStateException if attempting to register more
527 jsr166 1.14 * than the maximum supported number of parties
528 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
529 dl 1.4 */
530     public int bulkRegister(int parties) {
531     if (parties < 0)
532     throw new IllegalArgumentException();
533 dl 1.59 else if (parties == 0)
534 dl 1.4 return getPhase();
535     return doRegister(parties);
536     }
537    
538     /**
539 dl 1.1 * Arrives at the barrier, but does not wait for others. (You can
540 dl 1.59 * in turn wait for others via {@link #awaitAdvance}). It is a
541     * usage error for an unregistered party to invoke this
542     * method. However, it is possible that this error will result in
543     * an {code IllegalStateException} only when some <em>other</em>
544     * party arrives.
545 dl 1.1 *
546 dl 1.35 * @return the arrival phase number, or a negative value if terminated
547 dl 1.4 * @throws IllegalStateException if not terminated and the number
548 jsr166 1.14 * of unarrived parties would become negative
549 dl 1.1 */
550 dl 1.4 public int arrive() {
551 dl 1.51 return doArrive(ONE_ARRIVAL);
552 dl 1.1 }
553    
554     /**
555 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
556     * for others. Deregistration reduces the number of parties
557 dl 1.4 * required to trip the barrier in future phases. If this phaser
558     * has a parent, and deregistration causes this phaser to have
559 dl 1.27 * zero parties, this phaser also arrives at and is deregistered
560 dl 1.59 * from its parent. It is a usage error for an unregistered party
561     * to invoke this method. However, it is possible that this error
562     * will result in an {code IllegalStateException} only when some
563     * <em>other</em> party arrives.
564 dl 1.1 *
565 dl 1.35 * @return the arrival phase number, or a negative value if terminated
566 dl 1.4 * @throws IllegalStateException if not terminated and the number
567 jsr166 1.14 * of registered or unarrived parties would become negative
568 dl 1.1 */
569 dl 1.4 public int arriveAndDeregister() {
570 dl 1.51 return doArrive(ONE_ARRIVAL|ONE_PARTY);
571 dl 1.1 }
572    
573     /**
574 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
575 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
576     * interruption or timeout, you can arrange this with an analogous
577 dl 1.48 * construction using one of the other forms of the {@code
578     * awaitAdvance} method. If instead you need to deregister upon
579 dl 1.59 * arrival, use {@link #arriveAndDeregister}. It is a usage error
580     * for an unregistered party to invoke this method. However, it is
581     * possible that this error will result in an {code
582     * IllegalStateException} only when some <em>other</em> party
583     * arrives.
584 jsr166 1.14 *
585 dl 1.35 * @return the arrival phase number, or a negative number if terminated
586 dl 1.4 * @throws IllegalStateException if not terminated and the number
587 jsr166 1.14 * of unarrived parties would become negative
588 dl 1.1 */
589     public int arriveAndAwaitAdvance() {
590 dl 1.4 return awaitAdvance(arrive());
591 dl 1.1 }
592    
593     /**
594 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
595 dl 1.30 * value, returning immediately if the current phase of the
596     * barrier is not equal to the given phase value or this barrier
597 dl 1.50 * is terminated.
598 jsr166 1.14 *
599 dl 1.35 * @param phase an arrival phase number, or negative value if
600     * terminated; this argument is normally the value returned by a
601     * previous call to {@code arrive} or its variants
602     * @return the next arrival phase number, or a negative value
603     * if terminated or argument is negative
604 dl 1.1 */
605     public int awaitAdvance(int phase) {
606     if (phase < 0)
607     return phase;
608 dl 1.57 long s = (parent == null) ? state : reconcileState();
609     int p = (int)(s >>> PHASE_SHIFT);
610     return (p != phase) ? p : internalAwaitAdvance(phase, null);
611 dl 1.1 }
612    
613     /**
614 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
615 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
616     * while waiting, or returning immediately if the current phase of
617     * the barrier is not equal to the given phase value or this
618 dl 1.50 * barrier is terminated.
619 jsr166 1.14 *
620 dl 1.35 * @param phase an arrival phase number, or negative value if
621     * terminated; this argument is normally the value returned by a
622     * previous call to {@code arrive} or its variants
623     * @return the next arrival phase number, or a negative value
624     * if terminated or argument is negative
625 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
626     */
627 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
628 dl 1.10 throws InterruptedException {
629 dl 1.1 if (phase < 0)
630     return phase;
631 dl 1.57 long s = (parent == null) ? state : reconcileState();
632     int p = (int)(s >>> PHASE_SHIFT);
633     if (p == phase) {
634 dl 1.55 QNode node = new QNode(this, phase, true, false, 0L);
635     p = internalAwaitAdvance(phase, node);
636     if (node.wasInterrupted)
637     throw new InterruptedException();
638     }
639     return p;
640 dl 1.1 }
641    
642     /**
643 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
644 dl 1.38 * value or the given timeout to elapse, throwing {@code
645     * InterruptedException} if interrupted while waiting, or
646     * returning immediately if the current phase of the barrier is
647     * not equal to the given phase value or this barrier is
648 dl 1.50 * terminated.
649 jsr166 1.14 *
650 dl 1.35 * @param phase an arrival phase number, or negative value if
651     * terminated; this argument is normally the value returned by a
652     * previous call to {@code arrive} or its variants
653 dl 1.31 * @param timeout how long to wait before giving up, in units of
654     * {@code unit}
655     * @param unit a {@code TimeUnit} determining how to interpret the
656     * {@code timeout} parameter
657 dl 1.35 * @return the next arrival phase number, or a negative value
658     * if terminated or argument is negative
659 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
660     * @throws TimeoutException if timed out while waiting
661     */
662 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
663     long timeout, TimeUnit unit)
664 dl 1.1 throws InterruptedException, TimeoutException {
665     if (phase < 0)
666     return phase;
667 dl 1.57 long s = (parent == null) ? state : reconcileState();
668     int p = (int)(s >>> PHASE_SHIFT);
669     if (p == phase) {
670     long nanos = unit.toNanos(timeout);
671 dl 1.55 QNode node = new QNode(this, phase, true, true, nanos);
672     p = internalAwaitAdvance(phase, node);
673     if (node.wasInterrupted)
674     throw new InterruptedException();
675     else if (p == phase)
676     throw new TimeoutException();
677     }
678     return p;
679 dl 1.1 }
680    
681     /**
682 dl 1.55 * Forces this barrier to enter termination state. Counts of
683     * arrived and registered parties are unaffected. If this phaser
684     * is a member of a tiered set of phasers, then all of the phasers
685     * in the set are terminated. If this phaser is already
686     * terminated, this method has no effect. This method may be
687     * useful for coordinating recovery after one or more tasks
688     * encounter unexpected exceptions.
689 dl 1.1 */
690     public void forceTermination() {
691 dl 1.55 // Only need to change root state
692     final Phaser root = this.root;
693 dl 1.49 long s;
694 dl 1.55 while ((s = root.state) >= 0) {
695     if (UNSAFE.compareAndSwapLong(root, stateOffset,
696 dl 1.59 s, s | TERMINATION_BIT)) {
697 dl 1.55 releaseWaiters(0); // signal all threads
698     releaseWaiters(1);
699     return;
700     }
701     }
702 dl 1.1 }
703    
704     /**
705 dl 1.4 * Returns the current phase number. The maximum phase number is
706 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
707 dl 1.4 * zero. Upon termination, the phase number is negative.
708 jsr166 1.14 *
709 dl 1.4 * @return the phase number, or a negative value if terminated
710 dl 1.1 */
711 dl 1.4 public final int getPhase() {
712 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
713 dl 1.1 }
714    
715     /**
716     * Returns the number of parties registered at this barrier.
717 jsr166 1.14 *
718 dl 1.1 * @return the number of parties
719     */
720     public int getRegisteredParties() {
721 dl 1.57 return partiesOf(state);
722 dl 1.1 }
723    
724     /**
725 dl 1.36 * Returns the number of registered parties that have arrived at
726     * the current phase of this barrier.
727 jsr166 1.14 *
728 dl 1.1 * @return the number of arrived parties
729     */
730     public int getArrivedParties() {
731 dl 1.54 return arrivedOf(parent==null? state : reconcileState());
732 dl 1.1 }
733    
734     /**
735     * Returns the number of registered parties that have not yet
736     * arrived at the current phase of this barrier.
737 jsr166 1.14 *
738 dl 1.1 * @return the number of unarrived parties
739     */
740     public int getUnarrivedParties() {
741 dl 1.54 return unarrivedOf(parent==null? state : reconcileState());
742 dl 1.4 }
743    
744     /**
745 jsr166 1.23 * Returns the parent of this phaser, or {@code null} if none.
746 jsr166 1.14 *
747 jsr166 1.23 * @return the parent of this phaser, or {@code null} if none
748 dl 1.4 */
749     public Phaser getParent() {
750     return parent;
751     }
752    
753     /**
754     * Returns the root ancestor of this phaser, which is the same as
755     * this phaser if it has no parent.
756 jsr166 1.14 *
757 jsr166 1.9 * @return the root ancestor of this phaser
758 dl 1.4 */
759     public Phaser getRoot() {
760     return root;
761 dl 1.1 }
762    
763     /**
764 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
765 jsr166 1.14 *
766 jsr166 1.9 * @return {@code true} if this barrier has been terminated
767 dl 1.1 */
768     public boolean isTerminated() {
769 dl 1.57 return root.state < 0L;
770 dl 1.1 }
771    
772     /**
773 dl 1.43 * Overridable method to perform an action upon impending phase
774     * advance, and to control termination. This method is invoked
775     * upon arrival of the party tripping the barrier (when all other
776     * waiting parties are dormant). If this method returns {@code
777     * true}, then, rather than advance the phase number, this barrier
778     * will be set to a final termination state, and subsequent calls
779     * to {@link #isTerminated} will return true. Any (unchecked)
780     * Exception or Error thrown by an invocation of this method is
781     * propagated to the party attempting to trip the barrier, in
782     * which case no advance occurs.
783 dl 1.42 *
784     * <p>The arguments to this method provide the state of the phaser
785 dl 1.51 * prevailing for the current transition. The effects of invoking
786     * arrival, registration, and waiting methods on this Phaser from
787 dl 1.50 * within {@code onAdvance} are unspecified and should not be
788 dl 1.51 * relied on.
789     *
790     * <p>If this Phaser is a member of a tiered set of Phasers, then
791     * {@code onAdvance} is invoked only for its root Phaser on each
792     * advance.
793 jsr166 1.3 *
794 dl 1.59 * <p>To support the most common use cases, the default
795     * implementation of this method returns {@code true} when the
796     * number of registered parties has become zero as the result of a
797     * party invoking {@code arriveAndDeregister}. You can disable
798     * this behavior, thus enabling continuation upon future
799     * registrations, by overriding this method to always return
800     * {@code false}:
801     *
802     * <pre> {@code
803     * Phaser phaser = new Phaser() {
804     * protected boolean onAdvance(int phase, int parties) { return false; }
805     * }}</pre>
806 dl 1.1 *
807     * @param phase the phase number on entering the barrier
808 jsr166 1.9 * @param registeredParties the current number of registered parties
809     * @return {@code true} if this barrier should terminate
810 dl 1.1 */
811     protected boolean onAdvance(int phase, int registeredParties) {
812     return registeredParties <= 0;
813     }
814    
815     /**
816 dl 1.4 * Returns a string identifying this phaser, as well as its
817 dl 1.1 * state. The state, in brackets, includes the String {@code
818 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
819 dl 1.1 * followed by the number of registered parties, and {@code
820 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
821 dl 1.1 *
822     * @return a string identifying this barrier, as well as its state
823     */
824     public String toString() {
825 dl 1.54 return stateToString(reconcileState());
826     }
827    
828     /**
829     * Implementation of toString and string-based error messages
830     */
831     private String stateToString(long s) {
832 jsr166 1.9 return super.toString() +
833     "[phase = " + phaseOf(s) +
834     " parties = " + partiesOf(s) +
835     " arrived = " + arrivedOf(s) + "]";
836 dl 1.1 }
837    
838 dl 1.54 // Waiting mechanics
839    
840 dl 1.4 /**
841 dl 1.57 * Removes and signals threads from queue for phase.
842 dl 1.4 */
843     private void releaseWaiters(int phase) {
844     AtomicReference<QNode> head = queueFor(phase);
845     QNode q;
846 dl 1.51 int p;
847     while ((q = head.get()) != null &&
848     ((p = q.phase) == phase ||
849     (int)(root.state >>> PHASE_SHIFT) != p)) {
850 dl 1.4 if (head.compareAndSet(q, q.next))
851     q.signal();
852     }
853     }
854    
855 dl 1.51 /** The number of CPUs, for spin control */
856     private static final int NCPU = Runtime.getRuntime().availableProcessors();
857    
858 dl 1.10 /**
859 dl 1.51 * The number of times to spin before blocking while waiting for
860     * advance, per arrival while waiting. On multiprocessors, fully
861     * blocking and waking up a large number of threads all at once is
862     * usually a very slow process, so we use rechargeable spins to
863     * avoid it when threads regularly arrive: When a thread in
864     * internalAwaitAdvance notices another arrival before blocking,
865     * and there appear to be enough CPUs available, it spins
866 dl 1.55 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
867     * uniprocessors, there is at least one intervening Thread.yield
868     * before blocking. The value trades off good-citizenship vs big
869     * unnecessary slowdowns.
870 dl 1.50 */
871 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
872 dl 1.50
873     /**
874 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
875 jsr166 1.14 *
876 dl 1.51 * @param phase current phase
877 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
878 dl 1.51 * if null, denotes noninterruptible wait
879 dl 1.10 * @return current phase
880 dl 1.1 */
881 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
882     Phaser current = this; // to eventually wait at root if tiered
883 dl 1.54 boolean queued = false; // true when node is enqueued
884     int lastUnarrived = -1; // to increase spins upon change
885 dl 1.51 int spins = SPINS_PER_ARRIVAL;
886 dl 1.57 long s;
887     int p;
888     while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
889 dl 1.54 Phaser par;
890 dl 1.57 int unarrived = (int)s & UNARRIVED_MASK;
891     if (unarrived != lastUnarrived) {
892     if (lastUnarrived == -1) // ensure old queue clean
893     releaseWaiters(phase-1);
894     if ((lastUnarrived = unarrived) < NCPU)
895     spins += SPINS_PER_ARRIVAL;
896 dl 1.54 }
897 dl 1.57 else if (unarrived == 0 && (par = current.parent) != null) {
898 dl 1.55 current = par; // if all arrived, use parent
899     par = par.parent;
900     lastUnarrived = -1;
901     }
902     else if (spins > 0) {
903     if (--spins == (SPINS_PER_ARRIVAL >>> 1))
904     Thread.yield(); // yield midway through spin
905 dl 1.50 }
906 dl 1.54 else if (node == null) // must be noninterruptible
907 dl 1.51 node = new QNode(this, phase, false, false, 0L);
908 dl 1.54 else if (node.isReleasable()) {
909 dl 1.57 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
910     break;
911     else
912 dl 1.54 return phase; // aborted
913     }
914 dl 1.57 else if (!queued) { // push onto queue
915     AtomicReference<QNode> head = queueFor(phase);
916     QNode q = head.get();
917     if (q == null || q.phase == phase) {
918     node.next = q;
919     if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
920     break; // recheck to avoid stale enqueue
921     else
922     queued = head.compareAndSet(q, node);
923     }
924     }
925 dl 1.51 else {
926     try {
927     ForkJoinPool.managedBlock(node);
928     } catch (InterruptedException ie) {
929     node.wasInterrupted = true;
930     }
931     }
932 dl 1.4 }
933 dl 1.57 releaseWaiters(phase);
934     if (node != null)
935     node.onRelease();
936     return p;
937 dl 1.4 }
938    
939     /**
940 dl 1.51 * Wait nodes for Treiber stack representing wait queue
941 dl 1.4 */
942 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
943     final Phaser phaser;
944     final int phase;
945     final boolean interruptible;
946     final boolean timed;
947     boolean wasInterrupted;
948     long nanos;
949     long lastTime;
950     volatile Thread thread; // nulled to cancel wait
951     QNode next;
952    
953     QNode(Phaser phaser, int phase, boolean interruptible,
954     boolean timed, long nanos) {
955     this.phaser = phaser;
956     this.phase = phase;
957     this.interruptible = interruptible;
958     this.nanos = nanos;
959     this.timed = timed;
960     this.lastTime = timed? System.nanoTime() : 0L;
961     thread = Thread.currentThread();
962     }
963    
964     public boolean isReleasable() {
965     Thread t = thread;
966     if (t != null) {
967     if (phaser.getPhase() != phase)
968     t = null;
969     else {
970     if (Thread.interrupted())
971     wasInterrupted = true;
972     if (interruptible && wasInterrupted)
973     t = null;
974     else if (timed) {
975     if (nanos > 0) {
976     long now = System.nanoTime();
977     nanos -= now - lastTime;
978     lastTime = now;
979     }
980     if (nanos <= 0)
981     t = null;
982     }
983     }
984     if (t != null)
985     return false;
986     thread = null;
987 dl 1.50 }
988 dl 1.51 return true;
989     }
990    
991     public boolean block() {
992     if (isReleasable())
993     return true;
994     else if (!timed)
995     LockSupport.park(this);
996     else if (nanos > 0)
997     LockSupport.parkNanos(this, nanos);
998     return isReleasable();
999 dl 1.1 }
1000    
1001 dl 1.51 void signal() {
1002     Thread t = thread;
1003     if (t != null) {
1004     thread = null;
1005     LockSupport.unpark(t);
1006 dl 1.50 }
1007 dl 1.4 }
1008 dl 1.54
1009     void onRelease() { // actions upon return from internalAwaitAdvance
1010     if (!interruptible && wasInterrupted)
1011     Thread.currentThread().interrupt();
1012     if (thread != null)
1013     thread = null;
1014     }
1015    
1016 dl 1.4 }
1017    
1018 jsr166 1.22 // Unsafe mechanics
1019    
1020     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1021     private static final long stateOffset =
1022     objectFieldOffset("state", Phaser.class);
1023    
1024     private static long objectFieldOffset(String field, Class<?> klazz) {
1025     try {
1026     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1027     } catch (NoSuchFieldException e) {
1028     // Convert Exception to corresponding Error
1029     NoSuchFieldError error = new NoSuchFieldError(field);
1030     error.initCause(e);
1031     throw error;
1032     }
1033     }
1034    
1035     /**
1036     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1037     * Replace with a simple call to Unsafe.getUnsafe when integrating
1038     * into a jdk.
1039     *
1040     * @return a sun.misc.Unsafe
1041     */
1042 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1043 jsr166 1.11 try {
1044 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1045 jsr166 1.11 } catch (SecurityException se) {
1046     try {
1047     return java.security.AccessController.doPrivileged
1048 jsr166 1.22 (new java.security
1049     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1050 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1051 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1052     .Unsafe.class.getDeclaredField("theUnsafe");
1053     f.setAccessible(true);
1054     return (sun.misc.Unsafe) f.get(null);
1055 jsr166 1.11 }});
1056     } catch (java.security.PrivilegedActionException e) {
1057 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1058     e.getCause());
1059 jsr166 1.11 }
1060     }
1061     }
1062 dl 1.1 }