ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.75
Committed: Wed Sep 21 12:30:39 2011 UTC (12 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.74: +21 -13 lines
Log Message:
Allow multiple subphasers to register while others deregister

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.63 * number of parties <em>registered</em> to synchronize on a phaser
22 dl 1.38 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.63 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 dl 1.38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.63 * control of actions upon arrival at a phaser and upon awaiting
42 dl 1.38 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.63 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 dl 1.38 *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62 dl 1.63 * the phaser advances to (or is already at) a different phase.
63 dl 1.38 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68 dl 1.63 * state of the phaser. If necessary, you can perform any
69 dl 1.38 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.63 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.68 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80 jsr166 1.69 * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91 dl 1.4 *
92 dl 1.58 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 dl 1.38 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 dl 1.68 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104     * constructor, {@link #register}, or {@link #bulkRegister}), the
105     * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107     * {@link #arriveAndDeregister}, the child phaser is deregistered
108     * from its parent.
109     *
110 dl 1.38 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.63 * only by registered parties, the current state of a phaser may be
112 dl 1.38 * monitored by any caller. At any given moment there are {@link
113 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 dl 1.42 * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 dl 1.1 *
122 dl 1.4 * <p><b>Sample usages:</b>
123     *
124 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 dl 1.48 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 dl 1.1 *
129 jsr166 1.13 * <pre> {@code
130 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
132 dl 1.27 * // create and start threads
133 dl 1.72 * for (final Runnable task : tasks) {
134 jsr166 1.13 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.33 * task.run();
139 jsr166 1.13 * }
140     * }.start();
141 dl 1.4 * }
142 dl 1.6 *
143 dl 1.27 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.13 * }}</pre>
146 dl 1.1 *
147 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
148 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
149 dl 1.1 *
150 jsr166 1.13 * <pre> {@code
151 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.13 * final Phaser phaser = new Phaser() {
153 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.45 * for (final Runnable task : tasks) {
159 jsr166 1.13 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.33 * task.run();
164 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.45 * } while (!phaser.isTerminated());
166 dl 1.4 * }
167 jsr166 1.13 * }.start();
168 dl 1.1 * }
169 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 jsr166 1.13 * }}</pre>
171 dl 1.1 *
172 dl 1.38 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174 jsr166 1.45 * <pre> {@code
175 dl 1.38 * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
179 dl 1.38 *
180 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
181 dl 1.38 * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184 jsr166 1.45 * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192 dl 1.38 * }
193 jsr166 1.45 * phaser.arriveAndDeregister();
194     * }}</pre>
195 dl 1.38 *
196     *
197 dl 1.65 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.45 *
204 jsr166 1.13 * <pre> {@code
205 dl 1.65 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 dl 1.44 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.65 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.13 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.65 * tasks[i] = new Task(ph);
214 dl 1.44 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.13 * }
216 dl 1.65 * }}</pre>
217 dl 1.4 *
218 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.63 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 dl 1.4 * high rates), or up to hundreds for extremely large ones.
222     *
223 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
224 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.63 * should create tiered phasers to accommodate arbitrarily large sets
227 dl 1.4 * of participants.
228 jsr166 1.16 *
229     * @since 1.7
230     * @author Doug Lea
231 dl 1.1 */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237 dl 1.1 */
238    
239     /**
240 jsr166 1.73 * Primary state representation, holding four bit-fields:
241 jsr166 1.3 *
242 jsr166 1.73 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246 dl 1.1 *
247 dl 1.65 * Except that a phaser with no registered parties is
248 jsr166 1.73 * distinguished by the otherwise illegal state of having zero
249 dl 1.65 * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263 dl 1.70 * ancestors until it is actually accessed -- see method
264     * reconcileState.
265 dl 1.1 */
266 dl 1.4 private volatile long state;
267 dl 1.1
268 dl 1.59 private static final int MAX_PARTIES = 0xffff;
269 jsr166 1.73 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 dl 1.59 private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274     private static final long TERMINATION_BIT = 1L << 63;
275 dl 1.51
276 dl 1.65 // some special values
277     private static final int ONE_ARRIVAL = 1;
278     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279     private static final int EMPTY = 1;
280    
281 dl 1.51 // The following unpacking methods are usually manually inlined
282 dl 1.1
283     private static int unarrivedOf(long s) {
284 dl 1.65 int counts = (int)s;
285 jsr166 1.66 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286 dl 1.1 }
287    
288     private static int partiesOf(long s) {
289 dl 1.68 return (int)s >>> PARTIES_SHIFT;
290 dl 1.1 }
291    
292     private static int phaseOf(long s) {
293 jsr166 1.73 return (int)(s >>> PHASE_SHIFT);
294 dl 1.1 }
295    
296     private static int arrivedOf(long s) {
297 dl 1.65 int counts = (int)s;
298 jsr166 1.66 return (counts == EMPTY) ? 0 :
299 dl 1.65 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300 dl 1.1 }
301    
302 dl 1.4 /**
303     * The parent of this phaser, or null if none
304     */
305     private final Phaser parent;
306    
307     /**
308 dl 1.65 * The root of phaser tree. Equals this if not in a tree.
309 dl 1.4 */
310     private final Phaser root;
311    
312     /**
313 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
314 dl 1.49 * contention when releasing some threads while adding others, we
315 dl 1.4 * use two of them, alternating across even and odd phases.
316 dl 1.49 * Subphasers share queues with root to speed up releases.
317 dl 1.4 */
318 dl 1.50 private final AtomicReference<QNode> evenQ;
319     private final AtomicReference<QNode> oddQ;
320 dl 1.4
321     private AtomicReference<QNode> queueFor(int phase) {
322 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
323 dl 1.4 }
324    
325     /**
326 dl 1.59 * Returns message string for bounds exceptions on arrival.
327     */
328     private String badArrive(long s) {
329     return "Attempted arrival of unregistered party for " +
330     stateToString(s);
331     }
332    
333     /**
334     * Returns message string for bounds exceptions on registration.
335     */
336     private String badRegister(long s) {
337     return "Attempt to register more than " +
338     MAX_PARTIES + " parties for " + stateToString(s);
339     }
340    
341     /**
342 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
343     * Manually tuned to speed up and minimize race windows for the
344     * common case of just decrementing unarrived field.
345     *
346 dl 1.65 * @param deregister false for arrive, true for arriveAndDeregister
347 dl 1.4 */
348 dl 1.65 private int doArrive(boolean deregister) {
349     int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 dl 1.68 final Phaser root = this.root;
351     for (;;) {
352     long s = (root == this) ? state : reconcileState();
353     int phase = (int)(s >>> PHASE_SHIFT);
354 dl 1.65 int counts = (int)s;
355 dl 1.68 int unarrived = (counts & UNARRIVED_MASK) - 1;
356     if (phase < 0)
357     return phase;
358     else if (counts == EMPTY || unarrived < 0) {
359     if (root == this || reconcileState() == s)
360 dl 1.59 throw new IllegalStateException(badArrive(s));
361     }
362 dl 1.55 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 dl 1.75 long n = s & PARTIES_MASK; // base of next state
364     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 dl 1.68 if (unarrived == 0) {
366 dl 1.75 if (root == this) {
367     if (onAdvance(phase, nextUnarrived))
368     n |= TERMINATION_BIT;
369     else if (nextUnarrived == 0)
370     n |= EMPTY;
371     else
372     n |= nextUnarrived;
373     n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374     UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375     }
376     else if (nextUnarrived == 0) { // propagate deregistration
377     phase = parent.doArrive(true);
378     UNSAFE.compareAndSwapLong(this, stateOffset,
379     s, s | EMPTY);
380     }
381 dl 1.68 else
382 dl 1.75 phase = parent.doArrive(false);
383 dl 1.68 releaseWaiters(phase);
384 dl 1.51 }
385 dl 1.68 return phase;
386 dl 1.51 }
387     }
388     }
389    
390     /**
391     * Implementation of register, bulkRegister
392     *
393 dl 1.58 * @param registrations number to add to both parties and
394     * unarrived fields. Must be greater than zero.
395 dl 1.51 */
396     private int doRegister(int registrations) {
397 dl 1.57 // adjustment to state
398     long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 jsr166 1.73 final Phaser parent = this.parent;
400 dl 1.65 int phase;
401 dl 1.54 for (;;) {
402 dl 1.75 long s = (parent == null) ? state : reconcileState();
403 dl 1.65 int counts = (int)s;
404     int parties = counts >>> PARTIES_SHIFT;
405     int unarrived = counts & UNARRIVED_MASK;
406     if (registrations > MAX_PARTIES - parties)
407 dl 1.54 throw new IllegalStateException(badRegister(s));
408 dl 1.65 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
409     break;
410     else if (counts != EMPTY) { // not 1st registration
411 jsr166 1.73 if (parent == null || reconcileState() == s) {
412 dl 1.65 if (unarrived == 0) // wait out advance
413     root.internalAwaitAdvance(phase, null);
414     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415     s, s + adj))
416     break;
417     }
418     }
419 jsr166 1.73 else if (parent == null) { // 1st root registration
420     long next = ((long)phase << PHASE_SHIFT) | adj;
421 dl 1.65 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422     break;
423     }
424     else {
425 jsr166 1.66 synchronized (this) { // 1st sub registration
426 dl 1.65 if (state == s) { // recheck under lock
427 jsr166 1.73 parent.doRegister(1);
428 dl 1.65 do { // force current phase
429     phase = (int)(root.state >>> PHASE_SHIFT);
430     // assert phase < 0 || (int)state == EMPTY;
431     } while (!UNSAFE.compareAndSwapLong
432     (this, stateOffset, state,
433 jsr166 1.73 ((long)phase << PHASE_SHIFT) | adj));
434 dl 1.65 break;
435 dl 1.59 }
436     }
437     }
438 dl 1.51 }
439 dl 1.65 return phase;
440 dl 1.51 }
441    
442     /**
443 dl 1.65 * Resolves lagged phase propagation from root if necessary.
444 dl 1.70 * Reconciliation normally occurs when root has advanced but
445     * subphasers have not yet done so, in which case they must finish
446     * their own advance by setting unarrived to parties (or if
447     * parties is zero, resetting to unregistered EMPTY state).
448     * However, this method may also be called when "floating"
449     * subphasers with possibly some unarrived parties are merely
450     * catching up to current phase, in which case counts are
451     * unaffected.
452     *
453     * @return reconciled state
454 dl 1.4 */
455     private long reconcileState() {
456 dl 1.70 final Phaser root = this.root;
457 dl 1.57 long s = state;
458 dl 1.70 if (root != this) {
459     int phase, u, p;
460     // CAS root phase with current parties; possibly trip unarrived
461     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462     (int)(s >>> PHASE_SHIFT) &&
463     !UNSAFE.compareAndSwapLong
464     (this, stateOffset, s,
465 jsr166 1.73 s = (((long)phase << PHASE_SHIFT) |
466     (s & PARTIES_MASK) |
467 dl 1.70 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
468 dl 1.75 ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469     p : u))))
470 dl 1.70 s = state;
471 dl 1.4 }
472 dl 1.57 return s;
473 dl 1.1 }
474    
475     /**
476 dl 1.63 * Creates a new phaser with no initially registered parties, no
477     * parent, and initial phase number 0. Any thread using this
478     * phaser will need to first register for it.
479 dl 1.1 */
480     public Phaser() {
481 dl 1.50 this(null, 0);
482 dl 1.1 }
483    
484     /**
485 dl 1.63 * Creates a new phaser with the given number of registered
486     * unarrived parties, no parent, and initial phase number 0.
487 jsr166 1.14 *
488 dl 1.63 * @param parties the number of parties required to advance to the
489     * next phase
490 dl 1.1 * @throws IllegalArgumentException if parties less than zero
491 jsr166 1.14 * or greater than the maximum number of parties supported
492 dl 1.1 */
493     public Phaser(int parties) {
494 dl 1.4 this(null, parties);
495     }
496    
497     /**
498 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
499 jsr166 1.14 *
500 dl 1.63 * @param parent the parent phaser
501 dl 1.4 */
502     public Phaser(Phaser parent) {
503 dl 1.50 this(parent, 0);
504 dl 1.4 }
505    
506     /**
507 dl 1.63 * Creates a new phaser with the given parent and number of
508 dl 1.68 * registered unarrived parties. When the given parent is non-null
509     * and the given number of parties is greater than zero, this
510     * child phaser is registered with its parent.
511 jsr166 1.14 *
512 dl 1.63 * @param parent the parent phaser
513     * @param parties the number of parties required to advance to the
514     * next phase
515 dl 1.4 * @throws IllegalArgumentException if parties less than zero
516 jsr166 1.14 * or greater than the maximum number of parties supported
517 dl 1.4 */
518     public Phaser(Phaser parent, int parties) {
519 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
520 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
521 dl 1.65 int phase = 0;
522 dl 1.4 this.parent = parent;
523     if (parent != null) {
524 dl 1.68 final Phaser root = parent.root;
525     this.root = root;
526     this.evenQ = root.evenQ;
527     this.oddQ = root.oddQ;
528 dl 1.60 if (parties != 0)
529 dl 1.65 phase = parent.doRegister(1);
530 dl 1.4 }
531 dl 1.50 else {
532 dl 1.4 this.root = this;
533 dl 1.50 this.evenQ = new AtomicReference<QNode>();
534     this.oddQ = new AtomicReference<QNode>();
535     }
536 jsr166 1.73 this.state = (parties == 0) ? (long)EMPTY :
537     ((long)phase << PHASE_SHIFT) |
538     ((long)parties << PARTIES_SHIFT) |
539     ((long)parties);
540 dl 1.1 }
541    
542     /**
543 dl 1.63 * Adds a new unarrived party to this phaser. If an ongoing
544 dl 1.59 * invocation of {@link #onAdvance} is in progress, this method
545 dl 1.63 * may await its completion before returning. If this phaser has
546     * a parent, and this phaser previously had no registered parties,
547 dl 1.68 * this child phaser is also registered with its parent. If
548     * this phaser is terminated, the attempt to register has
549     * no effect, and a negative value is returned.
550     *
551     * @return the arrival phase number to which this registration
552     * applied. If this value is negative, then this phaser has
553 jsr166 1.69 * terminated, in which case registration has no effect.
554 dl 1.1 * @throws IllegalStateException if attempting to register more
555 jsr166 1.14 * than the maximum supported number of parties
556 dl 1.1 */
557 dl 1.4 public int register() {
558     return doRegister(1);
559     }
560    
561     /**
562 dl 1.63 * Adds the given number of new unarrived parties to this phaser.
563 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
564 dl 1.60 * this method may await its completion before returning. If this
565 dl 1.68 * phaser has a parent, and the given number of parties is greater
566     * than zero, and this phaser previously had no registered
567     * parties, this child phaser is also registered with its parent.
568     * If this phaser is terminated, the attempt to register has no
569     * effect, and a negative value is returned.
570 jsr166 1.14 *
571 dl 1.63 * @param parties the number of additional parties required to
572     * advance to the next phase
573 dl 1.68 * @return the arrival phase number to which this registration
574     * applied. If this value is negative, then this phaser has
575 jsr166 1.69 * terminated, in which case registration has no effect.
576 dl 1.4 * @throws IllegalStateException if attempting to register more
577 jsr166 1.14 * than the maximum supported number of parties
578 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
579 dl 1.4 */
580     public int bulkRegister(int parties) {
581     if (parties < 0)
582     throw new IllegalArgumentException();
583 dl 1.60 if (parties == 0)
584 dl 1.4 return getPhase();
585     return doRegister(parties);
586     }
587    
588     /**
589 dl 1.63 * Arrives at this phaser, without waiting for others to arrive.
590 dl 1.60 *
591     * <p>It is a usage error for an unregistered party to invoke this
592     * method. However, this error may result in an {@code
593     * IllegalStateException} only upon some subsequent operation on
594 dl 1.63 * this phaser, if ever.
595 dl 1.1 *
596 dl 1.35 * @return the arrival phase number, or a negative value if terminated
597 dl 1.4 * @throws IllegalStateException if not terminated and the number
598 jsr166 1.14 * of unarrived parties would become negative
599 dl 1.1 */
600 dl 1.4 public int arrive() {
601 dl 1.65 return doArrive(false);
602 dl 1.1 }
603    
604     /**
605 dl 1.63 * Arrives at this phaser and deregisters from it without waiting
606 dl 1.60 * for others to arrive. Deregistration reduces the number of
607 dl 1.63 * parties required to advance in future phases. If this phaser
608     * has a parent, and deregistration causes this phaser to have
609     * zero parties, this phaser is also deregistered from its parent.
610 dl 1.60 *
611     * <p>It is a usage error for an unregistered party to invoke this
612     * method. However, this error may result in an {@code
613     * IllegalStateException} only upon some subsequent operation on
614 dl 1.63 * this phaser, if ever.
615 dl 1.1 *
616 dl 1.35 * @return the arrival phase number, or a negative value if terminated
617 dl 1.4 * @throws IllegalStateException if not terminated and the number
618 jsr166 1.14 * of registered or unarrived parties would become negative
619 dl 1.1 */
620 dl 1.4 public int arriveAndDeregister() {
621 dl 1.65 return doArrive(true);
622 dl 1.1 }
623    
624     /**
625 dl 1.63 * Arrives at this phaser and awaits others. Equivalent in effect
626 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
627     * interruption or timeout, you can arrange this with an analogous
628 dl 1.48 * construction using one of the other forms of the {@code
629     * awaitAdvance} method. If instead you need to deregister upon
630 dl 1.60 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
631     *
632     * <p>It is a usage error for an unregistered party to invoke this
633     * method. However, this error may result in an {@code
634     * IllegalStateException} only upon some subsequent operation on
635 dl 1.63 * this phaser, if ever.
636 jsr166 1.14 *
637 dl 1.68 * @return the arrival phase number, or the (negative)
638     * {@linkplain #getPhase() current phase} if terminated
639 dl 1.4 * @throws IllegalStateException if not terminated and the number
640 jsr166 1.14 * of unarrived parties would become negative
641 dl 1.1 */
642     public int arriveAndAwaitAdvance() {
643 dl 1.68 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644     final Phaser root = this.root;
645     for (;;) {
646     long s = (root == this) ? state : reconcileState();
647     int phase = (int)(s >>> PHASE_SHIFT);
648     int counts = (int)s;
649     int unarrived = (counts & UNARRIVED_MASK) - 1;
650     if (phase < 0)
651     return phase;
652     else if (counts == EMPTY || unarrived < 0) {
653     if (reconcileState() == s)
654     throw new IllegalStateException(badArrive(s));
655     }
656     else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657     s -= ONE_ARRIVAL)) {
658     if (unarrived != 0)
659     return root.internalAwaitAdvance(phase, null);
660     if (root != this)
661     return parent.arriveAndAwaitAdvance();
662     long n = s & PARTIES_MASK; // base of next state
663 jsr166 1.73 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 dl 1.68 if (onAdvance(phase, nextUnarrived))
665     n |= TERMINATION_BIT;
666     else if (nextUnarrived == 0)
667     n |= EMPTY;
668     else
669     n |= nextUnarrived;
670     int nextPhase = (phase + 1) & MAX_PHASE;
671     n |= (long)nextPhase << PHASE_SHIFT;
672     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673     return (int)(state >>> PHASE_SHIFT); // terminated
674     releaseWaiters(phase);
675     return nextPhase;
676     }
677     }
678 dl 1.1 }
679    
680     /**
681 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
682     * value, returning immediately if the current phase is not equal
683     * to the given phase value or this phaser is terminated.
684 jsr166 1.14 *
685 dl 1.35 * @param phase an arrival phase number, or negative value if
686     * terminated; this argument is normally the value returned by a
687 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 dl 1.68 * @return the next arrival phase number, or the argument if it is
689     * negative, or the (negative) {@linkplain #getPhase() current phase}
690     * if terminated
691 dl 1.1 */
692     public int awaitAdvance(int phase) {
693 dl 1.68 final Phaser root = this.root;
694 jsr166 1.69 long s = (root == this) ? state : reconcileState();
695     int p = (int)(s >>> PHASE_SHIFT);
696 dl 1.1 if (phase < 0)
697     return phase;
698 dl 1.68 if (p == phase)
699     return root.internalAwaitAdvance(phase, null);
700 dl 1.60 return p;
701 dl 1.1 }
702    
703     /**
704 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
705 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
706 dl 1.63 * while waiting, or returning immediately if the current phase is
707     * not equal to the given phase value or this phaser is
708     * terminated.
709 jsr166 1.14 *
710 dl 1.35 * @param phase an arrival phase number, or negative value if
711     * terminated; this argument is normally the value returned by a
712 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 dl 1.68 * @return the next arrival phase number, or the argument if it is
714     * negative, or the (negative) {@linkplain #getPhase() current phase}
715     * if terminated
716 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
717     */
718 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
719 dl 1.10 throws InterruptedException {
720 dl 1.68 final Phaser root = this.root;
721 jsr166 1.69 long s = (root == this) ? state : reconcileState();
722     int p = (int)(s >>> PHASE_SHIFT);
723 dl 1.1 if (phase < 0)
724     return phase;
725 dl 1.65 if (p == phase) {
726 dl 1.68 QNode node = new QNode(this, phase, true, false, 0L);
727     p = root.internalAwaitAdvance(phase, node);
728     if (node.wasInterrupted)
729     throw new InterruptedException();
730 dl 1.55 }
731     return p;
732 dl 1.1 }
733    
734     /**
735 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
736 dl 1.38 * value or the given timeout to elapse, throwing {@code
737     * InterruptedException} if interrupted while waiting, or
738 dl 1.63 * returning immediately if the current phase is not equal to the
739     * given phase value or this phaser is terminated.
740 jsr166 1.14 *
741 dl 1.35 * @param phase an arrival phase number, or negative value if
742     * terminated; this argument is normally the value returned by a
743 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
744 dl 1.31 * @param timeout how long to wait before giving up, in units of
745     * {@code unit}
746     * @param unit a {@code TimeUnit} determining how to interpret the
747     * {@code timeout} parameter
748 dl 1.68 * @return the next arrival phase number, or the argument if it is
749     * negative, or the (negative) {@linkplain #getPhase() current phase}
750     * if terminated
751 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
752     * @throws TimeoutException if timed out while waiting
753     */
754 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
755     long timeout, TimeUnit unit)
756 dl 1.1 throws InterruptedException, TimeoutException {
757 dl 1.60 long nanos = unit.toNanos(timeout);
758 dl 1.68 final Phaser root = this.root;
759 jsr166 1.69 long s = (root == this) ? state : reconcileState();
760     int p = (int)(s >>> PHASE_SHIFT);
761 dl 1.1 if (phase < 0)
762     return phase;
763 dl 1.65 if (p == phase) {
764 dl 1.68 QNode node = new QNode(this, phase, true, true, nanos);
765     p = root.internalAwaitAdvance(phase, node);
766     if (node.wasInterrupted)
767     throw new InterruptedException();
768     else if (p == phase)
769     throw new TimeoutException();
770 dl 1.55 }
771     return p;
772 dl 1.1 }
773    
774     /**
775 dl 1.63 * Forces this phaser to enter termination state. Counts of
776 dl 1.65 * registered parties are unaffected. If this phaser is a member
777     * of a tiered set of phasers, then all of the phasers in the set
778     * are terminated. If this phaser is already terminated, this
779     * method has no effect. This method may be useful for
780     * coordinating recovery after one or more tasks encounter
781     * unexpected exceptions.
782 dl 1.1 */
783     public void forceTermination() {
784 dl 1.55 // Only need to change root state
785     final Phaser root = this.root;
786 dl 1.49 long s;
787 dl 1.55 while ((s = root.state) >= 0) {
788 dl 1.70 if (UNSAFE.compareAndSwapLong(root, stateOffset,
789     s, s | TERMINATION_BIT)) {
790 dl 1.68 // signal all threads
791     releaseWaiters(0);
792 dl 1.55 releaseWaiters(1);
793     return;
794     }
795     }
796 dl 1.1 }
797    
798     /**
799 dl 1.4 * Returns the current phase number. The maximum phase number is
800 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
801 dl 1.63 * zero. Upon termination, the phase number is negative,
802     * in which case the prevailing phase prior to termination
803     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804 jsr166 1.14 *
805 dl 1.4 * @return the phase number, or a negative value if terminated
806 dl 1.1 */
807 dl 1.4 public final int getPhase() {
808 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
809 dl 1.1 }
810    
811     /**
812 dl 1.63 * Returns the number of parties registered at this phaser.
813 jsr166 1.14 *
814 dl 1.1 * @return the number of parties
815     */
816     public int getRegisteredParties() {
817 dl 1.57 return partiesOf(state);
818 dl 1.1 }
819    
820     /**
821 dl 1.36 * Returns the number of registered parties that have arrived at
822 dl 1.70 * the current phase of this phaser. If this phaser has terminated,
823     * the returned value is meaningless and arbitrary.
824 jsr166 1.14 *
825 dl 1.1 * @return the number of arrived parties
826     */
827     public int getArrivedParties() {
828 dl 1.65 return arrivedOf(reconcileState());
829 dl 1.1 }
830    
831     /**
832     * Returns the number of registered parties that have not yet
833 dl 1.70 * arrived at the current phase of this phaser. If this phaser has
834     * terminated, the returned value is meaningless and arbitrary.
835 jsr166 1.14 *
836 dl 1.1 * @return the number of unarrived parties
837     */
838     public int getUnarrivedParties() {
839 dl 1.65 return unarrivedOf(reconcileState());
840 dl 1.4 }
841    
842     /**
843 dl 1.63 * Returns the parent of this phaser, or {@code null} if none.
844 jsr166 1.14 *
845 dl 1.63 * @return the parent of this phaser, or {@code null} if none
846 dl 1.4 */
847     public Phaser getParent() {
848     return parent;
849     }
850    
851     /**
852 dl 1.63 * Returns the root ancestor of this phaser, which is the same as
853     * this phaser if it has no parent.
854 jsr166 1.14 *
855 dl 1.63 * @return the root ancestor of this phaser
856 dl 1.4 */
857     public Phaser getRoot() {
858     return root;
859 dl 1.1 }
860    
861     /**
862 dl 1.63 * Returns {@code true} if this phaser has been terminated.
863 jsr166 1.14 *
864 dl 1.63 * @return {@code true} if this phaser has been terminated
865 dl 1.1 */
866     public boolean isTerminated() {
867 dl 1.57 return root.state < 0L;
868 dl 1.1 }
869    
870     /**
871 dl 1.43 * Overridable method to perform an action upon impending phase
872     * advance, and to control termination. This method is invoked
873 dl 1.63 * upon arrival of the party advancing this phaser (when all other
874 dl 1.43 * waiting parties are dormant). If this method returns {@code
875 dl 1.65 * true}, this phaser will be set to a final termination state
876     * upon advance, and subsequent calls to {@link #isTerminated}
877     * will return true. Any (unchecked) Exception or Error thrown by
878     * an invocation of this method is propagated to the party
879     * attempting to advance this phaser, in which case no advance
880     * occurs.
881 dl 1.42 *
882 dl 1.63 * <p>The arguments to this method provide the state of the phaser
883 dl 1.51 * prevailing for the current transition. The effects of invoking
884 dl 1.63 * arrival, registration, and waiting methods on this phaser from
885 dl 1.50 * within {@code onAdvance} are unspecified and should not be
886 dl 1.51 * relied on.
887     *
888 dl 1.63 * <p>If this phaser is a member of a tiered set of phasers, then
889     * {@code onAdvance} is invoked only for its root phaser on each
890 dl 1.51 * advance.
891 jsr166 1.3 *
892 dl 1.59 * <p>To support the most common use cases, the default
893     * implementation of this method returns {@code true} when the
894     * number of registered parties has become zero as the result of a
895     * party invoking {@code arriveAndDeregister}. You can disable
896     * this behavior, thus enabling continuation upon future
897     * registrations, by overriding this method to always return
898     * {@code false}:
899     *
900     * <pre> {@code
901     * Phaser phaser = new Phaser() {
902     * protected boolean onAdvance(int phase, int parties) { return false; }
903     * }}</pre>
904 dl 1.1 *
905 dl 1.63 * @param phase the current phase number on entry to this method,
906     * before this phaser is advanced
907 jsr166 1.9 * @param registeredParties the current number of registered parties
908 dl 1.63 * @return {@code true} if this phaser should terminate
909 dl 1.1 */
910     protected boolean onAdvance(int phase, int registeredParties) {
911 dl 1.62 return registeredParties == 0;
912 dl 1.1 }
913    
914     /**
915 dl 1.63 * Returns a string identifying this phaser, as well as its
916 dl 1.1 * state. The state, in brackets, includes the String {@code
917 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
918 dl 1.1 * followed by the number of registered parties, and {@code
919 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
920 dl 1.1 *
921 dl 1.63 * @return a string identifying this phaser, as well as its state
922 dl 1.1 */
923     public String toString() {
924 dl 1.54 return stateToString(reconcileState());
925     }
926    
927     /**
928     * Implementation of toString and string-based error messages
929     */
930     private String stateToString(long s) {
931 jsr166 1.9 return super.toString() +
932     "[phase = " + phaseOf(s) +
933     " parties = " + partiesOf(s) +
934     " arrived = " + arrivedOf(s) + "]";
935 dl 1.1 }
936    
937 dl 1.54 // Waiting mechanics
938    
939 dl 1.4 /**
940 dl 1.57 * Removes and signals threads from queue for phase.
941 dl 1.4 */
942     private void releaseWaiters(int phase) {
943 dl 1.63 QNode q; // first element of queue
944     Thread t; // its thread
945 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946 dl 1.51 while ((q = head.get()) != null &&
947 dl 1.65 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 dl 1.63 if (head.compareAndSet(q, q.next) &&
949     (t = q.thread) != null) {
950     q.thread = null;
951     LockSupport.unpark(t);
952     }
953 dl 1.4 }
954     }
955    
956 dl 1.68 /**
957     * Variant of releaseWaiters that additionally tries to remove any
958     * nodes no longer waiting for advance due to timeout or
959     * interrupt. Currently, nodes are removed only if they are at
960     * head of queue, which suffices to reduce memory footprint in
961     * most usages.
962     *
963     * @return current phase on exit
964     */
965     private int abortWait(int phase) {
966     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967     for (;;) {
968     Thread t;
969     QNode q = head.get();
970     int p = (int)(root.state >>> PHASE_SHIFT);
971     if (q == null || ((t = q.thread) != null && q.phase == p))
972     return p;
973     if (head.compareAndSet(q, q.next) && t != null) {
974     q.thread = null;
975     LockSupport.unpark(t);
976     }
977     }
978     }
979    
980 dl 1.51 /** The number of CPUs, for spin control */
981     private static final int NCPU = Runtime.getRuntime().availableProcessors();
982    
983 dl 1.10 /**
984 dl 1.51 * The number of times to spin before blocking while waiting for
985     * advance, per arrival while waiting. On multiprocessors, fully
986     * blocking and waking up a large number of threads all at once is
987     * usually a very slow process, so we use rechargeable spins to
988     * avoid it when threads regularly arrive: When a thread in
989     * internalAwaitAdvance notices another arrival before blocking,
990     * and there appear to be enough CPUs available, it spins
991 dl 1.62 * SPINS_PER_ARRIVAL more times before blocking. The value trades
992     * off good-citizenship vs big unnecessary slowdowns.
993 dl 1.50 */
994 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
995 dl 1.50
996     /**
997 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
998 dl 1.60 * Call only from root node.
999 jsr166 1.14 *
1000 dl 1.51 * @param phase current phase
1001 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
1002 dl 1.51 * if null, denotes noninterruptible wait
1003 dl 1.10 * @return current phase
1004 dl 1.1 */
1005 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
1006 dl 1.63 releaseWaiters(phase-1); // ensure old queue clean
1007     boolean queued = false; // true when node is enqueued
1008     int lastUnarrived = 0; // to increase spins upon change
1009 dl 1.51 int spins = SPINS_PER_ARRIVAL;
1010 dl 1.57 long s;
1011     int p;
1012 dl 1.60 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 dl 1.63 if (node == null) { // spinning in noninterruptible mode
1014     int unarrived = (int)s & UNARRIVED_MASK;
1015     if (unarrived != lastUnarrived &&
1016     (lastUnarrived = unarrived) < NCPU)
1017 dl 1.57 spins += SPINS_PER_ARRIVAL;
1018 dl 1.63 boolean interrupted = Thread.interrupted();
1019     if (interrupted || --spins < 0) { // need node to record intr
1020     node = new QNode(this, phase, false, false, 0L);
1021     node.wasInterrupted = interrupted;
1022     }
1023 dl 1.54 }
1024 dl 1.63 else if (node.isReleasable()) // done or aborted
1025     break;
1026     else if (!queued) { // push onto queue
1027 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 dl 1.63 QNode q = node.next = head.get();
1029     if ((q == null || q.phase == phase) &&
1030     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031 dl 1.62 queued = head.compareAndSet(q, node);
1032 dl 1.57 }
1033 dl 1.51 else {
1034     try {
1035     ForkJoinPool.managedBlock(node);
1036     } catch (InterruptedException ie) {
1037     node.wasInterrupted = true;
1038     }
1039     }
1040 dl 1.4 }
1041 dl 1.60
1042     if (node != null) {
1043     if (node.thread != null)
1044 dl 1.63 node.thread = null; // avoid need for unpark()
1045 dl 1.62 if (node.wasInterrupted && !node.interruptible)
1046 dl 1.60 Thread.currentThread().interrupt();
1047 dl 1.65 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 dl 1.68 return abortWait(phase); // possibly clean up on abort
1049 dl 1.60 }
1050 dl 1.63 releaseWaiters(phase);
1051 dl 1.57 return p;
1052 dl 1.4 }
1053    
1054     /**
1055 dl 1.51 * Wait nodes for Treiber stack representing wait queue
1056 dl 1.4 */
1057 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
1058     final Phaser phaser;
1059     final int phase;
1060     final boolean interruptible;
1061     final boolean timed;
1062     boolean wasInterrupted;
1063     long nanos;
1064     long lastTime;
1065     volatile Thread thread; // nulled to cancel wait
1066     QNode next;
1067    
1068     QNode(Phaser phaser, int phase, boolean interruptible,
1069     boolean timed, long nanos) {
1070     this.phaser = phaser;
1071     this.phase = phase;
1072     this.interruptible = interruptible;
1073     this.nanos = nanos;
1074     this.timed = timed;
1075 jsr166 1.64 this.lastTime = timed ? System.nanoTime() : 0L;
1076 dl 1.51 thread = Thread.currentThread();
1077     }
1078    
1079     public boolean isReleasable() {
1080 dl 1.63 if (thread == null)
1081     return true;
1082     if (phaser.getPhase() != phase) {
1083     thread = null;
1084     return true;
1085     }
1086     if (Thread.interrupted())
1087     wasInterrupted = true;
1088     if (wasInterrupted && interruptible) {
1089     thread = null;
1090     return true;
1091     }
1092     if (timed) {
1093     if (nanos > 0L) {
1094     long now = System.nanoTime();
1095     nanos -= now - lastTime;
1096     lastTime = now;
1097     }
1098     if (nanos <= 0L) {
1099     thread = null;
1100     return true;
1101 dl 1.51 }
1102 dl 1.50 }
1103 dl 1.63 return false;
1104 dl 1.51 }
1105    
1106     public boolean block() {
1107     if (isReleasable())
1108     return true;
1109     else if (!timed)
1110     LockSupport.park(this);
1111     else if (nanos > 0)
1112     LockSupport.parkNanos(this, nanos);
1113     return isReleasable();
1114 dl 1.1 }
1115 dl 1.4 }
1116    
1117 jsr166 1.22 // Unsafe mechanics
1118    
1119 jsr166 1.73 private static final sun.misc.Unsafe UNSAFE;
1120     private static final long stateOffset;
1121     static {
1122 jsr166 1.22 try {
1123 jsr166 1.73 UNSAFE = getUnsafe();
1124 jsr166 1.74 Class<?> k = Phaser.class;
1125 jsr166 1.73 stateOffset = UNSAFE.objectFieldOffset
1126     (k.getDeclaredField("state"));
1127     } catch (Exception e) {
1128     throw new Error(e);
1129 jsr166 1.22 }
1130     }
1131    
1132     /**
1133     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1134     * Replace with a simple call to Unsafe.getUnsafe when integrating
1135     * into a jdk.
1136     *
1137     * @return a sun.misc.Unsafe
1138     */
1139 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1140 jsr166 1.11 try {
1141 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1142 jsr166 1.11 } catch (SecurityException se) {
1143     try {
1144     return java.security.AccessController.doPrivileged
1145 jsr166 1.22 (new java.security
1146     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1147 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1148 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1149     .Unsafe.class.getDeclaredField("theUnsafe");
1150     f.setAccessible(true);
1151     return (sun.misc.Unsafe) f.get(null);
1152 jsr166 1.11 }});
1153     } catch (java.security.PrivilegedActionException e) {
1154 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1155     e.getCause());
1156 jsr166 1.11 }
1157     }
1158     }
1159 dl 1.1 }