ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.23 by jsr166, Mon Jul 27 20:57:44 2009 UTC vs.
Revision 1.57 by dl, Fri Nov 19 16:03:24 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
15 > * A reusable synchronization barrier, similar in functionality to
16   * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17   * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18   * but supporting more flexible usage.
19   *
20 < * <ul>
21 < *
22 < * <li> The number of parties synchronizing on a phaser may vary over
23 < * time.  A task may register to be a party at any time, and may
24 < * deregister upon arriving at the barrier.  As is the case with most
25 < * basic synchronization constructs, registration and deregistration
26 < * affect only internal counts; they do not establish any further
27 < * internal bookkeeping, so tasks cannot query whether they are
28 < * registered. (However, you can introduce such bookkeeping by
29 < * subclassing this class.)
30 < *
31 < * <li> Each generation has an associated phase value, starting at
32 < * zero, and advancing when all parties reach the barrier (wrapping
33 < * around to zero after reaching {@code Integer.MAX_VALUE}).
34 < *
35 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 < * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 < * {@code CyclicBarrier.await}.  However, Phasers separate two
38 < * aspects of coordination, that may also be invoked independently:
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods {@code arrive} and
48 < *       {@code arriveAndDeregister} do not block, but return
49 < *       the phase value current upon entry to the method.
50 < *
51 < *   <li> Awaiting others. Method {@code awaitAdvance} requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
54 < * </ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
75 + * </ul>
76   *
77 < * <li> Barrier actions, performed by the task triggering a phase
78 < * advance while others may be waiting, are arranged by overriding
79 < * method {@code onAdvance}, that also controls termination.
80 < * Overriding this method may be used to similar but more flexible
81 < * effect as providing a barrier action to a CyclicBarrier.
82 < *
83 < * <li> Phasers may enter a <em>termination</em> state in which all
84 < * actions immediately return without updating phaser state or waiting
85 < * for advance, and indicating (via a negative phase value) that
86 < * execution is complete.  Termination is triggered by executing the
87 < * overridable {@code onAdvance} method that is invoked each time the
63 < * barrier is about to be tripped. When a Phaser is controlling an
64 < * action with a fixed number of iterations, it is often convenient to
65 < * override this method to cause termination when the current phase
66 < * number reaches a threshold. Method {@code forceTermination} is also
67 < * available to abruptly release waiting threads and allow them to
68 < * terminate.
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84 > * often convenient to override this method to cause termination when
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, {@code awaitAdvance} continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * {@code forceTermination}.
103 < *
104 < * <li>Phasers ensure lack of starvation when used by ForkJoinTasks.
105 < *
106 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111 < * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
112 < * a one-shot action serving a variable number of parties. The typical
113 < * idiom is for the method setting this up to first register, then
114 < * start the actions, then deregister, as in:
111 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117 < * void runTasks(List<Runnable> list) {
117 > * void runTasks(List<Runnable> tasks) {
118   *   final Phaser phaser = new Phaser(1); // "1" to register self
119 < *   for (Runnable r : list) {
119 > *   // create and start threads
120 > *   for (Runnable task : tasks) {
121   *     phaser.register();
122   *     new Thread() {
123   *       public void run() {
124   *         phaser.arriveAndAwaitAdvance(); // await all creation
125 < *         r.run();
104 < *         phaser.arriveAndDeregister();   // signal completion
125 > *         task.run();
126   *       }
127   *     }.start();
128   *   }
129   *
130 < *   doSomethingOnBehalfOfWorkers();
131 < *   phaser.arrive(); // allow threads to start
111 < *   int p = phaser.arriveAndDeregister(); // deregister self  ...
112 < *   p = phaser.awaitAdvance(p); // ... and await arrival
113 < *   otherActions(); // do other things while tasks execute
114 < *   phaser.awaitAdvance(p); // await final completion
130 > *   // allow threads to start and deregister self
131 > *   phaser.arriveAndDeregister();
132   * }}</pre>
133   *
134   * <p>One way to cause a set of threads to repeatedly perform actions
135   * for a given number of iterations is to override {@code onAdvance}:
136   *
137   *  <pre> {@code
138 < * void startTasks(List<Runnable> list, final int iterations) {
138 > * void startTasks(List<Runnable> tasks, final int iterations) {
139   *   final Phaser phaser = new Phaser() {
140 < *     public boolean onAdvance(int phase, int registeredParties) {
140 > *     protected boolean onAdvance(int phase, int registeredParties) {
141   *       return phase >= iterations || registeredParties == 0;
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable r : list) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150 < *           r.run();
150 > *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
156   *   phaser.arriveAndDeregister(); // deregister self, don't wait
157   * }}</pre>
158   *
159 < * <p> To create a set of tasks using a tree of Phasers,
159 > * If the main task must later await termination, it
160 > * may re-register and then execute a similar loop:
161 > *  <pre> {@code
162 > *   // ...
163 > *   phaser.register();
164 > *   while (!phaser.isTerminated())
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166 > *
167 > * <p>Related constructions may be used to await particular phase numbers
168 > * in contexts where you are sure that the phase will never wrap around
169 > * {@code Integer.MAX_VALUE}. For example:
170 > *
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179 > *   }
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182 > *
183 > *
184 > * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186 < * Task class with a constructor accepting a Phaser that
187 < * it registers for upon construction:
186 > * Task class with a constructor accepting a phaser that
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
152 < *       int r = Math.min(i + step, hi);
153 < *       build(actions, i, r, new Phaser(b));
154 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 167 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
170 * </pre>
171 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212 < * parties result in IllegalStateExceptions. However, you can and
212 > * parties result in {@code IllegalStateException}. However, you can and
213   * should create tiered phasers to accommodate arbitrarily large sets
214   * of participants.
215   *
# Line 189 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
202     *
203     * Note: there are some cheats in arrive() that rely on unarrived
204     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortBits = 16;
244 <    private static final int ushortMask = 0xffff;
245 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
228    private static long stateFor(int phase, int parties, int unarrived) {
229        return ((((long) phase) << 32) | (((long) parties) << 16) |
230                (long) unarrived);
231    }
232
233    private static long trippedStateFor(int phase, int parties) {
234        long lp = (long) parties;
235        return (((long) phase) << 32) | (lp << 16) | lp;
236    }
237
238    /**
239     * Returns message string for bad bounds exceptions.
240     */
241    private static String badBounds(int parties, int unarrived) {
242        return ("Attempt to set " + unarrived +
243                " unarrived of " + parties + " parties");
244    }
245
271      /**
272       * The parent of this phaser, or null if none
273       */
274      private final Phaser parent;
275  
276      /**
277 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
277 >     * The root of phaser tree. Equals this if not in a tree.  Used to
278       * support faster state push-down.
279       */
280      private final Phaser root;
281  
257    // Wait queues
258
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303       */
304 <    private long getReconciledState() {
305 <        return (parent == null) ? state : reconcileState();
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340      }
341  
342      /**
343 <     * Recursively resolves state.
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345 >     */
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351 >    }
352 >
353 >    /**
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        // assert registrations > 0;
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int phase = (int)(s >>> PHASE_SHIFT);
366 >            if (phase < 0)
367 >                return phase;
368 >            int parties = (int)s >>> PARTIES_SHIFT;
369 >            if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376 >    }
377 >
378 >    /**
379 >     * Returns message string for out of bounds exceptions on registration.
380 >     */
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384 >    }
385 >
386 >    /**
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388       */
389      private long reconcileState() {
390 <        Phaser p = parent;
390 >        Phaser par = parent;
391          long s = state;
392 <        if (p != null) {
393 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
394 <                long parentState = p.getReconciledState();
395 <                int parentPhase = phaseOf(parentState);
396 <                int phase = phaseOf(s = state);
397 <                if (phase != parentPhase) {
398 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
399 <                    if (casState(s, next)) {
400 <                        releaseWaiters(phase);
401 <                        s = next;
402 <                    }
392 >        if (par != null) {
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407                  }
408 +                s = state;
409              }
410          }
411          return s;
412      }
413  
414      /**
415 <     * Creates a new Phaser without any initially registered parties,
415 >     * Creates a new phaser without any initially registered parties,
416       * initial phase number 0, and no parent. Any thread using this
417 <     * Phaser will need to first register for it.
417 >     * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        this(null);
420 >        this(null, 0);
421      }
422  
423      /**
424 <     * Creates a new Phaser with the given numbers of registered
424 >     * Creates a new phaser with the given number of registered
425       * unarrived parties, initial phase number 0, and no parent.
426       *
427       * @param parties the number of parties required to trip barrier
# Line 321 | Line 433 | public class Phaser {
433      }
434  
435      /**
436 <     * Creates a new Phaser with the given parent, without any
436 >     * Creates a new phaser with the given parent, without any
437       * initially registered parties. If parent is non-null this phaser
438       * is registered with the parent and its initial phase number is
439       * the same as that of parent phaser.
# Line 329 | Line 441 | public class Phaser {
441       * @param parent the parent phaser
442       */
443      public Phaser(Phaser parent) {
444 <        int phase = 0;
333 <        this.parent = parent;
334 <        if (parent != null) {
335 <            this.root = parent.root;
336 <            phase = parent.register();
337 <        }
338 <        else
339 <            this.root = this;
340 <        this.state = trippedStateFor(phase, 0);
444 >        this(parent, 0);
445      }
446  
447      /**
448 <     * Creates a new Phaser with the given parent and numbers of
448 >     * Creates a new phaser with the given parent and number of
449       * registered unarrived parties. If parent is non-null, this phaser
450       * is registered with the parent and its initial phase number is
451       * the same as that of parent phaser.
# Line 352 | Line 456 | public class Phaser {
456       * or greater than the maximum number of parties supported
457       */
458      public Phaser(Phaser parent, int parties) {
459 <        if (parties < 0 || parties > ushortMask)
459 >        if (parties >>> PARTIES_SHIFT != 0)
460              throw new IllegalArgumentException("Illegal number of parties");
461 <        int phase = 0;
461 >        int phase;
462          this.parent = parent;
463          if (parent != null) {
464 <            this.root = parent.root;
464 >            Phaser r = parent.root;
465 >            this.root = r;
466 >            this.evenQ = r.evenQ;
467 >            this.oddQ = r.oddQ;
468              phase = parent.register();
469          }
470 <        else
470 >        else {
471              this.root = this;
472 <        this.state = trippedStateFor(phase, parties);
472 >            this.evenQ = new AtomicReference<QNode>();
473 >            this.oddQ = new AtomicReference<QNode>();
474 >            phase = 0;
475 >        }
476 >        long p = (long)parties;
477 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478      }
479  
480      /**
481       * Adds a new unarrived party to this phaser.
482 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
483 +     * this method may wait until its completion before registering.
484       *
485 <     * @return the current barrier phase number upon registration
485 >     * @return the arrival phase number to which this registration applied
486       * @throws IllegalStateException if attempting to register more
487       * than the maximum supported number of parties
488       */
# Line 378 | Line 492 | public class Phaser {
492  
493      /**
494       * Adds the given number of new unarrived parties to this phaser.
495 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
496 +     * this method may wait until its completion before registering.
497       *
498 <     * @param parties the number of parties required to trip barrier
499 <     * @return the current barrier phase number upon registration
498 >     * @param parties the number of additional parties required to trip barrier
499 >     * @return the arrival phase number to which this registration applied
500       * @throws IllegalStateException if attempting to register more
501       * than the maximum supported number of parties
502 +     * @throws IllegalArgumentException if {@code parties < 0}
503       */
504      public int bulkRegister(int parties) {
505          if (parties < 0)
# Line 393 | Line 510 | public class Phaser {
510      }
511  
512      /**
396     * Shared code for register, bulkRegister
397     */
398    private int doRegister(int registrations) {
399        int phase;
400        for (;;) {
401            long s = getReconciledState();
402            phase = phaseOf(s);
403            int unarrived = unarrivedOf(s) + registrations;
404            int parties = partiesOf(s) + registrations;
405            if (phase < 0)
406                break;
407            if (parties > ushortMask || unarrived > ushortMask)
408                throw new IllegalStateException(badBounds(parties, unarrived));
409            if (phase == phaseOf(root.state) &&
410                casState(s, stateFor(phase, parties, unarrived)))
411                break;
412        }
413        return phase;
414    }
415
416    /**
513       * Arrives at the barrier, but does not wait for others.  (You can
514 <     * in turn wait for others via {@link #awaitAdvance}).
514 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
515 >     * unenforced usage error for an unregistered party to invoke this
516 >     * method.
517       *
518 <     * @return the barrier phase number upon entry to this method, or a
421 <     * negative value if terminated
518 >     * @return the arrival phase number, or a negative value if terminated
519       * @throws IllegalStateException if not terminated and the number
520       * of unarrived parties would become negative
521       */
522      public int arrive() {
523 <        int phase;
427 <        for (;;) {
428 <            long s = state;
429 <            phase = phaseOf(s);
430 <            if (phase < 0)
431 <                break;
432 <            int parties = partiesOf(s);
433 <            int unarrived = unarrivedOf(s) - 1;
434 <            if (unarrived > 0) {        // Not the last arrival
435 <                if (casState(s, s - 1)) // s-1 adds one arrival
436 <                    break;
437 <            }
438 <            else if (unarrived == 0) {  // the last arrival
439 <                Phaser par = parent;
440 <                if (par == null) {      // directly trip
441 <                    if (casState
442 <                        (s,
443 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
444 <                                         ((phase + 1) & phaseMask), parties))) {
445 <                        releaseWaiters(phase);
446 <                        break;
447 <                    }
448 <                }
449 <                else {                  // cascade to parent
450 <                    if (casState(s, s - 1)) { // zeroes unarrived
451 <                        par.arrive();
452 <                        reconcileState();
453 <                        break;
454 <                    }
455 <                }
456 <            }
457 <            else if (phase != phaseOf(root.state)) // or if unreconciled
458 <                reconcileState();
459 <            else
460 <                throw new IllegalStateException(badBounds(parties, unarrived));
461 <        }
462 <        return phase;
523 >        return doArrive(ONE_ARRIVAL);
524      }
525  
526      /**
527 <     * Arrives at the barrier, and deregisters from it, without
528 <     * waiting for others. Deregistration reduces number of parties
527 >     * Arrives at the barrier and deregisters from it without waiting
528 >     * for others. Deregistration reduces the number of parties
529       * required to trip the barrier in future phases.  If this phaser
530       * has a parent, and deregistration causes this phaser to have
531 <     * zero parties, this phaser is also deregistered from its parent.
531 >     * zero parties, this phaser also arrives at and is deregistered
532 >     * from its parent.  It is an unenforced usage error for an
533 >     * unregistered party to invoke this method.
534       *
535 <     * @return the current barrier phase number upon entry to
473 <     * this method, or a negative value if terminated
535 >     * @return the arrival phase number, or a negative value if terminated
536       * @throws IllegalStateException if not terminated and the number
537       * of registered or unarrived parties would become negative
538       */
539      public int arriveAndDeregister() {
540 <        // similar code to arrive, but too different to merge
479 <        Phaser par = parent;
480 <        int phase;
481 <        for (;;) {
482 <            long s = state;
483 <            phase = phaseOf(s);
484 <            if (phase < 0)
485 <                break;
486 <            int parties = partiesOf(s) - 1;
487 <            int unarrived = unarrivedOf(s) - 1;
488 <            if (parties >= 0) {
489 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
490 <                    if (casState
491 <                        (s,
492 <                         stateFor(phase, parties, unarrived))) {
493 <                        if (unarrived == 0) {
494 <                            par.arriveAndDeregister();
495 <                            reconcileState();
496 <                        }
497 <                        break;
498 <                    }
499 <                    continue;
500 <                }
501 <                if (unarrived == 0) {
502 <                    if (casState
503 <                        (s,
504 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
505 <                                         ((phase + 1) & phaseMask), parties))) {
506 <                        releaseWaiters(phase);
507 <                        break;
508 <                    }
509 <                    continue;
510 <                }
511 <                if (par != null && phase != phaseOf(root.state)) {
512 <                    reconcileState();
513 <                    continue;
514 <                }
515 <            }
516 <            throw new IllegalStateException(badBounds(parties, unarrived));
517 <        }
518 <        return phase;
540 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
541      }
542  
543      /**
544       * Arrives at the barrier and awaits others. Equivalent in effect
545 <     * to {@code awaitAdvance(arrive())}.  If you instead need to
546 <     * await with interruption of timeout, and/or deregister upon
547 <     * arrival, you can arrange them using analogous constructions.
545 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
546 >     * interruption or timeout, you can arrange this with an analogous
547 >     * construction using one of the other forms of the {@code
548 >     * awaitAdvance} method.  If instead you need to deregister upon
549 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
550 >     * usage error for an unregistered party to invoke this method.
551       *
552 <     * @return the phase on entry to this method
552 >     * @return the arrival phase number, or a negative number if terminated
553       * @throws IllegalStateException if not terminated and the number
554       * of unarrived parties would become negative
555       */
# Line 533 | Line 558 | public class Phaser {
558      }
559  
560      /**
561 <     * Awaits the phase of the barrier to advance from the given
562 <     * value, or returns immediately if argument is negative or this
563 <     * barrier is terminated.
564 <     *
565 <     * @param phase the phase on entry to this method
566 <     * @return the phase on exit from this method
561 >     * Awaits the phase of the barrier to advance from the given phase
562 >     * value, returning immediately if the current phase of the
563 >     * barrier is not equal to the given phase value or this barrier
564 >     * is terminated.
565 >     *
566 >     * @param phase an arrival phase number, or negative value if
567 >     * terminated; this argument is normally the value returned by a
568 >     * previous call to {@code arrive} or its variants
569 >     * @return the next arrival phase number, or a negative value
570 >     * if terminated or argument is negative
571       */
572      public int awaitAdvance(int phase) {
573          if (phase < 0)
574              return phase;
575 <        long s = getReconciledState();
576 <        int p = phaseOf(s);
577 <        if (p != phase)
549 <            return p;
550 <        if (unarrivedOf(s) == 0 && parent != null)
551 <            parent.awaitAdvance(phase);
552 <        // Fall here even if parent waited, to reconcile and help release
553 <        return untimedWait(phase);
575 >        long s = (parent == null) ? state : reconcileState();
576 >        int p = (int)(s >>> PHASE_SHIFT);
577 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
578      }
579  
580      /**
581 <     * Awaits the phase of the barrier to advance from the given
582 <     * value, or returns immediately if argument is negative or this
583 <     * barrier is terminated, or throws InterruptedException if
584 <     * interrupted while waiting.
581 >     * Awaits the phase of the barrier to advance from the given phase
582 >     * value, throwing {@code InterruptedException} if interrupted
583 >     * while waiting, or returning immediately if the current phase of
584 >     * the barrier is not equal to the given phase value or this
585 >     * barrier is terminated.
586       *
587 <     * @param phase the phase on entry to this method
588 <     * @return the phase on exit from this method
587 >     * @param phase an arrival phase number, or negative value if
588 >     * terminated; this argument is normally the value returned by a
589 >     * previous call to {@code arrive} or its variants
590 >     * @return the next arrival phase number, or a negative value
591 >     * if terminated or argument is negative
592       * @throws InterruptedException if thread interrupted while waiting
593       */
594      public int awaitAdvanceInterruptibly(int phase)
595          throws InterruptedException {
596          if (phase < 0)
597              return phase;
598 <        long s = getReconciledState();
599 <        int p = phaseOf(s);
600 <        if (p != phase)
601 <            return p;
602 <        if (unarrivedOf(s) == 0 && parent != null)
603 <            parent.awaitAdvanceInterruptibly(phase);
604 <        return interruptibleWait(phase);
598 >        long s = (parent == null) ? state : reconcileState();
599 >        int p = (int)(s >>> PHASE_SHIFT);
600 >        if (p == phase) {
601 >            QNode node = new QNode(this, phase, true, false, 0L);
602 >            p = internalAwaitAdvance(phase, node);
603 >            if (node.wasInterrupted)
604 >                throw new InterruptedException();
605 >        }
606 >        return p;
607      }
608  
609      /**
610 <     * Awaits the phase of the barrier to advance from the given value
611 <     * or the given timeout elapses, or returns immediately if
612 <     * argument is negative or this barrier is terminated.
613 <     *
614 <     * @param phase the phase on entry to this method
615 <     * @return the phase on exit from this method
610 >     * Awaits the phase of the barrier to advance from the given phase
611 >     * value or the given timeout to elapse, throwing {@code
612 >     * InterruptedException} if interrupted while waiting, or
613 >     * returning immediately if the current phase of the barrier is
614 >     * not equal to the given phase value or this barrier is
615 >     * terminated.
616 >     *
617 >     * @param phase an arrival phase number, or negative value if
618 >     * terminated; this argument is normally the value returned by a
619 >     * previous call to {@code arrive} or its variants
620 >     * @param timeout how long to wait before giving up, in units of
621 >     *        {@code unit}
622 >     * @param unit a {@code TimeUnit} determining how to interpret the
623 >     *        {@code timeout} parameter
624 >     * @return the next arrival phase number, or a negative value
625 >     * if terminated or argument is negative
626       * @throws InterruptedException if thread interrupted while waiting
627       * @throws TimeoutException if timed out while waiting
628       */
# Line 591 | Line 631 | public class Phaser {
631          throws InterruptedException, TimeoutException {
632          if (phase < 0)
633              return phase;
634 <        long s = getReconciledState();
635 <        int p = phaseOf(s);
636 <        if (p != phase)
637 <            return p;
638 <        if (unarrivedOf(s) == 0 && parent != null)
639 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
640 <        return timedWait(phase, unit.toNanos(timeout));
634 >        long s = (parent == null) ? state : reconcileState();
635 >        int p = (int)(s >>> PHASE_SHIFT);
636 >        if (p == phase) {
637 >            long nanos = unit.toNanos(timeout);
638 >            QNode node = new QNode(this, phase, true, true, nanos);
639 >            p = internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >            else if (p == phase)
643 >                throw new TimeoutException();
644 >        }
645 >        return p;
646      }
647  
648      /**
649 <     * Forces this barrier to enter termination state. Counts of
650 <     * arrived and registered parties are unaffected. If this phaser
651 <     * has a parent, it too is terminated. This method may be useful
652 <     * for coordinating recovery after one or more tasks encounter
653 <     * unexpected exceptions.
649 >     * Forces this barrier to enter termination state.  Counts of
650 >     * arrived and registered parties are unaffected.  If this phaser
651 >     * is a member of a tiered set of phasers, then all of the phasers
652 >     * in the set are terminated.  If this phaser is already
653 >     * terminated, this method has no effect.  This method may be
654 >     * useful for coordinating recovery after one or more tasks
655 >     * encounter unexpected exceptions.
656       */
657      public void forceTermination() {
658 <        for (;;) {
659 <            long s = getReconciledState();
660 <            int phase = phaseOf(s);
661 <            int parties = partiesOf(s);
662 <            int unarrived = unarrivedOf(s);
663 <            if (phase < 0 ||
664 <                casState(s, stateFor(-1, parties, unarrived))) {
618 <                releaseWaiters(0);
658 >        // Only need to change root state
659 >        final Phaser root = this.root;
660 >        long s;
661 >        while ((s = root.state) >= 0) {
662 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
663 >                                          s, s | TERMINATION_PHASE)) {
664 >                releaseWaiters(0); // signal all threads
665                  releaseWaiters(1);
620                if (parent != null)
621                    parent.forceTermination();
666                  return;
667              }
668          }
# Line 632 | Line 676 | public class Phaser {
676       * @return the phase number, or a negative value if terminated
677       */
678      public final int getPhase() {
679 <        return phaseOf(getReconciledState());
636 <    }
637 <
638 <    /**
639 <     * Returns {@code true} if the current phase number equals the given phase.
640 <     *
641 <     * @param phase the phase
642 <     * @return {@code true} if the current phase number equals the given phase
643 <     */
644 <    public final boolean hasPhase(int phase) {
645 <        return phaseOf(getReconciledState()) == phase;
679 >        return (int)(root.state >>> PHASE_SHIFT);
680      }
681  
682      /**
# Line 655 | Line 689 | public class Phaser {
689      }
690  
691      /**
692 <     * Returns the number of parties that have arrived at the current
693 <     * phase of this barrier.
692 >     * Returns the number of registered parties that have arrived at
693 >     * the current phase of this barrier.
694       *
695       * @return the number of arrived parties
696       */
697      public int getArrivedParties() {
698 <        return arrivedOf(state);
698 >        return arrivedOf(parent==null? state : reconcileState());
699      }
700  
701      /**
# Line 671 | Line 705 | public class Phaser {
705       * @return the number of unarrived parties
706       */
707      public int getUnarrivedParties() {
708 <        return unarrivedOf(state);
708 >        return unarrivedOf(parent==null? state : reconcileState());
709      }
710  
711      /**
# Line 699 | Line 733 | public class Phaser {
733       * @return {@code true} if this barrier has been terminated
734       */
735      public boolean isTerminated() {
736 <        return getPhase() < 0;
736 >        return root.state < 0L;
737      }
738  
739      /**
740 <     * Overridable method to perform an action upon phase advance, and
741 <     * to control termination. This method is invoked whenever the
742 <     * barrier is tripped (and thus all other waiting parties are
743 <     * dormant). If it returns {@code true}, then, rather than advance
744 <     * the phase number, this barrier will be set to a final
745 <     * termination state, and subsequent calls to {@link #isTerminated}
746 <     * will return true.
740 >     * Overridable method to perform an action upon impending phase
741 >     * advance, and to control termination. This method is invoked
742 >     * upon arrival of the party tripping the barrier (when all other
743 >     * waiting parties are dormant).  If this method returns {@code
744 >     * true}, then, rather than advance the phase number, this barrier
745 >     * will be set to a final termination state, and subsequent calls
746 >     * to {@link #isTerminated} will return true. Any (unchecked)
747 >     * Exception or Error thrown by an invocation of this method is
748 >     * propagated to the party attempting to trip the barrier, in
749 >     * which case no advance occurs.
750 >     *
751 >     * <p>The arguments to this method provide the state of the phaser
752 >     * prevailing for the current transition.  The effects of invoking
753 >     * arrival, registration, and waiting methods on this Phaser from
754 >     * within {@code onAdvance} are unspecified and should not be
755 >     * relied on.
756 >     *
757 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
758 >     * {@code onAdvance} is invoked only for its root Phaser on each
759 >     * advance.
760       *
761 <     * <p> The default version returns {@code true} when the number of
761 >     * <p>The default version returns {@code true} when the number of
762       * registered parties is zero. Normally, overrides that arrange
763       * termination for other reasons should also preserve this
764       * property.
765       *
719     * <p> You may override this method to perform an action with side
720     * effects visible to participating tasks, but it is in general
721     * only sensible to do so in designs where all parties register
722     * before any arrive, and all {@code awaitAdvance} at each phase.
723     * Otherwise, you cannot ensure lack of interference. In
724     * particular, this method may be invoked more than once per
725     * transition if other parties successfully register while the
726     * invocation of this method is in progress, thus postponing the
727     * transition until those parties also arrive, re-triggering this
728     * method.
729     *
766       * @param phase the phase number on entering the barrier
767       * @param registeredParties the current number of registered parties
768       * @return {@code true} if this barrier should terminate
# Line 745 | Line 781 | public class Phaser {
781       * @return a string identifying this barrier, as well as its state
782       */
783      public String toString() {
784 <        long s = getReconciledState();
784 >        return stateToString(reconcileState());
785 >    }
786 >
787 >    /**
788 >     * Implementation of toString and string-based error messages
789 >     */
790 >    private String stateToString(long s) {
791          return super.toString() +
792              "[phase = " + phaseOf(s) +
793              " parties = " + partiesOf(s) +
794              " arrived = " + arrivedOf(s) + "]";
795      }
796  
797 <    // methods for waiting
797 >    // Waiting mechanics
798 >
799 >    /**
800 >     * Removes and signals threads from queue for phase.
801 >     */
802 >    private void releaseWaiters(int phase) {
803 >        AtomicReference<QNode> head = queueFor(phase);
804 >        QNode q;
805 >        int p;
806 >        while ((q = head.get()) != null &&
807 >               ((p = q.phase) == phase ||
808 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
809 >            if (head.compareAndSet(q, q.next))
810 >                q.signal();
811 >        }
812 >    }
813 >
814 >    /** The number of CPUs, for spin control */
815 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
816 >
817 >    /**
818 >     * The number of times to spin before blocking while waiting for
819 >     * advance, per arrival while waiting. On multiprocessors, fully
820 >     * blocking and waking up a large number of threads all at once is
821 >     * usually a very slow process, so we use rechargeable spins to
822 >     * avoid it when threads regularly arrive: When a thread in
823 >     * internalAwaitAdvance notices another arrival before blocking,
824 >     * and there appear to be enough CPUs available, it spins
825 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826 >     * uniprocessors, there is at least one intervening Thread.yield
827 >     * before blocking. The value trades off good-citizenship vs big
828 >     * unnecessary slowdowns.
829 >     */
830 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831 >
832 >    /**
833 >     * Possibly blocks and waits for phase to advance unless aborted.
834 >     *
835 >     * @param phase current phase
836 >     * @param node if non-null, the wait node to track interrupt and timeout;
837 >     * if null, denotes noninterruptible wait
838 >     * @return current phase
839 >     */
840 >    private int internalAwaitAdvance(int phase, QNode node) {
841 >        Phaser current = this;       // to eventually wait at root if tiered
842 >        boolean queued = false;      // true when node is enqueued
843 >        int lastUnarrived = -1;      // to increase spins upon change
844 >        int spins = SPINS_PER_ARRIVAL;
845 >        long s;
846 >        int p;
847 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 >            Phaser par;
849 >            int unarrived = (int)s & UNARRIVED_MASK;
850 >            if (unarrived != lastUnarrived) {
851 >                if (lastUnarrived == -1) // ensure old queue clean
852 >                    releaseWaiters(phase-1);
853 >                if ((lastUnarrived = unarrived) < NCPU)
854 >                    spins += SPINS_PER_ARRIVAL;
855 >            }
856 >            else if (unarrived == 0 && (par = current.parent) != null) {
857 >                current = par;       // if all arrived, use parent
858 >                par = par.parent;
859 >                lastUnarrived = -1;
860 >            }
861 >            else if (spins > 0) {
862 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 >                    Thread.yield();  // yield midway through spin
864 >            }
865 >            else if (node == null)   // must be noninterruptible
866 >                node = new QNode(this, phase, false, false, 0L);
867 >            else if (node.isReleasable()) {
868 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869 >                    break;
870 >                else
871 >                    return phase;    // aborted
872 >            }
873 >            else if (!queued) {      // push onto queue
874 >                AtomicReference<QNode> head = queueFor(phase);
875 >                QNode q = head.get();
876 >                if (q == null || q.phase == phase) {
877 >                    node.next = q;
878 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 >                        break;       // recheck to avoid stale enqueue
880 >                    else
881 >                        queued = head.compareAndSet(q, node);
882 >                }
883 >            }
884 >            else {
885 >                try {
886 >                    ForkJoinPool.managedBlock(node);
887 >                } catch (InterruptedException ie) {
888 >                    node.wasInterrupted = true;
889 >                }
890 >            }
891 >        }
892 >        releaseWaiters(phase);
893 >        if (node != null)
894 >            node.onRelease();
895 >        return p;
896 >    }
897  
898      /**
899       * Wait nodes for Treiber stack representing wait queue
# Line 760 | Line 901 | public class Phaser {
901      static final class QNode implements ForkJoinPool.ManagedBlocker {
902          final Phaser phaser;
903          final int phase;
763        final long startTime;
764        final long nanos;
765        final boolean timed;
904          final boolean interruptible;
905 <        volatile boolean wasInterrupted = false;
905 >        final boolean timed;
906 >        boolean wasInterrupted;
907 >        long nanos;
908 >        long lastTime;
909          volatile Thread thread; // nulled to cancel wait
910          QNode next;
911 +
912          QNode(Phaser phaser, int phase, boolean interruptible,
913 <              boolean timed, long startTime, long nanos) {
913 >              boolean timed, long nanos) {
914              this.phaser = phaser;
915              this.phase = phase;
774            this.timed = timed;
916              this.interruptible = interruptible;
776            this.startTime = startTime;
917              this.nanos = nanos;
918 +            this.timed = timed;
919 +            this.lastTime = timed? System.nanoTime() : 0L;
920              thread = Thread.currentThread();
921          }
922 +
923          public boolean isReleasable() {
924 <            return (thread == null ||
925 <                    phaser.getPhase() != phase ||
926 <                    (interruptible && wasInterrupted) ||
927 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
924 >            Thread t = thread;
925 >            if (t != null) {
926 >                if (phaser.getPhase() != phase)
927 >                    t = null;
928 >                else {
929 >                    if (Thread.interrupted())
930 >                        wasInterrupted = true;
931 >                    if (interruptible && wasInterrupted)
932 >                        t = null;
933 >                    else if (timed) {
934 >                        if (nanos > 0) {
935 >                            long now = System.nanoTime();
936 >                            nanos -= now - lastTime;
937 >                            lastTime = now;
938 >                        }
939 >                        if (nanos <= 0)
940 >                            t = null;
941 >                    }
942 >                }
943 >                if (t != null)
944 >                    return false;
945 >                thread = null;
946 >            }
947 >            return true;
948          }
949 +
950          public boolean block() {
951 <            if (Thread.interrupted()) {
952 <                wasInterrupted = true;
953 <                if (interruptible)
790 <                    return true;
791 <            }
792 <            if (!timed)
951 >            if (isReleasable())
952 >                return true;
953 >            else if (!timed)
954                  LockSupport.park(this);
955 <            else {
956 <                long waitTime = nanos - (System.nanoTime() - startTime);
796 <                if (waitTime <= 0)
797 <                    return true;
798 <                LockSupport.parkNanos(this, waitTime);
799 <            }
955 >            else if (nanos > 0)
956 >                LockSupport.parkNanos(this, nanos);
957              return isReleasable();
958          }
959 +
960          void signal() {
961              Thread t = thread;
962              if (t != null) {
# Line 806 | Line 964 | public class Phaser {
964                  LockSupport.unpark(t);
965              }
966          }
809        boolean doWait() {
810            if (thread != null) {
811                try {
812                    ForkJoinPool.managedBlock(this, false);
813                } catch (InterruptedException ie) {
814                }
815            }
816            return wasInterrupted;
817        }
818
819    }
820
821    /**
822     * Removes and signals waiting threads from wait queue.
823     */
824    private void releaseWaiters(int phase) {
825        AtomicReference<QNode> head = queueFor(phase);
826        QNode q;
827        while ((q = head.get()) != null) {
828            if (head.compareAndSet(q, q.next))
829                q.signal();
830        }
831    }
832
833    /**
834     * Tries to enqueue given node in the appropriate wait queue.
835     *
836     * @return true if successful
837     */
838    private boolean tryEnqueue(QNode node) {
839        AtomicReference<QNode> head = queueFor(node.phase);
840        return head.compareAndSet(node.next = head.get(), node);
841    }
842
843    /**
844     * Enqueues node and waits unless aborted or signalled.
845     *
846     * @return current phase
847     */
848    private int untimedWait(int phase) {
849        QNode node = null;
850        boolean queued = false;
851        boolean interrupted = false;
852        int p;
853        while ((p = getPhase()) == phase) {
854            if (Thread.interrupted())
855                interrupted = true;
856            else if (node == null)
857                node = new QNode(this, phase, false, false, 0, 0);
858            else if (!queued)
859                queued = tryEnqueue(node);
860            else
861                interrupted = node.doWait();
862        }
863        if (node != null)
864            node.thread = null;
865        releaseWaiters(phase);
866        if (interrupted)
867            Thread.currentThread().interrupt();
868        return p;
869    }
967  
968 <    /**
969 <     * Interruptible version
970 <     * @return current phase
971 <     */
972 <    private int interruptibleWait(int phase) throws InterruptedException {
876 <        QNode node = null;
877 <        boolean queued = false;
878 <        boolean interrupted = false;
879 <        int p;
880 <        while ((p = getPhase()) == phase && !interrupted) {
881 <            if (Thread.interrupted())
882 <                interrupted = true;
883 <            else if (node == null)
884 <                node = new QNode(this, phase, true, false, 0, 0);
885 <            else if (!queued)
886 <                queued = tryEnqueue(node);
887 <            else
888 <                interrupted = node.doWait();
968 >        void onRelease() { // actions upon return from internalAwaitAdvance
969 >            if (!interruptible && wasInterrupted)
970 >                Thread.currentThread().interrupt();
971 >            if (thread != null)
972 >                thread = null;
973          }
890        if (node != null)
891            node.thread = null;
892        if (p != phase || (p = getPhase()) != phase)
893            releaseWaiters(phase);
894        if (interrupted)
895            throw new InterruptedException();
896        return p;
897    }
974  
899    /**
900     * Timeout version.
901     * @return current phase
902     */
903    private int timedWait(int phase, long nanos)
904        throws InterruptedException, TimeoutException {
905        long startTime = System.nanoTime();
906        QNode node = null;
907        boolean queued = false;
908        boolean interrupted = false;
909        int p;
910        while ((p = getPhase()) == phase && !interrupted) {
911            if (Thread.interrupted())
912                interrupted = true;
913            else if (nanos - (System.nanoTime() - startTime) <= 0)
914                break;
915            else if (node == null)
916                node = new QNode(this, phase, true, true, startTime, nanos);
917            else if (!queued)
918                queued = tryEnqueue(node);
919            else
920                interrupted = node.doWait();
921        }
922        if (node != null)
923            node.thread = null;
924        if (p != phase || (p = getPhase()) != phase)
925            releaseWaiters(phase);
926        if (interrupted)
927            throw new InterruptedException();
928        if (p == phase)
929            throw new TimeoutException();
930        return p;
975      }
976  
977      // Unsafe mechanics
# Line 936 | Line 980 | public class Phaser {
980      private static final long stateOffset =
981          objectFieldOffset("state", Phaser.class);
982  
939    private final boolean casState(long cmp, long val) {
940        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
941    }
942
983      private static long objectFieldOffset(String field, Class<?> klazz) {
984          try {
985              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines