ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
(Generate patch)

Comparing jsr166/src/jsr166y/Phaser.java (file contents):
Revision 1.46 by dl, Sun Aug 30 11:08:25 2009 UTC vs.
Revision 1.59 by dl, Sat Nov 27 16:46:53 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 < import java.util.concurrent.*;
10 <
9 > import java.util.concurrent.TimeUnit;
10 > import java.util.concurrent.TimeoutException;
11   import java.util.concurrent.atomic.AtomicReference;
12   import java.util.concurrent.locks.LockSupport;
13  
# Line 79 | Line 79 | import java.util.concurrent.locks.LockSu
79   * immediately return without updating phaser state or waiting for
80   * advance, and indicating (via a negative phase value) that execution
81   * is complete.  Termination is triggered when an invocation of {@code
82 < * onAdvance} returns {@code true}.  As illustrated below, when
82 > * onAdvance} returns {@code true}. The default implementation returns
83 > * {@code true} if a deregistration has caused the number of
84 > * registered parties to become zero.  As illustrated below, when
85   * phasers control actions with a fixed number of iterations, it is
86   * often convenient to override this method to cause termination when
87   * the current phase number reaches a threshold. Method {@link
88   * #forceTermination} is also available to abruptly release waiting
89   * threads and allow them to terminate.
90   *
91 < * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
92 < * in tree structures) to reduce contention. Phasers with large
93 < * numbers of parties that would otherwise experience heavy
91 > * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 > * constructed in tree structures) to reduce contention. Phasers with
93 > * large numbers of parties that would otherwise experience heavy
94   * synchronization contention costs may instead be set up so that
95   * groups of sub-phasers share a common parent.  This may greatly
96   * increase throughput even though it incurs greater per-operation
# Line 109 | Line 111 | import java.util.concurrent.locks.LockSu
111   * <p><b>Sample usages:</b>
112   *
113   * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 < * to control a one-shot action serving a variable number of
115 < * parties. The typical idiom is for the method setting this up to
116 < * first register, then start the actions, then deregister, as in:
114 > * to control a one-shot action serving a variable number of parties.
115 > * The typical idiom is for the method setting this up to first
116 > * register, then start the actions, then deregister, as in:
117   *
118   *  <pre> {@code
119   * void runTasks(List<Runnable> tasks) {
# Line 184 | Line 186 | import java.util.concurrent.locks.LockSu
186   * <p>To create a set of tasks using a tree of phasers,
187   * you could use code of the following form, assuming a
188   * Task class with a constructor accepting a phaser that
189 < * it registers for upon construction:
189 > * it registers with upon construction:
190   *
191   *  <pre> {@code
192   * void build(Task[] actions, int lo, int hi, Phaser ph) {
# Line 207 | Line 209 | import java.util.concurrent.locks.LockSu
209   * be appropriate for extremely small per-barrier task bodies (thus
210   * high rates), or up to hundreds for extremely large ones.
211   *
210 * </pre>
211 *
212   * <p><b>Implementation notes</b>: This implementation restricts the
213   * maximum number of parties to 65535. Attempts to register additional
214   * parties result in {@code IllegalStateException}. However, you can and
# Line 229 | Line 229 | public class Phaser {
229       * Barrier state representation. Conceptually, a barrier contains
230       * four values:
231       *
232 <     * * parties -- the number of parties to wait (16 bits)
233 <     * * unarrived -- the number of parties yet to hit barrier (16 bits)
234 <     * * phase -- the generation of the barrier (31 bits)
235 <     * * terminated -- set if barrier is terminated (1 bit)
232 >     * * unarrived -- the number of parties yet to hit barrier (bits  0-15)
233 >     * * parties -- the number of parties to wait              (bits 16-31)
234 >     * * phase -- the generation of the barrier                (bits 32-62)
235 >     * * terminated -- set if barrier is terminated            (bit  63 / sign)
236       *
237       * However, to efficiently maintain atomicity, these values are
238       * packed into a single (atomic) long. Termination uses the sign
239       * bit of 32 bit representation of phase, so phase is set to -1 on
240       * termination. Good performance relies on keeping state decoding
241       * and encoding simple, and keeping race windows short.
242     *
243     * Note: there are some cheats in arrive() that rely on unarrived
244     * count being lowest 16 bits.
242       */
243      private volatile long state;
244  
245 <    private static final int ushortMask = 0xffff;
246 <    private static final int phaseMask  = 0x7fffffff;
245 >    private static final int  MAX_PARTIES     = 0xffff;
246 >    private static final int  MAX_PHASE       = 0x7fffffff;
247 >    private static final int  PARTIES_SHIFT   = 16;
248 >    private static final int  PHASE_SHIFT     = 32;
249 >    private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
250 >    private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
251 >    private static final long ONE_ARRIVAL     = 1L;
252 >    private static final long ONE_PARTY       = 1L << PARTIES_SHIFT;
253 >    private static final long TERMINATION_BIT = 1L << 63;
254 >
255 >    // The following unpacking methods are usually manually inlined
256  
257      private static int unarrivedOf(long s) {
258 <        return (int) (s & ushortMask);
258 >        return (int)s & UNARRIVED_MASK;
259      }
260  
261      private static int partiesOf(long s) {
262 <        return ((int) s) >>> 16;
262 >        return (int)s >>> PARTIES_SHIFT;
263      }
264  
265      private static int phaseOf(long s) {
266 <        return (int) (s >>> 32);
266 >        return (int) (s >>> PHASE_SHIFT);
267      }
268  
269      private static int arrivedOf(long s) {
270          return partiesOf(s) - unarrivedOf(s);
271      }
272  
267    private static long stateFor(int phase, int parties, int unarrived) {
268        return ((((long) phase) << 32) | (((long) parties) << 16) |
269                (long) unarrived);
270    }
271
272    private static long trippedStateFor(int phase, int parties) {
273        long lp = (long) parties;
274        return (((long) phase) << 32) | (lp << 16) | lp;
275    }
276
277    /**
278     * Returns message string for bad bounds exceptions.
279     */
280    private static String badBounds(int parties, int unarrived) {
281        return ("Attempt to set " + unarrived +
282                " unarrived of " + parties + " parties");
283    }
284
273      /**
274       * The parent of this phaser, or null if none
275       */
# Line 293 | Line 281 | public class Phaser {
281       */
282      private final Phaser root;
283  
296    // Wait queues
297
284      /**
285       * Heads of Treiber stacks for waiting threads. To eliminate
286 <     * contention while releasing some threads while adding others, we
286 >     * contention when releasing some threads while adding others, we
287       * use two of them, alternating across even and odd phases.
288 +     * Subphasers share queues with root to speed up releases.
289       */
290 <    private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
291 <    private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
290 >    private final AtomicReference<QNode> evenQ;
291 >    private final AtomicReference<QNode> oddQ;
292  
293      private AtomicReference<QNode> queueFor(int phase) {
294          return ((phase & 1) == 0) ? evenQ : oddQ;
295      }
296  
297      /**
298 <     * Returns current state, first resolving lagged propagation from
312 <     * root if necessary.
298 >     * Returns message string for bounds exceptions on arrival.
299       */
300 <    private long getReconciledState() {
301 <        return (parent == null) ? state : reconcileState();
300 >    private String badArrive(long s) {
301 >        return "Attempted arrival of unregistered party for " +
302 >            stateToString(s);
303      }
304  
305      /**
306 <     * Recursively resolves state.
306 >     * Returns message string for bounds exceptions on registration.
307       */
308 <    private long reconcileState() {
309 <        Phaser p = parent;
310 <        long s = state;
311 <        if (p != null) {
312 <            while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
313 <                long parentState = p.getReconciledState();
314 <                int parentPhase = phaseOf(parentState);
315 <                int phase = phaseOf(s = state);
316 <                if (phase != parentPhase) {
317 <                    long next = trippedStateFor(parentPhase, partiesOf(s));
318 <                    if (casState(s, next)) {
308 >    private String badRegister(long s) {
309 >        return "Attempt to register more than " +
310 >            MAX_PARTIES + " parties for " + stateToString(s);
311 >    }
312 >
313 >    /**
314 >     * Main implementation for methods arrive and arriveAndDeregister.
315 >     * Manually tuned to speed up and minimize race windows for the
316 >     * common case of just decrementing unarrived field.
317 >     *
318 >     * @param adj - adjustment to apply to state -- either
319 >     * ONE_ARRIVAL (for arrive) or
320 >     * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
321 >     */
322 >    private int doArrive(long adj) {
323 >        for (;;) {
324 >            long s = state;
325 >            int unarrived = (int)s & UNARRIVED_MASK;
326 >            int phase = (int)(s >>> PHASE_SHIFT);
327 >            if (phase < 0)
328 >                return phase;
329 >            else if (unarrived == 0) {
330 >                if (reconcileState() == s)     // recheck
331 >                    throw new IllegalStateException(badArrive(s));
332 >            }
333 >            else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
334 >                if (unarrived == 1) {
335 >                    long p = s & PARTIES_MASK; // unshifted parties field
336 >                    long lu = p >>> PARTIES_SHIFT;
337 >                    int u = (int)lu;
338 >                    int nextPhase = (phase + 1) & MAX_PHASE;
339 >                    long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
340 >                    final Phaser parent = this.parent;
341 >                    if (parent == null) {
342 >                        if (onAdvance(phase, u))
343 >                            next |= TERMINATION_BIT;
344 >                        UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
345                          releaseWaiters(phase);
346 <                        s = next;
346 >                    }
347 >                    else {
348 >                        parent.doArrive((u == 0) ?
349 >                                        ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
350 >                        if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
351 >                            ((int)(state >>> PHASE_SHIFT) != nextPhase &&
352 >                             !UNSAFE.compareAndSwapLong(this, stateOffset,
353 >                                                        s, next)))
354 >                            reconcileState();
355                      }
356                  }
357 +                return phase;
358 +            }
359 +        }
360 +    }
361 +
362 +    /**
363 +     * Implementation of register, bulkRegister
364 +     *
365 +     * @param registrations number to add to both parties and
366 +     * unarrived fields. Must be greater than zero.
367 +     */
368 +    private int doRegister(int registrations) {
369 +        // adjustment to state
370 +        long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
371 +        final Phaser parent = this.parent;
372 +        for (;;) {
373 +            long s = (parent == null) ? state : reconcileState();
374 +            int parties = (int)s >>> PARTIES_SHIFT;
375 +            int phase = (int)(s >>> PHASE_SHIFT);
376 +            if (phase < 0)
377 +                return phase;
378 +            else if (registrations > MAX_PARTIES - parties)
379 +                throw new IllegalStateException(badRegister(s));
380 +            else if ((parties == 0 && parent == null) || // first reg of root
381 +                     ((int)s & UNARRIVED_MASK) != 0) {   // not advancing
382 +                if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
383 +                    return phase;
384 +            }
385 +            else if (parties != 0)               // wait for onAdvance
386 +                internalAwaitAdvance(phase, null);
387 +            else {                               // 1st registration of child
388 +                synchronized(this) {             // register parent first
389 +                    if (reconcileState() == s) { // recheck under lock
390 +                        parent.doRegister(1);    // OK if throws IllegalState
391 +                        for (;;) {               // simpler form of outer loop
392 +                            s = reconcileState();
393 +                            phase = (int)(s >>> PHASE_SHIFT);
394 +                            if (phase < 0 ||
395 +                                UNSAFE.compareAndSwapLong(this, stateOffset,
396 +                                                          s, s + adj))
397 +                                return phase;
398 +                        }
399 +                    }
400 +                }
401 +            }
402 +        }
403 +    }
404 +
405 +    /**
406 +     * Recursively resolves lagged phase propagation from root if necessary.
407 +     */
408 +    private long reconcileState() {
409 +        Phaser par = parent;
410 +        long s = state;
411 +        if (par != null) {
412 +            Phaser rt = root;
413 +            int phase, rPhase;
414 +            while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
415 +                   (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
416 +                if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
417 +                    par.reconcileState();
418 +                else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
419 +                    long u = s & PARTIES_MASK; // reset unarrived to parties
420 +                    long next = ((((long) rPhase) << PHASE_SHIFT) | u |
421 +                                 (u >>> PARTIES_SHIFT));
422 +                    UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
423 +                }
424 +                s = state;
425              }
426          }
427          return s;
# Line 344 | Line 433 | public class Phaser {
433       * phaser will need to first register for it.
434       */
435      public Phaser() {
436 <        this(null);
436 >        this(null, 0);
437      }
438  
439      /**
440 <     * Creates a new phaser with the given numbers of registered
440 >     * Creates a new phaser with the given number of registered
441       * unarrived parties, initial phase number 0, and no parent.
442       *
443       * @param parties the number of parties required to trip barrier
# Line 360 | Line 449 | public class Phaser {
449      }
450  
451      /**
452 <     * Creates a new phaser with the given parent, without any
453 <     * initially registered parties. If parent is non-null this phaser
454 <     * is registered with the parent and its initial phase number is
455 <     * the same as that of parent phaser.
452 >     * Creates a new phaser with the given parent, and without any
453 >     * initially registered parties.  Any thread using this phaser
454 >     * will need to first register for it, at which point, if the
455 >     * given parent is non-null, this phaser will also be registered
456 >     * with the parent.
457 >     *
458 >     * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
459       *
460       * @param parent the parent phaser
461       */
462      public Phaser(Phaser parent) {
463 <        int phase = 0;
372 <        this.parent = parent;
373 <        if (parent != null) {
374 <            this.root = parent.root;
375 <            phase = parent.register();
376 <        }
377 <        else
378 <            this.root = this;
379 <        this.state = trippedStateFor(phase, 0);
463 >        this(parent, 0);
464      }
465  
466      /**
467 <     * Creates a new phaser with the given parent and numbers of
468 <     * registered unarrived parties. If parent is non-null, this phaser
469 <     * is registered with the parent and its initial phase number is
470 <     * the same as that of parent phaser.
467 >     * Creates a new phaser with the given parent and number of
468 >     * registered unarrived parties. If parent is non-null and
469 >     * the number of parties is non-zero, this phaser is registered
470 >     * with the parent.
471       *
472       * @param parent the parent phaser
473       * @param parties the number of parties required to trip barrier
# Line 391 | Line 475 | public class Phaser {
475       * or greater than the maximum number of parties supported
476       */
477      public Phaser(Phaser parent, int parties) {
478 <        if (parties < 0 || parties > ushortMask)
478 >        if (parties >>> PARTIES_SHIFT != 0)
479              throw new IllegalArgumentException("Illegal number of parties");
480 <        int phase = 0;
480 >        int phase;
481          this.parent = parent;
482          if (parent != null) {
483 <            this.root = parent.root;
484 <            phase = parent.register();
483 >            Phaser r = parent.root;
484 >            this.root = r;
485 >            this.evenQ = r.evenQ;
486 >            this.oddQ = r.oddQ;
487 >            phase = (parties == 0) ? parent.getPhase() : parent.doRegister(1);
488          }
489 <        else
489 >        else {
490              this.root = this;
491 <        this.state = trippedStateFor(phase, parties);
491 >            this.evenQ = new AtomicReference<QNode>();
492 >            this.oddQ = new AtomicReference<QNode>();
493 >            phase = 0;
494 >        }
495 >        long p = (long)parties;
496 >        this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
497      }
498  
499      /**
500 <     * Adds a new unarrived party to this phaser.
500 >     * Adds a new unarrived party to this phaser.  If an ongoing
501 >     * invocation of {@link #onAdvance} is in progress, this method
502 >     * may wait until its completion before registering.  If this
503 >     * phaser has a parent, and this phaser previously had no
504 >     * registered parties, this phaser is also registered with its
505 >     * parent.
506       *
507       * @return the arrival phase number to which this registration applied
508       * @throws IllegalStateException if attempting to register more
# Line 417 | Line 514 | public class Phaser {
514  
515      /**
516       * Adds the given number of new unarrived parties to this phaser.
517 +     * If an ongoing invocation of {@link #onAdvance} is in progress,
518 +     * this method may wait until its completion before registering.
519 +     * If this phaser has a parent, and the given number of parities
520 +     * is greater than zero, and this phaser previously had no
521 +     * registered parties, this phaser is also registered with its
522 +     * parent.
523       *
524 <     * @param parties the number of parties required to trip barrier
524 >     * @param parties the number of additional parties required to trip barrier
525       * @return the arrival phase number to which this registration applied
526       * @throws IllegalStateException if attempting to register more
527       * than the maximum supported number of parties
528 +     * @throws IllegalArgumentException if {@code parties < 0}
529       */
530      public int bulkRegister(int parties) {
531          if (parties < 0)
532              throw new IllegalArgumentException();
533 <        if (parties == 0)
533 >        else if (parties == 0)
534              return getPhase();
535          return doRegister(parties);
536      }
537  
538      /**
435     * Shared code for register, bulkRegister
436     */
437    private int doRegister(int registrations) {
438        int phase;
439        for (;;) {
440            long s = getReconciledState();
441            phase = phaseOf(s);
442            int unarrived = unarrivedOf(s) + registrations;
443            int parties = partiesOf(s) + registrations;
444            if (phase < 0)
445                break;
446            if (parties > ushortMask || unarrived > ushortMask)
447                throw new IllegalStateException(badBounds(parties, unarrived));
448            if (phase == phaseOf(root.state) &&
449                casState(s, stateFor(phase, parties, unarrived)))
450                break;
451        }
452        return phase;
453    }
454
455    /**
539       * Arrives at the barrier, but does not wait for others.  (You can
540 <     * in turn wait for others via {@link #awaitAdvance}).  It is an
541 <     * unenforced usage error for an unregistered party to invoke this
542 <     * method.
540 >     * in turn wait for others via {@link #awaitAdvance}).  It is a
541 >     * usage error for an unregistered party to invoke this
542 >     * method. However, it is possible that this error will result in
543 >     * an {code IllegalStateException} only when some <em>other</em>
544 >     * party arrives.
545       *
546       * @return the arrival phase number, or a negative value if terminated
547       * @throws IllegalStateException if not terminated and the number
548       * of unarrived parties would become negative
549       */
550      public int arrive() {
551 <        int phase;
467 <        for (;;) {
468 <            long s = state;
469 <            phase = phaseOf(s);
470 <            if (phase < 0)
471 <                break;
472 <            int parties = partiesOf(s);
473 <            int unarrived = unarrivedOf(s) - 1;
474 <            if (unarrived > 0) {        // Not the last arrival
475 <                if (casState(s, s - 1)) // s-1 adds one arrival
476 <                    break;
477 <            }
478 <            else if (unarrived == 0) {  // the last arrival
479 <                Phaser par = parent;
480 <                if (par == null) {      // directly trip
481 <                    if (casState
482 <                        (s,
483 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
484 <                                         ((phase + 1) & phaseMask), parties))) {
485 <                        releaseWaiters(phase);
486 <                        break;
487 <                    }
488 <                }
489 <                else {                  // cascade to parent
490 <                    if (casState(s, s - 1)) { // zeroes unarrived
491 <                        par.arrive();
492 <                        reconcileState();
493 <                        break;
494 <                    }
495 <                }
496 <            }
497 <            else if (phase != phaseOf(root.state)) // or if unreconciled
498 <                reconcileState();
499 <            else
500 <                throw new IllegalStateException(badBounds(parties, unarrived));
501 <        }
502 <        return phase;
551 >        return doArrive(ONE_ARRIVAL);
552      }
553  
554      /**
# Line 508 | Line 557 | public class Phaser {
557       * required to trip the barrier in future phases.  If this phaser
558       * has a parent, and deregistration causes this phaser to have
559       * zero parties, this phaser also arrives at and is deregistered
560 <     * from its parent.  It is an unenforced usage error for an
561 <     * unregistered party to invoke this method.
560 >     * from its parent.  It is a usage error for an unregistered party
561 >     * to invoke this method. However, it is possible that this error
562 >     * will result in an {code IllegalStateException} only when some
563 >     * <em>other</em> party arrives.
564       *
565       * @return the arrival phase number, or a negative value if terminated
566       * @throws IllegalStateException if not terminated and the number
567       * of registered or unarrived parties would become negative
568       */
569      public int arriveAndDeregister() {
570 <        // similar code to arrive, but too different to merge
520 <        Phaser par = parent;
521 <        int phase;
522 <        for (;;) {
523 <            long s = state;
524 <            phase = phaseOf(s);
525 <            if (phase < 0)
526 <                break;
527 <            int parties = partiesOf(s) - 1;
528 <            int unarrived = unarrivedOf(s) - 1;
529 <            if (parties >= 0) {
530 <                if (unarrived > 0 || (unarrived == 0 && par != null)) {
531 <                    if (casState
532 <                        (s,
533 <                         stateFor(phase, parties, unarrived))) {
534 <                        if (unarrived == 0) {
535 <                            par.arriveAndDeregister();
536 <                            reconcileState();
537 <                        }
538 <                        break;
539 <                    }
540 <                    continue;
541 <                }
542 <                if (unarrived == 0) {
543 <                    if (casState
544 <                        (s,
545 <                         trippedStateFor(onAdvance(phase, parties) ? -1 :
546 <                                         ((phase + 1) & phaseMask), parties))) {
547 <                        releaseWaiters(phase);
548 <                        break;
549 <                    }
550 <                    continue;
551 <                }
552 <                if (par != null && phase != phaseOf(root.state)) {
553 <                    reconcileState();
554 <                    continue;
555 <                }
556 <            }
557 <            throw new IllegalStateException(badBounds(parties, unarrived));
558 <        }
559 <        return phase;
570 >        return doArrive(ONE_ARRIVAL|ONE_PARTY);
571      }
572  
573      /**
574       * Arrives at the barrier and awaits others. Equivalent in effect
575       * to {@code awaitAdvance(arrive())}.  If you need to await with
576       * interruption or timeout, you can arrange this with an analogous
577 <     * construction using one of the other forms of the awaitAdvance
578 <     * method.  If instead you need to deregister upon arrival use
579 <     * {@code arriveAndDeregister}. It is an unenforced usage error
580 <     * for an unregistered party to invoke this method.
577 >     * construction using one of the other forms of the {@code
578 >     * awaitAdvance} method.  If instead you need to deregister upon
579 >     * arrival, use {@link #arriveAndDeregister}.  It is a usage error
580 >     * for an unregistered party to invoke this method. However, it is
581 >     * possible that this error will result in an {code
582 >     * IllegalStateException} only when some <em>other</em> party
583 >     * arrives.
584       *
585       * @return the arrival phase number, or a negative number if terminated
586       * @throws IllegalStateException if not terminated and the number
# Line 580 | Line 594 | public class Phaser {
594       * Awaits the phase of the barrier to advance from the given phase
595       * value, returning immediately if the current phase of the
596       * barrier is not equal to the given phase value or this barrier
597 <     * is terminated.  It is an unenforced usage error for an
584 <     * unregistered party to invoke this method.
597 >     * is terminated.
598       *
599       * @param phase an arrival phase number, or negative value if
600       * terminated; this argument is normally the value returned by a
# Line 592 | Line 605 | public class Phaser {
605      public int awaitAdvance(int phase) {
606          if (phase < 0)
607              return phase;
608 <        long s = getReconciledState();
609 <        int p = phaseOf(s);
610 <        if (p != phase)
598 <            return p;
599 <        if (unarrivedOf(s) == 0 && parent != null)
600 <            parent.awaitAdvance(phase);
601 <        // Fall here even if parent waited, to reconcile and help release
602 <        return untimedWait(phase);
608 >        long s = (parent == null) ? state : reconcileState();
609 >        int p = (int)(s >>> PHASE_SHIFT);
610 >        return (p != phase) ? p : internalAwaitAdvance(phase, null);
611      }
612  
613      /**
# Line 607 | Line 615 | public class Phaser {
615       * value, throwing {@code InterruptedException} if interrupted
616       * while waiting, or returning immediately if the current phase of
617       * the barrier is not equal to the given phase value or this
618 <     * barrier is terminated. It is an unenforced usage error for an
611 <     * unregistered party to invoke this method.
618 >     * barrier is terminated.
619       *
620       * @param phase an arrival phase number, or negative value if
621       * terminated; this argument is normally the value returned by a
# Line 621 | Line 628 | public class Phaser {
628          throws InterruptedException {
629          if (phase < 0)
630              return phase;
631 <        long s = getReconciledState();
632 <        int p = phaseOf(s);
633 <        if (p != phase)
634 <            return p;
635 <        if (unarrivedOf(s) == 0 && parent != null)
636 <            parent.awaitAdvanceInterruptibly(phase);
637 <        return interruptibleWait(phase);
631 >        long s = (parent == null) ? state : reconcileState();
632 >        int p = (int)(s >>> PHASE_SHIFT);
633 >        if (p == phase) {
634 >            QNode node = new QNode(this, phase, true, false, 0L);
635 >            p = internalAwaitAdvance(phase, node);
636 >            if (node.wasInterrupted)
637 >                throw new InterruptedException();
638 >        }
639 >        return p;
640      }
641  
642      /**
# Line 636 | Line 645 | public class Phaser {
645       * InterruptedException} if interrupted while waiting, or
646       * returning immediately if the current phase of the barrier is
647       * not equal to the given phase value or this barrier is
648 <     * terminated.  It is an unenforced usage error for an
640 <     * unregistered party to invoke this method.
648 >     * terminated.
649       *
650       * @param phase an arrival phase number, or negative value if
651       * terminated; this argument is normally the value returned by a
# Line 656 | Line 664 | public class Phaser {
664          throws InterruptedException, TimeoutException {
665          if (phase < 0)
666              return phase;
667 <        long s = getReconciledState();
668 <        int p = phaseOf(s);
669 <        if (p != phase)
670 <            return p;
671 <        if (unarrivedOf(s) == 0 && parent != null)
672 <            parent.awaitAdvanceInterruptibly(phase, timeout, unit);
673 <        return timedWait(phase, unit.toNanos(timeout));
667 >        long s = (parent == null) ? state : reconcileState();
668 >        int p = (int)(s >>> PHASE_SHIFT);
669 >        if (p == phase) {
670 >            long nanos = unit.toNanos(timeout);
671 >            QNode node = new QNode(this, phase, true, true, nanos);
672 >            p = internalAwaitAdvance(phase, node);
673 >            if (node.wasInterrupted)
674 >                throw new InterruptedException();
675 >            else if (p == phase)
676 >                throw new TimeoutException();
677 >        }
678 >        return p;
679      }
680  
681      /**
682 <     * Forces this barrier to enter termination state. Counts of
683 <     * arrived and registered parties are unaffected. If this phaser
684 <     * has a parent, it too is terminated. This method may be useful
685 <     * for coordinating recovery after one or more tasks encounter
686 <     * unexpected exceptions.
682 >     * Forces this barrier to enter termination state.  Counts of
683 >     * arrived and registered parties are unaffected.  If this phaser
684 >     * is a member of a tiered set of phasers, then all of the phasers
685 >     * in the set are terminated.  If this phaser is already
686 >     * terminated, this method has no effect.  This method may be
687 >     * useful for coordinating recovery after one or more tasks
688 >     * encounter unexpected exceptions.
689       */
690      public void forceTermination() {
691 <        for (;;) {
692 <            long s = getReconciledState();
693 <            int phase = phaseOf(s);
694 <            int parties = partiesOf(s);
695 <            int unarrived = unarrivedOf(s);
696 <            if (phase < 0 ||
697 <                casState(s, stateFor(-1, parties, unarrived))) {
683 <                releaseWaiters(0);
691 >        // Only need to change root state
692 >        final Phaser root = this.root;
693 >        long s;
694 >        while ((s = root.state) >= 0) {
695 >            if (UNSAFE.compareAndSwapLong(root, stateOffset,
696 >                                          s, s | TERMINATION_BIT)) {
697 >                releaseWaiters(0); // signal all threads
698                  releaseWaiters(1);
685                if (parent != null)
686                    parent.forceTermination();
699                  return;
700              }
701          }
# Line 697 | Line 709 | public class Phaser {
709       * @return the phase number, or a negative value if terminated
710       */
711      public final int getPhase() {
712 <        return phaseOf(getReconciledState());
712 >        return (int)(root.state >>> PHASE_SHIFT);
713      }
714  
715      /**
# Line 716 | Line 728 | public class Phaser {
728       * @return the number of arrived parties
729       */
730      public int getArrivedParties() {
731 <        return arrivedOf(state);
731 >        return arrivedOf(parent==null? state : reconcileState());
732      }
733  
734      /**
# Line 726 | Line 738 | public class Phaser {
738       * @return the number of unarrived parties
739       */
740      public int getUnarrivedParties() {
741 <        return unarrivedOf(state);
741 >        return unarrivedOf(parent==null? state : reconcileState());
742      }
743  
744      /**
# Line 754 | Line 766 | public class Phaser {
766       * @return {@code true} if this barrier has been terminated
767       */
768      public boolean isTerminated() {
769 <        return getPhase() < 0;
769 >        return root.state < 0L;
770      }
771  
772      /**
# Line 770 | Line 782 | public class Phaser {
782       * which case no advance occurs.
783       *
784       * <p>The arguments to this method provide the state of the phaser
785 <     * prevailing for the current transition. (When called from within
786 <     * an implementation of {@code onAdvance} the values returned by
787 <     * methods such as {@code getPhase} may or may not reliably
788 <     * indicate the state to which this transition applies.)
789 <     *
790 <     * <p>The default version returns {@code true} when the number of
791 <     * registered parties is zero. Normally, overrides that arrange
792 <     * termination for other reasons should also preserve this
793 <     * property.
794 <     *
795 <     * <p>You may override this method to perform an action with side
796 <     * effects visible to participating tasks, but it is only sensible
797 <     * to do so in designs where all parties register before any
798 <     * arrive, and all {@link #awaitAdvance} at each phase.
799 <     * Otherwise, you cannot ensure lack of interference from other
800 <     * parties during the invocation of this method. Additionally,
801 <     * method {@code onAdvance} may be invoked more than once per
802 <     * transition if registrations are intermixed with arrivals.
785 >     * prevailing for the current transition.  The effects of invoking
786 >     * arrival, registration, and waiting methods on this Phaser from
787 >     * within {@code onAdvance} are unspecified and should not be
788 >     * relied on.
789 >     *
790 >     * <p>If this Phaser is a member of a tiered set of Phasers, then
791 >     * {@code onAdvance} is invoked only for its root Phaser on each
792 >     * advance.
793 >     *
794 >     * <p>To support the most common use cases, the default
795 >     * implementation of this method returns {@code true} when the
796 >     * number of registered parties has become zero as the result of a
797 >     * party invoking {@code arriveAndDeregister}.  You can disable
798 >     * this behavior, thus enabling continuation upon future
799 >     * registrations, by overriding this method to always return
800 >     * {@code false}:
801 >     *
802 >     * <pre> {@code
803 >     * Phaser phaser = new Phaser() {
804 >     *   protected boolean onAdvance(int phase, int parties) { return false; }
805 >     * }}</pre>
806       *
807       * @param phase the phase number on entering the barrier
808       * @param registeredParties the current number of registered parties
# Line 807 | Line 822 | public class Phaser {
822       * @return a string identifying this barrier, as well as its state
823       */
824      public String toString() {
825 <        long s = getReconciledState();
825 >        return stateToString(reconcileState());
826 >    }
827 >
828 >    /**
829 >     * Implementation of toString and string-based error messages
830 >     */
831 >    private String stateToString(long s) {
832          return super.toString() +
833              "[phase = " + phaseOf(s) +
834              " parties = " + partiesOf(s) +
835              " arrived = " + arrivedOf(s) + "]";
836      }
837  
838 <    // methods for waiting
838 >    // Waiting mechanics
839 >
840 >    /**
841 >     * Removes and signals threads from queue for phase.
842 >     */
843 >    private void releaseWaiters(int phase) {
844 >        AtomicReference<QNode> head = queueFor(phase);
845 >        QNode q;
846 >        int p;
847 >        while ((q = head.get()) != null &&
848 >               ((p = q.phase) == phase ||
849 >                (int)(root.state >>> PHASE_SHIFT) != p)) {
850 >            if (head.compareAndSet(q, q.next))
851 >                q.signal();
852 >        }
853 >    }
854 >
855 >    /** The number of CPUs, for spin control */
856 >    private static final int NCPU = Runtime.getRuntime().availableProcessors();
857 >
858 >    /**
859 >     * The number of times to spin before blocking while waiting for
860 >     * advance, per arrival while waiting. On multiprocessors, fully
861 >     * blocking and waking up a large number of threads all at once is
862 >     * usually a very slow process, so we use rechargeable spins to
863 >     * avoid it when threads regularly arrive: When a thread in
864 >     * internalAwaitAdvance notices another arrival before blocking,
865 >     * and there appear to be enough CPUs available, it spins
866 >     * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
867 >     * uniprocessors, there is at least one intervening Thread.yield
868 >     * before blocking. The value trades off good-citizenship vs big
869 >     * unnecessary slowdowns.
870 >     */
871 >    static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
872 >
873 >    /**
874 >     * Possibly blocks and waits for phase to advance unless aborted.
875 >     *
876 >     * @param phase current phase
877 >     * @param node if non-null, the wait node to track interrupt and timeout;
878 >     * if null, denotes noninterruptible wait
879 >     * @return current phase
880 >     */
881 >    private int internalAwaitAdvance(int phase, QNode node) {
882 >        Phaser current = this;       // to eventually wait at root if tiered
883 >        boolean queued = false;      // true when node is enqueued
884 >        int lastUnarrived = -1;      // to increase spins upon change
885 >        int spins = SPINS_PER_ARRIVAL;
886 >        long s;
887 >        int p;
888 >        while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
889 >            Phaser par;
890 >            int unarrived = (int)s & UNARRIVED_MASK;
891 >            if (unarrived != lastUnarrived) {
892 >                if (lastUnarrived == -1) // ensure old queue clean
893 >                    releaseWaiters(phase-1);
894 >                if ((lastUnarrived = unarrived) < NCPU)
895 >                    spins += SPINS_PER_ARRIVAL;
896 >            }
897 >            else if (unarrived == 0 && (par = current.parent) != null) {
898 >                current = par;       // if all arrived, use parent
899 >                par = par.parent;
900 >                lastUnarrived = -1;
901 >            }
902 >            else if (spins > 0) {
903 >                if (--spins == (SPINS_PER_ARRIVAL >>> 1))
904 >                    Thread.yield();  // yield midway through spin
905 >            }
906 >            else if (node == null)   // must be noninterruptible
907 >                node = new QNode(this, phase, false, false, 0L);
908 >            else if (node.isReleasable()) {
909 >                if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
910 >                    break;
911 >                else
912 >                    return phase;    // aborted
913 >            }
914 >            else if (!queued) {      // push onto queue
915 >                AtomicReference<QNode> head = queueFor(phase);
916 >                QNode q = head.get();
917 >                if (q == null || q.phase == phase) {
918 >                    node.next = q;
919 >                    if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
920 >                        break;       // recheck to avoid stale enqueue
921 >                    else
922 >                        queued = head.compareAndSet(q, node);
923 >                }
924 >            }
925 >            else {
926 >                try {
927 >                    ForkJoinPool.managedBlock(node);
928 >                } catch (InterruptedException ie) {
929 >                    node.wasInterrupted = true;
930 >                }
931 >            }
932 >        }
933 >        releaseWaiters(phase);
934 >        if (node != null)
935 >            node.onRelease();
936 >        return p;
937 >    }
938  
939      /**
940       * Wait nodes for Treiber stack representing wait queue
# Line 822 | Line 942 | public class Phaser {
942      static final class QNode implements ForkJoinPool.ManagedBlocker {
943          final Phaser phaser;
944          final int phase;
825        final long startTime;
826        final long nanos;
827        final boolean timed;
945          final boolean interruptible;
946 <        volatile boolean wasInterrupted = false;
946 >        final boolean timed;
947 >        boolean wasInterrupted;
948 >        long nanos;
949 >        long lastTime;
950          volatile Thread thread; // nulled to cancel wait
951          QNode next;
952 +
953          QNode(Phaser phaser, int phase, boolean interruptible,
954 <              boolean timed, long startTime, long nanos) {
954 >              boolean timed, long nanos) {
955              this.phaser = phaser;
956              this.phase = phase;
836            this.timed = timed;
957              this.interruptible = interruptible;
838            this.startTime = startTime;
958              this.nanos = nanos;
959 +            this.timed = timed;
960 +            this.lastTime = timed? System.nanoTime() : 0L;
961              thread = Thread.currentThread();
962          }
963 +
964          public boolean isReleasable() {
965 <            return (thread == null ||
966 <                    phaser.getPhase() != phase ||
967 <                    (interruptible && wasInterrupted) ||
968 <                    (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
965 >            Thread t = thread;
966 >            if (t != null) {
967 >                if (phaser.getPhase() != phase)
968 >                    t = null;
969 >                else {
970 >                    if (Thread.interrupted())
971 >                        wasInterrupted = true;
972 >                    if (interruptible && wasInterrupted)
973 >                        t = null;
974 >                    else if (timed) {
975 >                        if (nanos > 0) {
976 >                            long now = System.nanoTime();
977 >                            nanos -= now - lastTime;
978 >                            lastTime = now;
979 >                        }
980 >                        if (nanos <= 0)
981 >                            t = null;
982 >                    }
983 >                }
984 >                if (t != null)
985 >                    return false;
986 >                thread = null;
987 >            }
988 >            return true;
989          }
990 +
991          public boolean block() {
992 <            if (Thread.interrupted()) {
993 <                wasInterrupted = true;
994 <                if (interruptible)
852 <                    return true;
853 <            }
854 <            if (!timed)
992 >            if (isReleasable())
993 >                return true;
994 >            else if (!timed)
995                  LockSupport.park(this);
996 <            else {
997 <                long waitTime = nanos - (System.nanoTime() - startTime);
858 <                if (waitTime <= 0)
859 <                    return true;
860 <                LockSupport.parkNanos(this, waitTime);
861 <            }
996 >            else if (nanos > 0)
997 >                LockSupport.parkNanos(this, nanos);
998              return isReleasable();
999          }
1000 +
1001          void signal() {
1002              Thread t = thread;
1003              if (t != null) {
# Line 868 | Line 1005 | public class Phaser {
1005                  LockSupport.unpark(t);
1006              }
1007          }
871        boolean doWait() {
872            if (thread != null) {
873                try {
874                    ForkJoinPool.managedBlock(this, false);
875                } catch (InterruptedException ie) {
876                }
877            }
878            return wasInterrupted;
879        }
880
881    }
882
883    /**
884     * Removes and signals waiting threads from wait queue.
885     */
886    private void releaseWaiters(int phase) {
887        AtomicReference<QNode> head = queueFor(phase);
888        QNode q;
889        while ((q = head.get()) != null) {
890            if (head.compareAndSet(q, q.next))
891                q.signal();
892        }
893    }
1008  
1009 <    /**
1010 <     * Tries to enqueue given node in the appropriate wait queue.
1011 <     *
1012 <     * @return true if successful
1013 <     */
900 <    private boolean tryEnqueue(QNode node) {
901 <        AtomicReference<QNode> head = queueFor(node.phase);
902 <        return head.compareAndSet(node.next = head.get(), node);
903 <    }
904 <
905 <    /**
906 <     * Enqueues node and waits unless aborted or signalled.
907 <     *
908 <     * @return current phase
909 <     */
910 <    private int untimedWait(int phase) {
911 <        QNode node = null;
912 <        boolean queued = false;
913 <        boolean interrupted = false;
914 <        int p;
915 <        while ((p = getPhase()) == phase) {
916 <            if (Thread.interrupted())
917 <                interrupted = true;
918 <            else if (node == null)
919 <                node = new QNode(this, phase, false, false, 0, 0);
920 <            else if (!queued)
921 <                queued = tryEnqueue(node);
922 <            else
923 <                interrupted = node.doWait();
1009 >        void onRelease() { // actions upon return from internalAwaitAdvance
1010 >            if (!interruptible && wasInterrupted)
1011 >                Thread.currentThread().interrupt();
1012 >            if (thread != null)
1013 >                thread = null;
1014          }
925        if (node != null)
926            node.thread = null;
927        releaseWaiters(phase);
928        if (interrupted)
929            Thread.currentThread().interrupt();
930        return p;
931    }
1015  
933    /**
934     * Interruptible version
935     * @return current phase
936     */
937    private int interruptibleWait(int phase) throws InterruptedException {
938        QNode node = null;
939        boolean queued = false;
940        boolean interrupted = false;
941        int p;
942        while ((p = getPhase()) == phase && !interrupted) {
943            if (Thread.interrupted())
944                interrupted = true;
945            else if (node == null)
946                node = new QNode(this, phase, true, false, 0, 0);
947            else if (!queued)
948                queued = tryEnqueue(node);
949            else
950                interrupted = node.doWait();
951        }
952        if (node != null)
953            node.thread = null;
954        if (p != phase || (p = getPhase()) != phase)
955            releaseWaiters(phase);
956        if (interrupted)
957            throw new InterruptedException();
958        return p;
959    }
960
961    /**
962     * Timeout version.
963     * @return current phase
964     */
965    private int timedWait(int phase, long nanos)
966        throws InterruptedException, TimeoutException {
967        long startTime = System.nanoTime();
968        QNode node = null;
969        boolean queued = false;
970        boolean interrupted = false;
971        int p;
972        while ((p = getPhase()) == phase && !interrupted) {
973            if (Thread.interrupted())
974                interrupted = true;
975            else if (nanos - (System.nanoTime() - startTime) <= 0)
976                break;
977            else if (node == null)
978                node = new QNode(this, phase, true, true, startTime, nanos);
979            else if (!queued)
980                queued = tryEnqueue(node);
981            else
982                interrupted = node.doWait();
983        }
984        if (node != null)
985            node.thread = null;
986        if (p != phase || (p = getPhase()) != phase)
987            releaseWaiters(phase);
988        if (interrupted)
989            throw new InterruptedException();
990        if (p == phase)
991            throw new TimeoutException();
992        return p;
1016      }
1017  
1018      // Unsafe mechanics
# Line 998 | Line 1021 | public class Phaser {
1021      private static final long stateOffset =
1022          objectFieldOffset("state", Phaser.class);
1023  
1001    private final boolean casState(long cmp, long val) {
1002        return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1003    }
1004
1024      private static long objectFieldOffset(String field, Class<?> klazz) {
1025          try {
1026              return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines