ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.76
Committed: Sat Oct 15 21:46:25 2011 UTC (12 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.75: +50 -43 lines
Log Message:
sync with main

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 dl 1.38 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.63 * number of parties <em>registered</em> to synchronize on a phaser
22 dl 1.38 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 dl 1.38 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34     * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.63 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 dl 1.38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.63 * control of actions upon arrival at a phaser and upon awaiting
42 dl 1.38 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 dl 1.38 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.63 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 dl 1.38 *
60     * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61     * argument indicating an arrival phase number, and returns when
62 dl 1.63 * the phaser advances to (or is already at) a different phase.
63 dl 1.38 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68 dl 1.63 * state of the phaser. If necessary, you can perform any
69 dl 1.38 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 dl 1.63 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.68 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80 jsr166 1.69 * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91 dl 1.4 *
92 dl 1.58 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93     * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 dl 1.38 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 dl 1.68 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104     * constructor, {@link #register}, or {@link #bulkRegister}), the
105     * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107     * {@link #arriveAndDeregister}, the child phaser is deregistered
108     * from its parent.
109     *
110 dl 1.38 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.63 * only by registered parties, the current state of a phaser may be
112 dl 1.38 * monitored by any caller. At any given moment there are {@link
113 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 dl 1.42 * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 dl 1.1 *
122 dl 1.4 * <p><b>Sample usages:</b>
123     *
124 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 dl 1.48 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 dl 1.1 *
129 jsr166 1.13 * <pre> {@code
130 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
132 dl 1.27 * // create and start threads
133 dl 1.72 * for (final Runnable task : tasks) {
134 jsr166 1.13 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.33 * task.run();
139 jsr166 1.13 * }
140     * }.start();
141 dl 1.4 * }
142 dl 1.6 *
143 dl 1.27 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.13 * }}</pre>
146 dl 1.1 *
147 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
148 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
149 dl 1.1 *
150 jsr166 1.13 * <pre> {@code
151 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.13 * final Phaser phaser = new Phaser() {
153 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.45 * for (final Runnable task : tasks) {
159 jsr166 1.13 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.33 * task.run();
164 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.45 * } while (!phaser.isTerminated());
166 dl 1.4 * }
167 jsr166 1.13 * }.start();
168 dl 1.1 * }
169 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 jsr166 1.13 * }}</pre>
171 dl 1.1 *
172 dl 1.38 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174 jsr166 1.45 * <pre> {@code
175 dl 1.38 * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
179 dl 1.38 *
180 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
181 dl 1.38 * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184 jsr166 1.45 * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192 dl 1.38 * }
193 jsr166 1.45 * phaser.arriveAndDeregister();
194     * }}</pre>
195 dl 1.38 *
196     *
197 dl 1.65 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198     * could use code of the following form, assuming a Task class with a
199     * constructor accepting a {@code Phaser} that it registers with upon
200     * construction. After invocation of {@code build(new Task[n], 0, n,
201     * new Phaser())}, these tasks could then be started, for example by
202     * submitting to a pool:
203 jsr166 1.45 *
204 jsr166 1.13 * <pre> {@code
205 dl 1.65 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 dl 1.44 * if (hi - lo > TASKS_PER_PHASER) {
207     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208     * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 dl 1.65 * build(tasks, i, j, new Phaser(ph));
210 jsr166 1.13 * }
211     * } else {
212     * for (int i = lo; i < hi; ++i)
213 dl 1.65 * tasks[i] = new Task(ph);
214 dl 1.44 * // assumes new Task(ph) performs ph.register()
215 jsr166 1.13 * }
216 dl 1.65 * }}</pre>
217 dl 1.4 *
218 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 dl 1.63 * expected synchronization rates. A value as low as four may
220     * be appropriate for extremely small per-phase task bodies (thus
221 dl 1.4 * high rates), or up to hundreds for extremely large ones.
222     *
223 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
224 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
225 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
226 dl 1.63 * should create tiered phasers to accommodate arbitrarily large sets
227 dl 1.4 * of participants.
228 jsr166 1.16 *
229     * @since 1.7
230     * @author Doug Lea
231 dl 1.1 */
232     public class Phaser {
233     /*
234     * This class implements an extension of X10 "clocks". Thanks to
235 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236     * enhancements to extend functionality.
237 dl 1.1 */
238    
239     /**
240 jsr166 1.73 * Primary state representation, holding four bit-fields:
241 jsr166 1.3 *
242 jsr166 1.73 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243     * parties -- the number of parties to wait (bits 16-31)
244     * phase -- the generation of the barrier (bits 32-62)
245     * terminated -- set if barrier is terminated (bit 63 / sign)
246 dl 1.1 *
247 dl 1.65 * Except that a phaser with no registered parties is
248 jsr166 1.73 * distinguished by the otherwise illegal state of having zero
249 dl 1.65 * parties and one unarrived parties (encoded as EMPTY below).
250     *
251     * To efficiently maintain atomicity, these values are packed into
252     * a single (atomic) long. Good performance relies on keeping
253     * state decoding and encoding simple, and keeping race windows
254     * short.
255     *
256     * All state updates are performed via CAS except initial
257     * registration of a sub-phaser (i.e., one with a non-null
258     * parent). In this (relatively rare) case, we use built-in
259     * synchronization to lock while first registering with its
260     * parent.
261     *
262     * The phase of a subphaser is allowed to lag that of its
263 dl 1.70 * ancestors until it is actually accessed -- see method
264     * reconcileState.
265 dl 1.1 */
266 dl 1.4 private volatile long state;
267 dl 1.1
268 dl 1.59 private static final int MAX_PARTIES = 0xffff;
269 jsr166 1.73 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 dl 1.59 private static final int PARTIES_SHIFT = 16;
271     private static final int PHASE_SHIFT = 32;
272     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274     private static final long TERMINATION_BIT = 1L << 63;
275 dl 1.51
276 dl 1.65 // some special values
277     private static final int ONE_ARRIVAL = 1;
278     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 jsr166 1.76 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
280 dl 1.65 private static final int EMPTY = 1;
281    
282 dl 1.51 // The following unpacking methods are usually manually inlined
283 dl 1.1
284     private static int unarrivedOf(long s) {
285 dl 1.65 int counts = (int)s;
286 jsr166 1.76 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287 dl 1.1 }
288    
289     private static int partiesOf(long s) {
290 dl 1.68 return (int)s >>> PARTIES_SHIFT;
291 dl 1.1 }
292    
293     private static int phaseOf(long s) {
294 jsr166 1.73 return (int)(s >>> PHASE_SHIFT);
295 dl 1.1 }
296    
297     private static int arrivedOf(long s) {
298 dl 1.65 int counts = (int)s;
299 jsr166 1.66 return (counts == EMPTY) ? 0 :
300 dl 1.65 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 dl 1.1 }
302    
303 dl 1.4 /**
304     * The parent of this phaser, or null if none
305     */
306     private final Phaser parent;
307    
308     /**
309 dl 1.65 * The root of phaser tree. Equals this if not in a tree.
310 dl 1.4 */
311     private final Phaser root;
312    
313     /**
314 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
315 dl 1.49 * contention when releasing some threads while adding others, we
316 dl 1.4 * use two of them, alternating across even and odd phases.
317 dl 1.49 * Subphasers share queues with root to speed up releases.
318 dl 1.4 */
319 dl 1.50 private final AtomicReference<QNode> evenQ;
320     private final AtomicReference<QNode> oddQ;
321 dl 1.4
322     private AtomicReference<QNode> queueFor(int phase) {
323 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
324 dl 1.4 }
325    
326     /**
327 dl 1.59 * Returns message string for bounds exceptions on arrival.
328     */
329     private String badArrive(long s) {
330     return "Attempted arrival of unregistered party for " +
331     stateToString(s);
332     }
333    
334     /**
335     * Returns message string for bounds exceptions on registration.
336     */
337     private String badRegister(long s) {
338     return "Attempt to register more than " +
339     MAX_PARTIES + " parties for " + stateToString(s);
340     }
341    
342     /**
343 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
344     * Manually tuned to speed up and minimize race windows for the
345     * common case of just decrementing unarrived field.
346     *
347 jsr166 1.76 * @param adjust value to subtract from state;
348     * ONE_ARRIVAL for arrive,
349     * ONE_DEREGISTER for arriveAndDeregister
350 dl 1.4 */
351 jsr166 1.76 private int doArrive(int adjust) {
352 dl 1.68 final Phaser root = this.root;
353     for (;;) {
354     long s = (root == this) ? state : reconcileState();
355     int phase = (int)(s >>> PHASE_SHIFT);
356     if (phase < 0)
357     return phase;
358 jsr166 1.76 int counts = (int)s;
359     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360     if (unarrived <= 0)
361     throw new IllegalStateException(badArrive(s));
362     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363     if (unarrived == 1) {
364     long n = s & PARTIES_MASK; // base of next state
365     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 dl 1.75 if (root == this) {
367     if (onAdvance(phase, nextUnarrived))
368     n |= TERMINATION_BIT;
369     else if (nextUnarrived == 0)
370     n |= EMPTY;
371     else
372     n |= nextUnarrived;
373 jsr166 1.76 int nextPhase = (phase + 1) & MAX_PHASE;
374     n |= (long)nextPhase << PHASE_SHIFT;
375 dl 1.75 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376 jsr166 1.76 releaseWaiters(phase);
377 dl 1.75 }
378     else if (nextUnarrived == 0) { // propagate deregistration
379 jsr166 1.76 phase = parent.doArrive(ONE_DEREGISTER);
380 dl 1.75 UNSAFE.compareAndSwapLong(this, stateOffset,
381     s, s | EMPTY);
382     }
383 dl 1.68 else
384 jsr166 1.76 phase = parent.doArrive(ONE_ARRIVAL);
385 dl 1.51 }
386 dl 1.68 return phase;
387 dl 1.51 }
388     }
389     }
390    
391     /**
392     * Implementation of register, bulkRegister
393     *
394 dl 1.58 * @param registrations number to add to both parties and
395     * unarrived fields. Must be greater than zero.
396 dl 1.51 */
397     private int doRegister(int registrations) {
398 dl 1.57 // adjustment to state
399 jsr166 1.76 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400 jsr166 1.73 final Phaser parent = this.parent;
401 dl 1.65 int phase;
402 dl 1.54 for (;;) {
403 dl 1.75 long s = (parent == null) ? state : reconcileState();
404 dl 1.65 int counts = (int)s;
405     int parties = counts >>> PARTIES_SHIFT;
406     int unarrived = counts & UNARRIVED_MASK;
407     if (registrations > MAX_PARTIES - parties)
408 dl 1.54 throw new IllegalStateException(badRegister(s));
409 jsr166 1.76 phase = (int)(s >>> PHASE_SHIFT);
410     if (phase < 0)
411 dl 1.65 break;
412 jsr166 1.76 if (counts != EMPTY) { // not 1st registration
413 jsr166 1.73 if (parent == null || reconcileState() == s) {
414 dl 1.65 if (unarrived == 0) // wait out advance
415     root.internalAwaitAdvance(phase, null);
416     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 jsr166 1.76 s, s + adjust))
418 dl 1.65 break;
419     }
420     }
421 jsr166 1.73 else if (parent == null) { // 1st root registration
422 jsr166 1.76 long next = ((long)phase << PHASE_SHIFT) | adjust;
423 dl 1.65 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424     break;
425     }
426     else {
427 jsr166 1.66 synchronized (this) { // 1st sub registration
428 dl 1.65 if (state == s) { // recheck under lock
429 jsr166 1.76 phase = parent.doRegister(1);
430     if (phase < 0)
431     break;
432     // finish registration whenever parent registration
433     // succeeded, even when racing with termination,
434     // since these are part of the same "transaction".
435     while (!UNSAFE.compareAndSwapLong
436     (this, stateOffset, s,
437     ((long)phase << PHASE_SHIFT) | adjust)) {
438     s = state;
439 dl 1.65 phase = (int)(root.state >>> PHASE_SHIFT);
440 jsr166 1.76 // assert (int)s == EMPTY;
441     }
442 dl 1.65 break;
443 dl 1.59 }
444     }
445     }
446 dl 1.51 }
447 dl 1.65 return phase;
448 dl 1.51 }
449    
450     /**
451 dl 1.65 * Resolves lagged phase propagation from root if necessary.
452 dl 1.70 * Reconciliation normally occurs when root has advanced but
453     * subphasers have not yet done so, in which case they must finish
454     * their own advance by setting unarrived to parties (or if
455     * parties is zero, resetting to unregistered EMPTY state).
456     * However, this method may also be called when "floating"
457     * subphasers with possibly some unarrived parties are merely
458     * catching up to current phase, in which case counts are
459     * unaffected.
460     *
461     * @return reconciled state
462 dl 1.4 */
463     private long reconcileState() {
464 dl 1.70 final Phaser root = this.root;
465 dl 1.57 long s = state;
466 dl 1.70 if (root != this) {
467     int phase, u, p;
468     // CAS root phase with current parties; possibly trip unarrived
469     while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
470     (int)(s >>> PHASE_SHIFT) &&
471     !UNSAFE.compareAndSwapLong
472     (this, stateOffset, s,
473 jsr166 1.73 s = (((long)phase << PHASE_SHIFT) |
474     (s & PARTIES_MASK) |
475 dl 1.70 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
476 dl 1.75 ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
477     p : u))))
478 dl 1.70 s = state;
479 dl 1.4 }
480 dl 1.57 return s;
481 dl 1.1 }
482    
483     /**
484 dl 1.63 * Creates a new phaser with no initially registered parties, no
485     * parent, and initial phase number 0. Any thread using this
486     * phaser will need to first register for it.
487 dl 1.1 */
488     public Phaser() {
489 dl 1.50 this(null, 0);
490 dl 1.1 }
491    
492     /**
493 dl 1.63 * Creates a new phaser with the given number of registered
494     * unarrived parties, no parent, and initial phase number 0.
495 jsr166 1.14 *
496 dl 1.63 * @param parties the number of parties required to advance to the
497     * next phase
498 dl 1.1 * @throws IllegalArgumentException if parties less than zero
499 jsr166 1.14 * or greater than the maximum number of parties supported
500 dl 1.1 */
501     public Phaser(int parties) {
502 dl 1.4 this(null, parties);
503     }
504    
505     /**
506 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
507 jsr166 1.14 *
508 dl 1.63 * @param parent the parent phaser
509 dl 1.4 */
510     public Phaser(Phaser parent) {
511 dl 1.50 this(parent, 0);
512 dl 1.4 }
513    
514     /**
515 dl 1.63 * Creates a new phaser with the given parent and number of
516 dl 1.68 * registered unarrived parties. When the given parent is non-null
517     * and the given number of parties is greater than zero, this
518     * child phaser is registered with its parent.
519 jsr166 1.14 *
520 dl 1.63 * @param parent the parent phaser
521     * @param parties the number of parties required to advance to the
522     * next phase
523 dl 1.4 * @throws IllegalArgumentException if parties less than zero
524 jsr166 1.14 * or greater than the maximum number of parties supported
525 dl 1.4 */
526     public Phaser(Phaser parent, int parties) {
527 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
528 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
529 dl 1.65 int phase = 0;
530 dl 1.4 this.parent = parent;
531     if (parent != null) {
532 dl 1.68 final Phaser root = parent.root;
533     this.root = root;
534     this.evenQ = root.evenQ;
535     this.oddQ = root.oddQ;
536 dl 1.60 if (parties != 0)
537 dl 1.65 phase = parent.doRegister(1);
538 dl 1.4 }
539 dl 1.50 else {
540 dl 1.4 this.root = this;
541 dl 1.50 this.evenQ = new AtomicReference<QNode>();
542     this.oddQ = new AtomicReference<QNode>();
543     }
544 jsr166 1.73 this.state = (parties == 0) ? (long)EMPTY :
545     ((long)phase << PHASE_SHIFT) |
546     ((long)parties << PARTIES_SHIFT) |
547     ((long)parties);
548 dl 1.1 }
549    
550     /**
551 dl 1.63 * Adds a new unarrived party to this phaser. If an ongoing
552 dl 1.59 * invocation of {@link #onAdvance} is in progress, this method
553 dl 1.63 * may await its completion before returning. If this phaser has
554     * a parent, and this phaser previously had no registered parties,
555 dl 1.68 * this child phaser is also registered with its parent. If
556     * this phaser is terminated, the attempt to register has
557     * no effect, and a negative value is returned.
558     *
559     * @return the arrival phase number to which this registration
560     * applied. If this value is negative, then this phaser has
561 jsr166 1.69 * terminated, in which case registration has no effect.
562 dl 1.1 * @throws IllegalStateException if attempting to register more
563 jsr166 1.14 * than the maximum supported number of parties
564 dl 1.1 */
565 dl 1.4 public int register() {
566     return doRegister(1);
567     }
568    
569     /**
570 dl 1.63 * Adds the given number of new unarrived parties to this phaser.
571 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
572 dl 1.60 * this method may await its completion before returning. If this
573 dl 1.68 * phaser has a parent, and the given number of parties is greater
574     * than zero, and this phaser previously had no registered
575     * parties, this child phaser is also registered with its parent.
576     * If this phaser is terminated, the attempt to register has no
577     * effect, and a negative value is returned.
578 jsr166 1.14 *
579 dl 1.63 * @param parties the number of additional parties required to
580     * advance to the next phase
581 dl 1.68 * @return the arrival phase number to which this registration
582     * applied. If this value is negative, then this phaser has
583 jsr166 1.69 * terminated, in which case registration has no effect.
584 dl 1.4 * @throws IllegalStateException if attempting to register more
585 jsr166 1.14 * than the maximum supported number of parties
586 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
587 dl 1.4 */
588     public int bulkRegister(int parties) {
589     if (parties < 0)
590     throw new IllegalArgumentException();
591 dl 1.60 if (parties == 0)
592 dl 1.4 return getPhase();
593     return doRegister(parties);
594     }
595    
596     /**
597 dl 1.63 * Arrives at this phaser, without waiting for others to arrive.
598 dl 1.60 *
599     * <p>It is a usage error for an unregistered party to invoke this
600     * method. However, this error may result in an {@code
601     * IllegalStateException} only upon some subsequent operation on
602 dl 1.63 * this phaser, if ever.
603 dl 1.1 *
604 dl 1.35 * @return the arrival phase number, or a negative value if terminated
605 dl 1.4 * @throws IllegalStateException if not terminated and the number
606 jsr166 1.14 * of unarrived parties would become negative
607 dl 1.1 */
608 dl 1.4 public int arrive() {
609 jsr166 1.76 return doArrive(ONE_ARRIVAL);
610 dl 1.1 }
611    
612     /**
613 dl 1.63 * Arrives at this phaser and deregisters from it without waiting
614 dl 1.60 * for others to arrive. Deregistration reduces the number of
615 dl 1.63 * parties required to advance in future phases. If this phaser
616     * has a parent, and deregistration causes this phaser to have
617     * zero parties, this phaser is also deregistered from its parent.
618 dl 1.60 *
619     * <p>It is a usage error for an unregistered party to invoke this
620     * method. However, this error may result in an {@code
621     * IllegalStateException} only upon some subsequent operation on
622 dl 1.63 * this phaser, if ever.
623 dl 1.1 *
624 dl 1.35 * @return the arrival phase number, or a negative value if terminated
625 dl 1.4 * @throws IllegalStateException if not terminated and the number
626 jsr166 1.14 * of registered or unarrived parties would become negative
627 dl 1.1 */
628 dl 1.4 public int arriveAndDeregister() {
629 jsr166 1.76 return doArrive(ONE_DEREGISTER);
630 dl 1.1 }
631    
632     /**
633 dl 1.63 * Arrives at this phaser and awaits others. Equivalent in effect
634 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
635     * interruption or timeout, you can arrange this with an analogous
636 dl 1.48 * construction using one of the other forms of the {@code
637     * awaitAdvance} method. If instead you need to deregister upon
638 dl 1.60 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
639     *
640     * <p>It is a usage error for an unregistered party to invoke this
641     * method. However, this error may result in an {@code
642     * IllegalStateException} only upon some subsequent operation on
643 dl 1.63 * this phaser, if ever.
644 jsr166 1.14 *
645 dl 1.68 * @return the arrival phase number, or the (negative)
646     * {@linkplain #getPhase() current phase} if terminated
647 dl 1.4 * @throws IllegalStateException if not terminated and the number
648 jsr166 1.14 * of unarrived parties would become negative
649 dl 1.1 */
650     public int arriveAndAwaitAdvance() {
651 dl 1.68 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
652     final Phaser root = this.root;
653     for (;;) {
654     long s = (root == this) ? state : reconcileState();
655     int phase = (int)(s >>> PHASE_SHIFT);
656     if (phase < 0)
657     return phase;
658 jsr166 1.76 int counts = (int)s;
659     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
660     if (unarrived <= 0)
661     throw new IllegalStateException(badArrive(s));
662     if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
663     s -= ONE_ARRIVAL)) {
664     if (unarrived > 1)
665 dl 1.68 return root.internalAwaitAdvance(phase, null);
666     if (root != this)
667     return parent.arriveAndAwaitAdvance();
668     long n = s & PARTIES_MASK; // base of next state
669 jsr166 1.73 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
670 dl 1.68 if (onAdvance(phase, nextUnarrived))
671     n |= TERMINATION_BIT;
672     else if (nextUnarrived == 0)
673     n |= EMPTY;
674     else
675     n |= nextUnarrived;
676     int nextPhase = (phase + 1) & MAX_PHASE;
677     n |= (long)nextPhase << PHASE_SHIFT;
678     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
679     return (int)(state >>> PHASE_SHIFT); // terminated
680     releaseWaiters(phase);
681     return nextPhase;
682     }
683     }
684 dl 1.1 }
685    
686     /**
687 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
688     * value, returning immediately if the current phase is not equal
689     * to the given phase value or this phaser is terminated.
690 jsr166 1.14 *
691 dl 1.35 * @param phase an arrival phase number, or negative value if
692     * terminated; this argument is normally the value returned by a
693 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
694 dl 1.68 * @return the next arrival phase number, or the argument if it is
695     * negative, or the (negative) {@linkplain #getPhase() current phase}
696     * if terminated
697 dl 1.1 */
698     public int awaitAdvance(int phase) {
699 dl 1.68 final Phaser root = this.root;
700 jsr166 1.69 long s = (root == this) ? state : reconcileState();
701     int p = (int)(s >>> PHASE_SHIFT);
702 dl 1.1 if (phase < 0)
703     return phase;
704 dl 1.68 if (p == phase)
705     return root.internalAwaitAdvance(phase, null);
706 dl 1.60 return p;
707 dl 1.1 }
708    
709     /**
710 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
711 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
712 dl 1.63 * while waiting, or returning immediately if the current phase is
713     * not equal to the given phase value or this phaser is
714     * terminated.
715 jsr166 1.14 *
716 dl 1.35 * @param phase an arrival phase number, or negative value if
717     * terminated; this argument is normally the value returned by a
718 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
719 dl 1.68 * @return the next arrival phase number, or the argument if it is
720     * negative, or the (negative) {@linkplain #getPhase() current phase}
721     * if terminated
722 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
723     */
724 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
725 dl 1.10 throws InterruptedException {
726 dl 1.68 final Phaser root = this.root;
727 jsr166 1.69 long s = (root == this) ? state : reconcileState();
728     int p = (int)(s >>> PHASE_SHIFT);
729 dl 1.1 if (phase < 0)
730     return phase;
731 dl 1.65 if (p == phase) {
732 dl 1.68 QNode node = new QNode(this, phase, true, false, 0L);
733     p = root.internalAwaitAdvance(phase, node);
734     if (node.wasInterrupted)
735     throw new InterruptedException();
736 dl 1.55 }
737     return p;
738 dl 1.1 }
739    
740     /**
741 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
742 dl 1.38 * value or the given timeout to elapse, throwing {@code
743     * InterruptedException} if interrupted while waiting, or
744 dl 1.63 * returning immediately if the current phase is not equal to the
745     * given phase value or this phaser is terminated.
746 jsr166 1.14 *
747 dl 1.35 * @param phase an arrival phase number, or negative value if
748     * terminated; this argument is normally the value returned by a
749 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
750 dl 1.31 * @param timeout how long to wait before giving up, in units of
751     * {@code unit}
752     * @param unit a {@code TimeUnit} determining how to interpret the
753     * {@code timeout} parameter
754 dl 1.68 * @return the next arrival phase number, or the argument if it is
755     * negative, or the (negative) {@linkplain #getPhase() current phase}
756     * if terminated
757 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
758     * @throws TimeoutException if timed out while waiting
759     */
760 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
761     long timeout, TimeUnit unit)
762 dl 1.1 throws InterruptedException, TimeoutException {
763 dl 1.60 long nanos = unit.toNanos(timeout);
764 dl 1.68 final Phaser root = this.root;
765 jsr166 1.69 long s = (root == this) ? state : reconcileState();
766     int p = (int)(s >>> PHASE_SHIFT);
767 dl 1.1 if (phase < 0)
768     return phase;
769 dl 1.65 if (p == phase) {
770 dl 1.68 QNode node = new QNode(this, phase, true, true, nanos);
771     p = root.internalAwaitAdvance(phase, node);
772     if (node.wasInterrupted)
773     throw new InterruptedException();
774     else if (p == phase)
775     throw new TimeoutException();
776 dl 1.55 }
777     return p;
778 dl 1.1 }
779    
780     /**
781 dl 1.63 * Forces this phaser to enter termination state. Counts of
782 dl 1.65 * registered parties are unaffected. If this phaser is a member
783     * of a tiered set of phasers, then all of the phasers in the set
784     * are terminated. If this phaser is already terminated, this
785     * method has no effect. This method may be useful for
786     * coordinating recovery after one or more tasks encounter
787     * unexpected exceptions.
788 dl 1.1 */
789     public void forceTermination() {
790 dl 1.55 // Only need to change root state
791     final Phaser root = this.root;
792 dl 1.49 long s;
793 dl 1.55 while ((s = root.state) >= 0) {
794 dl 1.70 if (UNSAFE.compareAndSwapLong(root, stateOffset,
795     s, s | TERMINATION_BIT)) {
796 dl 1.68 // signal all threads
797 jsr166 1.76 releaseWaiters(0); // Waiters on evenQ
798     releaseWaiters(1); // Waiters on oddQ
799 dl 1.55 return;
800     }
801     }
802 dl 1.1 }
803    
804     /**
805 dl 1.4 * Returns the current phase number. The maximum phase number is
806 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
807 dl 1.63 * zero. Upon termination, the phase number is negative,
808     * in which case the prevailing phase prior to termination
809     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
810 jsr166 1.14 *
811 dl 1.4 * @return the phase number, or a negative value if terminated
812 dl 1.1 */
813 dl 1.4 public final int getPhase() {
814 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
815 dl 1.1 }
816    
817     /**
818 dl 1.63 * Returns the number of parties registered at this phaser.
819 jsr166 1.14 *
820 dl 1.1 * @return the number of parties
821     */
822     public int getRegisteredParties() {
823 dl 1.57 return partiesOf(state);
824 dl 1.1 }
825    
826     /**
827 dl 1.36 * Returns the number of registered parties that have arrived at
828 dl 1.70 * the current phase of this phaser. If this phaser has terminated,
829     * the returned value is meaningless and arbitrary.
830 jsr166 1.14 *
831 dl 1.1 * @return the number of arrived parties
832     */
833     public int getArrivedParties() {
834 dl 1.65 return arrivedOf(reconcileState());
835 dl 1.1 }
836    
837     /**
838     * Returns the number of registered parties that have not yet
839 dl 1.70 * arrived at the current phase of this phaser. If this phaser has
840     * terminated, the returned value is meaningless and arbitrary.
841 jsr166 1.14 *
842 dl 1.1 * @return the number of unarrived parties
843     */
844     public int getUnarrivedParties() {
845 dl 1.65 return unarrivedOf(reconcileState());
846 dl 1.4 }
847    
848     /**
849 dl 1.63 * Returns the parent of this phaser, or {@code null} if none.
850 jsr166 1.14 *
851 dl 1.63 * @return the parent of this phaser, or {@code null} if none
852 dl 1.4 */
853     public Phaser getParent() {
854     return parent;
855     }
856    
857     /**
858 dl 1.63 * Returns the root ancestor of this phaser, which is the same as
859     * this phaser if it has no parent.
860 jsr166 1.14 *
861 dl 1.63 * @return the root ancestor of this phaser
862 dl 1.4 */
863     public Phaser getRoot() {
864     return root;
865 dl 1.1 }
866    
867     /**
868 dl 1.63 * Returns {@code true} if this phaser has been terminated.
869 jsr166 1.14 *
870 dl 1.63 * @return {@code true} if this phaser has been terminated
871 dl 1.1 */
872     public boolean isTerminated() {
873 dl 1.57 return root.state < 0L;
874 dl 1.1 }
875    
876     /**
877 dl 1.43 * Overridable method to perform an action upon impending phase
878     * advance, and to control termination. This method is invoked
879 dl 1.63 * upon arrival of the party advancing this phaser (when all other
880 dl 1.43 * waiting parties are dormant). If this method returns {@code
881 dl 1.65 * true}, this phaser will be set to a final termination state
882     * upon advance, and subsequent calls to {@link #isTerminated}
883     * will return true. Any (unchecked) Exception or Error thrown by
884     * an invocation of this method is propagated to the party
885     * attempting to advance this phaser, in which case no advance
886     * occurs.
887 dl 1.42 *
888 dl 1.63 * <p>The arguments to this method provide the state of the phaser
889 dl 1.51 * prevailing for the current transition. The effects of invoking
890 dl 1.63 * arrival, registration, and waiting methods on this phaser from
891 dl 1.50 * within {@code onAdvance} are unspecified and should not be
892 dl 1.51 * relied on.
893     *
894 dl 1.63 * <p>If this phaser is a member of a tiered set of phasers, then
895     * {@code onAdvance} is invoked only for its root phaser on each
896 dl 1.51 * advance.
897 jsr166 1.3 *
898 dl 1.59 * <p>To support the most common use cases, the default
899     * implementation of this method returns {@code true} when the
900     * number of registered parties has become zero as the result of a
901     * party invoking {@code arriveAndDeregister}. You can disable
902     * this behavior, thus enabling continuation upon future
903     * registrations, by overriding this method to always return
904     * {@code false}:
905     *
906     * <pre> {@code
907     * Phaser phaser = new Phaser() {
908     * protected boolean onAdvance(int phase, int parties) { return false; }
909     * }}</pre>
910 dl 1.1 *
911 dl 1.63 * @param phase the current phase number on entry to this method,
912     * before this phaser is advanced
913 jsr166 1.9 * @param registeredParties the current number of registered parties
914 dl 1.63 * @return {@code true} if this phaser should terminate
915 dl 1.1 */
916     protected boolean onAdvance(int phase, int registeredParties) {
917 dl 1.62 return registeredParties == 0;
918 dl 1.1 }
919    
920     /**
921 dl 1.63 * Returns a string identifying this phaser, as well as its
922 dl 1.1 * state. The state, in brackets, includes the String {@code
923 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
924 dl 1.1 * followed by the number of registered parties, and {@code
925 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
926 dl 1.1 *
927 dl 1.63 * @return a string identifying this phaser, as well as its state
928 dl 1.1 */
929     public String toString() {
930 dl 1.54 return stateToString(reconcileState());
931     }
932    
933     /**
934     * Implementation of toString and string-based error messages
935     */
936     private String stateToString(long s) {
937 jsr166 1.9 return super.toString() +
938     "[phase = " + phaseOf(s) +
939     " parties = " + partiesOf(s) +
940     " arrived = " + arrivedOf(s) + "]";
941 dl 1.1 }
942    
943 dl 1.54 // Waiting mechanics
944    
945 dl 1.4 /**
946 dl 1.57 * Removes and signals threads from queue for phase.
947 dl 1.4 */
948     private void releaseWaiters(int phase) {
949 dl 1.63 QNode q; // first element of queue
950     Thread t; // its thread
951 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
952 dl 1.51 while ((q = head.get()) != null &&
953 dl 1.65 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
954 dl 1.63 if (head.compareAndSet(q, q.next) &&
955     (t = q.thread) != null) {
956     q.thread = null;
957     LockSupport.unpark(t);
958     }
959 dl 1.4 }
960     }
961    
962 dl 1.68 /**
963     * Variant of releaseWaiters that additionally tries to remove any
964     * nodes no longer waiting for advance due to timeout or
965     * interrupt. Currently, nodes are removed only if they are at
966     * head of queue, which suffices to reduce memory footprint in
967     * most usages.
968     *
969     * @return current phase on exit
970     */
971     private int abortWait(int phase) {
972     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
973     for (;;) {
974     Thread t;
975     QNode q = head.get();
976     int p = (int)(root.state >>> PHASE_SHIFT);
977     if (q == null || ((t = q.thread) != null && q.phase == p))
978     return p;
979     if (head.compareAndSet(q, q.next) && t != null) {
980     q.thread = null;
981     LockSupport.unpark(t);
982     }
983     }
984     }
985    
986 dl 1.51 /** The number of CPUs, for spin control */
987     private static final int NCPU = Runtime.getRuntime().availableProcessors();
988    
989 dl 1.10 /**
990 dl 1.51 * The number of times to spin before blocking while waiting for
991     * advance, per arrival while waiting. On multiprocessors, fully
992     * blocking and waking up a large number of threads all at once is
993     * usually a very slow process, so we use rechargeable spins to
994     * avoid it when threads regularly arrive: When a thread in
995     * internalAwaitAdvance notices another arrival before blocking,
996     * and there appear to be enough CPUs available, it spins
997 dl 1.62 * SPINS_PER_ARRIVAL more times before blocking. The value trades
998     * off good-citizenship vs big unnecessary slowdowns.
999 dl 1.50 */
1000 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
1001 dl 1.50
1002     /**
1003 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
1004 jsr166 1.76 * Call only on root phaser.
1005 jsr166 1.14 *
1006 dl 1.51 * @param phase current phase
1007 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
1008 dl 1.51 * if null, denotes noninterruptible wait
1009 dl 1.10 * @return current phase
1010 dl 1.1 */
1011 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
1012 jsr166 1.76 // assert root == this;
1013 dl 1.63 releaseWaiters(phase-1); // ensure old queue clean
1014     boolean queued = false; // true when node is enqueued
1015     int lastUnarrived = 0; // to increase spins upon change
1016 dl 1.51 int spins = SPINS_PER_ARRIVAL;
1017 dl 1.57 long s;
1018     int p;
1019 dl 1.60 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1020 dl 1.63 if (node == null) { // spinning in noninterruptible mode
1021     int unarrived = (int)s & UNARRIVED_MASK;
1022     if (unarrived != lastUnarrived &&
1023     (lastUnarrived = unarrived) < NCPU)
1024 dl 1.57 spins += SPINS_PER_ARRIVAL;
1025 dl 1.63 boolean interrupted = Thread.interrupted();
1026     if (interrupted || --spins < 0) { // need node to record intr
1027     node = new QNode(this, phase, false, false, 0L);
1028     node.wasInterrupted = interrupted;
1029     }
1030 dl 1.54 }
1031 dl 1.63 else if (node.isReleasable()) // done or aborted
1032     break;
1033     else if (!queued) { // push onto queue
1034 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1035 dl 1.63 QNode q = node.next = head.get();
1036     if ((q == null || q.phase == phase) &&
1037     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1038 dl 1.62 queued = head.compareAndSet(q, node);
1039 dl 1.57 }
1040 dl 1.51 else {
1041     try {
1042     ForkJoinPool.managedBlock(node);
1043     } catch (InterruptedException ie) {
1044     node.wasInterrupted = true;
1045     }
1046     }
1047 dl 1.4 }
1048 dl 1.60
1049     if (node != null) {
1050     if (node.thread != null)
1051 dl 1.63 node.thread = null; // avoid need for unpark()
1052 dl 1.62 if (node.wasInterrupted && !node.interruptible)
1053 dl 1.60 Thread.currentThread().interrupt();
1054 dl 1.65 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1055 dl 1.68 return abortWait(phase); // possibly clean up on abort
1056 dl 1.60 }
1057 dl 1.63 releaseWaiters(phase);
1058 dl 1.57 return p;
1059 dl 1.4 }
1060    
1061     /**
1062 dl 1.51 * Wait nodes for Treiber stack representing wait queue
1063 dl 1.4 */
1064 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
1065     final Phaser phaser;
1066     final int phase;
1067     final boolean interruptible;
1068     final boolean timed;
1069     boolean wasInterrupted;
1070     long nanos;
1071     long lastTime;
1072     volatile Thread thread; // nulled to cancel wait
1073     QNode next;
1074    
1075     QNode(Phaser phaser, int phase, boolean interruptible,
1076     boolean timed, long nanos) {
1077     this.phaser = phaser;
1078     this.phase = phase;
1079     this.interruptible = interruptible;
1080     this.nanos = nanos;
1081     this.timed = timed;
1082 jsr166 1.64 this.lastTime = timed ? System.nanoTime() : 0L;
1083 dl 1.51 thread = Thread.currentThread();
1084     }
1085    
1086     public boolean isReleasable() {
1087 dl 1.63 if (thread == null)
1088     return true;
1089     if (phaser.getPhase() != phase) {
1090     thread = null;
1091     return true;
1092     }
1093     if (Thread.interrupted())
1094     wasInterrupted = true;
1095     if (wasInterrupted && interruptible) {
1096     thread = null;
1097     return true;
1098     }
1099     if (timed) {
1100     if (nanos > 0L) {
1101     long now = System.nanoTime();
1102     nanos -= now - lastTime;
1103     lastTime = now;
1104     }
1105     if (nanos <= 0L) {
1106     thread = null;
1107     return true;
1108 dl 1.51 }
1109 dl 1.50 }
1110 dl 1.63 return false;
1111 dl 1.51 }
1112    
1113     public boolean block() {
1114     if (isReleasable())
1115     return true;
1116     else if (!timed)
1117     LockSupport.park(this);
1118     else if (nanos > 0)
1119     LockSupport.parkNanos(this, nanos);
1120     return isReleasable();
1121 dl 1.1 }
1122 dl 1.4 }
1123    
1124 jsr166 1.22 // Unsafe mechanics
1125    
1126 jsr166 1.73 private static final sun.misc.Unsafe UNSAFE;
1127     private static final long stateOffset;
1128     static {
1129 jsr166 1.22 try {
1130 jsr166 1.73 UNSAFE = getUnsafe();
1131 jsr166 1.74 Class<?> k = Phaser.class;
1132 jsr166 1.73 stateOffset = UNSAFE.objectFieldOffset
1133     (k.getDeclaredField("state"));
1134     } catch (Exception e) {
1135     throw new Error(e);
1136 jsr166 1.22 }
1137     }
1138    
1139     /**
1140     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1141     * Replace with a simple call to Unsafe.getUnsafe when integrating
1142     * into a jdk.
1143     *
1144     * @return a sun.misc.Unsafe
1145     */
1146 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1147 jsr166 1.11 try {
1148 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1149 jsr166 1.11 } catch (SecurityException se) {
1150     try {
1151     return java.security.AccessController.doPrivileged
1152 jsr166 1.22 (new java.security
1153     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1154 jsr166 1.19 public sun.misc.Unsafe run() throws Exception {
1155 jsr166 1.22 java.lang.reflect.Field f = sun.misc
1156     .Unsafe.class.getDeclaredField("theUnsafe");
1157     f.setAccessible(true);
1158     return (sun.misc.Unsafe) f.get(null);
1159 jsr166 1.11 }});
1160     } catch (java.security.PrivilegedActionException e) {
1161 jsr166 1.19 throw new RuntimeException("Could not initialize intrinsics",
1162     e.getCause());
1163 jsr166 1.11 }
1164     }
1165     }
1166 dl 1.1 }