ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.13 by jsr166, Mon Jul 20 22:40:09 2009 UTC vs.
Revision 1.51 by dl, Sat Nov 13 00:55:51 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@code arrive} and
48 < *       {@code arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method {@code onAdvance}, that also controls termination.
80 < * Overriding this method may be used to similar but more flexible
81 < * effect as providing a barrier action to a CyclicBarrier.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
86 < * execution is complete.  Termination is triggered by executing the
87 < * overridable {@code onAdvance} method that is invoked each time the
64 < * barrier is about to be tripped. When a Phaser is controlling an
65 < * action with a fixed number of iterations, it is often convenient to
66 < * override this method to cause termination when the current phase
67 < * number reaches a threshold. Method {@code forceTermination} is also
68 < * available to abruptly release waiting threads and allow them to
69 < * terminate.
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84 > * often convenient to override this method to cause termination when
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
105 < *
106 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
112 < * a one-shot action serving a variable number of parties. The typical
113 < * idiom is for the method setting this up to first register, then
114 < * start the actions, then deregister, as in:
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117 < * void runTasks(List<Runnable> list) {
117 > * void runTasks(List<Runnable> tasks) {
118   *   final Phaser phaser = new Phaser(1); // "1" to register self
119 < *   for (Runnable r : list) {
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121   *     phaser.register();
122   *     new Thread() {
123   *       public void run() {
124   *         phaser.arriveAndAwaitAdvance(); // await all creation
125 < *         r.run();
105 < *         phaser.arriveAndDeregister();   // signal completion
125 > *         task.run();
126   *       }
127   *     }.start();
128   *   }
129   *
130 < *   doSomethingOnBehalfOfWorkers();
131 < *   phaser.arrive(); // allow threads to start
112 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
113 < *   p = phaser.awaitAdvance(p); // ... and await arrival
114 < *   otherActions(); // do other things while tasks execute
115 < *   phaser.awaitAdvance(p); // await final completion
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132   * }}</pre>
133   *
134   * <p>One way to cause a set of threads to repeatedly perform actions
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137   *  <pre> {@code
138 < * void startTasks(List<Runnable> list, final int iterations) {
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139   *   final Phaser phaser = new Phaser() {
140 < *     public boolean onAdvance(int phase, int registeredParties) {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141   *       return phase >= iterations || registeredParties == 0;
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable r : list) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150 < *           r.run();
150 > *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157   * }}</pre>
158   *
159 < * <p> To create a set of tasks using a tree of Phasers,
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166 > *
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170 > *
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179 > *   }
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182 > *
183 > *
184 > * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186 < * Task class with a constructor accepting a Phaser that
187 < * it registers for upon construction:
186 > * Task class with a constructor accepting a phaser that
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
153 < *       int r = Math.min(i + step, hi);
154 < *       build(actions, i, r, new Phaser(b));
155 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 168 | Line 207 | import java.lang.reflect.*;
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
171 * </pre>
172 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212 < * parties result in IllegalStateExceptions. However, you can and
212 > * parties result in {@code IllegalStateException}. However, you can and
213   * should create tiered phasers to accommodate arbitrarily large sets
214   * of participants.
215 + *
216 + * @since 1.7
217 + * @author Doug Lea
218   */
219   public class Phaser {
220      /*
# Line 187 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
200     *
201     * Note: there are some cheats in arrive() that rely on unarrived
202     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_COUNT      = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final long UNARRIVED_MASK = 0xffffL;
248 >    private static final long PARTIES_MASK   = 0xffff0000L;
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int)(s & ushortMask);
256 >        return (int) (s & UNARRIVED_MASK);
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int)s) >>> 16;
260 >        return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int)(s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
226    private static long stateFor(int phase, int parties, int unarrived) {
227        return ((((long)phase) << 32) | (((long)parties) << 16) |
228                (long)unarrived);
229    }
230
231    private static long trippedStateFor(int phase, int parties) {
232        long lp = (long)parties;
233        return (((long)phase) << 32) | (lp << 16) | lp;
234    }
235
236    /**
237     * Returns message string for bad bounds exceptions
238     */
239    private static String badBounds(int parties, int unarrived) {
240        return ("Attempt to set " + unarrived +
241                " unarrived of " + parties + " parties");
242    }
243
271      /**
272       * The parent of this phaser, or null if none
273       */
274      private final Phaser parent;
275  
276      /**
277 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
277 >     * The root of phaser tree. Equals this if not in a tree.  Used to
278       * support faster state push-down.
279       */
280      private final Phaser root;
281  
255    // Wait queues
256
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292 <        return (phase & 1) == 0? evenQ : oddQ;
292 >        return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        long s;
306 >        int phase, unarrived;
307 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
308 >            if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
309 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
310 >                    if (unarrived == 1) {
311 >                        Phaser par;
312 >                        long p = s & PARTIES_MASK; // unshifted parties field
313 >                        long lu = p >>> PARTIES_SHIFT;
314 >                        int u = (int)lu;
315 >                        int nextPhase = (phase + 1) & MAX_PHASE;
316 >                        long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
317 >                        if ((par = parent) == null) {
318 >                            UNSAFE.compareAndSwapLong
319 >                                (this, stateOffset, s, onAdvance(phase, u)?
320 >                                 next | TERMINATION_PHASE : next);
321 >                            releaseWaiters(phase);
322 >                        }
323 >                        else {
324 >                            par.doArrive(u == 0?
325 >                                         ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
326 >                            if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
327 >                                ((int)(state >>> PHASE_SHIFT) != nextPhase &&
328 >                                 !UNSAFE.compareAndSwapLong(this, stateOffset,
329 >                                                            s, next)))
330 >                                reconcileState();
331 >                        }
332 >                    }
333 >                    break;
334 >                }
335 >            }
336 >            else if (state == s && reconcileState() == s) // recheck
337 >                throw new IllegalStateException(badArrive());
338 >        }
339 >        return phase;
340 >    }
341 >
342 >    /**
343 >     * Returns message string for bounds exceptions on arrival.
344 >     * Declared out of-line from doArrive to reduce string op bulk.
345       */
346 <    private long getReconciledState() {
347 <        return parent == null? state : reconcileState();
346 >    private String badArrive() {
347 >        return ("Attempted arrival of unregistered party for " +
348 >                this.toString());
349      }
350  
351      /**
352 <     * Recursively resolves state.
352 >     * Implementation of register, bulkRegister
353 >     *
354 >     * @param registrations number to add to both parties and unarrived fields
355 >     */
356 >    private int doRegister(int registrations) {
357 >        long adj = (long)registrations; // adjustment to state
358 >        adj |= adj << PARTIES_SHIFT;
359 >        Phaser par = parent;
360 >        long s;
361 >        int phase;
362 >        while ((phase = (int)((s = (par == null? state : reconcileState()))
363 >                              >>> PHASE_SHIFT)) >= 0) {
364 >            int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
365 >            if (parties != 0 && (s & UNARRIVED_MASK) == 0)
366 >                internalAwaitAdvance(phase, null); // wait for onAdvance
367 >            else if (parties + registrations > MAX_COUNT)
368 >                throw new IllegalStateException(badRegister());
369 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
370 >                break;
371 >        }
372 >        return phase;
373 >    }
374 >
375 >    /**
376 >     * Returns message string for bounds exceptions on registration
377 >     */
378 >    private String badRegister() {
379 >        return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380 >                this.toString());
381 >    }
382 >
383 >    /**
384 >     * Recursively resolves lagged phase propagation from root if
385 >     * necessary.
386       */
387      private long reconcileState() {
388 <        Phaser p = parent;
389 <        long s = state;
390 <        if (p != null) {
391 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
392 <                long parentState = p.getReconciledState();
393 <                int parentPhase = phaseOf(parentState);
394 <                int phase = phaseOf(s = state);
395 <                if (phase != parentPhase) {
396 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
397 <                    if (casState(s, next)) {
398 <                        releaseWaiters(phase);
399 <                        s = next;
400 <                    }
388 >        Phaser par = parent;
389 >        if (par == null)
390 >            return state;
391 >        Phaser rt = root;
392 >        long s;
393 >        int phase, rPhase;
394 >        while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
395 >               (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
396 >            if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
397 >                long ps = par.parent == null? par.state : par.reconcileState();
398 >                int pPhase = (int)(ps >>> PHASE_SHIFT);
399 >                if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
400 >                    if (state != s)
401 >                        continue;
402 >                    long p = s & PARTIES_MASK;
403 >                    long next = ((((long) pPhase) << PHASE_SHIFT) |
404 >                                 (p >>> PARTIES_SHIFT) | p);
405 >                    if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 >                        return next;
407                  }
408              }
409 +            if (state == s)
410 +                releaseWaiters(phase); // help release others
411          }
412          return s;
413      }
414  
415      /**
416 <     * Creates a new Phaser without any initially registered parties,
416 >     * Creates a new phaser without any initially registered parties,
417       * initial phase number 0, and no parent. Any thread using this
418 <     * Phaser will need to first register for it.
418 >     * phaser will need to first register for it.
419       */
420      public Phaser() {
421 <        this(null);
421 >        this(null, 0);
422      }
423  
424      /**
425 <     * Creates a new Phaser with the given numbers of registered
425 >     * Creates a new phaser with the given number of registered
426       * unarrived parties, initial phase number 0, and no parent.
427 <     * @param parties the number of parties required to trip barrier.
427 >     *
428 >     * @param parties the number of parties required to trip barrier
429       * @throws IllegalArgumentException if parties less than zero
430 <     * or greater than the maximum number of parties supported.
430 >     * or greater than the maximum number of parties supported
431       */
432      public Phaser(int parties) {
433          this(null, parties);
434      }
435  
436      /**
437 <     * Creates a new Phaser with the given parent, without any
437 >     * Creates a new phaser with the given parent, without any
438       * initially registered parties. If parent is non-null this phaser
439       * is registered with the parent and its initial phase number is
440       * the same as that of parent phaser.
441 <     * @param parent the parent phaser.
441 >     *
442 >     * @param parent the parent phaser
443       */
444      public Phaser(Phaser parent) {
445 <        int phase = 0;
329 <        this.parent = parent;
330 <        if (parent != null) {
331 <            this.root = parent.root;
332 <            phase = parent.register();
333 <        }
334 <        else
335 <            this.root = this;
336 <        this.state = trippedStateFor(phase, 0);
445 >        this(parent, 0);
446      }
447  
448      /**
449 <     * Creates a new Phaser with the given parent and numbers of
450 <     * registered unarrived parties. If parent is non-null this phaser
449 >     * Creates a new phaser with the given parent and number of
450 >     * registered unarrived parties. If parent is non-null, this phaser
451       * is registered with the parent and its initial phase number is
452       * the same as that of parent phaser.
453 <     * @param parent the parent phaser.
454 <     * @param parties the number of parties required to trip barrier.
453 >     *
454 >     * @param parent the parent phaser
455 >     * @param parties the number of parties required to trip barrier
456       * @throws IllegalArgumentException if parties less than zero
457 <     * or greater than the maximum number of parties supported.
457 >     * or greater than the maximum number of parties supported
458       */
459      public Phaser(Phaser parent, int parties) {
460 <        if (parties < 0 || parties > ushortMask)
460 >        if (parties < 0 || parties > MAX_COUNT)
461              throw new IllegalArgumentException("Illegal number of parties");
462 <        int phase = 0;
462 >        int phase;
463          this.parent = parent;
464          if (parent != null) {
465 <            this.root = parent.root;
465 >            Phaser r = parent.root;
466 >            this.root = r;
467 >            this.evenQ = r.evenQ;
468 >            this.oddQ = r.oddQ;
469              phase = parent.register();
470          }
471 <        else
471 >        else {
472              this.root = this;
473 <        this.state = trippedStateFor(phase, parties);
473 >            this.evenQ = new AtomicReference<QNode>();
474 >            this.oddQ = new AtomicReference<QNode>();
475 >            phase = 0;
476 >        }
477 >        long p = (long)parties;
478 >        this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479      }
480  
481      /**
482       * Adds a new unarrived party to this phaser.
483 <     * @return the current barrier phase number upon registration
483 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
484 >     * this method may wait until its completion before registering.
485 >     *
486 >     * @return the arrival phase number to which this registration applied
487       * @throws IllegalStateException if attempting to register more
488 <     * than the maximum supported number of parties.
488 >     * than the maximum supported number of parties
489       */
490      public int register() {
491          return doRegister(1);
# Line 372 | Line 493 | public class Phaser {
493  
494      /**
495       * Adds the given number of new unarrived parties to this phaser.
496 <     * @param parties the number of parties required to trip barrier.
497 <     * @return the current barrier phase number upon registration
496 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
497 >     * this method may wait until its completion before registering.
498 >     *
499 >     * @param parties the number of additional parties required to trip barrier
500 >     * @return the arrival phase number to which this registration applied
501       * @throws IllegalStateException if attempting to register more
502 <     * than the maximum supported number of parties.
502 >     * than the maximum supported number of parties
503 >     * @throws IllegalArgumentException if {@code parties < 0}
504       */
505      public int bulkRegister(int parties) {
506          if (parties < 0)
507              throw new IllegalArgumentException();
508 +        if (parties > MAX_COUNT)
509 +            throw new IllegalStateException(badRegister());
510          if (parties == 0)
511              return getPhase();
512          return doRegister(parties);
513      }
514  
515      /**
389     * Shared code for register, bulkRegister
390     */
391    private int doRegister(int registrations) {
392        int phase;
393        for (;;) {
394            long s = getReconciledState();
395            phase = phaseOf(s);
396            int unarrived = unarrivedOf(s) + registrations;
397            int parties = partiesOf(s) + registrations;
398            if (phase < 0)
399                break;
400            if (parties > ushortMask || unarrived > ushortMask)
401                throw new IllegalStateException(badBounds(parties, unarrived));
402            if (phase == phaseOf(root.state) &&
403                casState(s, stateFor(phase, parties, unarrived)))
404                break;
405        }
406        return phase;
407    }
408
409    /**
516       * Arrives at the barrier, but does not wait for others.  (You can
517 <     * in turn wait for others via {@link #awaitAdvance}).
517 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
518 >     * unenforced usage error for an unregistered party to invoke this
519 >     * method.
520       *
521 <     * @return the barrier phase number upon entry to this method, or a
414 <     * negative value if terminated;
521 >     * @return the arrival phase number, or a negative value if terminated
522       * @throws IllegalStateException if not terminated and the number
523 <     * of unarrived parties would become negative.
523 >     * of unarrived parties would become negative
524       */
525      public int arrive() {
526 <        int phase;
420 <        for (;;) {
421 <            long s = state;
422 <            phase = phaseOf(s);
423 <            if (phase < 0)
424 <                break;
425 <            int parties = partiesOf(s);
426 <            int unarrived = unarrivedOf(s) - 1;
427 <            if (unarrived > 0) {        // Not the last arrival
428 <                if (casState(s, s - 1)) // s-1 adds one arrival
429 <                    break;
430 <            }
431 <            else if (unarrived == 0) {  // the last arrival
432 <                Phaser par = parent;
433 <                if (par == null) {      // directly trip
434 <                    if (casState
435 <                        (s,
436 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
437 <                                         ((phase + 1) & phaseMask), parties))) {
438 <                        releaseWaiters(phase);
439 <                        break;
440 <                    }
441 <                }
442 <                else {                  // cascade to parent
443 <                    if (casState(s, s - 1)) { // zeroes unarrived
444 <                        par.arrive();
445 <                        reconcileState();
446 <                        break;
447 <                    }
448 <                }
449 <            }
450 <            else if (phase != phaseOf(root.state)) // or if unreconciled
451 <                reconcileState();
452 <            else
453 <                throw new IllegalStateException(badBounds(parties, unarrived));
454 <        }
455 <        return phase;
526 >        return doArrive(ONE_ARRIVAL);
527      }
528  
529      /**
530 <     * Arrives at the barrier, and deregisters from it, without
531 <     * waiting for others. Deregistration reduces number of parties
530 >     * Arrives at the barrier and deregisters from it without waiting
531 >     * for others. Deregistration reduces the number of parties
532       * required to trip the barrier in future phases.  If this phaser
533       * has a parent, and deregistration causes this phaser to have
534 <     * zero parties, this phaser is also deregistered from its parent.
534 >     * zero parties, this phaser also arrives at and is deregistered
535 >     * from its parent.  It is an unenforced usage error for an
536 >     * unregistered party to invoke this method.
537       *
538 <     * @return the current barrier phase number upon entry to
466 <     * this method, or a negative value if terminated;
538 >     * @return the arrival phase number, or a negative value if terminated
539       * @throws IllegalStateException if not terminated and the number
540 <     * of registered or unarrived parties would become negative.
540 >     * of registered or unarrived parties would become negative
541       */
542      public int arriveAndDeregister() {
543 <        // similar code to arrive, but too different to merge
472 <        Phaser par = parent;
473 <        int phase;
474 <        for (;;) {
475 <            long s = state;
476 <            phase = phaseOf(s);
477 <            if (phase < 0)
478 <                break;
479 <            int parties = partiesOf(s) - 1;
480 <            int unarrived = unarrivedOf(s) - 1;
481 <            if (parties >= 0) {
482 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
483 <                    if (casState
484 <                        (s,
485 <                         stateFor(phase, parties, unarrived))) {
486 <                        if (unarrived == 0) {
487 <                            par.arriveAndDeregister();
488 <                            reconcileState();
489 <                        }
490 <                        break;
491 <                    }
492 <                    continue;
493 <                }
494 <                if (unarrived == 0) {
495 <                    if (casState
496 <                        (s,
497 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
498 <                                         ((phase + 1) & phaseMask), parties))) {
499 <                        releaseWaiters(phase);
500 <                        break;
501 <                    }
502 <                    continue;
503 <                }
504 <                if (par != null && phase != phaseOf(root.state)) {
505 <                    reconcileState();
506 <                    continue;
507 <                }
508 <            }
509 <            throw new IllegalStateException(badBounds(parties, unarrived));
510 <        }
511 <        return phase;
543 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
544      }
545  
546      /**
547       * Arrives at the barrier and awaits others. Equivalent in effect
548 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
549 <     * await with interruption of timeout, and/or deregister upon
550 <     * arrival, you can arrange them using analogous constructions.
551 <     * @return the phase on entry to this method
548 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
549 >     * interruption or timeout, you can arrange this with an analogous
550 >     * construction using one of the other forms of the {@code
551 >     * awaitAdvance} method.  If instead you need to deregister upon
552 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 >     * usage error for an unregistered party to invoke this method.
554 >     *
555 >     * @return the arrival phase number, or a negative number if terminated
556       * @throws IllegalStateException if not terminated and the number
557 <     * of unarrived parties would become negative.
557 >     * of unarrived parties would become negative
558       */
559      public int arriveAndAwaitAdvance() {
560          return awaitAdvance(arrive());
561      }
562  
563      /**
564 <     * Awaits the phase of the barrier to advance from the given
565 <     * value, or returns immediately if argument is negative or this
566 <     * barrier is terminated.
567 <     * @param phase the phase on entry to this method
568 <     * @return the phase on exit from this method
564 >     * Awaits the phase of the barrier to advance from the given phase
565 >     * value, returning immediately if the current phase of the
566 >     * barrier is not equal to the given phase value or this barrier
567 >     * is terminated.
568 >     *
569 >     * @param phase an arrival phase number, or negative value if
570 >     * terminated; this argument is normally the value returned by a
571 >     * previous call to {@code arrive} or its variants
572 >     * @return the next arrival phase number, or a negative value
573 >     * if terminated or argument is negative
574       */
575      public int awaitAdvance(int phase) {
576          if (phase < 0)
577              return phase;
578 <        long s = getReconciledState();
538 <        int p = phaseOf(s);
578 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579          if (p != phase)
580              return p;
581 <        if (unarrivedOf(s) == 0 && parent != null)
542 <            parent.awaitAdvance(phase);
543 <        // Fall here even if parent waited, to reconcile and help release
544 <        return untimedWait(phase);
581 >        return internalAwaitAdvance(phase, null);
582      }
583  
584      /**
585 <     * Awaits the phase of the barrier to advance from the given
586 <     * value, or returns immediately if argument is negative or this
587 <     * barrier is terminated, or throws InterruptedException if
588 <     * interrupted while waiting.
589 <     * @param phase the phase on entry to this method
590 <     * @return the phase on exit from this method
585 >     * Awaits the phase of the barrier to advance from the given phase
586 >     * value, throwing {@code InterruptedException} if interrupted
587 >     * while waiting, or returning immediately if the current phase of
588 >     * the barrier is not equal to the given phase value or this
589 >     * barrier is terminated.
590 >     *
591 >     * @param phase an arrival phase number, or negative value if
592 >     * terminated; this argument is normally the value returned by a
593 >     * previous call to {@code arrive} or its variants
594 >     * @return the next arrival phase number, or a negative value
595 >     * if terminated or argument is negative
596       * @throws InterruptedException if thread interrupted while waiting
597       */
598      public int awaitAdvanceInterruptibly(int phase)
599          throws InterruptedException {
600          if (phase < 0)
601              return phase;
602 <        long s = getReconciledState();
561 <        int p = phaseOf(s);
602 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603          if (p != phase)
604              return p;
605 <        if (unarrivedOf(s) == 0 && parent != null)
606 <            parent.awaitAdvanceInterruptibly(phase);
607 <        return interruptibleWait(phase);
605 >        QNode node = new QNode(this, phase, true, false, 0L);
606 >        p = internalAwaitAdvance(phase, node);
607 >        if (node.wasInterrupted)
608 >            throw new InterruptedException();
609 >        else
610 >            return p;
611      }
612  
613      /**
614 <     * Awaits the phase of the barrier to advance from the given value
615 <     * or the given timeout elapses, or returns immediately if
616 <     * argument is negative or this barrier is terminated.
617 <     * @param phase the phase on entry to this method
618 <     * @return the phase on exit from this method
614 >     * Awaits the phase of the barrier to advance from the given phase
615 >     * value or the given timeout to elapse, throwing {@code
616 >     * InterruptedException} if interrupted while waiting, or
617 >     * returning immediately if the current phase of the barrier is
618 >     * not equal to the given phase value or this barrier is
619 >     * terminated.
620 >     *
621 >     * @param phase an arrival phase number, or negative value if
622 >     * terminated; this argument is normally the value returned by a
623 >     * previous call to {@code arrive} or its variants
624 >     * @param timeout how long to wait before giving up, in units of
625 >     *        {@code unit}
626 >     * @param unit a {@code TimeUnit} determining how to interpret the
627 >     *        {@code timeout} parameter
628 >     * @return the next arrival phase number, or a negative value
629 >     * if terminated or argument is negative
630       * @throws InterruptedException if thread interrupted while waiting
631       * @throws TimeoutException if timed out while waiting
632       */
633 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
633 >    public int awaitAdvanceInterruptibly(int phase,
634 >                                         long timeout, TimeUnit unit)
635          throws InterruptedException, TimeoutException {
636 +        long nanos = unit.toNanos(timeout);
637          if (phase < 0)
638              return phase;
639 <        long s = getReconciledState();
583 <        int p = phaseOf(s);
639 >        int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640          if (p != phase)
641              return p;
642 <        if (unarrivedOf(s) == 0 && parent != null)
643 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
644 <        return timedWait(phase, unit.toNanos(timeout));
642 >        QNode node = new QNode(this, phase, true, true, nanos);
643 >        p = internalAwaitAdvance(phase, node);
644 >        if (node.wasInterrupted)
645 >            throw new InterruptedException();
646 >        else if (p == phase)
647 >            throw new TimeoutException();
648 >        else
649 >            return p;
650      }
651  
652      /**
# Line 596 | Line 657 | public class Phaser {
657       * unexpected exceptions.
658       */
659      public void forceTermination() {
660 <        for (;;) {
661 <            long s = getReconciledState();
662 <            int phase = phaseOf(s);
663 <            int parties = partiesOf(s);
664 <            int unarrived = unarrivedOf(s);
665 <            if (phase < 0 ||
666 <                casState(s, stateFor(-1, parties, unarrived))) {
606 <                releaseWaiters(0);
607 <                releaseWaiters(1);
608 <                if (parent != null)
609 <                    parent.forceTermination();
610 <                return;
611 <            }
612 <        }
660 >        Phaser r = root;    // force at root then reconcile
661 >        long s;
662 >        while ((s = r.state) >= 0)
663 >            UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 >        reconcileState();
665 >        releaseWaiters(0); // signal all threads
666 >        releaseWaiters(1);
667      }
668  
669      /**
670       * Returns the current phase number. The maximum phase number is
671       * {@code Integer.MAX_VALUE}, after which it restarts at
672       * zero. Upon termination, the phase number is negative.
673 +     *
674       * @return the phase number, or a negative value if terminated
675       */
676      public final int getPhase() {
677 <        return phaseOf(getReconciledState());
623 <    }
624 <
625 <    /**
626 <     * Returns {@code true} if the current phase number equals the given phase.
627 <     * @param phase the phase
628 <     * @return {@code true} if the current phase number equals the given phase
629 <     */
630 <    public final boolean hasPhase(int phase) {
631 <        return phaseOf(getReconciledState()) == phase;
677 >        return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
678      }
679  
680      /**
681       * Returns the number of parties registered at this barrier.
682 +     *
683       * @return the number of parties
684       */
685      public int getRegisteredParties() {
686 <        return partiesOf(state);
686 >        return partiesOf(parent == null? state : reconcileState());
687      }
688  
689      /**
690 <     * Returns the number of parties that have arrived at the current
691 <     * phase of this barrier.
690 >     * Returns the number of registered parties that have arrived at
691 >     * the current phase of this barrier.
692 >     *
693       * @return the number of arrived parties
694       */
695      public int getArrivedParties() {
696 <        return arrivedOf(state);
696 >        return arrivedOf(parent == null? state : reconcileState());
697      }
698  
699      /**
700       * Returns the number of registered parties that have not yet
701       * arrived at the current phase of this barrier.
702 +     *
703       * @return the number of unarrived parties
704       */
705      public int getUnarrivedParties() {
706 <        return unarrivedOf(state);
706 >        return unarrivedOf(parent == null? state : reconcileState());
707      }
708  
709      /**
710 <     * Returns the parent of this phaser, or null if none.
711 <     * @return the parent of this phaser, or null if none
710 >     * Returns the parent of this phaser, or {@code null} if none.
711 >     *
712 >     * @return the parent of this phaser, or {@code null} if none
713       */
714      public Phaser getParent() {
715          return parent;
# Line 668 | Line 718 | public class Phaser {
718      /**
719       * Returns the root ancestor of this phaser, which is the same as
720       * this phaser if it has no parent.
721 +     *
722       * @return the root ancestor of this phaser
723       */
724      public Phaser getRoot() {
# Line 676 | Line 727 | public class Phaser {
727  
728      /**
729       * Returns {@code true} if this barrier has been terminated.
730 +     *
731       * @return {@code true} if this barrier has been terminated
732       */
733      public boolean isTerminated() {
734 <        return getPhase() < 0;
734 >        return (parent == null? state : reconcileState()) < 0;
735      }
736  
737      /**
738 <     * Overridable method to perform an action upon phase advance, and
739 <     * to control termination. This method is invoked whenever the
740 <     * barrier is tripped (and thus all other waiting parties are
741 <     * dormant). If it returns true, then, rather than advance the
742 <     * phase number, this barrier will be set to a final termination
743 <     * state, and subsequent calls to {@code isTerminated} will
744 <     * return true.
738 >     * Overridable method to perform an action upon impending phase
739 >     * advance, and to control termination. This method is invoked
740 >     * upon arrival of the party tripping the barrier (when all other
741 >     * waiting parties are dormant).  If this method returns {@code
742 >     * true}, then, rather than advance the phase number, this barrier
743 >     * will be set to a final termination state, and subsequent calls
744 >     * to {@link #isTerminated} will return true. Any (unchecked)
745 >     * Exception or Error thrown by an invocation of this method is
746 >     * propagated to the party attempting to trip the barrier, in
747 >     * which case no advance occurs.
748       *
749 <     * <p> The default version returns true when the number of
749 >     * <p>The arguments to this method provide the state of the phaser
750 >     * prevailing for the current transition.  The effects of invoking
751 >     * arrival, registration, and waiting methods on this Phaser from
752 >     * within {@code onAdvance} are unspecified and should not be
753 >     * relied on.
754 >     *
755 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
756 >     * {@code onAdvance} is invoked only for its root Phaser on each
757 >     * advance.
758 >     *
759 >     * <p>The default version returns {@code true} when the number of
760       * registered parties is zero. Normally, overrides that arrange
761       * termination for other reasons should also preserve this
762       * property.
763       *
699     * <p> You may override this method to perform an action with side
700     * effects visible to participating tasks, but it is in general
701     * only sensible to do so in designs where all parties register
702     * before any arrive, and all {@code awaitAdvance} at each phase.
703     * Otherwise, you cannot ensure lack of interference. In
704     * particular, this method may be invoked more than once per
705     * transition if other parties successfully register while the
706     * invocation of this method is in progress, thus postponing the
707     * transition until those parties also arrive, re-triggering this
708     * method.
709     *
764       * @param phase the phase number on entering the barrier
765       * @param registeredParties the current number of registered parties
766       * @return {@code true} if this barrier should terminate
# Line 725 | Line 779 | public class Phaser {
779       * @return a string identifying this barrier, as well as its state
780       */
781      public String toString() {
782 <        long s = getReconciledState();
782 >        long s = reconcileState();
783          return super.toString() +
784              "[phase = " + phaseOf(s) +
785              " parties = " + partiesOf(s) +
786              " arrived = " + arrivedOf(s) + "]";
787      }
788  
789 <    // methods for waiting
789 >    /**
790 >     * Removes and signals threads from queue for phase
791 >     */
792 >    private void releaseWaiters(int phase) {
793 >        AtomicReference<QNode> head = queueFor(phase);
794 >        QNode q;
795 >        int p;
796 >        while ((q = head.get()) != null &&
797 >               ((p = q.phase) == phase ||
798 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
799 >            if (head.compareAndSet(q, q.next))
800 >                q.signal();
801 >        }
802 >    }
803 >
804 >    /**
805 >     * Tries to enqueue given node in the appropriate wait queue.
806 >     *
807 >     * @return true if successful
808 >     */
809 >    private boolean tryEnqueue(int phase, QNode node) {
810 >        releaseWaiters(phase-1); // ensure old queue clean
811 >        AtomicReference<QNode> head = queueFor(phase);
812 >        QNode q = head.get();
813 >        return ((q == null || q.phase == phase) &&
814 >                (int)(root.state >>> PHASE_SHIFT) == phase &&
815 >                head.compareAndSet(node.next = q, node));
816 >    }
817 >
818 >    /** The number of CPUs, for spin control */
819 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
820 >
821 >    /**
822 >     * The number of times to spin before blocking while waiting for
823 >     * advance, per arrival while waiting. On multiprocessors, fully
824 >     * blocking and waking up a large number of threads all at once is
825 >     * usually a very slow process, so we use rechargeable spins to
826 >     * avoid it when threads regularly arrive: When a thread in
827 >     * internalAwaitAdvance notices another arrival before blocking,
828 >     * and there appear to be enough CPUs available, it spins
829 >     * SPINS_PER_ARRIVAL more times before continuing to try to
830 >     * block. The value trades off good-citizenship vs big unnecessary
831 >     * slowdowns.
832 >     */
833 >    static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
834 >
835 >    /**
836 >     * Possibly blocks and waits for phase to advance unless aborted.
837 >     *
838 >     * @param phase current phase
839 >     * @param node if nonnull, the wait node to track interrupt and timeout;
840 >     * if null, denotes noninterruptible wait
841 >     * @return current phase
842 >     */
843 >    private int internalAwaitAdvance(int phase, QNode node) {
844 >        Phaser current = this;       // to eventually wait at root if tiered
845 >        Phaser par = parent;
846 >        boolean queued = false;
847 >        int spins = SPINS_PER_ARRIVAL;
848 >        int lastUnarrived = -1;      // to increase spins upon change
849 >        long s;
850 >        int p;
851 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
852 >            int unarrived = (int)(s & UNARRIVED_MASK);
853 >            if (unarrived != lastUnarrived) {
854 >                if ((lastUnarrived = unarrived) < NCPU)
855 >                    spins += SPINS_PER_ARRIVAL;
856 >            }
857 >            else if (unarrived == 0 && par != null) {
858 >                current = par;       // if all arrived, use parent
859 >                par = par.parent;
860 >            }
861 >            else if (spins > 0)
862 >                --spins;
863 >            else if (node == null)
864 >                node = new QNode(this, phase, false, false, 0L);
865 >            else if (node.isReleasable())
866 >                break;
867 >            else if (!queued)
868 >                queued = tryEnqueue(phase, node);
869 >            else {
870 >                try {
871 >                    ForkJoinPool.managedBlock(node);
872 >                } catch (InterruptedException ie) {
873 >                    node.wasInterrupted = true;
874 >                }
875 >            }
876 >        }
877 >        if (node != null) {
878 >            if (node.thread != null)
879 >                node.thread = null;
880 >            if (!node.interruptible && node.wasInterrupted)
881 >                Thread.currentThread().interrupt();
882 >        }
883 >        if (p == phase && parent != null)
884 >            p = (int)(reconcileState() >>> PHASE_SHIFT);
885 >        if (p != phase)
886 >            releaseWaiters(phase);
887 >        return p;
888 >    }
889  
890      /**
891       * Wait nodes for Treiber stack representing wait queue
# Line 740 | Line 893 | public class Phaser {
893      static final class QNode implements ForkJoinPool.ManagedBlocker {
894          final Phaser phaser;
895          final int phase;
743        final long startTime;
744        final long nanos;
745        final boolean timed;
896          final boolean interruptible;
897 <        volatile boolean wasInterrupted = false;
897 >        final boolean timed;
898 >        boolean wasInterrupted;
899 >        long nanos;
900 >        long lastTime;
901          volatile Thread thread; // nulled to cancel wait
902          QNode next;
903 +
904          QNode(Phaser phaser, int phase, boolean interruptible,
905 <              boolean timed, long startTime, long nanos) {
905 >              boolean timed, long nanos) {
906              this.phaser = phaser;
907              this.phase = phase;
754            this.timed = timed;
908              this.interruptible = interruptible;
756            this.startTime = startTime;
909              this.nanos = nanos;
910 +            this.timed = timed;
911 +            this.lastTime = timed? System.nanoTime() : 0L;
912              thread = Thread.currentThread();
913          }
914 +
915          public boolean isReleasable() {
916 <            return (thread == null ||
917 <                    phaser.getPhase() != phase ||
918 <                    (interruptible && wasInterrupted) ||
919 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
916 >            Thread t = thread;
917 >            if (t != null) {
918 >                if (phaser.getPhase() != phase)
919 >                    t = null;
920 >                else {
921 >                    if (Thread.interrupted())
922 >                        wasInterrupted = true;
923 >                    if (interruptible && wasInterrupted)
924 >                        t = null;
925 >                    else if (timed) {
926 >                        if (nanos > 0) {
927 >                            long now = System.nanoTime();
928 >                            nanos -= now - lastTime;
929 >                            lastTime = now;
930 >                        }
931 >                        if (nanos <= 0)
932 >                            t = null;
933 >                    }
934 >                }
935 >                if (t != null)
936 >                    return false;
937 >                thread = null;
938 >            }
939 >            return true;
940          }
941 +
942          public boolean block() {
943 <            if (Thread.interrupted()) {
944 <                wasInterrupted = true;
945 <                if (interruptible)
770 <                    return true;
771 <            }
772 <            if (!timed)
943 >            if (isReleasable())
944 >                return true;
945 >            else if (!timed)
946                  LockSupport.park(this);
947 <            else {
948 <                long waitTime = nanos - (System.nanoTime() - startTime);
776 <                if (waitTime <= 0)
777 <                    return true;
778 <                LockSupport.parkNanos(this, waitTime);
779 <            }
947 >            else if (nanos > 0)
948 >                LockSupport.parkNanos(this, nanos);
949              return isReleasable();
950          }
951 +
952          void signal() {
953              Thread t = thread;
954              if (t != null) {
# Line 786 | Line 956 | public class Phaser {
956                  LockSupport.unpark(t);
957              }
958          }
789        boolean doWait() {
790            if (thread != null) {
791                try {
792                    ForkJoinPool.managedBlock(this, false);
793                } catch (InterruptedException ie) {
794                }
795            }
796            return wasInterrupted;
797        }
798
959      }
960  
961 <    /**
802 <     * Removes and signals waiting threads from wait queue
803 <     */
804 <    private void releaseWaiters(int phase) {
805 <        AtomicReference<QNode> head = queueFor(phase);
806 <        QNode q;
807 <        while ((q = head.get()) != null) {
808 <            if (head.compareAndSet(q, q.next))
809 <                q.signal();
810 <        }
811 <    }
961 >    // Unsafe mechanics
962  
963 <    /**
964 <     * Tries to enqueue given node in the appropriate wait queue
965 <     * @return true if successful
816 <     */
817 <    private boolean tryEnqueue(QNode node) {
818 <        AtomicReference<QNode> head = queueFor(node.phase);
819 <        return head.compareAndSet(node.next = head.get(), node);
820 <    }
821 <
822 <    /**
823 <     * Enqueues node and waits unless aborted or signalled.
824 <     * @return current phase
825 <     */
826 <    private int untimedWait(int phase) {
827 <        QNode node = null;
828 <        boolean queued = false;
829 <        boolean interrupted = false;
830 <        int p;
831 <        while ((p = getPhase()) == phase) {
832 <            if (Thread.interrupted())
833 <                interrupted = true;
834 <            else if (node == null)
835 <                node = new QNode(this, phase, false, false, 0, 0);
836 <            else if (!queued)
837 <                queued = tryEnqueue(node);
838 <            else
839 <                interrupted = node.doWait();
840 <        }
841 <        if (node != null)
842 <            node.thread = null;
843 <        releaseWaiters(phase);
844 <        if (interrupted)
845 <            Thread.currentThread().interrupt();
846 <        return p;
847 <    }
963 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
964 >    private static final long stateOffset =
965 >        objectFieldOffset("state", Phaser.class);
966  
967 <    /**
968 <     * Interruptible version
969 <     * @return current phase
970 <     */
971 <    private int interruptibleWait(int phase) throws InterruptedException {
972 <        QNode node = null;
973 <        boolean queued = false;
974 <        boolean interrupted = false;
975 <        int p;
858 <        while ((p = getPhase()) == phase && !interrupted) {
859 <            if (Thread.interrupted())
860 <                interrupted = true;
861 <            else if (node == null)
862 <                node = new QNode(this, phase, true, false, 0, 0);
863 <            else if (!queued)
864 <                queued = tryEnqueue(node);
865 <            else
866 <                interrupted = node.doWait();
867 <        }
868 <        if (node != null)
869 <            node.thread = null;
870 <        if (p != phase || (p = getPhase()) != phase)
871 <            releaseWaiters(phase);
872 <        if (interrupted)
873 <            throw new InterruptedException();
874 <        return p;
967 >    private static long objectFieldOffset(String field, Class<?> klazz) {
968 >        try {
969 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
970 >        } catch (NoSuchFieldException e) {
971 >            // Convert Exception to corresponding Error
972 >            NoSuchFieldError error = new NoSuchFieldError(field);
973 >            error.initCause(e);
974 >            throw error;
975 >        }
976      }
977  
978      /**
979 <     * Timeout version.
980 <     * @return current phase
979 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
980 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
981 >     * into a jdk.
982 >     *
983 >     * @return a sun.misc.Unsafe
984       */
985 <    private int timedWait(int phase, long nanos)
882 <        throws InterruptedException, TimeoutException {
883 <        long startTime = System.nanoTime();
884 <        QNode node = null;
885 <        boolean queued = false;
886 <        boolean interrupted = false;
887 <        int p;
888 <        while ((p = getPhase()) == phase && !interrupted) {
889 <            if (Thread.interrupted())
890 <                interrupted = true;
891 <            else if (nanos - (System.nanoTime() - startTime) <= 0)
892 <                break;
893 <            else if (node == null)
894 <                node = new QNode(this, phase, true, true, startTime, nanos);
895 <            else if (!queued)
896 <                queued = tryEnqueue(node);
897 <            else
898 <                interrupted = node.doWait();
899 <        }
900 <        if (node != null)
901 <            node.thread = null;
902 <        if (p != phase || (p = getPhase()) != phase)
903 <            releaseWaiters(phase);
904 <        if (interrupted)
905 <            throw new InterruptedException();
906 <        if (p == phase)
907 <            throw new TimeoutException();
908 <        return p;
909 <    }
910 <
911 <    // Temporary Unsafe mechanics for preliminary release
912 <    private static Unsafe getUnsafe() throws Throwable {
985 >    private static sun.misc.Unsafe getUnsafe() {
986          try {
987 <            return Unsafe.getUnsafe();
987 >            return sun.misc.Unsafe.getUnsafe();
988          } catch (SecurityException se) {
989              try {
990                  return java.security.AccessController.doPrivileged
991 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
992 <                        public Unsafe run() throws Exception {
993 <                            return getUnsafePrivileged();
991 >                    (new java.security
992 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
993 >                        public sun.misc.Unsafe run() throws Exception {
994 >                            java.lang.reflect.Field f = sun.misc
995 >                                .Unsafe.class.getDeclaredField("theUnsafe");
996 >                            f.setAccessible(true);
997 >                            return (sun.misc.Unsafe) f.get(null);
998                          }});
999              } catch (java.security.PrivilegedActionException e) {
1000 <                throw e.getCause();
1000 >                throw new RuntimeException("Could not initialize intrinsics",
1001 >                                           e.getCause());
1002              }
1003          }
1004      }
927
928    private static Unsafe getUnsafePrivileged()
929            throws NoSuchFieldException, IllegalAccessException {
930        Field f = Unsafe.class.getDeclaredField("theUnsafe");
931        f.setAccessible(true);
932        return (Unsafe) f.get(null);
933    }
934
935    private static long fieldOffset(String fieldName)
936            throws NoSuchFieldException {
937        return _unsafe.objectFieldOffset
938            (Phaser.class.getDeclaredField(fieldName));
939    }
940
941    static final Unsafe _unsafe;
942    static final long stateOffset;
943
944    static {
945        try {
946            _unsafe = getUnsafe();
947            stateOffset = fieldOffset("state");
948        } catch (Throwable e) {
949            throw new RuntimeException("Could not initialize intrinsics", e);
950        }
951    }
952
953    final boolean casState(long cmp, long val) {
954        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
955    }
1005   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines