ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.2 by jsr166, Fri Jul 25 18:10:41 2008 UTC vs.
Revision 1.75 by dl, Wed Sep 21 12:30:39 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
8 >
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a phaser has an associated phase number. The phase
38 > * number starts at zero, and advances when all parties arrive at the
39 > * phaser, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a phaser and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival.  These methods
49 > *       do not block, but return an associated <em>arrival phase
50 > *       number</em>; that is, the phase number of the phaser to which
51 > *       the arrival applied. When the final party for a given phase
52 > *       arrives, an optional action is performed and the phase
53 > *       advances.  These actions are performed by the party
54 > *       triggering a phase advance, and are arranged by overriding
55 > *       method {@link #onAdvance(int, int)}, which also controls
56 > *       termination. Overriding this method is similar to, but more
57 > *       flexible than, providing a barrier action to a {@code
58 > *       CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the phaser advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the phaser. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 + * state, that may be checked using method {@link #isTerminated}. Upon
79 + * termination, all synchronization methods immediately return without
80 + * waiting for advance, as indicated by a negative return value.
81 + * Similarly, attempts to register upon termination have no effect.
82 + * Termination is triggered when an invocation of {@code onAdvance}
83 + * returns {@code true}. The default implementation returns {@code
84 + * true} if a deregistration has caused the number of registered
85 + * parties to become zero.  As illustrated below, when phasers control
86 + * actions with a fixed number of iterations, it is often convenient
87 + * to override this method to cause termination when the current phase
88 + * number reaches a threshold. Method {@link #forceTermination} is
89 + * also available to abruptly release waiting threads and allow them
90 + * to terminate.
91   *
92 < * <li> Barrier actions, performed by the task triggering a phase
93 < * advance while others may be waiting, are arranged by overriding
94 < * method <tt>onAdvance</tt>, that also controls termination.
95 < *
96 < * <li> Phasers may enter a <em>termination</em> state in which all
97 < * await actions immediately return, indicating (via a negative phase
98 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
92 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 > * constructed in tree structures) to reduce contention. Phasers with
94 > * large numbers of parties that would otherwise experience heavy
95 > * synchronization contention costs may instead be set up so that
96 > * groups of sub-phasers share a common parent.  This may greatly
97 > * increase throughput even though it incurs greater per-operation
98 > * overhead.
99   *
100 < * </ul>
100 > * <p>In a tree of tiered phasers, registration and deregistration of
101 > * child phasers with their parent are managed automatically.
102 > * Whenever the number of registered parties of a child phaser becomes
103 > * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 > * constructor, {@link #register}, or {@link #bulkRegister}), the
105 > * child phaser is registered with its parent.  Whenever the number of
106 > * registered parties becomes zero as the result of an invocation of
107 > * {@link #arriveAndDeregister}, the child phaser is deregistered
108 > * from its parent.
109 > *
110 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 > * only by registered parties, the current state of a phaser may be
112 > * monitored by any caller.  At any given moment there are {@link
113 > * #getRegisteredParties} parties in total, of which {@link
114 > * #getArrivedParties} have arrived at the current phase ({@link
115 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
116 > * parties arrive, the phase advances.  The values returned by these
117 > * methods may reflect transient states and so are not in general
118 > * useful for synchronization control.  Method {@link #toString}
119 > * returns snapshots of these state queries in a form convenient for
120 > * informal monitoring.
121 > *
122 > * <p><b>Sample usages:</b>
123 > *
124 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 > * to control a one-shot action serving a variable number of parties.
126 > * The typical idiom is for the method setting this up to first
127 > * register, then start the actions, then deregister, as in:
128 > *
129 > *  <pre> {@code
130 > * void runTasks(List<Runnable> tasks) {
131 > *   final Phaser phaser = new Phaser(1); // "1" to register self
132 > *   // create and start threads
133 > *   for (final Runnable task : tasks) {
134 > *     phaser.register();
135 > *     new Thread() {
136 > *       public void run() {
137 > *         phaser.arriveAndAwaitAdvance(); // await all creation
138 > *         task.run();
139 > *       }
140 > *     }.start();
141 > *   }
142 > *
143 > *   // allow threads to start and deregister self
144 > *   phaser.arriveAndDeregister();
145 > * }}</pre>
146 > *
147 > * <p>One way to cause a set of threads to repeatedly perform actions
148 > * for a given number of iterations is to override {@code onAdvance}:
149 > *
150 > *  <pre> {@code
151 > * void startTasks(List<Runnable> tasks, final int iterations) {
152 > *   final Phaser phaser = new Phaser() {
153 > *     protected boolean onAdvance(int phase, int registeredParties) {
154 > *       return phase >= iterations || registeredParties == 0;
155 > *     }
156 > *   };
157 > *   phaser.register();
158 > *   for (final Runnable task : tasks) {
159 > *     phaser.register();
160 > *     new Thread() {
161 > *       public void run() {
162 > *         do {
163 > *           task.run();
164 > *           phaser.arriveAndAwaitAdvance();
165 > *         } while (!phaser.isTerminated());
166 > *       }
167 > *     }.start();
168 > *   }
169 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
170 > * }}</pre>
171   *
172 < * <p><b>Sample usage:</b>
172 > * If the main task must later await termination, it
173 > * may re-register and then execute a similar loop:
174 > *  <pre> {@code
175 > *   // ...
176 > *   phaser.register();
177 > *   while (!phaser.isTerminated())
178 > *     phaser.arriveAndAwaitAdvance();}</pre>
179   *
180 < * <p>[todo: non-FJ example]
180 > * <p>Related constructions may be used to await particular phase numbers
181 > * in contexts where you are sure that the phase will never wrap around
182 > * {@code Integer.MAX_VALUE}. For example:
183   *
184 < * <p> A Phaser may be used to support a style of programming in
185 < * which a task waits for others to complete, without otherwise
186 < * needing to keep track of which tasks it is waiting for. This is
187 < * similar to the "sync" construct in Cilk and "clocks" in X10.
188 < * Special constructions based on such barriers are available using
189 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
190 < * but they can be useful in other contexts as well.  For a simple
191 < * (but not very useful) example, here is a variant of Fibonacci:
87 < *
88 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
184 > *  <pre> {@code
185 > * void awaitPhase(Phaser phaser, int phase) {
186 > *   int p = phaser.register(); // assumes caller not already registered
187 > *   while (p < phase) {
188 > *     if (phaser.isTerminated())
189 > *       // ... deal with unexpected termination
190 > *     else
191 > *       p = phaser.arriveAndAwaitAdvance();
192   *   }
193 < *   protected void compute() {
194 < *     int n = argument;
195 < *     if (n &lt;= 1)
196 < *        result = n;
197 < *     else {
198 < *        Phaser childBarrier = new Phaser(1);
199 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
200 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
201 < *        f1.fork();
202 < *        f2.fork();
203 < *        childBarrier.arriveAndAwait();
204 < *        result = f1.result + f2.result;
193 > *   phaser.arriveAndDeregister();
194 > * }}</pre>
195 > *
196 > *
197 > * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 > * could use code of the following form, assuming a Task class with a
199 > * constructor accepting a {@code Phaser} that it registers with upon
200 > * construction. After invocation of {@code build(new Task[n], 0, n,
201 > * new Phaser())}, these tasks could then be started, for example by
202 > * submitting to a pool:
203 > *
204 > *  <pre> {@code
205 > * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 > *   if (hi - lo > TASKS_PER_PHASER) {
207 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
209 > *       build(tasks, i, j, new Phaser(ph));
210   *     }
211 < *     parentBarrier.arriveAndDeregister();
211 > *   } else {
212 > *     for (int i = lo; i < hi; ++i)
213 > *       tasks[i] = new Task(ph);
214 > *       // assumes new Task(ph) performs ph.register()
215   *   }
216 < * }
217 < * </pre>
216 > * }}</pre>
217 > *
218 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 > * expected synchronization rates. A value as low as four may
220 > * be appropriate for extremely small per-phase task bodies (thus
221 > * high rates), or up to hundreds for extremely large ones.
222   *
223   * <p><b>Implementation notes</b>: This implementation restricts the
224 < * maximum number of parties to 65535. Attempts to register
225 < * additional parties result in IllegalStateExceptions.  
224 > * maximum number of parties to 65535. Attempts to register additional
225 > * parties result in {@code IllegalStateException}. However, you can and
226 > * should create tiered phasers to accommodate arbitrarily large sets
227 > * of participants.
228 > *
229 > * @since 1.7
230 > * @author Doug Lea
231   */
232   public class Phaser {
233      /*
234       * This class implements an extension of X10 "clocks".  Thanks to
235 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
236 <     * and to Vivek Sarkar for enhancements to extend functionality.
235 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 >     * enhancements to extend functionality.
237       */
238  
239      /**
240 <     * Barrier state representation. Conceptually, a barrier contains
128 <     * four values:
129 <     *
130 <     * * parties -- the number of parties to wait (16 bits)
131 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
132 <     * * phase -- the generation of the barrier (31 bits)
133 <     * * terminated -- set if barrier is terminated (1 bit)
240 >     * Primary state representation, holding four bit-fields:
241       *
242 <     * However, to efficiently maintain atomicity, these values are
243 <     * packed into a single AtomicLong. Termination uses the sign bit
244 <     * of 32 bit representation of phase, so phase is set to -1 on
245 <     * termination.
246 <     */
247 <    private final AtomicLong state;
248 <
249 <    /**
250 <     * Head of Treiber stack for waiting nonFJ threads.
251 <     */
252 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
242 >     * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
243 >     * parties    -- the number of parties to wait            (bits 16-31)
244 >     * phase      -- the generation of the barrier            (bits 32-62)
245 >     * terminated -- set if barrier is terminated             (bit  63 / sign)
246 >     *
247 >     * Except that a phaser with no registered parties is
248 >     * distinguished by the otherwise illegal state of having zero
249 >     * parties and one unarrived parties (encoded as EMPTY below).
250 >     *
251 >     * To efficiently maintain atomicity, these values are packed into
252 >     * a single (atomic) long. Good performance relies on keeping
253 >     * state decoding and encoding simple, and keeping race windows
254 >     * short.
255 >     *
256 >     * All state updates are performed via CAS except initial
257 >     * registration of a sub-phaser (i.e., one with a non-null
258 >     * parent).  In this (relatively rare) case, we use built-in
259 >     * synchronization to lock while first registering with its
260 >     * parent.
261 >     *
262 >     * The phase of a subphaser is allowed to lag that of its
263 >     * ancestors until it is actually accessed -- see method
264 >     * reconcileState.
265 >     */
266 >    private volatile long state;
267 >
268 >    private static final int  MAX_PARTIES     = 0xffff;
269 >    private static final int  MAX_PHASE       = Integer.MAX_VALUE;
270 >    private static final int  PARTIES_SHIFT   = 16;
271 >    private static final int  PHASE_SHIFT     = 32;
272 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
273 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
274 >    private static final long TERMINATION_BIT = 1L << 63;
275 >
276 >    // some special values
277 >    private static final int  ONE_ARRIVAL     = 1;
278 >    private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
279 >    private static final int  EMPTY           = 1;
280  
281 <    private static final int ushortBits = 16;
148 <    private static final int ushortMask =  (1 << ushortBits) - 1;
149 <    private static final int phaseMask = 0x7fffffff;
281 >    // The following unpacking methods are usually manually inlined
282  
283      private static int unarrivedOf(long s) {
284 <        return (int)(s & ushortMask);
284 >        int counts = (int)s;
285 >        return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
286      }
287  
288      private static int partiesOf(long s) {
289 <        return (int)(s & (ushortMask << 16)) >>> 16;
289 >        return (int)s >>> PARTIES_SHIFT;
290      }
291  
292      private static int phaseOf(long s) {
293 <        return (int)(s >>> 32);
293 >        return (int)(s >>> PHASE_SHIFT);
294      }
295  
296      private static int arrivedOf(long s) {
297 <        return partiesOf(s) - unarrivedOf(s);
297 >        int counts = (int)s;
298 >        return (counts == EMPTY) ? 0 :
299 >            (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
300      }
301  
302 <    private static long stateFor(int phase, int parties, int unarrived) {
303 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
304 <    }
302 >    /**
303 >     * The parent of this phaser, or null if none
304 >     */
305 >    private final Phaser parent;
306  
307 <    private static IllegalStateException badBounds(int parties, int unarrived) {
308 <        return new IllegalStateException("Attempt to set " + unarrived +
309 <                                         " unarrived of " + parties + " parties");
310 <    }
307 >    /**
308 >     * The root of phaser tree. Equals this if not in a tree.
309 >     */
310 >    private final Phaser root;
311  
312      /**
313 <     * Creates a new Phaser without any initially registered parties,
314 <     * and initial phase number 0.
313 >     * Heads of Treiber stacks for waiting threads. To eliminate
314 >     * contention when releasing some threads while adding others, we
315 >     * use two of them, alternating across even and odd phases.
316 >     * Subphasers share queues with root to speed up releases.
317       */
318 <    public Phaser() {
319 <        state = new AtomicLong(stateFor(0, 0, 0));
318 >    private final AtomicReference<QNode> evenQ;
319 >    private final AtomicReference<QNode> oddQ;
320 >
321 >    private AtomicReference<QNode> queueFor(int phase) {
322 >        return ((phase & 1) == 0) ? evenQ : oddQ;
323      }
324  
325      /**
326 <     * Creates a new Phaser with the given numbers of registered
186 <     * unarrived parties and initial phase number 0.
187 <     * @param parties the number of parties required to trip barrier.
188 <     * @throws IllegalArgumentException if parties less than zero
189 <     * or greater than the maximum number of parties supported.
326 >     * Returns message string for bounds exceptions on arrival.
327       */
328 <    public Phaser(int parties) {
329 <        if (parties < 0 || parties > ushortMask)
330 <            throw new IllegalArgumentException("Illegal number of parties");
194 <        state = new AtomicLong(stateFor(0, parties, parties));
328 >    private String badArrive(long s) {
329 >        return "Attempted arrival of unregistered party for " +
330 >            stateToString(s);
331      }
332  
333      /**
334 <     * Adds a new unarrived party to this phaser.
199 <     * @return the current barrier phase number upon registration
200 <     * @throws IllegalStateException if attempting to register more
201 <     * than the maximum supported number of parties.
334 >     * Returns message string for bounds exceptions on registration.
335       */
336 <    public int register() { // increment both parties and unarrived
337 <        final AtomicLong state = this.state;
338 <        for (;;) {
206 <            long s = state.get();
207 <            int phase = phaseOf(s);
208 <            int parties = partiesOf(s) + 1;
209 <            int unarrived = unarrivedOf(s) + 1;
210 <            if (parties > ushortMask || unarrived > ushortMask)
211 <                throw badBounds(parties, unarrived);
212 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
213 <                return phase;
214 <        }
336 >    private String badRegister(long s) {
337 >        return "Attempt to register more than " +
338 >            MAX_PARTIES + " parties for " + stateToString(s);
339      }
340  
341      /**
342 <     * Arrives at the barrier, but does not wait for others.  (You can
343 <     * in turn wait for others via {@link #awaitAdvance}).
342 >     * Main implementation for methods arrive and arriveAndDeregister.
343 >     * Manually tuned to speed up and minimize race windows for the
344 >     * common case of just decrementing unarrived field.
345       *
346 <     * @return the current barrier phase number upon entry to
222 <     * this method, or a negative value if terminated;
223 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
346 >     * @param deregister false for arrive, true for arriveAndDeregister
347       */
348 <    public int arrive() { // decrement unarrived. If zero, trip
349 <        final AtomicLong state = this.state;
348 >    private int doArrive(boolean deregister) {
349 >        int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
350 >        final Phaser root = this.root;
351          for (;;) {
352 <            long s = state.get();
353 <            int phase = phaseOf(s);
354 <            int parties = partiesOf(s);
355 <            int unarrived = unarrivedOf(s) - 1;
356 <            if (unarrived < 0)
234 <                throw badBounds(parties, unarrived);
235 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
352 >            long s = (root == this) ? state : reconcileState();
353 >            int phase = (int)(s >>> PHASE_SHIFT);
354 >            int counts = (int)s;
355 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
356 >            if (phase < 0)
357                  return phase;
358 +            else if (counts == EMPTY || unarrived < 0) {
359 +                if (root == this || reconcileState() == s)
360 +                    throw new IllegalStateException(badArrive(s));
361              }
362 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
362 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
363 >                long n = s & PARTIES_MASK;  // base of next state
364 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
365 >                if (unarrived == 0) {
366 >                    if (root == this) {
367 >                        if (onAdvance(phase, nextUnarrived))
368 >                            n |= TERMINATION_BIT;
369 >                        else if (nextUnarrived == 0)
370 >                            n |= EMPTY;
371 >                        else
372 >                            n |= nextUnarrived;
373 >                        n |= (long)((phase + 1) & MAX_PHASE) << PHASE_SHIFT;
374 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
375 >                    }
376 >                    else if (nextUnarrived == 0) { // propagate deregistration
377 >                        phase = parent.doArrive(true);
378 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
379 >                                                  s, s | EMPTY);
380 >                    }
381 >                    else
382 >                        phase = parent.doArrive(false);
383 >                    releaseWaiters(phase);
384 >                }
385                  return phase;
386 +            }
387          }
388      }
389  
390      /**
391 <     * Arrives at the barrier, and deregisters from it, without
246 <     * waiting for others.
391 >     * Implementation of register, bulkRegister
392       *
393 <     * @return the current barrier phase number upon entry to
394 <     * this method, or a negative value if terminated;
250 <     * @throws IllegalStateException if the number of registered or
251 <     * unarrived parties would become negative.
393 >     * @param registrations number to add to both parties and
394 >     * unarrived fields. Must be greater than zero.
395       */
396 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
397 <        final AtomicLong state = this.state;
396 >    private int doRegister(int registrations) {
397 >        // adjustment to state
398 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
399 >        final Phaser parent = this.parent;
400 >        int phase;
401          for (;;) {
402 <            long s = state.get();
403 <            int phase = phaseOf(s);
404 <            int parties = partiesOf(s) - 1;
405 <            int unarrived = unarrivedOf(s) - 1;
406 <            if (parties < 0 || unarrived < 0)
407 <                throw badBounds(parties, unarrived);
408 <            if (unarrived == 0 && phase >= 0) {
409 <                trip(phase, parties);
410 <                return phase;
402 >            long s = (parent == null) ? state : reconcileState();
403 >            int counts = (int)s;
404 >            int parties = counts >>> PARTIES_SHIFT;
405 >            int unarrived = counts & UNARRIVED_MASK;
406 >            if (registrations > MAX_PARTIES - parties)
407 >                throw new IllegalStateException(badRegister(s));
408 >            else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
409 >                break;
410 >            else if (counts != EMPTY) {             // not 1st registration
411 >                if (parent == null || reconcileState() == s) {
412 >                    if (unarrived == 0)             // wait out advance
413 >                        root.internalAwaitAdvance(phase, null);
414 >                    else if (UNSAFE.compareAndSwapLong(this, stateOffset,
415 >                                                       s, s + adj))
416 >                        break;
417 >                }
418              }
419 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
420 <                return phase;
419 >            else if (parent == null) {              // 1st root registration
420 >                long next = ((long)phase << PHASE_SHIFT) | adj;
421 >                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
422 >                    break;
423 >            }
424 >            else {
425 >                synchronized (this) {               // 1st sub registration
426 >                    if (state == s) {               // recheck under lock
427 >                        parent.doRegister(1);
428 >                        do {                        // force current phase
429 >                            phase = (int)(root.state >>> PHASE_SHIFT);
430 >                            // assert phase < 0 || (int)state == EMPTY;
431 >                        } while (!UNSAFE.compareAndSwapLong
432 >                                 (this, stateOffset, state,
433 >                                  ((long)phase << PHASE_SHIFT) | adj));
434 >                        break;
435 >                    }
436 >                }
437 >            }
438 >        }
439 >        return phase;
440 >    }
441 >
442 >    /**
443 >     * Resolves lagged phase propagation from root if necessary.
444 >     * Reconciliation normally occurs when root has advanced but
445 >     * subphasers have not yet done so, in which case they must finish
446 >     * their own advance by setting unarrived to parties (or if
447 >     * parties is zero, resetting to unregistered EMPTY state).
448 >     * However, this method may also be called when "floating"
449 >     * subphasers with possibly some unarrived parties are merely
450 >     * catching up to current phase, in which case counts are
451 >     * unaffected.
452 >     *
453 >     * @return reconciled state
454 >     */
455 >    private long reconcileState() {
456 >        final Phaser root = this.root;
457 >        long s = state;
458 >        if (root != this) {
459 >            int phase, u, p;
460 >            // CAS root phase with current parties; possibly trip unarrived
461 >            while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
462 >                   (int)(s >>> PHASE_SHIFT) &&
463 >                   !UNSAFE.compareAndSwapLong
464 >                   (this, stateOffset, s,
465 >                    s = (((long)phase << PHASE_SHIFT) |
466 >                         (s & PARTIES_MASK) |
467 >                         ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
468 >                          ((u = (int)s & UNARRIVED_MASK) == 0 && phase >= 0) ?
469 >                          p : u))))
470 >                s = state;
471 >        }
472 >        return s;
473 >    }
474 >
475 >    /**
476 >     * Creates a new phaser with no initially registered parties, no
477 >     * parent, and initial phase number 0. Any thread using this
478 >     * phaser will need to first register for it.
479 >     */
480 >    public Phaser() {
481 >        this(null, 0);
482 >    }
483 >
484 >    /**
485 >     * Creates a new phaser with the given number of registered
486 >     * unarrived parties, no parent, and initial phase number 0.
487 >     *
488 >     * @param parties the number of parties required to advance to the
489 >     * next phase
490 >     * @throws IllegalArgumentException if parties less than zero
491 >     * or greater than the maximum number of parties supported
492 >     */
493 >    public Phaser(int parties) {
494 >        this(null, parties);
495 >    }
496 >
497 >    /**
498 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
499 >     *
500 >     * @param parent the parent phaser
501 >     */
502 >    public Phaser(Phaser parent) {
503 >        this(parent, 0);
504 >    }
505 >
506 >    /**
507 >     * Creates a new phaser with the given parent and number of
508 >     * registered unarrived parties.  When the given parent is non-null
509 >     * and the given number of parties is greater than zero, this
510 >     * child phaser is registered with its parent.
511 >     *
512 >     * @param parent the parent phaser
513 >     * @param parties the number of parties required to advance to the
514 >     * next phase
515 >     * @throws IllegalArgumentException if parties less than zero
516 >     * or greater than the maximum number of parties supported
517 >     */
518 >    public Phaser(Phaser parent, int parties) {
519 >        if (parties >>> PARTIES_SHIFT != 0)
520 >            throw new IllegalArgumentException("Illegal number of parties");
521 >        int phase = 0;
522 >        this.parent = parent;
523 >        if (parent != null) {
524 >            final Phaser root = parent.root;
525 >            this.root = root;
526 >            this.evenQ = root.evenQ;
527 >            this.oddQ = root.oddQ;
528 >            if (parties != 0)
529 >                phase = parent.doRegister(1);
530          }
531 +        else {
532 +            this.root = this;
533 +            this.evenQ = new AtomicReference<QNode>();
534 +            this.oddQ = new AtomicReference<QNode>();
535 +        }
536 +        this.state = (parties == 0) ? (long)EMPTY :
537 +            ((long)phase << PHASE_SHIFT) |
538 +            ((long)parties << PARTIES_SHIFT) |
539 +            ((long)parties);
540 +    }
541 +
542 +    /**
543 +     * Adds a new unarrived party to this phaser.  If an ongoing
544 +     * invocation of {@link #onAdvance} is in progress, this method
545 +     * may await its completion before returning.  If this phaser has
546 +     * a parent, and this phaser previously had no registered parties,
547 +     * this child phaser is also registered with its parent. If
548 +     * this phaser is terminated, the attempt to register has
549 +     * no effect, and a negative value is returned.
550 +     *
551 +     * @return the arrival phase number to which this registration
552 +     * applied.  If this value is negative, then this phaser has
553 +     * terminated, in which case registration has no effect.
554 +     * @throws IllegalStateException if attempting to register more
555 +     * than the maximum supported number of parties
556 +     */
557 +    public int register() {
558 +        return doRegister(1);
559 +    }
560 +
561 +    /**
562 +     * Adds the given number of new unarrived parties to this phaser.
563 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
564 +     * this method may await its completion before returning.  If this
565 +     * phaser has a parent, and the given number of parties is greater
566 +     * than zero, and this phaser previously had no registered
567 +     * parties, this child phaser is also registered with its parent.
568 +     * If this phaser is terminated, the attempt to register has no
569 +     * effect, and a negative value is returned.
570 +     *
571 +     * @param parties the number of additional parties required to
572 +     * advance to the next phase
573 +     * @return the arrival phase number to which this registration
574 +     * applied.  If this value is negative, then this phaser has
575 +     * terminated, in which case registration has no effect.
576 +     * @throws IllegalStateException if attempting to register more
577 +     * than the maximum supported number of parties
578 +     * @throws IllegalArgumentException if {@code parties < 0}
579 +     */
580 +    public int bulkRegister(int parties) {
581 +        if (parties < 0)
582 +            throw new IllegalArgumentException();
583 +        if (parties == 0)
584 +            return getPhase();
585 +        return doRegister(parties);
586 +    }
587 +
588 +    /**
589 +     * Arrives at this phaser, without waiting for others to arrive.
590 +     *
591 +     * <p>It is a usage error for an unregistered party to invoke this
592 +     * method.  However, this error may result in an {@code
593 +     * IllegalStateException} only upon some subsequent operation on
594 +     * this phaser, if ever.
595 +     *
596 +     * @return the arrival phase number, or a negative value if terminated
597 +     * @throws IllegalStateException if not terminated and the number
598 +     * of unarrived parties would become negative
599 +     */
600 +    public int arrive() {
601 +        return doArrive(false);
602      }
603  
604      /**
605 <     * Arrives at the barrier and awaits others. Unlike other arrival
606 <     * methods, this method returns the arrival index of the
607 <     * caller. The caller tripping the barrier returns zero, the
608 <     * previous caller 1, and so on.
609 <     * @return the arrival index
610 <     * @throws IllegalStateException if the number of unarrived
611 <     * parties would become negative.
605 >     * Arrives at this phaser and deregisters from it without waiting
606 >     * for others to arrive. Deregistration reduces the number of
607 >     * parties required to advance in future phases.  If this phaser
608 >     * has a parent, and deregistration causes this phaser to have
609 >     * zero parties, this phaser is also deregistered from its parent.
610 >     *
611 >     * <p>It is a usage error for an unregistered party to invoke this
612 >     * method.  However, this error may result in an {@code
613 >     * IllegalStateException} only upon some subsequent operation on
614 >     * this phaser, if ever.
615 >     *
616 >     * @return the arrival phase number, or a negative value if terminated
617 >     * @throws IllegalStateException if not terminated and the number
618 >     * of registered or unarrived parties would become negative
619 >     */
620 >    public int arriveAndDeregister() {
621 >        return doArrive(true);
622 >    }
623 >
624 >    /**
625 >     * Arrives at this phaser and awaits others. Equivalent in effect
626 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
627 >     * interruption or timeout, you can arrange this with an analogous
628 >     * construction using one of the other forms of the {@code
629 >     * awaitAdvance} method.  If instead you need to deregister upon
630 >     * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
631 >     *
632 >     * <p>It is a usage error for an unregistered party to invoke this
633 >     * method.  However, this error may result in an {@code
634 >     * IllegalStateException} only upon some subsequent operation on
635 >     * this phaser, if ever.
636 >     *
637 >     * @return the arrival phase number, or the (negative)
638 >     * {@linkplain #getPhase() current phase} if terminated
639 >     * @throws IllegalStateException if not terminated and the number
640 >     * of unarrived parties would become negative
641       */
642      public int arriveAndAwaitAdvance() {
643 <        final AtomicLong state = this.state;
643 >        // Specialization of doArrive+awaitAdvance eliminating some reads/paths
644 >        final Phaser root = this.root;
645          for (;;) {
646 <            long s = state.get();
647 <            int phase = phaseOf(s);
648 <            int parties = partiesOf(s);
649 <            int unarrived = unarrivedOf(s) - 1;
650 <            if (unarrived < 0)
651 <                throw badBounds(parties, unarrived);
652 <            if (unarrived == 0 && phase >= 0) {
653 <                trip(phase, parties);
654 <                return 0;
646 >            long s = (root == this) ? state : reconcileState();
647 >            int phase = (int)(s >>> PHASE_SHIFT);
648 >            int counts = (int)s;
649 >            int unarrived = (counts & UNARRIVED_MASK) - 1;
650 >            if (phase < 0)
651 >                return phase;
652 >            else if (counts == EMPTY || unarrived < 0) {
653 >                if (reconcileState() == s)
654 >                    throw new IllegalStateException(badArrive(s));
655              }
656 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
657 <                awaitAdvance(phase);
658 <                return unarrived;
656 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
657 >                                               s -= ONE_ARRIVAL)) {
658 >                if (unarrived != 0)
659 >                    return root.internalAwaitAdvance(phase, null);
660 >                if (root != this)
661 >                    return parent.arriveAndAwaitAdvance();
662 >                long n = s & PARTIES_MASK;  // base of next state
663 >                int nextUnarrived = (int)n >>> PARTIES_SHIFT;
664 >                if (onAdvance(phase, nextUnarrived))
665 >                    n |= TERMINATION_BIT;
666 >                else if (nextUnarrived == 0)
667 >                    n |= EMPTY;
668 >                else
669 >                    n |= nextUnarrived;
670 >                int nextPhase = (phase + 1) & MAX_PHASE;
671 >                n |= (long)nextPhase << PHASE_SHIFT;
672 >                if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
673 >                    return (int)(state >>> PHASE_SHIFT); // terminated
674 >                releaseWaiters(phase);
675 >                return nextPhase;
676              }
677          }
678      }
679  
680      /**
681 <     * Awaits the phase of the barrier to advance from the given
682 <     * value, or returns immediately if this barrier is terminated.
683 <     * @param phase the phase on entry to this method
684 <     * @return the phase on exit from this method
681 >     * Awaits the phase of this phaser to advance from the given phase
682 >     * value, returning immediately if the current phase is not equal
683 >     * to the given phase value or this phaser is terminated.
684 >     *
685 >     * @param phase an arrival phase number, or negative value if
686 >     * terminated; this argument is normally the value returned by a
687 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
688 >     * @return the next arrival phase number, or the argument if it is
689 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
690 >     * if terminated
691       */
692      public int awaitAdvance(int phase) {
693 +        final Phaser root = this.root;
694 +        long s = (root == this) ? state : reconcileState();
695 +        int p = (int)(s >>> PHASE_SHIFT);
696          if (phase < 0)
697              return phase;
698 <        Thread current = Thread.currentThread();
699 <        if (current instanceof ForkJoinWorkerThread)
700 <            return helpingWait(phase);
312 <        if (untimedWait(current, phase, false))
313 <            current.interrupt();
314 <        return phaseOf(state.get());
698 >        if (p == phase)
699 >            return root.internalAwaitAdvance(phase, null);
700 >        return p;
701      }
702  
703      /**
704 <     * Awaits the phase of the barrier to advance from the given
705 <     * value, or returns immediately if this barrier is terminated, or
706 <     * throws InterruptedException if interrupted while waiting.
707 <     * @param phase the phase on entry to this method
708 <     * @return the phase on exit from this method
704 >     * Awaits the phase of this phaser to advance from the given phase
705 >     * value, throwing {@code InterruptedException} if interrupted
706 >     * while waiting, or returning immediately if the current phase is
707 >     * not equal to the given phase value or this phaser is
708 >     * terminated.
709 >     *
710 >     * @param phase an arrival phase number, or negative value if
711 >     * terminated; this argument is normally the value returned by a
712 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
713 >     * @return the next arrival phase number, or the argument if it is
714 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
715 >     * if terminated
716       * @throws InterruptedException if thread interrupted while waiting
717       */
718 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
718 >    public int awaitAdvanceInterruptibly(int phase)
719 >        throws InterruptedException {
720 >        final Phaser root = this.root;
721 >        long s = (root == this) ? state : reconcileState();
722 >        int p = (int)(s >>> PHASE_SHIFT);
723          if (phase < 0)
724              return phase;
725 <        Thread current = Thread.currentThread();
726 <        if (current instanceof ForkJoinWorkerThread)
727 <            return helpingWait(phase);
728 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
729 <            throw new InterruptedException();
730 <        else
731 <            return phaseOf(state.get());
725 >        if (p == phase) {
726 >            QNode node = new QNode(this, phase, true, false, 0L);
727 >            p = root.internalAwaitAdvance(phase, node);
728 >            if (node.wasInterrupted)
729 >                throw new InterruptedException();
730 >        }
731 >        return p;
732      }
733  
734      /**
735 <     * Awaits the phase of the barrier to advance from the given value
736 <     * or the given timeout elapses, or returns immediately if this
737 <     * barrier is terminated.
738 <     * @param phase the phase on entry to this method
739 <     * @return the phase on exit from this method
735 >     * Awaits the phase of this phaser to advance from the given phase
736 >     * value or the given timeout to elapse, throwing {@code
737 >     * InterruptedException} if interrupted while waiting, or
738 >     * returning immediately if the current phase is not equal to the
739 >     * given phase value or this phaser is terminated.
740 >     *
741 >     * @param phase an arrival phase number, or negative value if
742 >     * terminated; this argument is normally the value returned by a
743 >     * previous call to {@code arrive} or {@code arriveAndDeregister}.
744 >     * @param timeout how long to wait before giving up, in units of
745 >     *        {@code unit}
746 >     * @param unit a {@code TimeUnit} determining how to interpret the
747 >     *        {@code timeout} parameter
748 >     * @return the next arrival phase number, or the argument if it is
749 >     * negative, or the (negative) {@linkplain #getPhase() current phase}
750 >     * if terminated
751       * @throws InterruptedException if thread interrupted while waiting
752       * @throws TimeoutException if timed out while waiting
753       */
754 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
754 >    public int awaitAdvanceInterruptibly(int phase,
755 >                                         long timeout, TimeUnit unit)
756          throws InterruptedException, TimeoutException {
757 +        long nanos = unit.toNanos(timeout);
758 +        final Phaser root = this.root;
759 +        long s = (root == this) ? state : reconcileState();
760 +        int p = (int)(s >>> PHASE_SHIFT);
761          if (phase < 0)
762              return phase;
763 <        long nanos = unit.toNanos(timeout);
764 <        Thread current = Thread.currentThread();
765 <        if (current instanceof ForkJoinWorkerThread)
766 <            return timedHelpingWait(phase, nanos);
767 <        timedWait(current, phase, nanos);
768 <        return phaseOf(state.get());
763 >        if (p == phase) {
764 >            QNode node = new QNode(this, phase, true, true, nanos);
765 >            p = root.internalAwaitAdvance(phase, node);
766 >            if (node.wasInterrupted)
767 >                throw new InterruptedException();
768 >            else if (p == phase)
769 >                throw new TimeoutException();
770 >        }
771 >        return p;
772      }
773  
774      /**
775 <     * Forces this barrier to enter termination state. Counts of
776 <     * arrived and registered parties are unaffected. This method may
777 <     * be useful for coordinating recovery after one or more tasks
778 <     * encounter unexpected exceptions.
775 >     * Forces this phaser to enter termination state.  Counts of
776 >     * registered parties are unaffected.  If this phaser is a member
777 >     * of a tiered set of phasers, then all of the phasers in the set
778 >     * are terminated.  If this phaser is already terminated, this
779 >     * method has no effect.  This method may be useful for
780 >     * coordinating recovery after one or more tasks encounter
781 >     * unexpected exceptions.
782       */
783      public void forceTermination() {
784 <        final AtomicLong state = this.state;
785 <        for (;;) {
786 <            long s = state.get();
787 <            int phase = phaseOf(s);
788 <            int parties = partiesOf(s);
789 <            int unarrived = unarrivedOf(s);
790 <            if (phase < 0 ||
791 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
792 <                if (head.get() != null)
374 <                    releaseWaiters(-1);
784 >        // Only need to change root state
785 >        final Phaser root = this.root;
786 >        long s;
787 >        while ((s = root.state) >= 0) {
788 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
789 >                                          s, s | TERMINATION_BIT)) {
790 >                // signal all threads
791 >                releaseWaiters(0);
792 >                releaseWaiters(1);
793                  return;
794              }
795          }
796      }
797  
798      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
799       * Returns the current phase number. The maximum phase number is
800 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
801 <     * zero. Upon termination, the phase number is negative.
800 >     * {@code Integer.MAX_VALUE}, after which it restarts at
801 >     * zero. Upon termination, the phase number is negative,
802 >     * in which case the prevailing phase prior to termination
803 >     * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
804 >     *
805       * @return the phase number, or a negative value if terminated
806       */
807 <    public int getPhase() {
808 <        return phaseOf(state.get());
807 >    public final int getPhase() {
808 >        return (int)(root.state >>> PHASE_SHIFT);
809      }
810  
811      /**
812 <     * Returns the number of parties registered at this barrier.
812 >     * Returns the number of parties registered at this phaser.
813 >     *
814       * @return the number of parties
815       */
816      public int getRegisteredParties() {
817 <        return partiesOf(state.get());
817 >        return partiesOf(state);
818      }
819  
820      /**
821 <     * Returns the number of parties that have arrived at the current
822 <     * phase of this barrier.
821 >     * Returns the number of registered parties that have arrived at
822 >     * the current phase of this phaser. If this phaser has terminated,
823 >     * the returned value is meaningless and arbitrary.
824 >     *
825       * @return the number of arrived parties
826       */
827      public int getArrivedParties() {
828 <        return arrivedOf(state.get());
828 >        return arrivedOf(reconcileState());
829      }
830  
831      /**
832       * Returns the number of registered parties that have not yet
833 <     * arrived at the current phase of this barrier.
833 >     * arrived at the current phase of this phaser. If this phaser has
834 >     * terminated, the returned value is meaningless and arbitrary.
835 >     *
836       * @return the number of unarrived parties
837       */
838      public int getUnarrivedParties() {
839 <        return unarrivedOf(state.get());
839 >        return unarrivedOf(reconcileState());
840 >    }
841 >
842 >    /**
843 >     * Returns the parent of this phaser, or {@code null} if none.
844 >     *
845 >     * @return the parent of this phaser, or {@code null} if none
846 >     */
847 >    public Phaser getParent() {
848 >        return parent;
849      }
850  
851      /**
852 <     * Returns true if this barrier has been terminated.
853 <     * @return true if this barrier has been terminated
852 >     * Returns the root ancestor of this phaser, which is the same as
853 >     * this phaser if it has no parent.
854 >     *
855 >     * @return the root ancestor of this phaser
856 >     */
857 >    public Phaser getRoot() {
858 >        return root;
859 >    }
860 >
861 >    /**
862 >     * Returns {@code true} if this phaser has been terminated.
863 >     *
864 >     * @return {@code true} if this phaser has been terminated
865       */
866      public boolean isTerminated() {
867 <        return phaseOf(state.get()) < 0;
867 >        return root.state < 0L;
868      }
869  
870      /**
871 <     * Overridable method to perform an action upon phase advance, and
872 <     * to control termination. This method is invoked whenever the
873 <     * barrier is tripped (and thus all other waiting parties are
874 <     * dormant). If it returns true, then, rather than advance the
875 <     * phase number, this barrier will be set to a final termination
876 <     * state, and subsequent calls to <tt>isTerminated</tt> will
877 <     * return true.
878 <     *
879 <     * <p> The default version returns true when the number of
880 <     * registered parties is zero. Normally, overrides that arrange
881 <     * termination for other reasons should also preserve this
882 <     * property.
883 <     *
884 <     * @param phase the phase number on entering the barrier
885 <     * @param registeredParties the current number of registered
886 <     * parties.
887 <     * @return true if this barrier should terminate
871 >     * Overridable method to perform an action upon impending phase
872 >     * advance, and to control termination. This method is invoked
873 >     * upon arrival of the party advancing this phaser (when all other
874 >     * waiting parties are dormant).  If this method returns {@code
875 >     * true}, this phaser will be set to a final termination state
876 >     * upon advance, and subsequent calls to {@link #isTerminated}
877 >     * will return true. Any (unchecked) Exception or Error thrown by
878 >     * an invocation of this method is propagated to the party
879 >     * attempting to advance this phaser, in which case no advance
880 >     * occurs.
881 >     *
882 >     * <p>The arguments to this method provide the state of the phaser
883 >     * prevailing for the current transition.  The effects of invoking
884 >     * arrival, registration, and waiting methods on this phaser from
885 >     * within {@code onAdvance} are unspecified and should not be
886 >     * relied on.
887 >     *
888 >     * <p>If this phaser is a member of a tiered set of phasers, then
889 >     * {@code onAdvance} is invoked only for its root phaser on each
890 >     * advance.
891 >     *
892 >     * <p>To support the most common use cases, the default
893 >     * implementation of this method returns {@code true} when the
894 >     * number of registered parties has become zero as the result of a
895 >     * party invoking {@code arriveAndDeregister}.  You can disable
896 >     * this behavior, thus enabling continuation upon future
897 >     * registrations, by overriding this method to always return
898 >     * {@code false}:
899 >     *
900 >     * <pre> {@code
901 >     * Phaser phaser = new Phaser() {
902 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
903 >     * }}</pre>
904 >     *
905 >     * @param phase the current phase number on entry to this method,
906 >     * before this phaser is advanced
907 >     * @param registeredParties the current number of registered parties
908 >     * @return {@code true} if this phaser should terminate
909       */
910      protected boolean onAdvance(int phase, int registeredParties) {
911 <        return registeredParties <= 0;
911 >        return registeredParties == 0;
912      }
913  
914      /**
915 <     * Returns a string identifying this barrier, as well as its
915 >     * Returns a string identifying this phaser, as well as its
916       * state.  The state, in brackets, includes the String {@code
917 <     * "phase ="} followed by the phase number, {@code "parties ="}
917 >     * "phase = "} followed by the phase number, {@code "parties = "}
918       * followed by the number of registered parties, and {@code
919 <     * "arrived ="} followed by the number of arrived parties
919 >     * "arrived = "} followed by the number of arrived parties.
920       *
921 <     * @return a string identifying this barrier, as well as its state
921 >     * @return a string identifying this phaser, as well as its state
922       */
923      public String toString() {
924 <        long s = state.get();
475 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
924 >        return stateToString(reconcileState());
925      }
926  
478    // methods for tripping and waiting
479
927      /**
928 <     * Advance the current phase (or terminate)
928 >     * Implementation of toString and string-based error messages
929       */
930 <    private void trip(int phase, int parties) {
931 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
932 <        state.set(stateFor(next, parties, parties));
933 <        if (head.get() != null)
934 <            releaseWaiters(next);
930 >    private String stateToString(long s) {
931 >        return super.toString() +
932 >            "[phase = " + phaseOf(s) +
933 >            " parties = " + partiesOf(s) +
934 >            " arrived = " + arrivedOf(s) + "]";
935      }
936  
937 <    private int helpingWait(int phase) {
491 <        final AtomicLong state = this.state;
492 <        int p;
493 <        while ((p = phaseOf(state.get())) == phase) {
494 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
495 <            if (t != null) {
496 <                if ((p = phaseOf(state.get())) == phase)
497 <                    t.exec();
498 <                else {   // push task and exit if barrier advanced
499 <                    t.fork();
500 <                    break;
501 <                }
502 <            }
503 <        }
504 <        return p;
505 <    }
937 >    // Waiting mechanics
938  
939 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
940 <        final AtomicLong state = this.state;
941 <        long lastTime = System.nanoTime();
942 <        int p;
943 <        while ((p = phaseOf(state.get())) == phase) {
944 <            long now = System.nanoTime();
945 <            nanos -= now - lastTime;
946 <            lastTime = now;
947 <            if (nanos <= 0) {
948 <                if ((p = phaseOf(state.get())) == phase)
949 <                    throw new TimeoutException();
950 <                else
951 <                    break;
520 <            }
521 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
522 <            if (t != null) {
523 <                if ((p = phaseOf(state.get())) == phase)
524 <                    t.exec();
525 <                else {   // push task and exit if barrier advanced
526 <                    t.fork();
527 <                    break;
528 <                }
939 >    /**
940 >     * Removes and signals threads from queue for phase.
941 >     */
942 >    private void releaseWaiters(int phase) {
943 >        QNode q;   // first element of queue
944 >        Thread t;  // its thread
945 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
946 >        while ((q = head.get()) != null &&
947 >               q.phase != (int)(root.state >>> PHASE_SHIFT)) {
948 >            if (head.compareAndSet(q, q.next) &&
949 >                (t = q.thread) != null) {
950 >                q.thread = null;
951 >                LockSupport.unpark(t);
952              }
953          }
531        return p;
954      }
955  
956      /**
957 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
958 <     * tasks. The waiting scheme is an adaptation of the one used in
959 <     * forkjoin.PoolBarrier.
957 >     * Variant of releaseWaiters that additionally tries to remove any
958 >     * nodes no longer waiting for advance due to timeout or
959 >     * interrupt. Currently, nodes are removed only if they are at
960 >     * head of queue, which suffices to reduce memory footprint in
961 >     * most usages.
962 >     *
963 >     * @return current phase on exit
964       */
965 <    static final class QNode {
966 <        QNode next;
967 <        volatile Thread thread; // nulled to cancel wait
968 <        final int phase;
969 <        QNode(Thread t, int c) {
970 <            thread = t;
971 <            phase = c;
972 <        }
973 <    }
974 <
975 <    private void releaseWaiters(int currentPhase) {
550 <        final AtomicReference<QNode> head = this.head;
551 <        QNode p;
552 <        while ((p = head.get()) != null && p.phase != currentPhase) {
553 <            if (head.compareAndSet(p, null)) {
554 <                do {
555 <                    Thread t = p.thread;
556 <                    if (t != null) {
557 <                        p.thread = null;
558 <                        LockSupport.unpark(t);
559 <                    }
560 <                } while ((p = p.next) != null);
965 >    private int abortWait(int phase) {
966 >        AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
967 >        for (;;) {
968 >            Thread t;
969 >            QNode q = head.get();
970 >            int p = (int)(root.state >>> PHASE_SHIFT);
971 >            if (q == null || ((t = q.thread) != null && q.phase == p))
972 >                return p;
973 >            if (head.compareAndSet(q, q.next) && t != null) {
974 >                q.thread = null;
975 >                LockSupport.unpark(t);
976              }
977          }
978      }
979  
980      /** The number of CPUs, for spin control */
981 <    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567 <
568 <    /**
569 <     * The number of times to spin before blocking in timed waits.
570 <     * The value is empirically derived.
571 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
578 <     */
579 <    static final int maxUntimedSpins = maxTimedSpins * 32;
981 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
982  
983      /**
984 <     * The number of nanoseconds for which it is faster to spin
985 <     * rather than to use timed park. A rough estimate suffices.
984 >     * The number of times to spin before blocking while waiting for
985 >     * advance, per arrival while waiting. On multiprocessors, fully
986 >     * blocking and waking up a large number of threads all at once is
987 >     * usually a very slow process, so we use rechargeable spins to
988 >     * avoid it when threads regularly arrive: When a thread in
989 >     * internalAwaitAdvance notices another arrival before blocking,
990 >     * and there appear to be enough CPUs available, it spins
991 >     * SPINS_PER_ARRIVAL more times before blocking. The value trades
992 >     * off good-citizenship vs big unnecessary slowdowns.
993       */
994 <    static final long spinForTimeoutThreshold = 1000L;
994 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
995  
996      /**
997 <     * Enqueues node and waits unless aborted or signalled.
998 <     */
999 <    private boolean untimedWait(Thread thread, int currentPhase,
1000 <                               boolean abortOnInterrupt) {
1001 <        final AtomicReference<QNode> head = this.head;
1002 <        final AtomicLong state = this.state;
1003 <        boolean wasInterrupted = false;
1004 <        QNode node = null;
1005 <        boolean queued = false;
1006 <        int spins = maxUntimedSpins;
1007 <        while (phaseOf(state.get()) == currentPhase) {
1008 <            QNode h;
1009 <            if (node != null && queued) {
1010 <                if (node.thread != null) {
1011 <                    LockSupport.park();
1012 <                    if (Thread.interrupted()) {
1013 <                        wasInterrupted = true;
1014 <                        if (abortOnInterrupt)
1015 <                            break;
1016 <                    }
997 >     * Possibly blocks and waits for phase to advance unless aborted.
998 >     * Call only from root node.
999 >     *
1000 >     * @param phase current phase
1001 >     * @param node if non-null, the wait node to track interrupt and timeout;
1002 >     * if null, denotes noninterruptible wait
1003 >     * @return current phase
1004 >     */
1005 >    private int internalAwaitAdvance(int phase, QNode node) {
1006 >        releaseWaiters(phase-1);          // ensure old queue clean
1007 >        boolean queued = false;           // true when node is enqueued
1008 >        int lastUnarrived = 0;            // to increase spins upon change
1009 >        int spins = SPINS_PER_ARRIVAL;
1010 >        long s;
1011 >        int p;
1012 >        while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1013 >            if (node == null) {           // spinning in noninterruptible mode
1014 >                int unarrived = (int)s & UNARRIVED_MASK;
1015 >                if (unarrived != lastUnarrived &&
1016 >                    (lastUnarrived = unarrived) < NCPU)
1017 >                    spins += SPINS_PER_ARRIVAL;
1018 >                boolean interrupted = Thread.interrupted();
1019 >                if (interrupted || --spins < 0) { // need node to record intr
1020 >                    node = new QNode(this, phase, false, false, 0L);
1021 >                    node.wasInterrupted = interrupted;
1022                  }
1023              }
1024 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
1025 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
1026 <                    if (head.compareAndSet(h, h.next)) {
1027 <                        Thread t = h.thread; // help clear out old waiters
1028 <                        if (t != null) {
1029 <                            h.thread = null;
1030 <                            LockSupport.unpark(t);
1031 <                        }
1032 <                    }
1024 >            else if (node.isReleasable()) // done or aborted
1025 >                break;
1026 >            else if (!queued) {           // push onto queue
1027 >                AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1028 >                QNode q = node.next = head.get();
1029 >                if ((q == null || q.phase == phase) &&
1030 >                    (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1031 >                    queued = head.compareAndSet(q, node);
1032 >            }
1033 >            else {
1034 >                try {
1035 >                    ForkJoinPool.managedBlock(node);
1036 >                } catch (InterruptedException ie) {
1037 >                    node.wasInterrupted = true;
1038                  }
620                else
621                    break;
1039              }
623            else if (node != null)
624                queued = head.compareAndSet(node.next = h, node);
625            else if (spins <= 0)
626                node = new QNode(thread, currentPhase);
627            else
628                --spins;
1040          }
1041 <        if (node != null)
1042 <            node.thread = null;
1043 <        return wasInterrupted;
1041 >
1042 >        if (node != null) {
1043 >            if (node.thread != null)
1044 >                node.thread = null;       // avoid need for unpark()
1045 >            if (node.wasInterrupted && !node.interruptible)
1046 >                Thread.currentThread().interrupt();
1047 >            if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1048 >                return abortWait(phase); // possibly clean up on abort
1049 >        }
1050 >        releaseWaiters(phase);
1051 >        return p;
1052      }
1053  
1054      /**
1055 <     * Messier timeout version
1055 >     * Wait nodes for Treiber stack representing wait queue
1056       */
1057 <    private void timedWait(Thread thread, int currentPhase, long nanos)
1058 <        throws InterruptedException, TimeoutException {
1059 <        final AtomicReference<QNode> head = this.head;
1060 <        final AtomicLong state = this.state;
1061 <        long lastTime = System.nanoTime();
1062 <        QNode node = null;
1063 <        boolean queued = false;
1064 <        int spins = maxTimedSpins;
1065 <        while (phaseOf(state.get()) == currentPhase) {
1066 <            QNode h;
1067 <            long now = System.nanoTime();
1068 <            nanos -= now - lastTime;
1069 <            lastTime = now;
1070 <            if (nanos <= 0) {
1071 <                if (node != null)
1072 <                    node.thread = null;
1073 <                if (phaseOf(state.get()) == currentPhase)
1074 <                    throw new TimeoutException();
1075 <                else
1076 <                    break;
1057 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
1058 >        final Phaser phaser;
1059 >        final int phase;
1060 >        final boolean interruptible;
1061 >        final boolean timed;
1062 >        boolean wasInterrupted;
1063 >        long nanos;
1064 >        long lastTime;
1065 >        volatile Thread thread; // nulled to cancel wait
1066 >        QNode next;
1067 >
1068 >        QNode(Phaser phaser, int phase, boolean interruptible,
1069 >              boolean timed, long nanos) {
1070 >            this.phaser = phaser;
1071 >            this.phase = phase;
1072 >            this.interruptible = interruptible;
1073 >            this.nanos = nanos;
1074 >            this.timed = timed;
1075 >            this.lastTime = timed ? System.nanoTime() : 0L;
1076 >            thread = Thread.currentThread();
1077 >        }
1078 >
1079 >        public boolean isReleasable() {
1080 >            if (thread == null)
1081 >                return true;
1082 >            if (phaser.getPhase() != phase) {
1083 >                thread = null;
1084 >                return true;
1085              }
1086 <            else if (node != null && queued) {
1087 <                if (node.thread != null &&
1088 <                    nanos > spinForTimeoutThreshold) {
1089 <                    //                LockSupport.parkNanos(this, nanos);
1090 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
1086 >            if (Thread.interrupted())
1087 >                wasInterrupted = true;
1088 >            if (wasInterrupted && interruptible) {
1089 >                thread = null;
1090 >                return true;
1091              }
1092 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
1093 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
1094 <                    if (head.compareAndSet(h, h.next)) {
1095 <                        Thread t = h.thread; // help clear out old waiters
1096 <                        if (t != null) {
1097 <                            h.thread = null;
1098 <                            LockSupport.unpark(t);
1099 <                        }
1100 <                    }
1092 >            if (timed) {
1093 >                if (nanos > 0L) {
1094 >                    long now = System.nanoTime();
1095 >                    nanos -= now - lastTime;
1096 >                    lastTime = now;
1097 >                }
1098 >                if (nanos <= 0L) {
1099 >                    thread = null;
1100 >                    return true;
1101                  }
680                else
681                    break;
1102              }
1103 <            else if (node != null)
1104 <                queued = head.compareAndSet(node.next = h, node);
1105 <            else if (spins <= 0)
1106 <                node = new QNode(thread, currentPhase);
1107 <            else
1108 <                --spins;
1103 >            return false;
1104 >        }
1105 >
1106 >        public boolean block() {
1107 >            if (isReleasable())
1108 >                return true;
1109 >            else if (!timed)
1110 >                LockSupport.park(this);
1111 >            else if (nanos > 0)
1112 >                LockSupport.parkNanos(this, nanos);
1113 >            return isReleasable();
1114          }
690        if (node != null)
691            node.thread = null;
1115      }
1116  
1117 < }
1117 >    // Unsafe mechanics
1118  
1119 +    private static final sun.misc.Unsafe UNSAFE;
1120 +    private static final long stateOffset;
1121 +    static {
1122 +        try {
1123 +            UNSAFE = getUnsafe();
1124 +            Class<?> k = Phaser.class;
1125 +            stateOffset = UNSAFE.objectFieldOffset
1126 +                (k.getDeclaredField("state"));
1127 +        } catch (Exception e) {
1128 +            throw new Error(e);
1129 +        }
1130 +    }
1131 +
1132 +    /**
1133 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1134 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1135 +     * into a jdk.
1136 +     *
1137 +     * @return a sun.misc.Unsafe
1138 +     */
1139 +    private static sun.misc.Unsafe getUnsafe() {
1140 +        try {
1141 +            return sun.misc.Unsafe.getUnsafe();
1142 +        } catch (SecurityException se) {
1143 +            try {
1144 +                return java.security.AccessController.doPrivileged
1145 +                    (new java.security
1146 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1147 +                        public sun.misc.Unsafe run() throws Exception {
1148 +                            java.lang.reflect.Field f = sun.misc
1149 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1150 +                            f.setAccessible(true);
1151 +                            return (sun.misc.Unsafe) f.get(null);
1152 +                        }});
1153 +            } catch (java.security.PrivilegedActionException e) {
1154 +                throw new RuntimeException("Could not initialize intrinsics",
1155 +                                           e.getCause());
1156 +            }
1157 +        }
1158 +    }
1159 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines