ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.73
Committed: Wed May 25 16:08:03 2011 UTC (12 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.72: +32 -34 lines
Log Message:
sync src/jsr166y from src/main/java/util/concurrent

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.63 * number of parties <em>registered</em> to synchronize on a phaser
22 dl 1.38 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.63 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 dl 1.38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.63 * control of actions upon arrival at a phaser and upon awaiting
42 dl 1.38 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.63 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 dl 1.38 *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62 dl 1.63 * the phaser advances to (or is already at) a different phase.
63 dl 1.38 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68 dl 1.63 * state of the phaser. If necessary, you can perform any
69 dl 1.38 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.63 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.68 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80 jsr166 1.69 * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91 dl 1.4 *
92 dl 1.58 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 dl 1.38 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 dl 1.68 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104     * constructor, {@link #register}, or {@link #bulkRegister}), the
105     * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107     * {@link #arriveAndDeregister}, the child phaser is deregistered
108     * from its parent.
109     *
110 dl 1.38 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.63 * only by registered parties, the current state of a phaser may be
112 dl 1.38 * monitored by any caller. At any given moment there are {@link
113 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 dl 1.42 * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 dl 1.1 *
122 dl 1.4 * <p><b>Sample usages:</b>
123     *
124 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 dl 1.48 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 dl 1.1 *
129 jsr166 1.13 * <pre> {@code
130 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
132 dl 1.27 * // create and start threads
133 dl 1.72 * for (final Runnable task : tasks) {
134 jsr166 1.13 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.33 * task.run();
139 jsr166 1.13 * }
140     * }.start();
141 dl 1.4 * }
142 dl 1.6 *
143 dl 1.27 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.13 * }}</pre>
146 dl 1.1 *
147 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
148 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
149 dl 1.1 *
150 jsr166 1.13 * <pre> {@code
151 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.13 * final Phaser phaser = new Phaser() {
153 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.45 * for (final Runnable task : tasks) {
159 jsr166 1.13 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.33 * task.run();
164 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.45 * } while (!phaser.isTerminated());
166 dl 1.4 * }
167 jsr166 1.13 * }.start();
168 dl 1.1 * }
169 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 jsr166 1.13 * }}</pre>
171 dl 1.1 *
172 dl 1.38 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174 jsr166 1.45 * <pre> {@code
175 dl 1.38 * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
179 dl 1.38 *
180 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
181 dl 1.38 * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184 jsr166 1.45 * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192 dl 1.38 * }
193 jsr166 1.45 * phaser.arriveAndDeregister();
194     * }}</pre>
195 dl 1.38 *
196     *
197 dl 1.65 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.45 *
204 jsr166 1.13 * <pre> {@code
205 dl 1.65 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 dl 1.44 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.65 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.13 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.65 * tasks[i] = new Task(ph);
214 dl 1.44 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.13 * }
216 dl 1.65 * }}</pre>
217 dl 1.4 *
218 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.63 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 dl 1.4 * high rates), or up to hundreds for extremely large ones.
222     *
223 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
224 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.63 * should create tiered phasers to accommodate arbitrarily large sets
227 dl 1.4 * of participants.
228 jsr166 1.16 *
229     * @since 1.7
230     * @author Doug Lea
231 dl 1.1 */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237 dl 1.1 */
238    
239     /**
240 jsr166 1.73 * Primary state representation, holding four bit-fields:
241 jsr166 1.3 *
242 jsr166 1.73 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246 dl 1.1 *
247 dl 1.65 * Except that a phaser with no registered parties is
248 jsr166 1.73 * distinguished by the otherwise illegal state of having zero
249 dl 1.65 * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263 dl 1.70 * ancestors until it is actually accessed -- see method
264     * reconcileState.
265 dl 1.1 */
266 dl 1.4 private volatile long state;
267 dl 1.1
268 dl 1.59 private static final int MAX_PARTIES = 0xffff;
269 jsr166 1.73 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 dl 1.59 private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274     private static final long TERMINATION_BIT = 1L << 63;
275 dl 1.51
276 dl 1.65 // some special values
277     private static final int ONE_ARRIVAL = 1;
278     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279     private static final int EMPTY = 1;
280    
281 dl 1.51 // The following unpacking methods are usually manually inlined
282 dl 1.1
283     private static int unarrivedOf(long s) {
284 dl 1.65 int counts = (int)s;
285 jsr166 1.66 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286 dl 1.1 }
287    
288     private static int partiesOf(long s) {
289 dl 1.68 return (int)s >>> PARTIES_SHIFT;
290 dl 1.1 }
291    
292     private static int phaseOf(long s) {
293 jsr166 1.73 return (int)(s >>> PHASE_SHIFT);
294 dl 1.1 }
295    
296     private static int arrivedOf(long s) {
297 dl 1.65 int counts = (int)s;
298 jsr166 1.66 return (counts == EMPTY) ? 0 :
299 dl 1.65 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 dl 1.1 }
301    
302 dl 1.4 /**
303     * The parent of this phaser, or null if none
304     */
305     private final Phaser parent;
306    
307     /**
308 dl 1.65 * The root of phaser tree. Equals this if not in a tree.
309 dl 1.4 */
310     private final Phaser root;
311    
312     /**
313 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
314 dl 1.49 * contention when releasing some threads while adding others, we
315 dl 1.4 * use two of them, alternating across even and odd phases.
316 dl 1.49 * Subphasers share queues with root to speed up releases.
317 dl 1.4 */
318 dl 1.50 private final AtomicReference<QNode> evenQ;
319     private final AtomicReference<QNode> oddQ;
320 dl 1.4
321     private AtomicReference<QNode> queueFor(int phase) {
322 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
323 dl 1.4 }
324    
325     /**
326 dl 1.59 * Returns message string for bounds exceptions on arrival.
327     */
328     private String badArrive(long s) {
329     return "Attempted arrival of unregistered party for " +
330     stateToString(s);
331     }
332    
333     /**
334     * Returns message string for bounds exceptions on registration.
335     */
336     private String badRegister(long s) {
337     return "Attempt to register more than " +
338     MAX_PARTIES + " parties for " + stateToString(s);
339     }
340    
341     /**
342 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
343     * Manually tuned to speed up and minimize race windows for the
344     * common case of just decrementing unarrived field.
345     *
346 dl 1.65 * @param deregister false for arrive, true for arriveAndDeregister
347 dl 1.4 */
348 dl 1.65 private int doArrive(boolean deregister) {
349     int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 dl 1.68 final Phaser root = this.root;
351     for (;;) {
352     long s = (root == this) ? state : reconcileState();
353     int phase = (int)(s >>> PHASE_SHIFT);
354 dl 1.65 int counts = (int)s;
355 dl 1.68 int unarrived = (counts & UNARRIVED_MASK) - 1;
356     if (phase < 0)
357     return phase;
358     else if (counts == EMPTY || unarrived < 0) {
359     if (root == this || reconcileState() == s)
360 dl 1.59 throw new IllegalStateException(badArrive(s));
361     }
362 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 dl 1.68 if (unarrived == 0) {
364     long n = s & PARTIES_MASK; // base of next state
365 jsr166 1.73 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 dl 1.68 if (root != this)
367     return parent.doArrive(nextUnarrived == 0);
368     if (onAdvance(phase, nextUnarrived))
369     n |= TERMINATION_BIT;
370     else if (nextUnarrived == 0)
371     n |= EMPTY;
372     else
373     n |= nextUnarrived;
374 jsr166 1.73 n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
375 dl 1.68 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376     releaseWaiters(phase);
377 dl 1.51 }
378 dl 1.68 return phase;
379 dl 1.51 }
380     }
381     }
382    
383     /**
384     * Implementation of register, bulkRegister
385     *
386 dl 1.58 * @param registrations number to add to both parties and
387     * unarrived fields. Must be greater than zero.
388 dl 1.51 */
389     private int doRegister(int registrations) {
390 dl 1.57 // adjustment to state
391     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
392 jsr166 1.73 final Phaser parent = this.parent;
393 dl 1.65 int phase;
394 dl 1.54 for (;;) {
395 dl 1.65 long s = state;
396     int counts = (int)s;
397     int parties = counts >>> PARTIES_SHIFT;
398     int unarrived = counts & UNARRIVED_MASK;
399     if (registrations > MAX_PARTIES - parties)
400 dl 1.54 throw new IllegalStateException(badRegister(s));
401 dl 1.65 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
402     break;
403     else if (counts != EMPTY) { // not 1st registration
404 jsr166 1.73 if (parent == null || reconcileState() == s) {
405 dl 1.65 if (unarrived == 0) // wait out advance
406     root.internalAwaitAdvance(phase, null);
407     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
408     s, s + adj))
409     break;
410     }
411     }
412 jsr166 1.73 else if (parent == null) { // 1st root registration
413     long next = ((long)phase << PHASE_SHIFT) | adj;
414 dl 1.65 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
415     break;
416     }
417     else {
418 jsr166 1.66 synchronized (this) { // 1st sub registration
419 dl 1.65 if (state == s) { // recheck under lock
420 jsr166 1.73 parent.doRegister(1);
421 dl 1.65 do { // force current phase
422     phase = (int)(root.state >>> PHASE_SHIFT);
423     // assert phase < 0 || (int)state == EMPTY;
424     } while (!UNSAFE.compareAndSwapLong
425     (this, stateOffset, state,
426 jsr166 1.73 ((long)phase << PHASE_SHIFT) | adj));
427 dl 1.65 break;
428 dl 1.59 }
429     }
430     }
431 dl 1.51 }
432 dl 1.65 return phase;
433 dl 1.51 }
434    
435     /**
436 dl 1.65 * Resolves lagged phase propagation from root if necessary.
437 dl 1.70 * Reconciliation normally occurs when root has advanced but
438     * subphasers have not yet done so, in which case they must finish
439     * their own advance by setting unarrived to parties (or if
440     * parties is zero, resetting to unregistered EMPTY state).
441     * However, this method may also be called when "floating"
442     * subphasers with possibly some unarrived parties are merely
443     * catching up to current phase, in which case counts are
444     * unaffected.
445     *
446     * @return reconciled state
447 dl 1.4 */
448     private long reconcileState() {
449 dl 1.70 final Phaser root = this.root;
450 dl 1.57 long s = state;
451 dl 1.70 if (root != this) {
452     int phase, u, p;
453     // CAS root phase with current parties; possibly trip unarrived
454     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
455     (int)(s >>> PHASE_SHIFT) &&
456     !UNSAFE.compareAndSwapLong
457     (this, stateOffset, s,
458 jsr166 1.73 s = (((long)phase << PHASE_SHIFT) |
459     (s & PARTIES_MASK) |
460 dl 1.70 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
461     (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
462     s = state;
463 dl 1.4 }
464 dl 1.57 return s;
465 dl 1.1 }
466    
467     /**
468 dl 1.63 * Creates a new phaser with no initially registered parties, no
469     * parent, and initial phase number 0. Any thread using this
470     * phaser will need to first register for it.
471 dl 1.1 */
472     public Phaser() {
473 dl 1.50 this(null, 0);
474 dl 1.1 }
475    
476     /**
477 dl 1.63 * Creates a new phaser with the given number of registered
478     * unarrived parties, no parent, and initial phase number 0.
479 jsr166 1.14 *
480 dl 1.63 * @param parties the number of parties required to advance to the
481     * next phase
482 dl 1.1 * @throws IllegalArgumentException if parties less than zero
483 jsr166 1.14 * or greater than the maximum number of parties supported
484 dl 1.1 */
485     public Phaser(int parties) {
486 dl 1.4 this(null, parties);
487     }
488    
489     /**
490 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
491 jsr166 1.14 *
492 dl 1.63 * @param parent the parent phaser
493 dl 1.4 */
494     public Phaser(Phaser parent) {
495 dl 1.50 this(parent, 0);
496 dl 1.4 }
497    
498     /**
499 dl 1.63 * Creates a new phaser with the given parent and number of
500 dl 1.68 * registered unarrived parties. When the given parent is non-null
501     * and the given number of parties is greater than zero, this
502     * child phaser is registered with its parent.
503 jsr166 1.14 *
504 dl 1.63 * @param parent the parent phaser
505     * @param parties the number of parties required to advance to the
506     * next phase
507 dl 1.4 * @throws IllegalArgumentException if parties less than zero
508 jsr166 1.14 * or greater than the maximum number of parties supported
509 dl 1.4 */
510     public Phaser(Phaser parent, int parties) {
511 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
512 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
513 dl 1.65 int phase = 0;
514 dl 1.4 this.parent = parent;
515     if (parent != null) {
516 dl 1.68 final Phaser root = parent.root;
517     this.root = root;
518     this.evenQ = root.evenQ;
519     this.oddQ = root.oddQ;
520 dl 1.60 if (parties != 0)
521 dl 1.65 phase = parent.doRegister(1);
522 dl 1.4 }
523 dl 1.50 else {
524 dl 1.4 this.root = this;
525 dl 1.50 this.evenQ = new AtomicReference<QNode>();
526     this.oddQ = new AtomicReference<QNode>();
527     }
528 jsr166 1.73 this.state = (parties == 0) ? (long)EMPTY :
529     ((long)phase << PHASE_SHIFT) |
530     ((long)parties << PARTIES_SHIFT) |
531     ((long)parties);
532 dl 1.1 }
533    
534     /**
535 dl 1.63 * Adds a new unarrived party to this phaser. If an ongoing
536 dl 1.59 * invocation of {@link #onAdvance} is in progress, this method
537 dl 1.63 * may await its completion before returning. If this phaser has
538     * a parent, and this phaser previously had no registered parties,
539 dl 1.68 * this child phaser is also registered with its parent. If
540     * this phaser is terminated, the attempt to register has
541     * no effect, and a negative value is returned.
542     *
543     * @return the arrival phase number to which this registration
544     * applied. If this value is negative, then this phaser has
545 jsr166 1.69 * terminated, in which case registration has no effect.
546 dl 1.1 * @throws IllegalStateException if attempting to register more
547 jsr166 1.14 * than the maximum supported number of parties
548 dl 1.1 */
549 dl 1.4 public int register() {
550     return doRegister(1);
551     }
552    
553     /**
554 dl 1.63 * Adds the given number of new unarrived parties to this phaser.
555 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
556 dl 1.60 * this method may await its completion before returning. If this
557 dl 1.68 * phaser has a parent, and the given number of parties is greater
558     * than zero, and this phaser previously had no registered
559     * parties, this child phaser is also registered with its parent.
560     * If this phaser is terminated, the attempt to register has no
561     * effect, and a negative value is returned.
562 jsr166 1.14 *
563 dl 1.63 * @param parties the number of additional parties required to
564     * advance to the next phase
565 dl 1.68 * @return the arrival phase number to which this registration
566     * applied. If this value is negative, then this phaser has
567 jsr166 1.69 * terminated, in which case registration has no effect.
568 dl 1.4 * @throws IllegalStateException if attempting to register more
569 jsr166 1.14 * than the maximum supported number of parties
570 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
571 dl 1.4 */
572     public int bulkRegister(int parties) {
573     if (parties < 0)
574     throw new IllegalArgumentException();
575 dl 1.60 if (parties == 0)
576 dl 1.4 return getPhase();
577     return doRegister(parties);
578     }
579    
580     /**
581 dl 1.63 * Arrives at this phaser, without waiting for others to arrive.
582 dl 1.60 *
583     * <p>It is a usage error for an unregistered party to invoke this
584     * method. However, this error may result in an {@code
585     * IllegalStateException} only upon some subsequent operation on
586 dl 1.63 * this phaser, if ever.
587 dl 1.1 *
588 dl 1.35 * @return the arrival phase number, or a negative value if terminated
589 dl 1.4 * @throws IllegalStateException if not terminated and the number
590 jsr166 1.14 * of unarrived parties would become negative
591 dl 1.1 */
592 dl 1.4 public int arrive() {
593 dl 1.65 return doArrive(false);
594 dl 1.1 }
595    
596     /**
597 dl 1.63 * Arrives at this phaser and deregisters from it without waiting
598 dl 1.60 * for others to arrive. Deregistration reduces the number of
599 dl 1.63 * parties required to advance in future phases. If this phaser
600     * has a parent, and deregistration causes this phaser to have
601     * zero parties, this phaser is also deregistered from its parent.
602 dl 1.60 *
603     * <p>It is a usage error for an unregistered party to invoke this
604     * method. However, this error may result in an {@code
605     * IllegalStateException} only upon some subsequent operation on
606 dl 1.63 * this phaser, if ever.
607 dl 1.1 *
608 dl 1.35 * @return the arrival phase number, or a negative value if terminated
609 dl 1.4 * @throws IllegalStateException if not terminated and the number
610 jsr166 1.14 * of registered or unarrived parties would become negative
611 dl 1.1 */
612 dl 1.4 public int arriveAndDeregister() {
613 dl 1.65 return doArrive(true);
614 dl 1.1 }
615    
616     /**
617 dl 1.63 * Arrives at this phaser and awaits others. Equivalent in effect
618 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
619     * interruption or timeout, you can arrange this with an analogous
620 dl 1.48 * construction using one of the other forms of the {@code
621     * awaitAdvance} method. If instead you need to deregister upon
622 dl 1.60 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
623     *
624     * <p>It is a usage error for an unregistered party to invoke this
625     * method. However, this error may result in an {@code
626     * IllegalStateException} only upon some subsequent operation on
627 dl 1.63 * this phaser, if ever.
628 jsr166 1.14 *
629 dl 1.68 * @return the arrival phase number, or the (negative)
630     * {@linkplain #getPhase() current phase} if terminated
631 dl 1.4 * @throws IllegalStateException if not terminated and the number
632 jsr166 1.14 * of unarrived parties would become negative
633 dl 1.1 */
634     public int arriveAndAwaitAdvance() {
635 dl 1.68 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
636     final Phaser root = this.root;
637     for (;;) {
638     long s = (root == this) ? state : reconcileState();
639     int phase = (int)(s >>> PHASE_SHIFT);
640     int counts = (int)s;
641     int unarrived = (counts & UNARRIVED_MASK) - 1;
642     if (phase < 0)
643     return phase;
644     else if (counts == EMPTY || unarrived < 0) {
645     if (reconcileState() == s)
646     throw new IllegalStateException(badArrive(s));
647     }
648     else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
649     s -= ONE_ARRIVAL)) {
650     if (unarrived != 0)
651     return root.internalAwaitAdvance(phase, null);
652     if (root != this)
653     return parent.arriveAndAwaitAdvance();
654     long n = s & PARTIES_MASK; // base of next state
655 jsr166 1.73 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
656 dl 1.68 if (onAdvance(phase, nextUnarrived))
657     n |= TERMINATION_BIT;
658     else if (nextUnarrived == 0)
659     n |= EMPTY;
660     else
661     n |= nextUnarrived;
662     int nextPhase = (phase + 1) & MAX_PHASE;
663     n |= (long)nextPhase << PHASE_SHIFT;
664     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
665     return (int)(state >>> PHASE_SHIFT); // terminated
666     releaseWaiters(phase);
667     return nextPhase;
668     }
669     }
670 dl 1.1 }
671    
672     /**
673 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
674     * value, returning immediately if the current phase is not equal
675     * to the given phase value or this phaser is terminated.
676 jsr166 1.14 *
677 dl 1.35 * @param phase an arrival phase number, or negative value if
678     * terminated; this argument is normally the value returned by a
679 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 dl 1.68 * @return the next arrival phase number, or the argument if it is
681     * negative, or the (negative) {@linkplain #getPhase() current phase}
682     * if terminated
683 dl 1.1 */
684     public int awaitAdvance(int phase) {
685 dl 1.68 final Phaser root = this.root;
686 jsr166 1.69 long s = (root == this) ? state : reconcileState();
687     int p = (int)(s >>> PHASE_SHIFT);
688 dl 1.1 if (phase < 0)
689     return phase;
690 dl 1.68 if (p == phase)
691     return root.internalAwaitAdvance(phase, null);
692 dl 1.60 return p;
693 dl 1.1 }
694    
695     /**
696 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
697 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
698 dl 1.63 * while waiting, or returning immediately if the current phase is
699     * not equal to the given phase value or this phaser is
700     * terminated.
701 jsr166 1.14 *
702 dl 1.35 * @param phase an arrival phase number, or negative value if
703     * terminated; this argument is normally the value returned by a
704 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 dl 1.68 * @return the next arrival phase number, or the argument if it is
706     * negative, or the (negative) {@linkplain #getPhase() current phase}
707     * if terminated
708 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
709     */
710 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
711 dl 1.10 throws InterruptedException {
712 dl 1.68 final Phaser root = this.root;
713 jsr166 1.69 long s = (root == this) ? state : reconcileState();
714     int p = (int)(s >>> PHASE_SHIFT);
715 dl 1.1 if (phase < 0)
716     return phase;
717 dl 1.65 if (p == phase) {
718 dl 1.68 QNode node = new QNode(this, phase, true, false, 0L);
719     p = root.internalAwaitAdvance(phase, node);
720     if (node.wasInterrupted)
721     throw new InterruptedException();
722 dl 1.55 }
723     return p;
724 dl 1.1 }
725    
726     /**
727 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
728 dl 1.38 * value or the given timeout to elapse, throwing {@code
729     * InterruptedException} if interrupted while waiting, or
730 dl 1.63 * returning immediately if the current phase is not equal to the
731     * given phase value or this phaser is terminated.
732 jsr166 1.14 *
733 dl 1.35 * @param phase an arrival phase number, or negative value if
734     * terminated; this argument is normally the value returned by a
735 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
736 dl 1.31 * @param timeout how long to wait before giving up, in units of
737     * {@code unit}
738     * @param unit a {@code TimeUnit} determining how to interpret the
739     * {@code timeout} parameter
740 dl 1.68 * @return the next arrival phase number, or the argument if it is
741     * negative, or the (negative) {@linkplain #getPhase() current phase}
742     * if terminated
743 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
744     * @throws TimeoutException if timed out while waiting
745     */
746 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
747     long timeout, TimeUnit unit)
748 dl 1.1 throws InterruptedException, TimeoutException {
749 dl 1.60 long nanos = unit.toNanos(timeout);
750 dl 1.68 final Phaser root = this.root;
751 jsr166 1.69 long s = (root == this) ? state : reconcileState();
752     int p = (int)(s >>> PHASE_SHIFT);
753 dl 1.1 if (phase < 0)
754     return phase;
755 dl 1.65 if (p == phase) {
756 dl 1.68 QNode node = new QNode(this, phase, true, true, nanos);
757     p = root.internalAwaitAdvance(phase, node);
758     if (node.wasInterrupted)
759     throw new InterruptedException();
760     else if (p == phase)
761     throw new TimeoutException();
762 dl 1.55 }
763     return p;
764 dl 1.1 }
765    
766     /**
767 dl 1.63 * Forces this phaser to enter termination state. Counts of
768 dl 1.65 * registered parties are unaffected. If this phaser is a member
769     * of a tiered set of phasers, then all of the phasers in the set
770     * are terminated. If this phaser is already terminated, this
771     * method has no effect. This method may be useful for
772     * coordinating recovery after one or more tasks encounter
773     * unexpected exceptions.
774 dl 1.1 */
775     public void forceTermination() {
776 dl 1.55 // Only need to change root state
777     final Phaser root = this.root;
778 dl 1.49 long s;
779 dl 1.55 while ((s = root.state) >= 0) {
780 dl 1.70 if (UNSAFE.compareAndSwapLong(root, stateOffset,
781     s, s | TERMINATION_BIT)) {
782 dl 1.68 // signal all threads
783     releaseWaiters(0);
784 dl 1.55 releaseWaiters(1);
785     return;
786     }
787     }
788 dl 1.1 }
789    
790     /**
791 dl 1.4 * Returns the current phase number. The maximum phase number is
792 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
793 dl 1.63 * zero. Upon termination, the phase number is negative,
794     * in which case the prevailing phase prior to termination
795     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
796 jsr166 1.14 *
797 dl 1.4 * @return the phase number, or a negative value if terminated
798 dl 1.1 */
799 dl 1.4 public final int getPhase() {
800 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
801 dl 1.1 }
802    
803     /**
804 dl 1.63 * Returns the number of parties registered at this phaser.
805 jsr166 1.14 *
806 dl 1.1 * @return the number of parties
807     */
808     public int getRegisteredParties() {
809 dl 1.57 return partiesOf(state);
810 dl 1.1 }
811    
812     /**
813 dl 1.36 * Returns the number of registered parties that have arrived at
814 dl 1.70 * the current phase of this phaser. If this phaser has terminated,
815     * the returned value is meaningless and arbitrary.
816 jsr166 1.14 *
817 dl 1.1 * @return the number of arrived parties
818     */
819     public int getArrivedParties() {
820 dl 1.65 return arrivedOf(reconcileState());
821 dl 1.1 }
822    
823     /**
824     * Returns the number of registered parties that have not yet
825 dl 1.70 * arrived at the current phase of this phaser. If this phaser has
826     * terminated, the returned value is meaningless and arbitrary.
827 jsr166 1.14 *
828 dl 1.1 * @return the number of unarrived parties
829     */
830     public int getUnarrivedParties() {
831 dl 1.65 return unarrivedOf(reconcileState());
832 dl 1.4 }
833    
834     /**
835 dl 1.63 * Returns the parent of this phaser, or {@code null} if none.
836 jsr166 1.14 *
837 dl 1.63 * @return the parent of this phaser, or {@code null} if none
838 dl 1.4 */
839     public Phaser getParent() {
840     return parent;
841     }
842    
843     /**
844 dl 1.63 * Returns the root ancestor of this phaser, which is the same as
845     * this phaser if it has no parent.
846 jsr166 1.14 *
847 dl 1.63 * @return the root ancestor of this phaser
848 dl 1.4 */
849     public Phaser getRoot() {
850     return root;
851 dl 1.1 }
852    
853     /**
854 dl 1.63 * Returns {@code true} if this phaser has been terminated.
855 jsr166 1.14 *
856 dl 1.63 * @return {@code true} if this phaser has been terminated
857 dl 1.1 */
858     public boolean isTerminated() {
859 dl 1.57 return root.state < 0L;
860 dl 1.1 }
861    
862     /**
863 dl 1.43 * Overridable method to perform an action upon impending phase
864     * advance, and to control termination. This method is invoked
865 dl 1.63 * upon arrival of the party advancing this phaser (when all other
866 dl 1.43 * waiting parties are dormant). If this method returns {@code
867 dl 1.65 * true}, this phaser will be set to a final termination state
868     * upon advance, and subsequent calls to {@link #isTerminated}
869     * will return true. Any (unchecked) Exception or Error thrown by
870     * an invocation of this method is propagated to the party
871     * attempting to advance this phaser, in which case no advance
872     * occurs.
873 dl 1.42 *
874 dl 1.63 * <p>The arguments to this method provide the state of the phaser
875 dl 1.51 * prevailing for the current transition. The effects of invoking
876 dl 1.63 * arrival, registration, and waiting methods on this phaser from
877 dl 1.50 * within {@code onAdvance} are unspecified and should not be
878 dl 1.51 * relied on.
879     *
880 dl 1.63 * <p>If this phaser is a member of a tiered set of phasers, then
881     * {@code onAdvance} is invoked only for its root phaser on each
882 dl 1.51 * advance.
883 jsr166 1.3 *
884 dl 1.59 * <p>To support the most common use cases, the default
885     * implementation of this method returns {@code true} when the
886     * number of registered parties has become zero as the result of a
887     * party invoking {@code arriveAndDeregister}. You can disable
888     * this behavior, thus enabling continuation upon future
889     * registrations, by overriding this method to always return
890     * {@code false}:
891     *
892     * <pre> {@code
893     * Phaser phaser = new Phaser() {
894     * protected boolean onAdvance(int phase, int parties) { return false; }
895     * }}</pre>
896 dl 1.1 *
897 dl 1.63 * @param phase the current phase number on entry to this method,
898     * before this phaser is advanced
899 jsr166 1.9 * @param registeredParties the current number of registered parties
900 dl 1.63 * @return {@code true} if this phaser should terminate
901 dl 1.1 */
902     protected boolean onAdvance(int phase, int registeredParties) {
903 dl 1.62 return registeredParties == 0;
904 dl 1.1 }
905    
906     /**
907 dl 1.63 * Returns a string identifying this phaser, as well as its
908 dl 1.1 * state. The state, in brackets, includes the String {@code
909 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
910 dl 1.1 * followed by the number of registered parties, and {@code
911 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
912 dl 1.1 *
913 dl 1.63 * @return a string identifying this phaser, as well as its state
914 dl 1.1 */
915     public String toString() {
916 dl 1.54 return stateToString(reconcileState());
917     }
918    
919     /**
920     * Implementation of toString and string-based error messages
921     */
922     private String stateToString(long s) {
923 jsr166 1.9 return super.toString() +
924     "[phase = " + phaseOf(s) +
925     " parties = " + partiesOf(s) +
926     " arrived = " + arrivedOf(s) + "]";
927 dl 1.1 }
928    
929 dl 1.54 // Waiting mechanics
930    
931 dl 1.4 /**
932 dl 1.57 * Removes and signals threads from queue for phase.
933 dl 1.4 */
934     private void releaseWaiters(int phase) {
935 dl 1.63 QNode q; // first element of queue
936     Thread t; // its thread
937 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938 dl 1.51 while ((q = head.get()) != null &&
939 dl 1.65 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
940 dl 1.63 if (head.compareAndSet(q, q.next) &&
941     (t = q.thread) != null) {
942     q.thread = null;
943     LockSupport.unpark(t);
944     }
945 dl 1.4 }
946     }
947    
948 dl 1.68 /**
949     * Variant of releaseWaiters that additionally tries to remove any
950     * nodes no longer waiting for advance due to timeout or
951     * interrupt. Currently, nodes are removed only if they are at
952     * head of queue, which suffices to reduce memory footprint in
953     * most usages.
954     *
955     * @return current phase on exit
956     */
957     private int abortWait(int phase) {
958     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959     for (;;) {
960     Thread t;
961     QNode q = head.get();
962     int p = (int)(root.state >>> PHASE_SHIFT);
963     if (q == null || ((t = q.thread) != null && q.phase == p))
964     return p;
965     if (head.compareAndSet(q, q.next) && t != null) {
966     q.thread = null;
967     LockSupport.unpark(t);
968     }
969     }
970     }
971    
972 dl 1.51 /** The number of CPUs, for spin control */
973     private static final int NCPU = Runtime.getRuntime().availableProcessors();
974    
975 dl 1.10 /**
976 dl 1.51 * The number of times to spin before blocking while waiting for
977     * advance, per arrival while waiting. On multiprocessors, fully
978     * blocking and waking up a large number of threads all at once is
979     * usually a very slow process, so we use rechargeable spins to
980     * avoid it when threads regularly arrive: When a thread in
981     * internalAwaitAdvance notices another arrival before blocking,
982     * and there appear to be enough CPUs available, it spins
983 dl 1.62 * SPINS_PER_ARRIVAL more times before blocking. The value trades
984     * off good-citizenship vs big unnecessary slowdowns.
985 dl 1.50 */
986 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
987 dl 1.50
988     /**
989 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
990 dl 1.60 * Call only from root node.
991 jsr166 1.14 *
992 dl 1.51 * @param phase current phase
993 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
994 dl 1.51 * if null, denotes noninterruptible wait
995 dl 1.10 * @return current phase
996 dl 1.1 */
997 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
998 dl 1.63 releaseWaiters(phase-1); // ensure old queue clean
999     boolean queued = false; // true when node is enqueued
1000     int lastUnarrived = 0; // to increase spins upon change
1001 dl 1.51 int spins = SPINS_PER_ARRIVAL;
1002 dl 1.57 long s;
1003     int p;
1004 dl 1.60 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1005 dl 1.63 if (node == null) { // spinning in noninterruptible mode
1006     int unarrived = (int)s & UNARRIVED_MASK;
1007     if (unarrived != lastUnarrived &&
1008     (lastUnarrived = unarrived) < NCPU)
1009 dl 1.57 spins += SPINS_PER_ARRIVAL;
1010 dl 1.63 boolean interrupted = Thread.interrupted();
1011     if (interrupted || --spins < 0) { // need node to record intr
1012     node = new QNode(this, phase, false, false, 0L);
1013     node.wasInterrupted = interrupted;
1014     }
1015 dl 1.54 }
1016 dl 1.63 else if (node.isReleasable()) // done or aborted
1017     break;
1018     else if (!queued) { // push onto queue
1019 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1020 dl 1.63 QNode q = node.next = head.get();
1021     if ((q == null || q.phase == phase) &&
1022     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1023 dl 1.62 queued = head.compareAndSet(q, node);
1024 dl 1.57 }
1025 dl 1.51 else {
1026     try {
1027     ForkJoinPool.managedBlock(node);
1028     } catch (InterruptedException ie) {
1029     node.wasInterrupted = true;
1030     }
1031     }
1032 dl 1.4 }
1033 dl 1.60
1034     if (node != null) {
1035     if (node.thread != null)
1036 dl 1.63 node.thread = null; // avoid need for unpark()
1037 dl 1.62 if (node.wasInterrupted && !node.interruptible)
1038 dl 1.60 Thread.currentThread().interrupt();
1039 dl 1.65 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 dl 1.68 return abortWait(phase); // possibly clean up on abort
1041 dl 1.60 }
1042 dl 1.63 releaseWaiters(phase);
1043 dl 1.57 return p;
1044 dl 1.4 }
1045    
1046     /**
1047 dl 1.51 * Wait nodes for Treiber stack representing wait queue
1048 dl 1.4 */
1049 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
1050     final Phaser phaser;
1051     final int phase;
1052     final boolean interruptible;
1053     final boolean timed;
1054     boolean wasInterrupted;
1055     long nanos;
1056     long lastTime;
1057     volatile Thread thread; // nulled to cancel wait
1058     QNode next;
1059    
1060     QNode(Phaser phaser, int phase, boolean interruptible,
1061     boolean timed, long nanos) {
1062     this.phaser = phaser;
1063     this.phase = phase;
1064     this.interruptible = interruptible;
1065     this.nanos = nanos;
1066     this.timed = timed;
1067 jsr166 1.64 this.lastTime = timed ? System.nanoTime() : 0L;
1068 dl 1.51 thread = Thread.currentThread();
1069     }
1070    
1071     public boolean isReleasable() {
1072 dl 1.63 if (thread == null)
1073     return true;
1074     if (phaser.getPhase() != phase) {
1075     thread = null;
1076     return true;
1077     }
1078     if (Thread.interrupted())
1079     wasInterrupted = true;
1080     if (wasInterrupted && interruptible) {
1081     thread = null;
1082     return true;
1083     }
1084     if (timed) {
1085     if (nanos > 0L) {
1086     long now = System.nanoTime();
1087     nanos -= now - lastTime;
1088     lastTime = now;
1089     }
1090     if (nanos <= 0L) {
1091     thread = null;
1092     return true;
1093 dl 1.51 }
1094 dl 1.50 }
1095 dl 1.63 return false;
1096 dl 1.51 }
1097    
1098     public boolean block() {
1099     if (isReleasable())
1100     return true;
1101     else if (!timed)
1102     LockSupport.park(this);
1103     else if (nanos > 0)
1104     LockSupport.parkNanos(this, nanos);
1105     return isReleasable();
1106 dl 1.1 }
1107 dl 1.4 }
1108    
1109 jsr166 1.22 // Unsafe mechanics
1110    
1111 jsr166 1.73 private static final sun.misc.Unsafe UNSAFE;
1112     private static final long stateOffset;
1113     static {
1114 jsr166 1.22 try {
1115 jsr166 1.73 UNSAFE = getUnsafe();
1116     Class k = Phaser.class;
1117     stateOffset = UNSAFE.objectFieldOffset
1118     (k.getDeclaredField("state"));
1119     } catch (Exception e) {
1120     throw new Error(e);
1121 jsr166 1.22 }
1122     }
1123    
1124     /**
1125     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1126     * Replace with a simple call to Unsafe.getUnsafe when integrating
1127     * into a jdk.
1128     *
1129     * @return a sun.misc.Unsafe
1130     */
1131 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1132 jsr166 1.11 try {
1133 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1134 jsr166 1.11 } catch (SecurityException se) {
1135     try {
1136     return java.security.AccessController.doPrivileged
1137 jsr166 1.22 (new java.security
1138     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1139 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1140 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1141     .Unsafe.class.getDeclaredField("theUnsafe");
1142     f.setAccessible(true);
1143     return (sun.misc.Unsafe) f.get(null);
1144 jsr166 1.11 }});
1145     } catch (java.security.PrivilegedActionException e) {
1146 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1147     e.getCause());
1148 jsr166 1.11 }
1149     }
1150     }
1151 dl 1.1 }