ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.2 by jsr166, Fri Jul 25 18:10:41 2008 UTC vs.
Revision 1.57 by dl, Fri Nov 19 16:03:24 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
8 >
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19 > *
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < * <li> The number of parties synchronizing on the barrier may vary
48 < * over time.  A task may register to be a party in a barrier at any
49 < * time, and may deregister upon arriving at the barrier.  As is the
50 < * case with most basic synchronization constructs, registration
51 < * and deregistration affect only internal counts; they do not
52 < * establish any further internal bookkeeping, so tasks cannot query
53 < * whether they are registered.
54 < *
55 < * <li> Each generation has an associated phase value, starting at
56 < * zero, and advancing when all parties reach the barrier (wrapping
57 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
58 < *
59 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
60 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
61 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
62 < * aspects of coordination, that may be invoked independently:
63 < *
64 < * <ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
39 *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
40 *       <tt>arriveAndDeregister</tt> do not block, but return
41 *       the phase value on entry to the method.
42 *
43 *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
44 *       argument indicating the entry phase, and returns when the
45 *       barrier advances to a new phase.
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88 + *
89 + * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 + * in tree structures) to reduce contention. Phasers with large
91 + * numbers of parties that would otherwise experience heavy
92 + * synchronization contention costs may instead be set up so that
93 + * groups of sub-phasers share a common parent.  This may greatly
94 + * increase throughput even though it incurs greater per-operation
95 + * overhead.
96 + *
97 + * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 + * only by registered parties, the current state of a phaser may be
99 + * monitored by any caller.  At any given moment there are {@link
100 + * #getRegisteredParties} parties in total, of which {@link
101 + * #getArrivedParties} have arrived at the current phase ({@link
102 + * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 + * parties arrive, the phase advances.  The values returned by these
104 + * methods may reflect transient states and so are not in general
105 + * useful for synchronization control.  Method {@link #toString}
106 + * returns snapshots of these state queries in a form convenient for
107 + * informal monitoring.
108 + *
109 + * <p><b>Sample usages:</b>
110 + *
111 + * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 + * to control a one-shot action serving a variable number of parties.
113 + * The typical idiom is for the method setting this up to first
114 + * register, then start the actions, then deregister, as in:
115 + *
116 + *  <pre> {@code
117 + * void runTasks(List<Runnable> tasks) {
118 + *   final Phaser phaser = new Phaser(1); // "1" to register self
119 + *   // create and start threads
120 + *   for (Runnable task : tasks) {
121 + *     phaser.register();
122 + *     new Thread() {
123 + *       public void run() {
124 + *         phaser.arriveAndAwaitAdvance(); // await all creation
125 + *         task.run();
126 + *       }
127 + *     }.start();
128 + *   }
129   *
130 < * <li> Barrier actions, performed by the task triggering a phase
131 < * advance while others may be waiting, are arranged by overriding
132 < * method <tt>onAdvance</tt>, that also controls termination.
133 < *
134 < * <li> Phasers may enter a <em>termination</em> state in which all
135 < * await actions immediately return, indicating (via a negative phase
136 < * value) that execution is complete.  Termination is triggered by
137 < * executing the overridable <tt>onAdvance</tt> method that is invoked
138 < * each time the barrier is tripped. When a Phaser is controlling an
139 < * action with a fixed number of iterations, it is often convenient to
140 < * override this method to cause termination when the current phase
141 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
142 < * also available to assist recovery actions upon failure.
143 < *
144 < * <li> Unlike most synchronizers, a Phaser may also be used with
145 < * ForkJoinTasks (as well as plain threads).
146 < *
147 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
148 < * the current thread is interrupted. And unlike the case in
149 < * CyclicBarriers, exceptions encountered while tasks wait
150 < * interruptibly or with timeout do not change the state of the
151 < * barrier. If necessary, you can perform any associated recovery
152 < * within handlers of those exceptions.
153 < *
154 < * </ul>
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132 > * }}</pre>
133 > *
134 > * <p>One way to cause a set of threads to repeatedly perform actions
135 > * for a given number of iterations is to override {@code onAdvance}:
136 > *
137 > *  <pre> {@code
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139 > *   final Phaser phaser = new Phaser() {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141 > *       return phase >= iterations || registeredParties == 0;
142 > *     }
143 > *   };
144 > *   phaser.register();
145 > *   for (final Runnable task : tasks) {
146 > *     phaser.register();
147 > *     new Thread() {
148 > *       public void run() {
149 > *         do {
150 > *           task.run();
151 > *           phaser.arriveAndAwaitAdvance();
152 > *         } while (!phaser.isTerminated());
153 > *       }
154 > *     }.start();
155 > *   }
156 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
157 > * }}</pre>
158   *
159 < * <p><b>Sample usage:</b>
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166 > *
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170 > *
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179 > *   }
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182   *
77 * <p>[todo: non-FJ example]
183   *
184 < * <p> A Phaser may be used to support a style of programming in
185 < * which a task waits for others to complete, without otherwise
186 < * needing to keep track of which tasks it is waiting for. This is
187 < * similar to the "sync" construct in Cilk and "clocks" in X10.
188 < * Special constructions based on such barriers are available using
189 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
190 < * but they can be useful in other contexts as well.  For a simple
191 < * (but not very useful) example, here is a variant of Fibonacci:
192 < *
193 < * <pre>
194 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
96 < *   }
97 < *   protected void compute() {
98 < *     int n = argument;
99 < *     if (n &lt;= 1)
100 < *        result = n;
101 < *     else {
102 < *        Phaser childBarrier = new Phaser(1);
103 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
104 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
105 < *        f1.fork();
106 < *        f2.fork();
107 < *        childBarrier.arriveAndAwait();
108 < *        result = f1.result + f2.result;
184 > * <p>To create a set of tasks using a tree of phasers,
185 > * you could use code of the following form, assuming a
186 > * Task class with a constructor accepting a phaser that
187 > * it registers with upon construction:
188 > *
189 > *  <pre> {@code
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196 < *     parentBarrier.arriveAndDeregister();
196 > *   } else {
197 > *     for (int i = lo; i < hi; ++i)
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202 < * </pre>
202 > * // .. initially called, for n tasks via
203 > * build(new Task[n], 0, n, new Phaser());}</pre>
204 > *
205 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 > * expected barrier synchronization rates. A value as low as four may
207 > * be appropriate for extremely small per-barrier task bodies (thus
208 > * high rates), or up to hundreds for extremely large ones.
209   *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211 < * maximum number of parties to 65535. Attempts to register
212 < * additional parties result in IllegalStateExceptions.  
211 > * maximum number of parties to 65535. Attempts to register additional
212 > * parties result in {@code IllegalStateException}. However, you can and
213 > * should create tiered phasers to accommodate arbitrarily large sets
214 > * of participants.
215 > *
216 > * @since 1.7
217 > * @author Doug Lea
218   */
219   public class Phaser {
220      /*
221       * This class implements an extension of X10 "clocks".  Thanks to
222 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
223 <     * and to Vivek Sarkar for enhancements to extend functionality.
222 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 >     * enhancements to extend functionality.
224       */
225  
226      /**
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229 <     *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
229 >     *
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236 <     * packed into a single AtomicLong. Termination uses the sign bit
237 <     * of 32 bit representation of phase, so phase is set to -1 on
238 <     * termination.
239 <     */
240 <    private final AtomicLong state;
236 >     * packed into a single (atomic) long. Termination uses the sign
237 >     * bit of 32 bit representation of phase, so phase is set to -1 on
238 >     * termination. Good performance relies on keeping state decoding
239 >     * and encoding simple, and keeping race windows short.
240 >     */
241 >    private volatile long state;
242 >
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252  
253 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
144 <     */
145 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
146 <
147 <    private static final int ushortBits = 16;
148 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int)(s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return (int)(s & (ushortMask << 16)) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int)(s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
271 <    private static long stateFor(int phase, int parties, int unarrived) {
272 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
271 >    /**
272 >     * The parent of this phaser, or null if none
273 >     */
274 >    private final Phaser parent;
275 >
276 >    /**
277 >     * The root of phaser tree. Equals this if not in a tree.  Used to
278 >     * support faster state push-down.
279 >     */
280 >    private final Phaser root;
281 >
282 >    /**
283 >     * Heads of Treiber stacks for waiting threads. To eliminate
284 >     * contention when releasing some threads while adding others, we
285 >     * use two of them, alternating across even and odd phases.
286 >     * Subphasers share queues with root to speed up releases.
287 >     */
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290 >
291 >    private AtomicReference<QNode> queueFor(int phase) {
292 >        return ((phase & 1) == 0) ? evenQ : oddQ;
293 >    }
294 >
295 >    /**
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        // assert registrations > 0;
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int phase = (int)(s >>> PHASE_SHIFT);
366 >            if (phase < 0)
367 >                return phase;
368 >            int parties = (int)s >>> PARTIES_SHIFT;
369 >            if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376 >    }
377 >
378 >    /**
379 >     * Returns message string for out of bounds exceptions on registration.
380 >     */
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384      }
385  
386 <    private static IllegalStateException badBounds(int parties, int unarrived) {
387 <        return new IllegalStateException("Attempt to set " + unarrived +
388 <                                         " unarrived of " + parties + " parties");
386 >    /**
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388 >     */
389 >    private long reconcileState() {
390 >        Phaser par = parent;
391 >        long s = state;
392 >        if (par != null) {
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407 >                }
408 >                s = state;
409 >            }
410 >        }
411 >        return s;
412      }
413  
414      /**
415 <     * Creates a new Phaser without any initially registered parties,
416 <     * and initial phase number 0.
415 >     * Creates a new phaser without any initially registered parties,
416 >     * initial phase number 0, and no parent. Any thread using this
417 >     * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        state = new AtomicLong(stateFor(0, 0, 0));
420 >        this(null, 0);
421      }
422  
423      /**
424 <     * Creates a new Phaser with the given numbers of registered
425 <     * unarrived parties and initial phase number 0.
426 <     * @param parties the number of parties required to trip barrier.
424 >     * Creates a new phaser with the given number of registered
425 >     * unarrived parties, initial phase number 0, and no parent.
426 >     *
427 >     * @param parties the number of parties required to trip barrier
428       * @throws IllegalArgumentException if parties less than zero
429 <     * or greater than the maximum number of parties supported.
429 >     * or greater than the maximum number of parties supported
430       */
431      public Phaser(int parties) {
432 <        if (parties < 0 || parties > ushortMask)
432 >        this(null, parties);
433 >    }
434 >
435 >    /**
436 >     * Creates a new phaser with the given parent, without any
437 >     * initially registered parties. If parent is non-null this phaser
438 >     * is registered with the parent and its initial phase number is
439 >     * the same as that of parent phaser.
440 >     *
441 >     * @param parent the parent phaser
442 >     */
443 >    public Phaser(Phaser parent) {
444 >        this(parent, 0);
445 >    }
446 >
447 >    /**
448 >     * Creates a new phaser with the given parent and number of
449 >     * registered unarrived parties. If parent is non-null, this phaser
450 >     * is registered with the parent and its initial phase number is
451 >     * the same as that of parent phaser.
452 >     *
453 >     * @param parent the parent phaser
454 >     * @param parties the number of parties required to trip barrier
455 >     * @throws IllegalArgumentException if parties less than zero
456 >     * or greater than the maximum number of parties supported
457 >     */
458 >    public Phaser(Phaser parent, int parties) {
459 >        if (parties >>> PARTIES_SHIFT != 0)
460              throw new IllegalArgumentException("Illegal number of parties");
461 <        state = new AtomicLong(stateFor(0, parties, parties));
461 >        int phase;
462 >        this.parent = parent;
463 >        if (parent != null) {
464 >            Phaser r = parent.root;
465 >            this.root = r;
466 >            this.evenQ = r.evenQ;
467 >            this.oddQ = r.oddQ;
468 >            phase = parent.register();
469 >        }
470 >        else {
471 >            this.root = this;
472 >            this.evenQ = new AtomicReference<QNode>();
473 >            this.oddQ = new AtomicReference<QNode>();
474 >            phase = 0;
475 >        }
476 >        long p = (long)parties;
477 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478      }
479  
480      /**
481       * Adds a new unarrived party to this phaser.
482 <     * @return the current barrier phase number upon registration
482 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
483 >     * this method may wait until its completion before registering.
484 >     *
485 >     * @return the arrival phase number to which this registration applied
486       * @throws IllegalStateException if attempting to register more
487 <     * than the maximum supported number of parties.
487 >     * than the maximum supported number of parties
488       */
489 <    public int register() { // increment both parties and unarrived
490 <        final AtomicLong state = this.state;
205 <        for (;;) {
206 <            long s = state.get();
207 <            int phase = phaseOf(s);
208 <            int parties = partiesOf(s) + 1;
209 <            int unarrived = unarrivedOf(s) + 1;
210 <            if (parties > ushortMask || unarrived > ushortMask)
211 <                throw badBounds(parties, unarrived);
212 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
213 <                return phase;
214 <        }
489 >    public int register() {
490 >        return doRegister(1);
491      }
492  
493      /**
494 <     * Arrives at the barrier, but does not wait for others.  (You can
495 <     * in turn wait for others via {@link #awaitAdvance}).
494 >     * Adds the given number of new unarrived parties to this phaser.
495 >     * If an ongoing invocation of {@link #onAdvance} is in progress,
496 >     * this method may wait until its completion before registering.
497       *
498 <     * @return the current barrier phase number upon entry to
499 <     * this method, or a negative value if terminated;
500 <     * @throws IllegalStateException if the number of unarrived
501 <     * parties would become negative.
498 >     * @param parties the number of additional parties required to trip barrier
499 >     * @return the arrival phase number to which this registration applied
500 >     * @throws IllegalStateException if attempting to register more
501 >     * than the maximum supported number of parties
502 >     * @throws IllegalArgumentException if {@code parties < 0}
503       */
504 <    public int arrive() { // decrement unarrived. If zero, trip
505 <        final AtomicLong state = this.state;
506 <        for (;;) {
507 <            long s = state.get();
508 <            int phase = phaseOf(s);
509 <            int parties = partiesOf(s);
232 <            int unarrived = unarrivedOf(s) - 1;
233 <            if (unarrived < 0)
234 <                throw badBounds(parties, unarrived);
235 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
238 <            }
239 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
240 <                return phase;
241 <        }
504 >    public int bulkRegister(int parties) {
505 >        if (parties < 0)
506 >            throw new IllegalArgumentException();
507 >        if (parties == 0)
508 >            return getPhase();
509 >        return doRegister(parties);
510      }
511  
512      /**
513 <     * Arrives at the barrier, and deregisters from it, without
514 <     * waiting for others.
513 >     * Arrives at the barrier, but does not wait for others.  (You can
514 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
515 >     * unenforced usage error for an unregistered party to invoke this
516 >     * method.
517       *
518 <     * @return the current barrier phase number upon entry to
519 <     * this method, or a negative value if terminated;
520 <     * @throws IllegalStateException if the number of registered or
521 <     * unarrived parties would become negative.
522 <     */
523 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
524 <        final AtomicLong state = this.state;
525 <        for (;;) {
526 <            long s = state.get();
527 <            int phase = phaseOf(s);
528 <            int parties = partiesOf(s) - 1;
529 <            int unarrived = unarrivedOf(s) - 1;
530 <            if (parties < 0 || unarrived < 0)
531 <                throw badBounds(parties, unarrived);
532 <            if (unarrived == 0 && phase >= 0) {
533 <                trip(phase, parties);
534 <                return phase;
535 <            }
536 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
537 <                return phase;
538 <        }
518 >     * @return the arrival phase number, or a negative value if terminated
519 >     * @throws IllegalStateException if not terminated and the number
520 >     * of unarrived parties would become negative
521 >     */
522 >    public int arrive() {
523 >        return doArrive(ONE_ARRIVAL);
524 >    }
525 >
526 >    /**
527 >     * Arrives at the barrier and deregisters from it without waiting
528 >     * for others. Deregistration reduces the number of parties
529 >     * required to trip the barrier in future phases.  If this phaser
530 >     * has a parent, and deregistration causes this phaser to have
531 >     * zero parties, this phaser also arrives at and is deregistered
532 >     * from its parent.  It is an unenforced usage error for an
533 >     * unregistered party to invoke this method.
534 >     *
535 >     * @return the arrival phase number, or a negative value if terminated
536 >     * @throws IllegalStateException if not terminated and the number
537 >     * of registered or unarrived parties would become negative
538 >     */
539 >    public int arriveAndDeregister() {
540 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
541      }
542  
543      /**
544 <     * Arrives at the barrier and awaits others. Unlike other arrival
545 <     * methods, this method returns the arrival index of the
546 <     * caller. The caller tripping the barrier returns zero, the
547 <     * previous caller 1, and so on.
548 <     * @return the arrival index
549 <     * @throws IllegalStateException if the number of unarrived
550 <     * parties would become negative.
544 >     * Arrives at the barrier and awaits others. Equivalent in effect
545 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
546 >     * interruption or timeout, you can arrange this with an analogous
547 >     * construction using one of the other forms of the {@code
548 >     * awaitAdvance} method.  If instead you need to deregister upon
549 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
550 >     * usage error for an unregistered party to invoke this method.
551 >     *
552 >     * @return the arrival phase number, or a negative number if terminated
553 >     * @throws IllegalStateException if not terminated and the number
554 >     * of unarrived parties would become negative
555       */
556      public int arriveAndAwaitAdvance() {
557 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
557 >        return awaitAdvance(arrive());
558      }
559  
560      /**
561 <     * Awaits the phase of the barrier to advance from the given
562 <     * value, or returns immediately if this barrier is terminated.
563 <     * @param phase the phase on entry to this method
564 <     * @return the phase on exit from this method
561 >     * Awaits the phase of the barrier to advance from the given phase
562 >     * value, returning immediately if the current phase of the
563 >     * barrier is not equal to the given phase value or this barrier
564 >     * is terminated.
565 >     *
566 >     * @param phase an arrival phase number, or negative value if
567 >     * terminated; this argument is normally the value returned by a
568 >     * previous call to {@code arrive} or its variants
569 >     * @return the next arrival phase number, or a negative value
570 >     * if terminated or argument is negative
571       */
572      public int awaitAdvance(int phase) {
573          if (phase < 0)
574              return phase;
575 <        Thread current = Thread.currentThread();
576 <        if (current instanceof ForkJoinWorkerThread)
577 <            return helpingWait(phase);
312 <        if (untimedWait(current, phase, false))
313 <            current.interrupt();
314 <        return phaseOf(state.get());
575 >        long s = (parent == null) ? state : reconcileState();
576 >        int p = (int)(s >>> PHASE_SHIFT);
577 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
578      }
579  
580      /**
581 <     * Awaits the phase of the barrier to advance from the given
582 <     * value, or returns immediately if this barrier is terminated, or
583 <     * throws InterruptedException if interrupted while waiting.
584 <     * @param phase the phase on entry to this method
585 <     * @return the phase on exit from this method
581 >     * Awaits the phase of the barrier to advance from the given phase
582 >     * value, throwing {@code InterruptedException} if interrupted
583 >     * while waiting, or returning immediately if the current phase of
584 >     * the barrier is not equal to the given phase value or this
585 >     * barrier is terminated.
586 >     *
587 >     * @param phase an arrival phase number, or negative value if
588 >     * terminated; this argument is normally the value returned by a
589 >     * previous call to {@code arrive} or its variants
590 >     * @return the next arrival phase number, or a negative value
591 >     * if terminated or argument is negative
592       * @throws InterruptedException if thread interrupted while waiting
593       */
594 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
594 >    public int awaitAdvanceInterruptibly(int phase)
595 >        throws InterruptedException {
596          if (phase < 0)
597              return phase;
598 <        Thread current = Thread.currentThread();
599 <        if (current instanceof ForkJoinWorkerThread)
600 <            return helpingWait(phase);
601 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
602 <            throw new InterruptedException();
603 <        else
604 <            return phaseOf(state.get());
598 >        long s = (parent == null) ? state : reconcileState();
599 >        int p = (int)(s >>> PHASE_SHIFT);
600 >        if (p == phase) {
601 >            QNode node = new QNode(this, phase, true, false, 0L);
602 >            p = internalAwaitAdvance(phase, node);
603 >            if (node.wasInterrupted)
604 >                throw new InterruptedException();
605 >        }
606 >        return p;
607      }
608  
609      /**
610 <     * Awaits the phase of the barrier to advance from the given value
611 <     * or the given timeout elapses, or returns immediately if this
612 <     * barrier is terminated.
613 <     * @param phase the phase on entry to this method
614 <     * @return the phase on exit from this method
610 >     * Awaits the phase of the barrier to advance from the given phase
611 >     * value or the given timeout to elapse, throwing {@code
612 >     * InterruptedException} if interrupted while waiting, or
613 >     * returning immediately if the current phase of the barrier is
614 >     * not equal to the given phase value or this barrier is
615 >     * terminated.
616 >     *
617 >     * @param phase an arrival phase number, or negative value if
618 >     * terminated; this argument is normally the value returned by a
619 >     * previous call to {@code arrive} or its variants
620 >     * @param timeout how long to wait before giving up, in units of
621 >     *        {@code unit}
622 >     * @param unit a {@code TimeUnit} determining how to interpret the
623 >     *        {@code timeout} parameter
624 >     * @return the next arrival phase number, or a negative value
625 >     * if terminated or argument is negative
626       * @throws InterruptedException if thread interrupted while waiting
627       * @throws TimeoutException if timed out while waiting
628       */
629 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
629 >    public int awaitAdvanceInterruptibly(int phase,
630 >                                         long timeout, TimeUnit unit)
631          throws InterruptedException, TimeoutException {
632          if (phase < 0)
633              return phase;
634 <        long nanos = unit.toNanos(timeout);
635 <        Thread current = Thread.currentThread();
636 <        if (current instanceof ForkJoinWorkerThread)
637 <            return timedHelpingWait(phase, nanos);
638 <        timedWait(current, phase, nanos);
639 <        return phaseOf(state.get());
634 >        long s = (parent == null) ? state : reconcileState();
635 >        int p = (int)(s >>> PHASE_SHIFT);
636 >        if (p == phase) {
637 >            long nanos = unit.toNanos(timeout);
638 >            QNode node = new QNode(this, phase, true, true, nanos);
639 >            p = internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >            else if (p == phase)
643 >                throw new TimeoutException();
644 >        }
645 >        return p;
646      }
647  
648      /**
649 <     * Forces this barrier to enter termination state. Counts of
650 <     * arrived and registered parties are unaffected. This method may
651 <     * be useful for coordinating recovery after one or more tasks
649 >     * Forces this barrier to enter termination state.  Counts of
650 >     * arrived and registered parties are unaffected.  If this phaser
651 >     * is a member of a tiered set of phasers, then all of the phasers
652 >     * in the set are terminated.  If this phaser is already
653 >     * terminated, this method has no effect.  This method may be
654 >     * useful for coordinating recovery after one or more tasks
655       * encounter unexpected exceptions.
656       */
657      public void forceTermination() {
658 <        final AtomicLong state = this.state;
659 <        for (;;) {
660 <            long s = state.get();
661 <            int phase = phaseOf(s);
662 <            int parties = partiesOf(s);
663 <            int unarrived = unarrivedOf(s);
664 <            if (phase < 0 ||
665 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
373 <                if (head.get() != null)
374 <                    releaseWaiters(-1);
658 >        // Only need to change root state
659 >        final Phaser root = this.root;
660 >        long s;
661 >        while ((s = root.state) >= 0) {
662 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
663 >                                          s, s | TERMINATION_PHASE)) {
664 >                releaseWaiters(0); // signal all threads
665 >                releaseWaiters(1);
666                  return;
667              }
668          }
669      }
670  
671      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
672       * Returns the current phase number. The maximum phase number is
673 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
673 >     * {@code Integer.MAX_VALUE}, after which it restarts at
674       * zero. Upon termination, the phase number is negative.
675 +     *
676       * @return the phase number, or a negative value if terminated
677       */
678 <    public int getPhase() {
679 <        return phaseOf(state.get());
678 >    public final int getPhase() {
679 >        return (int)(root.state >>> PHASE_SHIFT);
680      }
681  
682      /**
683       * Returns the number of parties registered at this barrier.
684 +     *
685       * @return the number of parties
686       */
687      public int getRegisteredParties() {
688 <        return partiesOf(state.get());
688 >        return partiesOf(state);
689      }
690  
691      /**
692 <     * Returns the number of parties that have arrived at the current
693 <     * phase of this barrier.
692 >     * Returns the number of registered parties that have arrived at
693 >     * the current phase of this barrier.
694 >     *
695       * @return the number of arrived parties
696       */
697      public int getArrivedParties() {
698 <        return arrivedOf(state.get());
698 >        return arrivedOf(parent==null? state : reconcileState());
699      }
700  
701      /**
702       * Returns the number of registered parties that have not yet
703       * arrived at the current phase of this barrier.
704 +     *
705       * @return the number of unarrived parties
706       */
707      public int getUnarrivedParties() {
708 <        return unarrivedOf(state.get());
708 >        return unarrivedOf(parent==null? state : reconcileState());
709      }
710  
711      /**
712 <     * Returns true if this barrier has been terminated.
713 <     * @return true if this barrier has been terminated
712 >     * Returns the parent of this phaser, or {@code null} if none.
713 >     *
714 >     * @return the parent of this phaser, or {@code null} if none
715 >     */
716 >    public Phaser getParent() {
717 >        return parent;
718 >    }
719 >
720 >    /**
721 >     * Returns the root ancestor of this phaser, which is the same as
722 >     * this phaser if it has no parent.
723 >     *
724 >     * @return the root ancestor of this phaser
725 >     */
726 >    public Phaser getRoot() {
727 >        return root;
728 >    }
729 >
730 >    /**
731 >     * Returns {@code true} if this barrier has been terminated.
732 >     *
733 >     * @return {@code true} if this barrier has been terminated
734       */
735      public boolean isTerminated() {
736 <        return phaseOf(state.get()) < 0;
736 >        return root.state < 0L;
737      }
738  
739      /**
740 <     * Overridable method to perform an action upon phase advance, and
741 <     * to control termination. This method is invoked whenever the
742 <     * barrier is tripped (and thus all other waiting parties are
743 <     * dormant). If it returns true, then, rather than advance the
744 <     * phase number, this barrier will be set to a final termination
745 <     * state, and subsequent calls to <tt>isTerminated</tt> will
746 <     * return true.
747 <     *
748 <     * <p> The default version returns true when the number of
740 >     * Overridable method to perform an action upon impending phase
741 >     * advance, and to control termination. This method is invoked
742 >     * upon arrival of the party tripping the barrier (when all other
743 >     * waiting parties are dormant).  If this method returns {@code
744 >     * true}, then, rather than advance the phase number, this barrier
745 >     * will be set to a final termination state, and subsequent calls
746 >     * to {@link #isTerminated} will return true. Any (unchecked)
747 >     * Exception or Error thrown by an invocation of this method is
748 >     * propagated to the party attempting to trip the barrier, in
749 >     * which case no advance occurs.
750 >     *
751 >     * <p>The arguments to this method provide the state of the phaser
752 >     * prevailing for the current transition.  The effects of invoking
753 >     * arrival, registration, and waiting methods on this Phaser from
754 >     * within {@code onAdvance} are unspecified and should not be
755 >     * relied on.
756 >     *
757 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
758 >     * {@code onAdvance} is invoked only for its root Phaser on each
759 >     * advance.
760 >     *
761 >     * <p>The default version returns {@code true} when the number of
762       * registered parties is zero. Normally, overrides that arrange
763       * termination for other reasons should also preserve this
764       * property.
765       *
766       * @param phase the phase number on entering the barrier
767 <     * @param registeredParties the current number of registered
768 <     * parties.
458 <     * @return true if this barrier should terminate
767 >     * @param registeredParties the current number of registered parties
768 >     * @return {@code true} if this barrier should terminate
769       */
770      protected boolean onAdvance(int phase, int registeredParties) {
771          return registeredParties <= 0;
772      }
773  
774      /**
775 <     * Returns a string identifying this barrier, as well as its
775 >     * Returns a string identifying this phaser, as well as its
776       * state.  The state, in brackets, includes the String {@code
777 <     * "phase ="} followed by the phase number, {@code "parties ="}
777 >     * "phase = "} followed by the phase number, {@code "parties = "}
778       * followed by the number of registered parties, and {@code
779 <     * "arrived ="} followed by the number of arrived parties
779 >     * "arrived = "} followed by the number of arrived parties.
780       *
781       * @return a string identifying this barrier, as well as its state
782       */
783      public String toString() {
784 <        long s = state.get();
475 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
784 >        return stateToString(reconcileState());
785      }
786  
478    // methods for tripping and waiting
479
787      /**
788 <     * Advance the current phase (or terminate)
788 >     * Implementation of toString and string-based error messages
789       */
790 <    private void trip(int phase, int parties) {
791 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
792 <        state.set(stateFor(next, parties, parties));
793 <        if (head.get() != null)
794 <            releaseWaiters(next);
790 >    private String stateToString(long s) {
791 >        return super.toString() +
792 >            "[phase = " + phaseOf(s) +
793 >            " parties = " + partiesOf(s) +
794 >            " arrived = " + arrivedOf(s) + "]";
795      }
796  
797 <    private int helpingWait(int phase) {
798 <        final AtomicLong state = this.state;
797 >    // Waiting mechanics
798 >
799 >    /**
800 >     * Removes and signals threads from queue for phase.
801 >     */
802 >    private void releaseWaiters(int phase) {
803 >        AtomicReference<QNode> head = queueFor(phase);
804 >        QNode q;
805          int p;
806 <        while ((p = phaseOf(state.get())) == phase) {
807 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
808 <            if (t != null) {
809 <                if ((p = phaseOf(state.get())) == phase)
810 <                    t.exec();
498 <                else {   // push task and exit if barrier advanced
499 <                    t.fork();
500 <                    break;
501 <                }
502 <            }
806 >        while ((q = head.get()) != null &&
807 >               ((p = q.phase) == phase ||
808 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
809 >            if (head.compareAndSet(q, q.next))
810 >                q.signal();
811          }
504        return p;
812      }
813  
814 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
815 <        final AtomicLong state = this.state;
816 <        long lastTime = System.nanoTime();
814 >    /** The number of CPUs, for spin control */
815 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
816 >
817 >    /**
818 >     * The number of times to spin before blocking while waiting for
819 >     * advance, per arrival while waiting. On multiprocessors, fully
820 >     * blocking and waking up a large number of threads all at once is
821 >     * usually a very slow process, so we use rechargeable spins to
822 >     * avoid it when threads regularly arrive: When a thread in
823 >     * internalAwaitAdvance notices another arrival before blocking,
824 >     * and there appear to be enough CPUs available, it spins
825 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826 >     * uniprocessors, there is at least one intervening Thread.yield
827 >     * before blocking. The value trades off good-citizenship vs big
828 >     * unnecessary slowdowns.
829 >     */
830 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831 >
832 >    /**
833 >     * Possibly blocks and waits for phase to advance unless aborted.
834 >     *
835 >     * @param phase current phase
836 >     * @param node if non-null, the wait node to track interrupt and timeout;
837 >     * if null, denotes noninterruptible wait
838 >     * @return current phase
839 >     */
840 >    private int internalAwaitAdvance(int phase, QNode node) {
841 >        Phaser current = this;       // to eventually wait at root if tiered
842 >        boolean queued = false;      // true when node is enqueued
843 >        int lastUnarrived = -1;      // to increase spins upon change
844 >        int spins = SPINS_PER_ARRIVAL;
845 >        long s;
846          int p;
847 <        while ((p = phaseOf(state.get())) == phase) {
848 <            long now = System.nanoTime();
849 <            nanos -= now - lastTime;
850 <            lastTime = now;
851 <            if (nanos <= 0) {
852 <                if ((p = phaseOf(state.get())) == phase)
853 <                    throw new TimeoutException();
854 <                else
847 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 >            Phaser par;
849 >            int unarrived = (int)s & UNARRIVED_MASK;
850 >            if (unarrived != lastUnarrived) {
851 >                if (lastUnarrived == -1) // ensure old queue clean
852 >                    releaseWaiters(phase-1);
853 >                if ((lastUnarrived = unarrived) < NCPU)
854 >                    spins += SPINS_PER_ARRIVAL;
855 >            }
856 >            else if (unarrived == 0 && (par = current.parent) != null) {
857 >                current = par;       // if all arrived, use parent
858 >                par = par.parent;
859 >                lastUnarrived = -1;
860 >            }
861 >            else if (spins > 0) {
862 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 >                    Thread.yield();  // yield midway through spin
864 >            }
865 >            else if (node == null)   // must be noninterruptible
866 >                node = new QNode(this, phase, false, false, 0L);
867 >            else if (node.isReleasable()) {
868 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869                      break;
870 +                else
871 +                    return phase;    // aborted
872              }
873 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
874 <            if (t != null) {
875 <                if ((p = phaseOf(state.get())) == phase)
876 <                    t.exec();
877 <                else {   // push task and exit if barrier advanced
878 <                    t.fork();
879 <                    break;
873 >            else if (!queued) {      // push onto queue
874 >                AtomicReference<QNode> head = queueFor(phase);
875 >                QNode q = head.get();
876 >                if (q == null || q.phase == phase) {
877 >                    node.next = q;
878 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 >                        break;       // recheck to avoid stale enqueue
880 >                    else
881 >                        queued = head.compareAndSet(q, node);
882 >                }
883 >            }
884 >            else {
885 >                try {
886 >                    ForkJoinPool.managedBlock(node);
887 >                } catch (InterruptedException ie) {
888 >                    node.wasInterrupted = true;
889                  }
890              }
891          }
892 +        releaseWaiters(phase);
893 +        if (node != null)
894 +            node.onRelease();
895          return p;
896      }
897  
898      /**
899 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
899 >     * Wait nodes for Treiber stack representing wait queue
900       */
901 <    static final class QNode {
902 <        QNode next;
541 <        volatile Thread thread; // nulled to cancel wait
901 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
902 >        final Phaser phaser;
903          final int phase;
904 <        QNode(Thread t, int c) {
905 <            thread = t;
906 <            phase = c;
904 >        final boolean interruptible;
905 >        final boolean timed;
906 >        boolean wasInterrupted;
907 >        long nanos;
908 >        long lastTime;
909 >        volatile Thread thread; // nulled to cancel wait
910 >        QNode next;
911 >
912 >        QNode(Phaser phaser, int phase, boolean interruptible,
913 >              boolean timed, long nanos) {
914 >            this.phaser = phaser;
915 >            this.phase = phase;
916 >            this.interruptible = interruptible;
917 >            this.nanos = nanos;
918 >            this.timed = timed;
919 >            this.lastTime = timed? System.nanoTime() : 0L;
920 >            thread = Thread.currentThread();
921          }
547    }
922  
923 <    private void releaseWaiters(int currentPhase) {
924 <        final AtomicReference<QNode> head = this.head;
925 <        QNode p;
926 <        while ((p = head.get()) != null && p.phase != currentPhase) {
927 <            if (head.compareAndSet(p, null)) {
928 <                do {
929 <                    Thread t = p.thread;
930 <                    if (t != null) {
931 <                        p.thread = null;
932 <                        LockSupport.unpark(t);
923 >        public boolean isReleasable() {
924 >            Thread t = thread;
925 >            if (t != null) {
926 >                if (phaser.getPhase() != phase)
927 >                    t = null;
928 >                else {
929 >                    if (Thread.interrupted())
930 >                        wasInterrupted = true;
931 >                    if (interruptible && wasInterrupted)
932 >                        t = null;
933 >                    else if (timed) {
934 >                        if (nanos > 0) {
935 >                            long now = System.nanoTime();
936 >                            nanos -= now - lastTime;
937 >                            lastTime = now;
938 >                        }
939 >                        if (nanos <= 0)
940 >                            t = null;
941                      }
942 <                } while ((p = p.next) != null);
942 >                }
943 >                if (t != null)
944 >                    return false;
945 >                thread = null;
946              }
947 +            return true;
948          }
563    }
949  
950 <    /** The number of CPUs, for spin control */
951 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
950 >        public boolean block() {
951 >            if (isReleasable())
952 >                return true;
953 >            else if (!timed)
954 >                LockSupport.park(this);
955 >            else if (nanos > 0)
956 >                LockSupport.parkNanos(this, nanos);
957 >            return isReleasable();
958 >        }
959  
960 <    /**
961 <     * The number of times to spin before blocking in timed waits.
962 <     * The value is empirically derived.
963 <     */
964 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
960 >        void signal() {
961 >            Thread t = thread;
962 >            if (t != null) {
963 >                thread = null;
964 >                LockSupport.unpark(t);
965 >            }
966 >        }
967  
968 <    /**
969 <     * The number of times to spin before blocking in untimed waits.
970 <     * This is greater than timed value because untimed waits spin
971 <     * faster since they don't need to check times on each spin.
972 <     */
973 <    static final int maxUntimedSpins = maxTimedSpins * 32;
968 >        void onRelease() { // actions upon return from internalAwaitAdvance
969 >            if (!interruptible && wasInterrupted)
970 >                Thread.currentThread().interrupt();
971 >            if (thread != null)
972 >                thread = null;
973 >        }
974  
975 <    /**
582 <     * The number of nanoseconds for which it is faster to spin
583 <     * rather than to use timed park. A rough estimate suffices.
584 <     */
585 <    static final long spinForTimeoutThreshold = 1000L;
975 >    }
976  
977 <    /**
978 <     * Enqueues node and waits unless aborted or signalled.
979 <     */
980 <    private boolean untimedWait(Thread thread, int currentPhase,
981 <                               boolean abortOnInterrupt) {
982 <        final AtomicReference<QNode> head = this.head;
983 <        final AtomicLong state = this.state;
984 <        boolean wasInterrupted = false;
985 <        QNode node = null;
986 <        boolean queued = false;
987 <        int spins = maxUntimedSpins;
988 <        while (phaseOf(state.get()) == currentPhase) {
989 <            QNode h;
990 <            if (node != null && queued) {
601 <                if (node.thread != null) {
602 <                    LockSupport.park();
603 <                    if (Thread.interrupted()) {
604 <                        wasInterrupted = true;
605 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
627 <            else
628 <                --spins;
977 >    // Unsafe mechanics
978 >
979 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
980 >    private static final long stateOffset =
981 >        objectFieldOffset("state", Phaser.class);
982 >
983 >    private static long objectFieldOffset(String field, Class<?> klazz) {
984 >        try {
985 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
986 >        } catch (NoSuchFieldException e) {
987 >            // Convert Exception to corresponding Error
988 >            NoSuchFieldError error = new NoSuchFieldError(field);
989 >            error.initCause(e);
990 >            throw error;
991          }
630        if (node != null)
631            node.thread = null;
632        return wasInterrupted;
992      }
993  
994      /**
995 <     * Messier timeout version
995 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
996 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
997 >     * into a jdk.
998 >     *
999 >     * @return a sun.misc.Unsafe
1000       */
1001 <    private void timedWait(Thread thread, int currentPhase, long nanos)
1002 <        throws InterruptedException, TimeoutException {
1003 <        final AtomicReference<QNode> head = this.head;
1004 <        final AtomicLong state = this.state;
1005 <        long lastTime = System.nanoTime();
1006 <        QNode node = null;
1007 <        boolean queued = false;
1008 <        int spins = maxTimedSpins;
1009 <        while (phaseOf(state.get()) == currentPhase) {
1010 <            QNode h;
1011 <            long now = System.nanoTime();
1012 <            nanos -= now - lastTime;
1013 <            lastTime = now;
1014 <            if (nanos <= 0) {
1015 <                if (node != null)
1016 <                    node.thread = null;
1017 <                if (phaseOf(state.get()) == currentPhase)
655 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
1001 >    private static sun.misc.Unsafe getUnsafe() {
1002 >        try {
1003 >            return sun.misc.Unsafe.getUnsafe();
1004 >        } catch (SecurityException se) {
1005 >            try {
1006 >                return java.security.AccessController.doPrivileged
1007 >                    (new java.security
1008 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1009 >                        public sun.misc.Unsafe run() throws Exception {
1010 >                            java.lang.reflect.Field f = sun.misc
1011 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1012 >                            f.setAccessible(true);
1013 >                            return (sun.misc.Unsafe) f.get(null);
1014 >                        }});
1015 >            } catch (java.security.PrivilegedActionException e) {
1016 >                throw new RuntimeException("Could not initialize intrinsics",
1017 >                                           e.getCause());
1018              }
670            else if ((h = head.get()) != null && h.phase != currentPhase) {
671                if (phaseOf(state.get()) == currentPhase) { // must recheck
672                    if (head.compareAndSet(h, h.next)) {
673                        Thread t = h.thread; // help clear out old waiters
674                        if (t != null) {
675                            h.thread = null;
676                            LockSupport.unpark(t);
677                        }
678                    }
679                }
680                else
681                    break;
682            }
683            else if (node != null)
684                queued = head.compareAndSet(node.next = h, node);
685            else if (spins <= 0)
686                node = new QNode(thread, currentPhase);
687            else
688                --spins;
1019          }
690        if (node != null)
691            node.thread = null;
1020      }
693
1021   }
695

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines