ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.81
Committed: Fri Jul 15 18:49:12 2016 UTC (7 years, 9 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.80: +0 -1 lines
Log Message:
whitespace

File Contents

# User Rev Content
1 dl 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.71 * http://creativecommons.org/publicdomain/zero/1.0/
5 dl 1.1 */
6    
7     package jsr166y;
8 jsr166 1.9
9 dl 1.51 import java.util.concurrent.TimeUnit;
10     import java.util.concurrent.TimeoutException;
11 jsr166 1.20 import java.util.concurrent.atomic.AtomicReference;
12 dl 1.1 import java.util.concurrent.locks.LockSupport;
13    
14     /**
15 jsr166 1.37 * A reusable synchronization barrier, similar in functionality to
16 jsr166 1.9 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17     * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18     * but supporting more flexible usage.
19 dl 1.1 *
20 jsr166 1.78 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 dl 1.63 * number of parties <em>registered</em> to synchronize on a phaser
22 dl 1.38 * may vary over time. Tasks may be registered at any time (using
23     * methods {@link #register}, {@link #bulkRegister}, or forms of
24     * constructors establishing initial numbers of parties), and
25     * optionally deregistered upon any arrival (using {@link
26 dl 1.35 * #arriveAndDeregister}). As is the case with most basic
27     * synchronization constructs, registration and deregistration affect
28     * only internal counts; they do not establish any further internal
29 jsr166 1.37 * bookkeeping, so tasks cannot query whether they are registered.
30     * (However, you can introduce such bookkeeping by subclassing this
31     * class.)
32 dl 1.1 *
33 jsr166 1.78 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 dl 1.38 * Phaser} may be repeatedly awaited. Method {@link
35     * #arriveAndAwaitAdvance} has effect analogous to {@link
36     * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 dl 1.63 * generation of a phaser has an associated phase number. The phase
38     * number starts at zero, and advances when all parties arrive at the
39     * phaser, wrapping around to zero after reaching {@code
40 dl 1.38 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 dl 1.63 * control of actions upon arrival at a phaser and upon awaiting
42 dl 1.38 * others, via two kinds of methods that may be invoked by any
43     * registered party:
44 dl 1.1 *
45     * <ul>
46     *
47 jsr166 1.80 * <li><b>Arrival.</b> Methods {@link #arrive} and
48 dl 1.63 * {@link #arriveAndDeregister} record arrival. These methods
49     * do not block, but return an associated <em>arrival phase
50     * number</em>; that is, the phase number of the phaser to which
51     * the arrival applied. When the final party for a given phase
52     * arrives, an optional action is performed and the phase
53     * advances. These actions are performed by the party
54     * triggering a phase advance, and are arranged by overriding
55     * method {@link #onAdvance(int, int)}, which also controls
56     * termination. Overriding this method is similar to, but more
57     * flexible than, providing a barrier action to a {@code
58     * CyclicBarrier}.
59 dl 1.38 *
60 jsr166 1.80 * <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 dl 1.38 * argument indicating an arrival phase number, and returns when
62 dl 1.63 * the phaser advances to (or is already at) a different phase.
63 dl 1.38 * Unlike similar constructions using {@code CyclicBarrier},
64     * method {@code awaitAdvance} continues to wait even if the
65 dl 1.39 * waiting thread is interrupted. Interruptible and timeout
66     * versions are also available, but exceptions encountered while
67 dl 1.38 * tasks wait interruptibly or with timeout do not change the
68 dl 1.63 * state of the phaser. If necessary, you can perform any
69 dl 1.38 * associated recovery within handlers of those exceptions,
70     * often after invoking {@code forceTermination}. Phasers may
71     * also be used by tasks executing in a {@link ForkJoinPool},
72     * which will ensure sufficient parallelism to execute tasks
73     * when others are blocked waiting for a phase to advance.
74     *
75 dl 1.1 * </ul>
76     *
77 jsr166 1.78 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 dl 1.68 * state, that may be checked using method {@link #isTerminated}. Upon
79     * termination, all synchronization methods immediately return without
80 jsr166 1.69 * waiting for advance, as indicated by a negative return value.
81     * Similarly, attempts to register upon termination have no effect.
82     * Termination is triggered when an invocation of {@code onAdvance}
83     * returns {@code true}. The default implementation returns {@code
84     * true} if a deregistration has caused the number of registered
85     * parties to become zero. As illustrated below, when phasers control
86     * actions with a fixed number of iterations, it is often convenient
87     * to override this method to cause termination when the current phase
88     * number reaches a threshold. Method {@link #forceTermination} is
89     * also available to abruptly release waiting threads and allow them
90     * to terminate.
91 dl 1.4 *
92 jsr166 1.78 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 dl 1.58 * constructed in tree structures) to reduce contention. Phasers with
94     * large numbers of parties that would otherwise experience heavy
95 dl 1.38 * synchronization contention costs may instead be set up so that
96     * groups of sub-phasers share a common parent. This may greatly
97     * increase throughput even though it incurs greater per-operation
98     * overhead.
99     *
100 dl 1.68 * <p>In a tree of tiered phasers, registration and deregistration of
101     * child phasers with their parent are managed automatically.
102     * Whenever the number of registered parties of a child phaser becomes
103     * non-zero (as established in the {@link #Phaser(Phaser,int)}
104     * constructor, {@link #register}, or {@link #bulkRegister}), the
105     * child phaser is registered with its parent. Whenever the number of
106     * registered parties becomes zero as the result of an invocation of
107     * {@link #arriveAndDeregister}, the child phaser is deregistered
108     * from its parent.
109     *
110 dl 1.38 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 dl 1.63 * only by registered parties, the current state of a phaser may be
112 dl 1.38 * monitored by any caller. At any given moment there are {@link
113 dl 1.40 * #getRegisteredParties} parties in total, of which {@link
114     * #getArrivedParties} have arrived at the current phase ({@link
115     * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 dl 1.42 * parties arrive, the phase advances. The values returned by these
117     * methods may reflect transient states and so are not in general
118     * useful for synchronization control. Method {@link #toString}
119     * returns snapshots of these state queries in a form convenient for
120     * informal monitoring.
121 dl 1.1 *
122 dl 1.4 * <p><b>Sample usages:</b>
123     *
124 jsr166 1.24 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 dl 1.48 * to control a one-shot action serving a variable number of parties.
126     * The typical idiom is for the method setting this up to first
127     * register, then start the actions, then deregister, as in:
128 dl 1.1 *
129 jsr166 1.13 * <pre> {@code
130 jsr166 1.33 * void runTasks(List<Runnable> tasks) {
131 jsr166 1.13 * final Phaser phaser = new Phaser(1); // "1" to register self
132 dl 1.27 * // create and start threads
133 dl 1.72 * for (final Runnable task : tasks) {
134 jsr166 1.13 * phaser.register();
135     * new Thread() {
136     * public void run() {
137     * phaser.arriveAndAwaitAdvance(); // await all creation
138 jsr166 1.33 * task.run();
139 jsr166 1.13 * }
140     * }.start();
141 dl 1.4 * }
142 dl 1.6 *
143 dl 1.27 * // allow threads to start and deregister self
144     * phaser.arriveAndDeregister();
145 jsr166 1.13 * }}</pre>
146 dl 1.1 *
147 dl 1.4 * <p>One way to cause a set of threads to repeatedly perform actions
148 jsr166 1.7 * for a given number of iterations is to override {@code onAdvance}:
149 dl 1.1 *
150 jsr166 1.13 * <pre> {@code
151 jsr166 1.33 * void startTasks(List<Runnable> tasks, final int iterations) {
152 jsr166 1.13 * final Phaser phaser = new Phaser() {
153 dl 1.38 * protected boolean onAdvance(int phase, int registeredParties) {
154 jsr166 1.13 * return phase >= iterations || registeredParties == 0;
155     * }
156     * };
157     * phaser.register();
158 jsr166 1.45 * for (final Runnable task : tasks) {
159 jsr166 1.13 * phaser.register();
160     * new Thread() {
161     * public void run() {
162     * do {
163 jsr166 1.33 * task.run();
164 jsr166 1.13 * phaser.arriveAndAwaitAdvance();
165 jsr166 1.45 * } while (!phaser.isTerminated());
166 dl 1.4 * }
167 jsr166 1.13 * }.start();
168 dl 1.1 * }
169 dl 1.4 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 jsr166 1.13 * }}</pre>
171 dl 1.1 *
172 dl 1.38 * If the main task must later await termination, it
173     * may re-register and then execute a similar loop:
174 jsr166 1.45 * <pre> {@code
175 dl 1.38 * // ...
176     * phaser.register();
177     * while (!phaser.isTerminated())
178 jsr166 1.45 * phaser.arriveAndAwaitAdvance();}</pre>
179 dl 1.38 *
180 jsr166 1.45 * <p>Related constructions may be used to await particular phase numbers
181 dl 1.38 * in contexts where you are sure that the phase will never wrap around
182     * {@code Integer.MAX_VALUE}. For example:
183     *
184 jsr166 1.45 * <pre> {@code
185     * void awaitPhase(Phaser phaser, int phase) {
186     * int p = phaser.register(); // assumes caller not already registered
187     * while (p < phase) {
188     * if (phaser.isTerminated())
189     * // ... deal with unexpected termination
190     * else
191     * p = phaser.arriveAndAwaitAdvance();
192 dl 1.38 * }
193 jsr166 1.45 * phaser.arriveAndDeregister();
194     * }}</pre>
195 dl 1.38 *
196 dl 1.65 * <p>To create a set of {@code n} tasks using a tree of phasers, you
197     * could use code of the following form, assuming a Task class with a
198     * constructor accepting a {@code Phaser} that it registers with upon
199     * construction. After invocation of {@code build(new Task[n], 0, n,
200     * new Phaser())}, these tasks could then be started, for example by
201     * submitting to a pool:
202 jsr166 1.45 *
203 jsr166 1.13 * <pre> {@code
204 dl 1.65 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
205 dl 1.44 * if (hi - lo > TASKS_PER_PHASER) {
206     * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
207     * int j = Math.min(i + TASKS_PER_PHASER, hi);
208 dl 1.65 * build(tasks, i, j, new Phaser(ph));
209 jsr166 1.13 * }
210     * } else {
211     * for (int i = lo; i < hi; ++i)
212 dl 1.65 * tasks[i] = new Task(ph);
213 dl 1.44 * // assumes new Task(ph) performs ph.register()
214 jsr166 1.13 * }
215 dl 1.65 * }}</pre>
216 dl 1.4 *
217 jsr166 1.7 * The best value of {@code TASKS_PER_PHASER} depends mainly on
218 dl 1.63 * expected synchronization rates. A value as low as four may
219     * be appropriate for extremely small per-phase task bodies (thus
220 dl 1.4 * high rates), or up to hundreds for extremely large ones.
221     *
222 dl 1.1 * <p><b>Implementation notes</b>: This implementation restricts the
223 dl 1.4 * maximum number of parties to 65535. Attempts to register additional
224 jsr166 1.32 * parties result in {@code IllegalStateException}. However, you can and
225 dl 1.63 * should create tiered phasers to accommodate arbitrarily large sets
226 dl 1.4 * of participants.
227 jsr166 1.16 *
228     * @since 1.7
229     * @author Doug Lea
230 dl 1.1 */
231     public class Phaser {
232     /*
233     * This class implements an extension of X10 "clocks". Thanks to
234 dl 1.4 * Vijay Saraswat for the idea, and to Vivek Sarkar for
235     * enhancements to extend functionality.
236 dl 1.1 */
237    
238     /**
239 jsr166 1.73 * Primary state representation, holding four bit-fields:
240 jsr166 1.3 *
241 jsr166 1.73 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
242     * parties -- the number of parties to wait (bits 16-31)
243     * phase -- the generation of the barrier (bits 32-62)
244     * terminated -- set if barrier is terminated (bit 63 / sign)
245 dl 1.1 *
246 dl 1.65 * Except that a phaser with no registered parties is
247 jsr166 1.73 * distinguished by the otherwise illegal state of having zero
248 dl 1.65 * parties and one unarrived parties (encoded as EMPTY below).
249     *
250     * To efficiently maintain atomicity, these values are packed into
251     * a single (atomic) long. Good performance relies on keeping
252     * state decoding and encoding simple, and keeping race windows
253     * short.
254     *
255     * All state updates are performed via CAS except initial
256     * registration of a sub-phaser (i.e., one with a non-null
257     * parent). In this (relatively rare) case, we use built-in
258     * synchronization to lock while first registering with its
259     * parent.
260     *
261     * The phase of a subphaser is allowed to lag that of its
262 dl 1.70 * ancestors until it is actually accessed -- see method
263     * reconcileState.
264 dl 1.1 */
265 dl 1.4 private volatile long state;
266 dl 1.1
267 dl 1.59 private static final int MAX_PARTIES = 0xffff;
268 jsr166 1.73 private static final int MAX_PHASE = Integer.MAX_VALUE;
269 dl 1.59 private static final int PARTIES_SHIFT = 16;
270     private static final int PHASE_SHIFT = 32;
271     private static final int UNARRIVED_MASK = 0xffff; // to mask ints
272     private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
273 jsr166 1.77 private static final long COUNTS_MASK = 0xffffffffL;
274 dl 1.59 private static final long TERMINATION_BIT = 1L << 63;
275 dl 1.51
276 dl 1.65 // some special values
277     private static final int ONE_ARRIVAL = 1;
278     private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
279 jsr166 1.76 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
280 dl 1.65 private static final int EMPTY = 1;
281    
282 dl 1.51 // The following unpacking methods are usually manually inlined
283 dl 1.1
284     private static int unarrivedOf(long s) {
285 dl 1.65 int counts = (int)s;
286 jsr166 1.76 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
287 dl 1.1 }
288    
289     private static int partiesOf(long s) {
290 dl 1.68 return (int)s >>> PARTIES_SHIFT;
291 dl 1.1 }
292    
293     private static int phaseOf(long s) {
294 jsr166 1.73 return (int)(s >>> PHASE_SHIFT);
295 dl 1.1 }
296    
297     private static int arrivedOf(long s) {
298 dl 1.65 int counts = (int)s;
299 jsr166 1.66 return (counts == EMPTY) ? 0 :
300 dl 1.65 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 dl 1.1 }
302    
303 dl 1.4 /**
304     * The parent of this phaser, or null if none
305     */
306     private final Phaser parent;
307    
308     /**
309 dl 1.65 * The root of phaser tree. Equals this if not in a tree.
310 dl 1.4 */
311     private final Phaser root;
312    
313     /**
314 dl 1.10 * Heads of Treiber stacks for waiting threads. To eliminate
315 dl 1.49 * contention when releasing some threads while adding others, we
316 dl 1.4 * use two of them, alternating across even and odd phases.
317 dl 1.49 * Subphasers share queues with root to speed up releases.
318 dl 1.4 */
319 dl 1.50 private final AtomicReference<QNode> evenQ;
320     private final AtomicReference<QNode> oddQ;
321 dl 1.4
322     private AtomicReference<QNode> queueFor(int phase) {
323 dl 1.50 return ((phase & 1) == 0) ? evenQ : oddQ;
324 dl 1.4 }
325    
326     /**
327 dl 1.59 * Returns message string for bounds exceptions on arrival.
328     */
329     private String badArrive(long s) {
330     return "Attempted arrival of unregistered party for " +
331     stateToString(s);
332     }
333    
334     /**
335     * Returns message string for bounds exceptions on registration.
336     */
337     private String badRegister(long s) {
338     return "Attempt to register more than " +
339     MAX_PARTIES + " parties for " + stateToString(s);
340     }
341    
342     /**
343 dl 1.51 * Main implementation for methods arrive and arriveAndDeregister.
344     * Manually tuned to speed up and minimize race windows for the
345     * common case of just decrementing unarrived field.
346     *
347 jsr166 1.76 * @param adjust value to subtract from state;
348     * ONE_ARRIVAL for arrive,
349     * ONE_DEREGISTER for arriveAndDeregister
350 dl 1.4 */
351 jsr166 1.76 private int doArrive(int adjust) {
352 dl 1.68 final Phaser root = this.root;
353     for (;;) {
354     long s = (root == this) ? state : reconcileState();
355     int phase = (int)(s >>> PHASE_SHIFT);
356     if (phase < 0)
357     return phase;
358 jsr166 1.76 int counts = (int)s;
359     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
360     if (unarrived <= 0)
361     throw new IllegalStateException(badArrive(s));
362     if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
363     if (unarrived == 1) {
364     long n = s & PARTIES_MASK; // base of next state
365     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
366 dl 1.75 if (root == this) {
367     if (onAdvance(phase, nextUnarrived))
368     n |= TERMINATION_BIT;
369     else if (nextUnarrived == 0)
370     n |= EMPTY;
371     else
372     n |= nextUnarrived;
373 jsr166 1.76 int nextPhase = (phase + 1) & MAX_PHASE;
374     n |= (long)nextPhase << PHASE_SHIFT;
375 dl 1.75 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
376 jsr166 1.76 releaseWaiters(phase);
377 dl 1.75 }
378     else if (nextUnarrived == 0) { // propagate deregistration
379 jsr166 1.76 phase = parent.doArrive(ONE_DEREGISTER);
380 dl 1.75 UNSAFE.compareAndSwapLong(this, stateOffset,
381     s, s | EMPTY);
382     }
383 dl 1.68 else
384 jsr166 1.76 phase = parent.doArrive(ONE_ARRIVAL);
385 dl 1.51 }
386 dl 1.68 return phase;
387 dl 1.51 }
388     }
389     }
390    
391     /**
392     * Implementation of register, bulkRegister
393     *
394 dl 1.58 * @param registrations number to add to both parties and
395     * unarrived fields. Must be greater than zero.
396 dl 1.51 */
397     private int doRegister(int registrations) {
398 dl 1.57 // adjustment to state
399 jsr166 1.76 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
400 jsr166 1.73 final Phaser parent = this.parent;
401 dl 1.65 int phase;
402 dl 1.54 for (;;) {
403 dl 1.75 long s = (parent == null) ? state : reconcileState();
404 dl 1.65 int counts = (int)s;
405     int parties = counts >>> PARTIES_SHIFT;
406     int unarrived = counts & UNARRIVED_MASK;
407     if (registrations > MAX_PARTIES - parties)
408 dl 1.54 throw new IllegalStateException(badRegister(s));
409 jsr166 1.76 phase = (int)(s >>> PHASE_SHIFT);
410     if (phase < 0)
411 dl 1.65 break;
412 jsr166 1.76 if (counts != EMPTY) { // not 1st registration
413 jsr166 1.73 if (parent == null || reconcileState() == s) {
414 dl 1.65 if (unarrived == 0) // wait out advance
415     root.internalAwaitAdvance(phase, null);
416     else if (UNSAFE.compareAndSwapLong(this, stateOffset,
417 jsr166 1.76 s, s + adjust))
418 dl 1.65 break;
419     }
420     }
421 jsr166 1.73 else if (parent == null) { // 1st root registration
422 jsr166 1.76 long next = ((long)phase << PHASE_SHIFT) | adjust;
423 dl 1.65 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
424     break;
425     }
426     else {
427 jsr166 1.66 synchronized (this) { // 1st sub registration
428 dl 1.65 if (state == s) { // recheck under lock
429 jsr166 1.76 phase = parent.doRegister(1);
430     if (phase < 0)
431     break;
432     // finish registration whenever parent registration
433     // succeeded, even when racing with termination,
434     // since these are part of the same "transaction".
435     while (!UNSAFE.compareAndSwapLong
436     (this, stateOffset, s,
437     ((long)phase << PHASE_SHIFT) | adjust)) {
438     s = state;
439 dl 1.65 phase = (int)(root.state >>> PHASE_SHIFT);
440 jsr166 1.76 // assert (int)s == EMPTY;
441     }
442 dl 1.65 break;
443 dl 1.59 }
444     }
445     }
446 dl 1.51 }
447 dl 1.65 return phase;
448 dl 1.51 }
449    
450     /**
451 dl 1.65 * Resolves lagged phase propagation from root if necessary.
452 dl 1.70 * Reconciliation normally occurs when root has advanced but
453     * subphasers have not yet done so, in which case they must finish
454     * their own advance by setting unarrived to parties (or if
455     * parties is zero, resetting to unregistered EMPTY state).
456     *
457     * @return reconciled state
458 dl 1.4 */
459     private long reconcileState() {
460 dl 1.70 final Phaser root = this.root;
461 dl 1.57 long s = state;
462 dl 1.70 if (root != this) {
463 jsr166 1.77 int phase, p;
464     // CAS to root phase with current parties, tripping unarrived
465 dl 1.70 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
466     (int)(s >>> PHASE_SHIFT) &&
467     !UNSAFE.compareAndSwapLong
468     (this, stateOffset, s,
469 jsr166 1.73 s = (((long)phase << PHASE_SHIFT) |
470 jsr166 1.77 ((phase < 0) ? (s & COUNTS_MASK) :
471     (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
472     ((s & PARTIES_MASK) | p))))))
473 dl 1.70 s = state;
474 dl 1.4 }
475 dl 1.57 return s;
476 dl 1.1 }
477    
478     /**
479 dl 1.63 * Creates a new phaser with no initially registered parties, no
480     * parent, and initial phase number 0. Any thread using this
481     * phaser will need to first register for it.
482 dl 1.1 */
483     public Phaser() {
484 dl 1.50 this(null, 0);
485 dl 1.1 }
486    
487     /**
488 dl 1.63 * Creates a new phaser with the given number of registered
489     * unarrived parties, no parent, and initial phase number 0.
490 jsr166 1.14 *
491 dl 1.63 * @param parties the number of parties required to advance to the
492     * next phase
493 dl 1.1 * @throws IllegalArgumentException if parties less than zero
494 jsr166 1.14 * or greater than the maximum number of parties supported
495 dl 1.1 */
496     public Phaser(int parties) {
497 dl 1.4 this(null, parties);
498     }
499    
500     /**
501 dl 1.58 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
502 jsr166 1.14 *
503 dl 1.63 * @param parent the parent phaser
504 dl 1.4 */
505     public Phaser(Phaser parent) {
506 dl 1.50 this(parent, 0);
507 dl 1.4 }
508    
509     /**
510 dl 1.63 * Creates a new phaser with the given parent and number of
511 dl 1.68 * registered unarrived parties. When the given parent is non-null
512     * and the given number of parties is greater than zero, this
513     * child phaser is registered with its parent.
514 jsr166 1.14 *
515 dl 1.63 * @param parent the parent phaser
516     * @param parties the number of parties required to advance to the
517     * next phase
518 dl 1.4 * @throws IllegalArgumentException if parties less than zero
519 jsr166 1.14 * or greater than the maximum number of parties supported
520 dl 1.4 */
521     public Phaser(Phaser parent, int parties) {
522 dl 1.55 if (parties >>> PARTIES_SHIFT != 0)
523 dl 1.1 throw new IllegalArgumentException("Illegal number of parties");
524 dl 1.65 int phase = 0;
525 dl 1.4 this.parent = parent;
526     if (parent != null) {
527 dl 1.68 final Phaser root = parent.root;
528     this.root = root;
529     this.evenQ = root.evenQ;
530     this.oddQ = root.oddQ;
531 dl 1.60 if (parties != 0)
532 dl 1.65 phase = parent.doRegister(1);
533 dl 1.4 }
534 dl 1.50 else {
535 dl 1.4 this.root = this;
536 dl 1.50 this.evenQ = new AtomicReference<QNode>();
537     this.oddQ = new AtomicReference<QNode>();
538     }
539 jsr166 1.73 this.state = (parties == 0) ? (long)EMPTY :
540     ((long)phase << PHASE_SHIFT) |
541     ((long)parties << PARTIES_SHIFT) |
542     ((long)parties);
543 dl 1.1 }
544    
545     /**
546 dl 1.63 * Adds a new unarrived party to this phaser. If an ongoing
547 dl 1.59 * invocation of {@link #onAdvance} is in progress, this method
548 dl 1.63 * may await its completion before returning. If this phaser has
549     * a parent, and this phaser previously had no registered parties,
550 dl 1.68 * this child phaser is also registered with its parent. If
551     * this phaser is terminated, the attempt to register has
552     * no effect, and a negative value is returned.
553     *
554     * @return the arrival phase number to which this registration
555     * applied. If this value is negative, then this phaser has
556 jsr166 1.69 * terminated, in which case registration has no effect.
557 dl 1.1 * @throws IllegalStateException if attempting to register more
558 jsr166 1.14 * than the maximum supported number of parties
559 dl 1.1 */
560 dl 1.4 public int register() {
561     return doRegister(1);
562     }
563    
564     /**
565 dl 1.63 * Adds the given number of new unarrived parties to this phaser.
566 dl 1.49 * If an ongoing invocation of {@link #onAdvance} is in progress,
567 dl 1.60 * this method may await its completion before returning. If this
568 dl 1.68 * phaser has a parent, and the given number of parties is greater
569     * than zero, and this phaser previously had no registered
570     * parties, this child phaser is also registered with its parent.
571     * If this phaser is terminated, the attempt to register has no
572     * effect, and a negative value is returned.
573 jsr166 1.14 *
574 dl 1.63 * @param parties the number of additional parties required to
575     * advance to the next phase
576 dl 1.68 * @return the arrival phase number to which this registration
577     * applied. If this value is negative, then this phaser has
578 jsr166 1.69 * terminated, in which case registration has no effect.
579 dl 1.4 * @throws IllegalStateException if attempting to register more
580 jsr166 1.14 * than the maximum supported number of parties
581 dl 1.48 * @throws IllegalArgumentException if {@code parties < 0}
582 dl 1.4 */
583     public int bulkRegister(int parties) {
584     if (parties < 0)
585     throw new IllegalArgumentException();
586 dl 1.60 if (parties == 0)
587 dl 1.4 return getPhase();
588     return doRegister(parties);
589     }
590    
591     /**
592 dl 1.63 * Arrives at this phaser, without waiting for others to arrive.
593 dl 1.60 *
594     * <p>It is a usage error for an unregistered party to invoke this
595     * method. However, this error may result in an {@code
596     * IllegalStateException} only upon some subsequent operation on
597 dl 1.63 * this phaser, if ever.
598 dl 1.1 *
599 dl 1.35 * @return the arrival phase number, or a negative value if terminated
600 dl 1.4 * @throws IllegalStateException if not terminated and the number
601 jsr166 1.14 * of unarrived parties would become negative
602 dl 1.1 */
603 dl 1.4 public int arrive() {
604 jsr166 1.76 return doArrive(ONE_ARRIVAL);
605 dl 1.1 }
606    
607     /**
608 dl 1.63 * Arrives at this phaser and deregisters from it without waiting
609 dl 1.60 * for others to arrive. Deregistration reduces the number of
610 dl 1.63 * parties required to advance in future phases. If this phaser
611     * has a parent, and deregistration causes this phaser to have
612     * zero parties, this phaser is also deregistered from its parent.
613 dl 1.60 *
614     * <p>It is a usage error for an unregistered party to invoke this
615     * method. However, this error may result in an {@code
616     * IllegalStateException} only upon some subsequent operation on
617 dl 1.63 * this phaser, if ever.
618 dl 1.1 *
619 dl 1.35 * @return the arrival phase number, or a negative value if terminated
620 dl 1.4 * @throws IllegalStateException if not terminated and the number
621 jsr166 1.14 * of registered or unarrived parties would become negative
622 dl 1.1 */
623 dl 1.4 public int arriveAndDeregister() {
624 jsr166 1.76 return doArrive(ONE_DEREGISTER);
625 dl 1.1 }
626    
627     /**
628 dl 1.63 * Arrives at this phaser and awaits others. Equivalent in effect
629 dl 1.27 * to {@code awaitAdvance(arrive())}. If you need to await with
630     * interruption or timeout, you can arrange this with an analogous
631 dl 1.48 * construction using one of the other forms of the {@code
632     * awaitAdvance} method. If instead you need to deregister upon
633 dl 1.60 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
634     *
635     * <p>It is a usage error for an unregistered party to invoke this
636     * method. However, this error may result in an {@code
637     * IllegalStateException} only upon some subsequent operation on
638 dl 1.63 * this phaser, if ever.
639 jsr166 1.14 *
640 dl 1.68 * @return the arrival phase number, or the (negative)
641     * {@linkplain #getPhase() current phase} if terminated
642 dl 1.4 * @throws IllegalStateException if not terminated and the number
643 jsr166 1.14 * of unarrived parties would become negative
644 dl 1.1 */
645     public int arriveAndAwaitAdvance() {
646 dl 1.68 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
647     final Phaser root = this.root;
648     for (;;) {
649     long s = (root == this) ? state : reconcileState();
650     int phase = (int)(s >>> PHASE_SHIFT);
651     if (phase < 0)
652     return phase;
653 jsr166 1.76 int counts = (int)s;
654     int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
655     if (unarrived <= 0)
656     throw new IllegalStateException(badArrive(s));
657     if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
658     s -= ONE_ARRIVAL)) {
659     if (unarrived > 1)
660 dl 1.68 return root.internalAwaitAdvance(phase, null);
661     if (root != this)
662     return parent.arriveAndAwaitAdvance();
663     long n = s & PARTIES_MASK; // base of next state
664 jsr166 1.73 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
665 dl 1.68 if (onAdvance(phase, nextUnarrived))
666     n |= TERMINATION_BIT;
667     else if (nextUnarrived == 0)
668     n |= EMPTY;
669     else
670     n |= nextUnarrived;
671     int nextPhase = (phase + 1) & MAX_PHASE;
672     n |= (long)nextPhase << PHASE_SHIFT;
673     if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
674     return (int)(state >>> PHASE_SHIFT); // terminated
675     releaseWaiters(phase);
676     return nextPhase;
677     }
678     }
679 dl 1.1 }
680    
681     /**
682 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
683     * value, returning immediately if the current phase is not equal
684     * to the given phase value or this phaser is terminated.
685 jsr166 1.14 *
686 dl 1.35 * @param phase an arrival phase number, or negative value if
687     * terminated; this argument is normally the value returned by a
688 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
689 dl 1.68 * @return the next arrival phase number, or the argument if it is
690     * negative, or the (negative) {@linkplain #getPhase() current phase}
691     * if terminated
692 dl 1.1 */
693     public int awaitAdvance(int phase) {
694 dl 1.68 final Phaser root = this.root;
695 jsr166 1.69 long s = (root == this) ? state : reconcileState();
696     int p = (int)(s >>> PHASE_SHIFT);
697 dl 1.1 if (phase < 0)
698     return phase;
699 dl 1.68 if (p == phase)
700     return root.internalAwaitAdvance(phase, null);
701 dl 1.60 return p;
702 dl 1.1 }
703    
704     /**
705 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
706 dl 1.38 * value, throwing {@code InterruptedException} if interrupted
707 dl 1.63 * while waiting, or returning immediately if the current phase is
708     * not equal to the given phase value or this phaser is
709     * terminated.
710 jsr166 1.14 *
711 dl 1.35 * @param phase an arrival phase number, or negative value if
712     * terminated; this argument is normally the value returned by a
713 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
714 dl 1.68 * @return the next arrival phase number, or the argument if it is
715     * negative, or the (negative) {@linkplain #getPhase() current phase}
716     * if terminated
717 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
718     */
719 jsr166 1.12 public int awaitAdvanceInterruptibly(int phase)
720 dl 1.10 throws InterruptedException {
721 dl 1.68 final Phaser root = this.root;
722 jsr166 1.69 long s = (root == this) ? state : reconcileState();
723     int p = (int)(s >>> PHASE_SHIFT);
724 dl 1.1 if (phase < 0)
725     return phase;
726 dl 1.65 if (p == phase) {
727 dl 1.68 QNode node = new QNode(this, phase, true, false, 0L);
728     p = root.internalAwaitAdvance(phase, node);
729     if (node.wasInterrupted)
730     throw new InterruptedException();
731 dl 1.55 }
732     return p;
733 dl 1.1 }
734    
735     /**
736 dl 1.63 * Awaits the phase of this phaser to advance from the given phase
737 dl 1.38 * value or the given timeout to elapse, throwing {@code
738     * InterruptedException} if interrupted while waiting, or
739 dl 1.63 * returning immediately if the current phase is not equal to the
740     * given phase value or this phaser is terminated.
741 jsr166 1.14 *
742 dl 1.35 * @param phase an arrival phase number, or negative value if
743     * terminated; this argument is normally the value returned by a
744 dl 1.63 * previous call to {@code arrive} or {@code arriveAndDeregister}.
745 dl 1.31 * @param timeout how long to wait before giving up, in units of
746     * {@code unit}
747     * @param unit a {@code TimeUnit} determining how to interpret the
748     * {@code timeout} parameter
749 dl 1.68 * @return the next arrival phase number, or the argument if it is
750     * negative, or the (negative) {@linkplain #getPhase() current phase}
751     * if terminated
752 dl 1.1 * @throws InterruptedException if thread interrupted while waiting
753     * @throws TimeoutException if timed out while waiting
754     */
755 jsr166 1.18 public int awaitAdvanceInterruptibly(int phase,
756     long timeout, TimeUnit unit)
757 dl 1.1 throws InterruptedException, TimeoutException {
758 dl 1.60 long nanos = unit.toNanos(timeout);
759 dl 1.68 final Phaser root = this.root;
760 jsr166 1.69 long s = (root == this) ? state : reconcileState();
761     int p = (int)(s >>> PHASE_SHIFT);
762 dl 1.1 if (phase < 0)
763     return phase;
764 dl 1.65 if (p == phase) {
765 dl 1.68 QNode node = new QNode(this, phase, true, true, nanos);
766     p = root.internalAwaitAdvance(phase, node);
767     if (node.wasInterrupted)
768     throw new InterruptedException();
769     else if (p == phase)
770     throw new TimeoutException();
771 dl 1.55 }
772     return p;
773 dl 1.1 }
774    
775     /**
776 dl 1.63 * Forces this phaser to enter termination state. Counts of
777 dl 1.65 * registered parties are unaffected. If this phaser is a member
778     * of a tiered set of phasers, then all of the phasers in the set
779     * are terminated. If this phaser is already terminated, this
780     * method has no effect. This method may be useful for
781     * coordinating recovery after one or more tasks encounter
782     * unexpected exceptions.
783 dl 1.1 */
784     public void forceTermination() {
785 dl 1.55 // Only need to change root state
786     final Phaser root = this.root;
787 dl 1.49 long s;
788 dl 1.55 while ((s = root.state) >= 0) {
789 dl 1.70 if (UNSAFE.compareAndSwapLong(root, stateOffset,
790     s, s | TERMINATION_BIT)) {
791 dl 1.68 // signal all threads
792 jsr166 1.76 releaseWaiters(0); // Waiters on evenQ
793     releaseWaiters(1); // Waiters on oddQ
794 dl 1.55 return;
795     }
796     }
797 dl 1.1 }
798    
799     /**
800 dl 1.4 * Returns the current phase number. The maximum phase number is
801 jsr166 1.7 * {@code Integer.MAX_VALUE}, after which it restarts at
802 dl 1.63 * zero. Upon termination, the phase number is negative,
803     * in which case the prevailing phase prior to termination
804     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
805 jsr166 1.14 *
806 dl 1.4 * @return the phase number, or a negative value if terminated
807 dl 1.1 */
808 dl 1.4 public final int getPhase() {
809 dl 1.57 return (int)(root.state >>> PHASE_SHIFT);
810 dl 1.1 }
811    
812     /**
813 dl 1.63 * Returns the number of parties registered at this phaser.
814 jsr166 1.14 *
815 dl 1.1 * @return the number of parties
816     */
817     public int getRegisteredParties() {
818 dl 1.57 return partiesOf(state);
819 dl 1.1 }
820    
821     /**
822 dl 1.36 * Returns the number of registered parties that have arrived at
823 dl 1.70 * the current phase of this phaser. If this phaser has terminated,
824     * the returned value is meaningless and arbitrary.
825 jsr166 1.14 *
826 dl 1.1 * @return the number of arrived parties
827     */
828     public int getArrivedParties() {
829 dl 1.65 return arrivedOf(reconcileState());
830 dl 1.1 }
831    
832     /**
833     * Returns the number of registered parties that have not yet
834 dl 1.70 * arrived at the current phase of this phaser. If this phaser has
835     * terminated, the returned value is meaningless and arbitrary.
836 jsr166 1.14 *
837 dl 1.1 * @return the number of unarrived parties
838     */
839     public int getUnarrivedParties() {
840 dl 1.65 return unarrivedOf(reconcileState());
841 dl 1.4 }
842    
843     /**
844 dl 1.63 * Returns the parent of this phaser, or {@code null} if none.
845 jsr166 1.14 *
846 dl 1.63 * @return the parent of this phaser, or {@code null} if none
847 dl 1.4 */
848     public Phaser getParent() {
849     return parent;
850     }
851    
852     /**
853 dl 1.63 * Returns the root ancestor of this phaser, which is the same as
854     * this phaser if it has no parent.
855 jsr166 1.14 *
856 dl 1.63 * @return the root ancestor of this phaser
857 dl 1.4 */
858     public Phaser getRoot() {
859     return root;
860 dl 1.1 }
861    
862     /**
863 dl 1.63 * Returns {@code true} if this phaser has been terminated.
864 jsr166 1.14 *
865 dl 1.63 * @return {@code true} if this phaser has been terminated
866 dl 1.1 */
867     public boolean isTerminated() {
868 dl 1.57 return root.state < 0L;
869 dl 1.1 }
870    
871     /**
872 dl 1.43 * Overridable method to perform an action upon impending phase
873     * advance, and to control termination. This method is invoked
874 dl 1.63 * upon arrival of the party advancing this phaser (when all other
875 dl 1.43 * waiting parties are dormant). If this method returns {@code
876 dl 1.65 * true}, this phaser will be set to a final termination state
877     * upon advance, and subsequent calls to {@link #isTerminated}
878     * will return true. Any (unchecked) Exception or Error thrown by
879     * an invocation of this method is propagated to the party
880     * attempting to advance this phaser, in which case no advance
881     * occurs.
882 dl 1.42 *
883 dl 1.63 * <p>The arguments to this method provide the state of the phaser
884 dl 1.51 * prevailing for the current transition. The effects of invoking
885 dl 1.63 * arrival, registration, and waiting methods on this phaser from
886 dl 1.50 * within {@code onAdvance} are unspecified and should not be
887 dl 1.51 * relied on.
888     *
889 dl 1.63 * <p>If this phaser is a member of a tiered set of phasers, then
890     * {@code onAdvance} is invoked only for its root phaser on each
891 dl 1.51 * advance.
892 jsr166 1.3 *
893 dl 1.59 * <p>To support the most common use cases, the default
894     * implementation of this method returns {@code true} when the
895     * number of registered parties has become zero as the result of a
896     * party invoking {@code arriveAndDeregister}. You can disable
897     * this behavior, thus enabling continuation upon future
898     * registrations, by overriding this method to always return
899     * {@code false}:
900     *
901     * <pre> {@code
902     * Phaser phaser = new Phaser() {
903     * protected boolean onAdvance(int phase, int parties) { return false; }
904     * }}</pre>
905 dl 1.1 *
906 dl 1.63 * @param phase the current phase number on entry to this method,
907     * before this phaser is advanced
908 jsr166 1.9 * @param registeredParties the current number of registered parties
909 dl 1.63 * @return {@code true} if this phaser should terminate
910 dl 1.1 */
911     protected boolean onAdvance(int phase, int registeredParties) {
912 dl 1.62 return registeredParties == 0;
913 dl 1.1 }
914    
915     /**
916 dl 1.63 * Returns a string identifying this phaser, as well as its
917 dl 1.1 * state. The state, in brackets, includes the String {@code
918 jsr166 1.9 * "phase = "} followed by the phase number, {@code "parties = "}
919 dl 1.1 * followed by the number of registered parties, and {@code
920 jsr166 1.9 * "arrived = "} followed by the number of arrived parties.
921 dl 1.1 *
922 dl 1.63 * @return a string identifying this phaser, as well as its state
923 dl 1.1 */
924     public String toString() {
925 dl 1.54 return stateToString(reconcileState());
926     }
927    
928     /**
929     * Implementation of toString and string-based error messages
930     */
931     private String stateToString(long s) {
932 jsr166 1.9 return super.toString() +
933     "[phase = " + phaseOf(s) +
934     " parties = " + partiesOf(s) +
935     " arrived = " + arrivedOf(s) + "]";
936 dl 1.1 }
937    
938 dl 1.54 // Waiting mechanics
939    
940 dl 1.4 /**
941 dl 1.57 * Removes and signals threads from queue for phase.
942 dl 1.4 */
943     private void releaseWaiters(int phase) {
944 dl 1.63 QNode q; // first element of queue
945     Thread t; // its thread
946 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
947 dl 1.51 while ((q = head.get()) != null &&
948 dl 1.65 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
949 dl 1.63 if (head.compareAndSet(q, q.next) &&
950     (t = q.thread) != null) {
951     q.thread = null;
952     LockSupport.unpark(t);
953     }
954 dl 1.4 }
955     }
956    
957 dl 1.68 /**
958     * Variant of releaseWaiters that additionally tries to remove any
959     * nodes no longer waiting for advance due to timeout or
960     * interrupt. Currently, nodes are removed only if they are at
961     * head of queue, which suffices to reduce memory footprint in
962     * most usages.
963     *
964     * @return current phase on exit
965     */
966     private int abortWait(int phase) {
967     AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
968     for (;;) {
969     Thread t;
970     QNode q = head.get();
971     int p = (int)(root.state >>> PHASE_SHIFT);
972     if (q == null || ((t = q.thread) != null && q.phase == p))
973     return p;
974     if (head.compareAndSet(q, q.next) && t != null) {
975     q.thread = null;
976     LockSupport.unpark(t);
977     }
978     }
979     }
980    
981 dl 1.51 /** The number of CPUs, for spin control */
982     private static final int NCPU = Runtime.getRuntime().availableProcessors();
983    
984 dl 1.10 /**
985 dl 1.51 * The number of times to spin before blocking while waiting for
986     * advance, per arrival while waiting. On multiprocessors, fully
987     * blocking and waking up a large number of threads all at once is
988     * usually a very slow process, so we use rechargeable spins to
989     * avoid it when threads regularly arrive: When a thread in
990     * internalAwaitAdvance notices another arrival before blocking,
991     * and there appear to be enough CPUs available, it spins
992 dl 1.62 * SPINS_PER_ARRIVAL more times before blocking. The value trades
993     * off good-citizenship vs big unnecessary slowdowns.
994 dl 1.50 */
995 dl 1.55 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
996 dl 1.50
997     /**
998 dl 1.51 * Possibly blocks and waits for phase to advance unless aborted.
999 jsr166 1.76 * Call only on root phaser.
1000 jsr166 1.14 *
1001 dl 1.51 * @param phase current phase
1002 jsr166 1.53 * @param node if non-null, the wait node to track interrupt and timeout;
1003 dl 1.51 * if null, denotes noninterruptible wait
1004 dl 1.10 * @return current phase
1005 dl 1.1 */
1006 dl 1.51 private int internalAwaitAdvance(int phase, QNode node) {
1007 jsr166 1.76 // assert root == this;
1008 dl 1.63 releaseWaiters(phase-1); // ensure old queue clean
1009     boolean queued = false; // true when node is enqueued
1010     int lastUnarrived = 0; // to increase spins upon change
1011 dl 1.51 int spins = SPINS_PER_ARRIVAL;
1012 dl 1.57 long s;
1013     int p;
1014 dl 1.60 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1015 dl 1.63 if (node == null) { // spinning in noninterruptible mode
1016     int unarrived = (int)s & UNARRIVED_MASK;
1017     if (unarrived != lastUnarrived &&
1018     (lastUnarrived = unarrived) < NCPU)
1019 dl 1.57 spins += SPINS_PER_ARRIVAL;
1020 dl 1.63 boolean interrupted = Thread.interrupted();
1021     if (interrupted || --spins < 0) { // need node to record intr
1022     node = new QNode(this, phase, false, false, 0L);
1023     node.wasInterrupted = interrupted;
1024     }
1025 dl 1.54 }
1026 dl 1.63 else if (node.isReleasable()) // done or aborted
1027     break;
1028     else if (!queued) { // push onto queue
1029 dl 1.62 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1030 dl 1.63 QNode q = node.next = head.get();
1031     if ((q == null || q.phase == phase) &&
1032     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1033 dl 1.62 queued = head.compareAndSet(q, node);
1034 dl 1.57 }
1035 dl 1.51 else {
1036     try {
1037     ForkJoinPool.managedBlock(node);
1038     } catch (InterruptedException ie) {
1039     node.wasInterrupted = true;
1040     }
1041     }
1042 dl 1.4 }
1043 dl 1.60
1044     if (node != null) {
1045     if (node.thread != null)
1046 dl 1.63 node.thread = null; // avoid need for unpark()
1047 dl 1.62 if (node.wasInterrupted && !node.interruptible)
1048 dl 1.60 Thread.currentThread().interrupt();
1049 dl 1.65 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1050 dl 1.68 return abortWait(phase); // possibly clean up on abort
1051 dl 1.60 }
1052 dl 1.63 releaseWaiters(phase);
1053 dl 1.57 return p;
1054 dl 1.4 }
1055    
1056     /**
1057 dl 1.51 * Wait nodes for Treiber stack representing wait queue
1058 dl 1.4 */
1059 dl 1.51 static final class QNode implements ForkJoinPool.ManagedBlocker {
1060     final Phaser phaser;
1061     final int phase;
1062     final boolean interruptible;
1063     final boolean timed;
1064     boolean wasInterrupted;
1065     long nanos;
1066     long lastTime;
1067     volatile Thread thread; // nulled to cancel wait
1068     QNode next;
1069    
1070     QNode(Phaser phaser, int phase, boolean interruptible,
1071     boolean timed, long nanos) {
1072     this.phaser = phaser;
1073     this.phase = phase;
1074     this.interruptible = interruptible;
1075     this.nanos = nanos;
1076     this.timed = timed;
1077 jsr166 1.64 this.lastTime = timed ? System.nanoTime() : 0L;
1078 dl 1.51 thread = Thread.currentThread();
1079     }
1080    
1081     public boolean isReleasable() {
1082 dl 1.63 if (thread == null)
1083     return true;
1084     if (phaser.getPhase() != phase) {
1085     thread = null;
1086     return true;
1087     }
1088     if (Thread.interrupted())
1089     wasInterrupted = true;
1090     if (wasInterrupted && interruptible) {
1091     thread = null;
1092     return true;
1093     }
1094     if (timed) {
1095     if (nanos > 0L) {
1096     long now = System.nanoTime();
1097     nanos -= now - lastTime;
1098     lastTime = now;
1099     }
1100     if (nanos <= 0L) {
1101     thread = null;
1102     return true;
1103 dl 1.51 }
1104 dl 1.50 }
1105 dl 1.63 return false;
1106 dl 1.51 }
1107    
1108     public boolean block() {
1109     if (isReleasable())
1110     return true;
1111     else if (!timed)
1112     LockSupport.park(this);
1113     else if (nanos > 0)
1114     LockSupport.parkNanos(this, nanos);
1115     return isReleasable();
1116 dl 1.1 }
1117 dl 1.4 }
1118    
1119 jsr166 1.22 // Unsafe mechanics
1120    
1121 jsr166 1.73 private static final sun.misc.Unsafe UNSAFE;
1122     private static final long stateOffset;
1123     static {
1124 jsr166 1.22 try {
1125 jsr166 1.73 UNSAFE = getUnsafe();
1126 jsr166 1.74 Class<?> k = Phaser.class;
1127 jsr166 1.73 stateOffset = UNSAFE.objectFieldOffset
1128     (k.getDeclaredField("state"));
1129     } catch (Exception e) {
1130     throw new Error(e);
1131 jsr166 1.22 }
1132     }
1133    
1134     /**
1135     * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1136     * Replace with a simple call to Unsafe.getUnsafe when integrating
1137     * into a jdk.
1138     *
1139     * @return a sun.misc.Unsafe
1140     */
1141 jsr166 1.19 private static sun.misc.Unsafe getUnsafe() {
1142 jsr166 1.11 try {
1143 jsr166 1.19 return sun.misc.Unsafe.getUnsafe();
1144 jsr166 1.79 } catch (SecurityException tryReflectionInstead) {}
1145     try {
1146     return java.security.AccessController.doPrivileged
1147     (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1148     public sun.misc.Unsafe run() throws Exception {
1149     Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1150     for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1151     f.setAccessible(true);
1152     Object x = f.get(null);
1153     if (k.isInstance(x))
1154     return k.cast(x);
1155     }
1156     throw new NoSuchFieldError("the Unsafe");
1157     }});
1158     } catch (java.security.PrivilegedActionException e) {
1159     throw new RuntimeException("Could not initialize intrinsics",
1160     e.getCause());
1161 jsr166 1.11 }
1162     }
1163 dl 1.1 }