ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.68
Committed: Sat Dec 4 15:25:08 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.67: +163 -105 lines
Log Message:
Ensure consistent phase returns for tiered phasers; other minor improvements

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.63 * number of parties <em>registered</em> to synchronize on a phaser
22 dl 1.38 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.63 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 dl 1.38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.63 * control of actions upon arrival at a phaser and upon awaiting
42 dl 1.38 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.63 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 dl 1.38 *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62 dl 1.63 * the phaser advances to (or is already at) a different phase.
63 dl 1.38 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68 dl 1.63 * state of the phaser. If necessary, you can perform any
69 dl 1.38 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.63 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.68 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80     * waiting for advance, as indicated by a negative return
81     * value. Similarly, attempts to register upon termination have no
82     * effect. Termination is triggered when an invocation of {@code
83     * onAdvance} returns {@code true}. The default implementation returns
84     * {@code true} if a deregistration has caused the number of
85     * registered parties to become zero. As illustrated below, when
86     * phasers control actions with a fixed number of iterations, it is
87     * often convenient to override this method to cause termination when
88     * the current phase number reaches a threshold. Method {@link
89     * #forceTermination} is also available to abruptly release waiting
90     * threads and allow them to terminate.
91 dl 1.4 *
92 dl 1.58 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 dl 1.38 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 dl 1.68 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104     * constructor, {@link #register}, or {@link #bulkRegister}), the
105     * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107     * {@link #arriveAndDeregister}, the child phaser is deregistered
108     * from its parent.
109     *
110 dl 1.38 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.63 * only by registered parties, the current state of a phaser may be
112 dl 1.38 * monitored by any caller. At any given moment there are {@link
113 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 dl 1.42 * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 dl 1.1 *
122 dl 1.4 * <p><b>Sample usages:</b>
123     *
124 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 dl 1.48 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 dl 1.1 *
129 jsr166 1.13 * <pre> {@code
130 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
132 dl 1.27 * // create and start threads
133 jsr166 1.33 * for (Runnable task : tasks) {
134 jsr166 1.13 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.33 * task.run();
139 jsr166 1.13 * }
140     * }.start();
141 dl 1.4 * }
142 dl 1.6 *
143 dl 1.27 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.13 * }}</pre>
146 dl 1.1 *
147 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
148 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
149 dl 1.1 *
150 jsr166 1.13 * <pre> {@code
151 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.13 * final Phaser phaser = new Phaser() {
153 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.45 * for (final Runnable task : tasks) {
159 jsr166 1.13 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.33 * task.run();
164 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.45 * } while (!phaser.isTerminated());
166 dl 1.4 * }
167 jsr166 1.13 * }.start();
168 dl 1.1 * }
169 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 jsr166 1.13 * }}</pre>
171 dl 1.1 *
172 dl 1.38 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174 jsr166 1.45 * <pre> {@code
175 dl 1.38 * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
179 dl 1.38 *
180 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
181 dl 1.38 * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184 jsr166 1.45 * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192 dl 1.38 * }
193 jsr166 1.45 * phaser.arriveAndDeregister();
194     * }}</pre>
195 dl 1.38 *
196     *
197 dl 1.65 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.45 *
204 jsr166 1.13 * <pre> {@code
205 dl 1.65 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 dl 1.44 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.65 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.13 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.65 * tasks[i] = new Task(ph);
214 dl 1.44 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.13 * }
216 dl 1.65 * }}</pre>
217 dl 1.4 *
218 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.63 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 dl 1.4 * high rates), or up to hundreds for extremely large ones.
222     *
223 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
224 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.63 * should create tiered phasers to accommodate arbitrarily large sets
227 dl 1.4 * of participants.
228 jsr166 1.16 *
229     * @since 1.7
230     * @author Doug Lea
231 dl 1.1 */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237 dl 1.1 */
238    
239     /**
240 dl 1.63 * Primary state representation, holding four fields:
241 jsr166 1.3 *
242 dl 1.51 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * * parties -- the number of parties to wait (bits 16-31)
244     * * phase -- the generation of the barrier (bits 32-62)
245     * * terminated -- set if barrier is terminated (bit 63 / sign)
246 dl 1.1 *
247 dl 1.65 * Except that a phaser with no registered parties is
248     * distinguished with the otherwise illegal state of having zero
249     * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263     * ancestors until it is actually accessed. Method reconcileState
264     * is usually attempted only only when the number of unarrived
265     * parties appears to be zero, which indicates a potential lag in
266     * updating phase after the root advanced.
267 dl 1.1 */
268 dl 1.4 private volatile long state;
269 dl 1.1
270 dl 1.59 private static final int MAX_PARTIES = 0xffff;
271     private static final int MAX_PHASE = 0x7fffffff;
272     private static final int PARTIES_SHIFT = 16;
273     private static final int PHASE_SHIFT = 32;
274     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
275     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
276     private static final long TERMINATION_BIT = 1L << 63;
277 dl 1.51
278 dl 1.65 // some special values
279     private static final int ONE_ARRIVAL = 1;
280     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
281     private static final int EMPTY = 1;
282    
283 dl 1.51 // The following unpacking methods are usually manually inlined
284 dl 1.1
285     private static int unarrivedOf(long s) {
286 dl 1.65 int counts = (int)s;
287 jsr166 1.66 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
288 dl 1.1 }
289    
290     private static int partiesOf(long s) {
291 dl 1.68 return (int)s >>> PARTIES_SHIFT;
292 dl 1.1 }
293    
294     private static int phaseOf(long s) {
295 dl 1.51 return (int) (s >>> PHASE_SHIFT);
296 dl 1.1 }
297    
298     private static int arrivedOf(long s) {
299 dl 1.65 int counts = (int)s;
300 jsr166 1.66 return (counts == EMPTY) ? 0 :
301 dl 1.65 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302 dl 1.1 }
303    
304 dl 1.4 /**
305     * The parent of this phaser, or null if none
306     */
307     private final Phaser parent;
308    
309     /**
310 dl 1.65 * The root of phaser tree. Equals this if not in a tree.
311 dl 1.4 */
312     private final Phaser root;
313    
314     /**
315 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
316 dl 1.49 * contention when releasing some threads while adding others, we
317 dl 1.4 * use two of them, alternating across even and odd phases.
318 dl 1.49 * Subphasers share queues with root to speed up releases.
319 dl 1.4 */
320 dl 1.50 private final AtomicReference<QNode> evenQ;
321     private final AtomicReference<QNode> oddQ;
322 dl 1.4
323     private AtomicReference<QNode> queueFor(int phase) {
324 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
325 dl 1.4 }
326    
327     /**
328 dl 1.59 * Returns message string for bounds exceptions on arrival.
329     */
330     private String badArrive(long s) {
331     return "Attempted arrival of unregistered party for " +
332     stateToString(s);
333     }
334    
335     /**
336     * Returns message string for bounds exceptions on registration.
337     */
338     private String badRegister(long s) {
339     return "Attempt to register more than " +
340     MAX_PARTIES + " parties for " + stateToString(s);
341     }
342    
343     /**
344 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
345     * Manually tuned to speed up and minimize race windows for the
346     * common case of just decrementing unarrived field.
347     *
348 dl 1.65 * @param deregister false for arrive, true for arriveAndDeregister
349 dl 1.4 */
350 dl 1.65 private int doArrive(boolean deregister) {
351     int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 dl 1.68 final Phaser root = this.root;
353     for (;;) {
354     long s = (root == this) ? state : reconcileState();
355     int phase = (int)(s >>> PHASE_SHIFT);
356 dl 1.65 int counts = (int)s;
357 dl 1.68 int unarrived = (counts & UNARRIVED_MASK) - 1;
358     if (phase < 0)
359     return phase;
360     else if (counts == EMPTY || unarrived < 0) {
361     if (root == this || reconcileState() == s)
362 dl 1.59 throw new IllegalStateException(badArrive(s));
363     }
364 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
365 dl 1.68 if (unarrived == 0) {
366     long n = s & PARTIES_MASK; // base of next state
367     int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
368     if (root != this)
369     return parent.doArrive(nextUnarrived == 0);
370     if (onAdvance(phase, nextUnarrived))
371     n |= TERMINATION_BIT;
372     else if (nextUnarrived == 0)
373     n |= EMPTY;
374     else
375     n |= nextUnarrived;
376     n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
377     UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
378     releaseWaiters(phase);
379 dl 1.51 }
380 dl 1.68 return phase;
381 dl 1.51 }
382     }
383     }
384    
385     /**
386     * Implementation of register, bulkRegister
387     *
388 dl 1.58 * @param registrations number to add to both parties and
389     * unarrived fields. Must be greater than zero.
390 dl 1.51 */
391     private int doRegister(int registrations) {
392 dl 1.57 // adjustment to state
393     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
394 dl 1.65 Phaser par = parent;
395     int phase;
396 dl 1.54 for (;;) {
397 dl 1.65 long s = state;
398     int counts = (int)s;
399     int parties = counts >>> PARTIES_SHIFT;
400     int unarrived = counts & UNARRIVED_MASK;
401     if (registrations > MAX_PARTIES - parties)
402 dl 1.54 throw new IllegalStateException(badRegister(s));
403 dl 1.65 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
404     break;
405     else if (counts != EMPTY) { // not 1st registration
406     if (par == null || reconcileState() == s) {
407     if (unarrived == 0) // wait out advance
408     root.internalAwaitAdvance(phase, null);
409     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
410     s, s + adj))
411     break;
412     }
413     }
414     else if (par == null) { // 1st root registration
415     long next = (((long) phase) << PHASE_SHIFT) | adj;
416     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
417     break;
418     }
419     else {
420 jsr166 1.66 synchronized (this) { // 1st sub registration
421 dl 1.65 if (state == s) { // recheck under lock
422     par.doRegister(1);
423     do { // force current phase
424     phase = (int)(root.state >>> PHASE_SHIFT);
425     // assert phase < 0 || (int)state == EMPTY;
426     } while (!UNSAFE.compareAndSwapLong
427     (this, stateOffset, state,
428     (((long) phase) << PHASE_SHIFT) | adj));
429     break;
430 dl 1.59 }
431     }
432     }
433 dl 1.51 }
434 dl 1.65 return phase;
435 dl 1.51 }
436    
437     /**
438 dl 1.65 * Resolves lagged phase propagation from root if necessary.
439 dl 1.4 */
440     private long reconcileState() {
441 dl 1.65 Phaser rt = root;
442 dl 1.57 long s = state;
443 dl 1.65 if (rt != this) {
444     int phase;
445     while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
446     (int)(s >>> PHASE_SHIFT)) {
447     // assert phase < 0 || unarrivedOf(s) == 0
448     long t; // to reread s
449     long p = s & PARTIES_MASK; // unshifted parties field
450     long n = (((long) phase) << PHASE_SHIFT) | p;
451     if (phase >= 0) {
452     if (p == 0L)
453     n |= EMPTY; // reset to empty
454     else
455     n |= p >>> PARTIES_SHIFT; // set unarr to parties
456 dl 1.57 }
457 dl 1.65 if ((t = state) == s &&
458     UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
459     break;
460     s = t;
461 dl 1.4 }
462     }
463 dl 1.57 return s;
464 dl 1.1 }
465    
466     /**
467 dl 1.63 * Creates a new phaser with no initially registered parties, no
468     * parent, and initial phase number 0. Any thread using this
469     * phaser will need to first register for it.
470 dl 1.1 */
471     public Phaser() {
472 dl 1.50 this(null, 0);
473 dl 1.1 }
474    
475     /**
476 dl 1.63 * Creates a new phaser with the given number of registered
477     * unarrived parties, no parent, and initial phase number 0.
478 jsr166 1.14 *
479 dl 1.63 * @param parties the number of parties required to advance to the
480     * next phase
481 dl 1.1 * @throws IllegalArgumentException if parties less than zero
482 jsr166 1.14 * or greater than the maximum number of parties supported
483 dl 1.1 */
484     public Phaser(int parties) {
485 dl 1.4 this(null, parties);
486     }
487    
488     /**
489 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
490 jsr166 1.14 *
491 dl 1.63 * @param parent the parent phaser
492 dl 1.4 */
493     public Phaser(Phaser parent) {
494 dl 1.50 this(parent, 0);
495 dl 1.4 }
496    
497     /**
498 dl 1.63 * Creates a new phaser with the given parent and number of
499 dl 1.68 * registered unarrived parties. When the given parent is non-null
500     * and the given number of parties is greater than zero, this
501     * child phaser is registered with its parent.
502 jsr166 1.14 *
503 dl 1.63 * @param parent the parent phaser
504     * @param parties the number of parties required to advance to the
505     * next phase
506 dl 1.4 * @throws IllegalArgumentException if parties less than zero
507 jsr166 1.14 * or greater than the maximum number of parties supported
508 dl 1.4 */
509     public Phaser(Phaser parent, int parties) {
510 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
511 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
512 dl 1.65 int phase = 0;
513 dl 1.4 this.parent = parent;
514     if (parent != null) {
515 dl 1.68 final Phaser root = parent.root;
516     this.root = root;
517     this.evenQ = root.evenQ;
518     this.oddQ = root.oddQ;
519 dl 1.60 if (parties != 0)
520 dl 1.65 phase = parent.doRegister(1);
521 dl 1.4 }
522 dl 1.50 else {
523 dl 1.4 this.root = this;
524 dl 1.50 this.evenQ = new AtomicReference<QNode>();
525     this.oddQ = new AtomicReference<QNode>();
526     }
527 dl 1.68 this.state = (parties == 0) ? (long) EMPTY :
528 dl 1.65 ((((long) phase) << PHASE_SHIFT) |
529     (((long) parties) << PARTIES_SHIFT) |
530     ((long) parties));
531 dl 1.1 }
532    
533     /**
534 dl 1.63 * Adds a new unarrived party to this phaser. If an ongoing
535 dl 1.59 * invocation of {@link #onAdvance} is in progress, this method
536 dl 1.63 * may await its completion before returning. If this phaser has
537     * a parent, and this phaser previously had no registered parties,
538 dl 1.68 * this child phaser is also registered with its parent. If
539     * this phaser is terminated, the attempt to register has
540     * no effect, and a negative value is returned.
541     *
542     * @return the arrival phase number to which this registration
543     * applied. If this value is negative, then this phaser has
544     * terminated, in which casem registration has no effect.
545 dl 1.1 * @throws IllegalStateException if attempting to register more
546 jsr166 1.14 * than the maximum supported number of parties
547 dl 1.1 */
548 dl 1.4 public int register() {
549     return doRegister(1);
550     }
551    
552     /**
553 dl 1.63 * Adds the given number of new unarrived parties to this phaser.
554 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
555 dl 1.60 * this method may await its completion before returning. If this
556 dl 1.68 * phaser has a parent, and the given number of parties is greater
557     * than zero, and this phaser previously had no registered
558     * parties, this child phaser is also registered with its parent.
559     * If this phaser is terminated, the attempt to register has no
560     * effect, and a negative value is returned.
561 jsr166 1.14 *
562 dl 1.63 * @param parties the number of additional parties required to
563     * advance to the next phase
564 dl 1.68 * @return the arrival phase number to which this registration
565     * applied. If this value is negative, then this phaser has
566     * terminated, in which casem registration has no effect.
567 dl 1.4 * @throws IllegalStateException if attempting to register more
568 jsr166 1.14 * than the maximum supported number of parties
569 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
570 dl 1.4 */
571     public int bulkRegister(int parties) {
572     if (parties < 0)
573     throw new IllegalArgumentException();
574 dl 1.60 if (parties == 0)
575 dl 1.4 return getPhase();
576     return doRegister(parties);
577     }
578    
579     /**
580 dl 1.63 * Arrives at this phaser, without waiting for others to arrive.
581 dl 1.60 *
582     * <p>It is a usage error for an unregistered party to invoke this
583     * method. However, this error may result in an {@code
584     * IllegalStateException} only upon some subsequent operation on
585 dl 1.63 * this phaser, if ever.
586 dl 1.1 *
587 dl 1.35 * @return the arrival phase number, or a negative value if terminated
588 dl 1.4 * @throws IllegalStateException if not terminated and the number
589 jsr166 1.14 * of unarrived parties would become negative
590 dl 1.1 */
591 dl 1.4 public int arrive() {
592 dl 1.65 return doArrive(false);
593 dl 1.1 }
594    
595     /**
596 dl 1.63 * Arrives at this phaser and deregisters from it without waiting
597 dl 1.60 * for others to arrive. Deregistration reduces the number of
598 dl 1.63 * parties required to advance in future phases. If this phaser
599     * has a parent, and deregistration causes this phaser to have
600     * zero parties, this phaser is also deregistered from its parent.
601 dl 1.60 *
602     * <p>It is a usage error for an unregistered party to invoke this
603     * method. However, this error may result in an {@code
604     * IllegalStateException} only upon some subsequent operation on
605 dl 1.63 * this phaser, if ever.
606 dl 1.1 *
607 dl 1.35 * @return the arrival phase number, or a negative value if terminated
608 dl 1.4 * @throws IllegalStateException if not terminated and the number
609 jsr166 1.14 * of registered or unarrived parties would become negative
610 dl 1.1 */
611 dl 1.4 public int arriveAndDeregister() {
612 dl 1.65 return doArrive(true);
613 dl 1.1 }
614    
615     /**
616 dl 1.63 * Arrives at this phaser and awaits others. Equivalent in effect
617 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
618     * interruption or timeout, you can arrange this with an analogous
619 dl 1.48 * construction using one of the other forms of the {@code
620     * awaitAdvance} method. If instead you need to deregister upon
621 dl 1.60 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
622     *
623     * <p>It is a usage error for an unregistered party to invoke this
624     * method. However, this error may result in an {@code
625     * IllegalStateException} only upon some subsequent operation on
626 dl 1.63 * this phaser, if ever.
627 jsr166 1.14 *
628 dl 1.68 * @return the arrival phase number, or the (negative)
629     * {@linkplain #getPhase() current phase} if terminated
630 dl 1.4 * @throws IllegalStateException if not terminated and the number
631 jsr166 1.14 * of unarrived parties would become negative
632 dl 1.1 */
633     public int arriveAndAwaitAdvance() {
634 dl 1.68 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
635     final Phaser root = this.root;
636     for (;;) {
637     long s = (root == this) ? state : reconcileState();
638     int phase = (int)(s >>> PHASE_SHIFT);
639     int counts = (int)s;
640     int unarrived = (counts & UNARRIVED_MASK) - 1;
641     if (phase < 0)
642     return phase;
643     else if (counts == EMPTY || unarrived < 0) {
644     if (reconcileState() == s)
645     throw new IllegalStateException(badArrive(s));
646     }
647     else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
648     s -= ONE_ARRIVAL)) {
649     if (unarrived != 0)
650     return root.internalAwaitAdvance(phase, null);
651     if (root != this)
652     return parent.arriveAndAwaitAdvance();
653     long n = s & PARTIES_MASK; // base of next state
654     int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
655     if (onAdvance(phase, nextUnarrived))
656     n |= TERMINATION_BIT;
657     else if (nextUnarrived == 0)
658     n |= EMPTY;
659     else
660     n |= nextUnarrived;
661     int nextPhase = (phase + 1) & MAX_PHASE;
662     n |= (long)nextPhase << PHASE_SHIFT;
663     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
664     return (int)(state >>> PHASE_SHIFT); // terminated
665     releaseWaiters(phase);
666     return nextPhase;
667     }
668     }
669 dl 1.1 }
670    
671     /**
672 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
673     * value, returning immediately if the current phase is not equal
674     * to the given phase value or this phaser is terminated.
675 jsr166 1.14 *
676 dl 1.35 * @param phase an arrival phase number, or negative value if
677     * terminated; this argument is normally the value returned by a
678 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
679 dl 1.68 * @return the next arrival phase number, or the argument if it is
680     * negative, or the (negative) {@linkplain #getPhase() current phase}
681     * if terminated
682 dl 1.1 */
683     public int awaitAdvance(int phase) {
684 dl 1.68 final Phaser root = this.root;
685     int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
686 dl 1.1 if (phase < 0)
687     return phase;
688 dl 1.68 if (p == phase)
689     return root.internalAwaitAdvance(phase, null);
690 dl 1.60 return p;
691 dl 1.1 }
692    
693     /**
694 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
695 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
696 dl 1.63 * while waiting, or returning immediately if the current phase is
697     * not equal to the given phase value or this phaser is
698     * terminated.
699 jsr166 1.14 *
700 dl 1.35 * @param phase an arrival phase number, or negative value if
701     * terminated; this argument is normally the value returned by a
702 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
703 dl 1.68 * @return the next arrival phase number, or the argument if it is
704     * negative, or the (negative) {@linkplain #getPhase() current phase}
705     * if terminated
706 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
707     */
708 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
709 dl 1.10 throws InterruptedException {
710 dl 1.68 final Phaser root = this.root;
711     int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
712 dl 1.1 if (phase < 0)
713     return phase;
714 dl 1.65 if (p == phase) {
715 dl 1.68 QNode node = new QNode(this, phase, true, false, 0L);
716     p = root.internalAwaitAdvance(phase, node);
717     if (node.wasInterrupted)
718     throw new InterruptedException();
719 dl 1.55 }
720     return p;
721 dl 1.1 }
722    
723     /**
724 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
725 dl 1.38 * value or the given timeout to elapse, throwing {@code
726     * InterruptedException} if interrupted while waiting, or
727 dl 1.63 * returning immediately if the current phase is not equal to the
728     * given phase value or this phaser is terminated.
729 jsr166 1.14 *
730 dl 1.35 * @param phase an arrival phase number, or negative value if
731     * terminated; this argument is normally the value returned by a
732 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
733 dl 1.31 * @param timeout how long to wait before giving up, in units of
734     * {@code unit}
735     * @param unit a {@code TimeUnit} determining how to interpret the
736     * {@code timeout} parameter
737 dl 1.68 * @return the next arrival phase number, or the argument if it is
738     * negative, or the (negative) {@linkplain #getPhase() current phase}
739     * if terminated
740 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
741     * @throws TimeoutException if timed out while waiting
742     */
743 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
744     long timeout, TimeUnit unit)
745 dl 1.1 throws InterruptedException, TimeoutException {
746 dl 1.60 long nanos = unit.toNanos(timeout);
747 dl 1.68 final Phaser root = this.root;
748     int p = (int)((root == this? state : reconcileState()) >>> PHASE_SHIFT);
749 dl 1.1 if (phase < 0)
750     return phase;
751 dl 1.65 if (p == phase) {
752 dl 1.68 QNode node = new QNode(this, phase, true, true, nanos);
753     p = root.internalAwaitAdvance(phase, node);
754     if (node.wasInterrupted)
755     throw new InterruptedException();
756     else if (p == phase)
757     throw new TimeoutException();
758 dl 1.55 }
759     return p;
760 dl 1.1 }
761    
762     /**
763 dl 1.63 * Forces this phaser to enter termination state. Counts of
764 dl 1.65 * registered parties are unaffected. If this phaser is a member
765     * of a tiered set of phasers, then all of the phasers in the set
766     * are terminated. If this phaser is already terminated, this
767     * method has no effect. This method may be useful for
768     * coordinating recovery after one or more tasks encounter
769     * unexpected exceptions.
770 dl 1.1 */
771     public void forceTermination() {
772 dl 1.55 // Only need to change root state
773     final Phaser root = this.root;
774 dl 1.49 long s;
775 dl 1.55 while ((s = root.state) >= 0) {
776 dl 1.68 long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
777 dl 1.65 if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
778 dl 1.68 // signal all threads
779     releaseWaiters(0);
780 dl 1.55 releaseWaiters(1);
781     return;
782     }
783     }
784 dl 1.1 }
785    
786     /**
787 dl 1.4 * Returns the current phase number. The maximum phase number is
788 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
789 dl 1.63 * zero. Upon termination, the phase number is negative,
790     * in which case the prevailing phase prior to termination
791     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
792 jsr166 1.14 *
793 dl 1.4 * @return the phase number, or a negative value if terminated
794 dl 1.1 */
795 dl 1.4 public final int getPhase() {
796 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
797 dl 1.1 }
798    
799     /**
800 dl 1.63 * Returns the number of parties registered at this phaser.
801 jsr166 1.14 *
802 dl 1.1 * @return the number of parties
803     */
804     public int getRegisteredParties() {
805 dl 1.57 return partiesOf(state);
806 dl 1.1 }
807    
808     /**
809 dl 1.36 * Returns the number of registered parties that have arrived at
810 dl 1.63 * the current phase of this phaser.
811 jsr166 1.14 *
812 dl 1.1 * @return the number of arrived parties
813     */
814     public int getArrivedParties() {
815 dl 1.65 return arrivedOf(reconcileState());
816 dl 1.1 }
817    
818     /**
819     * Returns the number of registered parties that have not yet
820 dl 1.63 * arrived at the current phase of this phaser.
821 jsr166 1.14 *
822 dl 1.1 * @return the number of unarrived parties
823     */
824     public int getUnarrivedParties() {
825 dl 1.65 return unarrivedOf(reconcileState());
826 dl 1.4 }
827    
828     /**
829 dl 1.63 * Returns the parent of this phaser, or {@code null} if none.
830 jsr166 1.14 *
831 dl 1.63 * @return the parent of this phaser, or {@code null} if none
832 dl 1.4 */
833     public Phaser getParent() {
834     return parent;
835     }
836    
837     /**
838 dl 1.63 * Returns the root ancestor of this phaser, which is the same as
839     * this phaser if it has no parent.
840 jsr166 1.14 *
841 dl 1.63 * @return the root ancestor of this phaser
842 dl 1.4 */
843     public Phaser getRoot() {
844     return root;
845 dl 1.1 }
846    
847     /**
848 dl 1.63 * Returns {@code true} if this phaser has been terminated.
849 jsr166 1.14 *
850 dl 1.63 * @return {@code true} if this phaser has been terminated
851 dl 1.1 */
852     public boolean isTerminated() {
853 dl 1.57 return root.state < 0L;
854 dl 1.1 }
855    
856     /**
857 dl 1.43 * Overridable method to perform an action upon impending phase
858     * advance, and to control termination. This method is invoked
859 dl 1.63 * upon arrival of the party advancing this phaser (when all other
860 dl 1.43 * waiting parties are dormant). If this method returns {@code
861 dl 1.65 * true}, this phaser will be set to a final termination state
862     * upon advance, and subsequent calls to {@link #isTerminated}
863     * will return true. Any (unchecked) Exception or Error thrown by
864     * an invocation of this method is propagated to the party
865     * attempting to advance this phaser, in which case no advance
866     * occurs.
867 dl 1.42 *
868 dl 1.63 * <p>The arguments to this method provide the state of the phaser
869 dl 1.51 * prevailing for the current transition. The effects of invoking
870 dl 1.63 * arrival, registration, and waiting methods on this phaser from
871 dl 1.50 * within {@code onAdvance} are unspecified and should not be
872 dl 1.51 * relied on.
873     *
874 dl 1.63 * <p>If this phaser is a member of a tiered set of phasers, then
875     * {@code onAdvance} is invoked only for its root phaser on each
876 dl 1.51 * advance.
877 jsr166 1.3 *
878 dl 1.59 * <p>To support the most common use cases, the default
879     * implementation of this method returns {@code true} when the
880     * number of registered parties has become zero as the result of a
881     * party invoking {@code arriveAndDeregister}. You can disable
882     * this behavior, thus enabling continuation upon future
883     * registrations, by overriding this method to always return
884     * {@code false}:
885     *
886     * <pre> {@code
887     * Phaser phaser = new Phaser() {
888     * protected boolean onAdvance(int phase, int parties) { return false; }
889     * }}</pre>
890 dl 1.1 *
891 dl 1.63 * @param phase the current phase number on entry to this method,
892     * before this phaser is advanced
893 jsr166 1.9 * @param registeredParties the current number of registered parties
894 dl 1.63 * @return {@code true} if this phaser should terminate
895 dl 1.1 */
896     protected boolean onAdvance(int phase, int registeredParties) {
897 dl 1.62 return registeredParties == 0;
898 dl 1.1 }
899    
900     /**
901 dl 1.63 * Returns a string identifying this phaser, as well as its
902 dl 1.1 * state. The state, in brackets, includes the String {@code
903 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
904 dl 1.1 * followed by the number of registered parties, and {@code
905 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
906 dl 1.1 *
907 dl 1.63 * @return a string identifying this phaser, as well as its state
908 dl 1.1 */
909     public String toString() {
910 dl 1.54 return stateToString(reconcileState());
911     }
912    
913     /**
914     * Implementation of toString and string-based error messages
915     */
916     private String stateToString(long s) {
917 jsr166 1.9 return super.toString() +
918     "[phase = " + phaseOf(s) +
919     " parties = " + partiesOf(s) +
920     " arrived = " + arrivedOf(s) + "]";
921 dl 1.1 }
922    
923 dl 1.54 // Waiting mechanics
924    
925 dl 1.4 /**
926 dl 1.57 * Removes and signals threads from queue for phase.
927 dl 1.4 */
928     private void releaseWaiters(int phase) {
929 dl 1.63 QNode q; // first element of queue
930     Thread t; // its thread
931 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
932 dl 1.51 while ((q = head.get()) != null &&
933 dl 1.65 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
934 dl 1.63 if (head.compareAndSet(q, q.next) &&
935     (t = q.thread) != null) {
936     q.thread = null;
937     LockSupport.unpark(t);
938     }
939 dl 1.4 }
940     }
941    
942 dl 1.68 /**
943     * Variant of releaseWaiters that additionally tries to remove any
944     * nodes no longer waiting for advance due to timeout or
945     * interrupt. Currently, nodes are removed only if they are at
946     * head of queue, which suffices to reduce memory footprint in
947     * most usages.
948     *
949     * @return current phase on exit
950     */
951     private int abortWait(int phase) {
952     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
953     for (;;) {
954     Thread t;
955     QNode q = head.get();
956     int p = (int)(root.state >>> PHASE_SHIFT);
957     if (q == null || ((t = q.thread) != null && q.phase == p))
958     return p;
959     if (head.compareAndSet(q, q.next) && t != null) {
960     q.thread = null;
961     LockSupport.unpark(t);
962     }
963     }
964     }
965    
966 dl 1.51 /** The number of CPUs, for spin control */
967     private static final int NCPU = Runtime.getRuntime().availableProcessors();
968    
969 dl 1.10 /**
970 dl 1.51 * The number of times to spin before blocking while waiting for
971     * advance, per arrival while waiting. On multiprocessors, fully
972     * blocking and waking up a large number of threads all at once is
973     * usually a very slow process, so we use rechargeable spins to
974     * avoid it when threads regularly arrive: When a thread in
975     * internalAwaitAdvance notices another arrival before blocking,
976     * and there appear to be enough CPUs available, it spins
977 dl 1.62 * SPINS_PER_ARRIVAL more times before blocking. The value trades
978     * off good-citizenship vs big unnecessary slowdowns.
979 dl 1.50 */
980 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
981 dl 1.50
982     /**
983 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
984 dl 1.60 * Call only from root node.
985 jsr166 1.14 *
986 dl 1.51 * @param phase current phase
987 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
988 dl 1.51 * if null, denotes noninterruptible wait
989 dl 1.10 * @return current phase
990 dl 1.1 */
991 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
992 dl 1.63 releaseWaiters(phase-1); // ensure old queue clean
993     boolean queued = false; // true when node is enqueued
994     int lastUnarrived = 0; // to increase spins upon change
995 dl 1.51 int spins = SPINS_PER_ARRIVAL;
996 dl 1.57 long s;
997     int p;
998 dl 1.60 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
999 dl 1.63 if (node == null) { // spinning in noninterruptible mode
1000     int unarrived = (int)s & UNARRIVED_MASK;
1001     if (unarrived != lastUnarrived &&
1002     (lastUnarrived = unarrived) < NCPU)
1003 dl 1.57 spins += SPINS_PER_ARRIVAL;
1004 dl 1.63 boolean interrupted = Thread.interrupted();
1005     if (interrupted || --spins < 0) { // need node to record intr
1006     node = new QNode(this, phase, false, false, 0L);
1007     node.wasInterrupted = interrupted;
1008     }
1009 dl 1.54 }
1010 dl 1.63 else if (node.isReleasable()) // done or aborted
1011     break;
1012     else if (!queued) { // push onto queue
1013 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1014 dl 1.63 QNode q = node.next = head.get();
1015     if ((q == null || q.phase == phase) &&
1016     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1017 dl 1.62 queued = head.compareAndSet(q, node);
1018 dl 1.57 }
1019 dl 1.51 else {
1020     try {
1021     ForkJoinPool.managedBlock(node);
1022     } catch (InterruptedException ie) {
1023     node.wasInterrupted = true;
1024     }
1025     }
1026 dl 1.4 }
1027 dl 1.60
1028     if (node != null) {
1029     if (node.thread != null)
1030 dl 1.63 node.thread = null; // avoid need for unpark()
1031 dl 1.62 if (node.wasInterrupted && !node.interruptible)
1032 dl 1.60 Thread.currentThread().interrupt();
1033 dl 1.65 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1034 dl 1.68 return abortWait(phase); // possibly clean up on abort
1035 dl 1.60 }
1036 dl 1.63 releaseWaiters(phase);
1037 dl 1.57 return p;
1038 dl 1.4 }
1039    
1040     /**
1041 dl 1.51 * Wait nodes for Treiber stack representing wait queue
1042 dl 1.4 */
1043 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
1044     final Phaser phaser;
1045     final int phase;
1046     final boolean interruptible;
1047     final boolean timed;
1048     boolean wasInterrupted;
1049     long nanos;
1050     long lastTime;
1051     volatile Thread thread; // nulled to cancel wait
1052     QNode next;
1053    
1054     QNode(Phaser phaser, int phase, boolean interruptible,
1055     boolean timed, long nanos) {
1056     this.phaser = phaser;
1057     this.phase = phase;
1058     this.interruptible = interruptible;
1059     this.nanos = nanos;
1060     this.timed = timed;
1061 jsr166 1.64 this.lastTime = timed ? System.nanoTime() : 0L;
1062 dl 1.51 thread = Thread.currentThread();
1063     }
1064    
1065     public boolean isReleasable() {
1066 dl 1.63 if (thread == null)
1067     return true;
1068     if (phaser.getPhase() != phase) {
1069     thread = null;
1070     return true;
1071     }
1072     if (Thread.interrupted())
1073     wasInterrupted = true;
1074     if (wasInterrupted && interruptible) {
1075     thread = null;
1076     return true;
1077     }
1078     if (timed) {
1079     if (nanos > 0L) {
1080     long now = System.nanoTime();
1081     nanos -= now - lastTime;
1082     lastTime = now;
1083     }
1084     if (nanos <= 0L) {
1085     thread = null;
1086     return true;
1087 dl 1.51 }
1088 dl 1.50 }
1089 dl 1.63 return false;
1090 dl 1.51 }
1091    
1092     public boolean block() {
1093     if (isReleasable())
1094     return true;
1095     else if (!timed)
1096     LockSupport.park(this);
1097     else if (nanos > 0)
1098     LockSupport.parkNanos(this, nanos);
1099     return isReleasable();
1100 dl 1.1 }
1101 dl 1.4 }
1102    
1103 jsr166 1.22 // Unsafe mechanics
1104    
1105     private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1106     private static final long stateOffset =
1107     objectFieldOffset("state", Phaser.class);
1108    
1109     private static long objectFieldOffset(String field, Class<?> klazz) {
1110     try {
1111     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1112     } catch (NoSuchFieldException e) {
1113     // Convert Exception to corresponding Error
1114     NoSuchFieldError error = new NoSuchFieldError(field);
1115     error.initCause(e);
1116     throw error;
1117     }
1118     }
1119    
1120     /**
1121     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1122     * Replace with a simple call to Unsafe.getUnsafe when integrating
1123     * into a jdk.
1124     *
1125     * @return a sun.misc.Unsafe
1126     */
1127 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1128 jsr166 1.11 try {
1129 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1130 jsr166 1.11 } catch (SecurityException se) {
1131     try {
1132     return java.security.AccessController.doPrivileged
1133 jsr166 1.22 (new java.security
1134     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1135 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1136 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1137     .Unsafe.class.getDeclaredField("theUnsafe");
1138     f.setAccessible(true);
1139     return (sun.misc.Unsafe) f.get(null);
1140 jsr166 1.11 }});
1141     } catch (java.security.PrivilegedActionException e) {
1142 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1143     e.getCause());
1144 jsr166 1.11 }
1145     }
1146     }
1147 dl 1.1 }