ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.62
Committed: Mon Nov 29 00:52:28 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.61: +35 -36 lines
Log Message:
Improve responsiveness to interrupts

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.60 * number of parties <em>registered</em> to synchronize on a Phaser
22 dl 1.38 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37     * generation of a {@code Phaser} has an associated phase number. The
38 dl 1.39 * phase number starts at zero, and advances when all parties arrive
39 dl 1.38 * at the barrier, wrapping around to zero after reaching {@code
40     * Integer.MAX_VALUE}. The use of phase numbers enables independent
41     * control of actions upon arrival at a barrier and upon awaiting
42     * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48     * {@link #arriveAndDeregister} record arrival at a
49     * barrier. These methods do not block, but return an associated
50     * <em>arrival phase number</em>; that is, the phase number of
51     * the barrier to which the arrival applied. When the final
52     * party for a given phase arrives, an optional barrier action
53     * is performed and the phase advances. Barrier actions,
54     * performed by the party triggering a phase advance, are
55     * arranged by overriding method {@link #onAdvance(int, int)},
56     * which also controls termination. Overriding this method is
57     * similar to, but more flexible than, providing a barrier
58     * action to a {@code CyclicBarrier}.
59     *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62     * the barrier advances to (or is already at) a different phase.
63     * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68     * state of the barrier. If necessary, you can perform any
69     * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.38 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 dl 1.39 * <em>termination</em> state in which all synchronization methods
79 dl 1.60 * immediately return without updating Phaser state or waiting for
80 dl 1.39 * advance, and indicating (via a negative phase value) that execution
81     * is complete. Termination is triggered when an invocation of {@code
82 dl 1.59 * onAdvance} returns {@code true}. The default implementation returns
83     * {@code true} if a deregistration has caused the number of
84     * registered parties to become zero. As illustrated below, when
85 dl 1.60 * Phasers control actions with a fixed number of iterations, it is
86 dl 1.39 * often convenient to override this method to cause termination when
87     * the current phase number reaches a threshold. Method {@link
88     * #forceTermination} is also available to abruptly release waiting
89     * threads and allow them to terminate.
90 dl 1.4 *
91 dl 1.58 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92     * constructed in tree structures) to reduce contention. Phasers with
93     * large numbers of parties that would otherwise experience heavy
94 dl 1.38 * synchronization contention costs may instead be set up so that
95     * groups of sub-phasers share a common parent. This may greatly
96     * increase throughput even though it incurs greater per-operation
97     * overhead.
98     *
99     * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 dl 1.60 * only by registered parties, the current state of a Phaser may be
101 dl 1.38 * monitored by any caller. At any given moment there are {@link
102 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
103     * #getArrivedParties} have arrived at the current phase ({@link
104     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105 dl 1.42 * parties arrive, the phase advances. The values returned by these
106     * methods may reflect transient states and so are not in general
107     * useful for synchronization control. Method {@link #toString}
108     * returns snapshots of these state queries in a form convenient for
109     * informal monitoring.
110 dl 1.1 *
111 dl 1.4 * <p><b>Sample usages:</b>
112     *
113 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 dl 1.48 * to control a one-shot action serving a variable number of parties.
115     * The typical idiom is for the method setting this up to first
116     * register, then start the actions, then deregister, as in:
117 dl 1.1 *
118 jsr166 1.13 * <pre> {@code
119 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
120 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
121 dl 1.27 * // create and start threads
122 jsr166 1.33 * for (Runnable task : tasks) {
123 jsr166 1.13 * phaser.register();
124     * new Thread() {
125     * public void run() {
126     * phaser.arriveAndAwaitAdvance(); // await all creation
127 jsr166 1.33 * task.run();
128 jsr166 1.13 * }
129     * }.start();
130 dl 1.4 * }
131 dl 1.6 *
132 dl 1.27 * // allow threads to start and deregister self
133     * phaser.arriveAndDeregister();
134 jsr166 1.13 * }}</pre>
135 dl 1.1 *
136 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
137 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
138 dl 1.1 *
139 jsr166 1.13 * <pre> {@code
140 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
141 jsr166 1.13 * final Phaser phaser = new Phaser() {
142 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
143 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
144     * }
145     * };
146     * phaser.register();
147 jsr166 1.45 * for (final Runnable task : tasks) {
148 jsr166 1.13 * phaser.register();
149     * new Thread() {
150     * public void run() {
151     * do {
152 jsr166 1.33 * task.run();
153 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
154 jsr166 1.45 * } while (!phaser.isTerminated());
155 dl 1.4 * }
156 jsr166 1.13 * }.start();
157 dl 1.1 * }
158 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
159 jsr166 1.13 * }}</pre>
160 dl 1.1 *
161 dl 1.38 * If the main task must later await termination, it
162     * may re-register and then execute a similar loop:
163 jsr166 1.45 * <pre> {@code
164 dl 1.38 * // ...
165     * phaser.register();
166     * while (!phaser.isTerminated())
167 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
168 dl 1.38 *
169 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
170 dl 1.38 * in contexts where you are sure that the phase will never wrap around
171     * {@code Integer.MAX_VALUE}. For example:
172     *
173 jsr166 1.45 * <pre> {@code
174     * void awaitPhase(Phaser phaser, int phase) {
175     * int p = phaser.register(); // assumes caller not already registered
176     * while (p < phase) {
177     * if (phaser.isTerminated())
178     * // ... deal with unexpected termination
179     * else
180     * p = phaser.arriveAndAwaitAdvance();
181 dl 1.38 * }
182 jsr166 1.45 * phaser.arriveAndDeregister();
183     * }}</pre>
184 dl 1.38 *
185     *
186 dl 1.60 * <p>To create a set of tasks using a tree of Phasers,
187 dl 1.4 * you could use code of the following form, assuming a
188 dl 1.60 * Task class with a constructor accepting a Phaser that
189 dl 1.48 * it registers with upon construction:
190 jsr166 1.45 *
191 jsr166 1.13 * <pre> {@code
192 dl 1.44 * void build(Task[] actions, int lo, int hi, Phaser ph) {
193     * if (hi - lo > TASKS_PER_PHASER) {
194     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195     * int j = Math.min(i + TASKS_PER_PHASER, hi);
196     * build(actions, i, j, new Phaser(ph));
197 jsr166 1.13 * }
198     * } else {
199     * for (int i = lo; i < hi; ++i)
200 dl 1.44 * actions[i] = new Task(ph);
201     * // assumes new Task(ph) performs ph.register()
202 jsr166 1.13 * }
203     * }
204     * // .. initially called, for n tasks via
205     * build(new Task[n], 0, n, new Phaser());}</pre>
206 dl 1.4 *
207 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 dl 1.4 * expected barrier synchronization rates. A value as low as four may
209     * be appropriate for extremely small per-barrier task bodies (thus
210     * high rates), or up to hundreds for extremely large ones.
211     *
212 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
213 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
214 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
215 dl 1.60 * should create tiered Phasers to accommodate arbitrarily large sets
216 dl 1.4 * of participants.
217 jsr166 1.16 *
218     * @since 1.7
219     * @author Doug Lea
220 dl 1.1 */
221     public class Phaser {
222     /*
223     * This class implements an extension of X10 "clocks". Thanks to
224 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225     * enhancements to extend functionality.
226 dl 1.1 */
227    
228     /**
229     * Barrier state representation. Conceptually, a barrier contains
230     * four values:
231 jsr166 1.3 *
232 dl 1.51 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
233     * * parties -- the number of parties to wait (bits 16-31)
234     * * phase -- the generation of the barrier (bits 32-62)
235     * * terminated -- set if barrier is terminated (bit 63 / sign)
236 dl 1.1 *
237     * However, to efficiently maintain atomicity, these values are
238 dl 1.4 * packed into a single (atomic) long. Termination uses the sign
239     * bit of 32 bit representation of phase, so phase is set to -1 on
240 jsr166 1.8 * termination. Good performance relies on keeping state decoding
241 dl 1.4 * and encoding simple, and keeping race windows short.
242 dl 1.1 */
243 dl 1.4 private volatile long state;
244 dl 1.1
245 dl 1.59 private static final int MAX_PARTIES = 0xffff;
246     private static final int MAX_PHASE = 0x7fffffff;
247     private static final int PARTIES_SHIFT = 16;
248     private static final int PHASE_SHIFT = 32;
249     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
250     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
251     private static final long ONE_ARRIVAL = 1L;
252     private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
253     private static final long TERMINATION_BIT = 1L << 63;
254 dl 1.51
255     // The following unpacking methods are usually manually inlined
256 dl 1.1
257     private static int unarrivedOf(long s) {
258 dl 1.56 return (int)s & UNARRIVED_MASK;
259 dl 1.1 }
260    
261     private static int partiesOf(long s) {
262 dl 1.56 return (int)s >>> PARTIES_SHIFT;
263 dl 1.1 }
264    
265     private static int phaseOf(long s) {
266 dl 1.51 return (int) (s >>> PHASE_SHIFT);
267 dl 1.1 }
268    
269     private static int arrivedOf(long s) {
270     return partiesOf(s) - unarrivedOf(s);
271     }
272    
273 dl 1.4 /**
274     * The parent of this phaser, or null if none
275     */
276     private final Phaser parent;
277    
278     /**
279 jsr166 1.24 * The root of phaser tree. Equals this if not in a tree. Used to
280 dl 1.4 * support faster state push-down.
281     */
282     private final Phaser root;
283    
284     /**
285 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
286 dl 1.49 * contention when releasing some threads while adding others, we
287 dl 1.4 * use two of them, alternating across even and odd phases.
288 dl 1.49 * Subphasers share queues with root to speed up releases.
289 dl 1.4 */
290 dl 1.50 private final AtomicReference<QNode> evenQ;
291     private final AtomicReference<QNode> oddQ;
292 dl 1.4
293     private AtomicReference<QNode> queueFor(int phase) {
294 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
295 dl 1.4 }
296    
297     /**
298 dl 1.59 * Returns message string for bounds exceptions on arrival.
299     */
300     private String badArrive(long s) {
301     return "Attempted arrival of unregistered party for " +
302     stateToString(s);
303     }
304    
305     /**
306     * Returns message string for bounds exceptions on registration.
307     */
308     private String badRegister(long s) {
309     return "Attempt to register more than " +
310     MAX_PARTIES + " parties for " + stateToString(s);
311     }
312    
313     /**
314 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
315     * Manually tuned to speed up and minimize race windows for the
316     * common case of just decrementing unarrived field.
317     *
318     * @param adj - adjustment to apply to state -- either
319     * ONE_ARRIVAL (for arrive) or
320     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 dl 1.4 */
322 dl 1.51 private int doArrive(long adj) {
323 dl 1.54 for (;;) {
324 dl 1.57 long s = state;
325 dl 1.59 int unarrived = (int)s & UNARRIVED_MASK;
326 dl 1.57 int phase = (int)(s >>> PHASE_SHIFT);
327     if (phase < 0)
328 dl 1.54 return phase;
329 dl 1.59 else if (unarrived == 0) {
330     if (reconcileState() == s) // recheck
331     throw new IllegalStateException(badArrive(s));
332     }
333 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 dl 1.54 if (unarrived == 1) {
335 dl 1.57 long p = s & PARTIES_MASK; // unshifted parties field
336 dl 1.54 long lu = p >>> PARTIES_SHIFT;
337     int u = (int)lu;
338     int nextPhase = (phase + 1) & MAX_PHASE;
339     long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 dl 1.57 final Phaser parent = this.parent;
341     if (parent == null) {
342 dl 1.55 if (onAdvance(phase, u))
343 dl 1.59 next |= TERMINATION_BIT;
344 dl 1.55 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345 dl 1.54 releaseWaiters(phase);
346     }
347     else {
348 dl 1.57 parent.doArrive((u == 0) ?
349     ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 dl 1.62 if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
351 dl 1.54 reconcileState();
352 dl 1.62 else if (state == s)
353     UNSAFE.compareAndSwapLong(this, stateOffset, s,
354     next);
355 dl 1.51 }
356     }
357 dl 1.54 return phase;
358 dl 1.51 }
359     }
360     }
361    
362     /**
363     * Implementation of register, bulkRegister
364     *
365 dl 1.58 * @param registrations number to add to both parties and
366     * unarrived fields. Must be greater than zero.
367 dl 1.51 */
368     private int doRegister(int registrations) {
369 dl 1.57 // adjustment to state
370     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371     final Phaser parent = this.parent;
372 dl 1.54 for (;;) {
373 dl 1.57 long s = (parent == null) ? state : reconcileState();
374 dl 1.58 int parties = (int)s >>> PARTIES_SHIFT;
375 dl 1.57 int phase = (int)(s >>> PHASE_SHIFT);
376     if (phase < 0)
377 dl 1.54 return phase;
378 dl 1.57 else if (registrations > MAX_PARTIES - parties)
379 dl 1.54 throw new IllegalStateException(badRegister(s));
380 dl 1.59 else if ((parties == 0 && parent == null) || // first reg of root
381     ((int)s & UNARRIVED_MASK) != 0) { // not advancing
382     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383     return phase;
384     }
385     else if (parties != 0) // wait for onAdvance
386 dl 1.60 root.internalAwaitAdvance(phase, null);
387 dl 1.59 else { // 1st registration of child
388 jsr166 1.61 synchronized (this) { // register parent first
389 dl 1.59 if (reconcileState() == s) { // recheck under lock
390     parent.doRegister(1); // OK if throws IllegalState
391     for (;;) { // simpler form of outer loop
392     s = reconcileState();
393     phase = (int)(s >>> PHASE_SHIFT);
394     if (phase < 0 ||
395     UNSAFE.compareAndSwapLong(this, stateOffset,
396     s, s + adj))
397     return phase;
398     }
399     }
400     }
401     }
402 dl 1.51 }
403     }
404    
405     /**
406 dl 1.55 * Recursively resolves lagged phase propagation from root if necessary.
407 dl 1.4 */
408     private long reconcileState() {
409 dl 1.49 Phaser par = parent;
410 dl 1.57 long s = state;
411     if (par != null) {
412     Phaser rt = root;
413     int phase, rPhase;
414     while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415     (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 dl 1.62 if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
417 dl 1.57 par.reconcileState();
418     else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419     long u = s & PARTIES_MASK; // reset unarrived to parties
420     long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421     (u >>> PARTIES_SHIFT));
422 dl 1.59 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 dl 1.57 }
424     s = state;
425 dl 1.4 }
426     }
427 dl 1.57 return s;
428 dl 1.1 }
429    
430     /**
431 dl 1.60 * Creates a new Phaser without any initially registered parties,
432 dl 1.10 * initial phase number 0, and no parent. Any thread using this
433 dl 1.60 * Phaser will need to first register for it.
434 dl 1.1 */
435     public Phaser() {
436 dl 1.50 this(null, 0);
437 dl 1.1 }
438    
439     /**
440 dl 1.60 * Creates a new Phaser with the given number of registered
441 dl 1.4 * unarrived parties, initial phase number 0, and no parent.
442 jsr166 1.14 *
443     * @param parties the number of parties required to trip barrier
444 dl 1.1 * @throws IllegalArgumentException if parties less than zero
445 jsr166 1.14 * or greater than the maximum number of parties supported
446 dl 1.1 */
447     public Phaser(int parties) {
448 dl 1.4 this(null, parties);
449     }
450    
451     /**
452 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
453 jsr166 1.14 *
454 dl 1.60 * @param parent the parent Phaser
455 dl 1.4 */
456     public Phaser(Phaser parent) {
457 dl 1.50 this(parent, 0);
458 dl 1.4 }
459    
460     /**
461 dl 1.60 * Creates a new Phaser with the given parent and number of
462     * registered unarrived parties. Registration and deregistration
463     * of this child Phaser with its parent are managed automatically.
464     * If the given parent is non-null, whenever this child Phaser has
465     * any registered parties (as established in this constructor,
466     * {@link #register}, or {@link #bulkRegister}), this child Phaser
467     * is registered with its parent. Whenever the number of
468     * registered parties becomes zero as the result of an invocation
469     * of {@link #arriveAndDeregister}, this child Phaser is
470     * deregistered from its parent.
471 jsr166 1.14 *
472 dl 1.60 * @param parent the parent Phaser
473 jsr166 1.14 * @param parties the number of parties required to trip barrier
474 dl 1.4 * @throws IllegalArgumentException if parties less than zero
475 jsr166 1.14 * or greater than the maximum number of parties supported
476 dl 1.4 */
477     public Phaser(Phaser parent, int parties) {
478 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
479 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
480 dl 1.60 long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
481 dl 1.4 this.parent = parent;
482     if (parent != null) {
483 dl 1.50 Phaser r = parent.root;
484     this.root = r;
485     this.evenQ = r.evenQ;
486     this.oddQ = r.oddQ;
487 dl 1.60 if (parties != 0)
488     s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
489 dl 1.4 }
490 dl 1.50 else {
491 dl 1.4 this.root = this;
492 dl 1.50 this.evenQ = new AtomicReference<QNode>();
493     this.oddQ = new AtomicReference<QNode>();
494     }
495 dl 1.60 this.state = s;
496 dl 1.1 }
497    
498     /**
499 dl 1.60 * Adds a new unarrived party to this Phaser. If an ongoing
500 dl 1.59 * invocation of {@link #onAdvance} is in progress, this method
501 dl 1.60 * may await its completion before returning. If this Phaser has
502     * a parent, and this Phaser previously had no registered parties,
503     * this Phaser is also registered with its parent.
504 jsr166 1.14 *
505 dl 1.35 * @return the arrival phase number to which this registration applied
506 dl 1.1 * @throws IllegalStateException if attempting to register more
507 jsr166 1.14 * than the maximum supported number of parties
508 dl 1.1 */
509 dl 1.4 public int register() {
510     return doRegister(1);
511     }
512    
513     /**
514 dl 1.60 * Adds the given number of new unarrived parties to this Phaser.
515 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
516 dl 1.60 * this method may await its completion before returning. If this
517     * Phaser has a parent, and the given number of parities is
518     * greater than zero, and this Phaser previously had no registered
519     * parties, this Phaser is also registered with its parent.
520 jsr166 1.14 *
521 dl 1.48 * @param parties the number of additional parties required to trip barrier
522 dl 1.35 * @return the arrival phase number to which this registration applied
523 dl 1.4 * @throws IllegalStateException if attempting to register more
524 jsr166 1.14 * than the maximum supported number of parties
525 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
526 dl 1.4 */
527     public int bulkRegister(int parties) {
528     if (parties < 0)
529     throw new IllegalArgumentException();
530 dl 1.60 if (parties == 0)
531 dl 1.4 return getPhase();
532     return doRegister(parties);
533     }
534    
535     /**
536 dl 1.60 * Arrives at the barrier, without waiting for others to arrive.
537     *
538     * <p>It is a usage error for an unregistered party to invoke this
539     * method. However, this error may result in an {@code
540     * IllegalStateException} only upon some subsequent operation on
541     * this Phaser, if ever.
542 dl 1.1 *
543 dl 1.35 * @return the arrival phase number, or a negative value if terminated
544 dl 1.4 * @throws IllegalStateException if not terminated and the number
545 jsr166 1.14 * of unarrived parties would become negative
546 dl 1.1 */
547 dl 1.4 public int arrive() {
548 dl 1.51 return doArrive(ONE_ARRIVAL);
549 dl 1.1 }
550    
551     /**
552 dl 1.27 * Arrives at the barrier and deregisters from it without waiting
553 dl 1.60 * for others to arrive. Deregistration reduces the number of
554     * parties required to trip the barrier in future phases. If this
555     * Phaser has a parent, and deregistration causes this Phaser to
556     * have zero parties, this Phaser is also deregistered from its
557     * parent.
558     *
559     * <p>It is a usage error for an unregistered party to invoke this
560     * method. However, this error may result in an {@code
561     * IllegalStateException} only upon some subsequent operation on
562     * this Phaser, if ever.
563 dl 1.1 *
564 dl 1.35 * @return the arrival phase number, or a negative value if terminated
565 dl 1.4 * @throws IllegalStateException if not terminated and the number
566 jsr166 1.14 * of registered or unarrived parties would become negative
567 dl 1.1 */
568 dl 1.4 public int arriveAndDeregister() {
569 dl 1.51 return doArrive(ONE_ARRIVAL|ONE_PARTY);
570 dl 1.1 }
571    
572     /**
573 dl 1.4 * Arrives at the barrier and awaits others. Equivalent in effect
574 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
575     * interruption or timeout, you can arrange this with an analogous
576 dl 1.48 * construction using one of the other forms of the {@code
577     * awaitAdvance} method. If instead you need to deregister upon
578 dl 1.60 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
579     *
580     * <p>It is a usage error for an unregistered party to invoke this
581     * method. However, this error may result in an {@code
582     * IllegalStateException} only upon some subsequent operation on
583     * this Phaser, if ever.
584 jsr166 1.14 *
585 dl 1.35 * @return the arrival phase number, or a negative number if terminated
586 dl 1.4 * @throws IllegalStateException if not terminated and the number
587 jsr166 1.14 * of unarrived parties would become negative
588 dl 1.1 */
589     public int arriveAndAwaitAdvance() {
590 dl 1.62 return awaitAdvance(doArrive(ONE_ARRIVAL));
591 dl 1.1 }
592    
593     /**
594 dl 1.27 * Awaits the phase of the barrier to advance from the given phase
595 dl 1.30 * value, returning immediately if the current phase of the
596     * barrier is not equal to the given phase value or this barrier
597 dl 1.50 * is terminated.
598 jsr166 1.14 *
599 dl 1.35 * @param phase an arrival phase number, or negative value if
600     * terminated; this argument is normally the value returned by a
601     * previous call to {@code arrive} or its variants
602     * @return the next arrival phase number, or a negative value
603     * if terminated or argument is negative
604 dl 1.1 */
605     public int awaitAdvance(int phase) {
606 dl 1.62 Phaser rt;
607 dl 1.60 int p = (int)(state >>> PHASE_SHIFT);
608 dl 1.1 if (phase < 0)
609     return phase;
610 dl 1.60 if (p == phase &&
611 dl 1.62 (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612     return rt.internalAwaitAdvance(phase, null);
613 dl 1.60 return p;
614 dl 1.1 }
615    
616     /**
617 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
618 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
619     * while waiting, or returning immediately if the current phase of
620     * the barrier is not equal to the given phase value or this
621 dl 1.50 * barrier is terminated.
622 jsr166 1.14 *
623 dl 1.35 * @param phase an arrival phase number, or negative value if
624     * terminated; this argument is normally the value returned by a
625     * previous call to {@code arrive} or its variants
626     * @return the next arrival phase number, or a negative value
627     * if terminated or argument is negative
628 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
629     */
630 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
631 dl 1.10 throws InterruptedException {
632 dl 1.62 Phaser rt;
633 dl 1.60 int p = (int)(state >>> PHASE_SHIFT);
634 dl 1.1 if (phase < 0)
635     return phase;
636 dl 1.60 if (p == phase &&
637 dl 1.62 (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
638 dl 1.55 QNode node = new QNode(this, phase, true, false, 0L);
639 dl 1.62 p = rt.internalAwaitAdvance(phase, node);
640 dl 1.55 if (node.wasInterrupted)
641     throw new InterruptedException();
642     }
643     return p;
644 dl 1.1 }
645    
646     /**
647 dl 1.30 * Awaits the phase of the barrier to advance from the given phase
648 dl 1.38 * value or the given timeout to elapse, throwing {@code
649     * InterruptedException} if interrupted while waiting, or
650     * returning immediately if the current phase of the barrier is
651     * not equal to the given phase value or this barrier is
652 dl 1.50 * terminated.
653 jsr166 1.14 *
654 dl 1.35 * @param phase an arrival phase number, or negative value if
655     * terminated; this argument is normally the value returned by a
656     * previous call to {@code arrive} or its variants
657 dl 1.31 * @param timeout how long to wait before giving up, in units of
658     * {@code unit}
659     * @param unit a {@code TimeUnit} determining how to interpret the
660     * {@code timeout} parameter
661 dl 1.35 * @return the next arrival phase number, or a negative value
662     * if terminated or argument is negative
663 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
664     * @throws TimeoutException if timed out while waiting
665     */
666 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
667     long timeout, TimeUnit unit)
668 dl 1.1 throws InterruptedException, TimeoutException {
669 dl 1.60 long nanos = unit.toNanos(timeout);
670 dl 1.62 Phaser rt;
671 dl 1.60 int p = (int)(state >>> PHASE_SHIFT);
672 dl 1.1 if (phase < 0)
673     return phase;
674 dl 1.60 if (p == phase &&
675 dl 1.62 (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
676 dl 1.55 QNode node = new QNode(this, phase, true, true, nanos);
677 dl 1.62 p = rt.internalAwaitAdvance(phase, node);
678 dl 1.55 if (node.wasInterrupted)
679     throw new InterruptedException();
680     else if (p == phase)
681     throw new TimeoutException();
682     }
683     return p;
684 dl 1.1 }
685    
686     /**
687 dl 1.55 * Forces this barrier to enter termination state. Counts of
688 dl 1.60 * arrived and registered parties are unaffected. If this Phaser
689     * is a member of a tiered set of Phasers, then all of the Phasers
690     * in the set are terminated. If this Phaser is already
691 dl 1.55 * terminated, this method has no effect. This method may be
692     * useful for coordinating recovery after one or more tasks
693     * encounter unexpected exceptions.
694 dl 1.1 */
695     public void forceTermination() {
696 dl 1.55 // Only need to change root state
697     final Phaser root = this.root;
698 dl 1.49 long s;
699 dl 1.55 while ((s = root.state) >= 0) {
700     if (UNSAFE.compareAndSwapLong(root, stateOffset,
701 dl 1.59 s, s | TERMINATION_BIT)) {
702 dl 1.55 releaseWaiters(0); // signal all threads
703     releaseWaiters(1);
704     return;
705     }
706     }
707 dl 1.1 }
708    
709     /**
710 dl 1.4 * Returns the current phase number. The maximum phase number is
711 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
712 dl 1.4 * zero. Upon termination, the phase number is negative.
713 jsr166 1.14 *
714 dl 1.4 * @return the phase number, or a negative value if terminated
715 dl 1.1 */
716 dl 1.4 public final int getPhase() {
717 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
718 dl 1.1 }
719    
720     /**
721     * Returns the number of parties registered at this barrier.
722 jsr166 1.14 *
723 dl 1.1 * @return the number of parties
724     */
725     public int getRegisteredParties() {
726 dl 1.57 return partiesOf(state);
727 dl 1.1 }
728    
729     /**
730 dl 1.36 * Returns the number of registered parties that have arrived at
731     * the current phase of this barrier.
732 jsr166 1.14 *
733 dl 1.1 * @return the number of arrived parties
734     */
735     public int getArrivedParties() {
736 dl 1.60 long s = state;
737     int u = unarrivedOf(s); // only reconcile if possibly needed
738     return (u != 0 || parent == null) ?
739     partiesOf(s) - u :
740     arrivedOf(reconcileState());
741 dl 1.1 }
742    
743     /**
744     * Returns the number of registered parties that have not yet
745     * arrived at the current phase of this barrier.
746 jsr166 1.14 *
747 dl 1.1 * @return the number of unarrived parties
748     */
749     public int getUnarrivedParties() {
750 dl 1.60 int u = unarrivedOf(state);
751     return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
752 dl 1.4 }
753    
754     /**
755 dl 1.60 * Returns the parent of this Phaser, or {@code null} if none.
756 jsr166 1.14 *
757 dl 1.60 * @return the parent of this Phaser, or {@code null} if none
758 dl 1.4 */
759     public Phaser getParent() {
760     return parent;
761     }
762    
763     /**
764 dl 1.60 * Returns the root ancestor of this Phaser, which is the same as
765     * this Phaser if it has no parent.
766 jsr166 1.14 *
767 dl 1.60 * @return the root ancestor of this Phaser
768 dl 1.4 */
769     public Phaser getRoot() {
770     return root;
771 dl 1.1 }
772    
773     /**
774 jsr166 1.9 * Returns {@code true} if this barrier has been terminated.
775 jsr166 1.14 *
776 jsr166 1.9 * @return {@code true} if this barrier has been terminated
777 dl 1.1 */
778     public boolean isTerminated() {
779 dl 1.57 return root.state < 0L;
780 dl 1.1 }
781    
782     /**
783 dl 1.43 * Overridable method to perform an action upon impending phase
784     * advance, and to control termination. This method is invoked
785     * upon arrival of the party tripping the barrier (when all other
786     * waiting parties are dormant). If this method returns {@code
787     * true}, then, rather than advance the phase number, this barrier
788     * will be set to a final termination state, and subsequent calls
789     * to {@link #isTerminated} will return true. Any (unchecked)
790     * Exception or Error thrown by an invocation of this method is
791     * propagated to the party attempting to trip the barrier, in
792     * which case no advance occurs.
793 dl 1.42 *
794 dl 1.60 * <p>The arguments to this method provide the state of the Phaser
795 dl 1.51 * prevailing for the current transition. The effects of invoking
796     * arrival, registration, and waiting methods on this Phaser from
797 dl 1.50 * within {@code onAdvance} are unspecified and should not be
798 dl 1.51 * relied on.
799     *
800     * <p>If this Phaser is a member of a tiered set of Phasers, then
801     * {@code onAdvance} is invoked only for its root Phaser on each
802     * advance.
803 jsr166 1.3 *
804 dl 1.59 * <p>To support the most common use cases, the default
805     * implementation of this method returns {@code true} when the
806     * number of registered parties has become zero as the result of a
807     * party invoking {@code arriveAndDeregister}. You can disable
808     * this behavior, thus enabling continuation upon future
809     * registrations, by overriding this method to always return
810     * {@code false}:
811     *
812     * <pre> {@code
813     * Phaser phaser = new Phaser() {
814     * protected boolean onAdvance(int phase, int parties) { return false; }
815     * }}</pre>
816 dl 1.1 *
817     * @param phase the phase number on entering the barrier
818 jsr166 1.9 * @param registeredParties the current number of registered parties
819     * @return {@code true} if this barrier should terminate
820 dl 1.1 */
821     protected boolean onAdvance(int phase, int registeredParties) {
822 dl 1.62 return registeredParties == 0;
823 dl 1.1 }
824    
825     /**
826 dl 1.60 * Returns a string identifying this Phaser, as well as its
827 dl 1.1 * state. The state, in brackets, includes the String {@code
828 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
829 dl 1.1 * followed by the number of registered parties, and {@code
830 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
831 dl 1.1 *
832     * @return a string identifying this barrier, as well as its state
833     */
834     public String toString() {
835 dl 1.54 return stateToString(reconcileState());
836     }
837    
838     /**
839     * Implementation of toString and string-based error messages
840     */
841     private String stateToString(long s) {
842 jsr166 1.9 return super.toString() +
843     "[phase = " + phaseOf(s) +
844     " parties = " + partiesOf(s) +
845     " arrived = " + arrivedOf(s) + "]";
846 dl 1.1 }
847    
848 dl 1.54 // Waiting mechanics
849    
850 dl 1.4 /**
851 dl 1.57 * Removes and signals threads from queue for phase.
852 dl 1.4 */
853     private void releaseWaiters(int phase) {
854 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
855 dl 1.4 QNode q;
856 dl 1.51 int p;
857     while ((q = head.get()) != null &&
858     ((p = q.phase) == phase ||
859     (int)(root.state >>> PHASE_SHIFT) != p)) {
860 dl 1.4 if (head.compareAndSet(q, q.next))
861     q.signal();
862     }
863     }
864    
865 dl 1.51 /** The number of CPUs, for spin control */
866     private static final int NCPU = Runtime.getRuntime().availableProcessors();
867    
868 dl 1.10 /**
869 dl 1.51 * The number of times to spin before blocking while waiting for
870     * advance, per arrival while waiting. On multiprocessors, fully
871     * blocking and waking up a large number of threads all at once is
872     * usually a very slow process, so we use rechargeable spins to
873     * avoid it when threads regularly arrive: When a thread in
874     * internalAwaitAdvance notices another arrival before blocking,
875     * and there appear to be enough CPUs available, it spins
876 dl 1.62 * SPINS_PER_ARRIVAL more times before blocking. The value trades
877     * off good-citizenship vs big unnecessary slowdowns.
878 dl 1.50 */
879 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
880 dl 1.50
881     /**
882 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
883 dl 1.60 * Call only from root node.
884 jsr166 1.14 *
885 dl 1.51 * @param phase current phase
886 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
887 dl 1.51 * if null, denotes noninterruptible wait
888 dl 1.10 * @return current phase
889 dl 1.1 */
890 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
891 dl 1.54 boolean queued = false; // true when node is enqueued
892     int lastUnarrived = -1; // to increase spins upon change
893 dl 1.51 int spins = SPINS_PER_ARRIVAL;
894 dl 1.57 long s;
895     int p;
896 dl 1.60 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
897 dl 1.57 int unarrived = (int)s & UNARRIVED_MASK;
898 dl 1.62 if (node != null && node.isReleasable()) {
899     p = (int)(state >>> PHASE_SHIFT);
900     break; // done or aborted
901     }
902     else if (node == null && Thread.interrupted()) {
903     node = new QNode(this, phase, false, false, 0L);
904     node.wasInterrupted = true;
905     }
906     else if (unarrived != lastUnarrived) {
907 dl 1.57 if (lastUnarrived == -1) // ensure old queue clean
908     releaseWaiters(phase-1);
909     if ((lastUnarrived = unarrived) < NCPU)
910     spins += SPINS_PER_ARRIVAL;
911 dl 1.54 }
912 dl 1.62 else if (spins > 0)
913     --spins;
914     else if (node == null) // null if noninterruptible mode
915 dl 1.51 node = new QNode(this, phase, false, false, 0L);
916 dl 1.57 else if (!queued) { // push onto queue
917 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
918 dl 1.57 QNode q = head.get();
919     if (q == null || q.phase == phase) {
920     node.next = q;
921 dl 1.60 if ((p = (int)(state >>> PHASE_SHIFT)) != phase)
922 dl 1.57 break; // recheck to avoid stale enqueue
923 dl 1.62 queued = head.compareAndSet(q, node);
924 dl 1.57 }
925     }
926 dl 1.51 else {
927     try {
928     ForkJoinPool.managedBlock(node);
929     } catch (InterruptedException ie) {
930     node.wasInterrupted = true;
931     }
932     }
933 dl 1.4 }
934 dl 1.60
935     if (node != null) {
936     if (node.thread != null)
937     node.thread = null; // disable unpark() in node.signal
938 dl 1.62 if (node.wasInterrupted && !node.interruptible)
939 dl 1.60 Thread.currentThread().interrupt();
940     }
941     if (p != phase)
942     releaseWaiters(phase);
943 dl 1.57 return p;
944 dl 1.4 }
945    
946     /**
947 dl 1.51 * Wait nodes for Treiber stack representing wait queue
948 dl 1.4 */
949 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
950     final Phaser phaser;
951     final int phase;
952     final boolean interruptible;
953     final boolean timed;
954     boolean wasInterrupted;
955     long nanos;
956     long lastTime;
957     volatile Thread thread; // nulled to cancel wait
958     QNode next;
959    
960     QNode(Phaser phaser, int phase, boolean interruptible,
961     boolean timed, long nanos) {
962     this.phaser = phaser;
963     this.phase = phase;
964     this.interruptible = interruptible;
965     this.nanos = nanos;
966     this.timed = timed;
967     this.lastTime = timed? System.nanoTime() : 0L;
968     thread = Thread.currentThread();
969     }
970    
971     public boolean isReleasable() {
972     Thread t = thread;
973     if (t != null) {
974     if (phaser.getPhase() != phase)
975     t = null;
976     else {
977     if (Thread.interrupted())
978     wasInterrupted = true;
979 dl 1.62 if (wasInterrupted && interruptible)
980 dl 1.51 t = null;
981     else if (timed) {
982     if (nanos > 0) {
983     long now = System.nanoTime();
984     nanos -= now - lastTime;
985     lastTime = now;
986     }
987     if (nanos <= 0)
988     t = null;
989     }
990     }
991     if (t != null)
992     return false;
993     thread = null;
994 dl 1.50 }
995 dl 1.51 return true;
996     }
997    
998     public boolean block() {
999     if (isReleasable())
1000     return true;
1001     else if (!timed)
1002     LockSupport.park(this);
1003     else if (nanos > 0)
1004     LockSupport.parkNanos(this, nanos);
1005     return isReleasable();
1006 dl 1.1 }
1007    
1008 dl 1.51 void signal() {
1009     Thread t = thread;
1010     if (t != null) {
1011     thread = null;
1012     LockSupport.unpark(t);
1013 dl 1.50 }
1014 dl 1.4 }
1015     }
1016    
1017 jsr166 1.22 // Unsafe mechanics
1018    
1019     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1020     private static final long stateOffset =
1021     objectFieldOffset("state", Phaser.class);
1022    
1023     private static long objectFieldOffset(String field, Class<?> klazz) {
1024     try {
1025     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1026     } catch (NoSuchFieldException e) {
1027     // Convert Exception to corresponding Error
1028     NoSuchFieldError error = new NoSuchFieldError(field);
1029     error.initCause(e);
1030     throw error;
1031     }
1032     }
1033    
1034     /**
1035     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1036     * Replace with a simple call to Unsafe.getUnsafe when integrating
1037     * into a jdk.
1038     *
1039     * @return a sun.misc.Unsafe
1040     */
1041 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1042 jsr166 1.11 try {
1043 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1044 jsr166 1.11 } catch (SecurityException se) {
1045     try {
1046     return java.security.AccessController.doPrivileged
1047 jsr166 1.22 (new java.security
1048     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1049 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1050 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1051     .Unsafe.class.getDeclaredField("theUnsafe");
1052     f.setAccessible(true);
1053     return (sun.misc.Unsafe) f.get(null);
1054 jsr166 1.11 }});
1055     } catch (java.security.PrivilegedActionException e) {
1056 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1057     e.getCause());
1058 jsr166 1.11 }
1059     }
1060     }
1061 dl 1.1 }