ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.2 by jsr166, Fri Jul 25 18:10:41 2008 UTC vs.
Revision 1.40 by dl, Mon Aug 24 12:49:39 2009 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import jsr166y.forkjoin.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.atomic.*;
10 >
11 > import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
14   /**
15 < * A reusable synchronization barrier, similar in functionality to a
16 < * {@link java.util.concurrent.CyclicBarrier}, but supporting more
17 < * flexible usage.
15 > * A reusable synchronization barrier, similar in functionality to
16 > * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 > * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 > * but supporting more flexible usage.
19   *
20 < * <ul>
20 > * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 > * number of parties <em>registered</em> to synchronize on a phaser
22 > * may vary over time.  Tasks may be registered at any time (using
23 > * methods {@link #register}, {@link #bulkRegister}, or forms of
24 > * constructors establishing initial numbers of parties), and
25 > * optionally deregistered upon any arrival (using {@link
26 > * #arriveAndDeregister}).  As is the case with most basic
27 > * synchronization constructs, registration and deregistration affect
28 > * only internal counts; they do not establish any further internal
29 > * bookkeeping, so tasks cannot query whether they are registered.
30 > * (However, you can introduce such bookkeeping by subclassing this
31 > * class.)
32   *
33 < * <li> The number of parties synchronizing on the barrier may vary
34 < * over time.  A task may register to be a party in a barrier at any
35 < * time, and may deregister upon arriving at the barrier.  As is the
36 < * case with most basic synchronization constructs, registration
37 < * and deregistration affect only internal counts; they do not
38 < * establish any further internal bookkeeping, so tasks cannot query
39 < * whether they are registered.
40 < *
41 < * <li> Each generation has an associated phase value, starting at
42 < * zero, and advancing when all parties reach the barrier (wrapping
43 < * around to zero after reaching <tt>Integer.MAX_VALUE</tt>).
31 < *
32 < * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
33 < * Method <tt>arriveAndAwaitAdvance</tt> has effect analogous to
34 < * <tt>CyclicBarrier.await</tt>.  However, Phasers separate two
35 < * aspects of coordination, that may be invoked independently:
33 > * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 > * Phaser} may be repeatedly awaited.  Method {@link
35 > * #arriveAndAwaitAdvance} has effect analogous to {@link
36 > * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 > * generation of a {@code Phaser} has an associated phase number. The
38 > * phase number starts at zero, and advances when all parties arrive
39 > * at the barrier, wrapping around to zero after reaching {@code
40 > * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 > * control of actions upon arrival at a barrier and upon awaiting
42 > * others, via two kinds of methods that may be invoked by any
43 > * registered party:
44   *
45   * <ul>
46   *
47 < *   <li> Arriving at a barrier. Methods <tt>arrive</tt> and
48 < *       <tt>arriveAndDeregister</tt> do not block, but return
49 < *       the phase value on entry to the method.
50 < *
51 < *   <li> Awaiting others. Method <tt>awaitAdvance</tt> requires an
52 < *       argument indicating the entry phase, and returns when the
53 < *       barrier advances to a new phase.
47 > *   <li> <b>Arrival.</b> Methods {@link #arrive} and
48 > *       {@link #arriveAndDeregister} record arrival at a
49 > *       barrier. These methods do not block, but return an associated
50 > *       <em>arrival phase number</em>; that is, the phase number of
51 > *       the barrier to which the arrival applied. When the final
52 > *       party for a given phase arrives, an optional barrier action
53 > *       is performed and the phase advances.  Barrier actions,
54 > *       performed by the party triggering a phase advance, are
55 > *       arranged by overriding method {@link #onAdvance(int, int)},
56 > *       which also controls termination. Overriding this method is
57 > *       similar to, but more flexible than, providing a barrier
58 > *       action to a {@code CyclicBarrier}.
59 > *
60 > *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 > *       argument indicating an arrival phase number, and returns when
62 > *       the barrier advances to (or is already at) a different phase.
63 > *       Unlike similar constructions using {@code CyclicBarrier},
64 > *       method {@code awaitAdvance} continues to wait even if the
65 > *       waiting thread is interrupted. Interruptible and timeout
66 > *       versions are also available, but exceptions encountered while
67 > *       tasks wait interruptibly or with timeout do not change the
68 > *       state of the barrier. If necessary, you can perform any
69 > *       associated recovery within handlers of those exceptions,
70 > *       often after invoking {@code forceTermination}.  Phasers may
71 > *       also be used by tasks executing in a {@link ForkJoinPool},
72 > *       which will ensure sufficient parallelism to execute tasks
73 > *       when others are blocked waiting for a phase to advance.
74 > *
75   * </ul>
76   *
77 + * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 + * <em>termination</em> state in which all synchronization methods
79 + * immediately return without updating phaser state or waiting for
80 + * advance, and indicating (via a negative phase value) that execution
81 + * is complete.  Termination is triggered when an invocation of {@code
82 + * onAdvance} returns {@code true}.  As illustrated below, when
83 + * phasers control actions with a fixed number of iterations, it is
84 + * often convenient to override this method to cause termination when
85 + * the current phase number reaches a threshold. Method {@link
86 + * #forceTermination} is also available to abruptly release waiting
87 + * threads and allow them to terminate.
88   *
89 < * <li> Barrier actions, performed by the task triggering a phase
90 < * advance while others may be waiting, are arranged by overriding
91 < * method <tt>onAdvance</tt>, that also controls termination.
92 < *
93 < * <li> Phasers may enter a <em>termination</em> state in which all
94 < * await actions immediately return, indicating (via a negative phase
95 < * value) that execution is complete.  Termination is triggered by
56 < * executing the overridable <tt>onAdvance</tt> method that is invoked
57 < * each time the barrier is tripped. When a Phaser is controlling an
58 < * action with a fixed number of iterations, it is often convenient to
59 < * override this method to cause termination when the current phase
60 < * number reaches a threshold.  Method <tt>forceTermination</tt> is
61 < * also available to assist recovery actions upon failure.
62 < *
63 < * <li> Unlike most synchronizers, a Phaser may also be used with
64 < * ForkJoinTasks (as well as plain threads).
65 < *
66 < * <li> By default, <tt>awaitAdvance</tt> continues to wait even if
67 < * the current thread is interrupted. And unlike the case in
68 < * CyclicBarriers, exceptions encountered while tasks wait
69 < * interruptibly or with timeout do not change the state of the
70 < * barrier. If necessary, you can perform any associated recovery
71 < * within handlers of those exceptions.
89 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 > * in tree structures) to reduce contention. Phasers with large
91 > * numbers of parties that would otherwise experience heavy
92 > * synchronization contention costs may instead be set up so that
93 > * groups of sub-phasers share a common parent.  This may greatly
94 > * increase throughput even though it incurs greater per-operation
95 > * overhead.
96   *
97 < * </ul>
97 > * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 > * only by registered parties, the current state of a phaser may be
99 > * monitored by any caller.  At any given moment there are {@link
100 > * #getRegisteredParties} parties in total, of which {@link
101 > * #getArrivedParties} have arrived at the current phase ({@link
102 > * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 > * parties arrive, the phase advances; thus, this value is always
104 > * greater than zero if there are any registered parties.  The values
105 > * returned by these methods may reflect transient states and so are
106 > * not in general useful for synchronization control.  Method {@link
107 > * #toString} returns snapshots of these state queries in a form
108 > * convenient for informal monitoring.
109 > *
110 > * <p><b>Sample usages:</b>
111 > *
112 > * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113 > * to control a one-shot action serving a variable number of
114 > * parties. The typical idiom is for the method setting this up to
115 > * first register, then start the actions, then deregister, as in:
116 > *
117 > *  <pre> {@code
118 > * void runTasks(List<Runnable> tasks) {
119 > *   final Phaser phaser = new Phaser(1); // "1" to register self
120 > *   // create and start threads
121 > *   for (Runnable task : tasks) {
122 > *     phaser.register();
123 > *     new Thread() {
124 > *       public void run() {
125 > *         phaser.arriveAndAwaitAdvance(); // await all creation
126 > *         task.run();
127 > *       }
128 > *     }.start();
129 > *   }
130 > *
131 > *   // allow threads to start and deregister self
132 > *   phaser.arriveAndDeregister();
133 > * }}</pre>
134 > *
135 > * <p>One way to cause a set of threads to repeatedly perform actions
136 > * for a given number of iterations is to override {@code onAdvance}:
137 > *
138 > *  <pre> {@code
139 > * void startTasks(List<Runnable> tasks, final int iterations) {
140 > *   final Phaser phaser = new Phaser() {
141 > *     protected boolean onAdvance(int phase, int registeredParties) {
142 > *       return phase >= iterations || registeredParties == 0;
143 > *     }
144 > *   };
145 > *   phaser.register();
146 > *   for (Runnable task : tasks) {
147 > *     phaser.register();
148 > *     new Thread() {
149 > *       public void run() {
150 > *         do {
151 > *           task.run();
152 > *           phaser.arriveAndAwaitAdvance();
153 > *         } while(!phaser.isTerminated();
154 > *       }
155 > *     }.start();
156 > *   }
157 > *   phaser.arriveAndDeregister(); // deregister self, don't wait
158 > * }}</pre>
159   *
160 < * <p><b>Sample usage:</b>
160 > * If the main task must later await termination, it
161 > * may re-register and then execute a similar loop:
162 > * <pre> {@code
163 > *   // ...
164 > *   phaser.register();
165 > *   while (!phaser.isTerminated())
166 > *     phaser.arriveAndAwaitAdvance();
167 > * }</pre>
168   *
169 < * <p>[todo: non-FJ example]
169 > * Related constructions may be used to await particular phase numbers
170 > * in contexts where you are sure that the phase will never wrap around
171 > * {@code Integer.MAX_VALUE}. For example:
172   *
173 < * <p> A Phaser may be used to support a style of programming in
174 < * which a task waits for others to complete, without otherwise
175 < * needing to keep track of which tasks it is waiting for. This is
176 < * similar to the "sync" construct in Cilk and "clocks" in X10.
177 < * Special constructions based on such barriers are available using
178 < * the <tt>LinkedAsyncAction</tt> and <tt>CyclicAction</tt> classes,
179 < * but they can be useful in other contexts as well.  For a simple
180 < * (but not very useful) example, here is a variant of Fibonacci:
181 < *
182 < * <pre>
89 < * class BarrierFibonacci extends RecursiveAction {
90 < *   int argument, result;
91 < *   final Phaser parentBarrier;
92 < *   BarrierFibonacci(int n, Phaser parentBarrier) {
93 < *     this.argument = n;
94 < *     this.parentBarrier = parentBarrier;
95 < *     parentBarrier.register();
173 > * <pre> {@code
174 > *   void awaitPhase(Phaser phaser, int phase) {
175 > *     int p = phaser.register(); // assumes caller not already registered
176 > *     while (p < phase) {
177 > *       if (phaser.isTerminated())
178 > *         // ... deal with unexpected termination
179 > *       else
180 > *         p = phaser.arriveAndAwaitAdvance();
181 > *     }
182 > *     phaser.arriveAndDeregister();
183   *   }
184 < *   protected void compute() {
185 < *     int n = argument;
186 < *     if (n &lt;= 1)
187 < *        result = n;
188 < *     else {
189 < *        Phaser childBarrier = new Phaser(1);
190 < *        BarrierFibonacci f1 = new BarrierFibonacci(n - 1, childBarrier);
191 < *        BarrierFibonacci f2 = new BarrierFibonacci(n - 2, childBarrier);
192 < *        f1.fork();
193 < *        f2.fork();
194 < *        childBarrier.arriveAndAwait();
195 < *        result = f1.result + f2.result;
184 > * }</pre>
185 > *
186 > *
187 > * <p>To create a set of tasks using a tree of phasers,
188 > * you could use code of the following form, assuming a
189 > * Task class with a constructor accepting a phaser that
190 > * it registers for upon construction:
191 > *  <pre> {@code
192 > * void build(Task[] actions, int lo, int hi, Phaser b) {
193 > *   int step = (hi - lo) / TASKS_PER_PHASER;
194 > *   if (step > 1) {
195 > *     int i = lo;
196 > *     while (i < hi) {
197 > *       int r = Math.min(i + step, hi);
198 > *       build(actions, i, r, new Phaser(b));
199 > *       i = r;
200   *     }
201 < *     parentBarrier.arriveAndDeregister();
201 > *   } else {
202 > *     for (int i = lo; i < hi; ++i)
203 > *       actions[i] = new Task(b);
204 > *       // assumes new Task(b) performs b.register()
205   *   }
206   * }
207 + * // .. initially called, for n tasks via
208 + * build(new Task[n], 0, n, new Phaser());}</pre>
209 + *
210 + * The best value of {@code TASKS_PER_PHASER} depends mainly on
211 + * expected barrier synchronization rates. A value as low as four may
212 + * be appropriate for extremely small per-barrier task bodies (thus
213 + * high rates), or up to hundreds for extremely large ones.
214 + *
215   * </pre>
216   *
217   * <p><b>Implementation notes</b>: This implementation restricts the
218 < * maximum number of parties to 65535. Attempts to register
219 < * additional parties result in IllegalStateExceptions.  
218 > * maximum number of parties to 65535. Attempts to register additional
219 > * parties result in {@code IllegalStateException}. However, you can and
220 > * should create tiered phasers to accommodate arbitrarily large sets
221 > * of participants.
222 > *
223 > * @since 1.7
224 > * @author Doug Lea
225   */
226   public class Phaser {
227      /*
228       * This class implements an extension of X10 "clocks".  Thanks to
229 <     * Vijay Saraswat for the idea of applying it to ForkJoinTasks,
230 <     * and to Vivek Sarkar for enhancements to extend functionality.
229 >     * Vijay Saraswat for the idea, and to Vivek Sarkar for
230 >     * enhancements to extend functionality.
231       */
232  
233      /**
234       * Barrier state representation. Conceptually, a barrier contains
235       * four values:
236 <     *
236 >     *
237       * * parties -- the number of parties to wait (16 bits)
238       * * unarrived -- the number of parties yet to hit barrier (16 bits)
239       * * phase -- the generation of the barrier (31 bits)
240       * * terminated -- set if barrier is terminated (1 bit)
241       *
242       * However, to efficiently maintain atomicity, these values are
243 <     * packed into a single AtomicLong. Termination uses the sign bit
244 <     * of 32 bit representation of phase, so phase is set to -1 on
245 <     * termination.
246 <     */
247 <    private final AtomicLong state;
248 <
249 <    /**
143 <     * Head of Treiber stack for waiting nonFJ threads.
243 >     * packed into a single (atomic) long. Termination uses the sign
244 >     * bit of 32 bit representation of phase, so phase is set to -1 on
245 >     * termination. Good performance relies on keeping state decoding
246 >     * and encoding simple, and keeping race windows short.
247 >     *
248 >     * Note: there are some cheats in arrive() that rely on unarrived
249 >     * count being lowest 16 bits.
250       */
251 <    private final AtomicReference<QNode> head = new AtomicReference<QNode>();
251 >    private volatile long state;
252  
253      private static final int ushortBits = 16;
254 <    private static final int ushortMask =  (1 << ushortBits) - 1;
255 <    private static final int phaseMask = 0x7fffffff;
254 >    private static final int ushortMask = 0xffff;
255 >    private static final int phaseMask  = 0x7fffffff;
256  
257      private static int unarrivedOf(long s) {
258 <        return (int)(s & ushortMask);
258 >        return (int) (s & ushortMask);
259      }
260  
261      private static int partiesOf(long s) {
262 <        return (int)(s & (ushortMask << 16)) >>> 16;
262 >        return ((int) s) >>> 16;
263      }
264  
265      private static int phaseOf(long s) {
266 <        return (int)(s >>> 32);
266 >        return (int) (s >>> 32);
267      }
268  
269      private static int arrivedOf(long s) {
# Line 165 | Line 271 | public class Phaser {
271      }
272  
273      private static long stateFor(int phase, int parties, int unarrived) {
274 <        return (((long)phase) << 32) | ((parties << 16) | unarrived);
274 >        return ((((long) phase) << 32) | (((long) parties) << 16) |
275 >                (long) unarrived);
276      }
277  
278 <    private static IllegalStateException badBounds(int parties, int unarrived) {
279 <        return new IllegalStateException("Attempt to set " + unarrived +
280 <                                         " unarrived of " + parties + " parties");
278 >    private static long trippedStateFor(int phase, int parties) {
279 >        long lp = (long) parties;
280 >        return (((long) phase) << 32) | (lp << 16) | lp;
281      }
282  
283      /**
284 <     * Creates a new Phaser without any initially registered parties,
285 <     * and initial phase number 0.
284 >     * Returns message string for bad bounds exceptions.
285 >     */
286 >    private static String badBounds(int parties, int unarrived) {
287 >        return ("Attempt to set " + unarrived +
288 >                " unarrived of " + parties + " parties");
289 >    }
290 >
291 >    /**
292 >     * The parent of this phaser, or null if none
293 >     */
294 >    private final Phaser parent;
295 >
296 >    /**
297 >     * The root of phaser tree. Equals this if not in a tree.  Used to
298 >     * support faster state push-down.
299 >     */
300 >    private final Phaser root;
301 >
302 >    // Wait queues
303 >
304 >    /**
305 >     * Heads of Treiber stacks for waiting threads. To eliminate
306 >     * contention while releasing some threads while adding others, we
307 >     * use two of them, alternating across even and odd phases.
308 >     */
309 >    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
310 >    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
311 >
312 >    private AtomicReference<QNode> queueFor(int phase) {
313 >        return ((phase & 1) == 0) ? evenQ : oddQ;
314 >    }
315 >
316 >    /**
317 >     * Returns current state, first resolving lagged propagation from
318 >     * root if necessary.
319 >     */
320 >    private long getReconciledState() {
321 >        return (parent == null) ? state : reconcileState();
322 >    }
323 >
324 >    /**
325 >     * Recursively resolves state.
326 >     */
327 >    private long reconcileState() {
328 >        Phaser p = parent;
329 >        long s = state;
330 >        if (p != null) {
331 >            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
332 >                long parentState = p.getReconciledState();
333 >                int parentPhase = phaseOf(parentState);
334 >                int phase = phaseOf(s = state);
335 >                if (phase != parentPhase) {
336 >                    long next = trippedStateFor(parentPhase, partiesOf(s));
337 >                    if (casState(s, next)) {
338 >                        releaseWaiters(phase);
339 >                        s = next;
340 >                    }
341 >                }
342 >            }
343 >        }
344 >        return s;
345 >    }
346 >
347 >    /**
348 >     * Creates a new phaser without any initially registered parties,
349 >     * initial phase number 0, and no parent. Any thread using this
350 >     * phaser will need to first register for it.
351       */
352      public Phaser() {
353 <        state = new AtomicLong(stateFor(0, 0, 0));
353 >        this(null);
354      }
355  
356      /**
357 <     * Creates a new Phaser with the given numbers of registered
358 <     * unarrived parties and initial phase number 0.
359 <     * @param parties the number of parties required to trip barrier.
357 >     * Creates a new phaser with the given numbers of registered
358 >     * unarrived parties, initial phase number 0, and no parent.
359 >     *
360 >     * @param parties the number of parties required to trip barrier
361       * @throws IllegalArgumentException if parties less than zero
362 <     * or greater than the maximum number of parties supported.
362 >     * or greater than the maximum number of parties supported
363       */
364      public Phaser(int parties) {
365 +        this(null, parties);
366 +    }
367 +
368 +    /**
369 +     * Creates a new phaser with the given parent, without any
370 +     * initially registered parties. If parent is non-null this phaser
371 +     * is registered with the parent and its initial phase number is
372 +     * the same as that of parent phaser.
373 +     *
374 +     * @param parent the parent phaser
375 +     */
376 +    public Phaser(Phaser parent) {
377 +        int phase = 0;
378 +        this.parent = parent;
379 +        if (parent != null) {
380 +            this.root = parent.root;
381 +            phase = parent.register();
382 +        }
383 +        else
384 +            this.root = this;
385 +        this.state = trippedStateFor(phase, 0);
386 +    }
387 +
388 +    /**
389 +     * Creates a new phaser with the given parent and numbers of
390 +     * registered unarrived parties. If parent is non-null, this phaser
391 +     * is registered with the parent and its initial phase number is
392 +     * the same as that of parent phaser.
393 +     *
394 +     * @param parent the parent phaser
395 +     * @param parties the number of parties required to trip barrier
396 +     * @throws IllegalArgumentException if parties less than zero
397 +     * or greater than the maximum number of parties supported
398 +     */
399 +    public Phaser(Phaser parent, int parties) {
400          if (parties < 0 || parties > ushortMask)
401              throw new IllegalArgumentException("Illegal number of parties");
402 <        state = new AtomicLong(stateFor(0, parties, parties));
402 >        int phase = 0;
403 >        this.parent = parent;
404 >        if (parent != null) {
405 >            this.root = parent.root;
406 >            phase = parent.register();
407 >        }
408 >        else
409 >            this.root = this;
410 >        this.state = trippedStateFor(phase, parties);
411      }
412  
413      /**
414       * Adds a new unarrived party to this phaser.
415 <     * @return the current barrier phase number upon registration
415 >     *
416 >     * @return the arrival phase number to which this registration applied
417 >     * @throws IllegalStateException if attempting to register more
418 >     * than the maximum supported number of parties
419 >     */
420 >    public int register() {
421 >        return doRegister(1);
422 >    }
423 >
424 >    /**
425 >     * Adds the given number of new unarrived parties to this phaser.
426 >     *
427 >     * @param parties the number of parties required to trip barrier
428 >     * @return the arrival phase number to which this registration applied
429       * @throws IllegalStateException if attempting to register more
430 <     * than the maximum supported number of parties.
430 >     * than the maximum supported number of parties
431       */
432 <    public int register() { // increment both parties and unarrived
433 <        final AtomicLong state = this.state;
432 >    public int bulkRegister(int parties) {
433 >        if (parties < 0)
434 >            throw new IllegalArgumentException();
435 >        if (parties == 0)
436 >            return getPhase();
437 >        return doRegister(parties);
438 >    }
439 >
440 >    /**
441 >     * Shared code for register, bulkRegister
442 >     */
443 >    private int doRegister(int registrations) {
444 >        int phase;
445          for (;;) {
446 <            long s = state.get();
447 <            int phase = phaseOf(s);
448 <            int parties = partiesOf(s) + 1;
449 <            int unarrived = unarrivedOf(s) + 1;
446 >            long s = getReconciledState();
447 >            phase = phaseOf(s);
448 >            int unarrived = unarrivedOf(s) + registrations;
449 >            int parties = partiesOf(s) + registrations;
450 >            if (phase < 0)
451 >                break;
452              if (parties > ushortMask || unarrived > ushortMask)
453 <                throw badBounds(parties, unarrived);
454 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
455 <                return phase;
453 >                throw new IllegalStateException(badBounds(parties, unarrived));
454 >            if (phase == phaseOf(root.state) &&
455 >                casState(s, stateFor(phase, parties, unarrived)))
456 >                break;
457          }
458 +        return phase;
459      }
460  
461      /**
462       * Arrives at the barrier, but does not wait for others.  (You can
463 <     * in turn wait for others via {@link #awaitAdvance}).
463 >     * in turn wait for others via {@link #awaitAdvance}).  It is an
464 >     * unenforced usage error for an unregistered party to invoke this
465 >     * method.
466       *
467 <     * @return the current barrier phase number upon entry to
468 <     * this method, or a negative value if terminated;
469 <     * @throws IllegalStateException if the number of unarrived
224 <     * parties would become negative.
467 >     * @return the arrival phase number, or a negative value if terminated
468 >     * @throws IllegalStateException if not terminated and the number
469 >     * of unarrived parties would become negative
470       */
471 <    public int arrive() { // decrement unarrived. If zero, trip
472 <        final AtomicLong state = this.state;
471 >    public int arrive() {
472 >        int phase;
473          for (;;) {
474 <            long s = state.get();
475 <            int phase = phaseOf(s);
474 >            long s = state;
475 >            phase = phaseOf(s);
476 >            if (phase < 0)
477 >                break;
478              int parties = partiesOf(s);
479              int unarrived = unarrivedOf(s) - 1;
480 <            if (unarrived < 0)
481 <                throw badBounds(parties, unarrived);
482 <            if (unarrived == 0 && phase >= 0) {
236 <                trip(phase, parties);
237 <                return phase;
480 >            if (unarrived > 0) {        // Not the last arrival
481 >                if (casState(s, s - 1)) // s-1 adds one arrival
482 >                    break;
483              }
484 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
485 <                return phase;
484 >            else if (unarrived == 0) {  // the last arrival
485 >                Phaser par = parent;
486 >                if (par == null) {      // directly trip
487 >                    if (casState
488 >                        (s,
489 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
490 >                                         ((phase + 1) & phaseMask), parties))) {
491 >                        releaseWaiters(phase);
492 >                        break;
493 >                    }
494 >                }
495 >                else {                  // cascade to parent
496 >                    if (casState(s, s - 1)) { // zeroes unarrived
497 >                        par.arrive();
498 >                        reconcileState();
499 >                        break;
500 >                    }
501 >                }
502 >            }
503 >            else if (phase != phaseOf(root.state)) // or if unreconciled
504 >                reconcileState();
505 >            else
506 >                throw new IllegalStateException(badBounds(parties, unarrived));
507          }
508 +        return phase;
509      }
510  
511      /**
512 <     * Arrives at the barrier, and deregisters from it, without
513 <     * waiting for others.
512 >     * Arrives at the barrier and deregisters from it without waiting
513 >     * for others. Deregistration reduces the number of parties
514 >     * required to trip the barrier in future phases.  If this phaser
515 >     * has a parent, and deregistration causes this phaser to have
516 >     * zero parties, this phaser also arrives at and is deregistered
517 >     * from its parent.  It is an unenforced usage error for an
518 >     * unregistered party to invoke this method.
519       *
520 <     * @return the current barrier phase number upon entry to
521 <     * this method, or a negative value if terminated;
522 <     * @throws IllegalStateException if the number of registered or
523 <     * unarrived parties would become negative.
524 <     */
525 <    public int arriveAndDeregister() { // Same as arrive, plus decrement parties
526 <        final AtomicLong state = this.state;
520 >     * @return the arrival phase number, or a negative value if terminated
521 >     * @throws IllegalStateException if not terminated and the number
522 >     * of registered or unarrived parties would become negative
523 >     */
524 >    public int arriveAndDeregister() {
525 >        // similar code to arrive, but too different to merge
526 >        Phaser par = parent;
527 >        int phase;
528          for (;;) {
529 <            long s = state.get();
530 <            int phase = phaseOf(s);
529 >            long s = state;
530 >            phase = phaseOf(s);
531 >            if (phase < 0)
532 >                break;
533              int parties = partiesOf(s) - 1;
534              int unarrived = unarrivedOf(s) - 1;
535 <            if (parties < 0 || unarrived < 0)
536 <                throw badBounds(parties, unarrived);
537 <            if (unarrived == 0 && phase >= 0) {
538 <                trip(phase, parties);
539 <                return phase;
535 >            if (parties >= 0) {
536 >                if (unarrived > 0 || (unarrived == 0 && par != null)) {
537 >                    if (casState
538 >                        (s,
539 >                         stateFor(phase, parties, unarrived))) {
540 >                        if (unarrived == 0) {
541 >                            par.arriveAndDeregister();
542 >                            reconcileState();
543 >                        }
544 >                        break;
545 >                    }
546 >                    continue;
547 >                }
548 >                if (unarrived == 0) {
549 >                    if (casState
550 >                        (s,
551 >                         trippedStateFor(onAdvance(phase, parties) ? -1 :
552 >                                         ((phase + 1) & phaseMask), parties))) {
553 >                        releaseWaiters(phase);
554 >                        break;
555 >                    }
556 >                    continue;
557 >                }
558 >                if (par != null && phase != phaseOf(root.state)) {
559 >                    reconcileState();
560 >                    continue;
561 >                }
562              }
563 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived)))
267 <                return phase;
563 >            throw new IllegalStateException(badBounds(parties, unarrived));
564          }
565 +        return phase;
566      }
567  
568      /**
569 <     * Arrives at the barrier and awaits others. Unlike other arrival
570 <     * methods, this method returns the arrival index of the
571 <     * caller. The caller tripping the barrier returns zero, the
572 <     * previous caller 1, and so on.
573 <     * @return the arrival index
574 <     * @throws IllegalStateException if the number of unarrived
575 <     * parties would become negative.
569 >     * Arrives at the barrier and awaits others. Equivalent in effect
570 >     * to {@code awaitAdvance(arrive())}.  If you need to await with
571 >     * interruption or timeout, you can arrange this with an analogous
572 >     * construction using one of the other forms of the awaitAdvance
573 >     * method.  If instead you need to deregister upon arrival use
574 >     * {@code arriveAndDeregister}. It is an unenforced usage error
575 >     * for an unregistered party to invoke this method.
576 >     *
577 >     * @return the arrival phase number, or a negative number if terminated
578 >     * @throws IllegalStateException if not terminated and the number
579 >     * of unarrived parties would become negative
580       */
581      public int arriveAndAwaitAdvance() {
582 <        final AtomicLong state = this.state;
282 <        for (;;) {
283 <            long s = state.get();
284 <            int phase = phaseOf(s);
285 <            int parties = partiesOf(s);
286 <            int unarrived = unarrivedOf(s) - 1;
287 <            if (unarrived < 0)
288 <                throw badBounds(parties, unarrived);
289 <            if (unarrived == 0 && phase >= 0) {
290 <                trip(phase, parties);
291 <                return 0;
292 <            }
293 <            if (state.compareAndSet(s, stateFor(phase, parties, unarrived))) {
294 <                awaitAdvance(phase);
295 <                return unarrived;
296 <            }
297 <        }
582 >        return awaitAdvance(arrive());
583      }
584  
585      /**
586 <     * Awaits the phase of the barrier to advance from the given
587 <     * value, or returns immediately if this barrier is terminated.
588 <     * @param phase the phase on entry to this method
589 <     * @return the phase on exit from this method
586 >     * Awaits the phase of the barrier to advance from the given phase
587 >     * value, returning immediately if the current phase of the
588 >     * barrier is not equal to the given phase value or this barrier
589 >     * is terminated.  It is an unenforced usage error for an
590 >     * unregistered party to invoke this method.
591 >     *
592 >     * @param phase an arrival phase number, or negative value if
593 >     * terminated; this argument is normally the value returned by a
594 >     * previous call to {@code arrive} or its variants
595 >     * @return the next arrival phase number, or a negative value
596 >     * if terminated or argument is negative
597       */
598      public int awaitAdvance(int phase) {
599          if (phase < 0)
600              return phase;
601 <        Thread current = Thread.currentThread();
602 <        if (current instanceof ForkJoinWorkerThread)
603 <            return helpingWait(phase);
604 <        if (untimedWait(current, phase, false))
605 <            current.interrupt();
606 <        return phaseOf(state.get());
601 >        long s = getReconciledState();
602 >        int p = phaseOf(s);
603 >        if (p != phase)
604 >            return p;
605 >        if (unarrivedOf(s) == 0 && parent != null)
606 >            parent.awaitAdvance(phase);
607 >        // Fall here even if parent waited, to reconcile and help release
608 >        return untimedWait(phase);
609      }
610  
611      /**
612 <     * Awaits the phase of the barrier to advance from the given
613 <     * value, or returns immediately if this barrier is terminated, or
614 <     * throws InterruptedException if interrupted while waiting.
615 <     * @param phase the phase on entry to this method
616 <     * @return the phase on exit from this method
612 >     * Awaits the phase of the barrier to advance from the given phase
613 >     * value, throwing {@code InterruptedException} if interrupted
614 >     * while waiting, or returning immediately if the current phase of
615 >     * the barrier is not equal to the given phase value or this
616 >     * barrier is terminated. It is an unenforced usage error for an
617 >     * unregistered party to invoke this method.
618 >     *
619 >     * @param phase an arrival phase number, or negative value if
620 >     * terminated; this argument is normally the value returned by a
621 >     * previous call to {@code arrive} or its variants
622 >     * @return the next arrival phase number, or a negative value
623 >     * if terminated or argument is negative
624       * @throws InterruptedException if thread interrupted while waiting
625       */
626 <    public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
626 >    public int awaitAdvanceInterruptibly(int phase)
627 >        throws InterruptedException {
628          if (phase < 0)
629              return phase;
630 <        Thread current = Thread.currentThread();
631 <        if (current instanceof ForkJoinWorkerThread)
632 <            return helpingWait(phase);
633 <        else if (Thread.interrupted() || untimedWait(current, phase, true))
634 <            throw new InterruptedException();
635 <        else
636 <            return phaseOf(state.get());
630 >        long s = getReconciledState();
631 >        int p = phaseOf(s);
632 >        if (p != phase)
633 >            return p;
634 >        if (unarrivedOf(s) == 0 && parent != null)
635 >            parent.awaitAdvanceInterruptibly(phase);
636 >        return interruptibleWait(phase);
637      }
638  
639      /**
640 <     * Awaits the phase of the barrier to advance from the given value
641 <     * or the given timeout elapses, or returns immediately if this
642 <     * barrier is terminated.
643 <     * @param phase the phase on entry to this method
644 <     * @return the phase on exit from this method
640 >     * Awaits the phase of the barrier to advance from the given phase
641 >     * value or the given timeout to elapse, throwing {@code
642 >     * InterruptedException} if interrupted while waiting, or
643 >     * returning immediately if the current phase of the barrier is
644 >     * not equal to the given phase value or this barrier is
645 >     * terminated.  It is an unenforced usage error for an
646 >     * unregistered party to invoke this method.
647 >     *
648 >     * @param phase an arrival phase number, or negative value if
649 >     * terminated; this argument is normally the value returned by a
650 >     * previous call to {@code arrive} or its variants
651 >     * @param timeout how long to wait before giving up, in units of
652 >     *        {@code unit}
653 >     * @param unit a {@code TimeUnit} determining how to interpret the
654 >     *        {@code timeout} parameter
655 >     * @return the next arrival phase number, or a negative value
656 >     * if terminated or argument is negative
657       * @throws InterruptedException if thread interrupted while waiting
658       * @throws TimeoutException if timed out while waiting
659       */
660 <    public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
660 >    public int awaitAdvanceInterruptibly(int phase,
661 >                                         long timeout, TimeUnit unit)
662          throws InterruptedException, TimeoutException {
663          if (phase < 0)
664              return phase;
665 <        long nanos = unit.toNanos(timeout);
666 <        Thread current = Thread.currentThread();
667 <        if (current instanceof ForkJoinWorkerThread)
668 <            return timedHelpingWait(phase, nanos);
669 <        timedWait(current, phase, nanos);
670 <        return phaseOf(state.get());
665 >        long s = getReconciledState();
666 >        int p = phaseOf(s);
667 >        if (p != phase)
668 >            return p;
669 >        if (unarrivedOf(s) == 0 && parent != null)
670 >            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
671 >        return timedWait(phase, unit.toNanos(timeout));
672      }
673  
674      /**
675       * Forces this barrier to enter termination state. Counts of
676 <     * arrived and registered parties are unaffected. This method may
677 <     * be useful for coordinating recovery after one or more tasks
678 <     * encounter unexpected exceptions.
676 >     * arrived and registered parties are unaffected. If this phaser
677 >     * has a parent, it too is terminated. This method may be useful
678 >     * for coordinating recovery after one or more tasks encounter
679 >     * unexpected exceptions.
680       */
681      public void forceTermination() {
365        final AtomicLong state = this.state;
682          for (;;) {
683 <            long s = state.get();
683 >            long s = getReconciledState();
684              int phase = phaseOf(s);
685              int parties = partiesOf(s);
686              int unarrived = unarrivedOf(s);
687              if (phase < 0 ||
688 <                state.compareAndSet(s, stateFor(-1, parties, unarrived))) {
689 <                if (head.get() != null)
690 <                    releaseWaiters(-1);
688 >                casState(s, stateFor(-1, parties, unarrived))) {
689 >                releaseWaiters(0);
690 >                releaseWaiters(1);
691 >                if (parent != null)
692 >                    parent.forceTermination();
693                  return;
694              }
695          }
696      }
697  
698      /**
381     * Resets the barrier with the given numbers of registered unarrived
382     * parties and phase number 0. This method allows repeated reuse
383     * of this barrier, but only if it is somehow known not to be in
384     * use for other purposes.
385     * @param parties the number of parties required to trip barrier.
386     * @throws IllegalArgumentException if parties less than zero
387     * or greater than the maximum number of parties supported.
388     */
389    public void reset(int parties) {
390        if (parties < 0 || parties > ushortMask)
391            throw new IllegalArgumentException("Illegal number of parties");
392        state.set(stateFor(0, parties, parties));
393        if (head.get() != null)
394            releaseWaiters(0);
395    }
396
397    /**
699       * Returns the current phase number. The maximum phase number is
700 <     * <tt>Integer.MAX_VALUE</tt>, after which it restarts at
700 >     * {@code Integer.MAX_VALUE}, after which it restarts at
701       * zero. Upon termination, the phase number is negative.
702 +     *
703       * @return the phase number, or a negative value if terminated
704       */
705 <    public int getPhase() {
706 <        return phaseOf(state.get());
705 >    public final int getPhase() {
706 >        return phaseOf(getReconciledState());
707      }
708  
709      /**
710       * Returns the number of parties registered at this barrier.
711 +     *
712       * @return the number of parties
713       */
714      public int getRegisteredParties() {
715 <        return partiesOf(state.get());
715 >        return partiesOf(state);
716      }
717  
718      /**
719 <     * Returns the number of parties that have arrived at the current
720 <     * phase of this barrier.
719 >     * Returns the number of registered parties that have arrived at
720 >     * the current phase of this barrier.
721 >     *
722       * @return the number of arrived parties
723       */
724      public int getArrivedParties() {
725 <        return arrivedOf(state.get());
725 >        return arrivedOf(state);
726      }
727  
728      /**
729       * Returns the number of registered parties that have not yet
730       * arrived at the current phase of this barrier.
731 +     *
732       * @return the number of unarrived parties
733       */
734      public int getUnarrivedParties() {
735 <        return unarrivedOf(state.get());
735 >        return unarrivedOf(state);
736 >    }
737 >
738 >    /**
739 >     * Returns the parent of this phaser, or {@code null} if none.
740 >     *
741 >     * @return the parent of this phaser, or {@code null} if none
742 >     */
743 >    public Phaser getParent() {
744 >        return parent;
745 >    }
746 >
747 >    /**
748 >     * Returns the root ancestor of this phaser, which is the same as
749 >     * this phaser if it has no parent.
750 >     *
751 >     * @return the root ancestor of this phaser
752 >     */
753 >    public Phaser getRoot() {
754 >        return root;
755      }
756  
757      /**
758 <     * Returns true if this barrier has been terminated.
759 <     * @return true if this barrier has been terminated
758 >     * Returns {@code true} if this barrier has been terminated.
759 >     *
760 >     * @return {@code true} if this barrier has been terminated
761       */
762      public boolean isTerminated() {
763 <        return phaseOf(state.get()) < 0;
763 >        return getPhase() < 0;
764      }
765  
766      /**
767       * Overridable method to perform an action upon phase advance, and
768       * to control termination. This method is invoked whenever the
769       * barrier is tripped (and thus all other waiting parties are
770 <     * dormant). If it returns true, then, rather than advance the
771 <     * phase number, this barrier will be set to a final termination
772 <     * state, and subsequent calls to <tt>isTerminated</tt> will
773 <     * return true.
774 <     *
775 <     * <p> The default version returns true when the number of
770 >     * dormant). If it returns {@code true}, then, rather than advance
771 >     * the phase number, this barrier will be set to a final
772 >     * termination state, and subsequent calls to {@link #isTerminated}
773 >     * will return true.
774 >     *
775 >     * <p>The default version returns {@code true} when the number of
776       * registered parties is zero. Normally, overrides that arrange
777       * termination for other reasons should also preserve this
778       * property.
779       *
780 +     * <p>You may override this method to perform an action with side
781 +     * effects visible to participating tasks, but it is in general
782 +     * only sensible to do so in designs where all parties register
783 +     * before any arrive, and all {@link #awaitAdvance} at each phase.
784 +     * Otherwise, you cannot ensure lack of interference from other
785 +     * parties during the invocation of this method.
786 +     *
787       * @param phase the phase number on entering the barrier
788 <     * @param registeredParties the current number of registered
789 <     * parties.
458 <     * @return true if this barrier should terminate
788 >     * @param registeredParties the current number of registered parties
789 >     * @return {@code true} if this barrier should terminate
790       */
791      protected boolean onAdvance(int phase, int registeredParties) {
792          return registeredParties <= 0;
793      }
794  
795      /**
796 <     * Returns a string identifying this barrier, as well as its
796 >     * Returns a string identifying this phaser, as well as its
797       * state.  The state, in brackets, includes the String {@code
798 <     * "phase ="} followed by the phase number, {@code "parties ="}
798 >     * "phase = "} followed by the phase number, {@code "parties = "}
799       * followed by the number of registered parties, and {@code
800 <     * "arrived ="} followed by the number of arrived parties
800 >     * "arrived = "} followed by the number of arrived parties.
801       *
802       * @return a string identifying this barrier, as well as its state
803       */
804      public String toString() {
805 <        long s = state.get();
806 <        return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
805 >        long s = getReconciledState();
806 >        return super.toString() +
807 >            "[phase = " + phaseOf(s) +
808 >            " parties = " + partiesOf(s) +
809 >            " arrived = " + arrivedOf(s) + "]";
810      }
811  
812 <    // methods for tripping and waiting
812 >    // methods for waiting
813  
814      /**
815 <     * Advance the current phase (or terminate)
815 >     * Wait nodes for Treiber stack representing wait queue
816       */
817 <    private void trip(int phase, int parties) {
818 <        int next = onAdvance(phase, parties)? -1 : ((phase + 1) & phaseMask);
819 <        state.set(stateFor(next, parties, parties));
820 <        if (head.get() != null)
821 <            releaseWaiters(next);
822 <    }
823 <
824 <    private int helpingWait(int phase) {
825 <        final AtomicLong state = this.state;
826 <        int p;
827 <        while ((p = phaseOf(state.get())) == phase) {
828 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
829 <            if (t != null) {
830 <                if ((p = phaseOf(state.get())) == phase)
831 <                    t.exec();
832 <                else {   // push task and exit if barrier advanced
833 <                    t.fork();
834 <                    break;
835 <                }
502 <            }
817 >    static final class QNode implements ForkJoinPool.ManagedBlocker {
818 >        final Phaser phaser;
819 >        final int phase;
820 >        final long startTime;
821 >        final long nanos;
822 >        final boolean timed;
823 >        final boolean interruptible;
824 >        volatile boolean wasInterrupted = false;
825 >        volatile Thread thread; // nulled to cancel wait
826 >        QNode next;
827 >        QNode(Phaser phaser, int phase, boolean interruptible,
828 >              boolean timed, long startTime, long nanos) {
829 >            this.phaser = phaser;
830 >            this.phase = phase;
831 >            this.timed = timed;
832 >            this.interruptible = interruptible;
833 >            this.startTime = startTime;
834 >            this.nanos = nanos;
835 >            thread = Thread.currentThread();
836          }
837 <        return p;
838 <    }
839 <
840 <    private int timedHelpingWait(int phase, long nanos) throws TimeoutException {
841 <        final AtomicLong state = this.state;
842 <        long lastTime = System.nanoTime();
843 <        int p;
844 <        while ((p = phaseOf(state.get())) == phase) {
845 <            long now = System.nanoTime();
846 <            nanos -= now - lastTime;
847 <            lastTime = now;
848 <            if (nanos <= 0) {
849 <                if ((p = phaseOf(state.get())) == phase)
850 <                    throw new TimeoutException();
851 <                else
852 <                    break;
837 >        public boolean isReleasable() {
838 >            return (thread == null ||
839 >                    phaser.getPhase() != phase ||
840 >                    (interruptible && wasInterrupted) ||
841 >                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
842 >        }
843 >        public boolean block() {
844 >            if (Thread.interrupted()) {
845 >                wasInterrupted = true;
846 >                if (interruptible)
847 >                    return true;
848 >            }
849 >            if (!timed)
850 >                LockSupport.park(this);
851 >            else {
852 >                long waitTime = nanos - (System.nanoTime() - startTime);
853 >                if (waitTime <= 0)
854 >                    return true;
855 >                LockSupport.parkNanos(this, waitTime);
856              }
857 <            ForkJoinTask<?> t = ForkJoinWorkerThread.pollTask();
857 >            return isReleasable();
858 >        }
859 >        void signal() {
860 >            Thread t = thread;
861              if (t != null) {
862 <                if ((p = phaseOf(state.get())) == phase)
863 <                    t.exec();
864 <                else {   // push task and exit if barrier advanced
865 <                    t.fork();
866 <                    break;
862 >                thread = null;
863 >                LockSupport.unpark(t);
864 >            }
865 >        }
866 >        boolean doWait() {
867 >            if (thread != null) {
868 >                try {
869 >                    ForkJoinPool.managedBlock(this, false);
870 >                } catch (InterruptedException ie) {
871                  }
872              }
873 +            return wasInterrupted;
874          }
875 <        return p;
875 >
876      }
877  
878      /**
879 <     * Wait nodes for Treiber stack representing wait queue for non-FJ
536 <     * tasks. The waiting scheme is an adaptation of the one used in
537 <     * forkjoin.PoolBarrier.
879 >     * Removes and signals waiting threads from wait queue.
880       */
881 <    static final class QNode {
882 <        QNode next;
883 <        volatile Thread thread; // nulled to cancel wait
884 <        final int phase;
885 <        QNode(Thread t, int c) {
886 <            thread = t;
545 <            phase = c;
881 >    private void releaseWaiters(int phase) {
882 >        AtomicReference<QNode> head = queueFor(phase);
883 >        QNode q;
884 >        while ((q = head.get()) != null) {
885 >            if (head.compareAndSet(q, q.next))
886 >                q.signal();
887          }
888      }
889  
549    private void releaseWaiters(int currentPhase) {
550        final AtomicReference<QNode> head = this.head;
551        QNode p;
552        while ((p = head.get()) != null && p.phase != currentPhase) {
553            if (head.compareAndSet(p, null)) {
554                do {
555                    Thread t = p.thread;
556                    if (t != null) {
557                        p.thread = null;
558                        LockSupport.unpark(t);
559                    }
560                } while ((p = p.next) != null);
561            }
562        }
563    }
564
565    /** The number of CPUs, for spin control */
566    static final int NCPUS = Runtime.getRuntime().availableProcessors();
567
890      /**
891 <     * The number of times to spin before blocking in timed waits.
892 <     * The value is empirically derived.
893 <     */
572 <    static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
573 <
574 <    /**
575 <     * The number of times to spin before blocking in untimed waits.
576 <     * This is greater than timed value because untimed waits spin
577 <     * faster since they don't need to check times on each spin.
891 >     * Tries to enqueue given node in the appropriate wait queue.
892 >     *
893 >     * @return true if successful
894       */
895 <    static final int maxUntimedSpins = maxTimedSpins * 32;
895 >    private boolean tryEnqueue(QNode node) {
896 >        AtomicReference<QNode> head = queueFor(node.phase);
897 >        return head.compareAndSet(node.next = head.get(), node);
898 >    }
899  
900      /**
901 <     * The number of nanoseconds for which it is faster to spin
902 <     * rather than to use timed park. A rough estimate suffices.
901 >     * Enqueues node and waits unless aborted or signalled.
902 >     *
903 >     * @return current phase
904       */
905 <    static final long spinForTimeoutThreshold = 1000L;
905 >    private int untimedWait(int phase) {
906 >        QNode node = null;
907 >        boolean queued = false;
908 >        boolean interrupted = false;
909 >        int p;
910 >        while ((p = getPhase()) == phase) {
911 >            if (Thread.interrupted())
912 >                interrupted = true;
913 >            else if (node == null)
914 >                node = new QNode(this, phase, false, false, 0, 0);
915 >            else if (!queued)
916 >                queued = tryEnqueue(node);
917 >            else
918 >                interrupted = node.doWait();
919 >        }
920 >        if (node != null)
921 >            node.thread = null;
922 >        releaseWaiters(phase);
923 >        if (interrupted)
924 >            Thread.currentThread().interrupt();
925 >        return p;
926 >    }
927  
928      /**
929 <     * Enqueues node and waits unless aborted or signalled.
929 >     * Interruptible version
930 >     * @return current phase
931       */
932 <    private boolean untimedWait(Thread thread, int currentPhase,
591 <                               boolean abortOnInterrupt) {
592 <        final AtomicReference<QNode> head = this.head;
593 <        final AtomicLong state = this.state;
594 <        boolean wasInterrupted = false;
932 >    private int interruptibleWait(int phase) throws InterruptedException {
933          QNode node = null;
934          boolean queued = false;
935 <        int spins = maxUntimedSpins;
936 <        while (phaseOf(state.get()) == currentPhase) {
937 <            QNode h;
938 <            if (node != null && queued) {
939 <                if (node.thread != null) {
940 <                    LockSupport.park();
941 <                    if (Thread.interrupted()) {
942 <                        wasInterrupted = true;
943 <                        if (abortOnInterrupt)
606 <                            break;
607 <                    }
608 <                }
609 <            }
610 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
611 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
612 <                    if (head.compareAndSet(h, h.next)) {
613 <                        Thread t = h.thread; // help clear out old waiters
614 <                        if (t != null) {
615 <                            h.thread = null;
616 <                            LockSupport.unpark(t);
617 <                        }
618 <                    }
619 <                }
620 <                else
621 <                    break;
622 <            }
623 <            else if (node != null)
624 <                queued = head.compareAndSet(node.next = h, node);
625 <            else if (spins <= 0)
626 <                node = new QNode(thread, currentPhase);
935 >        boolean interrupted = false;
936 >        int p;
937 >        while ((p = getPhase()) == phase && !interrupted) {
938 >            if (Thread.interrupted())
939 >                interrupted = true;
940 >            else if (node == null)
941 >                node = new QNode(this, phase, true, false, 0, 0);
942 >            else if (!queued)
943 >                queued = tryEnqueue(node);
944              else
945 <                --spins;
945 >                interrupted = node.doWait();
946          }
947          if (node != null)
948              node.thread = null;
949 <        return wasInterrupted;
949 >        if (p != phase || (p = getPhase()) != phase)
950 >            releaseWaiters(phase);
951 >        if (interrupted)
952 >            throw new InterruptedException();
953 >        return p;
954      }
955  
956      /**
957 <     * Messier timeout version
957 >     * Timeout version.
958 >     * @return current phase
959       */
960 <    private void timedWait(Thread thread, int currentPhase, long nanos)
960 >    private int timedWait(int phase, long nanos)
961          throws InterruptedException, TimeoutException {
962 <        final AtomicReference<QNode> head = this.head;
641 <        final AtomicLong state = this.state;
642 <        long lastTime = System.nanoTime();
962 >        long startTime = System.nanoTime();
963          QNode node = null;
964          boolean queued = false;
965 <        int spins = maxTimedSpins;
966 <        while (phaseOf(state.get()) == currentPhase) {
967 <            QNode h;
968 <            long now = System.nanoTime();
969 <            nanos -= now - lastTime;
970 <            lastTime = now;
971 <            if (nanos <= 0) {
972 <                if (node != null)
973 <                    node.thread = null;
974 <                if (phaseOf(state.get()) == currentPhase)
975 <                    throw new TimeoutException();
656 <                else
657 <                    break;
658 <            }
659 <            else if (node != null && queued) {
660 <                if (node.thread != null &&
661 <                    nanos > spinForTimeoutThreshold) {
662 <                    //                LockSupport.parkNanos(this, nanos);
663 <                    LockSupport.parkNanos(nanos);
664 <                    if (Thread.interrupted()) {
665 <                        node.thread = null;
666 <                        throw new InterruptedException();
667 <                    }
668 <                }
669 <            }
670 <            else if ((h = head.get()) != null && h.phase != currentPhase) {
671 <                if (phaseOf(state.get()) == currentPhase) { // must recheck
672 <                    if (head.compareAndSet(h, h.next)) {
673 <                        Thread t = h.thread; // help clear out old waiters
674 <                        if (t != null) {
675 <                            h.thread = null;
676 <                            LockSupport.unpark(t);
677 <                        }
678 <                    }
679 <                }
680 <                else
681 <                    break;
682 <            }
683 <            else if (node != null)
684 <                queued = head.compareAndSet(node.next = h, node);
685 <            else if (spins <= 0)
686 <                node = new QNode(thread, currentPhase);
965 >        boolean interrupted = false;
966 >        int p;
967 >        while ((p = getPhase()) == phase && !interrupted) {
968 >            if (Thread.interrupted())
969 >                interrupted = true;
970 >            else if (nanos - (System.nanoTime() - startTime) <= 0)
971 >                break;
972 >            else if (node == null)
973 >                node = new QNode(this, phase, true, true, startTime, nanos);
974 >            else if (!queued)
975 >                queued = tryEnqueue(node);
976              else
977 <                --spins;
977 >                interrupted = node.doWait();
978          }
979          if (node != null)
980              node.thread = null;
981 +        if (p != phase || (p = getPhase()) != phase)
982 +            releaseWaiters(phase);
983 +        if (interrupted)
984 +            throw new InterruptedException();
985 +        if (p == phase)
986 +            throw new TimeoutException();
987 +        return p;
988      }
989  
990 < }
990 >    // Unsafe mechanics
991  
992 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
993 +    private static final long stateOffset =
994 +        objectFieldOffset("state", Phaser.class);
995 +
996 +    private final boolean casState(long cmp, long val) {
997 +        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
998 +    }
999 +
1000 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1001 +        try {
1002 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1003 +        } catch (NoSuchFieldException e) {
1004 +            // Convert Exception to corresponding Error
1005 +            NoSuchFieldError error = new NoSuchFieldError(field);
1006 +            error.initCause(e);
1007 +            throw error;
1008 +        }
1009 +    }
1010 +
1011 +    /**
1012 +     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1013 +     * Replace with a simple call to Unsafe.getUnsafe when integrating
1014 +     * into a jdk.
1015 +     *
1016 +     * @return a sun.misc.Unsafe
1017 +     */
1018 +    private static sun.misc.Unsafe getUnsafe() {
1019 +        try {
1020 +            return sun.misc.Unsafe.getUnsafe();
1021 +        } catch (SecurityException se) {
1022 +            try {
1023 +                return java.security.AccessController.doPrivileged
1024 +                    (new java.security
1025 +                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1026 +                        public sun.misc.Unsafe run() throws Exception {
1027 +                            java.lang.reflect.Field f = sun.misc
1028 +                                .Unsafe.class.getDeclaredField("theUnsafe");
1029 +                            f.setAccessible(true);
1030 +                            return (sun.misc.Unsafe) f.get(null);
1031 +                        }});
1032 +            } catch (java.security.PrivilegedActionException e) {
1033 +                throw new RuntimeException("Could not initialize intrinsics",
1034 +                                           e.getCause());
1035 +            }
1036 +        }
1037 +    }
1038 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines