ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.1 by dl, Mon Jul 7 16:53:30 2008 UTC vs.
Revision 1.39 by dl, Mon Aug 24 12:15:46 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91 > * numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties}, where {@link #getArrivedParties} have
101 > * arrived at the current phase ({@link #getPhase}). When the
102 > * remaining {@link #getUnarrivedParties}) arrive, the phase
103 > * advances. Method {@link #toString} returns snapshots of these state
104 > * queries in a form convenient for informal monitoring.
105 > *
106 > * <p><b>Sample usages:</b>
107 > *
108 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
109 > * to control a one-shot action serving a variable number of
110 > * parties. The typical idiom is for the method setting this up to
111 > * first register, then start the actions, then deregister, as in:
112 > *
113 > *  <pre> {@code
114 > * void runTasks(List<Runnable> tasks) {
115 > *   final Phaser phaser = new Phaser(1); // "1" to register self
116 > *   // create and start threads
117 > *   for (Runnable task : tasks) {
118 > *     phaser.register();
119 > *     new Thread() {
120 > *       public void run() {
121 > *         phaser.arriveAndAwaitAdvance(); // await all creation
122 > *         task.run();
123 > *       }
124 > *     }.start();
125 > *   }
126 > *
127 > *   // allow threads to start and deregister self
128 > *   phaser.arriveAndDeregister();
129 > * }}</pre>
130 > *
131 > * <p>One way to cause a set of threads to repeatedly perform actions
132 > * for a given number of iterations is to override {@code onAdvance}:
133 > *
134 > *  <pre> {@code
135 > * void startTasks(List<Runnable> tasks, final int iterations) {
136 > *   final Phaser phaser = new Phaser() {
137 > *     protected boolean onAdvance(int phase, int registeredParties) {
138 > *       return phase >= iterations || registeredParties == 0;
139 > *     }
140 > *   };
141 > *   phaser.register();
142 > *   for (Runnable task : tasks) {
143 > *     phaser.register();
144 > *     new Thread() {
145 > *       public void run() {
146 > *         do {
147 > *           task.run();
148 > *           phaser.arriveAndAwaitAdvance();
149 > *         } while(!phaser.isTerminated();
150 > *       }
151 > *     }.start();
152 > *   }
153 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
154 > * }}</pre>
155   *
156 < * <p><b>Sample usage:</b>
156 > * If the main task must later await termination, it
157 > * may re-register and then execute a similar loop:
158 > * <pre> {@code
159 > *   // ...
160 > *   phaser.register();
161 > *   while (!phaser.isTerminated())
162 > *     phaser.arriveAndAwaitAdvance();
163 > * }</pre>
164   *
165 < * <p>[todo: non-FJ example]
165 > * Related constructions may be used to await particular phase numbers
166 > * in contexts where you are sure that the phase will never wrap around
167 > * {@code Integer.MAX_VALUE}. For example:
168   *
169 < * <p> A Phaser may be used to support a style of programming in
170 < * which a task waits for others to complete, without otherwise
171 < * needing to keep track of which tasks it is waiting for. This is
172 < * similar to the "sync" construct in Cilk and "clocks" in X10.
173 < * Special constructions based on such barriers are available using
174 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
175 < * but they can be useful in other contexts as well.  For a simple
176 < * (but not very useful) example, here is a variant of Fibonacci:
177 < *
178 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
169 > * <pre> {@code
170 > *   void awaitPhase(Phaser phaser, int phase) {
171 > *     int p = phaser.register(); // assumes caller not already registered
172 > *     while (p < phase) {
173 > *       if (phaser.isTerminated())
174 > *         // ... deal with unexpected termination
175 > *       else
176 > *         p = phaser.arriveAndAwaitAdvance();
177 > *     }
178 > *     phaser.arriveAndDeregister();
179   *   }
180 < *   protected void compute() {
181 < *     int n = argument;
182 < *     if (n &lt;= 1)
183 < *        result = n;
184 < *     else {
185 < *        Phaser childBarrier = new Phaser(1);
186 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
187 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
188 < *        f1.fork();
189 < *        f2.fork();
190 < *        childBarrier.arriveAndAwait();
191 < *        result = f1.result + f2.result;
180 > * }</pre>
181 > *
182 > *
183 > * <p>To create a set of tasks using a tree of phasers,
184 > * you could use code of the following form, assuming a
185 > * Task class with a constructor accepting a phaser that
186 > * it registers for upon construction:
187 > *  <pre> {@code
188 > * void build(Task[] actions, int lo, int hi, Phaser b) {
189 > *   int step = (hi - lo) / TASKS_PER_PHASER;
190 > *   if (step > 1) {
191 > *     int i = lo;
192 > *     while (i < hi) {
193 > *       int r = Math.min(i + step, hi);
194 > *       build(actions, i, r, new Phaser(b));
195 > *       i = r;
196   *     }
197 < *     parentBarrier.arriveAndDeregister();
197 > *   } else {
198 > *     for (int i = lo; i < hi; ++i)
199 > *       actions[i] = new Task(b);
200 > *       // assumes new Task(b) performs b.register()
201   *   }
202   * }
203 + * // .. initially called, for n tasks via
204 + * build(new Task[n], 0, n, new Phaser());}</pre>
205 + *
206 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
207 + * expected barrier synchronization rates. A value as low as four may
208 + * be appropriate for extremely small per-barrier task bodies (thus
209 + * high rates), or up to hundreds for extremely large ones.
210 + *
211   * </pre>
212   *
213   * <p><b>Implementation notes</b>: This implementation restricts the
214 < * maximum number of parties to 65535. Attempts to register
215 < * additional parties result in IllegalStateExceptions.  
214 > * maximum number of parties to 65535. Attempts to register additional
215 > * parties result in {@code IllegalStateException}. However, you can and
216 > * should create tiered phasers to accommodate arbitrarily large sets
217 > * of participants.
218 > *
219 > * @since 1.7
220 > * @author Doug Lea
221   */
222   public class Phaser {
223      /*
224       * This class implements an extension of X10 "clocks".  Thanks to
225 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
226 <     * and to Vivek Sarkar for enhancements to extend functionality.
225 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
226 >     * enhancements to extend functionality.
227       */
228  
229      /**
230       * Barrier state representation. Conceptually, a barrier contains
231       * four values:
232 <     *
232 >     *
233       * * parties -- the number of parties to wait (16 bits)
234       * * unarrived -- the number of parties yet to hit barrier (16 bits)
235       * * phase -- the generation of the barrier (31 bits)
236       * * terminated -- set if barrier is terminated (1 bit)
237       *
238       * However, to efficiently maintain atomicity, these values are
239 <     * packed into a single AtomicLong. Termination uses the sign bit
240 <     * of 32 bit representation of phase, so phase is set to -1 on
241 <     * termination.
242 <     */
243 <    private final AtomicLong state;
244 <
245 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
239 >     * packed into a single (atomic) long. Termination uses the sign
240 >     * bit of 32 bit representation of phase, so phase is set to -1 on
241 >     * termination. Good performance relies on keeping state decoding
242 >     * and encoding simple, and keeping race windows short.
243 >     *
244 >     * Note: there are some cheats in arrive() that rely on unarrived
245 >     * count being lowest 16 bits.
246       */
247 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
247 >    private volatile long state;
248  
249      private static final int ushortBits = 16;
250 <    private static final int ushortMask =  (1 << ushortBits) - 1;
251 <    private static final int phaseMask = 0x7fffffff;
250 >    private static final int ushortMask = 0xffff;
251 >    private static final int phaseMask  = 0x7fffffff;
252  
253      private static int unarrivedOf(long s) {
254 <        return (int)(s & ushortMask);
254 >        return (int) (s & ushortMask);
255      }
256  
257      private static int partiesOf(long s) {
258 <        return (int)(s & (ushortMask << 16)) >>> 16;
258 >        return ((int) s) >>> 16;
259      }
260  
261      private static int phaseOf(long s) {
262 <        return (int)(s >>> 32);
262 >        return (int) (s >>> 32);
263      }
264  
265      private static int arrivedOf(long s) {
# Line 165 | Line 267 | public class Phaser {
267      }
268  
269      private static long stateFor(int phase, int parties, int unarrived) {
270 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
270 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
271 >                (long) unarrived);
272      }
273  
274 <    private static IllegalStateException badBounds(int parties, int unarrived) {
275 <        return new IllegalStateException("Attempt to set " + unarrived +
276 <                                         " unarrived of " + parties + " parties");
274 >    private static long trippedStateFor(int phase, int parties) {
275 >        long lp = (long) parties;
276 >        return (((long) phase) << 32) | (lp << 16) | lp;
277      }
278  
279      /**
280 <     * Creates a new Phaser without any initially registered parties,
281 <     * and initial phase number 0.
280 >     * Returns message string for bad bounds exceptions.
281 >     */
282 >    private static String badBounds(int parties, int unarrived) {
283 >        return ("Attempt to set " + unarrived +
284 >                " unarrived of " + parties + " parties");
285 >    }
286 >
287 >    /**
288 >     * The parent of this phaser, or null if none
289 >     */
290 >    private final Phaser parent;
291 >
292 >    /**
293 >     * The root of phaser tree. Equals this if not in a tree.  Used to
294 >     * support faster state push-down.
295 >     */
296 >    private final Phaser root;
297 >
298 >    // Wait queues
299 >
300 >    /**
301 >     * Heads of Treiber stacks for waiting threads. To eliminate
302 >     * contention while releasing some threads while adding others, we
303 >     * use two of them, alternating across even and odd phases.
304 >     */
305 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
306 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
307 >
308 >    private AtomicReference<QNode> queueFor(int phase) {
309 >        return ((phase & 1) == 0) ? evenQ : oddQ;
310 >    }
311 >
312 >    /**
313 >     * Returns current state, first resolving lagged propagation from
314 >     * root if necessary.
315 >     */
316 >    private long getReconciledState() {
317 >        return (parent == null) ? state : reconcileState();
318 >    }
319 >
320 >    /**
321 >     * Recursively resolves state.
322 >     */
323 >    private long reconcileState() {
324 >        Phaser p = parent;
325 >        long s = state;
326 >        if (p != null) {
327 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
328 >                long parentState = p.getReconciledState();
329 >                int parentPhase = phaseOf(parentState);
330 >                int phase = phaseOf(s = state);
331 >                if (phase != parentPhase) {
332 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
333 >                    if (casState(s, next)) {
334 >                        releaseWaiters(phase);
335 >                        s = next;
336 >                    }
337 >                }
338 >            }
339 >        }
340 >        return s;
341 >    }
342 >
343 >    /**
344 >     * Creates a new phaser without any initially registered parties,
345 >     * initial phase number 0, and no parent. Any thread using this
346 >     * phaser will need to first register for it.
347       */
348      public Phaser() {
349 <        state = new AtomicLong(stateFor(0, 0, 0));
349 >        this(null);
350      }
351  
352      /**
353 <     * Creates a new Phaser with the given numbers of registered
354 <     * unarrived parties and initial phase number 0.
355 <     * @param parties the number of parties required to trip barrier.
353 >     * Creates a new phaser with the given numbers of registered
354 >     * unarrived parties, initial phase number 0, and no parent.
355 >     *
356 >     * @param parties the number of parties required to trip barrier
357       * @throws IllegalArgumentException if parties less than zero
358 <     * or greater than the maximum number of parties supported.
358 >     * or greater than the maximum number of parties supported
359       */
360      public Phaser(int parties) {
361 +        this(null, parties);
362 +    }
363 +
364 +    /**
365 +     * Creates a new phaser with the given parent, without any
366 +     * initially registered parties. If parent is non-null this phaser
367 +     * is registered with the parent and its initial phase number is
368 +     * the same as that of parent phaser.
369 +     *
370 +     * @param parent the parent phaser
371 +     */
372 +    public Phaser(Phaser parent) {
373 +        int phase = 0;
374 +        this.parent = parent;
375 +        if (parent != null) {
376 +            this.root = parent.root;
377 +            phase = parent.register();
378 +        }
379 +        else
380 +            this.root = this;
381 +        this.state = trippedStateFor(phase, 0);
382 +    }
383 +
384 +    /**
385 +     * Creates a new phaser with the given parent and numbers of
386 +     * registered unarrived parties. If parent is non-null, this phaser
387 +     * is registered with the parent and its initial phase number is
388 +     * the same as that of parent phaser.
389 +     *
390 +     * @param parent the parent phaser
391 +     * @param parties the number of parties required to trip barrier
392 +     * @throws IllegalArgumentException if parties less than zero
393 +     * or greater than the maximum number of parties supported
394 +     */
395 +    public Phaser(Phaser parent, int parties) {
396          if (parties < 0 || parties > ushortMask)
397              throw new IllegalArgumentException("Illegal number of parties");
398 <        state = new AtomicLong(stateFor(0, parties, parties));
398 >        int phase = 0;
399 >        this.parent = parent;
400 >        if (parent != null) {
401 >            this.root = parent.root;
402 >            phase = parent.register();
403 >        }
404 >        else
405 >            this.root = this;
406 >        this.state = trippedStateFor(phase, parties);
407      }
408  
409      /**
410       * Adds a new unarrived party to this phaser.
411 <     * @return the current barrier phase number upon registration
411 >     *
412 >     * @return the arrival phase number to which this registration applied
413 >     * @throws IllegalStateException if attempting to register more
414 >     * than the maximum supported number of parties
415 >     */
416 >    public int register() {
417 >        return doRegister(1);
418 >    }
419 >
420 >    /**
421 >     * Adds the given number of new unarrived parties to this phaser.
422 >     *
423 >     * @param parties the number of parties required to trip barrier
424 >     * @return the arrival phase number to which this registration applied
425       * @throws IllegalStateException if attempting to register more
426 <     * than the maximum supported number of parties.
426 >     * than the maximum supported number of parties
427       */
428 <    public int register() { // increment both parties and unarrived
429 <        final AtomicLong state = this.state;
428 >    public int bulkRegister(int parties) {
429 >        if (parties < 0)
430 >            throw new IllegalArgumentException();
431 >        if (parties == 0)
432 >            return getPhase();
433 >        return doRegister(parties);
434 >    }
435 >
436 >    /**
437 >     * Shared code for register, bulkRegister
438 >     */
439 >    private int doRegister(int registrations) {
440 >        int phase;
441          for (;;) {
442 <            long s = state.get();
443 <            int phase = phaseOf(s);
444 <            int parties = partiesOf(s) + 1;
445 <            int unarrived = unarrivedOf(s) + 1;
442 >            long s = getReconciledState();
443 >            phase = phaseOf(s);
444 >            int unarrived = unarrivedOf(s) + registrations;
445 >            int parties = partiesOf(s) + registrations;
446 >            if (phase < 0)
447 >                break;
448              if (parties > ushortMask || unarrived > ushortMask)
449 <                throw badBounds(parties, unarrived);
450 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
451 <                return phase;
449 >                throw new IllegalStateException(badBounds(parties, unarrived));
450 >            if (phase == phaseOf(root.state) &&
451 >                casState(s, stateFor(phase, parties, unarrived)))
452 >                break;
453          }
454 +        return phase;
455      }
456  
457      /**
458       * Arrives at the barrier, but does not wait for others.  (You can
459 <     * in turn wait for others via {@link #awaitAdvance}).
459 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
460 >     * unenforced usage error for an unregistered party to invoke this
461 >     * method.
462       *
463 <     * @return the current barrier phase number upon entry to
464 <     * this method, or a negative value if terminated;
465 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
463 >     * @return the arrival phase number, or a negative value if terminated
464 >     * @throws IllegalStateException if not terminated and the number
465 >     * of unarrived parties would become negative
466       */
467 <    public int arrive() { // decrement unarrived. If zero, trip
468 <        final AtomicLong state = this.state;
467 >    public int arrive() {
468 >        int phase;
469          for (;;) {
470 <            long s = state.get();
471 <            int phase = phaseOf(s);
470 >            long s = state;
471 >            phase = phaseOf(s);
472 >            if (phase < 0)
473 >                break;
474              int parties = partiesOf(s);
475              int unarrived = unarrivedOf(s) - 1;
476 <            if (unarrived < 0)
477 <                throw badBounds(parties, unarrived);
478 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
476 >            if (unarrived > 0) {        // Not the last arrival
477 >                if (casState(s, s - 1)) // s-1 adds one arrival
478 >                    break;
479              }
480 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
481 <                return phase;
480 >            else if (unarrived == 0) {  // the last arrival
481 >                Phaser par = parent;
482 >                if (par == null) {      // directly trip
483 >                    if (casState
484 >                        (s,
485 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
486 >                                         ((phase + 1) & phaseMask), parties))) {
487 >                        releaseWaiters(phase);
488 >                        break;
489 >                    }
490 >                }
491 >                else {                  // cascade to parent
492 >                    if (casState(s, s - 1)) { // zeroes unarrived
493 >                        par.arrive();
494 >                        reconcileState();
495 >                        break;
496 >                    }
497 >                }
498 >            }
499 >            else if (phase != phaseOf(root.state)) // or if unreconciled
500 >                reconcileState();
501 >            else
502 >                throw new IllegalStateException(badBounds(parties, unarrived));
503          }
504 +        return phase;
505      }
506  
507      /**
508 <     * Arrives at the barrier, and deregisters from it, without
509 <     * waiting for others.
508 >     * Arrives at the barrier and deregisters from it without waiting
509 >     * for others. Deregistration reduces the number of parties
510 >     * required to trip the barrier in future phases.  If this phaser
511 >     * has a parent, and deregistration causes this phaser to have
512 >     * zero parties, this phaser also arrives at and is deregistered
513 >     * from its parent.  It is an unenforced usage error for an
514 >     * unregistered party to invoke this method.
515       *
516 <     * @return the current barrier phase number upon entry to
517 <     * this method, or a negative value if terminated;
518 <     * @throws IllegalStateException if the number of registered or
519 <     * unarrived parties would become negative.
520 <     */
521 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
522 <        final AtomicLong state = this.state;
516 >     * @return the arrival phase number, or a negative value if terminated
517 >     * @throws IllegalStateException if not terminated and the number
518 >     * of registered or unarrived parties would become negative
519 >     */
520 >    public int arriveAndDeregister() {
521 >        // similar code to arrive, but too different to merge
522 >        Phaser par = parent;
523 >        int phase;
524          for (;;) {
525 <            long s = state.get();
526 <            int phase = phaseOf(s);
525 >            long s = state;
526 >            phase = phaseOf(s);
527 >            if (phase < 0)
528 >                break;
529              int parties = partiesOf(s) - 1;
530              int unarrived = unarrivedOf(s) - 1;
531 <            if (parties < 0 || unarrived < 0)
532 <                throw badBounds(parties, unarrived);
533 <            if (unarrived == 0 && phase >= 0) {
534 <                trip(phase, parties);
535 <                return phase;
531 >            if (parties >= 0) {
532 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
533 >                    if (casState
534 >                        (s,
535 >                         stateFor(phase, parties, unarrived))) {
536 >                        if (unarrived == 0) {
537 >                            par.arriveAndDeregister();
538 >                            reconcileState();
539 >                        }
540 >                        break;
541 >                    }
542 >                    continue;
543 >                }
544 >                if (unarrived == 0) {
545 >                    if (casState
546 >                        (s,
547 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
548 >                                         ((phase + 1) & phaseMask), parties))) {
549 >                        releaseWaiters(phase);
550 >                        break;
551 >                    }
552 >                    continue;
553 >                }
554 >                if (par != null && phase != phaseOf(root.state)) {
555 >                    reconcileState();
556 >                    continue;
557 >                }
558              }
559 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
559 >            throw new IllegalStateException(badBounds(parties, unarrived));
560          }
561 +        return phase;
562      }
563  
564      /**
565 <     * Arrives at the barrier and awaits others. Unlike other arrival
566 <     * methods, this method returns the arrival index of the
567 <     * caller. The caller tripping the barrier returns zero, the
568 <     * previous caller 1, and so on.
569 <     * @return the arrival index
570 <     * @throws IllegalStateException if the number of unarrived
571 <     * parties would become negative.
565 >     * Arrives at the barrier and awaits others. Equivalent in effect
566 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
567 >     * interruption or timeout, you can arrange this with an analogous
568 >     * construction using one of the other forms of the awaitAdvance
569 >     * method.  If instead you need to deregister upon arrival use
570 >     * {@code arriveAndDeregister}. It is an unenforced usage error
571 >     * for an unregistered party to invoke this method.
572 >     *
573 >     * @return the arrival phase number, or a negative number if terminated
574 >     * @throws IllegalStateException if not terminated and the number
575 >     * of unarrived parties would become negative
576       */
577      public int arriveAndAwaitAdvance() {
578 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
578 >        return awaitAdvance(arrive());
579      }
580  
581      /**
582 <     * Awaits the phase of the barrier to advance from the given
583 <     * value, or returns immediately if this barrier is terminated
584 <     * @param phase the phase on entry to this method
585 <     * @return the phase on exit from this method
582 >     * Awaits the phase of the barrier to advance from the given phase
583 >     * value, returning immediately if the current phase of the
584 >     * barrier is not equal to the given phase value or this barrier
585 >     * is terminated.  It is an unenforced usage error for an
586 >     * unregistered party to invoke this method.
587 >     *
588 >     * @param phase an arrival phase number, or negative value if
589 >     * terminated; this argument is normally the value returned by a
590 >     * previous call to {@code arrive} or its variants
591 >     * @return the next arrival phase number, or a negative value
592 >     * if terminated or argument is negative
593       */
594      public int awaitAdvance(int phase) {
595          if (phase < 0)
596              return phase;
597 <        Thread current = Thread.currentThread();
598 <        if (current instanceof ForkJoinWorkerThread)
599 <            return helpingWait(phase);
600 <        if (untimedWait(current, phase, false))
601 <            current.interrupt();
602 <        return phaseOf(state.get());
597 >        long s = getReconciledState();
598 >        int p = phaseOf(s);
599 >        if (p != phase)
600 >            return p;
601 >        if (unarrivedOf(s) == 0 && parent != null)
602 >            parent.awaitAdvance(phase);
603 >        // Fall here even if parent waited, to reconcile and help release
604 >        return untimedWait(phase);
605      }
606  
607      /**
608 <     * Awaits the phase of the barrier to advance from the given
609 <     * value, or returns immediately if this barrier is terminated, or
610 <     * throws InterruptedException if interrupted while waiting.
611 <     * @param phase the phase on entry to this method
612 <     * @return the phase on exit from this method
608 >     * Awaits the phase of the barrier to advance from the given phase
609 >     * value, throwing {@code InterruptedException} if interrupted
610 >     * while waiting, or returning immediately if the current phase of
611 >     * the barrier is not equal to the given phase value or this
612 >     * barrier is terminated. It is an unenforced usage error for an
613 >     * unregistered party to invoke this method.
614 >     *
615 >     * @param phase an arrival phase number, or negative value if
616 >     * terminated; this argument is normally the value returned by a
617 >     * previous call to {@code arrive} or its variants
618 >     * @return the next arrival phase number, or a negative value
619 >     * if terminated or argument is negative
620       * @throws InterruptedException if thread interrupted while waiting
621       */
622 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
622 >    public int awaitAdvanceInterruptibly(int phase)
623 >        throws InterruptedException {
624          if (phase < 0)
625              return phase;
626 <        Thread current = Thread.currentThread();
627 <        if (current instanceof ForkJoinWorkerThread)
628 <            return helpingWait(phase);
629 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
630 <            throw new InterruptedException();
631 <        else
632 <            return phaseOf(state.get());
626 >        long s = getReconciledState();
627 >        int p = phaseOf(s);
628 >        if (p != phase)
629 >            return p;
630 >        if (unarrivedOf(s) == 0 && parent != null)
631 >            parent.awaitAdvanceInterruptibly(phase);
632 >        return interruptibleWait(phase);
633      }
634  
635      /**
636 <     * Awaits the phase of the barrier to advance from the given value
637 <     * or the given timeout elapses, or returns immediately if this
638 <     * barrier is terminated
639 <     * @param phase the phase on entry to this method
640 <     * @return the phase on exit from this method
636 >     * Awaits the phase of the barrier to advance from the given phase
637 >     * value or the given timeout to elapse, throwing {@code
638 >     * InterruptedException} if interrupted while waiting, or
639 >     * returning immediately if the current phase of the barrier is
640 >     * not equal to the given phase value or this barrier is
641 >     * terminated.  It is an unenforced usage error for an
642 >     * unregistered party to invoke this method.
643 >     *
644 >     * @param phase an arrival phase number, or negative value if
645 >     * terminated; this argument is normally the value returned by a
646 >     * previous call to {@code arrive} or its variants
647 >     * @param timeout how long to wait before giving up, in units of
648 >     *        {@code unit}
649 >     * @param unit a {@code TimeUnit} determining how to interpret the
650 >     *        {@code timeout} parameter
651 >     * @return the next arrival phase number, or a negative value
652 >     * if terminated or argument is negative
653       * @throws InterruptedException if thread interrupted while waiting
654       * @throws TimeoutException if timed out while waiting
655       */
656 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
656 >    public int awaitAdvanceInterruptibly(int phase,
657 >                                         long timeout, TimeUnit unit)
658          throws InterruptedException, TimeoutException {
659          if (phase < 0)
660              return phase;
661 <        long nanos = unit.toNanos(timeout);
662 <        Thread current = Thread.currentThread();
663 <        if (current instanceof ForkJoinWorkerThread)
664 <            return timedHelpingWait(phase, nanos);
665 <        timedWait(current, phase, nanos);
666 <        return phaseOf(state.get());
661 >        long s = getReconciledState();
662 >        int p = phaseOf(s);
663 >        if (p != phase)
664 >            return p;
665 >        if (unarrivedOf(s) == 0 && parent != null)
666 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
667 >        return timedWait(phase, unit.toNanos(timeout));
668      }
669  
670      /**
671       * Forces this barrier to enter termination state. Counts of
672 <     * arrived and registered parties are unaffected. This method may
673 <     * be useful for coordinating recovery after one or more tasks
674 <     * encounter unexpected exceptions.
672 >     * arrived and registered parties are unaffected. If this phaser
673 >     * has a parent, it too is terminated. This method may be useful
674 >     * for coordinating recovery after one or more tasks encounter
675 >     * unexpected exceptions.
676       */
677      public void forceTermination() {
365        final AtomicLong state = this.state;
678          for (;;) {
679 <            long s = state.get();
679 >            long s = getReconciledState();
680              int phase = phaseOf(s);
681              int parties = partiesOf(s);
682              int unarrived = unarrivedOf(s);
683              if (phase < 0 ||
684 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
685 <                if (head.get() != null)
686 <                    releaseWaiters(-1);
684 >                casState(s, stateFor(-1, parties, unarrived))) {
685 >                releaseWaiters(0);
686 >                releaseWaiters(1);
687 >                if (parent != null)
688 >                    parent.forceTermination();
689                  return;
690              }
691          }
692      }
693  
694      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
695       * Returns the current phase number. The maximum phase number is
696 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
696 >     * {@code Integer.MAX_VALUE}, after which it restarts at
697       * zero. Upon termination, the phase number is negative.
698 +     *
699       * @return the phase number, or a negative value if terminated
700       */
701 <    public int getPhase() {
702 <        return phaseOf(state.get());
701 >    public final int getPhase() {
702 >        return phaseOf(getReconciledState());
703      }
704  
705      /**
706       * Returns the number of parties registered at this barrier.
707 +     *
708       * @return the number of parties
709       */
710      public int getRegisteredParties() {
711 <        return partiesOf(state.get());
711 >        return partiesOf(state);
712      }
713  
714      /**
715 <     * Returns the number of parties that have arrived at the current
716 <     * phase of this barrier.
715 >     * Returns the number of registered parties that have arrived at
716 >     * the current phase of this barrier.
717 >     *
718       * @return the number of arrived parties
719       */
720      public int getArrivedParties() {
721 <        return arrivedOf(state.get());
721 >        return arrivedOf(state);
722      }
723  
724      /**
725       * Returns the number of registered parties that have not yet
726       * arrived at the current phase of this barrier.
727 +     *
728       * @return the number of unarrived parties
729       */
730      public int getUnarrivedParties() {
731 <        return unarrivedOf(state.get());
731 >        return unarrivedOf(state);
732 >    }
733 >
734 >    /**
735 >     * Returns the parent of this phaser, or {@code null} if none.
736 >     *
737 >     * @return the parent of this phaser, or {@code null} if none
738 >     */
739 >    public Phaser getParent() {
740 >        return parent;
741 >    }
742 >
743 >    /**
744 >     * Returns the root ancestor of this phaser, which is the same as
745 >     * this phaser if it has no parent.
746 >     *
747 >     * @return the root ancestor of this phaser
748 >     */
749 >    public Phaser getRoot() {
750 >        return root;
751      }
752  
753      /**
754 <     * Returns true if this barrier has been terminated
755 <     * @return true if this barrier has been terminated
754 >     * Returns {@code true} if this barrier has been terminated.
755 >     *
756 >     * @return {@code true} if this barrier has been terminated
757       */
758      public boolean isTerminated() {
759 <        return phaseOf(state.get()) < 0;
759 >        return getPhase() < 0;
760      }
761  
762      /**
763       * Overridable method to perform an action upon phase advance, and
764       * to control termination. This method is invoked whenever the
765       * barrier is tripped (and thus all other waiting parties are
766 <     * dormant). If it returns true, then, rather than advance the
767 <     * phase number, this barrier will be set to a final termination
768 <     * state, and subsequent calls to <tt>isTerminated</tt> will
769 <     * return true.
770 <     *
771 <     * <p> The default version returns true when the number of
766 >     * dormant). If it returns {@code true}, then, rather than advance
767 >     * the phase number, this barrier will be set to a final
768 >     * termination state, and subsequent calls to {@link #isTerminated}
769 >     * will return true.
770 >     *
771 >     * <p>The default version returns {@code true} when the number of
772       * registered parties is zero. Normally, overrides that arrange
773       * termination for other reasons should also preserve this
774       * property.
775       *
776 +     * <p>You may override this method to perform an action with side
777 +     * effects visible to participating tasks, but it is in general
778 +     * only sensible to do so in designs where all parties register
779 +     * before any arrive, and all {@link #awaitAdvance} at each phase.
780 +     * Otherwise, you cannot ensure lack of interference from other
781 +     * parties during the invocation of this method.
782 +     *
783       * @param phase the phase number on entering the barrier
784 <     * @param registeredParties the current number of registered
785 <     * parties.
458 <     * @return true if this barrier should terminate
784 >     * @param registeredParties the current number of registered parties
785 >     * @return {@code true} if this barrier should terminate
786       */
787      protected boolean onAdvance(int phase, int registeredParties) {
788          return registeredParties <= 0;
789      }
790  
791      /**
792 <     * Returns a string identifying this barrier, as well as its
792 >     * Returns a string identifying this phaser, as well as its
793       * state.  The state, in brackets, includes the String {@code
794 <     * "phase ="} followed by the phase number, {@code "parties ="}
794 >     * "phase = "} followed by the phase number, {@code "parties = "}
795       * followed by the number of registered parties, and {@code
796 <     * "arrived ="} followed by the number of arrived parties
796 >     * "arrived = "} followed by the number of arrived parties.
797       *
798       * @return a string identifying this barrier, as well as its state
799       */
800      public String toString() {
801 <        long s = state.get();
802 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
801 >        long s = getReconciledState();
802 >        return super.toString() +
803 >            "[phase = " + phaseOf(s) +
804 >            " parties = " + partiesOf(s) +
805 >            " arrived = " + arrivedOf(s) + "]";
806      }
807  
808 <    // methods for tripping and waiting
808 >    // methods for waiting
809  
810      /**
811 <     * Advance the current phase (or terminate)
811 >     * Wait nodes for Treiber stack representing wait queue
812       */
813 <    private void trip(int phase, int parties) {
814 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
815 <        state.set(stateFor(next, parties, parties));
816 <        if (head.get() != null)
817 <            releaseWaiters(next);
818 <    }
819 <
820 <    private int helpingWait(int phase) {
821 <        final AtomicLong state = this.state;
822 <        int p;
823 <        while ((p = phaseOf(state.get())) == phase) {
824 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
825 <            if (t != null) {
826 <                if ((p = phaseOf(state.get())) == phase)
827 <                    t.exec();
828 <                else {   // push task and exit if barrier advanced
829 <                    t.fork();
830 <                    break;
831 <                }
502 <            }
813 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
814 >        final Phaser phaser;
815 >        final int phase;
816 >        final long startTime;
817 >        final long nanos;
818 >        final boolean timed;
819 >        final boolean interruptible;
820 >        volatile boolean wasInterrupted = false;
821 >        volatile Thread thread; // nulled to cancel wait
822 >        QNode next;
823 >        QNode(Phaser phaser, int phase, boolean interruptible,
824 >              boolean timed, long startTime, long nanos) {
825 >            this.phaser = phaser;
826 >            this.phase = phase;
827 >            this.timed = timed;
828 >            this.interruptible = interruptible;
829 >            this.startTime = startTime;
830 >            this.nanos = nanos;
831 >            thread = Thread.currentThread();
832          }
833 <        return p;
834 <    }
835 <
836 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
837 <        final AtomicLong state = this.state;
838 <        long lastTime = System.nanoTime();
839 <        int p;
840 <        while ((p = phaseOf(state.get())) == phase) {
841 <            long now = System.nanoTime();
842 <            nanos -= now - lastTime;
843 <            lastTime = now;
844 <            if (nanos <= 0) {
845 <                if ((p = phaseOf(state.get())) == phase)
846 <                    throw new TimeoutException();
847 <                else
848 <                    break;
833 >        public boolean isReleasable() {
834 >            return (thread == null ||
835 >                    phaser.getPhase() != phase ||
836 >                    (interruptible && wasInterrupted) ||
837 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
838 >        }
839 >        public boolean block() {
840 >            if (Thread.interrupted()) {
841 >                wasInterrupted = true;
842 >                if (interruptible)
843 >                    return true;
844 >            }
845 >            if (!timed)
846 >                LockSupport.park(this);
847 >            else {
848 >                long waitTime = nanos - (System.nanoTime() - startTime);
849 >                if (waitTime <= 0)
850 >                    return true;
851 >                LockSupport.parkNanos(this, waitTime);
852              }
853 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
853 >            return isReleasable();
854 >        }
855 >        void signal() {
856 >            Thread t = thread;
857              if (t != null) {
858 <                if ((p = phaseOf(state.get())) == phase)
859 <                    t.exec();
860 <                else {   // push task and exit if barrier advanced
861 <                    t.fork();
862 <                    break;
858 >                thread = null;
859 >                LockSupport.unpark(t);
860 >            }
861 >        }
862 >        boolean doWait() {
863 >            if (thread != null) {
864 >                try {
865 >                    ForkJoinPool.managedBlock(this, false);
866 >                } catch (InterruptedException ie) {
867                  }
868              }
869 +            return wasInterrupted;
870          }
871 <        return p;
871 >
872      }
873  
874      /**
875 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
875 >     * Removes and signals waiting threads from wait queue.
876       */
877 <    static final class QNode {
878 <        QNode next;
879 <        volatile Thread thread; // nulled to cancel wait
880 <        final int phase;
881 <        QNode(Thread t, int c) {
882 <            thread = t;
545 <            phase = c;
877 >    private void releaseWaiters(int phase) {
878 >        AtomicReference<QNode> head = queueFor(phase);
879 >        QNode q;
880 >        while ((q = head.get()) != null) {
881 >            if (head.compareAndSet(q, q.next))
882 >                q.signal();
883          }
884      }
885  
549    private void releaseWaiters(int currentPhase) {
550        final AtomicReference<QNode> head = this.head;
551        QNode p;
552        while ((p = head.get()) != null && p.phase != currentPhase) {
553            if (head.compareAndSet(p, null)) {
554                do {
555                    Thread t = p.thread;
556                    if (t != null) {
557                        p.thread = null;
558                        LockSupport.unpark(t);
559                    }
560                } while ((p = p.next) != null);
561            }
562        }
563    }
564
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
886      /**
887 <     * The number of times to spin before blocking in timed waits.
888 <     * The value is empirically derived
889 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
887 >     * Tries to enqueue given node in the appropriate wait queue.
888 >     *
889 >     * @return true if successful
890       */
891 <    static final int maxUntimedSpins = maxTimedSpins * 32;
891 >    private boolean tryEnqueue(QNode node) {
892 >        AtomicReference<QNode> head = queueFor(node.phase);
893 >        return head.compareAndSet(node.next = head.get(), node);
894 >    }
895  
896      /**
897 <     * The number of nanoseconds for which it is faster to spin
898 <     * rather than to use timed park. A rough estimate suffices.
897 >     * Enqueues node and waits unless aborted or signalled.
898 >     *
899 >     * @return current phase
900       */
901 <    static final long spinForTimeoutThreshold = 1000L;
901 >    private int untimedWait(int phase) {
902 >        QNode node = null;
903 >        boolean queued = false;
904 >        boolean interrupted = false;
905 >        int p;
906 >        while ((p = getPhase()) == phase) {
907 >            if (Thread.interrupted())
908 >                interrupted = true;
909 >            else if (node == null)
910 >                node = new QNode(this, phase, false, false, 0, 0);
911 >            else if (!queued)
912 >                queued = tryEnqueue(node);
913 >            else
914 >                interrupted = node.doWait();
915 >        }
916 >        if (node != null)
917 >            node.thread = null;
918 >        releaseWaiters(phase);
919 >        if (interrupted)
920 >            Thread.currentThread().interrupt();
921 >        return p;
922 >    }
923  
924      /**
925 <     * Enqueues node and waits unless aborted or signalled.
925 >     * Interruptible version
926 >     * @return current phase
927       */
928 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
928 >    private int interruptibleWait(int phase) throws InterruptedException {
929          QNode node = null;
930          boolean queued = false;
931 <        int spins = maxUntimedSpins;
932 <        while (phaseOf(state.get()) == currentPhase) {
933 <            QNode h;
934 <            if (node != null && queued) {
935 <                if (node.thread != null) {
936 <                    LockSupport.park();
937 <                    if (Thread.interrupted()) {
938 <                        wasInterrupted = true;
939 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
931 >        boolean interrupted = false;
932 >        int p;
933 >        while ((p = getPhase()) == phase && !interrupted) {
934 >            if (Thread.interrupted())
935 >                interrupted = true;
936 >            else if (node == null)
937 >                node = new QNode(this, phase, true, false, 0, 0);
938 >            else if (!queued)
939 >                queued = tryEnqueue(node);
940              else
941 <                --spins;
941 >                interrupted = node.doWait();
942          }
943          if (node != null)
944              node.thread = null;
945 <        return wasInterrupted;
945 >        if (p != phase || (p = getPhase()) != phase)
946 >            releaseWaiters(phase);
947 >        if (interrupted)
948 >            throw new InterruptedException();
949 >        return p;
950      }
951  
952      /**
953 <     * Messier timeout version
953 >     * Timeout version.
954 >     * @return current phase
955       */
956 <    private void timedWait(Thread thread, int currentPhase, long nanos)
956 >    private int timedWait(int phase, long nanos)
957          throws InterruptedException, TimeoutException {
958 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
958 >        long startTime = System.nanoTime();
959          QNode node = null;
960          boolean queued = false;
961 <        int spins = maxTimedSpins;
962 <        while (phaseOf(state.get()) == currentPhase) {
963 <            QNode h;
964 <            long now = System.nanoTime();
965 <            nanos -= now - lastTime;
966 <            lastTime = now;
967 <            if (nanos <= 0) {
968 <                if (node != null)
969 <                    node.thread = null;
970 <                if (phaseOf(state.get()) == currentPhase)
971 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
961 >        boolean interrupted = false;
962 >        int p;
963 >        while ((p = getPhase()) == phase && !interrupted) {
964 >            if (Thread.interrupted())
965 >                interrupted = true;
966 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
967 >                break;
968 >            else if (node == null)
969 >                node = new QNode(this, phase, true, true, startTime, nanos);
970 >            else if (!queued)
971 >                queued = tryEnqueue(node);
972              else
973 <                --spins;
973 >                interrupted = node.doWait();
974          }
975          if (node != null)
976              node.thread = null;
977 +        if (p != phase || (p = getPhase()) != phase)
978 +            releaseWaiters(phase);
979 +        if (interrupted)
980 +            throw new InterruptedException();
981 +        if (p == phase)
982 +            throw new TimeoutException();
983 +        return p;
984      }
985  
986 < }
986 >    // Unsafe mechanics
987  
988 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
989 +    private static final long stateOffset =
990 +        objectFieldOffset("state", Phaser.class);
991 +
992 +    private final boolean casState(long cmp, long val) {
993 +        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
994 +    }
995 +
996 +    private static long objectFieldOffset(String field, Class<?> klazz) {
997 +        try {
998 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
999 +        } catch (NoSuchFieldException e) {
1000 +            // Convert Exception to corresponding Error
1001 +            NoSuchFieldError error = new NoSuchFieldError(field);
1002 +            error.initCause(e);
1003 +            throw error;
1004 +        }
1005 +    }
1006 +
1007 +    /**
1008 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1009 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1010 +     * into a jdk.
1011 +     *
1012 +     * @return a sun.misc.Unsafe
1013 +     */
1014 +    private static sun.misc.Unsafe getUnsafe() {
1015 +        try {
1016 +            return sun.misc.Unsafe.getUnsafe();
1017 +        } catch (SecurityException se) {
1018 +            try {
1019 +                return java.security.AccessController.doPrivileged
1020 +                    (new java.security
1021 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1022 +                        public sun.misc.Unsafe run() throws Exception {
1023 +                            java.lang.reflect.Field f = sun.misc
1024 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1025 +                            f.setAccessible(true);
1026 +                            return (sun.misc.Unsafe) f.get(null);
1027 +                        }});
1028 +            } catch (java.security.PrivilegedActionException e) {
1029 +                throw new RuntimeException("Could not initialize intrinsics",
1030 +                                           e.getCause());
1031 +            }
1032 +        }
1033 +    }
1034 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines