ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.4 by dl, Sat Sep 6 13:19:17 2008 UTC vs.
Revision 1.40 by dl, Mon Aug 24 12:49:39 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier} and {@link
17 < * java.util.concurrent.CountDownLatch} but supporting more flexible
18 < * usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19 > *
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32 > *
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < * <li> The number of parties synchronizing on a phaser may vary over
48 < * time.  A task may register to be a party at any time, and may
49 < * deregister upon arriving at the barrier.  As is the case with most
50 < * basic synchronization constructs, registration and deregistration
51 < * affect only internal counts; they do not establish any further
52 < * internal bookkeeping, so tasks cannot query whether they are
53 < * registered. (However, you can introduce such bookkeeping in by
54 < * subclassing this class.)
55 < *
56 < * <li> Each generation has an associated phase value, starting at
57 < * zero, and advancing when all parties reach the barrier (wrapping
58 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
59 < *
60 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
61 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
62 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
63 < * aspects of coordination, that may also be invoked independently:
64 < *
65 < * <ul>
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74   *
42 *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
43 *       <tt>arriveAndDeregister</tt> do not block, but return
44 *       the phase value current upon entry to the method.
45 *
46 *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
47 *       argument indicating the entry phase, and returns when the
48 *       barrier advances to a new phase.
75   * </ul>
76   *
77 < *
78 < * <li> Barrier actions, performed by the task triggering a phase
79 < * advance while others may be waiting, are arranged by overriding
80 < * method <tt>onAdvance</tt>, that also controls termination.
81 < * Overriding this method may be used to similar but more flecible
82 < * effect as providing a barrier action to a CyclicBarrier.
83 < *
58 < * <li> Phasers may enter a <em>termination</em> state in which all
59 < * await actions immediately return, indicating (via a negative phase
60 < * value) that execution is complete.  Termination is triggered by
61 < * executing the overridable <tt>onAdvance</tt> method that is invoked
62 < * each time the barrier is about to be tripped. When a Phaser is
63 < * controlling an action with a fixed number of iterations, it is
77 > * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 > * <em>termination</em> state in which all synchronization methods
79 > * immediately return without updating phaser state or waiting for
80 > * advance, and indicating (via a negative phase value) that execution
81 > * is complete.  Termination is triggered when an invocation of {@code
82 > * onAdvance} returns {@code true}.  As illustrated below, when
83 > * phasers control actions with a fixed number of iterations, it is
84   * often convenient to override this method to cause termination when
85 < * the current phase number reaches a threshold. Method
86 < * <tt>forceTermination</tt> is also available to abruptly release
87 < * waiting threads and allow them to terminate.
85 > * the current phase number reaches a threshold. Method {@link
86 > * #forceTermination} is also available to abruptly release waiting
87 > * threads and allow them to terminate.
88   *
89 < * <li> Phasers may be tiered to reduce contention. Phasers with large
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91   * numbers of parties that would otherwise experience heavy
92 < * synchronization contention costs may instead be arranged in trees.
93 < * This will typically greatly increase throughput even though it
94 < * incurs somewhat greater per-operation overhead.
95 < *
96 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
97 < * the waiting thread is interrupted. And unlike the case in
98 < * CyclicBarriers, exceptions encountered while tasks wait
99 < * interruptibly or with timeout do not change the state of the
100 < * barrier. If necessary, you can perform any associated recovery
101 < * within handlers of those exceptions, often after invoking
102 < * <tt>forceTermination</tt>.
103 < *
104 < * </ul>
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96 > *
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances; thus, this value is always
104 > * greater than zero if there are any registered parties.  The values
105 > * returned by these methods may reflect transient states and so are
106 > * not in general useful for synchronization control.  Method {@link
107 > * #toString} returns snapshots of these state queries in a form
108 > * convenient for informal monitoring.
109   *
110   * <p><b>Sample usages:</b>
111   *
112 < * <p>A Phaser may be used instead of a <tt>CountdownLatch</tt> to control
113 < * a one-shot action serving a variable number of parties. The typical
114 < * idiom is for the method setting this up to first register, then
115 < * start the actions, then deregister, as in:
116 < *
117 < * <pre>
118 < *  void runTasks(List&lt;Runnable&gt; list) {
119 < *    final Phaser phaser = new Phaser(1); // "1" to register self
120 < *    for (Runnable r : list) {
121 < *      phaser.register();
122 < *      new Thread() {
123 < *        public void run() {
124 < *          phaser.arriveAndAwaitAdvance(); // await all creation
125 < *          r.run();
126 < *          phaser.arriveAndDeregister();   // signal completion
127 < *        }
128 < *      }.start();
112 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113 > * to control a one-shot action serving a variable number of
114 > * parties. The typical idiom is for the method setting this up to
115 > * first register, then start the actions, then deregister, as in:
116 > *
117 > *  <pre> {@code
118 > * void runTasks(List<Runnable> tasks) {
119 > *   final Phaser phaser = new Phaser(1); // "1" to register self
120 > *   // create and start threads
121 > *   for (Runnable task : tasks) {
122 > *     phaser.register();
123 > *     new Thread() {
124 > *       public void run() {
125 > *         phaser.arriveAndAwaitAdvance(); // await all creation
126 > *         task.run();
127 > *       }
128 > *     }.start();
129   *   }
130 < *   phaser.arrive(); // allow threads to start
131 < *   int p = phaser.arriveAndDeregister(); // deregister self
132 < *   otherActions(); // do other things while tasks execute
133 < *   phaser.awaitAdvance(p); // wait for all tasks to arrive
109 < * }
110 < * </pre>
130 > *
131 > *   // allow threads to start and deregister self
132 > *   phaser.arriveAndDeregister();
133 > * }}</pre>
134   *
135   * <p>One way to cause a set of threads to repeatedly perform actions
136 < * for a given number of iterations is to override <tt>onAdvance</tt>:
136 > * for a given number of iterations is to override {@code onAdvance}:
137   *
138 < * <pre>
139 < *  void startTasks(List&lt;Runnable&gt; list, final int iterations) {
140 < *    final Phaser phaser = new Phaser() {
141 < *       public boolean onAdvance(int phase, int registeredParties) {
142 < *         return phase &gt;= iterations || registeredParties == 0;
138 > *  <pre> {@code
139 > * void startTasks(List<Runnable> tasks, final int iterations) {
140 > *   final Phaser phaser = new Phaser() {
141 > *     protected boolean onAdvance(int phase, int registeredParties) {
142 > *       return phase >= iterations || registeredParties == 0;
143 > *     }
144 > *   };
145 > *   phaser.register();
146 > *   for (Runnable task : tasks) {
147 > *     phaser.register();
148 > *     new Thread() {
149 > *       public void run() {
150 > *         do {
151 > *           task.run();
152 > *           phaser.arriveAndAwaitAdvance();
153 > *         } while(!phaser.isTerminated();
154   *       }
155 < *    };
122 < *    phaser.register();
123 < *    for (Runnable r : list) {
124 < *      phaser.register();
125 < *      new Thread() {
126 < *        public void run() {
127 < *           do {
128 < *             r.run();
129 < *             phaser.arriveAndAwaitAdvance();
130 < *           } while(!phaser.isTerminated();
131 < *        }
132 < *      }.start();
155 > *     }.start();
156   *   }
157   *   phaser.arriveAndDeregister(); // deregister self, don't wait
158 < * }
159 < * </pre>
158 > * }}</pre>
159 > *
160 > * If the main task must later await termination, it
161 > * may re-register and then execute a similar loop:
162 > * <pre> {@code
163 > *   // ...
164 > *   phaser.register();
165 > *   while (!phaser.isTerminated())
166 > *     phaser.arriveAndAwaitAdvance();
167 > * }</pre>
168 > *
169 > * Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172 > *
173 > * <pre> {@code
174 > *   void awaitPhase(Phaser phaser, int phase) {
175 > *     int p = phaser.register(); // assumes caller not already registered
176 > *     while (p < phase) {
177 > *       if (phaser.isTerminated())
178 > *         // ... deal with unexpected termination
179 > *       else
180 > *         p = phaser.arriveAndAwaitAdvance();
181 > *     }
182 > *     phaser.arriveAndDeregister();
183 > *   }
184 > * }</pre>
185   *
186 < * <p> To create a set of tasks using a tree of Phasers,
186 > *
187 > * <p>To create a set of tasks using a tree of phasers,
188   * you could use code of the following form, assuming a
189 < * Task class with a constructor accepting a Phaser that
189 > * Task class with a constructor accepting a phaser that
190   * it registers for upon construction:
191 < * <pre>
192 < *  void build(Task[] actions, int lo, int hi, Phaser b) {
193 < *    int step = (hi - lo) / TASKS_PER_PHASER;
194 < *    if (step &gt; 1) {
195 < *       int i = lo;
196 < *       while (i &lt; hi) {
197 < *         int r = Math.min(i + step, hi);
198 < *         build(actions, i, r, new Phaser(b));
199 < *         i = r;
200 < *       }
201 < *    }
202 < *    else {
203 < *      for (int i = lo; i &lt; hi; ++i)
204 < *        actions[i] = new Task(b);
205 < *        // assumes new Task(b) performs b.register()
206 < *    }
207 < *  }
208 < *  // .. initially called, for n tasks via
160 < *  build(new Task[n], 0, n, new Phaser());
161 < * </pre>
191 > *  <pre> {@code
192 > * void build(Task[] actions, int lo, int hi, Phaser b) {
193 > *   int step = (hi - lo) / TASKS_PER_PHASER;
194 > *   if (step > 1) {
195 > *     int i = lo;
196 > *     while (i < hi) {
197 > *       int r = Math.min(i + step, hi);
198 > *       build(actions, i, r, new Phaser(b));
199 > *       i = r;
200 > *     }
201 > *   } else {
202 > *     for (int i = lo; i < hi; ++i)
203 > *       actions[i] = new Task(b);
204 > *       // assumes new Task(b) performs b.register()
205 > *   }
206 > * }
207 > * // .. initially called, for n tasks via
208 > * build(new Task[n], 0, n, new Phaser());}</pre>
209   *
210 < * The best value of <tt>TASKS_PER_PHASER</tt> depends mainly on
210 > * The best value of {@code TASKS_PER_PHASER} depends mainly on
211   * expected barrier synchronization rates. A value as low as four may
212   * be appropriate for extremely small per-barrier task bodies (thus
213   * high rates), or up to hundreds for extremely large ones.
# Line 169 | Line 216 | import java.lang.reflect.*;
216   *
217   * <p><b>Implementation notes</b>: This implementation restricts the
218   * maximum number of parties to 65535. Attempts to register additional
219 < * parties result in IllegalStateExceptions. However, you can and
219 > * parties result in {@code IllegalStateException}. However, you can and
220   * should create tiered phasers to accommodate arbitrarily large sets
221   * of participants.
222 + *
223 + * @since 1.7
224 + * @author Doug Lea
225   */
226   public class Phaser {
227      /*
# Line 192 | Line 242 | public class Phaser {
242       * However, to efficiently maintain atomicity, these values are
243       * packed into a single (atomic) long. Termination uses the sign
244       * bit of 32 bit representation of phase, so phase is set to -1 on
245 <     * termination. Good performace relies on keeping state decoding
245 >     * termination. Good performance relies on keeping state decoding
246       * and encoding simple, and keeping race windows short.
247       *
248       * Note: there are some cheats in arrive() that rely on unarrived
249 <     * being lowest 16 bits.
249 >     * count being lowest 16 bits.
250       */
251      private volatile long state;
252  
253      private static final int ushortBits = 16;
254 <    private static final int ushortMask =  (1 << ushortBits) - 1;
255 <    private static final int phaseMask = 0x7fffffff;
254 >    private static final int ushortMask = 0xffff;
255 >    private static final int phaseMask  = 0x7fffffff;
256  
257      private static int unarrivedOf(long s) {
258 <        return (int)(s & ushortMask);
258 >        return (int) (s & ushortMask);
259      }
260  
261      private static int partiesOf(long s) {
262 <        return (int)(s & (ushortMask << 16)) >>> 16;
262 >        return ((int) s) >>> 16;
263      }
264  
265      private static int phaseOf(long s) {
266 <        return (int)(s >>> 32);
266 >        return (int) (s >>> 32);
267      }
268  
269      private static int arrivedOf(long s) {
# Line 221 | Line 271 | public class Phaser {
271      }
272  
273      private static long stateFor(int phase, int parties, int unarrived) {
274 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
274 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
275 >                (long) unarrived);
276      }
277  
278      private static long trippedStateFor(int phase, int parties) {
279 <        return (((long)phase) << 32) | ((parties << 16) | parties);
279 >        long lp = (long) parties;
280 >        return (((long) phase) << 32) | (lp << 16) | lp;
281      }
282  
283 <    private static IllegalStateException badBounds(int parties, int unarrived) {
284 <        return new IllegalStateException
285 <            ("Attempt to set " + unarrived +
286 <             " unarrived of " + parties + " parties");
283 >    /**
284 >     * Returns message string for bad bounds exceptions.
285 >     */
286 >    private static String badBounds(int parties, int unarrived) {
287 >        return ("Attempt to set " + unarrived +
288 >                " unarrived of " + parties + " parties");
289      }
290  
291      /**
# Line 240 | Line 294 | public class Phaser {
294      private final Phaser parent;
295  
296      /**
297 <     * The root of Phaser tree. Equals this if not in a tree.  Used to
297 >     * The root of phaser tree. Equals this if not in a tree.  Used to
298       * support faster state push-down.
299       */
300      private final Phaser root;
# Line 248 | Line 302 | public class Phaser {
302      // Wait queues
303  
304      /**
305 <     * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
305 >     * Heads of Treiber stacks for waiting threads. To eliminate
306       * contention while releasing some threads while adding others, we
307       * use two of them, alternating across even and odd phases.
308       */
# Line 256 | Line 310 | public class Phaser {
310      private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
311  
312      private AtomicReference<QNode> queueFor(int phase) {
313 <        return (phase & 1) == 0? evenQ : oddQ;
313 >        return ((phase & 1) == 0) ? evenQ : oddQ;
314      }
315  
316      /**
# Line 264 | Line 318 | public class Phaser {
318       * root if necessary.
319       */
320      private long getReconciledState() {
321 <        return parent == null? state : reconcileState();
321 >        return (parent == null) ? state : reconcileState();
322      }
323  
324      /**
# Line 291 | Line 345 | public class Phaser {
345      }
346  
347      /**
348 <     * Creates a new Phaser without any initially registered parties,
349 <     * initial phase number 0, and no parent.
348 >     * Creates a new phaser without any initially registered parties,
349 >     * initial phase number 0, and no parent. Any thread using this
350 >     * phaser will need to first register for it.
351       */
352      public Phaser() {
353          this(null);
354      }
355  
356      /**
357 <     * Creates a new Phaser with the given numbers of registered
357 >     * Creates a new phaser with the given numbers of registered
358       * unarrived parties, initial phase number 0, and no parent.
359 <     * @param parties the number of parties required to trip barrier.
359 >     *
360 >     * @param parties the number of parties required to trip barrier
361       * @throws IllegalArgumentException if parties less than zero
362 <     * or greater than the maximum number of parties supported.
362 >     * or greater than the maximum number of parties supported
363       */
364      public Phaser(int parties) {
365          this(null, parties);
366      }
367  
368      /**
369 <     * Creates a new Phaser with the given parent, without any
369 >     * Creates a new phaser with the given parent, without any
370       * initially registered parties. If parent is non-null this phaser
371       * is registered with the parent and its initial phase number is
372       * the same as that of parent phaser.
373 <     * @param parent the parent phaser.
373 >     *
374 >     * @param parent the parent phaser
375       */
376      public Phaser(Phaser parent) {
377          int phase = 0;
# Line 329 | Line 386 | public class Phaser {
386      }
387  
388      /**
389 <     * Creates a new Phaser with the given parent and numbers of
390 <     * registered unarrived parties. If parent is non-null this phaser
389 >     * Creates a new phaser with the given parent and numbers of
390 >     * registered unarrived parties. If parent is non-null, this phaser
391       * is registered with the parent and its initial phase number is
392       * the same as that of parent phaser.
393 <     * @param parent the parent phaser.
394 <     * @param parties the number of parties required to trip barrier.
393 >     *
394 >     * @param parent the parent phaser
395 >     * @param parties the number of parties required to trip barrier
396       * @throws IllegalArgumentException if parties less than zero
397 <     * or greater than the maximum number of parties supported.
397 >     * or greater than the maximum number of parties supported
398       */
399      public Phaser(Phaser parent, int parties) {
400          if (parties < 0 || parties > ushortMask)
# Line 354 | Line 412 | public class Phaser {
412  
413      /**
414       * Adds a new unarrived party to this phaser.
415 <     * @return the current barrier phase number upon registration
415 >     *
416 >     * @return the arrival phase number to which this registration applied
417       * @throws IllegalStateException if attempting to register more
418 <     * than the maximum supported number of parties.
418 >     * than the maximum supported number of parties
419       */
420      public int register() {
421          return doRegister(1);
# Line 364 | Line 423 | public class Phaser {
423  
424      /**
425       * Adds the given number of new unarrived parties to this phaser.
426 <     * @param parties the number of parties required to trip barrier.
427 <     * @return the current barrier phase number upon registration
426 >     *
427 >     * @param parties the number of parties required to trip barrier
428 >     * @return the arrival phase number to which this registration applied
429       * @throws IllegalStateException if attempting to register more
430 <     * than the maximum supported number of parties.
430 >     * than the maximum supported number of parties
431       */
432      public int bulkRegister(int parties) {
433          if (parties < 0)
# Line 390 | Line 450 | public class Phaser {
450              if (phase < 0)
451                  break;
452              if (parties > ushortMask || unarrived > ushortMask)
453 <                throw badBounds(parties, unarrived);
453 >                throw new IllegalStateException(badBounds(parties, unarrived));
454              if (phase == phaseOf(root.state) &&
455                  casState(s, stateFor(phase, parties, unarrived)))
456                  break;
# Line 400 | Line 460 | public class Phaser {
460  
461      /**
462       * Arrives at the barrier, but does not wait for others.  (You can
463 <     * in turn wait for others via {@link #awaitAdvance}).
463 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
464 >     * unenforced usage error for an unregistered party to invoke this
465 >     * method.
466       *
467 <     * @return the barrier phase number upon entry to this method, or a
406 <     * negative value if terminated;
467 >     * @return the arrival phase number, or a negative value if terminated
468       * @throws IllegalStateException if not terminated and the number
469 <     * of unarrived parties would become negative.
469 >     * of unarrived parties would become negative
470       */
471      public int arrive() {
472          int phase;
473          for (;;) {
474              long s = state;
475              phase = phaseOf(s);
476 +            if (phase < 0)
477 +                break;
478              int parties = partiesOf(s);
479              int unarrived = unarrivedOf(s) - 1;
480              if (unarrived > 0) {        // Not the last arrival
# Line 423 | Line 486 | public class Phaser {
486                  if (par == null) {      // directly trip
487                      if (casState
488                          (s,
489 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
489 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
490                                           ((phase + 1) & phaseMask), parties))) {
491                          releaseWaiters(phase);
492                          break;
# Line 437 | Line 500 | public class Phaser {
500                      }
501                  }
502              }
440            else if (phase < 0) // Don't throw exception if terminated
441                break;
503              else if (phase != phaseOf(root.state)) // or if unreconciled
504                  reconcileState();
505              else
506 <                throw badBounds(parties, unarrived);
506 >                throw new IllegalStateException(badBounds(parties, unarrived));
507          }
508          return phase;
509      }
510  
511      /**
512 <     * Arrives at the barrier, and deregisters from it, without
513 <     * waiting for others. Deregistration reduces number of parties
512 >     * Arrives at the barrier and deregisters from it without waiting
513 >     * for others. Deregistration reduces the number of parties
514       * required to trip the barrier in future phases.  If this phaser
515       * has a parent, and deregistration causes this phaser to have
516 <     * zero parties, this phaser is also deregistered from its parent.
516 >     * zero parties, this phaser also arrives at and is deregistered
517 >     * from its parent.  It is an unenforced usage error for an
518 >     * unregistered party to invoke this method.
519       *
520 <     * @return the current barrier phase number upon entry to
458 <     * this method, or a negative value if terminated;
520 >     * @return the arrival phase number, or a negative value if terminated
521       * @throws IllegalStateException if not terminated and the number
522 <     * of registered or unarrived parties would become negative.
522 >     * of registered or unarrived parties would become negative
523       */
524      public int arriveAndDeregister() {
525          // similar code to arrive, but too different to merge
# Line 466 | Line 528 | public class Phaser {
528          for (;;) {
529              long s = state;
530              phase = phaseOf(s);
531 +            if (phase < 0)
532 +                break;
533              int parties = partiesOf(s) - 1;
534              int unarrived = unarrivedOf(s) - 1;
535              if (parties >= 0) {
# Line 484 | Line 548 | public class Phaser {
548                  if (unarrived == 0) {
549                      if (casState
550                          (s,
551 <                         trippedStateFor(onAdvance(phase, parties)? -1 :
551 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
552                                           ((phase + 1) & phaseMask), parties))) {
553                          releaseWaiters(phase);
554                          break;
555                      }
556                      continue;
557                  }
494                if (phase < 0)
495                    break;
558                  if (par != null && phase != phaseOf(root.state)) {
559                      reconcileState();
560                      continue;
561                  }
562              }
563 <            throw badBounds(parties, unarrived);
563 >            throw new IllegalStateException(badBounds(parties, unarrived));
564          }
565          return phase;
566      }
567  
568      /**
569       * Arrives at the barrier and awaits others. Equivalent in effect
570 <     * to <tt>awaitAdvance(arrive())</tt>.  If you instead need to
571 <     * await with interruption of timeout, and/or deregister upon
572 <     * arrival, you can arrange them using analogous constructions.
573 <     * @return the phase on entry to this method
570 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
571 >     * interruption or timeout, you can arrange this with an analogous
572 >     * construction using one of the other forms of the awaitAdvance
573 >     * method.  If instead you need to deregister upon arrival use
574 >     * {@code arriveAndDeregister}. It is an unenforced usage error
575 >     * for an unregistered party to invoke this method.
576 >     *
577 >     * @return the arrival phase number, or a negative number if terminated
578       * @throws IllegalStateException if not terminated and the number
579 <     * of unarrived parties would become negative.
579 >     * of unarrived parties would become negative
580       */
581      public int arriveAndAwaitAdvance() {
582          return awaitAdvance(arrive());
583      }
584  
585      /**
586 <     * Awaits the phase of the barrier to advance from the given
587 <     * value, or returns immediately if argument is negative or this
588 <     * barrier is terminated.
589 <     * @param phase the phase on entry to this method
590 <     * @return the phase on exit from this method
586 >     * Awaits the phase of the barrier to advance from the given phase
587 >     * value, returning immediately if the current phase of the
588 >     * barrier is not equal to the given phase value or this barrier
589 >     * is terminated.  It is an unenforced usage error for an
590 >     * unregistered party to invoke this method.
591 >     *
592 >     * @param phase an arrival phase number, or negative value if
593 >     * terminated; this argument is normally the value returned by a
594 >     * previous call to {@code arrive} or its variants
595 >     * @return the next arrival phase number, or a negative value
596 >     * if terminated or argument is negative
597       */
598      public int awaitAdvance(int phase) {
599          if (phase < 0)
# Line 530 | Line 602 | public class Phaser {
602          int p = phaseOf(s);
603          if (p != phase)
604              return p;
605 <        if (unarrivedOf(s) == 0)
605 >        if (unarrivedOf(s) == 0 && parent != null)
606              parent.awaitAdvance(phase);
607          // Fall here even if parent waited, to reconcile and help release
608          return untimedWait(phase);
609      }
610  
611      /**
612 <     * Awaits the phase of the barrier to advance from the given
613 <     * value, or returns immediately if argumet is negative or this
614 <     * barrier is terminated, or throws InterruptedException if
615 <     * interrupted while waiting.
616 <     * @param phase the phase on entry to this method
617 <     * @return the phase on exit from this method
612 >     * Awaits the phase of the barrier to advance from the given phase
613 >     * value, throwing {@code InterruptedException} if interrupted
614 >     * while waiting, or returning immediately if the current phase of
615 >     * the barrier is not equal to the given phase value or this
616 >     * barrier is terminated. It is an unenforced usage error for an
617 >     * unregistered party to invoke this method.
618 >     *
619 >     * @param phase an arrival phase number, or negative value if
620 >     * terminated; this argument is normally the value returned by a
621 >     * previous call to {@code arrive} or its variants
622 >     * @return the next arrival phase number, or a negative value
623 >     * if terminated or argument is negative
624       * @throws InterruptedException if thread interrupted while waiting
625       */
626 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
626 >    public int awaitAdvanceInterruptibly(int phase)
627 >        throws InterruptedException {
628          if (phase < 0)
629              return phase;
630          long s = getReconciledState();
631          int p = phaseOf(s);
632          if (p != phase)
633              return p;
634 <        if (unarrivedOf(s) != 0)
634 >        if (unarrivedOf(s) == 0 && parent != null)
635              parent.awaitAdvanceInterruptibly(phase);
636          return interruptibleWait(phase);
637      }
638  
639      /**
640 <     * Awaits the phase of the barrier to advance from the given value
641 <     * or the given timeout elapses, or returns immediately if
642 <     * argument is negative or this barrier is terminated.
643 <     * @param phase the phase on entry to this method
644 <     * @return the phase on exit from this method
640 >     * Awaits the phase of the barrier to advance from the given phase
641 >     * value or the given timeout to elapse, throwing {@code
642 >     * InterruptedException} if interrupted while waiting, or
643 >     * returning immediately if the current phase of the barrier is
644 >     * not equal to the given phase value or this barrier is
645 >     * terminated.  It is an unenforced usage error for an
646 >     * unregistered party to invoke this method.
647 >     *
648 >     * @param phase an arrival phase number, or negative value if
649 >     * terminated; this argument is normally the value returned by a
650 >     * previous call to {@code arrive} or its variants
651 >     * @param timeout how long to wait before giving up, in units of
652 >     *        {@code unit}
653 >     * @param unit a {@code TimeUnit} determining how to interpret the
654 >     *        {@code timeout} parameter
655 >     * @return the next arrival phase number, or a negative value
656 >     * if terminated or argument is negative
657       * @throws InterruptedException if thread interrupted while waiting
658       * @throws TimeoutException if timed out while waiting
659       */
660 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
660 >    public int awaitAdvanceInterruptibly(int phase,
661 >                                         long timeout, TimeUnit unit)
662          throws InterruptedException, TimeoutException {
663          if (phase < 0)
664              return phase;
# Line 574 | Line 666 | public class Phaser {
666          int p = phaseOf(s);
667          if (p != phase)
668              return p;
669 <        if (unarrivedOf(s) == 0)
669 >        if (unarrivedOf(s) == 0 && parent != null)
670              parent.awaitAdvanceInterruptibly(phase, timeout, unit);
671          return timedWait(phase, unit.toNanos(timeout));
672      }
# Line 605 | Line 697 | public class Phaser {
697  
698      /**
699       * Returns the current phase number. The maximum phase number is
700 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
700 >     * {@code Integer.MAX_VALUE}, after which it restarts at
701       * zero. Upon termination, the phase number is negative.
702 +     *
703       * @return the phase number, or a negative value if terminated
704       */
705      public final int getPhase() {
# Line 614 | Line 707 | public class Phaser {
707      }
708  
709      /**
617     * Returns true if the current phase number equals the given phase.
618     * @param phase the phase
619     * @return true if the current phase number equals the given phase.
620     */
621    public final boolean hasPhase(int phase) {
622        return phaseOf(getReconciledState()) == phase;
623    }
624
625    /**
710       * Returns the number of parties registered at this barrier.
711 +     *
712       * @return the number of parties
713       */
714      public int getRegisteredParties() {
# Line 631 | Line 716 | public class Phaser {
716      }
717  
718      /**
719 <     * Returns the number of parties that have arrived at the current
720 <     * phase of this barrier.
719 >     * Returns the number of registered parties that have arrived at
720 >     * the current phase of this barrier.
721 >     *
722       * @return the number of arrived parties
723       */
724      public int getArrivedParties() {
# Line 642 | Line 728 | public class Phaser {
728      /**
729       * Returns the number of registered parties that have not yet
730       * arrived at the current phase of this barrier.
731 +     *
732       * @return the number of unarrived parties
733       */
734      public int getUnarrivedParties() {
# Line 649 | Line 736 | public class Phaser {
736      }
737  
738      /**
739 <     * Returns the parent of this phaser, or null if none.
740 <     * @return the parent of this phaser, or null if none.
739 >     * Returns the parent of this phaser, or {@code null} if none.
740 >     *
741 >     * @return the parent of this phaser, or {@code null} if none
742       */
743      public Phaser getParent() {
744          return parent;
# Line 659 | Line 747 | public class Phaser {
747      /**
748       * Returns the root ancestor of this phaser, which is the same as
749       * this phaser if it has no parent.
750 <     * @return the root ancestor of this phaser.
750 >     *
751 >     * @return the root ancestor of this phaser
752       */
753      public Phaser getRoot() {
754          return root;
755      }
756  
757      /**
758 <     * Returns true if this barrier has been terminated.
759 <     * @return true if this barrier has been terminated
758 >     * Returns {@code true} if this barrier has been terminated.
759 >     *
760 >     * @return {@code true} if this barrier has been terminated
761       */
762      public boolean isTerminated() {
763          return getPhase() < 0;
# Line 677 | Line 767 | public class Phaser {
767       * Overridable method to perform an action upon phase advance, and
768       * to control termination. This method is invoked whenever the
769       * barrier is tripped (and thus all other waiting parties are
770 <     * dormant). If it returns true, then, rather than advance the
771 <     * phase number, this barrier will be set to a final termination
772 <     * state, and subsequent calls to <tt>isTerminated</tt> will
773 <     * return true.
770 >     * dormant). If it returns {@code true}, then, rather than advance
771 >     * the phase number, this barrier will be set to a final
772 >     * termination state, and subsequent calls to {@link #isTerminated}
773 >     * will return true.
774       *
775 <     * <p> The default version returns true when the number of
775 >     * <p>The default version returns {@code true} when the number of
776       * registered parties is zero. Normally, overrides that arrange
777       * termination for other reasons should also preserve this
778       * property.
779       *
780 <     * <p> You may override this method to perform an action with side
780 >     * <p>You may override this method to perform an action with side
781       * effects visible to participating tasks, but it is in general
782       * only sensible to do so in designs where all parties register
783 <     * before any arrive, and all <tt>awaitAdvance</tt> at each phase.
784 <     * Otherwise, you cannot ensure lack of interference. In
785 <     * particular, this method may be invoked more than once per
696 <     * transition if other parties successfully register while the
697 <     * invocation of this method is in progress, thus postponing the
698 <     * transition until those parties also arrive, re-triggering this
699 <     * method.
783 >     * before any arrive, and all {@link #awaitAdvance} at each phase.
784 >     * Otherwise, you cannot ensure lack of interference from other
785 >     * parties during the invocation of this method.
786       *
787       * @param phase the phase number on entering the barrier
788 <     * @param registeredParties the current number of registered
789 <     * parties.
704 <     * @return true if this barrier should terminate
788 >     * @param registeredParties the current number of registered parties
789 >     * @return {@code true} if this barrier should terminate
790       */
791      protected boolean onAdvance(int phase, int registeredParties) {
792          return registeredParties <= 0;
# Line 710 | Line 795 | public class Phaser {
795      /**
796       * Returns a string identifying this phaser, as well as its
797       * state.  The state, in brackets, includes the String {@code
798 <     * "phase ="} followed by the phase number, {@code "parties ="}
798 >     * "phase = "} followed by the phase number, {@code "parties = "}
799       * followed by the number of registered parties, and {@code
800 <     * "arrived ="} followed by the number of arrived parties
800 >     * "arrived = "} followed by the number of arrived parties.
801       *
802       * @return a string identifying this barrier, as well as its state
803       */
804      public String toString() {
805          long s = getReconciledState();
806 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
806 >        return super.toString() +
807 >            "[phase = " + phaseOf(s) +
808 >            " parties = " + partiesOf(s) +
809 >            " arrived = " + arrivedOf(s) + "]";
810      }
811  
812      // methods for waiting
813  
726    /** The number of CPUs, for spin control */
727    static final int NCPUS = Runtime.getRuntime().availableProcessors();
728
729    /**
730     * The number of times to spin before blocking in timed waits.
731     * The value is empirically derived.
732     */
733    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
734
735    /**
736     * The number of times to spin before blocking in untimed waits.
737     * This is greater than timed value because untimed waits spin
738     * faster since they don't need to check times on each spin.
739     */
740    static final int maxUntimedSpins = maxTimedSpins * 32;
741
742    /**
743     * The number of nanoseconds for which it is faster to spin
744     * rather than to use timed park. A rough estimate suffices.
745     */
746    static final long spinForTimeoutThreshold = 1000L;
747
814      /**
815 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
750 <     * tasks.
815 >     * Wait nodes for Treiber stack representing wait queue
816       */
817 <    static final class QNode {
818 <        QNode next;
817 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
818 >        final Phaser phaser;
819 >        final int phase;
820 >        final long startTime;
821 >        final long nanos;
822 >        final boolean timed;
823 >        final boolean interruptible;
824 >        volatile boolean wasInterrupted = false;
825          volatile Thread thread; // nulled to cancel wait
826 <        QNode() {
826 >        QNode next;
827 >        QNode(Phaser phaser, int phase, boolean interruptible,
828 >              boolean timed, long startTime, long nanos) {
829 >            this.phaser = phaser;
830 >            this.phase = phase;
831 >            this.timed = timed;
832 >            this.interruptible = interruptible;
833 >            this.startTime = startTime;
834 >            this.nanos = nanos;
835              thread = Thread.currentThread();
836          }
837 +        public boolean isReleasable() {
838 +            return (thread == null ||
839 +                    phaser.getPhase() != phase ||
840 +                    (interruptible && wasInterrupted) ||
841 +                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
842 +        }
843 +        public boolean block() {
844 +            if (Thread.interrupted()) {
845 +                wasInterrupted = true;
846 +                if (interruptible)
847 +                    return true;
848 +            }
849 +            if (!timed)
850 +                LockSupport.park(this);
851 +            else {
852 +                long waitTime = nanos - (System.nanoTime() - startTime);
853 +                if (waitTime <= 0)
854 +                    return true;
855 +                LockSupport.parkNanos(this, waitTime);
856 +            }
857 +            return isReleasable();
858 +        }
859          void signal() {
860              Thread t = thread;
861              if (t != null) {
# Line 762 | Line 863 | public class Phaser {
863                  LockSupport.unpark(t);
864              }
865          }
866 +        boolean doWait() {
867 +            if (thread != null) {
868 +                try {
869 +                    ForkJoinPool.managedBlock(this, false);
870 +                } catch (InterruptedException ie) {
871 +                }
872 +            }
873 +            return wasInterrupted;
874 +        }
875 +
876      }
877  
878      /**
879 <     * Removes and signals waiting threads from wait queue
879 >     * Removes and signals waiting threads from wait queue.
880       */
881      private void releaseWaiters(int phase) {
882          AtomicReference<QNode> head = queueFor(phase);
# Line 777 | Line 888 | public class Phaser {
888      }
889  
890      /**
891 +     * Tries to enqueue given node in the appropriate wait queue.
892 +     *
893 +     * @return true if successful
894 +     */
895 +    private boolean tryEnqueue(QNode node) {
896 +        AtomicReference<QNode> head = queueFor(node.phase);
897 +        return head.compareAndSet(node.next = head.get(), node);
898 +    }
899 +
900 +    /**
901       * Enqueues node and waits unless aborted or signalled.
902 +     *
903 +     * @return current phase
904       */
905      private int untimedWait(int phase) {
783        int spins = maxUntimedSpins;
906          QNode node = null;
785        boolean interrupted = false;
907          boolean queued = false;
908 +        boolean interrupted = false;
909          int p;
910          while ((p = getPhase()) == phase) {
911 <            interrupted = Thread.interrupted();
912 <            if (node != null) {
913 <                if (!queued) {
914 <                    AtomicReference<QNode> head = queueFor(phase);
915 <                    queued = head.compareAndSet(node.next = head.get(), node);
916 <                }
795 <                else if (node.thread != null)
796 <                    LockSupport.park(this);
797 <            }
798 <            else if (spins <= 0)
799 <                node = new QNode();
911 >            if (Thread.interrupted())
912 >                interrupted = true;
913 >            else if (node == null)
914 >                node = new QNode(this, phase, false, false, 0, 0);
915 >            else if (!queued)
916 >                queued = tryEnqueue(node);
917              else
918 <                --spins;
918 >                interrupted = node.doWait();
919          }
920          if (node != null)
921              node.thread = null;
922 +        releaseWaiters(phase);
923          if (interrupted)
924              Thread.currentThread().interrupt();
807        releaseWaiters(phase);
925          return p;
926      }
927  
928      /**
929 <     * Messier interruptible version
929 >     * Interruptible version
930 >     * @return current phase
931       */
932      private int interruptibleWait(int phase) throws InterruptedException {
815        int spins = maxUntimedSpins;
933          QNode node = null;
934          boolean queued = false;
935          boolean interrupted = false;
936          int p;
937 <        while ((p = getPhase()) == phase) {
938 <            if (interrupted = Thread.interrupted())
939 <                break;
940 <            if (node != null) {
941 <                if (!queued) {
942 <                    AtomicReference<QNode> head = queueFor(phase);
943 <                    queued = head.compareAndSet(node.next = head.get(), node);
827 <                }
828 <                else if (node.thread != null)
829 <                    LockSupport.park(this);
830 <            }
831 <            else if (spins <= 0)
832 <                node = new QNode();
937 >        while ((p = getPhase()) == phase && !interrupted) {
938 >            if (Thread.interrupted())
939 >                interrupted = true;
940 >            else if (node == null)
941 >                node = new QNode(this, phase, true, false, 0, 0);
942 >            else if (!queued)
943 >                queued = tryEnqueue(node);
944              else
945 <                --spins;
945 >                interrupted = node.doWait();
946          }
947          if (node != null)
948              node.thread = null;
949 +        if (p != phase || (p = getPhase()) != phase)
950 +            releaseWaiters(phase);
951          if (interrupted)
952              throw new InterruptedException();
840        releaseWaiters(phase);
953          return p;
954      }
955  
956      /**
957 <     * Even messier timeout version.
957 >     * Timeout version.
958 >     * @return current phase
959       */
960      private int timedWait(int phase, long nanos)
961          throws InterruptedException, TimeoutException {
962 +        long startTime = System.nanoTime();
963 +        QNode node = null;
964 +        boolean queued = false;
965 +        boolean interrupted = false;
966          int p;
967 <        if ((p = getPhase()) == phase) {
968 <            long lastTime = System.nanoTime();
969 <            int spins = maxTimedSpins;
970 <            QNode node = null;
971 <            boolean queued = false;
972 <            boolean interrupted = false;
973 <            while ((p = getPhase()) == phase) {
974 <                if (interrupted = Thread.interrupted())
975 <                    break;
976 <                long now = System.nanoTime();
977 <                if ((nanos -= now - lastTime) <= 0)
861 <                    break;
862 <                lastTime = now;
863 <                if (node != null) {
864 <                    if (!queued) {
865 <                        AtomicReference<QNode> head = queueFor(phase);
866 <                        queued = head.compareAndSet(node.next = head.get(), node);
867 <                    }
868 <                    else if (node.thread != null &&
869 <                             nanos > spinForTimeoutThreshold) {
870 <                        LockSupport.parkNanos(this, nanos);
871 <                    }
872 <                }
873 <                else if (spins <= 0)
874 <                    node = new QNode();
875 <                else
876 <                    --spins;
877 <            }
878 <            if (node != null)
879 <                node.thread = null;
880 <            if (interrupted)
881 <                throw new InterruptedException();
882 <            if (p == phase && (p = getPhase()) == phase)
883 <                throw new TimeoutException();
967 >        while ((p = getPhase()) == phase && !interrupted) {
968 >            if (Thread.interrupted())
969 >                interrupted = true;
970 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
971 >                break;
972 >            else if (node == null)
973 >                node = new QNode(this, phase, true, true, startTime, nanos);
974 >            else if (!queued)
975 >                queued = tryEnqueue(node);
976 >            else
977 >                interrupted = node.doWait();
978          }
979 <        releaseWaiters(phase);
979 >        if (node != null)
980 >            node.thread = null;
981 >        if (p != phase || (p = getPhase()) != phase)
982 >            releaseWaiters(phase);
983 >        if (interrupted)
984 >            throw new InterruptedException();
985 >        if (p == phase)
986 >            throw new TimeoutException();
987          return p;
988      }
989  
990 <    // Temporary Unsafe mechanics for preliminary release
990 >    // Unsafe mechanics
991  
992 <    static final Unsafe _unsafe;
993 <    static final long stateOffset;
992 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
993 >    private static final long stateOffset =
994 >        objectFieldOffset("state", Phaser.class);
995  
996 <    static {
996 >    private final boolean casState(long cmp, long val) {
997 >        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
998 >    }
999 >
1000 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1001          try {
1002 <            if (Phaser.class.getClassLoader() != null) {
1003 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1004 <                f.setAccessible(true);
1005 <                _unsafe = (Unsafe)f.get(null);
1006 <            }
1007 <            else
902 <                _unsafe = Unsafe.getUnsafe();
903 <            stateOffset = _unsafe.objectFieldOffset
904 <                (Phaser.class.getDeclaredField("state"));
905 <        } catch (Exception e) {
906 <            throw new RuntimeException("Could not initialize intrinsics", e);
1002 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1003 >        } catch (NoSuchFieldException e) {
1004 >            // Convert Exception to corresponding Error
1005 >            NoSuchFieldError error = new NoSuchFieldError(field);
1006 >            error.initCause(e);
1007 >            throw error;
1008          }
1009      }
1010  
1011 <    final boolean casState(long cmp, long val) {
1012 <        return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
1011 >    /**
1012 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1013 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1014 >     * into a jdk.
1015 >     *
1016 >     * @return a sun.misc.Unsafe
1017 >     */
1018 >    private static sun.misc.Unsafe getUnsafe() {
1019 >        try {
1020 >            return sun.misc.Unsafe.getUnsafe();
1021 >        } catch (SecurityException se) {
1022 >            try {
1023 >                return java.security.AccessController.doPrivileged
1024 >                    (new java.security
1025 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1026 >                        public sun.misc.Unsafe run() throws Exception {
1027 >                            java.lang.reflect.Field f = sun.misc
1028 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1029 >                            f.setAccessible(true);
1030 >                            return (sun.misc.Unsafe) f.get(null);
1031 >                        }});
1032 >            } catch (java.security.PrivilegedActionException e) {
1033 >                throw new RuntimeException("Could not initialize intrinsics",
1034 >                                           e.getCause());
1035 >            }
1036 >        }
1037      }
1038   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines