ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.41 by jsr166, Mon Aug 24 15:42:51 2009 UTC vs.
Revision 1.57 by dl, Fri Nov 19 16:03:24 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 100 | Line 100 | import java.util.concurrent.locks.LockSu
100   * #getRegisteredParties} parties in total, of which {@link
101   * #getArrivedParties} have arrived at the current phase ({@link
102   * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
103 < * parties arrive, the phase advances; thus, this value is always
104 < * greater than zero if there are any registered parties.  The values
105 < * returned by these methods may reflect transient states and so are
106 < * not in general useful for synchronization control.  Method {@link
107 < * #toString} returns snapshots of these state queries in a form
108 < * convenient for informal monitoring.
103 > * parties arrive, the phase advances.  The values returned by these
104 > * methods may reflect transient states and so are not in general
105 > * useful for synchronization control.  Method {@link #toString}
106 > * returns snapshots of these state queries in a form convenient for
107 > * informal monitoring.
108   *
109   * <p><b>Sample usages:</b>
110   *
111   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 < * to control a one-shot action serving a variable number of
113 < * parties. The typical idiom is for the method setting this up to
114 < * first register, then start the actions, then deregister, as in:
112 > * to control a one-shot action serving a variable number of parties.
113 > * The typical idiom is for the method setting this up to first
114 > * register, then start the actions, then deregister, as in:
115   *
116   *  <pre> {@code
117   * void runTasks(List<Runnable> tasks) {
# Line 143 | Line 142 | import java.util.concurrent.locks.LockSu
142   *     }
143   *   };
144   *   phaser.register();
145 < *   for (Runnable task : tasks) {
145 > *   for (final Runnable task : tasks) {
146   *     phaser.register();
147   *     new Thread() {
148   *       public void run() {
149   *         do {
150   *           task.run();
151   *           phaser.arriveAndAwaitAdvance();
152 < *         } while(!phaser.isTerminated();
152 > *         } while (!phaser.isTerminated());
153   *       }
154   *     }.start();
155   *   }
# Line 159 | Line 158 | import java.util.concurrent.locks.LockSu
158   *
159   * If the main task must later await termination, it
160   * may re-register and then execute a similar loop:
161 < * <pre> {@code
161 > *  <pre> {@code
162   *   // ...
163   *   phaser.register();
164   *   while (!phaser.isTerminated())
165 < *     phaser.arriveAndAwaitAdvance();
167 < * }</pre>
165 > *     phaser.arriveAndAwaitAdvance();}</pre>
166   *
167 < * Related constructions may be used to await particular phase numbers
167 > * <p>Related constructions may be used to await particular phase numbers
168   * in contexts where you are sure that the phase will never wrap around
169   * {@code Integer.MAX_VALUE}. For example:
170   *
171 < * <pre> {@code
172 < *   void awaitPhase(Phaser phaser, int phase) {
173 < *     int p = phaser.register(); // assumes caller not already registered
174 < *     while (p < phase) {
175 < *       if (phaser.isTerminated())
176 < *         // ... deal with unexpected termination
177 < *       else
178 < *         p = phaser.arriveAndAwaitAdvance();
181 < *     }
182 < *     phaser.arriveAndDeregister();
171 > *  <pre> {@code
172 > * void awaitPhase(Phaser phaser, int phase) {
173 > *   int p = phaser.register(); // assumes caller not already registered
174 > *   while (p < phase) {
175 > *     if (phaser.isTerminated())
176 > *       // ... deal with unexpected termination
177 > *     else
178 > *       p = phaser.arriveAndAwaitAdvance();
179   *   }
180 < * }</pre>
180 > *   phaser.arriveAndDeregister();
181 > * }}</pre>
182   *
183   *
184   * <p>To create a set of tasks using a tree of phasers,
185   * you could use code of the following form, assuming a
186   * Task class with a constructor accepting a phaser that
187 < * it registers for upon construction:
187 > * it registers with upon construction:
188 > *
189   *  <pre> {@code
190 < * void build(Task[] actions, int lo, int hi, Phaser b) {
191 < *   int step = (hi - lo) / TASKS_PER_PHASER;
192 < *   if (step > 1) {
193 < *     int i = lo;
194 < *     while (i < hi) {
197 < *       int r = Math.min(i + step, hi);
198 < *       build(actions, i, r, new Phaser(b));
199 < *       i = r;
190 > * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 > *   if (hi - lo > TASKS_PER_PHASER) {
192 > *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 > *       int j = Math.min(i + TASKS_PER_PHASER, hi);
194 > *       build(actions, i, j, new Phaser(ph));
195   *     }
196   *   } else {
197   *     for (int i = lo; i < hi; ++i)
198 < *       actions[i] = new Task(b);
199 < *       // assumes new Task(b) performs b.register()
198 > *       actions[i] = new Task(ph);
199 > *       // assumes new Task(ph) performs ph.register()
200   *   }
201   * }
202   * // .. initially called, for n tasks via
# Line 212 | Line 207 | import java.util.concurrent.locks.LockSu
207   * be appropriate for extremely small per-barrier task bodies (thus
208   * high rates), or up to hundreds for extremely large ones.
209   *
215 * </pre>
216 *
210   * <p><b>Implementation notes</b>: This implementation restricts the
211   * maximum number of parties to 65535. Attempts to register additional
212   * parties result in {@code IllegalStateException}. However, you can and
# Line 234 | Line 227 | public class Phaser {
227       * Barrier state representation. Conceptually, a barrier contains
228       * four values:
229       *
230 <     * * parties -- the number of parties to wait (16 bits)
231 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 <     * * phase -- the generation of the barrier (31 bits)
233 <     * * terminated -- set if barrier is terminated (1 bit)
230 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
231 >     * * parties -- the number of parties to wait              (bits 16-31)
232 >     * * phase -- the generation of the barrier                (bits 32-62)
233 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
234       *
235       * However, to efficiently maintain atomicity, these values are
236       * packed into a single (atomic) long. Termination uses the sign
237       * bit of 32 bit representation of phase, so phase is set to -1 on
238       * termination. Good performance relies on keeping state decoding
239       * and encoding simple, and keeping race windows short.
247     *
248     * Note: there are some cheats in arrive() that rely on unarrived
249     * count being lowest 16 bits.
240       */
241      private volatile long state;
242  
243 <    private static final int ushortMask = 0xffff;
244 <    private static final int phaseMask  = 0x7fffffff;
243 >    private static final int  MAX_PARTIES    = 0xffff;
244 >    private static final int  MAX_PHASE      = 0x7fffffff;
245 >    private static final int  PARTIES_SHIFT  = 16;
246 >    private static final int  PHASE_SHIFT    = 32;
247 >    private static final int  UNARRIVED_MASK = 0xffff;
248 >    private static final long PARTIES_MASK   = 0xffff0000L; // for masking long
249 >    private static final long ONE_ARRIVAL    = 1L;
250 >    private static final long ONE_PARTY      = 1L << PARTIES_SHIFT;
251 >    private static final long TERMINATION_PHASE  = -1L << PHASE_SHIFT;
252 >
253 >    // The following unpacking methods are usually manually inlined
254  
255      private static int unarrivedOf(long s) {
256 <        return (int) (s & ushortMask);
256 >        return (int)s & UNARRIVED_MASK;
257      }
258  
259      private static int partiesOf(long s) {
260 <        return ((int) s) >>> 16;
260 >        return (int)s >>> PARTIES_SHIFT;
261      }
262  
263      private static int phaseOf(long s) {
264 <        return (int) (s >>> 32);
264 >        return (int) (s >>> PHASE_SHIFT);
265      }
266  
267      private static int arrivedOf(long s) {
268          return partiesOf(s) - unarrivedOf(s);
269      }
270  
272    private static long stateFor(int phase, int parties, int unarrived) {
273        return ((((long) phase) << 32) | (((long) parties) << 16) |
274                (long) unarrived);
275    }
276
277    private static long trippedStateFor(int phase, int parties) {
278        long lp = (long) parties;
279        return (((long) phase) << 32) | (lp << 16) | lp;
280    }
281
282    /**
283     * Returns message string for bad bounds exceptions.
284     */
285    private static String badBounds(int parties, int unarrived) {
286        return ("Attempt to set " + unarrived +
287                " unarrived of " + parties + " parties");
288    }
289
271      /**
272       * The parent of this phaser, or null if none
273       */
# Line 298 | Line 279 | public class Phaser {
279       */
280      private final Phaser root;
281  
301    // Wait queues
302
282      /**
283       * Heads of Treiber stacks for waiting threads. To eliminate
284 <     * contention while releasing some threads while adding others, we
284 >     * contention when releasing some threads while adding others, we
285       * use two of them, alternating across even and odd phases.
286 +     * Subphasers share queues with root to speed up releases.
287       */
288 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
289 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
288 >    private final AtomicReference<QNode> evenQ;
289 >    private final AtomicReference<QNode> oddQ;
290  
291      private AtomicReference<QNode> queueFor(int phase) {
292          return ((phase & 1) == 0) ? evenQ : oddQ;
293      }
294  
295      /**
296 <     * Returns current state, first resolving lagged propagation from
297 <     * root if necessary.
296 >     * Main implementation for methods arrive and arriveAndDeregister.
297 >     * Manually tuned to speed up and minimize race windows for the
298 >     * common case of just decrementing unarrived field.
299 >     *
300 >     * @param adj - adjustment to apply to state -- either
301 >     * ONE_ARRIVAL (for arrive) or
302 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 >     */
304 >    private int doArrive(long adj) {
305 >        for (;;) {
306 >            long s = state;
307 >            int phase = (int)(s >>> PHASE_SHIFT);
308 >            if (phase < 0)
309 >                return phase;
310 >            int unarrived = (int)s & UNARRIVED_MASK;
311 >            if (unarrived == 0)
312 >                checkBadArrive(s);
313 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 >                if (unarrived == 1) {
315 >                    long p = s & PARTIES_MASK; // unshifted parties field
316 >                    long lu = p >>> PARTIES_SHIFT;
317 >                    int u = (int)lu;
318 >                    int nextPhase = (phase + 1) & MAX_PHASE;
319 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 >                    final Phaser parent = this.parent;
321 >                    if (parent == null) {
322 >                        if (onAdvance(phase, u))
323 >                            next |= TERMINATION_PHASE; // obliterate phase
324 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 >                        releaseWaiters(phase);
326 >                    }
327 >                    else {
328 >                        parent.doArrive((u == 0) ?
329 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
333 >                                                        s, next)))
334 >                            reconcileState();
335 >                    }
336 >                }
337 >                return phase;
338 >            }
339 >        }
340 >    }
341 >
342 >    /**
343 >     * Rechecks state and throws bounds exceptions on arrival -- called
344 >     * only if unarrived is apparently zero.
345       */
346 <    private long getReconciledState() {
347 <        return (parent == null) ? state : reconcileState();
346 >    private void checkBadArrive(long s) {
347 >        if (reconcileState() == s)
348 >            throw new IllegalStateException
349 >                ("Attempted arrival of unregistered party for " +
350 >                 stateToString(s));
351      }
352  
353      /**
354 <     * Recursively resolves state.
354 >     * Implementation of register, bulkRegister
355 >     *
356 >     * @param registrations number to add to both parties and unarrived fields
357 >     */
358 >    private int doRegister(int registrations) {
359 >        // assert registrations > 0;
360 >        // adjustment to state
361 >        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 >        final Phaser parent = this.parent;
363 >        for (;;) {
364 >            long s = (parent == null) ? state : reconcileState();
365 >            int phase = (int)(s >>> PHASE_SHIFT);
366 >            if (phase < 0)
367 >                return phase;
368 >            int parties = (int)s >>> PARTIES_SHIFT;
369 >            if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 >                internalAwaitAdvance(phase, null); // wait for onAdvance
371 >            else if (registrations > MAX_PARTIES - parties)
372 >                throw new IllegalStateException(badRegister(s));
373 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 >                return phase;
375 >        }
376 >    }
377 >
378 >    /**
379 >     * Returns message string for out of bounds exceptions on registration.
380 >     */
381 >    private String badRegister(long s) {
382 >        return "Attempt to register more than " +
383 >            MAX_PARTIES + " parties for " + stateToString(s);
384 >    }
385 >
386 >    /**
387 >     * Recursively resolves lagged phase propagation from root if necessary.
388       */
389      private long reconcileState() {
390 <        Phaser p = parent;
390 >        Phaser par = parent;
391          long s = state;
392 <        if (p != null) {
393 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
394 <                long parentState = p.getReconciledState();
395 <                int parentPhase = phaseOf(parentState);
396 <                int phase = phaseOf(s = state);
397 <                if (phase != parentPhase) {
398 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
399 <                    if (casState(s, next)) {
400 <                        releaseWaiters(phase);
401 <                        s = next;
402 <                    }
392 >        if (par != null) {
393 >            Phaser rt = root;
394 >            int phase, rPhase;
395 >            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 >                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 >                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 >                    par.reconcileState();
399 >                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 >                    long u = s & PARTIES_MASK; // reset unarrived to parties
401 >                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 >                                 (u >>> PARTIES_SHIFT));
403 >                    if (state == s &&
404 >                        UNSAFE.compareAndSwapLong(this, stateOffset,
405 >                                                  s, s = next))
406 >                        break;
407                  }
408 +                s = state;
409              }
410          }
411          return s;
# Line 349 | Line 417 | public class Phaser {
417       * phaser will need to first register for it.
418       */
419      public Phaser() {
420 <        this(null);
420 >        this(null, 0);
421      }
422  
423      /**
424 <     * Creates a new phaser with the given numbers of registered
424 >     * Creates a new phaser with the given number of registered
425       * unarrived parties, initial phase number 0, and no parent.
426       *
427       * @param parties the number of parties required to trip barrier
# Line 373 | Line 441 | public class Phaser {
441       * @param parent the parent phaser
442       */
443      public Phaser(Phaser parent) {
444 <        int phase = 0;
377 <        this.parent = parent;
378 <        if (parent != null) {
379 <            this.root = parent.root;
380 <            phase = parent.register();
381 <        }
382 <        else
383 <            this.root = this;
384 <        this.state = trippedStateFor(phase, 0);
444 >        this(parent, 0);
445      }
446  
447      /**
448 <     * Creates a new phaser with the given parent and numbers of
448 >     * Creates a new phaser with the given parent and number of
449       * registered unarrived parties. If parent is non-null, this phaser
450       * is registered with the parent and its initial phase number is
451       * the same as that of parent phaser.
# Line 396 | Line 456 | public class Phaser {
456       * or greater than the maximum number of parties supported
457       */
458      public Phaser(Phaser parent, int parties) {
459 <        if (parties < 0 || parties > ushortMask)
459 >        if (parties >>> PARTIES_SHIFT != 0)
460              throw new IllegalArgumentException("Illegal number of parties");
461 <        int phase = 0;
461 >        int phase;
462          this.parent = parent;
463          if (parent != null) {
464 <            this.root = parent.root;
464 >            Phaser r = parent.root;
465 >            this.root = r;
466 >            this.evenQ = r.evenQ;
467 >            this.oddQ = r.oddQ;
468              phase = parent.register();
469          }
470 <        else
470 >        else {
471              this.root = this;
472 <        this.state = trippedStateFor(phase, parties);
472 >            this.evenQ = new AtomicReference<QNode>();
473 >            this.oddQ = new AtomicReference<QNode>();
474 >            phase = 0;
475 >        }
476 >        long p = (long)parties;
477 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
478      }
479  
480      /**
481       * Adds a new unarrived party to this phaser.
482 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
483 +     * this method may wait until its completion before registering.
484       *
485       * @return the arrival phase number to which this registration applied
486       * @throws IllegalStateException if attempting to register more
# Line 422 | Line 492 | public class Phaser {
492  
493      /**
494       * Adds the given number of new unarrived parties to this phaser.
495 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
496 +     * this method may wait until its completion before registering.
497       *
498 <     * @param parties the number of parties required to trip barrier
498 >     * @param parties the number of additional parties required to trip barrier
499       * @return the arrival phase number to which this registration applied
500       * @throws IllegalStateException if attempting to register more
501       * than the maximum supported number of parties
502 +     * @throws IllegalArgumentException if {@code parties < 0}
503       */
504      public int bulkRegister(int parties) {
505          if (parties < 0)
# Line 437 | Line 510 | public class Phaser {
510      }
511  
512      /**
440     * Shared code for register, bulkRegister
441     */
442    private int doRegister(int registrations) {
443        int phase;
444        for (;;) {
445            long s = getReconciledState();
446            phase = phaseOf(s);
447            int unarrived = unarrivedOf(s) + registrations;
448            int parties = partiesOf(s) + registrations;
449            if (phase < 0)
450                break;
451            if (parties > ushortMask || unarrived > ushortMask)
452                throw new IllegalStateException(badBounds(parties, unarrived));
453            if (phase == phaseOf(root.state) &&
454                casState(s, stateFor(phase, parties, unarrived)))
455                break;
456        }
457        return phase;
458    }
459
460    /**
513       * Arrives at the barrier, but does not wait for others.  (You can
514       * in turn wait for others via {@link #awaitAdvance}).  It is an
515       * unenforced usage error for an unregistered party to invoke this
# Line 468 | Line 520 | public class Phaser {
520       * of unarrived parties would become negative
521       */
522      public int arrive() {
523 <        int phase;
472 <        for (;;) {
473 <            long s = state;
474 <            phase = phaseOf(s);
475 <            if (phase < 0)
476 <                break;
477 <            int parties = partiesOf(s);
478 <            int unarrived = unarrivedOf(s) - 1;
479 <            if (unarrived > 0) {        // Not the last arrival
480 <                if (casState(s, s - 1)) // s-1 adds one arrival
481 <                    break;
482 <            }
483 <            else if (unarrived == 0) {  // the last arrival
484 <                Phaser par = parent;
485 <                if (par == null) {      // directly trip
486 <                    if (casState
487 <                        (s,
488 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
489 <                                         ((phase + 1) & phaseMask), parties))) {
490 <                        releaseWaiters(phase);
491 <                        break;
492 <                    }
493 <                }
494 <                else {                  // cascade to parent
495 <                    if (casState(s, s - 1)) { // zeroes unarrived
496 <                        par.arrive();
497 <                        reconcileState();
498 <                        break;
499 <                    }
500 <                }
501 <            }
502 <            else if (phase != phaseOf(root.state)) // or if unreconciled
503 <                reconcileState();
504 <            else
505 <                throw new IllegalStateException(badBounds(parties, unarrived));
506 <        }
507 <        return phase;
523 >        return doArrive(ONE_ARRIVAL);
524      }
525  
526      /**
# Line 521 | Line 537 | public class Phaser {
537       * of registered or unarrived parties would become negative
538       */
539      public int arriveAndDeregister() {
540 <        // similar code to arrive, but too different to merge
525 <        Phaser par = parent;
526 <        int phase;
527 <        for (;;) {
528 <            long s = state;
529 <            phase = phaseOf(s);
530 <            if (phase < 0)
531 <                break;
532 <            int parties = partiesOf(s) - 1;
533 <            int unarrived = unarrivedOf(s) - 1;
534 <            if (parties >= 0) {
535 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
536 <                    if (casState
537 <                        (s,
538 <                         stateFor(phase, parties, unarrived))) {
539 <                        if (unarrived == 0) {
540 <                            par.arriveAndDeregister();
541 <                            reconcileState();
542 <                        }
543 <                        break;
544 <                    }
545 <                    continue;
546 <                }
547 <                if (unarrived == 0) {
548 <                    if (casState
549 <                        (s,
550 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
551 <                                         ((phase + 1) & phaseMask), parties))) {
552 <                        releaseWaiters(phase);
553 <                        break;
554 <                    }
555 <                    continue;
556 <                }
557 <                if (par != null && phase != phaseOf(root.state)) {
558 <                    reconcileState();
559 <                    continue;
560 <                }
561 <            }
562 <            throw new IllegalStateException(badBounds(parties, unarrived));
563 <        }
564 <        return phase;
540 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
541      }
542  
543      /**
544       * Arrives at the barrier and awaits others. Equivalent in effect
545       * to {@code awaitAdvance(arrive())}.  If you need to await with
546       * interruption or timeout, you can arrange this with an analogous
547 <     * construction using one of the other forms of the awaitAdvance
548 <     * method.  If instead you need to deregister upon arrival use
549 <     * {@code arriveAndDeregister}. It is an unenforced usage error
550 <     * for an unregistered party to invoke this method.
547 >     * construction using one of the other forms of the {@code
548 >     * awaitAdvance} method.  If instead you need to deregister upon
549 >     * arrival, use {@link #arriveAndDeregister}. It is an unenforced
550 >     * usage error for an unregistered party to invoke this method.
551       *
552       * @return the arrival phase number, or a negative number if terminated
553       * @throws IllegalStateException if not terminated and the number
# Line 585 | Line 561 | public class Phaser {
561       * Awaits the phase of the barrier to advance from the given phase
562       * value, returning immediately if the current phase of the
563       * barrier is not equal to the given phase value or this barrier
564 <     * is terminated.  It is an unenforced usage error for an
589 <     * unregistered party to invoke this method.
564 >     * is terminated.
565       *
566       * @param phase an arrival phase number, or negative value if
567       * terminated; this argument is normally the value returned by a
# Line 597 | Line 572 | public class Phaser {
572      public int awaitAdvance(int phase) {
573          if (phase < 0)
574              return phase;
575 <        long s = getReconciledState();
576 <        int p = phaseOf(s);
577 <        if (p != phase)
603 <            return p;
604 <        if (unarrivedOf(s) == 0 && parent != null)
605 <            parent.awaitAdvance(phase);
606 <        // Fall here even if parent waited, to reconcile and help release
607 <        return untimedWait(phase);
575 >        long s = (parent == null) ? state : reconcileState();
576 >        int p = (int)(s >>> PHASE_SHIFT);
577 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
578      }
579  
580      /**
# Line 612 | Line 582 | public class Phaser {
582       * value, throwing {@code InterruptedException} if interrupted
583       * while waiting, or returning immediately if the current phase of
584       * the barrier is not equal to the given phase value or this
585 <     * barrier is terminated. It is an unenforced usage error for an
616 <     * unregistered party to invoke this method.
585 >     * barrier is terminated.
586       *
587       * @param phase an arrival phase number, or negative value if
588       * terminated; this argument is normally the value returned by a
# Line 626 | Line 595 | public class Phaser {
595          throws InterruptedException {
596          if (phase < 0)
597              return phase;
598 <        long s = getReconciledState();
599 <        int p = phaseOf(s);
600 <        if (p != phase)
601 <            return p;
602 <        if (unarrivedOf(s) == 0 && parent != null)
603 <            parent.awaitAdvanceInterruptibly(phase);
604 <        return interruptibleWait(phase);
598 >        long s = (parent == null) ? state : reconcileState();
599 >        int p = (int)(s >>> PHASE_SHIFT);
600 >        if (p == phase) {
601 >            QNode node = new QNode(this, phase, true, false, 0L);
602 >            p = internalAwaitAdvance(phase, node);
603 >            if (node.wasInterrupted)
604 >                throw new InterruptedException();
605 >        }
606 >        return p;
607      }
608  
609      /**
# Line 641 | Line 612 | public class Phaser {
612       * InterruptedException} if interrupted while waiting, or
613       * returning immediately if the current phase of the barrier is
614       * not equal to the given phase value or this barrier is
615 <     * terminated.  It is an unenforced usage error for an
645 <     * unregistered party to invoke this method.
615 >     * terminated.
616       *
617       * @param phase an arrival phase number, or negative value if
618       * terminated; this argument is normally the value returned by a
# Line 661 | Line 631 | public class Phaser {
631          throws InterruptedException, TimeoutException {
632          if (phase < 0)
633              return phase;
634 <        long s = getReconciledState();
635 <        int p = phaseOf(s);
636 <        if (p != phase)
637 <            return p;
638 <        if (unarrivedOf(s) == 0 && parent != null)
639 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
640 <        return timedWait(phase, unit.toNanos(timeout));
634 >        long s = (parent == null) ? state : reconcileState();
635 >        int p = (int)(s >>> PHASE_SHIFT);
636 >        if (p == phase) {
637 >            long nanos = unit.toNanos(timeout);
638 >            QNode node = new QNode(this, phase, true, true, nanos);
639 >            p = internalAwaitAdvance(phase, node);
640 >            if (node.wasInterrupted)
641 >                throw new InterruptedException();
642 >            else if (p == phase)
643 >                throw new TimeoutException();
644 >        }
645 >        return p;
646      }
647  
648      /**
649 <     * Forces this barrier to enter termination state. Counts of
650 <     * arrived and registered parties are unaffected. If this phaser
651 <     * has a parent, it too is terminated. This method may be useful
652 <     * for coordinating recovery after one or more tasks encounter
653 <     * unexpected exceptions.
649 >     * Forces this barrier to enter termination state.  Counts of
650 >     * arrived and registered parties are unaffected.  If this phaser
651 >     * is a member of a tiered set of phasers, then all of the phasers
652 >     * in the set are terminated.  If this phaser is already
653 >     * terminated, this method has no effect.  This method may be
654 >     * useful for coordinating recovery after one or more tasks
655 >     * encounter unexpected exceptions.
656       */
657      public void forceTermination() {
658 <        for (;;) {
659 <            long s = getReconciledState();
660 <            int phase = phaseOf(s);
661 <            int parties = partiesOf(s);
662 <            int unarrived = unarrivedOf(s);
663 <            if (phase < 0 ||
664 <                casState(s, stateFor(-1, parties, unarrived))) {
688 <                releaseWaiters(0);
658 >        // Only need to change root state
659 >        final Phaser root = this.root;
660 >        long s;
661 >        while ((s = root.state) >= 0) {
662 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
663 >                                          s, s | TERMINATION_PHASE)) {
664 >                releaseWaiters(0); // signal all threads
665                  releaseWaiters(1);
690                if (parent != null)
691                    parent.forceTermination();
666                  return;
667              }
668          }
# Line 702 | Line 676 | public class Phaser {
676       * @return the phase number, or a negative value if terminated
677       */
678      public final int getPhase() {
679 <        return phaseOf(getReconciledState());
679 >        return (int)(root.state >>> PHASE_SHIFT);
680      }
681  
682      /**
# Line 721 | Line 695 | public class Phaser {
695       * @return the number of arrived parties
696       */
697      public int getArrivedParties() {
698 <        return arrivedOf(state);
698 >        return arrivedOf(parent==null? state : reconcileState());
699      }
700  
701      /**
# Line 731 | Line 705 | public class Phaser {
705       * @return the number of unarrived parties
706       */
707      public int getUnarrivedParties() {
708 <        return unarrivedOf(state);
708 >        return unarrivedOf(parent==null? state : reconcileState());
709      }
710  
711      /**
# Line 759 | Line 733 | public class Phaser {
733       * @return {@code true} if this barrier has been terminated
734       */
735      public boolean isTerminated() {
736 <        return getPhase() < 0;
736 >        return root.state < 0L;
737      }
738  
739      /**
740 <     * Overridable method to perform an action upon phase advance, and
741 <     * to control termination. This method is invoked whenever the
742 <     * barrier is tripped (and thus all other waiting parties are
743 <     * dormant). If it returns {@code true}, then, rather than advance
744 <     * the phase number, this barrier will be set to a final
745 <     * termination state, and subsequent calls to {@link #isTerminated}
746 <     * will return true.
740 >     * Overridable method to perform an action upon impending phase
741 >     * advance, and to control termination. This method is invoked
742 >     * upon arrival of the party tripping the barrier (when all other
743 >     * waiting parties are dormant).  If this method returns {@code
744 >     * true}, then, rather than advance the phase number, this barrier
745 >     * will be set to a final termination state, and subsequent calls
746 >     * to {@link #isTerminated} will return true. Any (unchecked)
747 >     * Exception or Error thrown by an invocation of this method is
748 >     * propagated to the party attempting to trip the barrier, in
749 >     * which case no advance occurs.
750 >     *
751 >     * <p>The arguments to this method provide the state of the phaser
752 >     * prevailing for the current transition.  The effects of invoking
753 >     * arrival, registration, and waiting methods on this Phaser from
754 >     * within {@code onAdvance} are unspecified and should not be
755 >     * relied on.
756 >     *
757 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
758 >     * {@code onAdvance} is invoked only for its root Phaser on each
759 >     * advance.
760       *
761       * <p>The default version returns {@code true} when the number of
762       * registered parties is zero. Normally, overrides that arrange
763       * termination for other reasons should also preserve this
764       * property.
765       *
779     * <p>You may override this method to perform an action with side
780     * effects visible to participating tasks, but it is in general
781     * only sensible to do so in designs where all parties register
782     * before any arrive, and all {@link #awaitAdvance} at each phase.
783     * Otherwise, you cannot ensure lack of interference from other
784     * parties during the invocation of this method.
785     *
766       * @param phase the phase number on entering the barrier
767       * @param registeredParties the current number of registered parties
768       * @return {@code true} if this barrier should terminate
# Line 801 | Line 781 | public class Phaser {
781       * @return a string identifying this barrier, as well as its state
782       */
783      public String toString() {
784 <        long s = getReconciledState();
784 >        return stateToString(reconcileState());
785 >    }
786 >
787 >    /**
788 >     * Implementation of toString and string-based error messages
789 >     */
790 >    private String stateToString(long s) {
791          return super.toString() +
792              "[phase = " + phaseOf(s) +
793              " parties = " + partiesOf(s) +
794              " arrived = " + arrivedOf(s) + "]";
795      }
796  
797 <    // methods for waiting
797 >    // Waiting mechanics
798 >
799 >    /**
800 >     * Removes and signals threads from queue for phase.
801 >     */
802 >    private void releaseWaiters(int phase) {
803 >        AtomicReference<QNode> head = queueFor(phase);
804 >        QNode q;
805 >        int p;
806 >        while ((q = head.get()) != null &&
807 >               ((p = q.phase) == phase ||
808 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
809 >            if (head.compareAndSet(q, q.next))
810 >                q.signal();
811 >        }
812 >    }
813 >
814 >    /** The number of CPUs, for spin control */
815 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
816 >
817 >    /**
818 >     * The number of times to spin before blocking while waiting for
819 >     * advance, per arrival while waiting. On multiprocessors, fully
820 >     * blocking and waking up a large number of threads all at once is
821 >     * usually a very slow process, so we use rechargeable spins to
822 >     * avoid it when threads regularly arrive: When a thread in
823 >     * internalAwaitAdvance notices another arrival before blocking,
824 >     * and there appear to be enough CPUs available, it spins
825 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
826 >     * uniprocessors, there is at least one intervening Thread.yield
827 >     * before blocking. The value trades off good-citizenship vs big
828 >     * unnecessary slowdowns.
829 >     */
830 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
831 >
832 >    /**
833 >     * Possibly blocks and waits for phase to advance unless aborted.
834 >     *
835 >     * @param phase current phase
836 >     * @param node if non-null, the wait node to track interrupt and timeout;
837 >     * if null, denotes noninterruptible wait
838 >     * @return current phase
839 >     */
840 >    private int internalAwaitAdvance(int phase, QNode node) {
841 >        Phaser current = this;       // to eventually wait at root if tiered
842 >        boolean queued = false;      // true when node is enqueued
843 >        int lastUnarrived = -1;      // to increase spins upon change
844 >        int spins = SPINS_PER_ARRIVAL;
845 >        long s;
846 >        int p;
847 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
848 >            Phaser par;
849 >            int unarrived = (int)s & UNARRIVED_MASK;
850 >            if (unarrived != lastUnarrived) {
851 >                if (lastUnarrived == -1) // ensure old queue clean
852 >                    releaseWaiters(phase-1);
853 >                if ((lastUnarrived = unarrived) < NCPU)
854 >                    spins += SPINS_PER_ARRIVAL;
855 >            }
856 >            else if (unarrived == 0 && (par = current.parent) != null) {
857 >                current = par;       // if all arrived, use parent
858 >                par = par.parent;
859 >                lastUnarrived = -1;
860 >            }
861 >            else if (spins > 0) {
862 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
863 >                    Thread.yield();  // yield midway through spin
864 >            }
865 >            else if (node == null)   // must be noninterruptible
866 >                node = new QNode(this, phase, false, false, 0L);
867 >            else if (node.isReleasable()) {
868 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
869 >                    break;
870 >                else
871 >                    return phase;    // aborted
872 >            }
873 >            else if (!queued) {      // push onto queue
874 >                AtomicReference<QNode> head = queueFor(phase);
875 >                QNode q = head.get();
876 >                if (q == null || q.phase == phase) {
877 >                    node.next = q;
878 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
879 >                        break;       // recheck to avoid stale enqueue
880 >                    else
881 >                        queued = head.compareAndSet(q, node);
882 >                }
883 >            }
884 >            else {
885 >                try {
886 >                    ForkJoinPool.managedBlock(node);
887 >                } catch (InterruptedException ie) {
888 >                    node.wasInterrupted = true;
889 >                }
890 >            }
891 >        }
892 >        releaseWaiters(phase);
893 >        if (node != null)
894 >            node.onRelease();
895 >        return p;
896 >    }
897  
898      /**
899       * Wait nodes for Treiber stack representing wait queue
# Line 816 | Line 901 | public class Phaser {
901      static final class QNode implements ForkJoinPool.ManagedBlocker {
902          final Phaser phaser;
903          final int phase;
819        final long startTime;
820        final long nanos;
821        final boolean timed;
904          final boolean interruptible;
905 <        volatile boolean wasInterrupted = false;
905 >        final boolean timed;
906 >        boolean wasInterrupted;
907 >        long nanos;
908 >        long lastTime;
909          volatile Thread thread; // nulled to cancel wait
910          QNode next;
911 +
912          QNode(Phaser phaser, int phase, boolean interruptible,
913 <              boolean timed, long startTime, long nanos) {
913 >              boolean timed, long nanos) {
914              this.phaser = phaser;
915              this.phase = phase;
830            this.timed = timed;
916              this.interruptible = interruptible;
832            this.startTime = startTime;
917              this.nanos = nanos;
918 +            this.timed = timed;
919 +            this.lastTime = timed? System.nanoTime() : 0L;
920              thread = Thread.currentThread();
921          }
922 +
923          public boolean isReleasable() {
924 <            return (thread == null ||
925 <                    phaser.getPhase() != phase ||
926 <                    (interruptible && wasInterrupted) ||
927 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
924 >            Thread t = thread;
925 >            if (t != null) {
926 >                if (phaser.getPhase() != phase)
927 >                    t = null;
928 >                else {
929 >                    if (Thread.interrupted())
930 >                        wasInterrupted = true;
931 >                    if (interruptible && wasInterrupted)
932 >                        t = null;
933 >                    else if (timed) {
934 >                        if (nanos > 0) {
935 >                            long now = System.nanoTime();
936 >                            nanos -= now - lastTime;
937 >                            lastTime = now;
938 >                        }
939 >                        if (nanos <= 0)
940 >                            t = null;
941 >                    }
942 >                }
943 >                if (t != null)
944 >                    return false;
945 >                thread = null;
946 >            }
947 >            return true;
948          }
949 +
950          public boolean block() {
951 <            if (Thread.interrupted()) {
952 <                wasInterrupted = true;
953 <                if (interruptible)
846 <                    return true;
847 <            }
848 <            if (!timed)
951 >            if (isReleasable())
952 >                return true;
953 >            else if (!timed)
954                  LockSupport.park(this);
955 <            else {
956 <                long waitTime = nanos - (System.nanoTime() - startTime);
852 <                if (waitTime <= 0)
853 <                    return true;
854 <                LockSupport.parkNanos(this, waitTime);
855 <            }
955 >            else if (nanos > 0)
956 >                LockSupport.parkNanos(this, nanos);
957              return isReleasable();
958          }
959 +
960          void signal() {
961              Thread t = thread;
962              if (t != null) {
# Line 862 | Line 964 | public class Phaser {
964                  LockSupport.unpark(t);
965              }
966          }
865        boolean doWait() {
866            if (thread != null) {
867                try {
868                    ForkJoinPool.managedBlock(this, false);
869                } catch (InterruptedException ie) {
870                }
871            }
872            return wasInterrupted;
873        }
874
875    }
876
877    /**
878     * Removes and signals waiting threads from wait queue.
879     */
880    private void releaseWaiters(int phase) {
881        AtomicReference<QNode> head = queueFor(phase);
882        QNode q;
883        while ((q = head.get()) != null) {
884            if (head.compareAndSet(q, q.next))
885                q.signal();
886        }
887    }
888
889    /**
890     * Tries to enqueue given node in the appropriate wait queue.
891     *
892     * @return true if successful
893     */
894    private boolean tryEnqueue(QNode node) {
895        AtomicReference<QNode> head = queueFor(node.phase);
896        return head.compareAndSet(node.next = head.get(), node);
897    }
898
899    /**
900     * Enqueues node and waits unless aborted or signalled.
901     *
902     * @return current phase
903     */
904    private int untimedWait(int phase) {
905        QNode node = null;
906        boolean queued = false;
907        boolean interrupted = false;
908        int p;
909        while ((p = getPhase()) == phase) {
910            if (Thread.interrupted())
911                interrupted = true;
912            else if (node == null)
913                node = new QNode(this, phase, false, false, 0, 0);
914            else if (!queued)
915                queued = tryEnqueue(node);
916            else
917                interrupted = node.doWait();
918        }
919        if (node != null)
920            node.thread = null;
921        releaseWaiters(phase);
922        if (interrupted)
923            Thread.currentThread().interrupt();
924        return p;
925    }
967  
968 <    /**
969 <     * Interruptible version
970 <     * @return current phase
971 <     */
972 <    private int interruptibleWait(int phase) throws InterruptedException {
932 <        QNode node = null;
933 <        boolean queued = false;
934 <        boolean interrupted = false;
935 <        int p;
936 <        while ((p = getPhase()) == phase && !interrupted) {
937 <            if (Thread.interrupted())
938 <                interrupted = true;
939 <            else if (node == null)
940 <                node = new QNode(this, phase, true, false, 0, 0);
941 <            else if (!queued)
942 <                queued = tryEnqueue(node);
943 <            else
944 <                interrupted = node.doWait();
968 >        void onRelease() { // actions upon return from internalAwaitAdvance
969 >            if (!interruptible && wasInterrupted)
970 >                Thread.currentThread().interrupt();
971 >            if (thread != null)
972 >                thread = null;
973          }
946        if (node != null)
947            node.thread = null;
948        if (p != phase || (p = getPhase()) != phase)
949            releaseWaiters(phase);
950        if (interrupted)
951            throw new InterruptedException();
952        return p;
953    }
974  
955    /**
956     * Timeout version.
957     * @return current phase
958     */
959    private int timedWait(int phase, long nanos)
960        throws InterruptedException, TimeoutException {
961        long startTime = System.nanoTime();
962        QNode node = null;
963        boolean queued = false;
964        boolean interrupted = false;
965        int p;
966        while ((p = getPhase()) == phase && !interrupted) {
967            if (Thread.interrupted())
968                interrupted = true;
969            else if (nanos - (System.nanoTime() - startTime) <= 0)
970                break;
971            else if (node == null)
972                node = new QNode(this, phase, true, true, startTime, nanos);
973            else if (!queued)
974                queued = tryEnqueue(node);
975            else
976                interrupted = node.doWait();
977        }
978        if (node != null)
979            node.thread = null;
980        if (p != phase || (p = getPhase()) != phase)
981            releaseWaiters(phase);
982        if (interrupted)
983            throw new InterruptedException();
984        if (p == phase)
985            throw new TimeoutException();
986        return p;
975      }
976  
977      // Unsafe mechanics
# Line 992 | Line 980 | public class Phaser {
980      private static final long stateOffset =
981          objectFieldOffset("state", Phaser.class);
982  
995    private final boolean casState(long cmp, long val) {
996        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
997    }
998
983      private static long objectFieldOffset(String field, Class<?> klazz) {
984          try {
985              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines